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Cache-Based Side-Channel Intrusion Detection using
Hardware Performance Counters

Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Vianney Lapotre, Guy Gogniat

ABSTRACT
We present a novel run-time detection approach for cache-based side channel
attacks (SCAs). It constitutes machine learning models which take real-
time data from hardware performance counters for detection purpose. We
have performed our experiments with two state-of-the-art cache-based side
channel attacks namely, Flush+Reload and Flush+Flush to evaluate the
effectiveness of our detection approach. We have provided the experimental
evaluation using real time system load conditions and analyzed the results
on detection accuracy, detection speed, system-wide performance overhead
and confusion matrix for used models. Proposed detection mechanism uses
three different machine learning models, namely LDA, LR, SVM model
for intrusion detection. We collect data related to the real-time behavior
of running processes through selected CPU events, which are stored in
registers called Hardware Performance Counters (HPCs). This data is used
as features for our machine learning models. The method is designed for
run-time detection of cache-based SCAs on RSA and AES crypto-systems.
The proposed method uses carefully selected unique hardware events in a
multiplexed fashion to reduce false positives and false negatives. We perform
experiments on Intel's Core i5 i7 machines under No load, Average load,
and Full load system conditions. Our results show detection accuracy of
up to 99.51%in the best case for Flush+Reload and 99.97% in the best case
for Flush+Flush SCA. Our detection approach shows considerably high
detection efficiency under realistic system load conditions.

1. CONTEXT
Side-channel attacks (SCAs) target micro-architectural fea-

tures which exploit mathematically sound cryptographic im-
plementations like RSA, AES and ECC etc. SCAs observe
the pattern of memory accesses and timing of data-dependent
cryptographic operations which is a major source of infor-
mation leakage in attacks. In the last decade, numerous
cache-based SCAs have been proposed as well as some mit-
igation techniques for such attacks too. Some famous tech-
niques of published attacks are Prime+Probe, Flush+Reload,
Flush+Flush, Evict+Time and Evict+Reload [1], [2], [3], [4],
[5]. Whereas, there are many software and hardware mitiga-
tion techniques are proposed in the recent past [6], [7]. Some
pragmatic solutions to mitigate SCAs are; disabling hardware
threading [8], auditing [9], cache flushing [10], cache color-
ing and partitioning [11], [12], scheduling-based obfuscation
[13], and hardware cache partitioning [14]. These techniques
are designed to provide protection against specific vulnera-
bility exploited in information leakage channel. But on the
other hand, they provide with an excessive blow in code size,
execution time, resource utilization and performance over-
head. Since, devising all weather mitigation techniques are

hard to propose and applying mitigation techniques in all
cases is expensive too. Therefore, sophisticated detection
mechanisms can help to analyze the necessity of need-based
mitigation.
In the recent past, an emerging area for mitigating cache-
based SCAs is detection around malicious activities. Some re-
searches [3], [15], [16], [17], [18], [19], [20] have been done
to detect side channels by implementing user-level processes
to observe the execution of other processes or by providing
light-weight patches in operating systems. These mechanisms
do not modify underlying hardware. These detection based
techniques focussed on detection by incoming information
used by hardware performance counters with and without
integrating machine learning approaches. These detection
mechanisms are focused on different leakage vulnerabilities
of cache and have been validated on different cryptographic
implementations.
Hardware Performance Counters (HPCs) are specially de-
signed hardware registers which are utilized mainly for per-
formance monitoring, timing execution information and dis-
tinguishing bottlenecks in program’s execution. HPCs dis-
close run-time behavioral information of software which is
using specific hardware events e.g. cache references, cache
misses, cache hits, branch miss prediction, retired instruc-
tions, CPU cycles etc. These events use dedicated hardware,
so, they can be accessed very fast without affecting target
software.
We propose a detection mechanism using HPCs and differ-
ent machine learning models; Linear Discriminant Analysis
(LDA), Logistic Regression (LR), Support Vector Machine
(SVM) [21] to identify the malicious activity at a sophisti-
cated and fine grain level. Figure 1, represents an abstract
view of proposed methodology using LDA, LR and SVM
models. Our detection approach is based on training the ma-
chine learning models, run-time profiling of hardware events
and clasification and detection of anomaly.

We create two experimental case studies to demonstrate
detection of F+R and F+F attacks. In each case study, we
evaluate the performance of our ML models under realis-
tic system load conditions. To do so, we vary the system
load from No Load (NL), Average Load (AL), to Full Load
(FL) conditions by using selected SPEC benchmarks that
offer memory-intensive computations such as; gobmk, mc f ,
omnet pp, and xalancbmk, to run in the background as both
attacks would be targeting/affecting caches and they would
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Figure 1: Abstract view of ML-based detection mechanism.

create realistic execution scenarios for evaluation. A NL con-
dition involves only Victim and Attacker processes running,
an AL condition involves at least two SPEC benchmarks
running along with Victim & Attacker processes, and a FL
condition involves at least four SPEC benchmarks running
along with Victim & Attacker processes. Proposed detection
approach works for access-driven cache-based side-channel
attacks on modrn processors and it uses multiple ML models
for detection purpose. These models use real-time data from
hardware performance counters to determine cache-based
intrusions on RSA and AES crypto-systems. We provide de-
tailed analysis of results on detection accuracy, speed, system-
wide performance overhead and confusion matrix for used
models. One of the strengths of this work is that we provide
experimental evaluation using realistic system load condi-
tions. We use standard SPEC benchmarks to create No Load,
Average Load, and Full Load conditions to train and evalu-
ate ML models. NIGHTs-WATCH shows considerably high
detection efficiency under variable system load conditions.

Our results show detection accuracy of 99.51%, 99.50%
and 99.44% for F+R attack in case of NL, AL and FL condi-
tions, respectively, with performance overhead of < 2% at the
highest detection speed, i.e., within 1% completion of a sin-
gle RSA encryption round. In case of Flush+Flush (stealthier)
attack, our results show 99.97%, 98.74% and 95.20% detec-
tion accuracy for NL, AL and FL conditions, respectively,
with performance overhead of < 2% at the highest detection
speed, i.e., within 12.5% completion of 400 AES encryption
rounds needed to complete the attack.

We also experimented with tree-based ML models like
Random Forest (RF) in this work, which shows good detec-
tion accuracy for both attacks. Although, tree-based mod-
els achieve good accuracy, their implementation complexity
makes it harder to use them in real-time attack detection mech-
anisms like our proposed detection technique. Moreover, in
order to prove portability, we performed experiments on dif-
ferent hardware such as Intel’s core i3−2120 CPU running
on Linux Ubuntu 4.4.0− 116− generic at 3.30-MHz. Our
results show consistency. Timely detection of intrusion using
actual variations in process’s execution, measured directly
from hardware (particularly caches), can help the operating
system to take preventive measures such as halt or killing of
identifiable malicious process, completely isolated or criti-
cal section-first execution of victim process, or relocation of

co-located VMs etc. In future, we intend to integrate more
ML models in our detection module and apply it on other
cache-based SCAs.
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