
HAL Id: cel-01815308
https://hal.science/cel-01815308

Submitted on 14 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digital Systems Design
Reza Sameni

To cite this version:

Reza Sameni. Digital Systems Design. Engineering school. Iran. 2018. �cel-01815308�

https://hal.science/cel-01815308
https://hal.archives-ouvertes.fr

Reza Sameni, PhD

Email: rsameni@shirazu.ac.ir

Web: www.sameni.info

School of Electrical & Computer Engineering

Shiraz University, Shiraz, Iran

Winter-Spring 2018

Revision: June 2018

DIGITAL SYSTEMS DESIGN

Copyright Notice

 The current lecture notes are provided as handouts for the Digital

Systems Design course presented at Shiraz University for

educational purposes.

 Some images and source codes (cited within the text) have been

adopted from books, papers, datasheets, and the World Wide

Web; but may be subject to copyright.

 Please use the following for citing these notes:

R. Sameni, “Digital Systems Design Lecture Notes”, School of

Electrical & Computer Engineering, Shiraz University, Shiraz,

Iran, version 2018.

Preface

• History: The present lecture notes have been prepared for

an undergraduate course in Digital Systems Design,

presented in the School of Electrical and Computer

Engineering of Shiraz University between 2009 to 2018.

• Prerequisites: Logical Circuits, Computer Architecture,

Signals & Systems. It is highly recommended that the

students take this course simultaneously with the Digital

System Design Lab, which is designed based on the

course content.

• Evaluation: The grading is based on exercises (15%),

midterm (35%) and final (50%) examinations.

Table of Contents

• Part I: Architecture

• Part II: Electronic Design Automation

• Part III: Advanced Topics in Digital Systems Design

and Implementation

Architecture

PART I

INTRODUCTION

The von Neumann Architecture

7

The von Neumann Architecture (Bobda 2007)

The von Neumann Architecture

8

The VN Architecture consists of:

1. A memory for storing program and data (Harvard

architectures contain two parallel accessible memories for

storing program and data separately)

2. A control unit (also called control path) featuring a program

counter that holds the address of the next instruction to be

executed.

3. An arithmetic and logic unit (also called data path) in which

instructions are executed.

The von Neumann Architecture

9

The execution of an instruction on a VN computer can be done in five

cycles:

1. Instruction Fetch (IF): An instruction is fetched from the memory

2. Decoding (D): The meaning of the instruction is determined and the

operands are localized

3. Read Operands (R): The operands are read from the memory

4. Execute (EX): The instruction is executed with the read operands

5. Write Result (W): The result of the execution is stored back to the

memory

Pipelining in von Neumann Architectures

10

• Pipelining or instruction level parallelism (ILP) can be used to

optimize the hardware utilization as well as the performance of

programs.

• ILP does not reduce the execution latency of a single execution,

but increases the throughput of a set of instructions.

• The maximum throughput is dictated by the impact of hazards in

the computation. Hazards can be reduced, e.g., by the use of a

Harvard architecture.

An ideal VN Pipeline

Pipelining in von Neumann Architectures

11

Ideal pipelining is commonly unachievable. For example, the

Harvard architecture pipeline is as follows:

Harvard Architecture Pipelining

Application Specific Hardware versus von

Neumann Architectures

12

VN versus ASIP: Considering 5 cycles per instruction, the VN should be 15 times

faster than the ASIP to outperform its speed (Bobda 2007)

Application specific hardware have higher performance, at a cost of lower flexibility

Flexibility vs. Performance

13

Flexibility vs. performance of different architectures (Bobda 2007)

Applications of Reconfigurable Architectures

14

• Rapid prototyping

 reduced time-to-market

• In-system customization

 hardware updates and patches

• Remote reconfiguration

 via RF links for telecommunication BTS, spacecrafts, satellites,…

• Multi-modal computation

 Environment aware hardware

• Adaptive computing systems

 Machine learning applications

References

15

• Bobda, C. (2007). Introduction to reconfigurable

computing: architectures, algorithms, and applications.

Springer Science & Business Media.

PROGRAMMABLE LOGIC

DEVICES &

TECHNOLOGIES

17

PLD Technologies

Programmable Logic Devices (PLD) have a long history

(longer than conventional VN architecture CPUs):

• PROM

• Logic Chips

• SPLD: PLA & PAL

• CPLD

• FPGA

• ASIC

18

Programmable ROM (PROM)

Example 1: PROM-based Combinatorial logic

19

Programmable ROM (PROM)

Example 2: PROM-based state machine

Benefit: Any logic circuit may be implemented

Drawback: Low speed

20

Standard Logic Chips

• TTL (Transistor-Transistor Logic) Technology:

• The 74xxx-series

• CMOS Technology:

• The 4xxx-series

21

74000 Sub-series
• 74LS74: Low-power Schottky

• 74HCT74: High-speed CMOS

• 74HCT: 74LS TTL-compatible inputs

• SN74F00: Fast logic

22

Design Example Using the 74000 Series
cbabcbaf ),,(

23

Design Example Using the 74000 Series

An Implementation of a 4-bit two register computer, including 6 CPU assembly instructions:

READ (read input), INCB (increment register B), MOVAB (move contents of register A to B),

MOVBA (move contents of register B to A), RETI (return from interrupt), JMP (jump).

Reference: http://en.wikipedia.org/wiki/7400_series

24

Programmable Logic Technologies

• Basic Idea: Logic functions can be realized in sum-of-

product form.

Technologies:

• Simple PLD (SPLD)

• Complex PLD (CPLD)

zyxyxzyxf ),,(

25

PLA (Programmable Logic Array) Technology

The basic concept: An arbitrary sum of product generator

26

PLA (Programmable Logic Array) Technology

Example

27

PAL (Programmable Array Logic) Technology

• PLA has both AND and OR programmable gates; but PAL

has only programmable AND gates and the OR gates are

fixed

28

PAL Extra Circuitry

Macrocell

*Input – Output selection

CPLD (Complex Programmable Logic Device)

CPLDs can be considered as a set of PAL-like blocks with a

set of reconfigurable interconnection network

29

30

CPLD (Complex Programmable Logic Device)

31

Equivalent Number of Gates

• We need a measure to compare the computation power of

different PLDs:

• Equivalent gates: total number of two input NAND gates

• Example: If 1 Macrocell ≈ 20 NAND gates, a 1000

Macrocell CPLD is roughly equivalent to 20,000 NAND

gates

CPLD (Complex Programmable Logic Device)

32

FPGA (Field-Programmable Gate Array)

• FPGAs are extensions of the idea of PROMs for logic

circuit realization

33

34

FPGA Configurable Logic Blocks (CLB)

Two-input Look Up Table (LUT)

35

FPGA Configurable Logic Blocks (CLB)

Example:

36

FPGA Configurable Logic Blocks (CLB)

Three-input Look Up Table (LUT)

37

Programmed FPGA Scheme

Programmable Switches

• Other switching technologies: Flash-based, Anti-fuse, etc.

38

FPGA Logic Block Extra Circuitry

FPGA logic blocks require extra circuitry for sequential logic,

routing, I/O interface, etc.

39

40

CPLD vs. FPGA

• CPLD keeps its contents without power, also known as

non-volatile

• FPGA storage cells are volatile (lose their contents when

power is switched off)

41

PLD Programming

(a) Off-board programming (b) On-board programming using

JTAG*

* JTAG: Joint Test Action Group

42

JTAG

JTAG is a serial interface technology. The connector pins are:

•TDI: Test Data In

•TDO: Test Data Out

•TCK: Test Clock

•TMS: Test Mode Select

•TRST: Test Reset (optional)

JTAG Daisy Chain

https://en.wikipedia.org/wiki/File:Jtag_chain.svg
https://en.wikipedia.org/wiki/File:Jtag_chain.svg

43

Other JTAG Applications
Examples:

•Boundary Scan: the ability to set and read the values on pins without direct physical access

•Xilinx ChipScope Technology: for in-system run-time debugging

Ref: https://www.xjtag.com/about-jtag/jtag-a-technical-overview

https://www.xjtag.com/wp-content/uploads/schematic_diagram_jtag_enab.gif
https://www.xjtag.com/wp-content/uploads/schematic_diagram_jtag_enab.gif

44

ASIC (Application Specific Integrated Circuit)

• In CPLD and FPGA programmable switches consume

much space and reduce speed

• Alternatively, the chip layout can be totally customized;

but is very expensive

• Compromise: The design may be simplified by using

standard-cell or gate-array technologies

45

ASIC Standard-Cell Technology

Standard logic blocks are provided by

manufacturers as libraries that may be

connected

46

ASIC Gate-Array Technology

Only some parts of the chip are prefabricated

47

PLD Packages

• Plastic Leaded Chip Carrier (PLCC)

48

PLD Packages

• Small Outline Integrated Circuit (SOIC)

• Plastic Small Outline Package (PSOP)

49

PLD Packages

• Thin Small Outline Package

50

PLD Packages

• Pin Grid Array (PGA)

51

PLD Packages

• Ball Grid Array (BGA)

52

PLD Leading Companies

• Xilinx

• Altera

• Actel

• Lattice

• QuickLogic

53

Xilinx®
http://www.xilinx.com/

http://www.xilinx.com/

Altera®
http://www.altera.com/

• Altera was acquired by Intel® in 2015

54

http://www.altera.com/

55

Actel®
http://www.actel.com/

http://www.actel.com/

56

Lattice®
http://www.latticesemi.com/

http://www.latticesemi.com/

57

QuickLogic®
http://www.quicklogic.com/

http://www.quicklogic.com/

58

The FPGA Market (2013)

Reference: http://www.eetimes.com /

59

The Programmable Market Share (2009)

Reference: www.xilinx.com

60

Xilinx Revenue Breakdown (2009)

Reference: www.xilinx.com

61

Asia Pacific FPGA Market Size by

Application, 2012-2022 (USD Million)

Reference: https://www.gminsights.com/industry-analysis/field-programmable-

gate-array-fpga-market-size

62

References:

• S. Brown and Z. Vranesic, Fundamentals of Digital Logic

with Verilog Design, McGraw-Hill, 2003, Chapter 3

• B. Zeidman, Designing with FPGAs & CPLDs, CMP Books,

2002, Chapter 1

FPGA INTERNAL

ARCHITECTURE

FPGA Internal Architecture

Current FPGA devices consist of:

• Configurable logic

• Interconnect network

• Device-dependent peripherals and IP cores

64

Typical FPGA Architectures
(an academic classification)

• Fine Grained (homogeneous)

• Medium Grained

• Coarse Grained (heterogeneous)

65

 From top to bottom the logic blocks become more complex and

advanced.

 Node-Based Reconfigurable Architectures: Imagine a network

of computers and programmable devices, which can be

reconfigured on-demand

Current FPGA architectures are considered medium grain in this

classification

Basic FPGA Architectures

66

Actual FPGA Architectures

67

Actual FPGA Architectures

68

Actual FPGA Architectures

69

Multipurpose Logic Blocks

Logic blocks are commonly multi-purpose:

• Shift Registers

• Memory (RAM)

• Look-up-tables (LUT)

70

Configurable Logic Blocks

71

Hierarchical FPGA Architecture

72

The left part slices of a CLB (SLICEM) can be configured either as combinatorial logic, or can be use as 16-bit SRAM or as

shift register while right-hand slices. The SLICEL can only be configured as combinatorial logic.

Slicing

73

Hierarchical FPGA Architecture

• Current FPGA internal architectures have a sort of

hierarchical design, both, in their CLB and interconnection

networks:

• Xilinx Terminology: Logic Cells, Slices, Configurable Logic Blocks

• Altera Terminology: Logic Element, Logic Array Block

Why?

74

Xilinx Logic Blocks

75

Xilinx vs. Altera Logic Cells

76

Altera Logic Blocks

• Question: How do companies decide about their FPGA internal

architecture? Is it a only matter of technology or taste?

77

Interconnect Networks

78

Interconnect Networks

79

Other Peripherals within Contemporary FPGA

• Block Memories

• Digital Clock Managers

• Dedicated Adders & Multipliers

• Variety of I/O interfaces

• Embedded Processors

80

Embedded Block Memories

81

Embedded Multiplier, Adder, MAC

82

Clock Trees

83

Clock Management

Usage:

1. Jitter removal

2. Frequency synthesis

3. Phase shifting

4. Clock de-skewing

84

1. Jitter Removal

85

Jitter Specifications

86

Clock Jitter Issues

Impacts of clock jitter on signal quality and data processing:

• Analog domain:

• Critical; causes phase modulation (distortion) and directly translates

into phase noise

• Digital domain:

• Critical; when working with multiple clocks and different clock domains

• Irrelevant; in single-clock systems and if the clock jitter is far smaller

than the clock period.

Note: Clock jitter is a random variable with a probability distribution

function.

87

Practical Jitter Measurement

Using an oscilloscope:

88

Further Reading: Agilent® and Tektronix® clock

analysis tools

Jitter Calculation

89

Jitter Calculation

90

Jitter Calculation

91

Example 2 (Cascaded DCMs)

Assume that the input clock has 150 ps (±75 ps) of period jitter. Assume that DCM (A) uses
the CLK2X output. Use the Spartan-3 Data Sheet specification called CLKOUT_PER_JITT_2X

for the DCM output jitter, estimated here as 400 ps (±200 ps). Assume that DCM (B) uses the

CLKDV output with an integer divider value. Use the Spartan-3 Data Sheet specification called
CLKOUT_PER_JITT_DV1 for the DCM output jitter, estimated here as 300 ps (±150 ps).

Finally, assume that DCM (C) phase shifts the output from DCM (B) by 90°. Use the Spartan-3
Data Sheet specification called CLKOUT_PER_JITT_90 for the DCM output jitter, estimated

here as 300 ps (±150 ps).

Recommendations for Clock Jitter Minimization

92

• Properly Design the Power Distribution System

• Properly Design the Printed Circuit Board

• Obey Simultaneous Switching Output (SSO) Recommendations

• Place Virtual Ground Pins Around DCM Input and Output

Connections

2. Frequency Synthesis

93

3. Phase Shifting

94

4. Clock De-skewing

95

Clock Generator Architectures

• Delay-Locked Loop (DLL)

• Phase-Locked Loop (PLL)

96

Delay-Locked Loop (DLL)

97

Phase-Locked Loop (PLL)

98

Further Reading: http://pages.hmc.edu/harris/cmosvlsi/4e/lect/lect22.pdf

PLL vs. DLL Architecture

99

Further Reading:

 Basics of DLLs: https://open4tech.com/phase-and-delay-locked-loops-basics

 Control Models of PLLs and DLLs: http://pages.hmc.edu/harris/cmosvlsi/4e/lect/lect22.pdf

Xilinx Digital Clock Manager (DCM)

100

Reference: http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf

Xilinx DCM Clock Synthesis Options

101

Xilinx DCM Functional Overview

102

Internal Clock De-skewing

103

External Clock De-skewing

104

Reference: http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf

DCM Cascading

105

General Purpose I/O

• The concept of I/O Banks

106

Xilinx Series 7 I/O Banks

The 7 series Xilinx FPGAs offer:

High-performance (HP) I/O Banks: designed to meet the

performance requirements of high-speed memory and other

chip-to-chip interfaces with voltages up to 1.8V

High-range (HR) I/O Banks: designed to support a wider

range of I/O standards with voltages up to 3.3V

Different I/O voltage standards: 3.3V, 2.5V, 1.8V, 1.5V,

1.35V, 1.2V, which includes LVTTL, LVCMOS, etc. standards

Digitally-controlled impedance (DCI) and DCI cascading: in

the HP mode

107

Xilinx FPGA I/O Planning and I/O Banks

108

Digitally Controlled Impedance

109

Example:

Xilinx Series 7 I/O Buffers

110

• Various I/O buffers are supported on standard FPGA devices:

Giga-Bit Transceiver Bus

111

IP Cores
• Hard IP

• In the form of pre-implemented blocks such as microprocessor
cores, gigabit interfaces, multipliers, adders, MAC functions, etc.

Example: Xilinx PowerPC

• Soft IP

• Source-level library of high-level functions that can be integrated in
a custom design.

• Firm IP

• Libraries which have already been optimally mapped, placed, and
routed into a group of programmable logic blocks (and possibly
combined with some hard IP blocks like multipliers, etc.) and may
be integrated into a custom design.

Example: Xilinx MicroBlaze

112

Hard Embedded Processors

113

Soft Embedded Processors: Microblaze

114

Xilinx Microblaze Core Block Diagram
MicroBlaze™ is Xilinx 32-bit RISC Harvard architecture soft processor core with a

rich instruction set optimized for embedded applications.

Key Features & Benefits:

• Over 70 user configurable options

• 3-stage pipeline for optimal footprint, 5-stage pipeline for maximum performance

• Supports either PLB or AXI interface

• Big-endian or Little-endian support

• Optional Memory Management Unit (MMU)

• Optional Floating Point Unit (FPU)

• Instruction and Data-side Cache

115

FPGA with Embedded Microprocessors

• Question: Why?

116

Reference: http://www.gartner.com

Xilinx Intellectual Property (IP) Cores

• Dozens of soft IP cores are provided by Xilinx and other

vendors, which can be integrated into a custom design

117

How to Choose an FPGA?

1. Study the problem of interest.

2. Start by a preliminary system design to find a rough

estimate of the resources and system clock that you might

need. This might need some simulations, writing some

parts of the HDL code or putting together predesigned

libraries or IP cores.

3. Choose/design an appropriate (overestimated) FPGA

board for your application.

4. Proceed with the detailed design and implementation

118

Xilinx 7 Series FPGAs Overview

119

Xilinx Virtex-7 Feature Summary

120

FPGA Package Numbers

FPGA ordering information (visibly marked on the IC package)

121

FPGA DESIGN FLOWS

PLD-Based Design Flows

1. Design Idea

2. Architectural Design

3. Design Entry

4. Behavioral Simulation (Top-Down and/or Bottom-Up)

5. Register Transfer Level (RTL) Simulation/Implementation

6. Synthesis

7. Technology Mapping

8. Placement & Routing

9. FPGA/CPLD Configuration using Bitstreams

10. Final In-System Testing

11. Fully customized IC or ASIC Fabrication

12. Gate Level & Timing Simulation/Implementation

13. Switch Level & Device Simulation/Implementation

14. Final Circuit Testing

123

For ASIC

Design Only

FPGA vs. Microprocessor Implementation Flow

Microprocessor FPGA

Architectural design Architectural design

Choice of language (C, JAVA, etc.) Choice of language (Verilog, VHDL. etc.)

Editing programs Editing programs

Compiling programs (.DLL, .OBJ) Compiling programs

Synthesizing programs (.EDIF)

Linking programs (.EXE) Placing and routing programs (.VO, .SDF, .TTF)

Loading programs to ROM FPGA configuration with bit files

Debugging programs Debugging FPGA programs

Documenting programs/design Documenting programs/design

Delivering programs Delivering programs

124

1. Design Entry

Utilities for design entries:

• Schematic Editors

• e.g., Altium’s FPGA-ready Design Components and FPGA Generic

• Hardware Description Languages (HDL)

• e.g., Verilog, VHDL, etc.

• Finite State Machine (FSM) Editors

• e.g., ActiveHDL® FSM editor

• System Level Tools, known as HLS

• e.g., Matlab Simulink and Xilinx System Generator

125

2. Functional Simulation

• Behavioral Simulation; not necessarily implementable on hardware

• Structural Simulation; can simulate bitwise accurate models of the

final hardware

126

3. Logic Synthesis

HDL  Boolean Equations  Technology Mapping

• The output of the synthesis stage is a Netlist including all

the hardware modules and their interconnections

• Various Netlist Standards exist

• Electronic Design Interchange Format (EDIF)

• Xilinx Netlist Format (XNF)

• …

Necessity of standard tools: Consider ‘N’ vendors with

distinct standards; N2 translators are required to

interchange formats in between

127

Summary of Xilinx FPGA Design Flow

128

1. Synthesis: converts HDL (VHDL/Verilog) code into a gate-

level netlist, represented in the terms of the UNISIM

component library (a Xilinx library containing basic

primitives).

2. Translate: merges the incoming netlists and constraints

into a Xilinx® design file.

3. Map: fits the design into the available resources on the

target device, and optionally, places the design.

4. Place and Route: places and routes the design to the

timing constraints.

5. Generate Programming File: creates a bitstream file that

can be downloaded to the device.

Electronic Design Automation

PART II

HARDWARE DESCRIPTION

LANGUAGES

Hardware Description

How can we describe a hardware?

1. Schematic design tools: Visual schematic editors. e.g.,

Altium®, Protel®, OrCAD®, Xilinx PlanAhead®, etc.

2. Hardware description languages: Verilog, VHDL, etc.

3. Set of libraries and classes in software languages

4. Any other?

131

Hardware Description Examples

132

• Schematic editors: Altium® general FPGA design library

Hardware Description Examples

133

• Schematic editors: Xilinx Schematic Tools

Hardware Description Examples

134

• A C++ library to simulate hardware functionality

Hardware Description Examples

135

• Hardware Description Languages

Verilog VHDL SystemC

From Schematic Editors to Hardware

Description Languages

136

• Hardware description languages are textual means of describing a

hardware

• Text is better than pictures and Karnaugh maps; as it’s more

simple to handle and analyze for language parsers and synthesis

tools

Full-Adder

Half-Adder

Hardware Description Languages (HDL)

Examples of HDL languages

• VHDL

• Verilog

• SystemC

• SystemVerilog

• JHDL

• Handel-C

• Impulse C

• …

137

Hardware Description

What should a HDL look like and what features should it have?

1. Cover different levels of abstraction: transistor level, gate level,
register transfer level (RTL), system level

2. Applicable for different architectures: CPLD, FPGA, ASIC, etc.

3. Provide a unique description for all synthesizable hardware

4. Ability of accurate simulation before implementation. The language
should be able to simulate other functionalities required for
hardware description and simulation: generating synthetic
waveforms, reading/writing test vectors from/to files, setting time
bases, etc.

5. Convertible into conventional data structures such as trees and
graphs for algorithmic simplifications and optimizations

6. Existence of tools (tool chains) for translating the “hardware
description” into “hardware”

138

Current HDL Languages

• Common HDL languages support different levels of abstraction

plus additional features used for simulation, modeling, and

documentation of hardware (not necessarily synthesizable on

hardware)

• The languages can be used for hardware: design, simulation,

modeling, test, documentation

• Note: HDL languages do not generate executable codes; they

describe hardware, which are later translated into hardware by

electronic design automation (EDA) tools

139

Verilog HDL

140

We use Verilog HDL in this course, because

• It has all the required features of a complete HDL

• It has a rather simple syntax

• It is not as verbose as VHDL

• It is highly popular in industry (for RTL design)

Our major references:
• S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, 2nd Ed.,

2003

• WF Lee, Verilog Coding for Logic Synthesis, John-Wiley, 2003

• Xilinx XST user’s manual, 2009

Verilog HDL History

141

• Verilog was created by Prabhu Goel, Phil Moorby, Chi-Lai Huang and

Douglas Warmke in 1983-1984, as a hardware modeling language.

• Verilog was originally owned by Automated Integrated Design

Systems (later renamed as Gateway Design Automation).

• Gateway Design Automation was purchased by Cadence Design

Systems in 1989.

• In 1990, Cadence put the language into the public domain, with the

intention that it should become a standard, non-proprietary language.

• Versions: Verilog-95, Verilog 2001, Verilog 2005, SystemVerilog (a

superset of Verilog 2005).

• Latest versions of Xilinx ISE® support Verilog 2005.

• Xilinx Vivado® supports Verilog 2005 and SystemVerilog.

Verilog HDL Syntax

142

Let’s start with a list of the most common digital hardware elements that we
know:
• Gates: AND, OR, NOT, XOR,…

• Electronic features/elements: Wires, buffers, tristate buffers, impedance levels,…

• Multiplexers, encoders and decoders

• Finite state machines (FSM)

• Memories: RAM, ROM, dual-port vs. single port memories

• Shift registers, Barrel shifters, etc.

• Initialization and resetting mechanisms

• Combinational logic: a combination of logical components

• Sequential logic: registers (flip-flops)

• Arithmetic units: half and full adders, multipliers, counters, timers, etc.

• Logic chips: ICs with predefined timing and digital function

• Logic circuit peripherals: I/O interface, clock management

• User-defined constraints and port mapping

These elements are from different levels of abstraction; but any HDL should
be able to “describe” them.

Verilog HDL Syntax
 Verilog is a free-form language (the positioning of characters on the programming

page is insignificant)

 Combinations of numbers (0,1,2,…), letters (a, b,…,z, A, B, C, …,Z),

underscore (_) and Dollar-sign ($) can be used in variables.

 Variable names are case-sensitive

 Variable names may not start with $ (Verilog system commands start with $)

 Underscores can be used between numbers as separators for better readability

 Single-line comments: // All text is considered as comment hereafter

 Single- or multi-line comment blocks: /* bla bla bla */

 Synthesis tools occasionally use comment blocks to define synthesis attributes

(user-defined properties of a block of code) in specific formats:

reg my_reg /* synthesis maxfan = 16 preserve */;

LUT4 U1 (.O(O), .I0(I0), .I1(I1), .I2(I2), .I3(I3));

// synthesis attribute INIT of U1 is "8000"

143

Nets and Registers

• The wire keyword is used to define nets (wires) and results of combinational logic

(using an assign command).

• The reg keyword is used to define registers and results of sequential logic (in an

always block). The exception is a combinational logic defined by an always block.

• Wires and registers can be defined and assigned in vector form.

144

Logic Values
• Verilog supports four logic values

• Sized vs. unsized values

145

Logic Value Description/Usage

0 zero, low or false

1 one, high or true

z or Z high-impedance, tristates, floating (dangling)

x or X unknown, uninitialized, collision

Assignments

146

• The assign keyword is used to connect wires and to define

single-line combinational logic.

Module Definition

147

instances

Instance name

module name

inputs

wire

output

O
T

module

Note: A module may not be defined inside another

module; but it can be instantiated.

Module Port Types

Three types of ports are available in

Verilog:

1. input: for giving input to a module

2. output: for getting outputs from a

module

3. inout: bidirectional ports which can

send/receive data depending on a

control line. Inouts ports should be

realized using tristate buffers with
appropriate control.

148

Input, Output, and Inout Port Usage in Verilog

149

realizes a tri-state buffer

Inout mechanism

Module Instance Port Mapping

• Two types of instance port mapping are supported in Verilog:

150

unconnected (dangling) port

Note: Port order is not important when using “by name” mapping

Note: All module ports (input, output, inout) are wires

Module Port Declaration

• Two forms of port declaration are possible:

151

Note the difference

Comments

Built-in and Device-Dependent Primitive Elements
• Verilog has several built-in primitive elements (switches, gates, etc.), which can

be instantiated as modules: and, nand, not, nor, or, xor, xnor, buf,
bufif0, bufif1, rtranif1, nmos, pmos, rpmos, tran, rtran, pullup,

pulldown, cmos, rnmos, tranif1, tranif0, notif0, notif1,

rtranif0, rcmos

Example:

• There are also device- and technology-dependent primitives:

152

strength levels delay parameters

Further Reading: http://electrosofts.com/verilog/primitives.html

Always Blocks

153

• An always block is used to define, both, combinational and sequential

logic blocks.

• Registers may only be assigned inside an always block (although they

may represent combinational logic).

• Variables assigned in an always block should all be defined as reg

equivalent

sensitivity list

Flip-flop inferred

No flip-flops inferred!

equivalent

D-Type Flip-Flops (A Review)

154

• D-type flip-flops are the basic elements used for sequential logic design.

Xilinx D-Type Flip-Flops
• According to Xilinx 7 Series Manual:

155

Always Blocks

156

 The following two pieces of code are identical (five flip-flops are inferred in total):

 We see that the always block has abbreviated the explicit declaration of five flip-

flops

 Note: All always procedures with the same sensitivity list are concurrent. They

describe parallel flip-flops, which share a common clock.

 Note: The sequence of writing wire assignments, always blocks and their internal

assignments are irrelevant; timing is manages by data-flow and state controllers,

not by code line execution orders

 Question: What issues can raise when code line sequences become irrelevant?

Always Block Issues (1)

157

Question 1: What happens if a single variable is simultaneously assigned in

multiple always blocks?

Answer: The Verilog syntax does not allow this (a register may only be assigned

in a single always block). Problem solved!...

Question: What if we really need to change a register value by two different

clock?

Answer: We need to find another way for this later (using indirect assignments).

Always Block Issues (2)

158

Question 2: What happens if data dependency exists between two register

assignments?

Answer: Race condition; we need to find a solution.

Solution: Verilog has two different assignment operators: Blocking and Non-

blocking

vs.

Blocking vs. Non-Blocking Assignments

159

Syntactic difference:

Blocking assignment: Evaluation and assignment are somehow immediate (blocks all other

assignments and evaluations that use the same variable)

Non-blocking assignment: All assignments that use the variable are deferred until all right-hand

sides have been evaluated (end of simulation time-step)

Guideline: Blocking assignments are only used for combinational logic description. Use non-

blocking assignments for sequential register assignment.

Further Reading: http://courses.csail.mit.edu/6.111/f2007/handouts/L06.pdf

Always Block Issues (3)

160

Question: What happens if two always blocks (with different sensitivity

lists) have data dependency between their register assignments?

Answer: Race condition; no syntactic solutions exist for this issue. Should

be avoided/resolved by proper design.

Example: Passing data between different clock domains.

Signal Drive Strength

• In logic circuit design, nets can have different strength levels

ranging from supply/ground (strongest) to high-impedance

(weakest).

• Verilog supports various strength levels to model the driving

strength phenomenon:

161

Strength level Description Keywords Degree

Supply drive Power supply connections supply0, supply1 7 (strongest)

Strong drive Default gate and assign output strength strong0, strong1 6

Pull drive Gate and assign output strength pull0, pull1 5

Large capacitor Size of trireg net capacitor large 4

Weak Gate and assign output strength weak0, weak1 3

Medium capacitor Size of trireg net capacitor medium 2

Small capacitor Size of trireg net capacitor small0, small1 1

High impedance High Impedance highz0, highz1 0 (weakest)

Signal Strength Collisions

supply1 strong1 pull1 weak1 highz1

supply0 x 0 0 0 0

strong0 1 x 0 0 0

pull0 1 1 x 0 0

weak0 1 1 1 x 0

highz0 1 1 1 1 z

162

Further Reading: http://verilog.renerta.com/source/vrg00047.htm

Signal Drive Strength Examples

163

Logic strength levels

Parameterized Module Design
• Verilog supports parametric module definitions

• Example 1: A parametric-length multiplexer

164

Parameterized Module Design

Example 2: A parametric full-adder

165

Ref: http://referencedesigner.com/tutorials/verilog/verilog_23.php

For-Loops in Verilog
• For-loops in their software-like

usage are not synthesizable in

Verilog.

• Question: Why?

• In synthesizable Verilog codes,

for-loops are merely used for

writing shorter scripts that

generate codes.

• We will learn alternative code

generation methods in later

sections.

166

For-Loops in VHDL

167

Hardware Description Language

(HDL) Standard Coding Techniques

• In the sequel we study standard design entries and coding styles, which

guarantee synthesizable codes for low-level implementation using EDA tools.

• Major Reference: Xilinx XST User Guide, UG627 (v 11.3) September 16, 2009.

URL: https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf

168

Flip-Flop with Positive-Edge Clock

Verilog VHDL

169

Flip-Flop with Positive Edge Clock

with INITSTATE of the Flop Set

Verilog VHDL

170

Drawback: Only provides power-on

initialization, does not have run-time

resetting property.

Flip-Flop with Negative-Edge Clock

and Asynchronous Reset

Verilog VHDL

171

Flip-Flop with Positive-Edge Clock

and Synchronous Set

Verilog VHDL

172

Note: Verilog and VHDL have if and

else in their syntax (as in software

languages); but with totally different

interpretations: “if-elses are not

executed; they are means of hardware

description.”

Flip-Flop with Positive-Edge Clock

and Clock Enable

Verilog VHDL

173

4-Bit Register with Positive-Edge Clock,

Asynchronous Set, and Clock Enable

Verilog VHDL

174

Note: Notice the way that Verilog and VHDL

define and assign “vectors of registers” in an

abbreviated way. That’s why circuit schematics

don’t resemble the HDL code.

Question: How many flip-flops are inferred by

this piece of code?

Latch with Positive Gate

Verilog VHDL

175

Note: No flip-flops inferred.

Latch with Positive Gate and

Asynchronous Reset

Verilog VHDL

176

Important Note: The coding style

defines the inferred hardware, not

the variable names!

4-Bit Latch with Inverted Gate and

Asynchronous Set

Verilog VHDL

177

alternative form

Tristate Description Using Combinatorial

Process and Always

Verilog VHDL

178

bufif0 U1(data_bus, in, data_enable_low);

alternative form: explicit definition of a tristate buffer

Common Buffers

179

• Buffers may also be used as built-in primitives.

Gate Description

not Output inverter

buf Output buffer.

bufif0 Tri-state buffer, Active low enable.

bufif1 Tri-state buffer, Active high enable.

notif0 Tristate inverter, Low enable.

notif1 Tristate inverter, High enable.

Example:
bufif0 (weak1, pull0) #(4,5,3) (data_out, data_in, ctrl);

Unsigned Up-Counter with

Asynchronous Reset

Verilog VHDL

180

Unsigned Down-Counter with

Synchronous Set

Verilog VHDL

181

Unsigned Up-Counter with

Asynchronous Load from Primary Input

Verilog VHDL

182

Unsigned Up-Counter with Synchronous

Load with Constant

Verilog VHDL

183

Unsigned Up-Counter with

Asynchronous Reset

Verilog VHDL

184

Unsigned Up/Down-Counter with

Asynchronous Reset

Verilog VHDL

185

Sample applications:

• FIFO valid data counter

• Chirp signal generator

Signed Up-Counter with Asynchronous

Reset

Verilog VHDL

186

Signed Up-Counter with Asynchronous

Reset and Modulo Maximum

Verilog VHDL

187

Note: Not very practical, since

MAX should be a power of two

Unsigned Up Accumulator with

Asynchronous Reset

Verilog VHDL

188

Shift-Left Register with Positive-Edge

Clock, Serial In and Serial Out

Verilog VHDL

189

Note: If the shift register has a

synchronous parallel load, or multiple

set or reset signals, no SRL16 is

implemented.

Guideline: For better area efficiency

using built-in SRL, avoid using

sets/resets, whenever not needed.

Shift-Left Register with Negative-Edge Clock,

Clock Enable, Serial In and Serial Out

Verilog VHDL

190

Shift-Left Register With Positive-Edge Clock,

Asynchronous Reset, Serial In and Serial Out

Verilog VHDL

191

Shift-Left Register with Positive-Edge Clock,

Synchronous Set, Serial In and Serial Out

Verilog VHDL

192

Shift-Left Register with Positive-Edge Clock, Serial

In and Parallel Out

Verilog VHDL

193

Shift-Left Register With Positive-Edge Clock,

Asynchronous Parallel Load, Serial In and Serial Out

Verilog VHDL

194

Shift-Left Register With Positive-Edge Clock,

Synchronous Parallel Load, Serial In and Serial Out

Verilog VHDL

195

Shift-Left/Shift-Right Register With Positive-

Edge Clock, Serial In and Parallel Out

Verilog VHDL

196

Dynamic Shift Register With Positive-Edge

Clock, Serial In and Serial Out

Verilog VHDL

197

Further reading on Shift-Register applications:

https://www.xilinx.com/support/documentation/white_papers/wp271.pdf

Shift Registers vs. Flip-Flops

198

Technology Schematic on Xilinx Spartan 3

Shift Register Applications

Shift Registers have various applications including:

• Pipeline Compensation

• Pseudo Random Number (Noise) Generation

• Serial Frame Synchronization (in telecommunications)

• Running Average using an Adder Tree

• Running Average Using an Accumulator

• Pulse Generation and Clock Division

• Multi-stage Dividers

• Forcing the Hot State

• Pattern Generation

• FIR Filter

• FIFO

• A Complete RS-232 Receiver

199

Further reading : https://www.xilinx.com/support/documentation/white_papers/wp271.pdf

Multiplexers in Verilog

• If-Then-Else or Case can be used for multiplexers (MUXs) description.

• If one describes a MUX using a Case statement, and does not specify

all values of the selector, the result may be latches instead of a

multiplexer. When writing MUXs, one can use don’t care to describe

selector values.

• XST decides whether to infer the MUXs during the Macro Inference

step. If the MUX has several inputs that are the same, XST can decide

not to infer it. One can use the MUX_EXTRACT constraint to force XST

to infer the MUX.

• Verilog Case statements can be: full or not full; parallel or not parallel

• A Verilog Case statement is:

• Full: if all possible branches are specified

• Parallel: if it does not contain branches that can be executed

simultaneously

200

Multiplexers in Verilog

Multiplexers Full and Parallel Multiplexers Not Full But Parallel

201

Multiplexers in Verilog

Multiplexers Neither Full Nor Parallel
Note: XST automatically

determines the characteristics

of the Case statements and

generates logic using

multiplexers, priority encoders,

or latches that best implement

the exact behavior of the Case

statement.

202

MUX using IF Statements

Verilog VHDL

203

MUX using Case Statements

Verilog VHDL

204

MUX using Tristate Buffers

Verilog VHDL

205

Missing Else Statement Leading to a Latch Inference

Verilog VHDL

206

Caution! Unless you actually intended to

describe such a latch, add the missing

else statement. Leaving out an else

statement may also result in errors

during simulation.

One-Hot Decoders

Verilog VHDL

207

One-Cold Decoders

Verilog VHDL

208

No Decoder Inference (Unused Decoder Output)

Verilog VHDL

209

No Decoder Inference (Some Selector Values Unused)

Verilog VHDL

210

Priority Encoders

Verilog VHDL

211

Sample application: Prioritized

interrupt mechanism design

Logical Shifter One

Verilog VHDL

212

Logical Shifter Two (no logic shifters inferred)

Verilog VHDL

213

Logical Shifter Three (no logic shifters inferred)

Verilog VHDL

214

Unsigned Adder

Verilog VHDL

215

Unsigned Adder with Carry

Verilog VHDL

216

Unsigned Adder with Carry Out

Verilog VHDL

217

Unsigned Adder with Carry in and Carry Out

Verilog VHDL

218

Signed Adder

Verilog VHDL

219

Unsigned Subtractor

Verilog VHDL

220

Unsigned Subtractor with Borrow

Verilog VHDL

221

Unsigned Adder/Subtractor

Verilog VHDL

222

Unsigned Greater or Equal Comparator

Verilog VHDL

223

Unsigned Multiplier

Verilog VHDL

224

Sequential Complex Multipliers in Verilog

225

Note:

Considering that (ar + jai)(br + jbi) = (arbr - aibi) + j(arbi + aibr):

• The first two first cycles compute:

Res_real = A_real * B_real - A_imag * B_imag

• The second two cycles compute:

Res_imag = A_real * B_imag + A_imag * B_real

Sequential Complex Multipliers in VHDL

226

Pipelining

• Pipelining is a general technique for improving design timing and hardware

utilization efficiency by using parallel units that simultaneously process the

output of preceding stages of the pipeline.

• Implementing combinational logic using pipelines can significantly reduce the

critical path delay.

227

https://commons.wikimedia.org/wiki/File:MAD-Pipeline-Design-Detail.png
https://commons.wikimedia.org/wiki/File:MAD-Pipeline-Design-Detail.png

Throughput = one task every three days

Latency = is input-output path dependent

A Few Definitions

228

• (Input-Output) Latency: the

amount of time it takes to

travel through the pipe.

• Critical Path: Longest

combinational path between

the output of one flip-flop to

the input of another flip-flop

(sharing a common clock)

• Throughput: The maximum

rate of data flowing in or our of

a data-path (the inverse of the

critical path)

Example:

Pipelining Critical Paths

• Pipelining can shorten the critical path and improve the throughput

(possibly) at a cost of an increased latency between the input-output

229

Critical path = 8ns, Max Throughput = 125MHz, I/O Latency = 3 clocks (24ns @ fclock=125MHz)

New critical path = 5ns, Max Throughput = 200MHz, I/O Latency = 4 clocks (20ns @ fclock=200MHz)

3ns 8ns

clock

3ns 5ns

clock

4ns

(we will discuss much more about pipelining in digital systems design up to end of the course)

Pipelined Multiplier (Outside, Single)

Verilog VHDL

230

Note: This code is automatically replaced by a

four-stage pipeline multiplier, only if the
intermediate pipeline registers (pipe_1,

pipe_2 and pipe_3) are not used elsewhere

in the code. Question: Why?

Pipelined Multiplier (Inside, Single)

Verilog VHDL

231

Pipelined Multiplier (Outside, Shift) in Verilog

232

Pipelined Multiplier (Outside, Shift) in VHDL

233

Multiplier Adder With 2 Register Levels

on Multiplier Inputs

Verilog VHDL

234

Multiplier Adder/Subtractor With 2

Register Levels on Multiplier Inputs

Verilog VHDL

235

Multiplier Up Accumulate with Register

after Multiplication

Verilog VHDL

236

Multiplier Up/Down Accumulate

with Register after Multiplication

Verilog VHDL

237

Division by Constant Powers of 2 Dividers

Verilog VHDL

238

Notes:

 Dividers are supported only when the

divisor is a constant and is a power of 2.

In that case, the operator is

implemented as a shifter. Otherwise,

XST issues an error message.

 IP cores or custom code can be used

for other divisors.

Question: Why aren’t dividers built-in

primitives like adders and multipliers?

Resource Sharing (Hardware Reuse)

• The goal of resource sharing (also known as hardware

reuse or folding) is to minimize the number of operators

and the subsequent logic in the synthesized design. This

optimization is based on the principle that two similar

arithmetic resources may be implemented as one single

arithmetic operator if they are never used at the same time.

• Resource sharing is commonly handled by synthesis tools

automatically, unless if prevented by user constraints and

synthesis attributes.

• If the optimization goal is speed, disabling resource

sharing may give better results.

(we will discuss much more about resource sharing in digital systems design up to end of the course)

Resource Sharing Example

Verilog VHDL

240

Single-Port RAM in Read-First

Mode

Verilog VHDL

241

Single-Port RAM in Write-First

Mode in Verilog

Template 1 Template 2

242

Single-Port RAM in Write-First

Mode in VHDL

Template 1 Template 2

243

Single-Port RAM in No-Change

Mode

Verilog VHDL

244

Single-Port RAM with Asynchronous Read

Verilog VHDL

245

Single-Port RAM with Synchronous

Read (Read Through)

Verilog VHDL

246

Single-Port RAM with Enable

Verilog VHDL

247

Dual-Port RAM with Asynchronous Read

Verilog VHDL

248

Dual-Port RAM with Synchronous

Read (Read Through)

Verilog VHDL

249

Dual-Port RAM with Synchronous

Read (Read Through) and Two Clocks

Verilog VHDL

250

Dual-Port RAM with One Enable

Controlling Both Ports

Verilog VHDL

251

Dual Port RAM with Enable on Each Port

Verilog VHDL

252

Dual-Port Block RAM with Two Write Ports

Verilog VHDL

253

Multiple Write Statements

Verilog VHDL

254

Read-First Mode: Single-Port BRAM with Byte-wide

Write Enable (2 Bytes)

Verilog VHDL

255

Write-First Mode: Single-Port BRAM with Byte-Wide

Write Enable (2 Bytes)
Verilog VHDL

256

No-Change Mode: Single-Port BRAM with Byte-

Wide Write Enable (2 Bytes)
Verilog VHDL

257

Multiple-Port RAM Descriptions

Verilog VHDL

258

Block RAM with Reset Pin

Verilog VHDL

259

Block RAM with Optional Output Registers

Verilog VHDL

260

Initializing RAM Directly in HDL Code

Verilog VHDL

261

Initializing RAM Directly in HDL Code

Dual Port Block RAM Initialization in Verilog

262

Initializing RAM from an External File in Verilog

Verilog Hexadecimal/Binary in text format

263

Initializing RAM from an External File in VHDL

264

ROM with Registered Output, Example 1

Verilog VHDL

265

ROM with Registered Output, Example 2

Verilog VHDL

266

ROM with Registered Address

Verilog VHDL

267

Pipelined Distributed RAM

Verilog VHDL

268

Finite State Machines (FSM)

• Finite state machines

(automata) are used as the

backbone controllers and timing

managers of digital systems.

• FSMs can be graphically

illustrated by bubble diagrams.

• Flawless design of FSMs is

critical for a proper system

function.

• FSMs with dead-ends or

erroneous state-transitions can

result in hardware hanging or

malfunctions.

269

Finite State Machines Components

An FSM consists of:

• Inputs

• Outputs

• States and state sequences

• State transition rules

• Initial conditions (states)

• Resetting mechanism

FSM Implementation issues:

• State encoding technique

• Robust FSM design and state recovery mechanism

270

Finite State Machine (FSM) Representation

Incorporating Mealy and Moore Machines

271

Mealy Machine:
𝑠𝑘+1 = 𝑓(𝑠𝑘 , 𝑥𝑘)
𝑦𝑘 = 𝑔(𝑠𝑘 , 𝑥𝑘)

Moore Machine:
𝑠𝑘+1 = 𝑓(𝑠𝑘 , 𝑥𝑘)

𝑦𝑘 = 𝑔(𝑠𝑘)

Research Topic: According to the above representation, Mealy and Moore machines

can be studied from a state-space perspective. The rich literature of state-space

analysis from Control Theory can be used to study the properties of logic circuits.

FSM Encoding Techniques

HDL synthesis tools support various FSM encoding techniques

including:

 One-Hot

 Gray

 Compact

 Johnson

 Sequential

 Speed1

 User Defined

 Auto Encoding

272

Sample FSM Encoding Logic

The One-Hot Encoder

273

Ref: https://www.electronics-tutorials.ws/combination/comb_5.html

Sample FSM Encoding Logic

The One-Cold Encoder

274

Ref: https://www.electronics-tutorials.ws/combination/comb_5.html

FSM Implementation Issues

• State encoding methods defer in speed, area and

robustness to state transition errors.

• On FPGA, FSMs are commonly implemented using

BRAM or LUT

• Synthesis tools such as XST can add logic to an FSM

implementation that will let the state machine recover

from an invalid state. During run-time, if an FSM enters

an invalid state, this extra logic will take it back to a

known state, called a recovery state (the `reset state’ by

default). This is called a Safe FSM Implementation

275

Finite State Machine Coding Example: A Single Process

Verilog VHDL

276

Finite State Machine Coding

Example: Two Processes

Verilog VHDL

277

Finite State Machine Coding

Example: Three Processes

Verilog VHDL

278

Black Boxes

• A design may contain Electronic Data Interchange Format
(EDIF) or NGC files generated by synthesis tools, schematic
text editors, or any other design entry mechanism, which can be
treated as black-boxes during synthesis

• These modules must be instantiated in the code in order to be
connected to the rest of the design; but the netlist is propagated
to the final top-level netlist without being processed by the
synthesis tool.

• Synthesis tools such as XST enables one to attach specific
constraints to these Black Box instances.

• One may also have a design block for which an RTL model
exists; but the designer’s own implementation of this block is in
the form of an EDIF netlist and the RTL model is valid for
simulation purposes only.

Black-Box Coding Techniques

Verilog VHDL

280

Note: The concept of black-boxes is

similar to the notion of precompiled

static libraries in software languages,

which are bypassed by the compiler

and are linked to the rest of the code by

the linker.

Question: Name a hardware analog for

dynamic libraries in software languages

Summary

• Synthesizable HDL coding styles were reviewed in this

section.

• These guidelines are for practice and not memorization. In

practice, as far as a designer is aware of describing a

hardware and thinks logically and concurrently, one does

not need to think of the realized hardware

281

ADVANCED FPGA CODING

TECHNIQUES

Toggling a Flag with Multiple Clocks

283

Standard D-type Flip-Flops do not support more than a single clonk. But in practice,

there are cases where we need to change a flag using two independent clocks.

Example: handshaking mechanisms

Clock Speed Reduction

284

Apart from DCMs, various methods exist for clock speed reduction, including:

Gated-Clock; not recommended nor supported

on most FPGA devices

Standard method for clock division using FF clock enable
Standard method for clock halving using

FF clock enable

Mixed Clock-Edge Design

285

• It is possible to use both positive and negative clock edges in a

single design; but it should be avoided as much as possible

• Using mixed clock-edges does not double the clock rate; but it

rather reduces the time for combination logic result settlements

• Utilization of mixed clock-edges should be confined to phase

compensation between two signals when setup or hold-times are

not fulfilled using a single edge (commonly at FPGA I/O)

• Example:

clock

data

setup time not fulfilled on posedge
setup time fulfilled on negedge

Standard Resetting Mechanisms

• Although both synchronous and asynchronous reset mechanisms are supported in FPGA

designs, it is highly recommended to use a unified resetting mechanism throughout the

entire design.

• Synchronous resets with sufficient flip-flop synchronizer stages are preferred over

asynchronous resets (due to lower probability of metastability)

• Even if the original reset command is asynchronous (e.g. using a push-button or software

command), it is good practice to make an internal synchronous reset flag

286

Supported asynchronous reset mechanism

Preferred synchronous reset mechanism

Generating synchronous from asynchronous reset flag

Increasing Fan-out by HW Replication

• The maximum fan-out of a

logic circuit output is the

maximum number of gate

inputs it can drive without

loading effects disturb its

function (switching speed

and voltage level)

287

synthesis attributes to

avoid register

optimization and
merging of ce1 and
ce2

• In contemporary FPGAs, Flip-Flop fan-outs

are very high (several hundreds) and only

the most frequently used signals (such as

CLOCK, RESET, CE, …) may face fan-out

issues

• The fan-out of a logic circuit may be

increased by user constraints or hardware

replication in HDL

Debouncing

288

• In digital designs, bouncing
(between 0 and 1) occurs during
manual switch transitions

• The objective of debouncing is to
avoid the mis-detection or multiple
counting of events during switch
transitions

• Debouncing can be implemented
both in hardware (analog) and
software (digital)

Reference: Arora, M. (2011). The art of hardware
architecture: Design methods and techniques
for digital circuits. Springer Science & Business
Media, Chapter 8

• Various hardware debouncing mechanisms:

FPGA

Hardware Debouncing Techniques

289

RC debouncer RC debouncer with digital logic Robust RC debouncer

with digital logic
SR debouncer

IC debouncer MAX6816’s internal mechanism

Software Debouncing Techniques

290

• Software debouncing mechanisms:

ISR assembly language debouncer pseudo-code

C language debouncer pseudo-code

HDL Debouncing Techniques

291

Ref: https://eewiki.net/pages/viewpage.action?pageId=13599139

OVERVIEW OF LOGIC

SYNTHESIS METHODS*
(Optional)

Synthesis CAD Tools

293

• Electronic Design Automation (EDA) Vendors:

• Xilinx

• Synopsys

• Synplicity

• Cadence

• Altera

• Mentor Graphics

• …

Xilinx XST Overview

294

XST Detailed Design Flow

295

Note 1: XST performs a resource sharing check. This usually leads to a reduction

of the area as well as an increase in the clock frequency.

Note 2: Xilinx-Specific Netlist (NGC) = EDIF + Netlist Constraints File (NCF)

Logic Synthesis Approaches

296

1. Technology Dependent

Uses device-dependent properties during synthesis

2. Technology Independent

The most common approach; but requires a second round of

technology dependent synthesis

Logic Synthesis Detailed View

297

Logical hardware units:

• Combinational Logic

(Nodes)

• Sequential Logic

(Registers)

Note: This is where the term Register Transfer Level (RTL) comes from

Node Synthesis

298

• Two-level Logic Synthesis
• Deals with the synthesis of designs represented in two-level logic. The longest path from

input to output, in term of number of gates crossed on the path, is two.

• Two-level logic is the natural and straightforward approach to implement a Boolean

function, because each Boolean function can be represented as a sum of product terms.

• In the first level, the products are built using the AND primitives. The sums of the

resulting products are built in the second level with the OR-primitives.

• Used for CPLD

• Multi-Level Logic Synthesis
• In the multi-level synthesis, functions are represented using a multi-level logic. Those are

circuits in which the longest path from input to output goes through more than two gates.

• Used for FPGA

Node Representation

299

1. Sum of Products (SOP) Form

2. Factored Form
• a product is either a single literal or the product of two factored forms and a sum

is either a single literal or the sum of two factored forms.

• Factored forms are representative of the logic complexity.

3. Binary Decision Diagram (BDD)
• Is a rooted directed acyclic graph used to represent a Boolean function. Two

kinds of nodes exist in BDDs: variable and constant nodes.

Binary Decision Diagram (BDD)

Example:

300

Node Manipulation Operators

301

• Decomposition

• Extraction

• Factoring

• Substitution

• Collapsing (elimination): reverse of substitution

LUT-based Technology Mapping (Second-

Level Synthesis)

302

Depending on their optimization goals, these algorithms

can be classified in three categories:

1. Area Minimization: Chortle-crf, MIS-fpga, Xmap, etc.

2. Delay Minimization: FlowMap, Chortle-d, DAG-map,

MIS-pga-delay, etc.

3. Routability Maximization

Advanced Topics in Digital Design and Implementation

PART III

NUMBER

REPRESENTATION

305

Number Representation in PLD Systems

• While number representation is fully standardized and

rather automatically handled in multipurpose CPUs and

GPUs (and is rarely a concern for the designer), it is an

essential and time-taking part of most FPGA-based

designs.

• In this section, we study:

• The most common number representation standards

• Fixed-point representation issues

• Statistical analysis of truncation and rounding errors during data

acquisition (using analog-to-digital converters) and calculations

306

An Overview of Binary Number Representation

• For many reasons radix-2 has remained the

dominant number representation in digital

hardware design:
 In early technologies: the difficulty of generating high-speed

switching logic circuits with more than two distinct and

distinguishable levels of voltages.

 In current technologies: besides the simplicity of radix-2, the

huge body of literature, algorithms, codes, hardware

(transistors, gates, etc.), and engineering experience and

conventions, which already exist for radix-2 calculations makes

it too expensive to migrate to higher radixes.

307

Binary Number Representation

Number representation can be studied from various aspects,
including:

• Numbers of Interest:
• Integers

• Reals

• Sign Representation:
• Unsigned

• Signed

• Fractional Number Representation:
• Fixed-point

• Floating-point

308

Accuracy of Finite Length Binary Number

Representations
Question: How accurate is it to represent numbers (integer or
fractional) in radix-2 using finite number of bits?

Basis Representation Theorem: For a given base b, any integer x ∈ ℤ
can be uniquely represented as follows:

x = akb
k + ak-1b

k-1 + … + a1b
1 + a0

where aj ∈ {0, 1, …, b-1} and ak ≠ 0.

Dyadic Rationals Theorem: The dyadic rational set ℙ (numbers which
can be represented as an integer divided by a power of 2), is dense in
the set of real numbers ℝ. This means that for any x ∈ ℝ, there exists
a y ∈ ℙ that is “as close as you like” to x.

Conclusion: Real numbers can be approximated in radix-2 with finite
number of bits, up to a desired level of precision.

309

Signed Binary Number Representation

Standards

The most popular signed binary number representation

standards are:

• Sign-Magnitude

• One’s-Complement

• Two’s-Complement

• Straight Offset Binary (SOB)

• Binary Coded Decimal (BCD)

• Canonical Signed Digit (CSD)

310

Sign-Magnitude Representation

The MSB is reserved for sign representation (0 for + and 1 for –). The

remaining bits are used to represent the absolute magnitude. With N bits, it

can code from –(2N-1 –1) to (2N-1 –1).

Decimal equivalent: X10 = (–1)bN-1[bN-22
N-2 + bN-32

N-3 + … + b12 + b0]

0 0 1 0 1 1 0 1 = +45

sign bit

magnitude bits

1 0 1 0 1 1 0 1 = –45

sign bit

magnitude bits

Advantage: Simple to generate and convert

Disadvantage: There are two zeros (+0 and -0); difficult to handle during

arithmetic operations

b0bN-1 b0bN-1

311

One’s Complement

The MSB denotes the sign (0 for + and 1 for –). With N bits, it can code from
–(2N-1 – 1) to (2N-1 – 1). Each bit corresponds to a coefficient of a power of
two in its decimal equivalent.

Decimal equivalent: X10 = –bN-1(2
N-1 – 1) + bN-22

N-2 + bN-32
N-3 + … + b12 + b0

0 0 1 0 1 1 0 1 = +45

sign bit

all bits one

1 1 0 1 0 0 1 0 = –45

sign bit
b0bN-1 b0bN-1

Advantage: Simple to generate and convert

Disadvantage: There are two zeros (+0 and –0); difficult to handle during

arithmetic operations

312

Two’s Complement

The MSB denotes the sign (0 for + and 1 for –). With N bits, it can code from
–2N-1 to (2N-1 – 1). Each bit corresponds to a coefficient of a power of two in
its decimal equivalent.

Decimal equivalent: X10 = –bN-12
N-1 + bN-22

N-2 + bN-32
N-3 + … + b12 + b0

0 0 1 0 1 1 0 1 = +45

sign bit

doesn’t fit into N bits

1 1 0 1 0 0 1 1 = –45

sign bit
b0bN-1 b0bN-1

Advantage: No repeated zeros; can code –2N-1; no sign control needed during

arithmetic operations, and several other advantages (is the most popular

signed number representation format)

Disadvantage: Slightly more difficult to read the decimal equivalent from the

binary form (for human).

313

One’s Complement vs. Two’s Complement

• 2’s complement is the most

common binary representation

used in computation

machines.

• A major property of 2’s

complement is that the binary

values are increased by one-

by-one from the most negative

to the most positive without a

break (by discarding any carry

values beyond the word

length).

• The default implementation of

arithmetic operations in Verilog

(since Verilog 2001) is in this

format.

Finding One and Two’s Complements

1’s Complement: Flip all the bits (0 to 1, and 1 to 0)

2’s Complement:

• Method 1: Calculate the 1’s complement, plus one

• Method 2: Subtract the number from 2N (this is where the name
2’s complement comes from)

• Method 3: Starting from the LSB, preserve all the bits as they are,
up to (and including) the right most 1. Flip all the remaining bits up
to the MSB

314

Note: The 2’s complement of –2N-1 can not be represented in N bits. Therefore,

during calculations, it’s 2’s complement overflows and becomes equal to itself

(just like the 2’s complement of zero)! This phenomenon can be mathematically

explained by the orbit-stabilizer theorem.

https://en.wikipedia.org/wiki/Orbit-stabilizer_theorem

Properties of Two’s Complement

1. When fitting an N bit 2’s complement number into M bits (M>N),

the number should be sign extended, i.e., the left most M-N bits

should be filled with the MSB (sign bit) of the original number:

2. In arithmetic right-shifts, the number should be filled by the sign

bit from the left:

315

Properties of Two’s Complement (continued)

3. No additional circuits are required for handling the signs during

addition or subtraction (except for overflow checking). In fact, 2’s

complement numbers can be treated as unsigned numbers

during such arithmetic operations.

4. Overflow check: If two numbers with the same sign are added,

overflow occurs if and only if the result has an opposite sign.

Example:

316

Properties of Two’s Complement (continued)

5. Two’s Complement Intermediate Overflow Property: “In

successive calculation using 2’s complement arithmetic

(allowing overflows instead of saturation), if it is guaranteed that

the final result will fit in the assigned registers, then intermediate

overflows are harmless and will not affect the final answer.

Example (IIR Filter): yn = a.yn-1 + xn

Refs:

• Khan, S. A. (2011). Digital design of signal processing systems: a practical

approach. John Wiley & Sons., Section 3.5.7

• Smith, J. O. (2007). Introduction to digital filters: with audio applications (Vol. 2).

Julius Smith., P. 201

317

Note: Very interesting property; but I haven’t seen a rigorous statement or proof for it, yet.

Please let me know, if you find a good reference.

318

Straight Offset Binary (SOB)

• Offset Binary is a binary code in which the

code represents analog values between

positive and negative Full-Scale

• Using N bits, starts assigns all-zeros to –2N-1

and increments one-by-one up to 2N-1 – 1.

• Conversion to 2’s complement: Flip the MSB

to convert from SOB to 2’s complement and

vice versa.

• Application: SOB is most common in Flash

Analog-to-Digital Converters (ADC) and

Digital-to-Analog Converters (DAC) that use

ladder comparators.

SOB Decimal
2's

Complement

1111 7 0111

1110 6 0110

1101 5 0101

1100 4 0100

1011 3 0011

1010 2 0010

1001 1 0001

1000 0 0000

0111 −1 1111

0110 −2 1110

0101 −3 1101

0100 −4 1100

0011 −5 1011

0010 −6 1010

0001 −7 1001

0000 −8 1000

319

Binary Coded Decimal (BCD)

• A class of binary encodings of

decimal numbers where each

decimal digit is represented by a

fixed number of bits (usually four

or eight).

• Special bit patterns are used for

a sign or for other indications

(e.g., error or overflow)

• Applications: whenever human

interaction is needed; such as

LCDs, 7–segments, etc.

Ref: https://en.wikipedia.org/wiki/Binary-coded_decimal

Canonical Signed Digit (CSD)
• CCD is a three-symbol coding system in terms of powers of two.

• It uses a sequence of (+,0,–) to code numbers. For example, the
integer 23 can be expanded as follows:

23 = + 25 – 23 – 20

In CCD, 23 is coded as (+0–00–), i.e.,
o Positive powers of two are denoted by +

o Negative powers of two are denoted by –

o Missing powers of two are denoted by 0

• CCD is popular in some digital signal processors (DSP)

320

Note: CCD is a non-unique number representation

Note: Statistically, the probability of a digit being zero in CCD can be shown to be close

to 66% (vs. 50% in 2's complement encoding). This property leads to more efficient

hardware implementations of add/subtract networks and multiplication by constants.

Further Reading: Khan, S. A. (2011). Digital design of signal processing systems: a practical approach. John

Wiley & Sons., Chapter 6

Fractional Number Representation

321

The most common binary representations of
fractional numbers are:
• Floating-Point: Uses an exponential representation of a

number; it is used in most CPUs and some DSP. In FPGA,
floating point units (FPUs) are provided by some vendors as
hard or soft IP

• Fixed-Point: Uses positive and negative powers of two
expansion of a number with a fixed radix point; it is commonly
used in fixed-point DSP and microcontrollers

• Mixed-Precision: Uses positive and negative powers of two
expansion of a number with a different radix point (at each point
of the computing system); it is commonly used in FPGA design

Floating-Point Number Representation

322

• The basic idea of floating point (FP) representation is to approximate

a real number in terms of a fixed number of significant digits

(significands or mantissa) scaled by an exponent of a fixed base

(e.g., 2, 10, 16, etc.).

• For example:

1.2345 = 12345 × 10 –4

• Apparently, not all real numbers can be represented in this format

(using finite number of digits). However, FP provides an

approximation with a fixed relative error throughout the real line (i.e.,

small errors for small numbers and larger errors for large numbers).

significand base

exponent

IEEE 754 Single-Precision Binary

Floating-Point Format

323

• According to IEEE 754 floating-point standard:

• The decimal equivalent is:

𝑋10 = (−1)𝑆× 2𝑒−𝐵 × (1 +

𝑖=1

𝑀

𝑏𝑀−𝑖2
−𝑖)

where:

• Total number of bits is 32 in single precision (binary32) and 64 in double precision (binary64)

• 𝑆 is the sign bit (b31 in single precision and b63 in double precision)

• 𝑒 is the exponent (8 bits in single precision and 11 bits in double precision)

• 𝐵 is a constant bias (equal to 127 in single precision and 1023 in double precision)

• 𝑀 is the fractional length (23 bits in single precision and 52 bits in double precision)

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1
• • • • •

b30 b23 b22 b0b31

sign exponent (8 bits) mantissa (23 bits)

The exponent is selected such that the

left-most bit of the mantissa is always 1

(which isn’t stored in the binary form),

making the representation unique.

Single-Precision Binary Floating-Point

Examples

324

Example 1: binary floating point to decimal

0x3E200000 = (0011 1110 0010 0000 0000 0000 0000 0000)2

The decimal equivalent is (−1)0× 2124−127 × 1 + 0.25 = 0.15625

0 0 1 1 1 1 1 0 0 0 1 0
• • • • •

b30 b23 b22 b0b31

Example 2: decimal to hex/binary floating point

Scale the number in the form of ±2am, where 1≤|m|<2 and aєZ, to find the exponent
and mantissa

π (3.1415926535897932384626433832795…) ≈ 3.1415927410125732421875

which is 0x40490FDB = (0100 0000 0100 1001 0000 1111 1101 1011)2

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1
• • • • •

b30 b23 b22 b0b31

the most accurate 32-bit single-

precision approximation for π

A nice tool: http://www.binaryconvert.com

Floating-Point Arithmetic

325

Addition/Subtraction:

1. Make the smallest exponent equal to the biggest (by right-shifting the mantissa)

2. Add/subtract the mantissas (note that the smaller ones may vanish to 0 during

the right-shifts)

Multiplication/Division:

1. Add/subtract the exponents

2. Multiply/Divide the mantissas

3. Scale and round the results

Special Values:

Floating-point representation has reserved codes for special values including: 0+, 0–,

+∞, -∞, and Not-a-Number (NaN) such as 0/0, +∞/-∞, 0×∞

Note: Due to the (implicit) leading 1 in front of the mantissa, zero needs to be defined

as a special value (when all the bits of the exponent and mantissa are zero), which is

different from epsilon (±2−127)

Fixed-Point Number Representation
• Fixed-point is basically the 2’s complement representation with a fixed power-of-two

scaling factor for changing the radix point to enable fractional number
representations:

• The decimal equivalent is:

𝑋10 = 2−𝑀 × (−𝑏𝑁−12
𝑁−1 +

𝑖=0

𝑁−2

𝑏𝑖2
𝑖)

where:

• 𝑁 is the total number of bits

• 𝑀 is the fractional point

Note: In fixed-point systems the radix point location is assumed to be fixed throughout
the entire system. That’s where the name comes from.

326

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1
•

sign bit signed integer fractional part

bN-1 b0

radix point

signed two‘s

complement

Floating-Point vs. Fixed-Point

327

1. For the same number of bits, they can (almost) code the same number of real numbers.

2. Fixed-point uses all possible codes for number representation, while floating point reserves

a few codes for special values. Floating-point has a larger dynamic range (the ratio of the

largest to smallest number that are represented)

3. In fixed-point, the range of its MIN and MAX over the real line is quantized to equally

spaced numbers (therefore the approximation error is uniform from MIN to MAX); in floating-

point, the spacing of numbers is non-uniform (groups of numbers with a fixed intra-gaps but

different inter-gaps)

4. Fixed-point hardware architectures are simpler than floating-point architectures; floating-

point architectures have additional circuitry for handing special values.

Inspired from: Izquierdo, Luis R. and

Polhill, J. Gary (2006). 'Is Your Model

Susceptible to Floating-Point Errors?'.

Journal of Artificial Societies and Social

Simulation 9(4)4

<http://jasss.soc.surrey.ac.uk/9/4/4.html>

fixed-point numbers

floating-point numbers

the real line

The Qm.n Fixed-Point Convention

328

• In order to denote the total number of bits and the bits assigned to

the integer and fractional parts of a fixed-point number, various

conventions exist. For example,

 Texas Instruments’ QN format (or Q1.N) assumes 1 bit (the sign bit)

as the integer part and N bits for the fractional part.

 Matlab’s fixed-point toolbox takes the total number of bits and the

fractional length to form an fi-object.

Throughout this course, we use the Qm.n convention, where:

 m is the number of bits assigned to the integer part

 n is the number of bits assigned to the fractional part

 N = m + n is the total number of bits (including the sign)

The numbers are signed, therefore the MSB represents the sign

Fixed-Point Arithmetic

329

Addition/Subtraction:
1. Align the radix points

2. Zero pad the LSB of numbers with shorter fractional lengths

3. Sign extend the MSB of numbers with shorter integer lengths

4. Apply addition/subtraction

Multiplication/Division:
1. Apply multiplication/division as if they were integer valued (regardless of

the radix point)

2. Find the appropriate radix point by adding/subtracting the radix points

Note: Bit-growth occurs during fixed-points arithmetic, which is handled by
either:

1. increasing the number of bits,

2. truncation/rounding from the LSB or MSB (is discussed in details later), or

3. a combination of both 1 and 2

Bit-Growth in Fixed-Point Arithmetic

330

In order to guarantee that no overflow occurs during arithmetic
operations, the number of output bits should be longer than the
arithmetic operands:

1. Qm1.n1
± Qm2.n2

= Qm.n

where m = max(m1,m2)+1 and n = max(n1,n2)

2. Qm1.n1
× Qm2.n2

= Qm.n

where m = m1+m2 and n = n1+n2

Note: During multiplication, N = N1 + N2 – 1 is generally enough. The only exception

(requiring N = N1+N2) is for signed numbers when the two most negative numbers

(–2N1-1 and –2N2-1) are multiplied together, resulting in +2(N1+N2-2), which overflows in

N = N1 + N2 – 1 bits and requires N = N1 + N2. This single bit can be saved by

either:

1. Making sure that the two operands are never equal to the most negative

numbers (this is possible when one of the operands is a known constant)

2. Approximating 2(N1+N2-2) with 2(N1+N2-2) –1! Yes, this approximation is OK in many

systems.

Controlling Bit-Growth in Fixed-Point Systems

331

It is impractical (and unnecessary) to increase the number of bits after
successive arithmetic operations. Bit growth can be controlled by
discarding either from the LSB or MSB of the arithmetic result.

• When to discard from the MSB?
• Only possible when the full-length is not utilized or the arithmetic operation

(mathematically) guarantees that no bit growths occur → results in no errors

• If the full-length is utilized → causes large sign/amplitude errors

• When to discard from the LSB?
• The right most LSB zeros can be discarded without any errors

• Truncating/rounding non-zero LSB results in relatively small errors, depending on
the number’s magnitude

• A stochastic framework is required to analyze the average truncation/rounding error
effect.

1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

no errors no errors

bN-1 b0

smaller errorslarger errors

sign changing error

Truncation/Rounding Error Analysis

332

• The truncation procedure can be modeled by an operator Q(•):

yn = Q(xn) = xn + en

x: input sample (signal) y: truncated/rounded result

e: truncation/rounding error n: sample index

• The impact of truncation error depends on both the original sample (signal)

and the truncated values’ amplitudes.

• In continuous data streams, the most common approach for studying the

truncation error impact is to measure the ratio of the average data power to

the average noise power, known as the signal-to-noise ratio (SNR):

SNRdB = 10log10
𝐸 𝑥𝑛

2

𝐸 𝑒𝑛
2

where 𝐸{∙} denotes averaging (or stochastic expectation) over all ensembles.

Note: The calculation of the SNR requires prior assumptions regarding the input

stream and the truncation error distribution.

Truncation/Rounding Error SNR Calculation

333

Suppose that we have an m bit signed integer sequence xn, for which

we want to round the p LSB bits (to zero) and obtain yn. Assuming a

uniform distribution for xn, the probability density functions (pdf) of xn

and the error sequence en are:

1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0

discarded bits (en)preserved bits (yn)

truncation point

total bits (xn)

…

-2p-1 2p-1-10

…

2-p

Pr(en=e)

e•• •

…

-2m-1 2m-1-10

…

2-m

Pr(xn=x)

x•• •

 𝑒 = 𝐸 𝑒𝑛 =

𝑖=−2𝑝−1

2𝑝−1−1

𝑖 ∙
1

2𝑝
= −

1

2

𝜎𝑒
2 = 𝐸 (𝑒𝑛 − 𝑒)2 =

𝑖=−2𝑝−1

2𝑝−1−1

(𝑖 +
1

2
)2∙

1

2𝑝
=

22𝑝 − 1

12

Error mean:

Error variance:

rounding instead

of truncation (+

and – error

values)

slightly biases

towards negative

numbers

Truncation/Rounding Error SNR Calculation
(continued)

334

Similar results hold for the mean and variance of xn. Therefore the

SNR is:

which for large 𝑝 can be approximated as:

SNRdB = 10log10
𝜎𝑥
2

𝜎𝑒
2 = 10log10

22𝑚 − 1

22𝑝 − 1

SNRdB ≈ 10log10
22𝑚

22𝑝
= 20(m − p)log102 ≈ 6.02(𝑚 − 𝑝)

Note: This is the 6dB per-bit rule of thumb: truncating each bit reduces the SNR for

about 6dB. We will find a similar rule later for ADC performance with different signal

and noise distributions.

Exercise: Derive the above equations (mean and variance of error) analytically. Do

the results change if the number is in the Qm.n format?

Truncation vs. Rounding

335

• While truncation simply discards the unnecessary bits, rounding approximates with

the closest number.

• Rounding is commonly preferred over truncation, as it is less-biased (the very

small bias is due to the representation of -2p-1 in 2’s complement).

Example: round(3.7) = 4; truncate(3.7) = 3;

• Truncation versus rounding in Verilog:

…

0 2p-1

2-p

truncation error probability

e•• •

…

-2p-1 2p-1-10

2-p

rounding error probability

e•• •

Radix-10 equivalent trick:
[3.7 + 0.5] = 4;

[3.2 + 0.5] = 3;

Mixed-Precision Multiplication Examples

336

Example 1: Multiplication by constant powers of two: no multiplication is required; only the

radix point convention changes; no error increase

X

2.0

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

xN-P-1 x0
xN-1

integer fraction

x:
0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

yN-P y0
yN-1

integer fraction

y:

Example 2: Multiplication by constant non powers of two: multiplication is required; the

radix point and register length may change; error might be added due to output truncation

X

3.25

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

xN-P-1 x0
xN-1

integer fraction

x: 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1

y0
yN-1

y:

0 1 1 0 13.25

Mixed-Precision Multiplication Examples

337

Example 3: Multiplication by fractional non powers of two that can not be

represented by sum of powers of two: Unavoidable representation error, even

before multiplication

X

3.30 1 1 0 1 0 13.3125

The closest approximation

of the constant in 7 bits

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

xN-P-1 x0
xN-1

integer fraction

x:

0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1

y0
yN-1

y:

Mixed-Precision Multiplication Examples

338

Rounding/truncating the coefficients in data/signal processing systems can change

the nominal performance of the system. For example, in filter design:

Sample lowpass filter designed in Matlab FDATool in double precision

floating-point (blue) and after quantization with 12-bit fixed-point (red)

Mixed-Precision in Digital Filters

339

Example 4: Discrete-time convolution 𝑦𝑛 = 𝑥𝑛 ∗ ℎ𝑛 = 𝑚 ℎ𝑚𝑥𝑛−𝑚: The maximum bit

growth in the output is equal to the length of the filter coefficients L1–Norm:

G = log2

m

hm

Note: From Signals & Systems Theory we know that for a stable causal filter 𝑚 ℎ𝑚 = B < ∞.

Therefore “the output of a stable filter with a bounded input can always be stored in a register

of finite length without overflow”

hn

(impulse response)

xn
yn

B bits (B + G) bits

IIR Filter FIR Filter

Further Notes on Fixed-Point and Mixed-Precision

• Note 1: The radix point does not necessarily need to be within the range of
the register length. Example: An 8-bit register can be used to represent
fixed-point numbers with a decimal point below the LSB or above the MSB.
For example, the following are legitimate fixed-point numbers, even though
the register length is only 8 bits:

• Note 2: In practice, fixed or floating-point numbers can have an arbitrary and
implicit scaling factor, which is known to the designer; but is not coded or
stored with the number. These scaling factors are only incorporated when
numbers are mapped to their corresponding physical values (voltage,
temperature, current, etc.) for user visualization or analysis. Example:
Uniform analog-to-digital convertors map their input voltage to the output
code with a constant scaling factor, which is known by the designer; but
does not affect internal FPGA calculations.

340

0 1 1 0 1 0 1 0 x = 2 +15. (21 + 23 + 25 + 26)

1 0 1 0 1 0 1 1 x = 2 -12. (20 + 21 + 23 + 25 + 26 – 27)

implied but not stored with

the number

Coefficient Scaling and Rounding

341

scaling factors

• In order to store real numbers in finite-length registers (fixed or
floating-point), the numbers should be multiplied by appropriate
scaling factors and rounded/truncated to fit in the registers.

Examples:

yfixed = round(216 × yreal)

yfixed = round(3.14 × yreal)

• When scaling a set of coefficients (time-series, filter coefficients,
etc.) to fit in N bits, the optimal performance (with minimum
quantization error) is obtained when the maximum/minimum scaled
values are equal to the maximum/minimum possible numbers (-2 N-1

and 2 N-1-1).

• Therefore, the optimal scaling factor is not necessarily a power of
two (e.g., see Matlab FDAtool’s quantization and scaling options)

Bit-Growth in Digital Filter Implementation*
(optional)

342

In digital filter implementation, the L1–Norm bit growth G = log2 m hm is the worst-
case (most pessimistic), which does not make any assumptions on the input signal. This
formula can be relaxed (approximated) in some cases.

1. Instantaneously narrow-band signals: For signals having a dominant frequency peak
at each time instant:

𝑥𝑛 = A cos(𝜔0𝑛 + 𝜃) → 𝑦𝑛 ≈ 𝐻 𝑒𝑗𝜔0 A cos 𝜔0𝑛 + 𝜑𝜔0

Bit Growth G0 = log2 max
−𝜋≤𝜔<𝜋

𝐻 𝑒𝑗𝜔

2. Random input signals: Using Parseval’s theorem, the output variance of a filter with
a random input is related to its input variance as follows:

𝜎𝑦
2 = 𝜎𝑥

2

𝑚

|hm|2

Therefore, with the following bit-growth, the probability of overflow at a filter’s output
is (almost) equal to the probability of input overflow:

Bit Growth G1 = log2 𝑚 hm 2

Bit-Growth in Digital Filter Implementation*
(optional)

343

Example: A first-order lowpass IIR filter: 𝑦𝑛 = α𝑦𝑛−1 + 𝑥𝑛 (0 < α < 1)

The impulse response is ℎ𝑛 = α𝑛𝑢 𝑛

Therefore m hm =
1

1−𝛼
and m hm

2 =
1

1−𝛼2

Bit-growth analysis for α = 0.9:

• L1-Norm: G = log2 m hm = log2
1

1−𝛼
= 3.3219 = 4

• Narrow-band assumption: G0 = log2
1

|1−𝛼|
= 3.3219 = 4

• Parseval’s theorem for stochastic inputs: G1 = log2
1

1−𝛼2
= 1.198 = 2

Result: In this example the L1-norm and narrow-band assumption, both demand 4

additional bits at the output yn; but according to the output variance criterion if we are

fine with occasional overflows, adding only 2 bits is statistically OK.

𝐻(𝑒𝑗𝜔) =
1

1 − 𝛼𝑒−𝑗𝜔
xn yn

ANALOG TO DIGITAL

CONVERTORS AND DIGITAL

TO ANALOG CONVERTORS

345

Analog to Digital Convertor (ADC) vs. Digital to
Analog Convertor (DAC)

ADC and DAC are integral parts of most FPGA-based signal processing systems

analog signal

x(t) anti-aliasing filter sample and hold
quantization and

sample encoding

digital signal

x[n]

@fs

time-domain

discretization
amplitude

discretization

ADC

sampling frequency (fs)
resolution bits (B)

F
P

G
A

F
P

G
A DAC anti-imaging filter

digital signal

y[n]

analog signal

y(t)

346

The Nyquist Rate
• The Nyquist sampling theorem defines the minimum number of samples acquired from a band-limited

analog signal per unit time, in order to guarantee the reconstruction of the original signal from these

samples. It requires: fs ≥ 2B

band-limited signal in the frequency domain

After impulse train sampling with

fs < 2B; Nyquist rate violated

After impulse train sampling with

fs > 2B; Nyquist rate fulfilled

reconstructed signal

Ref: https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

Further Reading: Alan V. Oppenheim, Alan S. Willsky, and S. Hamid

Nawab. Signals & Systems (2nd Ed.). Prentice-Hall, Inc., 1996

time-domain signal and its samples

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

347

ADC Encoding Curve
• The mapping between the input voltage of an ADC and the output code can be

described by an encoding curve.

• In a binary encoding ADC with B bits, the input voltage range [Vmin, Vmax] is divided
into 2B segments and any input voltage within this range is approximated with one of
the nearest voltages and represented by a code.

• The ADC encoding curve may be uniform or non-uniform.

• For example, the following are two uniform encoding curves, based on rounding (left)
and truncation (right)

Question: How to quantify the performance of an ADC?

348

ADC Quantization Error Analysis

• The effect of ADC quantization error can be analyzed with a method similar to SNR

calculation due to rounding/truncation. The quantization procedure can be modeled by

a quantization operator Q(•):

yn = Q(xn) = xn + en

xn: ADC input sample (after zero-order hold), yn: quantized result, en: quantization error

• We again use the signal-to-noise ratio (SNR) as the performance measure:

SNRdB = 10log10
𝐸 𝑥𝑛

2

𝐸 𝑒𝑛
2

• This analysis requires some assumptions

regarding the input signal and the quantization

error probability density functions

349

ADC Quantization Error Analysis (continued)

Quantization model: yn = Q(xn) = xn + en

Assumptions:

1. The signal xn is a signed real value in [-Xm, Xm)

2. The quantizer is B bit and it divides [-Xm, Xm) into 2B equal
segments of length ∆= 2𝑋𝑚/2𝐵

3. The signal xn and the quantization error en are statistically
independent (we will study the counter assumption later)

4. The quantization error samples en are independent
identically distributed (iid) with a uniform distribution
between −∆/2 and ∆/2

Therefore: 𝑒 = 𝐸 𝑒 = −∞
+∞

𝑒𝑓𝑒 𝑒 d𝑒 = 0

𝜎𝑒
2 = 𝐸 (𝑒 − 𝑒)2 = −∞

+∞
(𝑒 − 𝑒)2𝑓𝑒 𝑒 d𝑒 =

∆2

12

We have calculated the denominator of the SNR equation. In
the sequel we consider three cases for the input signal:
Sinusoidal (deterministic) signal, Gaussian distributed
stochastic signal, Uniformly distributed stochastic signal −∆/2 +∆/2 e

𝑓e(e)

1/∆

Quantization error probability

density function

-Xm

-Xm + ∆

+Xm

+Xm - ∆

0

-2B

-2B+1

2B-1

0

output

code

input

voltage

• Sinusoidal input signals are the standard measurement method for calculating

ADC SNR.

• Assuming xn=Xmcos(ωn), we have E{xn}=0 and E{xn
2} = Xm

2/2.

Therefore:

SNRdB = 10log10
𝐸 𝑥𝑛

2

𝐸 𝑒𝑛
2 = 10log10

𝑋𝑚
2

2
∆2

12

= 10log10

𝑋𝑚
2

2
4𝑋𝑚

2

12 × 22𝐵

or

SNRdB ≈ 6.02B + 1.76dB

Note: This is the well-known 6dB per-bit rule, which should be memorized as a

rule of thumb by any hardware engineer!

350

ADC Quantization SNR with Sinusoidal

Input

• We next assume that the input signal is a stochastic random variable, uniformly

distributed between –Xm and Xm: xn~U(–Xm, Xm)

• Therefore we have E{xn}=0 and E{xn
2} = Xm

2/3.

Therefore:

SNRdB = 10log10
𝐸 𝑥𝑛

2

𝐸 𝑒𝑛
2 = 10log10

𝑋𝑚
2

3
∆2

12

= 10log10

𝑋𝑚
2

3
4𝑋𝑚

2

12 × 22𝐵

or

SNRdB ≈ 6.02B

Note: The 1.76dB is no longer there, but we still see the 6dB per-bit property.

351

ADC Quantization SNR with Uniformly

Distributed Input

• We finally assume that the input signal is a stochastic random variable, with a
Gaussian distribution xn~N(0,σx

2).

• The Gaussian distribution has infinite tails and overflow at the ADC input is
unavoidable. However, the probability of overflow is reduced by controlling the input
variance σx

2 relative to the ADC reference voltages –Xm and Xm.

• Let’s assume Xm=kσx. According to the Gaussian curve, for k = 1, 2, 3, and 4, the
probability of ADC input overflow is 31.73%, 4.55%, 0.26%, and 0.01%,
respectively.

• Assuming k = 4, we have E{xn}=0 and E{xn
2} = Xm

2/16. Therefore:

SNRdB = 10log10
𝐸 𝑥𝑛

2

𝐸 𝑒𝑛
2 = 10log10

𝑋𝑚
2

16
∆2

12

= 10log10

𝑋𝑚
2

16
4𝑋𝑚

2

12 × 22𝐵

or

SNRdB ≈ 6.02B − 7.27dB

Note: We still see the 6dB per-bit property.

Note: ADC ICs commonly have an out-of-range (OTR) pin for reporting input overflow
per-sample

352

ADC Quantization SNR with Gaussian

Distributed Input

Non-ideal ADC

353

• Practical ADC circuitry are never ideal and do not reach
their nominal performance (SNR=6.02B + 1.76dB).

• The standard approach to measure the true performance
of an ADC is by giving it a sinusoidal input signal with an
amplitude of 1dB below full-scale (to avoid overflow) and
measuring the real SNR and the effective number of bits
(ENOB):

ENOB =
SNRdB − 1.76dB

6.02

True SNR measured by giving a

full dynamic-range sinusoidal to

the ADC and measuring the SNR

of an acquired block of data

The effective number of bits; a

real-value, always smaller

than the nominal number of

ADC bits (ENOB < B)

ENOB Examples

354

• AD9246 14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-

Digital Converter:

355

Non-uniform ADC Encoding Curves

• Intuitively, in ADC with non-uniformly distributed inputs, many bits are “wasted” for low-

probability samples (there are profound theoretical proofs behind this intuition). One could

use the bits more efficiently by:

1. Using non-uniform ADC encoding curves: Divide –Xm and Xm into unequal segments

(assign smaller segments to higher probabilities and larger segments to lower

probability values). Example: A-law and μ-law companding algorithms used in old 8-bit

PCM digital communication systems for better use of the dynamic range

2. Making the input sequence distribution uniform: A useful theorem from random

variables:

If a random variable (RV) x with a probability density function (pdf) fX(x) and

cumulative distribution function (CDF) FX(x) passes a nonlinear memoryless

system with a characteristics u = FX(x), the output u is uniformly distributed. Also, if

a uniformly distributed RV u is given to y = FX
-1(u), the output has a distribution

fX(•).

Note: This property can be used to make arbitrary RVs from uniform distributions

and vice versa in FPGA.

356

ADC SNR Improvement by Over-Sampling

• Looking back at the quantization model yn = Q(xn) = xn + en, the quantization

error samples en were assumed to be independent identically distributed (iid).

Therefore, the quantization noise has a white spectrum and its total power

E{en
2} is equally distributed over the entire Nyquist-band [0,fs].

• If the signal is over-sampled beyond the Nyquist rate, the ADC SNR can be

improved by lowpass filtering the ADC outputs (in the digital domain).

• In this case, we have: SNRdB ≈ 6.02B + 1.76dB + 10log10(OSR), where OSR is

the over-sampling ration (fs/2B)

-B +B f

X(f)

-B +B f

Xs(f)

fs-fs fs-B fs+B-fs-B -fs+B

E(f)

-B +B f

Xs(f)

fs-fs fs-B fs+B-fs-B -fs+B

E’(f)

ADC
Lowpass

Filter

FPGA

Processing
x(t) xs[n]

357

ADC SNR Improvement by Over-Sampling
(continued)

• Over-sampling rule of thumb: “Each factor of two above the Nyquist rate, is equivalent to

3dB of SNR improvement (after low-pass filtering)”. Therefore, SNR improvement by

OSR is expensive!

• Question: OSR = 4 improves the SNR for 6dB, equivalent to 1 bit of higher resolution.

Does this mean that we can have a mono-bit ADC that is equivalent to a 12-bit ADC?!

Answer: Yes (to some extent)!

358

Spurious-Free Dynamic Range (SFDR)

• Looking back at the quantization model yn = Q(xn) = xn + en, the quantization

error en was assumed to be independent from xn. However, this assumption is

violated in low number of bits.

main component

spur

SFDR

noise floor

Spurs are notable components and

spikes of noise within a signal’s

spectrum and above the noise floor,

which do not correspond to the

original signal; but are somehow

correlated with it (they move in the

spectrum as the sampling

frequency changes or as the signal

components move).

SFDR is the gap (in dB) between

the original frequency component

and the strongest spur

359

Spurious-Free Dynamic Range Improvement

Spurs are very important in practice, as they are
commonly mistaken with the original signal
components.

Note: Spurs can also occur during FPGA arithmetic
truncation/rounding

How to improve the SFDR?

1. Increase the number of ADC (quantization)
bits

2. Break the correlation between the signal and
quantization (rounding/truncation) errors by
adding dithers prior to quantization
(rounding/truncation), e.g., by using high-
thermal noise resistors in ADC inputs

Dither is a noise (at the level of the signal’s LSB)
intentionally added to the signal before
quantization to de-correlate the signal and
quantization noise

previous example after dithering

Note: Dithering improves the SFDR at a cost of decreasing the SNR (increasing the noise floor)

Note: Dithers can be generated in FPGA using linear-feedback shift registers (LFSR)

Further Reading on ADC and DAC* (Optional)

360

• ADC internal technologies: ladder, flash, delta-sigma
modulation

• Integral nonlinearity (INL)

• Clock jitter

• DAC technologies

• Contemporary FPGAs with built-in ADCs

• Quadrature ADC sampling techniques (for high speed)

• Mono-bit technologies

• ADC/DAC tradeoffs

Further reading: refer to the references on ADC/DAC in the course’s
references folder

WORD LENGTH SELECTION IN

FPGA-BASED ARITHMETIC

Background

• Real-world applications require the representation of real-valued
data in floating-point or fixed-point formats

• Real numbers can be approximated in these formats using the
necessary number of bits and by proper scaling

Question 1: How many bits should be used for internal calculations?

Answer: Considering that coefficient quantization and
rounding/truncation introduce additional errors to the input data, the
internal register lengths are selected to meet the minimum required
SNR (selected by the designer)

Question 2: How to choose the minimum required SNR?

Answer: It is application-dependent

362

Word-Length Selection in FPGA Designs

• The most common sources of noise in analog

and digital electronics systems are

1. Thermal noise of electronic devices and elements

2. Quantization errors in digital systems, due to number

representation in finite-length registers and

rounding/truncation

• In mixed analog digital designs (containing

analog elements, ADC, DAC, FPGA,

processors, etc.) the conventional standard is

to keep the fixed-point computational errors at

the same level or below the input analog noise

level

363

Thermal noise model

of a resistor

Input Word-Length Selection Procedure
How to determine the input noise level and internal register lengths?

1. Thermal noise (noise figure) calculation of all analog elements, up to the digital units
(beyond the scope of this course)

2. Calculating the ENOB of the ADC

3. Selecting the processing register lengths such that the internal FPGA quantization

errors are below (or at the same level as) the above items

Note: For pure digital processing or when the input noise level is unknown for the digital

designer, the noise level can be assumed to be half the input register LSB

364

ADC
Analog

Front-End

FPGA

x(t) xs[n]x0(t) ys[n]
Processing

ADC
Analog

Front-End

FPGA

x´(t) x´s[n]x0(t) y´s[n]
Processing+ + +

front-end noise

+

input noise ADC quantization noise round-off error noise

Ideal System:

Real System:

Input Word-Length Selection Procedure
(continued)
• Note: As far as the FPGA designer is concerned, the input noise and

the analog front-end noise can usually be lumped in the ADC

quantization noise (as factors that reduce the input ENOB)

• For example, with a 16-bit ADC, the 3 LSB may fluctuate due to the

different noise factors (input noise, device thermal noise, ADC

quantization error)

365

FPGA

Digital

Processing

A typical analog front-end with various sources of noise

Image adapted from: http://www.azcom.it/index.php/services/rf-design/analog-front-end-afe/

Intermediate Word-Length Selection in

FPGA Designs

366

Note 1: The internal register lengths are selected according to the input noise level and ENOB, not the ADC number of bits

Note 2: The SNR can be increased due to the processing gain. For example, remember the SNR improvement due to over-

sampling noted in the previous section

Intermediate calculation word-length selection follows similar rules: “try to preserve the

signal-to-noise ratio during calculations, as much as possible”

Example:

16-bit

ADC

FPGA

|x(t)|<1 xs[n]

I

Processing

×

×

DDS

hi[n]

hq[n]
Q

cn=cos(ωn)

sn=sin(ωn)

16-bit ADC with ±1V

reference voltage and

possible over-sampling

Q1.15 with

ENOB=13.5 bits

Q1.17 scaled

cosine/sine

Q1.15

rounded/truncated

Q1.15 rounded/truncated

50-tap FIR lowpass filter with

Q3.21 scaled coefficients

Q3.12 rounded/truncated;

SNR possibly improved

by the filtering stage

ARBITRARY WAVEFORM

GENERATION

Waveform Generation

368

The calculation/generation of arbitrary functions/waveforms of the

form y = f(x) is required in many computational and signal processing

applications. We study several methods for this purpose:

• Arbitrary functions:

• Direct Implementations (functional calculation)

• Lookup-Tables & Interpolated Lookup-Tables

• Special functions:

• CORDIC machines

• Periodic functions:

• NCO and Periodic Waveform Generators

• Recursive Oscillators

• Random signal:

• LFSR

Direct Function Implementation

369

Depending on the function form, y = f(u) can be implemented using its

direct mathematical form or truncated Taylor expansion:

Example 1: y = f(u) = a·u2 + b·u + c = u·(a·u + b) + c

Requires two multipliers and two adders

Example 2: y = f(u) ≈ f(a) + f'(a)·(u – a)

Requires a multiplier and two adders for a first-order approximation

X
a

u

+b

X

+
c

y = f(u)

Note 1: The implementation of the direct form of a function on FPGA is simplified

when the expansion coefficients are constants or powers of 2.

Note 2: The approximated Taylor expansion is only accurate for smooth functions

Functional Implementation by Lookup

Tables (LUT)

370

• In order to implement y = f(x) over a
finite domain, one may pre-calculate
and store the values of y over the
entire domain of x in a memory. The
values of x can next be used as the
address bus of the memory during
runtime.

• LUT-based implementation of
functions is applicable for arbitrary
functions (not necessarily smooth);
but requires a lot of memory when x
has many bits.

• The accuracy of this method depends
on the function form, and the number
of bits assigned to x (N) and y (M)

N bits M bits

d0

d1

…

d2N-1

x y=f(x)

M-bits

Functional Implementation by Interpolated

LUT

371

• For smooth functions, LUT-

based methods can be made

more memory-efficient, if they

are combined with interpolation

(linear, quadratic, spline, etc.)

• For example, in linear

interpolation, we interpolate

between successive values of

the LUT with appropriate

weights:

linear

approximation

error

𝑦 ≈
𝑥 − 𝑥1 𝑦2 + (𝑥2 − 𝑥)𝑦1

(𝑥2 − 𝑥1)
= 𝑦1 +

(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
(𝑦2−𝑦1)

Interpolated LUT Implementation

372

• Linear interpolated LUTs can be implemented very efficiently using a single or dual-port

LUT and minor computations.

• Idea: Suppose that x has N bits, which means that an LUT of length 2N is required for its

complete implementation. However, if one uses the P MBS bits of x (P < N) for

addressing a 2P points LUT, the N-P LSB bits of x could be used for linear interpolating

between two successive samples of the P-point LUT.

• Therefore, we can write 𝑦1 = 𝑓(𝑥MSB), 𝑦2 = 𝑓(𝑥MSB + 1) and calculate the first-order

interpolation as follows:

𝑦 = 𝑦1 +
(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
(𝑦2−𝑦1) = 𝑦1 +

𝑥LSB × (𝑦2−𝑦1)

2𝑁−𝑃

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

xN-P-1 x0
xN-1

used for LUT addressing used for interpolation

xMSB xLSB

x:

This division requires only a shift (rounding)

Interpolated LUT Implementation Diagram

373

The overall block-diagram of an interpolated LUT of length N using

a two-port LUT of length P for pipelined FPGA-based

implementation is as follows:

Note: Similar ideas can be implemented using quadratic and spline interpolations. See the following

reference for further ideas and general LUT-based methods: Behrooz, P. (2000). Computer arithmetic:

Algorithms and hardware designs. Oxford University Press, Chapter 24

d0

…

d2P-1

x y1=f(x1)

(M bits dual-port)

y ≈ f(x)

y2=f(x2)

+1

Interpolator

𝑦 =
𝑦1 + round[𝑥LSB(𝑦2−𝑦1), N − P]

xMSB

xLSB
x2

x1

Registers

(N bits)

(P bits)

(P bits)

(N-P bits)

(M-bits)

(M-bits)

seen as an N-bit LUT

from outside

Periodic Signal Generators

An efficient method for generating periodic signals is to combine an LUT with a

numerically controlled oscillator (NCO)

Example: In order to generate a sinusoidal signal with frequency f0 in a sampling rate

fs, using an LUT of length N, the NCO increment can be found as follows:

inc =
Nf0
fs

Note: As a sinusoidal signal, inc should be smaller than N/2 to fulfill the Nyquist

sampling rate.

374

Accumulator +
Increment

LUT Address

Clock (Fs)

NCO

Increment
Address

LUT

NCO

S
in

e
 w

a
v
e

Mixer value

3

2

N

1

Notes on Periodic Signal Generators

1. Sine and Cosines can be produced using a single two-port LUT with

¼ of initial address offset between the two ports.

2. Sine/cosine generation is precise (with no phase errors), if the

desired frequency (f0), sampling frequency (fs), LUT length (N) and

LUT address increment (inc) satisfy:
f0
fs

=
inc

N

375

Sine Wave Generator Examples

• Example 1: We want to generate a sine wave with frequency
f0=10.7MHz at a sampling rate of fs=38.4MHz. Noting that
10.7MHz/38.4MHz = 107/384, we can have a 384-point LUT with
inc=107.

• Example 2: We want to generate a sine wave with frequency
f0=10.7MHz at a sampling rate of fs=42.8MHz. Noting that
10.7MHz/42.8MHz = 1/4, we can have a 4-point LUT, which is basically
a 4-state selector that circulates between 0,+1,0, and -1 (no LUT
needed).

• Example 3: We want to make a direct digital synthesizer (DDS) for
generating sine waves at a sampling frequency of fs=100MHz. The DDS
should be able to synthesize frequency from DC to 50MHz (Nyquist
rate), with frequency steps of Δf=100kHz. A LUT of length N=1000 is
required.

376

CORDIC Machines

• The direct implementation of arbitrary functions requires

considerable logic resources and LUT-based methods

require considerable memory.

• Classes of mathematical functions can be generated with a

combination of small-size LUTs and set of shifts and

adds/subtracts.

• The Coordinate Rotation Digital Computer (CORDIC) is

one such method

• The CORDIC machine was invented in 1956 by Jack E.

Volder to be used in B58 bomber's navigation system for

accurate real-time digital calculations

377

Volder’s original algorithm is a set of recursive multiplier-free equations:

where

• arctan 2−𝑛 are pre-calculated and stored in a LUT

• 𝑑𝑛 = sign(𝑧𝑛) (+1 if 𝑧𝑛 ≥ 0 and −1 if 𝑧𝑛 < 0)

If |𝑧𝑛| < 𝜃𝑚𝑎𝑥 = 𝑛=0
∞ arctan 2−𝑛 = 1.7432866…, it can be shown that:

where 𝐾 = 𝑛=0
∞ 1 + 2−2𝑛 = 1.6467603…

Volder’s CORDIC Algorithm

378

𝑥𝑛+1 = 𝑥𝑛 − 𝑑𝑛𝑦𝑛2
−𝑛

𝑦𝑛+1 = 𝑦𝑛 + 𝑑𝑛𝑥𝑛2
−𝑛

𝑧𝑛+1 = 𝑧𝑛 − 𝑑𝑛 arctan 2
−𝑛

lim
𝑛→∞

𝑥𝑛
𝑦𝑛
𝑧𝑛

= 𝐾 ×
𝑥0 cos 𝑧0 − 𝑦0 sin 𝑧0
𝑥0 sin 𝑧0 + 𝑦0 cos 𝑧0

0

CORDIC Machine Principles

• The non-restoring decomposition of an arbitrary angle:

𝜃 =

𝑘=0

∞

𝑑𝑘𝑤𝑘 , 𝑑𝑘 = ±1,𝑤𝑘 = tan−1(2−𝑘)

379

desired angle

The nonrestoring algorithm:
The following algorithm converges to 𝜃:

𝑡0 = 0
𝑡𝑛+1 = 𝑡𝑛 + 𝑑𝑛𝑤𝑛

𝑑𝑛 =
1 if 𝑡𝑛 ≤ 𝜃

−1 otherwise

Or in the reverse direction:
𝑡0 = 𝜃

𝑡𝑛+1 = 𝑡𝑛 − 𝑑𝑛𝑤𝑛

𝑑𝑛 =
1 if 𝑡𝑛 ≥ 0

−1 otherwise

The CORDIC Algorithm in Circular Rotation

Mode
• According to the restoring algorithm, for an arbitrary angle 𝜃, successive

rotations can be used to rotate from zero to 𝜃 (or from 𝜃 to 0):

𝑥𝑛+1
𝑦𝑛+1

=
cos(𝑑𝑛𝑤𝑛) − sin(𝑑𝑛𝑤𝑛)
sin(𝑑𝑛𝑤𝑛) cos(𝑑𝑛𝑤𝑛)

𝑥𝑛
𝑦𝑛

or

𝑥𝑛+1
𝑦𝑛+1

= cos(𝑤𝑛)
1 −𝑑𝑛2

−𝑛

𝑑𝑛2
−𝑛 1

𝑥𝑛
𝑦𝑛

• The term cos 𝑤𝑛 = 1/ 1 + 2−2𝑛 is the only required multiplication, which can
be omitted, as it does not alter the rotation angles and only changes the
vector magnitudes.

• Alternatively, depending on the number of iterations 𝑃, A = 1/ 𝑛=0
𝑃 1 + 2−2𝑛

can be compensated as a constant multiplier.

380

Alternative Forms of the CORDIC Algorithm

• Alternative modes of the CORDIC algorithm include:

381

Reference and further reading: Muller, Jean-Michel. Elementary functions. Birkhäuser Boston, 2006. Chapter 7

Note: The implementation of

CORDIC on FPGA requires

attention in word length

selection and number

representation

CORDIC Implementation on FPGA

382

• Before implementation, the CORDIC parameters need to

be set:

1. Choose the CORDIC mode

2. Set the input and output lengths and Qm.n data format

3. Find the required number of CORDIC iterations by

simulation, such that the calculation error is smaller than

the LSB of the selected word lengths

4. Implement the CORDIC machine using pipelining or

resource sharing (or a combination of both)

CORDIC Implementation on FPGA (continued)

383

• Pipelined:

• Resource Shared:

Single

Stage

CORDIC

x0

y0

z0

Stage #0

PARAMS

Single

Stage

CORDIC

x1

y1

z1

Stage #1

PARAMS

Single

Stage

CORDIC

xN-1

yN-1

zN-1

Stage #N-1

PARAMS

xN

yN

zN

x2

y2

z2

…

Common Clock

xN-1

yN-1

zN-1

xN

yN

zN

Single

Stage

CORDIC

x0

y0

z0

State

Controller

Stage

PARAMS

New Data

Data Ready

Periodic Sequence Generation using

Feedback Shift Registers
• Consider a chain of N registers with a common clock and arbitrary initial

values (known as the seed) connected in feedback:

• The generated sequence is apparently periodic with (maximum) period N
samples (N/fs seconds)

• In FPGA, this feedback mechanism can be used to generate special
periodic sequences at a very low cost (using shift registers)

• Next, suppose that the feedback bit is a Boolean function of the
intermediate bits:

𝑥0 𝑛 = 𝑓 𝑥0 𝑛 − 1 , 𝑥1 𝑛 − 1 ,… , 𝑥𝑁−1 𝑛 − 1

𝑥1 𝑛 = 𝑥0 𝑛 − 1
…

𝑥𝑁−1 𝑛 = 𝑥𝑁−2 𝑛 − 1

384

0 1 0 1 0 0 1 0 1 1

Periodic Sequence Generation using

Feedback Shift Registers (continued)

Examples:

385

A 16-bit Fibonacci LFSR

A 16-bit Galois LFSR

Pseudo Random Number Generation

using LFSR
• Linear-feedback shift register (LFSR) is a shift register whose

input bit is a linear function (e.g. XOR, XNOR, etc.) of its
previous state

• The initial value of the LFSR is called the seed

• LFSRs are deterministic FSM, as the output stream is
completely determined by its initial state and the linear function

• Since the register has a finite number of states, LFSR has a
periodic cycle. However, an LFSR with a well-chosen feedback
function can produce a sequence of bits that are pseudo-
random (have a very long period).

• An N-bit LFSR is called maximum-length, if it cycles over all 2N

possible states except 0 (from which it would not exit from)

Ref: https://en.wikipedia.org/wiki/Linear-feedback_shift_register

386

Pseudo Random Number Generation

using LFSR (continued)

• In a maximum-length LFSR The length of LFSR can be selected such

that even at the highest available flip-flop clocking speeds, the

periodicity in not observed in centuries!

• Example: A maximum-length LFSR of length 64 clocked at 1GHz, takes

(264-1)/1GHz ≈ 585 years to repeat itself!

• Moreover, with an appropriate choice of the LFSR length and the

feedback function (also known as the LFSR polynomial), the generated

sequence resembles a fully stochastic sequence, which passes all the

statistical tests of stochastic white noise.

• In this case, the periodic sequence may only be repeated by having the

initial seed.

• LFSR have profound mathematical bases with numerous applications in

coding, security, numeric computation, etc.

387

Ref: See the following for a nice introduction on the mathematics behind LFSR (Galois Fields):

http://inst.eecs.berkeley.edu/~cs150/sp03/handouts/15/LectureA/lec27-6up

Other Applications of LFSR

1. Counters: LFSR can be used as extremely efficient counters (only

requiring shift-registers and a few XOR), when the counting order is

not important. For example for FSM encoding and micro-codes

2. Cyclic Redundancy Check (CRC): LFSR can be used to generate

CRC for error detection and correction

3. Data Encryption/Decryption: LFSRs can be used for encryption of

data transmitted over public channels

388

Binary sequence generator

LFSR

Generator

XOR XOR

LFSR

Generator

Recovered data

Common Seed

(Private)

source destinationpublic channel

Other Applications of LFSR (continued)

4. Scramblers: Scramblers are used in many communication and

storage protocols to randomize the transmitted data in order to

remove long sequences of logic zeros and ones.

389

Ref: Stavinov, Evgeni. 100 power tips for FPGA designers. Evgeni Stavinov, 2011

Pseudo Random Numbers with Arbitrary

Distributions

As noted before:

390

If a random variable (RV) x with a probability density function (pdf) fX(x) and

cumulative distribution function (CDF) FX(x) passes a nonlinear memoryless system

with a characteristics u = FX(x), the output u is uniformly distributed. Also, if a

uniformly distributed RV u is given to y = FX
-1(u), the output has a distribution fX(•).

FX
-1(u)

u ~ U(0,1) y ~ fX(x)

Random or pseudo-random

uniformly distributed variable

Pseudo Random Signals with Arbitrary

Spectral Color*(optional)

Alternative methods for generating signal/noise with arbitrary

spectra include:

• Frequency modulation using fast frequency sweeps (e.g.

using a Chirp signal)

• Bandpass filtering pseudo-random white noise

• Superposition of synthetic signals and noise

391

PIPELINING & DESIGN TIMING

IMPROVEMENT TECHNIQUES

Background

393

• The notion of pipelining was introduced before, as a means of improving
the design timing, to achieve the design constraints (clock speed)

• Different techniques for pipelining and timing improvement in FPGA
systems are presented in this section, including:

• Retiming

• Re-pipelining

• Cut-set retiming

• C-slow retiming

• Pipelining in feedback systems

References:

• Hauck, Scott, and Andre DeHon. Reconfigurable computing: the theory and
practice of FPGA-based computation. Vol. 1. Elsevier, 2010, Chapter 18

• Khan, Shoab Ahmed. Digital design of signal processing systems: a
practical approach. John Wiley & Sons, 2011, Chapter 7

Retiming

• Retiming consists of reducing the critical path (increasing the clock
speed) by moving the pipeline registers to an “optimal position”.

Example: In the following, each circle denotes combination logic, with
the number representing the combinational latency

• The objective of retiming is to automate this procedure in a systematic
manner with concise algorithms, which 1) guarantee that the circuit’s I/O
transfer function is not changed and 2) can be implemented in CAD
tools (for instance during the synthesis or technology mapping stages)

• Limitation: Retiming cannot improve the design clock speed beyond the
optimal register placement

394

Before retiming After retiming

Retiming (continued)

• For systematic retiming, a digital circuit is converted to a data flow graph

(DFG). Next, by using graph theory based theorems, the registers are

systematically moved across the computational nodes (combinational

logic), without changing the input/output transfer function of the original

DFG.

Delay Transfer Theorem: “without affecting the transfer function of the

system, registers can be transferred from each incoming edge of a node

of a DFG, to all outgoing edges of the same node or vice versa” [Khan,

2011, p. 304].

395

Retiming (continued)

• Retiming can also be used to merge excess registers to reduce the area

utilization.

Example:

396

Shannon Decomposition Retiming

• The Shannon decomposition can be used to improve the timing of Boolean
functions. Accordingly:

f(a0,a1,…aN-1) = ā0·f(0,a1,…aN-1) + a0·f(1,a1,…aN-1)

Example:

Note: The Shannon decomposition is specifically useful for FPGA-based designs,
which are implemented on fixed-input LUTs

397

Peripheral Retiming

• In this technique: 1) all the internal registers are shifted to the input or output of

the design; 2) the combinational logic is simplified; finally 3) the registers are

pushed to their optimal position by conventional retiming.

Example:

398

(1) (2)

(3)

Re-pipelining

399

additional registers added

before re-pipelining

• In feed-forward designs, re-pipelining adds additional registers at

the input or output and then moves these registers across the

design (by retiming) to obtain the best performance.

• The cost of re-pipelining is the additional number of registers

added to the pipeline which adds a constant clock latency

between the input and output; but the other properties of the

design are preserved.

Cut-set Retiming

• More generally, cut-set retiming permits the addition of arbitrary number of

registers in a forward path, or moving registers from the input to the output (or

vise versa) of a cut-set, while preserving the I/O transfer function.

• Reminder: In Graph theory, a cut is a virtual partitioning of the edges of a graph

into two disjoint subsets, known as cut-sets.

400

adding registers in feed-forward cut-sets

moving registers from cut-set output to cut-set inputs

Cut-set Retiming (continued)

Example 1: FIR filter retiming

401

Two possible cut-sets

Re-pipelining across feed-forward cut-set 2

Cut-set Retiming (continued)

Example 2: FIR filter retiming, second approach: multiple cut-set retiming

402

Three cut-sets with feedback paths After cut-set retiming

Cut-set Retiming (continued)

Example 3: 4-bit ripple carry adder (RCA) retiming

403

Cut-set Retiming (continued)

Example 4: 4-bit ripple carry adder (RCA) retiming; second approach

404

Cut-set Retiming (continued)

Example 5: Second-order IIR filter

405

Cut-set Retiming (continued)

• Cut-set retiming does not always result in an improved timing.

• Example: In a first-order IIR filter, the critical path is not changed by cut-set

retiming of the feedback loop.

406

C-Slow Retiming
• C-slow retiming consists of replicating all the registers of a synchronous design C

times, followed by moving the registers (conventional retiming), or by splitting the

circuit into C distinct parallel paths which multiplex and switch between the input data

and results.

407

original circuit 2-slow counterpart circuit

Note: The design interleaves between two computations (2-slow): on the first clock

cycle, it accepts the first input for the first data stream; on the second clock cycle, it

accepts the first input for the second stream, and on the third it accepts the second

input for the first stream. Due to the interleaved nature of the design, the two streams

of execution will never interfere (on odd clock cycles, the first stream of execution

accepts input; on even clock cycles, the second stream accepts input).

2-slow circuit after retiming

C-Slow Retiming (continued)

Example:

408

original circuit

2-slow counterpart circuit

C-Slow Retiming (continued)

Example (continued):

• 2-slow retiming after moving the registers to their optimal position (the critical

path is reduced from 5 to 2 time units):

• This architecture can process two parallel data paths with interleaved data

409

excess feed-forward registers can

be eliminated after retiming

C-Slow Retiming (continued)

• Example: A single 2-slow retimed IIR filter architecture can be used to process

the real and imaginary parts of a complex-valued digital filter by interleaving the

real and imaginary parts of the input:

yr[n] + j yi[n] = h[n]*(xr[n] + j xi[n]) = h[n]*xr[n] + j h[n]xi[n]

410

xr[0] xi[0] xr[1] xi[1] xr[2] xi[2] xr[3] … yr[0] yi[0] yr[1] yi[1] yr[2] yi[2] yr[3] …

C-Slow Retiming by Data Stream

Interleaving
• The disjoint data stream property of C-slow retiming can be

used to obtain parallel hardware threads, which interleave the
input data stream between C identical circuits, each working at
1/C of the input clock rate and finally multiplexing the results
back together. This method is referred to as unfolding in some
textbooks.

• The idea is related to loop unrolling used for optimizing for-
loops in multicore processors and GPUs

• The complementary method is hardware folding (hardware
reuse), which uses a single hardware and a scheduler (FSM
controller) to reduce the hardware size.

• Note: Systematic and ad hoc retiming and resource sharing
may additionally be used to improve the area and timing
performance of the design.

411

C-Slow Retiming by Data Stream

Interleaving (continued)

Algorithm: Any DFG can be unfolded by an unfolding factor J using the

following two steps:

S0) To unfold the graph, each node U of the original DFG is replicated J

times as U0,…, UJ-1 in the unfolded DFG.

S1) For two connected nodes U and V in the original DFG with w

delays, draw J edges such that each edge j (= 0,…, J-1) connects

node Uj to node V(j+w)%J with floor[(j+w)/J] delays.

Ref: [Khan, 2011] p. 349

412

C-Slow Retiming by Data Stream

Interleaving (continued)

Example: Feed-forward example

413

Original circuit

Unfolded system (2-fold)

C-Slow Retiming by Data Stream

Interleaving (continued)

Example: Feedback systems

414

Original circuit

Unfolded system (2-fold)

C-Slow Retiming by Data Stream

Interleaving Example* (optional)

• Example: Polyphase filter Implementation

415

a switch

Pipelining Feedback Systems by Algorithmic

Modifications
• Pipelining digital systems with feedback is a challenging issue and is not always

solved using the previous methods. In this section, we study a few techniques for
pipelining such systems by algorithmic modifications, using a simple case study.

Example: Consider a first-order recursion y[n] = a∙y[n-1] + x[n].

• Such equations appear in many applications, e.g., infinite-impulse response
(IIR) filters in signal processing

• The multiplication is problematic for pipelining, since the result of a∙y[n-1] is
needed for calculating y[n] before the next clock edge arrives

Solution?

416

Pipelining Feedback Systems by Algorithmic

Modifications (continued)

• The first-order recursion can be rewritten as follows:

y[n] = a∙y[n-1] + x[n] = a ∙ (a∙y[n-2] + x[n-1]) + x[n] = a2∙y[n-2] + a∙x[n-1] + x[n]

• This modified form requires more architecture (compared to the original form); but

it can be pipelined:

417

Pipelining Feedback Systems by Algorithmic

Modifications (continued)

• More generally:

y[n] = a∙y[n-1] + x[n] = aM∙y[n-M] + (x[n] + a ∙x[n-1] + … + aM-1∙x[n-M+1])

• This form can be pipelined as follows:

• This method is known as look ahead transformation in the literature.

418

Note*: From the signal processing viewpoint,

we are using the following property of the z-

transform of the system response:

H(z) = 1/(1–az-1)

= (1 + az-1 + …+ aM-1z-M+1)/(1– aMz-M)

In other words, we are adding overlapping

zeros and poles to the transfer function, in favor

of pipelining

Architectural Improvements by Algorithmic

Modifications*(optional)

• Replacing a system with it’s algorithmically equivalent counterpart (in favor of
architectural improvement) is very common in digital implementations.

• Example: Consider a moving average filter (used for lowpass filtering) defined by
the input-output recursion: y[n]=x[n]+x[n-1]+…x[n-N+1]

Accordingly the impulse response and transfer functions of the system are:

h[n]=δ[n]+ δ[n-1]+… δ[n-N+1] or H(z)=1+z-1+…z-N+1

The FPGA implementation of this system requires N-input adders, which can
cause huge combinational delays for large N.

A method for improving this limitation is by using pipelined adder-trees.
Alternatively, one may use the equivalent system: y[n] = y[n-1] + x[n] – x[n-N]

We have used the fact that:

H(z) = (1 + z-1 + …+ z-N+1)

= (1– z-N)/(1– z-1)

• Cascaded Integrator Comb (CIC) also known as Hogenauer filters, which are very
common in FPGA-based designs due to their multiplier-free property, are based on
this method.

419

Further Reading

• Further reading on pipelining, folding and unfolding techniques for feed-forward

and feedback systems:

1. Khan, Shoab Ahmed. Digital design of signal processing systems: a practical

approach. John Wiley & Sons, 2011, Chapter 7.

2. Meyer-Baese, Uwe, and U. Meyer-Baese. Digital signal processing with field

programmable gate arrays. Vol. 2. Berlin: Springer, 2004, Chapter 4.

3. Hauck, Scott, and Andre DeHon. Reconfigurable computing: the theory and

practice of FPGA-based computation. Vol. 1. Elsevier, 2010, Chapter 18

420

METASTABILITY & MULTIPLE

CLOCK DOMAINS

Introduction

422

• Up to now, we have considered flip-flops and other logic devices as fully

deterministic elements.

• However, in reality, no two flip-flops are “exactly” the same. The (minor) deviations

between the electronic aspects and fabrication indeterminacies of these elements

result in stochastic behaviors.

• Although current FPGA vendors guarantee extremely robust behaviors and

extremely low probabilities of device failures, the consideration of the stochastic

aspects are inevitable in certain cases, including multiple clock domain

applications, which may result in metastability.

• In this section, we study some of the stochastic aspects of digital elements, such

as flip-flops and robust design methods that reduce the probability of metastability

and failure of digital systems.

Reference: M. Arora. The art of hardware architecture: Design methods and

techniques for digital circuits. Springer Science & Business Media, 2011.

Review of Logic Circuits Timing Parameters

423

• Clock period (tC): clock edge-to-edge time;

inverse of clock frequency (fC)

• Clock Skew (tskew): indeterminacy of the clock

edge arrival time

• Setup Time (tsetup): data should be stable before

clock edge

• Hold Time (thold): data should be stable after clock

edge

• Propagation Delay (tCQ): clock edge to stable

output

• Combinational delay (tlogic): combinational logic

circuit settling time

• Setup Slack (tslack): minimum data required time

minus data arrival time:

• Positive: timing met

• Negative: timing violated

• We want: tC ≥ tCQ + tlogic + tlogic + tskew
Note: HIGH-to-LOW and LOW-to-HIGH

times are not necessarily the same

Review of Logic Circuits Timing Parameters
(continued)

424

• Note: All the listed parameters are stochastic in reality

(vary over time and space)

• In single clock designs, the clock frequency (fC) is

selected such that the slack requirement is met. The

maximum clock reported by synthesis tools is based on

such calculations

• In multiple clock designs, the timing cannot be

guaranteed when crossing between clock domains

• Result: The output logic is not known (HIGH, LOW, or

even a voltage in between). This is known as

metastability

Metastability

425

Metastability can occur when:

1. A flip-flop’s slack timing is

violated (high clock rate)

2. The data input to a flip-flop is

asynchronous to the clock

(leading to setup or hold-time

violations)

3. When using multiple un-

synchronized clock domains.

• During metastability tCQ becomes longer than its nominal value.

• The additional time beyond tCQ, which a metastable circuit

requires to become stable is called the settling time (tMET)

Metastability Examples

426

Ref: Stavinov, Evgeni. 100 power tips for FPGA designers. Evgeni Stavinov, 2011

Statistical Analysis of Metastability

427

How often does metastability occur?

Considering tC as the FF clock period (inverse of fC), tD as the

asynchronous data period (inverse of fD), and w as the

metastability window length:

• Considering the data transition probability to be uniform over the

entire clock period and independent of the clock, the probability

of data transition during a metastable window is w/tC=w·fC

• Therefore, the rate of metastability is w·fC·fD (times per seconds)

Statistical Analysis of Metastability (continued)

428

How long does it take to recover from metastability?

• It can be shown that the electronic properties of flip-flops

eventually take it back a stable state (0 or 1)

• Assuming that a flip-flop becomes metastable at t=0, the

probability of remaining in metastability after tMET seconds has

been shown to be (approximately) exponentially decaying over

time, i.e.:

Pr(staying metastable ≥ tMET)=e
−tMET

𝜏

where 𝜏 is a device and technology dependent parameter.

• Reference: Ginosar, Ran. "Metastability and synchronizers: A tutorial." IEEE Design &

Test of Computers 28.5 (2011): 23-35.

Statistical Analysis of Metastability (continued)

429

Probability of Failure:

• If the output of a flip-flop is sampled tMET seconds after the clock

edge, the probability of failure (malfunction) is

Pr(failure) = Pr(enter metastability AND stay metastable tMET or longer)

• The above two events are statistically independent. Hence:

Pr(failure) = Pr(enter metastability)·Pr(stay metastable tMET or longer)

Mean Time Between Failures (MTBF) for

Metastable Flip-Flops

430

The industrial standard formula for Failure Rate and Mean Time Between Failures

(MTBF) of a single stage metastable flip-flop is:

Failure Rate =
1

MTBF
= fD. Pr(failure) = fD.W. fC × e

−tMET
𝜏

Metastable window probability

(how often we are in a metastable window)

The probability of remaining in

metastability for tMET seconds

where:

• fC: system clock rate (Flip-Flop clock)

• fD: (asynchronous) input data clock rate

• W: metastability window length constant

• τ: metastability time constant

• tMET: time delay for the metastability to resolve itself

Note: W and τ are constants depending on the setup-time and hold-time of the device

(vendor and technology dependent)

MTBF Calculation

431

Example 1: Consider a 28nm ASIC high-performance CMOS with

W=20ps and 𝜏=10ps (typical values for this process technology).

Assuming fC=1GHz and fD=100MHz, we find MTBF=4x1029 years

for a single-stage synchronizer (the universe is estimated to be 1010

years old).

MTBF Calculation (continued)

432

Example 2: Suppose we want to guarantee a 1year MTBF (approximately 3×107s) on an Altera

FLEX 10K CPLD. The MTBF constants of this family of Altera devices can be seen in the table

below. In certain devices of this family tsetup= 1.6ns. For a data frequency fD = 20MHz and clock

frequency fC = 80MHz we have:

tMET =
ln 3 × 107 + ln[80 × 106 20 × 106 1.01 × 10−13]

1.268 × 1010
= 1.76ns

?

tsetup=1.6ns

fD=20MHz

fC=80MHz

Ref: Metastability in Altera Devices (May 1999, Available: ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf)

1/τW

In this example the combination circuit

shown in the figure can have the

following maximum combinational delay

to fulfil the required MTBF:

tlogic ≤ 12.5ns – 1.76ns – 1.6ns = 9.14ns

Note: Due to the logarithmic form

of the equation, increasing tMET to

2.12ns increases the MTBF to 100

years.

MTBF of Multistage Synchronizers

433

For multistage synchronizers:

where tMET1, tMET2, etc. are the time delay for the metastability to resolve itself in

each synchronizer stage.

How many synchronizer stages are required? The parameters W and τ are

commonly provided by IC manufacturers; fC and fD are also known by-design. The

designer can define a desired MTBF, calculate tMET and decide about the number of

required stages to fulfil the required MTBF.

MTBF =
1

W. fC. fD
× e

tMET1
𝜏 × e

tMET2
𝜏 ×⋯

Metastability Guidelines

434

Avoiding metastability (by design):

1. Avoiding real-time data transfer between different clock domains

2. Using a single global clock instead of multiple clock domains

3. Avoiding gated clocks and using standard clock decreasing techniques (using

clock enable)

Solving metastability (by implementation):

1. Clock synchronization using DCMs

2. Using synchronizers (register chains and asynchronous FIFOs) to reduce the

probability of metastability

Note: These methods only resolve metastability; but do not solve other rate

mismatch issues, when transferring data between different clock domains. For

example, sampling a data that changes with fD=80MHz, at a clock rate of

fC=100MHz, results in regular repeated samples and sampling it at fC=60MHz

results in regular data loss (even without metastability).

Metastability Guidelines (continued)

435

Example: Using FIFOs while crossing different clock domains

FIFO

Ref: Stavinov, Evgeni. 100 power tips for FPGA designers. Evgeni Stavinov, 2011

FIFO Size Selection

436

How to select the FIFO size? The overall producer data rate should

not exceed the consumer rate of processing the data.

Note: A FIFO can not overcome rate differences (no matter how deep

it is, it’ll eventually overflow if the producer’s data rate is consistently

higher than consumer’s). A FIFO can only overcome temporary

producer-consumer rate differences by buffering the excess data.

Ref: Stavinov, Evgeni. 100 power tips for FPGA designers. Evgeni Stavinov, 2011

Applications: Metastability due to Top-

Module Asynchronous Inputs

437

The standard procedure for working with top-module (asynchronous) inputs is to
pass them through one or more layers of flop-flops before any internal usage.

Standard method Standard method

(reduced risk of metastability)

Note: The probability of metastability decreases by increasing the number of FF layers

Question: How to handle asynchronous input buses (group of asynchronous inputs)?

Answer: By placing user defined constraints over the bus routing length.

FPGA FPGA

Not recommended

unpredictable

routing delays

asynchronous

input

FPGA

synchronization

register chain

Applications: Metastability in Two-Way

Control/Acknowledge Systems

438

• Reference: Ginosar, Ran. "Metastability and synchronizers: A tutorial." IEEE

Design & Test of Computers 28.5 (2011): 23-35.

Flip-Flop MTBF in Xilinx FPGA

439

Example: Xilinx Virtex II, metastability datasheet

Table legend:

Ref: https://china.xilinx.com/support/documentation/application_notes/xapp094.pdf

Note: Xilinx doesn’t seem to list the FF MTBF of its newer devices; but it reports them in Vivado® during

implementation.

Xilinx’s Metastability Test Circuit

440

Ref: Xilinx Metastability Considerations (XAPP077.pdf January 1997, Available:

http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf)

Xilinx’s Metastability Test Results

441

Ref: Xilinx Metastability Considerations (XAPP077.pdf January 1997, Available:

http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf)

Altera’s Metastability Test Circuit

442

Ref: ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf

Altera’s Metastability Test Results

443

Ref: Metastability in Altera Devices (May 1999, Available: ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf)

Further Readings on Metastability

444

• Kilts, Steve. Advanced FPGA design: architecture, implementation,

and optimization. John Wiley & Sons, 2007.

• Arora, Mohit. The art of hardware architecture: Design methods and

techniques for digital circuits. Springer Science & Business Media,

2011.

• Ginosar, Ran. "Metastability and synchronizers: A tutorial." IEEE

Design & Test of Computers 28.5 (2011): 23-35.

• http://www.ti.com/jp/lit/an/scza004a/scza004a.pdf

• http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf

• https://www.altera.com/en_US/pdfs/literature/wp/wp-01082-quartus-

ii-metastability.pdf

http://www.ti.com/jp/lit/an/scza004a/scza004a.pdf
http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01082-quartus-ii-metastability.pdf

MEMORY-MAP DESIGN IN

FPGA-BASED SYSTEMS

Introduction**

446

• Complex FPGA-based systems can contain multiple units
(modules), each having multiple operation modes that are
selected by appropriate control pins (or control bus) and give
output messages in different occasions (handshakes, error
codes, overflow flags, etc.)

• Each element of a design should have a unique address in the
system’s memory map, which can be accessed via proper
commands

• In mixed CPU-FPGA systems, the internal memory map of the
FPGA is commonly accessible by the software units

• The design of a memory map is discussed in this section by
examples

**This section is presented from industrial project source codes

Example: Xilinx ML605 Virtex-6 Evaluation

Board

447

ML605

FMC110

Example: Xilinx ML605 Virtex-6 Evaluation

Board (continued)

448

Memory Map

449

Memory map conceptual illustration

Accessing the Memory Map

450

• The internal memory map (MMap) of the FPGA and

the protocol for accessing the MM is designed and

implemented by the FPGA designer

• The MMap can be accessed through any of the I/O

ports of the FPGA board. For example:

• Ethernet

• PCI-e

• JTAG

• USB

• Etc.

Accessing the Memory Map (continued)

451

• Example: Suppose that we use the Ethernet as the access port

of the ML605 FPGA board. The FPGA board can send and

receive Ethernet packets, which can have an arbitrary format

after decoding:

FPGA PCEthernet

flags address data

Decoded Ethernet packets (arbitrary format defined by the designer):

p0pN-1

Memory Map Implementation Techniques

452

• Centralized: All modules have a set of input ports for
commands and output ports for handshaking and messages. All
input commands (to the FPGA) or output messages (from the
FPGA) are handles by a single module (a command or
message dispatcher), which has access to the command ports
of all modules. The only command/message interface of the
FPGA to the output world is this module.

• Distributed: There are no centralized command/message
dispatchers. A common command bus is shared between all
modules. Each module has a unique address (or address offset
with respect to the top-module, for nested modules) in the
memory map of the system. The commands/messages are
handled locally by each module.

Centralized Memory Map Design

453

Module 1 Module 2 Module 3

Command

Dispatcher

PC/Microcontroller/FPGA

data path

FPGA

Master system

controller

commands/messages/

variable parameters

Ethernet, PCI-e, JTAG, USB,

USART,…

Distributed Memory Map Design

454

PC/Microcontroller/FPGA

data path

FPGA

Master system

controller

Common Bus

(commands/messages/

variable parameters)

Ethernet, PCI-e, JTAG, USB,

USART,…

Module 1 Module 2 Module 3

Bus Handler

local command

dispatchers

Nested Memory Maps

455

data path

Common Bus

(commands/messages/

variable parameters)

Module 1

Module 2

Bus Handler
local command

dispatchers

Submodule 1 Submodule 2
local

command

bus

Centralized vs Distributed Memory Maps

Advantages Drawbacks

Centralized • Less prone to design errors and bus

write conflicts (centralized command

dispatching)

• Simpler for constructing the memory

map (explicit memory map addresses)

• No local command dispatchers

 Recommended for small and medium

size designs

• All command/message

ports appear as

input/output ports of

modules (more

complication in the top-

module)

Distributed • Simplified top-module

• No centralized command dispatchers

required

• Simpler for extension (similar module

instances can be added to the design in

a “plug-and-play” like manner)

 Recommended for complicated designs

with possible future extensions

• More prone to design

errors and bus handling

by individual modules

• More complicated memory

map encoding/decoding

• Each module requires a

command dispatcher

456

DATA COMMUNICATION

METHODS & PROTOCOLS

Introduction

458

• As with other aspects of FPGA designs, data transfer

inside FPGA and between FPGA systems can be fully

customized.

• In this section we review the most common techniques

used for data transfer in FPGA designs

• The two classes of data transfer methods that we study

are:

• Stream Transfer

• Packet Transfer

Continuous Stream Data Transfer

459

• Stream Transfer: used for continuous and synchronous data
transfer between modules

• Usage: ADC, DAC, continuous data streams

• Advantage: no handshaking overheads; can use the maximum
possible throughput between two endpoints

• Disadvantage: requires synchronization; even minor
asynchrony between the sender and receiver clocks results in
metastability, data replication or data loss

• Note: depending on the processing algorithm, continuous data
streams can be up-sampled or down-sampled throughout
processing

Packet (Block) Data Transfer

460

• Packet (Block) Transfer: used for discrete data transfer
between modules

• Usage: data/message communication between
asynchronous modules

• Advantage: enables data transfer between different clock
domains; robust to minor sender/receiver clock frequency
mismatch (depending on the block size)

• Disadvantage: requires handshaking, packing overhead
(start/stop/CRC words), reduced bandwidth and
packing/unpacking hardware overheads

Block Processing of Streamed Data

461

• A common requirement in many data processing systems is the
block-wise processing of continuous data streams. Examples
include: DFT filtering, Reed-Solomon encoding, H.264
encoding, etc.

• The standard technique for implementing such algorithms is to
use a dual-buffer at the interface between the continuous data
stream and the block processor.

• As a rule if the block-wise algorithm processes a block of data
faster than the data stream is accumulated in the input buffer
(and read from the output buffer), no data loss occurs in the
input (or output) and the block processing is masked from the
outer world.

Block Processing of Streamed Data
(continued)

462

Dual-buffer implementation: When input is streamed in InBuff1, the block processor

is working on previous data written in InBuff2. When the block processor is

downloading its results in OutBuff2, the previous results are streamed from OutBuff1

to the output, etc.

Block Data

Processor

In
p
u
t

B
u
ff
e
r

1
In

p
u
t

B
u
ff
e
r

2

O
u
tp

u
t

B
u
ff
e
r

1
O

u
tp

u
t

B
u
ff
e
r

2s
w

it
c
h

s
w

it
c
h

s
w

it
c
h

s
w

it
c
h

Continuous

input data

stream @fs

Continuous

output data

stream @fs

in write

mode

in read

mode

in write

mode

in read

mode

Size: N samples Size: N samples

processing time < N/fs

The ARM Advanced Microcontroller Bus

Architecture (AMBA)

463

• Although on-chip data communications are rather arbitrary

(especially in FPGA-based systems), standard protocols

have been developed, which are currently adopted and

supported by many processor, FPGA and ASIC vendors.

• The Arm AMBA is an open standard for the connection,

management and communication of functional blocks in a

system-on-a-chip (SoC), including FPGA-based systems.

• The AMBA AXI4 and AXI-Lite protocols are currently used

in many Xilinx tools and IP cores

• AMBA AXI uses READY/VALID handshaking mechanisms

AMBA AXI4 and AXI-Lite Interfaces

464

• AXI4 and AXI-Lite interfaces consist
of five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

References and further reading on AXI
interface protocols:

• AXI Reference Guide,
https://www.xilinx.com/support/docu
mentation/ip_documentation/ug761_
axi_reference_guide.pdf

• AMBA® AXI™ and ACE™ Protocol
Specification,
https://www.arm.com/products/syste
m-ip/amba-specifications

• AXI4-StreamingtoStellarIP Interface,
http://www.4dsp.com/pdf/AN001_KC
705_FMC104_AXI_FFTcore_tutorial.
pdf

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.arm.com/products/system-ip/amba-specifications
http://www.4dsp.com/pdf/AN001_KC705_FMC104_AXI_FFTcore_tutorial.pdf

SCALABLE DESIGNS AND

AUTOMATIC HDL CODE

GENERATION

Scalable Design and Automatic HDL Code

Generation

466

• Verilog and VHDL have limited features for scalable and
parametric designs (such as genvar, generate, etc.)

• In this section, we will learn how to write scripts in other
languages (C, Java, Python, Matlab, etc.) to generate
synthesizable HDL codes

• These methods can be used to generate user defined HDL
libraries, Netlists and EDIF files.

• The basic idea is to open a .v or .vhd file in another
language and start writing in it with Verilog or VHDL
supported syntax, while using the flexibilities and features
of the higher level language.

Scalable Design and Automatic HDL Code

Generation (continued)

467

Example 1: Matlab script for generating Running DFT Verilog code

Scalable Design and Automatic HDL Code

Generation (continued)

468

Example 1 (continued): Output Verilog file

Scalable Design and Automatic HDL Code

Generation (continued)

469

Example 1 (continued): Output Verilog file continued

Scalable Design and Automatic HDL Code

Generation (continued)

470

Example 2: Generating Multilayer Perceptron Artificial Neural

Networks RTL codes in C# (By Pejman Torabi, Shiraz University)

Scalable Design and Automatic HDL Code

Generation (continued)

471

Example 2 (continued): Generated modules

module TOP (In1, In2, In3, In4, In5, In6, In7, In8,

Out1, Out2, Out3, Out4, Out5, Out6, Out7, Out8,

clk, en, res);

module Layer1 (i1 ,i2, i3, i4, i5, i6, i7, i8,

w001001,w001002,w001003,w001004,w001005,w001006,w001007,w001008, B001, …

Out1, Out2, Out3, Out4, Out5, Out6, Out7, Out8,

clk,en,res);

module Layer (i1, i2, i3, i4, i5, i6, i7, i8,

w001001, w001002, w001003, w001004, w001005, w001006, w001007,w001008, B001,…

Out1, Out2, Out3, Out4, Out5, Out6, Out7, Out8,

clk, en, res);

module ActFunc (In_AF1, In_AF2, In_AF3, In_AF4, In_AF5, In_AF6, In_AF7, In_AF8,

Out_AF1, Out_AF2, Out_AF3, Out_AF4, Out_AF5, Out_AF6, Out_AF7, Out_AF8,

clk, en, res);

module Function_Interpolation (inputVal, outputVal, clk);

module mult (a, b, z, clk);

module Layer_End (i1,i2,i3,i4,i5,i6,i7,i8,

w001001, w001002, w001003, w001004, w001005, w001006, w001007, w001008, B001,
…

Out1, Out2, Out3, Out4, Out5, Out6, Out7, Out8,

clk, en, res);

module ActFunc_End (In_AF1, In_AF2, In_AF3, In_AF4, In_AF5, In_AF6, In_AF7, In_AF8,

Out_AF1, Out_AF2, Out_AF3, Out_AF4, Out_AF5, Out_AF6, Out_AF7, Out_AF8,

clk,en,res);

Scalable Design and Automatic HDL Code

Generation (continued)

472

Example 2 (continued): RTL schematic of the generated codes

Scalable Design and Automatic HDL Code

Generation (continued)

473

Example 3: Xilinx HEX file generation in Matlab

Scalable Design and Automatic HDL Code

Generation (continued)

474

Example 3 (continued): Output HEX file

…

Scalable Design and Automatic HDL Code

Generation (continued)

475

Example 4: Xilinx coefficient file generation in C

Scalable Design and Automatic HDL Code

Generation (continued)

476

Example 4 (continued): Output COE file

Scalable Design and Automatic HDL Code

Generation (continued)

477

Example 5: Automatic listing generation for LaTeX reports. Project reports (specifically

in LaTeX) can be automatically updated with the latest version of the source codes

Scalable Design and Automatic HDL Code

Generation (continued)

478

Example 5: Output LaTeX listing

Further Examples

479

• CORDIC core generators

• LFSR generators

• Fast Fourier Transform (FFT) architecture generator

FPGA DESIGN

DOCUMENTATION

Hardware Documentation**

481

• Design documentation is a necessary and essential part
of any engineering project

• Both specific and general documentation tools and
techniques can be used for hardware documentation

• Some of these techniques and tools are reviewed in this
section by example: Doxygen, LaTeX, etc.

** This section is presented from industrial project reports

ADVANCED TOPICS*
(Optional)

Advanced Topics in FPGA Design

483

In this section some of the advanced topics in FPGA
designs are introduced by presenting a general overview:

• User Constraint File (UCF) format and options

• Fault tolerant designs and redundancy

• Robust FSM implementations

• Power analysis and power efficient designs

• Microprogrammed FSM

• MicroBlaze™ Technology

• Hardware Trojans and backdoors in FPGA designs

• FPGA board PCB considerations

Power Analysis and Management

484

• Power efficient FPGA design is a critical issue in current industrial level
systems.

• Various power management techniques are reviewed in this section.

• Xilinx power analysis tools: PlanAhead Power Estimator, XPower Estimator
(XPE), XPower Analyzer (XPA)

References:

1. Stavinov, E. (2011). 100 power tips for FPGA designers. Evgeni
Stavinov.

2. Xilinx Power Solutions http://xilinx.com/power

3. Seven Steps to an Accurate Power Estimation using XPE, Xilinx White
Paper WP353
http://www.xilinx.com/support/documentation/white_papers/wp353.pdf

4. XPower User Guide, Xilinx User Guide UG440
http://www.xilinx.com/support/documentation/user_guides/ug440.pdf

http://xilinx.com/power
http://www.xilinx.com/support/documentation/white_papers/wp353.pdf
http://www.xilinx.com/support/documentation/user_guides/ug440.pdf

Hardware Signatures, Trojans and Backdoors

485

Discussed issues:

• Inserting designer signatures, firmware versions, and

revision dates in the hardware memory map (similar to

undocumented API in software libraries)

• FPGA backdoors and Trojans

• Delivering trial version firmware with limited features

(utilization counters and finite duration versions)

• Remote FPGA/CPLD reconfiguration (via Ethernet, Radio

links, etc.)

Robust and Fault-Tolerant FPGA Designs

486

Discussed issues:

• Adding hardware redundancy

• Voting between identical logic circuits

• Redundant logic circuits with improved fault tolerance (not

to always use minimal representations of logic circuits)

• Extending ideas similar to gain and phase margins in

digital circuits (for logical control systems)

THE END

