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Preface

This text is the support for the course of Modeling of Solids, of the Master of Mechanics of
the University Paris-Saclay - Curriculum MMM: Mathematical Methods for Mechanics,
held at Versailles.

The course is the continuation of the course Continuum Mechanics - Solids, and as such
it is an introduction, for graduate students, to some typical topics of the theory of solid
bodies.

The different arguments are dealt with in a simple, succinct way, the objective being to
give to students the fundamentals of each argument. Only static problems are considered,
being the dynamic of structures dealt with in other courses.

Versailles, December 7, 2015
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Chapter 1

Some elements of differential
geometry

1.1 Curves of points, vectors and tensors

Be R = {o; e1, e2, e2} a reference frame of the euclidean space E1 and let us consider a
point p = (p1, p2, p3). If the three coordinates are three continuous functions pi(t) over
the interval [t1, t2] ∈ R, then the mapping p(t) : [t1, t2]→ E is a curve in E .

The independent variable t is the parameter and the equation

p(t) = (p1(t), p2(t), p3(t)) →


p1 = p1(t)
p2 = p2(t)
p3 = p3(t)

(1.1)

is the parametric point equation of the curve: to each value of t ∈ [t1, t2] it corresponds a
point of the curve in E , see Fig. 1.1. The curve is smooth whenever the functions pi(t)
are of class C1.

The vector function r(t) = p(t) − o is the position vector of point p in R; the equation

r(t) = r1(t)e1 + r2(t)e2 + r3(t)e3 →


r1 = r1(t)
r2 = r2(t)
r3 = r3(t)

(1.2)

is the parametric vector equation of the curve: to each value of t ∈ [t1, t2] it corresponds
a vector of V that determines a point of the curve in E through the operation p(t) =
o+ r(t).

1 The Euclidean space E is the ordinary three-dimensional space, whose elements are geometric points
p. A reference frame R = {o; e1, e2, e2} in E is composed by a point o, called the origin of the frame
and by a basis {e1, e2, e2} of the space vector V associated to E , called the space of translations: any
vector v ∈ V is a function that operates on the points p ∈ E : ∀v ∈ V, v(p) = q. Concerning the
basis associated to the reference frame R, we assume it to be orthonormal: ei · ej = δij ∀i, j = 1, 2, 3.
A second-rank tensor is any linear mapping L : V → V. The space of all the tensors forms a manifold,
indicated by Lin(V). Any tensor can be expressed, in R, as a sum of dyads: L = Lijei ⊗ ej . A dyad
a⊗ b is defined as (a⊗ b)v = b · v a ∀v ∈ V.

1
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Figure 1.7 

 L(t)= Lij(t) ei�ej,    i, j= 1, 2, 3, 

est une courbe tensorielle. Souvent, en mécanique, le paramètre t est le temps de déroulement d’un 
certain événement; nous verrons dans les chapitres suivants plusieurs exemples de courbes de 
points, vecteurs et tenseurs dont le paramètre est le temps, et leur signification mécanique. 

Il faut aussi remarquer qu’une courbe peut avoir plusieurs représentations paramétriques : en fait, si 
t est le paramètre choisi pour représenter une courbe, par exemple une courbe de points, l’équation 

 > @)()( tptp W  

décrit la même courbe, étant W lié à t par le changement de paramètre 

 )(tWW  . 

 

1.22 DERIVEE D’UNE COURBE  

Considérons une courbe de points p= p(t); on définit dérivée en t= to de la courbe p(t) par rapport au 
paramètre t la limite 
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la dérivée d’une courbe de points, étant définie comme différence de points, est un vecteur, voir la 
figure 1.8. 

D’une façon analogue on peut définir la dérivée d’une courbe vectorielle, 
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et tensorielle 
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Encore, étant définies comme différences respectivement de vecteurs et de tenseurs, la dérivée d’un 
vecteur est un vecteur, voir encore la figure 1.8, et celle d’un tenseur un tenseur. Souvent, on 
indique les dérivées comme  

 LLrr c c c 
dt
d

dt
dp

dt
dp   ,  ,   

et si le paramètre t est le temps, comme 

 p(t) 

o 

e1 

e2 

e3 

r(t) 

t1 t2 t R 

 p(t)=(p1(t), p2(t), p3(t)) 

Figure 1.1: Mapping of a curve of points.

The expression p = p(t) is a curve of points while r = r(t) is a curve of vectors. In the
same way, we can introduce a curve of tensors: if the components Lij(t) are continuous
functions of a parameter t, the mapping L(t) : [t1, t2]→ Lin(V) defined as

L(t) = Lij(t)ei ⊗ ej, i, j = 1, 2, 3, (1.3)

is a curve of tensors.

To be noticed that the choice of the parameter is not unique: the equation p = p[τ(t)]
still represents the same curve p = p(t), through the change of parameter τ = τ(t).

1.2 Differentiation of a curve

We define derivative of a curve of points p = p(t) in t = t0 the limit

dp(t)

dt
= lim

ε→0

p(t0 + ε)− p(t0)

ε
; (1.4)

being defined as a difference of points
dp(t)

dt
is a vector, see fig. 1.2
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Figure 1.8 

Si on applique les opérations de limite aux composantes, on reconnaît immédiatement que  

 j )(  , )(  , )( eeLere �c c c iijiiii tL
dt
dtr

dt
dtp

dt
dp , 

c’est-à-dire que la dérivée d’une courbe a comme composantes les dérivées des composantes de la 
courbe donnée. Sur la base de cette considération, c’est facile de comprendre les formules 
suivantes, qui généralisent aux courbes les règles de dérivation d’une fonction d’une variable réelle:  
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Un cas particulier, et important dans les applications, est celui d’un vecteur variable mais constant 
en module ; dans ce cas la dérivée est toujours orthogonale au vecteur donné. En fait, soit v= v(t), 
avec R� v)(tv . Cherchons la dérivée de la norme au carré, qui est sans doute nulle parce que la 
norme est constante par hypothèse : 

 02)()( 2  �c c���c c� c vvvvvvvvv , 

donc les deux vecteurs sont orthogonaux ; on constate immédiatement que le contraire est vrai 
aussi. 

Pour terminer, on peut introduire la dérivée seconde d’une courbe tout simplement en considérant 
que celle-ci n’est que la dérivée première de la courbe “ dérivée première ” de la courbe donnée, et 
ainsi de suite pour les dérivées d’ordre supérieur. 

 

1.23 INTEGRATION D’UNE COURBE, ABSCISSE CURVILIGNE 

L’intégrale d’une courbe de vecteurs est définie comme le vecteur qui a par composantes les 

 p(to) 

o 

e1 

e2 

e3 

r(to) 
 p(to+H) 

r(to+H) 

r’(to) 

Figure 1.2: Derivative of a curve.

In a similar way we define the derivative of a curve of vectors,

dr(t)

dt
= lim

ε→0

r(t0 + ε)− r(t0)

ε
; (1.5)
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and of a curve of tensors

dL(t)

dt
= lim

ε→0

L(t0 + ε)− L(t0)

ε
; (1.6)

being defined as differences of vectors or of tensors, the derivative of a curve of vectors is
a vector and that of a curve of tensors is a tensor.

We indicate also
dp

dt
as p′ and, if t is the time, as ṗ; the same will be do also for the

derivatives of vector and tensor curves.

The following rules for the differentiation of products or sums of curves can be easily
shown using the above definitions:

(u + v)′ = u′ + v′,

(αv)′ = α′v + αv′, α(t) : R→ R,
(u · v)′ = u′ · v + u · v′,
(u× v)′ = u′ × v + u× v′,

[v(α(t))]′ = v′(α(t)) α′(t), α(t) : R→ R,
(u⊗ v)′ = u′ ⊗ v + u⊗ v′,

(Lu)′ = L′u + Lu′,

(LM)′ = L′M + LM′,

(L−1)′ = −L−1L′L−1,

(det L)′ = det L L′ · L−>.

(1.7)

An important case is that of a vector v(t) whose norm v(t) is constant ∀t:

(v2)′ = (v · v)′ = v′ · v + v · v′ = 2v′ · v = 0 : (1.8)

the derivative of such a vector is orthogonal to it ∀t. The contrary is also true, as
immediately apparent.

The second derivative of a curve is simply defined as the derivative of the derivative of a
curve. In such a way, derivatives of any order can be defined and calculated.

Finally, using the above rules and assuming that the reference frame R is independent
from t, we get easily that

p′(t) = p′i(t) ei,

v′(t) = v′i(t) ei,

L′(t) = L′ij(t) ei ⊗ ej.

(1.9)

1.3 Integral of a curve of vectors

We define integral of a curve of vectors between a and b ∈ [t1, t2] the curve that is
obtained integrating each component of the curve:∫ b

a

r(t) dt =

∫ b

a

ri(t) dt ei. (1.10)

3



If the curve is regular, we can generalize the second fundamental theorem of the integral
calculus

r(t) = r(a) +

∫ t

a

r′(t∗) dt∗. (1.11)

Because
r(t) = p(t)− o, r′(t) = (p(t)− o)′ = p′(t), (1.12)

we get also

p(t) = p(a) +

∫ t

a

p′(t∗) dt∗. (1.13)

The integral of a vector function is the generalization of the vector sum, see Fig. 1.3.
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intégrales de chaque composante du vecteur donné : 

 ))( ,)( ,)(()()( 321 ³³³³   
b
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Si la courbe r(t) est régulière, on peut généraliser le deuxième théorème fondamental du calcul 
intégral : 

 ³ c� 
t

a
dttat **)()()( rrr . 

Si on considère que  
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l’équation ci-dessus peut être réécrite comme 

 ³ c� 
t

a
dttpaptp **)()()( . 

L’intégrale d’une fonction vectorielle est, d’une certaine façon, la généralisation de la somme 
vectorielle, voir la figure 1.9. 

 

 

 

 

 

 

 

 

Figure 1.9 

Une façon simple d’établir la position d’un point p(t) sur une courbe donnée, est celle de fixer un 
point quelconque po sur la courbe, et de mesurer la longueur de l’arc de courbe compris entre 
po=p(to) et p(t) ; cette longueur est appelée abscisse curviligne s(t), et on peut démontrer que 

 ³³ c c� 
t

t

t

t oo
dttdtotpts **** )())(()( r . 

La longueur totale d’une courbe r= r(t), avec t�[a, b], sera 

 ³ c 
b

a
dtt)(rl . 

De la formule de s(t), on a  

 0)(
2

3
2

2
2

1 !¸
¹
·

¨
©
§�¸

¹
·

¨
©
§�¸

¹
·

¨
©
§ c 

dt
dr

dt
dr

dt
drt

dt
ds r  

et donc s(t) est une fonction croissante avec t ; de la formule précédente on tire la longueur d’un arc 

 p(t) 

 p(a) 

o 

e1 

e2 

e3 

r(a) 
r(t) 

³ c
t

a
dtt **)(r

Figure 1.3: Integral of a vector curve.

A simple way to determine a point p(t) on a curve is to fix a point p0 on the curve and to
measure the length s(t) of the arc of curve between p0 = p(t = 0) and p(t). This length
s(t) is called a curvilinear abscissa and it can be shown that

s(t) =

∫ t

t0

|(p(t∗)− o)′|dt∗ =

∫ t

t0

|r′(t∗)|dt∗, (1.14)

so that the total length ` of a curve is

` =

∫ b

a

|r′(t∗)|dt∗. (1.15)

From eq. (1.14) we get

ds

dt
= |r′(t)| =

√(
dr1

dt

)2

+

(
dr2

dt

)2

+

(
dr3

dt

)2

> 0 (1.16)

so that s(t) is an increasing function of t and the length of an infinitesimal arc is

ds =
√
dr2

1 + dr2
2 + dr2

3 =
√
dx2 + dy2 + dz2. (1.17)
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For a plane curve y = f(x), we can always put t = x, which gives the parametric equation

p(t) = (t, f(t)), (1.18)

or in vector form
r(t) = t e1 + f(t) e2, (1.19)

from which we obtain

ds

dt
= |r′(t)| = |p′(t)| =

√
1 + f ′2(t), (1.20)

that gives the length of a plane curve between t = x0 and t = x as a function of the
abscissa x:

s(x) =

∫ x

x0

√
1 + f ′2(t)dt. (1.21)

1.4 The Frenet-Serret basis

We define the tangent vector τ (t) to a regular curve p = p(t) the vector

τ (t) =
p′(t)

|p′(t)|
. (1.22)

By the definition of derivative, this unit vector is always oriented as the increasing values
of t; the straight line tangent to the curve in p0 = p(t0) has hence equation

q(t̄) = p(t0) + t̄ τ (t0). (1.23)

If the curvilinear abscissa s is chosen as parameter for the curve, through the change of
parameter s = s(t) we get

τ (t) =
p′(t)

|p′(t)|
=

p′[s(t)]

|p′[s(t)]|
=

1

s′(t)

dp(s)

ds

ds(t)

dt
=
dp(s)

ds
→ τ (s) = p′(s). (1.24)

So, if the parameter of the curve is s, the derivative of the curve is τ , i.e. it is automatically
a unit vector. The above equation, in addition, shows that the change of parameter
does not change the direction of the tangent, because just a scalar, the derivative of the
parameter’s change, multiplies the vector. Nevertheless, generally speaking, a change of
parameter can change the orientation of the curve.

Because the norm of τ is constant, its derivative is a vector orthogonal to τ , see eq. (1.8).
That is why we call principal normal vector to a curve the unit vector

ν(t) =
τ ′(t)

|τ ′(t)|
. (1.25)

ν is defined only on the points of the curve where τ ′ 6= o which implies that ν is not
defined on the points of a straight line. This simply means that there is not, among the
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infinite unit normal vectors to a straight line, a normal with special properties, a principal
one, uniquely linked to τ .

Unlike τ , whose orientation changes with the choice of the parameter, ν is an intrinsic
local characteristic of the curve: it is not affected by the choice of the parameter. In
fact, by its same definition, ν does not depend upon the reference frame; then, because
the direction of τ is also independent upon the parameter’s choice, the only factor that
could affect ν is the orientation of the curve, that depends upon the parameter. But a
change of the orientation affects, in (1.25), both τ and the sign of the increment dt, so
that τ ′(t) = dτ/dt does not change, neither ν, which is hence an intrinsic property of the
curve.

The vector

β(t) = τ (t)× ν(t) (1.26)

is called the binormal vector; by construction, it is orthogonal to τ and ν and it is a unit
vector. In addition, it is evident that

τ × ν · β = 1, (1.27)

so the set {τ ,ν,β} forms a positively oriented othonormal basis that can be defined at
any regular point of a curve with τ ′ 6= o. Such a basis is called the Frenet-Serret local
basis, local in the sense that it changes with the position along the curve. The plane
τ − ν is the osculating plane, the plane ν − β the normal plane and the plane β − τ
the rectifying plane, see Fig. 1.4. The osculating plane is particularly important: if we
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Les trois vecteurs introduits ci-dessus sont évidemment orthogonaux deux à deux et de norme 
unitaire ; en outre c’est évident que  
 , 

et donc {τ, ν, β} est une base orthonormée directe, nommée trièdre de Frenet, définie en chaque 
point de la courbe, et qui change avec la position, figure 1.10 ; c’est pour cela que ce trièdre est 
appelé aussi trièdre local. Le plan τ−ν s’appelle plan osculateur, le plan ν−β plan normal et le plan  
β−τ plan rectifiant.  

 
 

 
 

 
 

 
 
 

Figure 1.10 

Le plan osculateur est particulièrement important : si on considère un plan qui passe par trois points 
quelconques, non alignés, de la courbe, ce plan tend vers le plan osculateur lorsque ces trois points 
se rapprochent l’un à l’autre tout en restant sur la courbe. En effet, on peut démontrer que le plan 
osculateur en un point donné de la courbe est le plan qui se rapproche mieux à la courbe au 
voisinage de ce point. Si la courbe est plane, le plan osculateur est le plan qui contient la courbe. 

On peut aussi démontrer que le vecteur normal ν est toujours dirigé du coté du plan rectifiant dans 
lequel se trouve la courbe, voire, pour les courbes planes, ν est toujours dirigé vers la concavité de 
la courbe. 

 
1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+ε, et on mesure l’angle χ(s, ε) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 

 . 
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ν$
β τ ν 

β 

τ 

ν$

β 

rectifying plane 

 normal plane 

 osculating plane 

e1 

 p(s) 

o 
e2 

e3 

r(s) 

 p(s+ε) 

r(s+ε) 
τ(s+ε) 

τ(s) 

τ(s+ε) 

τ(s) v(s+ε) 

χ(s+ε) 

Figure 1.4: The Frenet-Serret basis.

consider a plane passing through three not aligned points of the curve, when these points
become closer and closer, still remaining on the curve, the plane tends to the osculating
plane: the osculating plane at a point of a curve is the plane that better approaches the
curve near the point. A plane curve is entirely contained in the osculating plane, which
is fixed.

The principal normal ν is always oriented towards the part of the space, with respect
to the rectifying plane, where the curve is; in particular, for a plane curve, ν is always
directed towards the concavity of the curve. To show it, it is sufficient to prove that the
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vector p(t + ε) − p(t) forms with ν an angle ψ ≤ π/2, i.e. that (p(t + ε) − p(t)) · ν ≥ 0.
In fact,

p(t+ ε)− p(t) = ε p′(t) +
1

2
ε2p′′(t) + o(ε2) →

(p(t+ ε)− p(t)) · ν =
1

2
ε2p′′(t) · ν + o(ε2),

(1.28)

but
p′′(t) · ν = (τ ′|p′|+ τ |p′|′) · ν = (|τ ′||p′|ν + τ |p′|′) · ν = |τ ′||p′|, (1.29)

so that, to within infinitesimal quantities of order o(ε2), we obtain

(p(t+ ε)− p(t)) · ν =
1

2
ε2|τ ′||p′| ≥ 0. (1.30)

1.5 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a
straight line, in the neighborhood of a point. To do that, we calculate the angle formed
by the tangents at two close points, determined by the curvilinear abscissae s and s+ ε,
and we measure the angle χ(s, ε) that they form, see Fig. 1.5.
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1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+H, et on mesure l’angle F(s, H) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 
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Figure 1.11 

La courbure est donc un scalaire positif qui mesure la rapidité de variation de direction de la courbe 
par unité de parcours sur la courbe même ; c’est évident que pour une ligne droite la courbure est 
toujours nulle.  

Démontrons que la courbure est liée à la dérivée seconde de la courbe :  
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qui est une autre formule de calcul de la courbure. On obtient une formule encore meilleure si l’on 
considère que 
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par conséquent 

e1 

 p(s) 

o 
e2 

e3 

r(s) 

 p(s+H) 

r(s+H) 
Ĳ(s+H) Ĳ(s) 

Ĳ(s+H) 

Ĳ(s) v(s+H) 

F(s+H) 

Figure 1.5: Curvature of a curve.

We then define curvature of the curve in p = p(s) the limit

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ . (1.31)

The curvature is hence a non-negative scalar that measures the rapidity of variation of
the direction of the curve per unit length of the curve (that is why c(s) is defined as a
function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic
property of the curve, i.e. independent from the parameter’s choice. For a straight line,
the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣sinχ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣2ε sin
χ(s, ε)

2

∣∣∣∣ =

lim
ε→0

∣∣∣∣v(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣τ (s+ ε)− τ (s)

ε

∣∣∣∣ = |τ ′(s)| = |p′′(s)|.
(1.32)
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Another formula for the calculation of c(s) can be obtained if we consider that

dτ [s(t)]

dt
=
dτ

ds

ds

dt
=
dτ

ds
|p′(t)| → dτ

ds
=

1

|p′(t)|
dτ

dt
, (1.33)

so that

c(s) = |τ ′(s)| = 1

|p′(t)|

∣∣∣∣dτdt
∣∣∣∣ =
|τ ′(t)|
|p′(t)|

. (1.34)

A better formula can be obtained as follows:

dτ

ds
=

1

|p′(t)|
dτ

dt
=

1

|p′(t)|
d

dt

p′(t)

|p′(t)|
=

1

|p′|

p′′|p′| − p′p
′′ · p′

|p′|
|p′|2

=

p′′ − τ p′′ · τ
|p′|2

= (I− τ ⊗ τ )
p′′

|p′|2
.

(1.35)

By consequence,

c(s) =

∣∣∣∣dτ (s)

ds

∣∣∣∣ =
1

|p′|2
|(I− τ ⊗ τ )p′′|. (1.36)

Now, we use the following general formula expressing a skew tensor W:

WW = −1

2
|W|2(I−w ⊗w); (1.37)

if we use this formula for τ , so that W is the axial tensor of τ , we get

I− τ ⊗ τ = −2
WW

|W|2
= −WW, (1.38)

because if τ = (τ1, τ2, τ3), then

|W|2 =W ·W =

 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 ·
 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 =

2(τ 2
1 + τ 2

2 + τ 2
3 ) = 2.

(1.39)

So, recalling that for any skew tensor W,

W u = w × u ∀u ∈ V , (1.40)

with w the axial vector of W, we get

|(I− τ ⊗ τ )p′′| =| −WWp′′| = | −W(τ × p′′)| = | − τ × (τ × p′′)| =

|τ × (τ × p′′)| = |τ × p′′| = |p
′ × p′′|
|p′|

,
(1.41)

so that finally

c =
|p′ × p′′|
|p′|3

. (1.42)
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Applying this last formula to a plane curve p(t) = (x(t), y(t)), we get

c =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

(1.43)

and if the curve is given in the form y = y(x), so that the parameter t = x, then we
obtain

c =
|y′′|

(1 + y′2)
3
2

. (1.44)

This last formula shows that if |y′| � 1, like in the infinitesimal theory of strain, then

c ' |y′′|. (1.45)

1.6 The Frenet-Serret formulae

From eqs. (1.25) for t = s and (1.34) we get

dτ

ds
= c ν (1.46)

which is the first Frenet-Serret Formula, giving the variation of τ per unit length of the
curve. Such a variation is a vector whose norm is the curvature and that has as direction
that of ν.

Let us now consider the variation of β per unit length of the curve; because β is a unit
vector, we have

dβ

ds
· β = 0, (1.47)

and

β · τ = 0 ⇒ d(β · τ )

ds
=
dβ

ds
· τ + β · dτ

ds
= 0. (1.48)

Through eq. (1.46) and because β · ν = 0 we get

dβ

ds
· τ = −c β · ν = 0, (1.49)

so that
dβ

ds
is necessarily parallel to ν. We then put

dβ

ds
= ϑν, (1.50)

which is the second Frenet-Serret formula. The scalar ϑ(s) is called the torsion of the
curve in p = p(s). So, we see that the variation of β per unit length is a vector parallel
to ν and proportional to the torsion of the curve.

We can now find the variation of ν per unit length of the curve:

dν

ds
=
d(β × τ )

ds
=
dβ

ds
× τ + β × dτ

ds
= ϑ ν × τ + c β × ν, (1.51)
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so finally
dν

ds
= −c τ − ϑ β, (1.52)

which is the third Frenet-Serret formula: the variation of ν per unit length of the curve
is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847
and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

τ ′

ν ′

β′

 =

 0 c 0
−c 0 −ϑ
0 ϑ 0


τ
ν
β

 . (1.53)

1.7 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula
of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is
planar, it belongs to the osculating plane and β, which is perpendicular to the osculating
pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second
formula ϑ = 0.

Conversely, if ϑ = 0 everywhere, β is a constant vector and hence the osculating plane
does not change and the curve is planar. So we have that a curve is planar if and only if
the torsion is null ∀p(s).

Using the Frenet-Serret formulae in the expression of p′′′(s) we get a formula for the
torsion:

p′(t) = |p′|τ =
dp

ds

ds

dt
= s′τ ⇒ |p′| = s′ →

p′′(t) = s′′τ + s′τ ′ = s′′τ + s′2
dτ

ds
= s′′τ + c s′2ν →

p′′′(t) = s′′′τ + s′′τ ′ + (c s′2)′ν + c s′2ν ′ =

s′′′τ + s′′s′
dτ

ds
+ (c s′2)′ν + c s′3

dν

ds
=

s′′′τ + s′′s′cν + (c s′2)′ν − c s′3(cτ + ϑβ) =

(s′′′ − c2s′3)τ + (s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ,

(1.54)

so that, through eq. (1.42), we get

p′ × p′′ · p′′′ =s′τ × (s′′τ + c s′2ν) · [(s′′′ − c2s′3)τ+

(s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ] =

− c2s′6ϑ = −c2|p′|6ϑ = −|p
′ × p′′|2

|p′|6
|p′|6ϑ,

(1.55)

so that, finally,

ϑ = −p
′ × p′′ · p′′′

|p′ × p′′|2
. (1.56)
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To remark that while the curvature is linked to the second derivative of the curve, the
torsion is a function also of the third derivative.

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still
using the Frenet-Serret formulae,

p(s+ ε)− p(s) =ε p′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(cν)′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(c′ν − c2τ − c ϑβ) + o(ε3) →

(p(s+ ε)− p(s)) · β = −1

6
ε3c ϑ+ o(ε3).

(1.57)

The above dot product determines if the point p(s + ε) is located, with respect to the
osculating plane, on the side of β or on the opposite one, see Fig. 1.6: if following the
curve for increasing values of s, ε > 0, the point passes into the semi-space of β from the
opposite one, because 1/6 c ε3 > 0, it will be ϑ < 0, while in the opposite case it will be
ϑ > 0.
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cos α <0 :               

ce qui prouve que le vecteur dérivé de β par rapport à s doit être parallèle à ν. On pose alors 

 , 

qui est la deuxième formule de Frenet et Serret ; elle donne la variation du vecteur binormal par 
unité de s : cette variation est un vecteur proportionnel au vecteur normal, étant  le facteur de 
proportionnalité. La fonction scalaire est nommée torsion de la courbe.  

La troisième formule de Frenet et Serret concerne la variation de ν par unité de s : 

 , 

et donc 

 , 

qui est la troisième formule de Frenet et Serret : la variation de ν par unité de parcours est un 
vecteur du plan rectifiant. 
 

1.27 PROPRIETES DE LA TORSION 
La torsion est un scalaire qui mesure la déviation d’une courbe de la planéité : si une courbe est 
plane, elle appartient au plan osculateur, et le vecteur β, qui lui est perpendiculaire, est donc 
constant. Par conséquent la dérivée de β est nulle et donc, par la deuxième formule de Frenet et 
Serret, la torsion aussi. Le contraire est évidemment vrai aussi : si la torsion d’une courbe est nulle 
en tout point, alors la courbe est plane. Donc la condition nécessaire et suffisante pour qu’une 
courbe soit plane est que sa torsion soit nulle en tout point. 
La torsion, contrairement à la courbure qui est toujours positive, peut être négative. En particulier, 
une fois établi un sens de parcours sur la courbe, c’est-à-dire une fois choisie une abscisse 
curviligne, on peut démontrer que si, en suivant ce sens, la courbe sort du plan osculateur du côté de 
β, alors la torsion est négative, elle est positive dans le cas contraire, voire figure 1.12. Ce résultat 
est invariant: on peut démontrer que le signe de la torsion est une caractéristique intrinsèque de la 
courbe, et ne dépend pas du paramétrage choisi. 
 

 
 

 

 
 

 
 

Figure 1.12 
Ainsi que pour la courbure, on a une formule de calcul de la torsion : 

τ$ν 
β 

osculating 
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plane 

 

s 

p(s+ε) 

p(s+ε) 

p(s) 

 
p(s) 

α 
α 

cos α >0 :         

Figure 1.6: Torsion of a curve.

This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of
the positive orientation of the curve; in fact, ν is intrinsic, but changing the orientation
of the curve, τ , and hence β, change of orientation.

1.8 Osculating sphere and circle

The osculating sphere2 to a curve at a point p is a sphere to which the curve tends to
adhere in the neighborhood of p. Mathematically speaking, if qs is the center of the sphere
relative to point p(s), then

|p(s+ ε)− qs|2 = |p(s)− qs|2 + o(ε3). (1.58)

2The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or
circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.
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Using this definition, discarding the terms of order o(ε3) and using the Frenet-Serret
formulae, we get:

|p(s+ ε)− qs|2 =|p(s)− qs + εp′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3)|2 =

|p(s)− qs + ετ +
1

2
ε2c ν +

1

6
ε3(cν)′ + o(ε3)|2 =

|p(s)− qs|2 + 2ε(p(s)− qs) · τ + ε2 + ε2c(p(s)− qs) · ν+

1

3
ε3(p(s)− qs) · (c′ν − c2τ − c ϑβ) + o(ε3),

(1.59)

which gives

(p(s)− qs) · τ = 0,

(p(s)− qs) · ν = −1

c
= −ρ,

(p(s)− qs) · β = − c′

c2ϑ
=
ρ′

ϑ
,

(1.60)

and finally

qs = p+ ρ ν − ρ′

ϑ
β, (1.61)

so the center of the sphere belongs to the normal plane; the sphere is not defined for a
plane curve. ρ is the radius of curvature of the curve, defined as

ρ =
1

c
. (1.62)

The radius of the osculating sphere is

ρs = |p− qs| =

√
ρ2 +

(
ρ′

ϑ

)2

. (1.63)

The intersection between the osculating sphere and the osculating plane at a same point
p is the osculating circle. This circle has the property to share the same tangent in p with
the curve and its radius is the radius of curvature, ρ. From eq. (1.61) we get the position
of the osculating circle center q:

q = p+ ρ ν. (1.64)

The osculating circle is a diametral circle of the osculating sphere only when q = qs, so if
and only if

ρ′

ϑ
= − c′

c2ϑ
= 0, (1.65)

i.e. when the curvature is constant.

1.9 Exercices

1. The curve whose polar equation is

r = a θ, a ∈ R,
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is an Archimede’s spiral. Find its curvature, its length for θ ∈ [0, 2π) and prove
that any straight line passing by the origin is divided by the spiral in segments of
constant length 2π a (that is why it is used to record disks).

2. The curve whose polar equation is

r = a ebθ, a, b ∈ R,

is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve,
find its curvature and the length of the segment in which a straight line by the
origin is divided by two consecutive intersections with the spiral. Then prove that
the curve is plane and its equiangular property: (p(θ)− o) · τ (θ) = const.

3. The curve whose parametric equation is

p(θ) = a(cos θ + θ sin θ)e1 + a(sin θ − θ cos θ)e2

with the parameter θ the angle formed by p(θ)− o with the x1−axis is the involute
of the circle. Find its curvature and length for θ ∈ [0, 2π) and prove that the
geometrical set of the points p(θ) + ρ(θ)ν(θ) is exactly the circle of center o and
radius a (that is why the involute of the circle is used to profile engrenages).

4. The curve whose parametric equation is

p(θ) = a cosωθe1 + a sinωθe2 + bωθe3

is a helix that winds on a circular cylinder of radius a. Show that the angle formed
by the helix and any generatrix of the cylinder is constant (a property that defines
a helix in the general case). Then, find its length for θ ∈ [0, 2π), curvature, torsion
and pitch (the distance, on a same generatrix, between two successive intersections
with the helix). Prove then the Bertrand’s theorem: a curve is a cylindrical helix
if and only if the ratio c/ϑ = const. Finally, prove that for the above circular helix
there are two constants A and B such that

p′ × p′′ = Au(θ) +Be3,

with
u = sinωθe1 − cosωθe2;

find then A and B.

5. For the curve whose cylindrical equation is{
r = 1,

z = sin θ

find the highest curvature and determine whether or not it is planar.
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Chapter 2

Cables

2.1 Introduction

We define as a cable a special type of continuum body: a curve endowed with a linear
mass density. This definition is not sufficient to characterize mechanically a cable (also
a curved rod geometrically is a curve): the fundamental relation mechanically defining a
cable must be given in terms of internal actions, which is done in the next section.

A cable is called inextensible if the distance

∆s = sB − sA (2.1)

measured along the cable between two arbitrary points pA and pB of the curve, determined
on it by two curvilinear abscissae sB > sA, is constant at any time t. If this does not
happen, the cable is extensible.

2.2 Mechanical definition of a cable

We use the Euler Sections Principle, valid for any continuum body, to define mechanically
a cable. This principle states simply that a body is in equilibrium if and only if any of its
parts is in equilibrium.

For the whole body, this necessitates the equilibrium of all the external forces applied to
the body, actions and reactions. But if one isolates, ideally, a part of the body, then only
a part of the whole external forces will be directly applied to the isolated portion of the
body, so, generally speaking, the equilibrium of the isolated part will be restored only by
admitting the existence of some actions, called the internal actions, that are transmitted
to the isolated part by the remaining parts of the body, throughout the contact zones.
Physically speaking, these internal actions are the resultant and resultant moment of the
contact forces, i.e. of the stresses that the different parts of the body exchange at any
point of it. The Euler’s section in the case of a curve reduces of course to a point, called
the separation point.
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This concept is shared by all the continuum bodies, that differ for the definition of the
type of internal actions that they can develop at any point of the continuum.

We give then the following mechanical definition:

a cable is a curvilinear unidimensional continuum body whose internal actions
that two ideally separated parts of it exchange through the separation point are
statically equivalent to a single tension force applied exactly in correspondence
of the separation point.

Such a tensile force is currently named tension in the cable and will be indicated in the
following by θ(s), and its norm, the intensity of the force, by θ(s).

This is the physical property that mechanically defines a cable in our model; it is true
for extensible or inextensible cables. Let us see now what are the consequences of this
definition.

To this purpose, we write the statics balance equations for the part (1) of a cable of
length `, from p0 = p(s = 0), the beginning of the cable, to the point p(s), see Fig. 2.1.
For the while, we assume that only distributed loads, whose linear intensity is f(s), act
upon the cable. θ(s) is the tension that the part (2) of the cable, that between p(s) and
p1 = p(s = `) apply to the part (1):

!
θ0!

θ1!

θ(s)!
p(s) 

p0 

p1 

f(s) 

s 

pA pB 

(1) 
(2) 

x 
y 

z 

o 

Figure 2.1: General scheme of a cable

• balance of the forces:

θ0 +

∫ s

0

f(s∗) ds∗ + θ(s) = o, (2.2)

• balance of the moments, with respect to a point o:

(p0 − o)× θ0 +

∫ s

0

(p(s∗)− o)× f(s∗) ds∗ + (p(s)− o)× θ(s) = o. (2.3)

Differentiating these equations, we get the local balance equations for the cable:

f(s) +
dθ(s)

ds
= o,

(p(s)− o)× f(s) +
d

ds
[(p(s)− o)× θ(s)] = o.

(2.4)
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After differentiating the second term in eq. (2.4)2 we get

(p(s)− o)× f(s) + τ (s)× θ(s) + (p(s)− o)× dθ(s)

ds
= o →

(p(s)− o)×
(

f(s) +
dθ(s)

ds

)
+ τ (s)× θ(s) = o,

(2.5)

which gives, through the (2.4)1,

τ (s)× θ(s) = o ∀s, (2.6)

so that
θ(s) = θ(s) τ (s) ∀s. (2.7)

Then, at the equilibrium the tension is a force which is constantly tangent to the cable.
Because the fundamental assumption is that the tension is a tensile force, it is necessarily

θ(s) ≥ 0 ∀s. (2.8)

Eqs. (2.7) and (2.8) defines mechanically a cable. To remark that a cable cannot transmit
couples; in fact, the moment of θ(s) with respect to p(s) vanishes identically ∀s, as
a consequence of the fact that θ(s) is applied exactly in p(s). Finally, a cable is a
unidimensional continuum body without compression, shear and bending stiffness, but
with only tension stiffness.

In a dual approach, we could assume eqs. (2.7) and (2.8) as the mathematical conditions
defining a cable. Then, the local balance of the moments is always fulfilled because,
through eqs. (2.4)1, (2.7) and (2.8) we get

(p(s)− o)× f(s) +
d

ds
[(p(s)− o)× θ(s)] = o →

− (p(s)− o)× d

ds
[θ(s)τ (s)] + τ (s)× θ(s)τ (s)+

(p(s)− o)× d

ds
[θ(s)τ (s)] = o identically.

(2.9)

Finally, for cables it is the balance of the forces, eq. (2.4)1, that defines equilibrium. The
balance of moments, eq. (2.4)2, can be used either to define the tension θ(s), eq. (2.7),
or, if this last is assumed a priori, it is automatically satisfied ∀s.

Intrinsically, eq. (2.4)1 states that the equilibrium of the cable, no matter if it is extensible
or not, is possible only thanks to the configuration of this last: in fact, applying the above
vector equation to the infinitesimal interval [s, s + ds], equilibrium can be satisfied, if
f(s), θ(s) and θ(s + ds) are not collinear, only thanks to a curvature of the cable: the
statics of cables is a matter of geometry. So, if the cable is free, it will find a configuration
able to ensure the equilibrium under the action of the applied loads, while if it is wrapped
on a surface, the configuration of the cable on the surface will develop contact forces
equilibrated with the tension of the cable at the ends.

The balance equations of the whole cable are:

θ0 +

∫ `

0

f(s) ds+ θ1 = o,

(p0 − o)× θ0 +

∫ `

0

(p(s)− o)× f(s) ds+ (p1 − o)× θ1 = o.

(2.10)
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In the previous equations, it is θ0 = θ(s = 0) and θ1 = θ(s = `). From eq. (2.10), we get
immediately that

θ0 = −θ(s = 0)τ (s = 0), θ1 = θ(s = `)τ (s = `). (2.11)

2.3 The intrinsic balance equations

The local force balance equation can be projected onto the intrinsic frame of Frenet-Serret.
From the first formula of Frenet-Serret (1.46) we get

f(s) +
d

ds
[θ(s) τ (s)] = f(s) +

dθ(s)

ds
τ (s) + c(s) θ(s) ν(s) = o. (2.12)

If we put, in the Frenet-Serret frame, f = (fτ , fν , fβ), we obtain the three scalar intrinsic
balance equations (Jc. Bernoulli, 1698):

dθ

ds
+ fτ = 0,

c θ + fν = 0,

fβ = 0.

(2.13)

To remark that fν < 0. In several problems, however, the equilibrium configuration is
not known and constitutes, together with θ(s), the unknown of the problem.

The intrinsic equations state that the cable finds always a configuration of equilibrium
where, pointwise, the component of the external load on β is null; i.e. the loads belong
to the osculating plane.

The first of (2.13) gives us a general result: whenever fτ = 0, θ(s) =const. The second one
also gives us an interesting result: if fν = 0, then c θ = 0 and there are two possible cases:
the first one is θ 6= 0 ∀s ⇒ c = 0 ∀s: the equilibrium configuration is a straight line.
So, e.g., all the parts of a cable that are unloaded assume as configuration of equilibrium
a straight line. The other possibility is θ = 0 ∀s ⇒ c can take any value, i.e. the
equilibrium configuration is undetermined: in the case of null tension, the cable can take
any possible configuration, all of them are equilibrated; this is the case, e.g., of a cable
simply lying on a horizontal plane, without tension forces applied to its ends.

2.4 Forces depending upon a potential

Be f(s) = ∇U ; then

fτ = f(s) · τ (s) = ∇U · τ (s) = ∇U · dp(s)
ds

=
∂U

∂x

dx

ds
+
∂U

∂y

dy

ds
+
∂U

∂z

dz

ds
=
dU

ds
. (2.14)

So

fτ +
dθ

ds
= 0 → d(θ + U)

ds
= 0 ⇒ θ + U = const. (2.15)
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This means that θ is maximum where U is minimum; that is why in a cable in equilibrium
under the action of its own weight the highest tension is in correspondence of its highest
point.

2.5 Parallel and coplanar forces

Be f(s) = f(s) e, with e a constant unit vector. The balance of forces between s = 0 and
s gives then

θ(s)τ (s) = θ(0)τ (0)−
∫ s

0

f(s∗)ds∗ e. (2.16)

By consequence, θ(s) = θ(s)τ (s) is a linear combination of τ (0) and e ∀s, i.e. the curve
lies in the plane passing through p(0) and containing e.

This result is valid also for the case of coplanar forces, i.e. of forces of the type f(s) =
f1e1 + f2e2, with e1 and e2 two constant unit vectors. In fact:

θ(s)τ (s) = θ(0)τ (0)−
∫ s

0

f1(s∗)ds∗ e1 −
∫ s

0

f2(s∗)ds∗ e2. (2.17)

In addition, this is true also for the case of concentrated forces, see below.

2.6 Concentrated forces

The local and intrinsic balance equations are valid uniquely if f(s) is regular, i.e. if it has
not discontinuities, like in the case of concentrated forces.

We can tackle such a problem in the following way: be fp(s) a distribution of forces in the
interval (s − ε, s + ε); we define the concentrated load associated to fp(s) as the vector

F = lim
ε→0+

∫ s+ε

s−ε
fp(s

∗)ds∗. (2.18)

In such a way, the concentrated force is treated as a particular distributed load over an
interval that tends toward zero. Writing the balance of the forces between s− ε and s+ ε
we get

θ(s+ ε)τ (s+ ε)− θ(s− ε)τ (s− ε) +

∫ s+ε

s−ε
f(s∗)ds∗ +

∫ s+ε

s−ε
fp(s

∗)ds∗ = o, (2.19)

whose limit for ε→ 0 gives
F = θ−τ− − θ+τ+, (2.20)

where θ− = limε→0 θ(s−ε) etc. This law let us see that the presence of a concentrated load
produces, generally speaking, a discontinuity of both θ, the tension, and τ , the direction
of the cable.

The above equation is nothing but the rule of parallelogram of the forces, which implies
that the three forces are coplanar, see Fig. 2.2.
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The discontinuity on θ(s) vanishes if and only if F acts along the bissectrice of the angle
formed by τ− and −τ+.

Equation (2.20) must be written in correspondence of each concentrated load, while in all
the other parts, the local or intrinsic balance equations govern the problem.

!

θ"τ"!−θ+τ+!
F 

Figure 2.2: Concentrated loads.

2.7 Cables on surfaces

Let us consider the case of a cable wrapped on a surface, which gives the reaction of
contact φ; we assume that φ is much greater that all the other distributed forces, like
the weight of the cable, so that all of them are negligible with respect to φ. In such a
situation, the intrinsic balance equations become

dθ

ds
+ φτ = 0,

c θ + φν = 0,

φβ = 0.

(2.21)

In the case of a frictionless contact between the cable and the surface, if this last is regular
and of unit normal N, it is

φ(s)×N(s) = o,

τ (s) ·N(s) = 0,
⇒ φτ = 0 ∀s. (2.22)

Hence, by the (2.21)1, we get
dθ

ds
= 0, (2.23)

i.e. the tension is constant everywhere in the cable, and in particular it is equal to the
tensile loads applied to the ends of the cable. Moreover, because φτ = 0,

φ(s) = φ(s) ν(s) = −φ(s)N(s) ⇐⇒ ν(s)×N(s) = o ∀s. (2.24)

Then, by the Theorem of Bernstein, the cable wraps the surface along one of its geodetic
lines.
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Let us now suppose that there is friction in the contact between the cable and the surface,
and let assume the Coulomb’s non-slipping condition:

σ|φN(s)| ≥ |φτ (s)| ∀s, (2.25)

with σ the friction coefficient. If the cable is wrapped on the surface along a geodetic
line, then ν(s) = N(s), so we get

σ|φν(s)| ≥ |φτ (s)| ∀s, (2.26)

and by the intrinsic equations (2.21) we get

σ c θ ≥
∣∣∣∣dθds
∣∣∣∣ → σ c ≥

∣∣∣∣1θ dθds
∣∣∣∣ =

∣∣∣∣d log θ

ds

∣∣∣∣ . (2.27)

For the whole cable we get hence the overall non slipping condition∫ `

0

σ c(s) ds ≥
∫ `

0

∣∣∣∣d log θ(s)

ds

∣∣∣∣ ds ≥ ∣∣∣∣∫ `

0

d log θ(s)

ds
ds

∣∣∣∣ =

∣∣∣∣log
θ(`)

θ(0)

∣∣∣∣ , (2.28)

with ` the winding length of the cable on the surface. If now we assume θ(`) > θ(0), then
we obtain the non-slipping condition that links the tension at s = ` with that at s = 0:

θ(`) ≤ θ(0) e
∫ `
0 σ c(s) ds. (2.29)

This condition depends upon the friction coefficient, the winding length and the curvature
of the cable.

2.8 Applications

2.8.1 The catenary

The catenary is the equilibrium curve of an inextensible, homogeneous cable that is sup-
ported at the ends and that is acted upon uniquely by its own weight1, see Fig. 2.3.

Be ` the length of the catenary, which is fixed in p0 = (x0, y0) and p1 = (x1, y1), |p0−p1| <
`. The only force is

f(s) = −µ g e2, (2.30)

with µ the mass per unit length of the cable; because e2 is a constant vector, the equilib-
rium curve is contained in a vertical plane, the one passing by p0 and p1. Looking for the

1The problem of the catenary has been very important in the history of mechanics and mathematics,
because it is one of the problems at the origin of both the differential calculus and of the calculus of
variations. It was proposed by Jc. Bernoulli to scientists in 1690, and besides his solution, he obtained
different methods of solution by his brother, Jh. Bernoulli, Leibniz and Huygens.
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Figure 2.3: The catenary.

equilibrium curve in the form y = y(x) we have

p− o = xe1 + y(x)e2,

τ = (e1 + y′e2)
1√

1 + y′2
,

ν = (−y′e1 + e2)
1√

1 + y′2
,

c =
y′′

(1 + y′2)
3
2

.

(2.31)

Then,

fτ = f · τ = −µ g y′√
1 + y′2

,

fν = f · ν = − µ g√
1 + y′2

,
(2.32)

so the intrinsic balance equations are

dθ

ds
= µ g

y′√
1 + y′2

,

θ
y′′

(1 + y′2)
3
2

=
µ g√
1 + y′2

.

(2.33)

To obtain y(x) we project the local balance equation onto e1, and because e1 is a constant
vector we get

dθ

ds
· e1 + f · e1 = 0 → dθ · e1

ds
− µ ge2 · e1 = 0 (2.34)

which gives the following first integral of the problem:

θ · e1 = const := θ0, (2.35)
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where the scalar θ0 is the horizontal component of the tension in the cable. θ0 is hence a
constant of the problem; in particular, it is the horizontal component of the reactions in
p0 and p1 and the tension in the cable in its lowest point. Moreover,

θ · e1 =
θ√

1 + y′2
= θ0 ⇒ θ = θ0

√
1 + y′2, (2.36)

that injected into eq. (2.33)2 gives the differential equation of the equilibrium curve:

y′′√
1 + y′2

=
µ g

θ0

. (2.37)

To solve the above equation, we put

y′′ =
dy′

dx
(2.38)

and write it as
dy′√
1 + y′2

=
µ g

θ0

dx, (2.39)

whose solution is

arcsinh y′ =
µ g

θ0

x+ c1 → y′ = sinh

(
µ g

θ0

x+ c1

)
, (2.40)

and integrating again

y =
θ0

µ g
cosh

(
µ g

θ0

x+ c1

)
+ c2. (2.41)

This is the equation of the catenary. The three constant c1, c2 and θ0 are determined
using the two boundary conditions

y(x = x0) = y0, y(x = x1) = y1, (2.42)

and the condition that the length of the equilibrium curve is `, because the cable is
inextensible:

` =

∫ p1

p0

ds =

∫ x1

x0

√
1 + y′2dx =

∫ x1

x0

√
1 + sinh2

(
µ g

θ0

x+ c1

)
dx =∫ x1

x0

cosh

(
µ g

θ0

x+ c1

)
dx =

θ0

µ g

[
sinh

(
µ g

θ0

x1 + c1

)
− sinh

(
µ g

θ0

x0 + c1

)]
,

(2.43)

We can now find the value of the tension θ(y): injecting the expression (2.40) of y′ into
eq. (2.36) we get

θ = θ0

√
1 + sinh2

(
µ g

θ0

x+ c1

)
= θ0 cosh

(
µ g

θ0

x+ c1

)
, (2.44)

but for the (2.41), it is

cosh

(
µ g

θ0

x+ c1

)
=
µ g

θ0

(y − c2), (2.45)
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and finally

θ = µ g(y − c2). (2.46)

The tension in the cable is hence a linear function of the vertical position of the cable, so
it is minimum at the lowest point, where it is equal to θ0, and maximum for max{y0, y1},
which could be predicted because f depends upon a potential.

As a particular case, we consider a cable where x0 = 0, x1 = α`, 0 < α < 1, y0 = y1 = 0.
If we put |p1 − p0| = x1 − x0 = L, then α = L/`. In such a situation, the equations that
determine c1 and c2 become

c2 = − θ0

µg
cosh c1,

c2 = − θ0

µg
cosh

(
µg

θ0

α`+ c1

)
,

→
c1 = −µgα`

2θ0

,

c2 = − θ0

µg
cosh

(
−µgα`

2θ0

)
.

(2.47)

To determine θ0, we inject these results in eq. (2.43):

θ0

µ g

[
sinh

(
µg

θ0

α`+ c1

)
− sinh c1

]
= ` →

sinh

(
µgα`

2θ0

)
− sinh

(
−µgα`

2θ0

)
=
µ g `

θ0

.

(2.48)

Because sinh is an odd function, i.e. sinh(−x) = − sinhx ∀x, we get the equation

sinhαk = k, k =
µg`

2θ0

. (2.49)

The parameter k > 0 is half the ratio of the total weight of the cable to the minimal
tension θ0. Putting

ξ1 = sinhαk,

ξ2 = k,
(2.50)

the solutions to eq. (2.49) are the intersections of ξ1(k) and ξ2(k), see Fig. 2.4.

We observe that k, the abscissa of the intersection point, increases if α decreases, i.e. for
a looser cable; because µg`/2 = const., this implies that θ0 increases with α: the more
stretched the cable, the higher θ0. In particular, because for α = 1

d sinh k

dk

∣∣∣∣
0

= 1, (2.51)

the tangent in k = 0 to the curve ξ1(k) is just ξ2 = k; no other intersections between
ξ1 and ξ2 are possible for α = 1, because ξ1(k) is always increasing, so for α = 1, i.e.
for a straight equilibrium configuration of the cable, the only possible solution is k = 0,
which means that θ →∞. Because this is physically impossible, a cable can never take a
rectilinear equilibrium configuration under the only action of its own weight.
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Figure 2.4: The tension in the cable as function of α.

The Taylor’s expansion of the catenary’s equation (2.41) around a point x̄ is

y =
θ0

µ g
cosh

(
µ g

θ0

x̄+ c1

)
+ c2 + sinh

(
µ g

θ0

x̄+ c1

)
(x− x̄)+

1

2

µ g

θ0

cosh

(
µ g

θ0

x̄+ c1

)
(x− x̄)2 + o(|x− x̄|3).

(2.52)

The terms of order o(|x− x̄|3) decrease with the ratio µ g/θ0, so, for the same unit mass
µ, with the stretch of the cable. Finally, the above equation states that for a stretched
cable, the catenary can be well approximated by a parabola.

From the overall balance of the forces on the cable, it is immediate to see that the tangents
to the catenary in p0 and p1 cross exactly in correspondence of the vertical drawn from the
barycenter C of the curve, see Fig. 2.3. The weight P of the cable is in fact decomposed
by the two tensions −θ0 and θ1; this property was discovered by I. G. Pardies in 1673,
well before the finding of the catenary’s equation.

If the catenary is put upside down, it becomes the equilibrium curve of a body able to
transmit only normal compressive forces: the inverse catenary is hence the equilibrium
curve of a masonry or stone or concret arch of constant section submitted uniquely to its
own weight. This property was observed by Hooke, that published it under the form of
an anagram in 16752, and later confirmed analytically by Jc. Bernoulli in 1704.

In 1740, L. Euler discovered that the catenary is also the catenoid, i.e. the curve joining
two points at different distances from an axis that, when turned about this axis, produces
the surface of revolution of least area.

There is a more elegant way to find the equation of the catenary, that using the calculus
of variation. In fact, the equilibrium configuration can be found applying the Torricelli’s
principle: a body acted upon only by its weight is in a stable configuration of equilibrium
when its barycenter occupies the lowest position.

2Translated from Latin, the anagram gives the statement: as hangs the flexible line, so but inverted
will stand the rigid arch (J. Heyman, The stone skeleton, Cambridge University Press, 1995.
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The position of the barycenter C is

yC =

∫ p1
p0
y ds∫ p1

p0
ds

, (2.53)

and by eq. (1.20) and because the cable is inextensible, so that ` =
∫ p1
p0
ds = const., the

problem can be reduced to

min J =

∫ p1

p0

y
√

1 + y′2dx (2.54)

with the isoperimetric constraint ∫ p1

p0

√
1 + y′2dx = `. (2.55)

Applying the Lagrange multiplier’s method, we minimize the functional

min J∗ =

∫ p1

p0

f(y, y′;ψ)dx; (2.56)

with
f(y, y′;ψ) = (y + ψ)

√
1 + y′2. (2.57)

The Euler-Lagrange equation with respect to y (the one relative to ψ gives the isoperi-
metric constraint),

d

dx

∂f

∂y′
− ∂f

∂y
= 0, (2.58)

because f does not depend explicitly upon x, gives the condition3

d

dx

(
f − y′ ∂f

∂y′

)
= 0 ⇒ f − y′ ∂f

∂y′
= γ, γ ∈ R. (2.59)

From eq. (2.57) we obtain
∂f

∂y′
= (y + ψ)

y′√
1 + y′2

, (2.60)

that injected into eq. (2.59) gives

y + ψ = γ
√

1 + y′2 → dy√
(y + ψ)2 − γ2

=
dx

γ
. (2.61)

3 This is a classical result in analytical mechanics and can be shown introducing the expression of
∂f

∂y

obtained by the Euler-Lagrange equation into
df(y, y′)

dx
:

∂f

∂y
=

d

dt

∂f

∂y′
→ df

dt
=
∂f

∂y

dy

dt
+
∂f

∂y′
dy′

dt
=

d

dt

∂f

∂y′
dy

dt
+
∂f

∂y′
dy′

dt
=

d

dt

(
y′
∂f

∂y′

)
→ d

dt

(
f − y′ ∂f

∂y′

)
= 0.

The quantity in the brackets of the last expression is −H, the opposite of the integral of Jacobi of the
problem. In the end, the constant γ is the opposite of H.
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Putting
y + ψ = γ cosh z → dy = γ sinh z dz (2.62)

we get
γ sinh z

γ
√

cosh2 z − 1
dz =

dx

γ
→ dz =

dx

γ
→ z =

x

γ
+ β, β ∈ R. (2.63)

Because

z = arccosh
y + ψ

γ
, (2.64)

we obtain finally

y = γ cosh

(
x

γ
+ β

)
− ψ. (2.65)

This equation coincides with the equation (2.41) of the catenary, with γ =
θ0

µ g
, β = c1

and ψ = −c2.

2.8.2 The suspension bridge

The problem of the suspended bridge (solved by Beeckman en 1615) is similar to that of
the catenary, the difference is that the load is uniformly distributed not along the cable,
but along its horizontal projection4:

q(x) = −qe2, q > 0. (2.66)

So, now the load to be used into the intrinsic equations

f(s) = −f(s)e2, f(s) > 0 ∀s, (2.67)

is unknown. It can be deduced as follows:∫ s2

s1

f(s) ds =

∫ x2

x1

f(s)
√

1 + y′2 dx =∫ x2

x1

q dx = q(x2 − x1) → f(s) =
q√

1 + y′2
.

(2.68)

Now, we can proceed just like for the catenary: the intrinsic balance equations are

dθ

ds
= q

y′

1 + y′2
,

θ
y′′

(1 + y′2)
3
2

=
q

1 + y′2
.

(2.69)

From the first equation, we obtain once more the same first integral (2.35), having exactly
the same mechanical meaning, and by consequence also eq. (2.36), that injected into eq.
(2.69)2 gives

y′′ =
q

θ0

→ y =
q

2θ0

x2 + c1x+ c2. (2.70)

4This is justified by the fact that the deck of a suspended bridge normally has a weight per unit length
q which is far greater than that of the cable, λ, so that to a first approximation this last can be neglected.
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The equilibrium curve is hence a parabola; once more, the constants c1, c2 and θ0 are
determined using the conditions

y(x = x0) = y0,

y(x = x1) = y1,

` =

∫ p1

p0

ds =

∫ x1

x0

√
1 + y′2dx.

(2.71)

This last, once solved, gives the explicit condition

θ0

2q

( q

θ0

x1 + c1

)√
1 +

(
q

θ0

x1 + c1

)2

−
(
q

θ0

x0 + c1

)√
1 +

(
q

θ0

x0 + c1

)2

+

log

q

θ0

x1 +

√
1 +

(
q

θ0

x1 + c1

)2

q

θ0

x0 +

√
1 +

(
q

θ0

x0 + c1

)2

 = `.

(2.72)

The tension can still be recovered using eq. (2.36), that in this case gives

θ(x) = θ0

√
1 +

(
q

θ0

x+ c1

)2

. (2.73)

If, like in the case of the catenary, we consider a cable where x0 = 0, x1 = α`, 0 < α <
1, y0 = y1 = 0, then it is easy to check that now

c1 = −α ζ,

c2 = 0,

2α ζ
√

1 + α2ζ2 + log

(
2α ζ√

1 + α2ζ2
+ 1

)
= 4ζ,

(2.74)

where

ζ =
q`

2θ0

. (2.75)

2.8.3 The curve of uniform vertical load

We consider a cable wrapped on a rigid plane profile described by the function y(x); the
cable is stretched by a tension θ applied at its ends, so that the cable is everywhere in
contact with the profile. The weight of the cable is negligible and the contact between the
cable and the profile is frictionless. We want to determine y(x) so that the vertical compo-
nent of the contact force between the cable and the profile is constant everywhere.

Because there is no friction, the reaction on the cable is of the type

ϕ = −ϕν, ϕ > 0; (2.76)
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so, fτ = 0, fν = −ϕ and by the first intrinsic balance equation (2.13) we get θ = const.
and of course equal to the tension applied at the ends of the cable. Hence, this problem
cannot be equal to the previous one of the suspension bridge, though at a first sight it
could seem to be.

The second intrinsic equation gives now

ϕ = c θ, (2.77)

while ν has components

ν =
1√

1 + y′2
(−y′, 1). (2.78)

The condition that determines the shape y(x) of the curve is

−ϕ · e2 = p, p > 0, (2.79)

so by eq. (2.76)

ϕν · e2 = p → ϕ√
1 + y′2

= p, (2.80)

that inserted into eq. (2.77) gives the differential equation

y′′

(1 + y′2)2
=
p

θ
. (2.81)

This differential equation has not a solution in closed form, and it should be resolved
numerically; nevertheless, if the curve is slowly changing, i.e. if |y′| � 1, then

y′′ =
p

θ
→ y =

p

2θ
x2 + c1x+ c2. (2.82)

So, in such an approximation, the solution is a parabola. The two constants c1 and c2 can
be determined using the boundary conditions: y(x0) = y0, y(x1) = y1. The value of the
vertical load p can be obtained easily: for a parabola whose equation is y = a x2 +c1x+c2,
because in the above approximation c ' y′′ = 2a, we get comparing with eq. (2.82),

p = 2aθ, (2.83)

so it depends linearly upon the tension that stretches the cable.

2.8.4 The cable coiled on a rough cylinder

We consider the case of a cable coiled on a rough cylinder, whose radius is R; the friction
coefficient is σ and we assume that the cable is coiled on a helix of pitch 2πb, the helix
being a geodetic of the cylinder. The cable is pulled by a tension θ0 at the end s = 0; we
want to know what is the highest tension θ1 that can be applied to the other end before
slipping of the cable on the cylinder.

The equation of the helix is

p(α)− o = R cosαe1 +R sinαe2 + bαe3, (2.84)
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α being the winding angle of the cable on the cylinder. The curvature of the helix is
constant and equal to

c =
R

R2 + b2
, (2.85)

so that the non-slipping condition (2.29) becomes

θ1 ≤ θ0 e
σ
∫ `
0

R
R2+b2

ds
= θ0 e

σ R
R2+b2

`
, (2.86)

` being the length of the cable in contact with the cylinder. For a circular helix,

s =
√
R2 + b2α, (2.87)

so we get the non-slipping condition

θ1 ≤ θ0 e
σ R√

R2+b2
α`
, (2.88)

with

α` =
`√

R2 + b2
(2.89)

the winding angle. The friction force that the cable can exert depends hence upon the
exponential of α`. For the case of b� R, we get

θ1 <∼ θ0 eσα` . (2.90)

Just as an exemple, if σ = 1/2 and α` = 2π, we get θ1 <∼ 23.14θ0: winding a cable on a
rough cylinder is a very effective way to anchor it!

2.9 Elastic cables

The results in the previous sections concern inextensible cables; we consider now what
happens if the cable is elastic. To fix the ideas, we consider the equation of an elastic cable
whose unstretched length is ` and whose points are determined by the vector function

r(s) = p(s)− o, s ∈ [0, `], (2.91)

and with end points

p0 = p(s = 0) = (0, 0), p1 = p(s = `) = (x1, y1). (2.92)

Once more the tangent vector is still defined by eq. (1.22), but now, because the cable is
extensible, |p′(s)| 6= 1:

τ (s) =
p′(s)

λ(s)
, (2.93)

with
λ(s) = |p′(s)| (2.94)

the stretch or elongation of the elastic cable. If the cable is inextensible, λ(s) = 1, while
generally speaking,

λ(s) =

√(
dx

ds

)2

+

(
dy

ds

)2

. (2.95)
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The unique balance equation for an elastic cable is still eq. (2.4)1, as it can be easily
recognized:

θ′(s) + f(s) = o. (2.96)

About the constitutive law, we restrict our attention to the case of linearly elastic cables.
In such a case, the constitutive law, generalizing to elastic cables the classical Hooke’s
law, is

θ(s) = κ(λ(s)− 1) (2.97)

The parameter
κ = EA (2.98)

is the stiffness of the cable, E being the Young’s modulus of the material and A the area
of the cross section of the cable.

2.9.1 The catenary of an elastic cable

As an application, we search for the catenary of an elastic cable (problem solved by Routh
in 1891); in this case, we can have also ` <

√
x2

1 + y2
1, because the cable can be stretched

to join two points whose distance is > ` 5. The unique load is still given by eq. (2.30).
Projecting eq. (2.96) onto the two axes and taking into account that the directions of the
axes are fixed, gives

(θ′(s) + f(s)) · e1 = 0 → θ′(s) · e1 = 0 → d

ds
(θ(s) · e1) = 0

(θ′(s) + f(s)) · e2 = 0 → θ′(s) · e2 = µg → d

ds
(θ(s) · e2) = µg

(2.99)

The first of the above equations gives onces more the first integral of the problem of the
catenary, eq. (2.35): the horizontal component of the tension is still a constant, also for
an elastic cable. We can transform eq. (2.99)1 as follows:

d

ds
(θ · e1) =

d

ds
(θτ · e1) =

d

ds

(
θ
dx

ds

)
=

d

ds

(
θdx√

dx2 + dy2

)
=

d

ds


θ
dx

ds√(
dx

ds

)2

+

(
dy

ds

)2

 =
d

ds

θdxds
λ

 = 0.

(2.100)

In the same way, eq. (2.99)2 can be transformed to

d

ds

θdyds
λ

 = µg. (2.101)

5However, ` cannot be much less than
√
x21 + y21 for applying the Hooke’s law.
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The first integrals of eqs. (2.100) and (2.101) are

dx

ds
= λ

θ0

θ
,

dy

ds
=
V + µg s

θ
λ,

(2.102)

with θ0 still the horizontal component of the tension and V the vertical component of the
tension at the end s = 0. To find a solution, we square and add the two equations above,
to obtain

θ2

[(
dx

ds

)2

+

(
dy

ds

)2
]

= λ2
[
θ2

0 + (V + µg s)2
]
, (2.103)

ant through eq. (2.95) finally

θ =
√
θ2

0 + (V + µg s)2. (2.104)

Inverting the constitutive law (2.97) we get

λ =
θ

κ
+ 1, (2.105)

that injected into eq. (2.102) gives, through eq. (2.104),

dx

ds
= θ0

(
1

κ
+

1

θ

)
= θ0

(
1

κ
+

1√
θ2

0 + (V + µg s)2

)
,

dy

ds
= (V + µg s)

(
1

κ
+

1

θ

)
= (V + µg s)

(
1

κ
+

1√
θ2

0 + (V + µg s)2

)
,

(2.106)

These are the differential equations that describe the equilibrium curve; once integrated,
they give

x =
θ0s

κ
+
θ0

µg

(
arcsinh

V + µg s

θ0

− arcsinh
V

θ0

)
,

y =
µg s

κ

(
V

µg
+
s

2

)
+
θ0

µg

√1 +

(
V + µg s

θ0

)2

−

√
1 +

(
V

θ0

)2
 .

(2.107)

The two still unknown constants θ0 and V can be determined imposing the boundary
conditions for s = ` : x(s = `) = x1, y(s = `) = y1, which gives the two conditions

x1 =
θ0`

κ
+
θ0

µg

(
arcsinh

V + µg`

θ0

− arcsinh
V

θ0

)
,

y1 =
µg`

κ

(
V

µg
+
`

2

)
+
θ0

µg

√1 +

(
V + µg`

θ0

)2

−

√
1 +

(
V

θ0

)2
 .

(2.108)

These two conditions must usually be solved numerically; in the case of y1 = 0, i.e. with
the two end supports at the same level, we get, from eq. (2.108)2, the expected condition

V = −1

2
µg`, (2.109)
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while eq. (2.108)1 becomes

µg`

2θ0

= sinh

(
µgx1

2θ0

− µg`

2κ

)
, (2.110)

equation that for κ→∞ coincides with eq. (2.49), being x1 = α`.

In Fig. 2.5 we show the catenaries of different cables: all the cables are hung between
the points (0, 0) and (0, 1), and the unstretched length of the cables is always ` = 1.2,
while µg = 1 (all the dimensions are in appropriate units), while the cables differ for the
value of κ. As expected, the more the κ, the less the depth of the cable; the black curve
corresponds to the catenary of an inextensible cable.

!

κ=1!
κ=2!κ=3!κ=4!

κ=5!

κ=∞!

Figure 2.5: Elastic catenaries.

2.10 Exercices

1. An inextensible cable of length 2` is fixed at two points, e.g. two pitons, at the
same height and at a distance 2d < 2`. The cable is taut by a concentrated force
f = f(cosα, sinα) at mid distance from the ends, see Fig. 2.6. Determine, as a
function of α, the equilibrium configuration and the tension in each one of the two
parts of the cable. Such a system is currently used by alpinists to realize a relais
during a climbing; could you say which is the minimum length of the rope of the
relais to make it safer than a relais using a single piton (consider a vertical force)?

2. Make the same exercice but this time the cable is linearly elastic with elastic constant
κ. Trace the curve describing the dependence of the force upon the displacement of
its point (consider a vertical force).

3. The velaria is the equilibrium configuration of a cable acted upon uniquely by wind;
if the action of the wind can be represented by a uniform load p acting orthogonally
to the cable (a characteristic of all the actions of inviscid fluids), show that the
velaria is an arc of circle (this problem was solved by Jh. Bernoulli).

4. A variant of the above problem is that of a parallel stream; in such a case, show
that the equilibrium configuration of the velaria is actually the catenary.
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Figure 2.6: Scheme of exercice 1.

5. A cable is coiled on a rough cylinder and the friction coefficient is σ. The cylinder
is restrained to rotation by an angular spring whose elastic constant is µ and the
cable must bear, at the free end, a mass m, while at the other end it is fixed to the
cylinder by a device whose resistance to tension is ϕ. If the radius of the cylinder
is R and the cable is coiled three times on the cylinder along a helix whose pitch is
2πb� R, which is the greatest mass that the cable can support?
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Chapter 3

Arches

3.1 Introduction

Arches are plane curved rods. They are currently used in a lot of situations; in civil engi-
neering, the most impressive realizations are some bridges, see Fig. 3.1. Arches are used

Figure 3.1: Some examples of arch bridges.

since long time (probably the most ancient arches in the world are two arches in Italy, at
Velia and Volterra, both from the IVth century b.C.), though in the form of arches com-
posed of carved stone voussoirs or masonry bricks. Arches, in fact, have a great advantage
with respect to rectilinear rods: while rods are mainly subjected to bending, internal axial
forces are dominating in arches: strain energy is stored in the form of bending energy in
rods, while mainly, though not exclusively, in the form of extension energy in arches. This
is rather advantageous, because axial stiffness and strength are normally much greater
than the bending ones: arches bear greater loads than rectilinear loads. A simple scheme
gives account of this: let us consider a rectilinear, simply supported rod of span ` submit-

ted to a uniform weight p. The highest bending moment, at mid-span, is Mmax =
p`2

8
.

For equilibrium, such a couple must be balanced by an internal couple given by internal
stresses. This internal couple has a small lever arm, less than the thickness of the cross
section. As a consequence, the cross section must have a rather great thickness, in order
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on one side to increase the internal lever arm, on the other side to decrease stresses and
bring them under the admissible value.

If now we consider an arch hinged at the ends and submitted to the same load, the
horizontal reactions give a couple at mid-span that balances the couple given by p; in
the limit, the bending moment at mid-span can be null, and the section is submitted
exclusively to an axial force equal to the horizontal reactions. This is a much more
favorable structural situation, that allows to the structure, for the same cross section and
material, to carry more important loads or to cover much longer spans.

This simple case allows also for understating a basic fact: in a simply supported or clamped
arch vertical loads produce also horizontal reactions. If the arch is simply supported at
one of the two ends, then these horizontal reactions do not exist and the arch is actually
just a curved beam, it works almost exclusively in bending: it is the presence of the
horizontal reactions that makes a curved rod an effective arch.

In the following, we study the statics of elastic curved rods and then we apply the theory
to the statics of arches.

3.2 Balance equations

We consider a curvilinear plane rod like in Fig. 3.2; s is a curvilinear abscissa, that we
will put, conventionally, equal to zero at the left end of the rod. We then consider a part
of the rod between two sections at the abscissae s and s+ds infinitesimally close together,
Fig. 3.3, so that we can consider as constant the curvature of the rod in the part ds, and
be dθ the infinitesimal angle subtended by the two normals to the rod at s and ds, that
meet together in o, the centre of the local osculating circle.

!

s 
z 

y 
ζ(s) 

ζ(s) 

η(s) 
η(s) 

q(s) 

f(s) 

θ 

Figure 3.2: General scheme of an arch.

We remain in the framework of small strain and displacements and write the balance
equations in the undeformed configuration. Then, referring to Fig. 3.3, it is easy to write
the balance equations:

• horizontal equilibrium:

T sin
dθ

2
+N cos

dθ

2
− r ds+ (T + dT ) sin

dθ

2
− (N + dN) cos

dθ

2
= 0; (3.1)
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Figure 3.3: General scheme for the balance equations.

• vertical equilibrium:

T cos
dθ

2
−N sin

dθ

2
− p ds− (T + dT ) cos

dθ

2
− (N + dN) sin

dθ

2
= 0; (3.2)

• rotation equilibrium (written here with respect to o):

M +m ds+ (N + dN)ρ+ rρ ds−Nρ− (M + dM) = 0, (3.3)

with ρ the radius of curvature. Because ds is infinitesimal, dθ → 0 so that cos
dθ

2
' 1

while sin
dθ

2
' dθ

2
. By consequence, once simplified the balance equations transform to

dN = T dθ − r ds,
dT = −N dθ − p ds,
dM = ρ dN + ρ r ds+m ds.

(3.4)

Injecting eq. (3.4)1 into eq. (3.4)3 and considering that ds = ρ dθ, we finally get

dN

ds
=
T

ρ
− r,

dT

ds
= −N

ρ
− p,

dM

ds
= T +m.

(3.5)

Unlike the case of rectilinear rods, now all the balance equations are coupled; to remark
that for ρ → ∞, i.e. for a curvilinear rod that tends to become rectilinear, the above
equations tend to those of the straight rods.
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Introducing now the symbolic matrix

D1 =


d

ds
−1

ρ
0

1

ρ

d

ds
0

0 −1
d

ds
,

 (3.6)

along with the vectors of the internal actions, S, and of the applied loads, f ,

S =


N
T
M

 , f =


r
p
m

 , (3.7)

eq. (3.5) can be given in matrix form:

D1S + f = o. (3.8)

Implicitly, the above equations have been written in the local frame {ζ(s), η(s)}, see Fig.
3.2. They can be written in a fixed frame {z, y} simply writing that:

f = Q f∗ : =


r
p
m


 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


r∗

p∗

m∗

 , (3.9)

where the symbol * denotes a vector written in the fixed frame {z, y} and Q the rotation
tensor operating the change of frame from {z, y} to {ζ(s), η(s)}. Of course, Q = Q(s),
because θ = θ(s).

So, finally, the matrix equation (3.8) written in the fixed frame {z, y} is simply

D1S + Qf∗ = o. (3.10)

3.3 Compatibility equations

Just as for straight rods, we need to link the displacement of the arch to the kinematical
quantities defining its deformation. We write such relations in the local frame {ζ(s), η(s)},
see Fig. 3.4.

A point q(s) of the arch centerline becomes, after deformation, the point q′(s), so the
displacement vector is

u(s) = q′(s)− q(s) = uτ (s)τ (s) + uν(s)ν(s). (3.11)

We want express the link between the internal kinematical quantities defining the defor-
mation of the arch and the following geometrical quantities, defining the transformation
of the cross section of the arch in correspondence of q(s):

• v(s), the displacement along η(s), i.e. parallel to the principal normal ν(s);
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Figure 3.4: General scheme for the compatibility equations.

• w(s), the displacement along ζ(s), i.e. parallel to the tangent τ (s);

• ϕ(s), the rotation of the normal ν(s).

We introduce the following kinematical quantities for describing the deformation of the
arch:

• ε: the extension of the arch mid-line;

• κ: the bending curvature of the arch centerline (not to be confused with the ge-
ometric curvature c of the arch centerline, i.e. the curvature of the undeformed
arch);

• γ: the shear of the cross section.

To define and determine these quantities we need to analyze how a generic point of the
cross section is transformed. Remembering that the arch is a plane curve and that the
problem is planar, i.e. the arch bends in its plane, it is sufficient to study the transfor-
mation of a generic point q̂(s, η) of the cross section at the distance η from the centerline
(so, actually, q(s) = q̂(s, 0)).

We then introduce the displacement of q̂(s, η):

û(s, η) = ûτ (s, η)τ (s) + ûν(s, η)ν(s), (3.12)

and considering the scheme of Fig. 3.4 we recognize immediately that, thanks to the as-
sumptions of small deformations and displacements (namely, ϕ→ 0⇒ sinϕ ' ϕ, cosϕ '
1), we can write

ûτ (s, η) = w(s)− η sinϕ ' w(s)− ηϕ,
ûν(s, η) = v(s)− η(1− cosϕ) ' v(s).

(3.13)

We calculate now the derivatives of û(s, η) with respect to η and to the curvilinear abscissa
of q̂(s, η); this is ŝ 6= s, due to the geometrical curvature of the arch. Nevertheless, see
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Fig. 3.5, it is easy to find the relation between s and ŝ:

dθ =
ds

ρ
=

dŝ

ρ− η
→ ds

dŝ
=

ρ

ρ− η
, (3.14)

relation that gives also
∂·
∂ŝ

=
∂·
∂s

ds

dŝ
=
∂·
∂s

ρ

ρ− η
. (3.15)

!
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ds 
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Figure 3.5: Scheme for the relation between ds and dŝ.

The derivatives are hence:

∂û

∂ŝ
=
∂v(s)

∂ŝ
ν(s) + v(s)

∂ν(s)

∂ŝ
+
∂(w(s)− ηϕ(s))

∂ŝ
τ (s)+

(w(s)− ηϕ(s))
∂τ (s)

∂ŝ
,

∂û

∂η
= −ϕ(s)τ (s).

(3.16)

Applying eq. (3.15) to
∂τ (s)

∂ŝ
and

∂ν(s)

∂ŝ
, using the Frenet-Serret formulae and remem-

bering that ϑ(s) = 0 ∀s because the arch is a plane curve, gives finally (we do not write
explicitly the dependence on s for the sake of conciseness)

∂û

∂ŝ
=

ρ

ρ− η

(
w′ − v

ρ
− ηϕ′

)
τ +

ρ

ρ− η

(
v′ +

w

ρ
− ηϕ

ρ

)
ν, (3.17)

where the prime denotes differentiation with respect to s : w′ =
∂w

∂s
etc.

We define now mathematically the kinematical quantities introduced above to describe
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the deformation of the arch:

εη(s, η) :=

(
∂û

∂ŝ

)
τ

=
ρ

ρ− η

(
w′ − v

ρ
− ηϕ′

)
,

κ(s) := −ϕ′,

γη(s, η) :=

(
∂û

∂ŝ

)
ν

+

(
∂û

∂η

)
τ

=
ρ

ρ− η

(
v′ +

w

ρ
− ηϕ

ρ

)
− ϕ,

(3.18)

that can be rearranged to give finally

εη(s, η) =
ρ

ρ− η

(
w′ − v

ρ
+ ηκ

)
,

κ(s) = −ϕ′,

γη(s, η) =
ρ

ρ− η

(
v′ +

w

ρ
− ϕ

)
.

(3.19)

For small curvature arches, i.e. when the radius of curvature ρ is far greater than the

thickness of the cross section:
ρ

max η
� 1 ∀s⇒ ρ

ρ− η
→ 1, the above equations become

εη(s, η) = w′ − v

ρ
+ ηκ,

κ(s) = −ϕ′,

γ(s) = v′ +
w

ρ
− ϕ.

(3.20)

The term εη(s, η) is the extension of the fibers at a distance η from the centerline; we can
write it as

εη(s, η) = ε(s) + ηκ, (3.21)

where
ε(s) = εη(s, η = 0) = w′ − v

ρ
. (3.22)

Finally, for small curvature arches, the case which is by far the most interesting in appli-
cations and that we will consider in the following, the kinematical quantities describing
its deformation can be reduced to quantities referring to the deformation of the centerline,
and are

ε(s) = w′ − v

ρ
,

γ(s) = v′ +
w

ρ
− ϕ,

κ(s) = −ϕ′.

(3.23)

These are the compatibility equations for small curvature arches. We remark that in the
limit case of ρ→∞ the above quantities become

ε(s) = w′,

γ(s) = v′ − ϕ,
κ(s) = −ϕ′,

(3.24)
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i.e. they coincide, as it must be, with those of the straight rods.

If now we introduce the symbolic matrix

D2 =


d

ds
−1

ρ
0

1

ρ

d

ds
−1

0 0 − d

ds
,

 (3.25)

along with the vectors of the displacement, ξ, and of the deformation, δ,

ξ =


w
v
ϕ

 , δ =


ε
γ
κ

 , (3.26)

eq. (3.23) can be written in matrix form:

D2ξ = δ. (3.27)

The same equation can be written in the fixed frame {z, y}:

D2Qξ
∗ = δ, (3.28)

where ξ∗ is the displacement vector written in the frame {z, y} and Q is the rotation
matrix (3.9).

3.4 Constitutive equations

In the framework of linear elasticity, we assume as constitutive equations for plane arches
the same of the straight rods:

N = EAε,

T =
µA

χ
γ,

M = EJκ,

(3.29)

with E the Young’s modulus and µ the shear modulus of the material, A the area of the
cross section, j the moment of inertia of the cross section about an horizontal axis passing
by the barycenter and χ the shear factor of the cross section.

Introducing the matrix

C =


EA 0 0

0
µA

χ
0

0 0 EJ

 , (3.30)

we can write eq. (3.29) in matrix form:

Cδ = S. (3.31)
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3.5 The problem of elastic equilibrium for the arches

We can now put together the constitutive, compatibility and equilibrium equations found
above to write the equations of the elastic equilibrium for plane arches. Some simple
calculations give [

EA

(
w′ − v

ρ

)]′
=
µA

ρχ

(
v′ +

w

ρ
− ϕ

)
− r,[

µA

χ

(
v′ +

w

ρ
− ϕ

)]′
= −EA

ρ

(
w′ − v

ρ

)
− p,

(−EJϕ′)′ = µA

χ

(
v′ +

w

ρ
− ϕ

)
+m.

(3.32)

The above equations show that all the equations are coupled; in particular, unlike the case
of straight rods, as an effect of the geometry extension and bending are coupled.

We can put the above equations in a matrix form; to this purpose, we inject successively
eqs. (3.31) and (3.27) into eq. (3.8) to get easily

D1CD2ξ + f = o. (3.33)

To write the same equation in the fixed frame {z, y}, it is sufficient to do the same but
with eqs. (3.10), (3.28) and (3.31), and left-multiply by Q>:

Q>D1CD2Qξ
∗ + f∗ = o. (3.34)

No matter of the form given to the above equations, they remain a system of three
second-order coupled linear differential equations, that need 6 boundary conditions, three
for each end of the arch. Their solution is, normally, impossible analytically and numerical
methods must be used.

3.6 Transforming the equations of the arches

The equations found in the previous Sections can be transformed, so as to obtain equations
that can be more easily solved; some assumptions on the geometry or the kinematics of
the arch can also be introduced, with the same purpose. We consider first the case of the
balance equations (3.5), then that of the elastic equilibrium equations (3.32).

3.6.1 Transforming the balance equations

For an isostatic arch the balance equations are sufficient to determine the internal actions
N, T and M ∀s. A typical example, very used in the applications, especially in bridge
constructions, is that of a three-hinged arch, see Fig. 3.6.
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Figure 3.6: Scheme of a three-hinged arch.

We can rearrange the balance equations (3.5) in order to eliminate the shear from eqs.
(3.5)1,3 so as to obtain a system of two linear differential equations. This can be done as
follows: from eq. (3.5)3 we get

T =
dM

ds
−m, (3.35)

that injected into eq. (3.5)1 gives

dN

ds
=

1

ρ

dM

ds
− m

ρ
− r. (3.36)

Then, we differentiate eq. (3.5)3 to obtain

d2M

ds2
=
dT

ds
+
dm

ds
(3.37)

and using eq. (3.5)2 we get

d2M

ds2
= −N

ρ
− p+

dm

ds
. (3.38)

Equations (3.36) and (3.38) constitute a system of two coupled differential equations where
the unknowns are the functions N(s) and M(s). The shear force T (s) can be calculated
by eq. (3.35) once M(s) known.

In the end, we need 3 boundary conditions for the solution of the equilibrium problem
of isostatic arches. Once eqs. (3.36) and (3.38) solved, T (s) can be recovered using eq.
(3.5)3.

Of course, no information about the deformation of the arch is given by the solution of
the balance equations; once the problem solved, one can introduce N, T and M into the
constitutive laws, eqs. (3.29), to obtain ε, γ and κ, that introduced in the compatibility
equations (3.23), once integrated, give the components of displacement w, v andϕ. Nev-
ertheless, it is normally preferable, at least to find the components of displacement at a
specific point, to employ other methods, like the dummy load method.
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3.6.2 Transforming the elastic equilibrium equations

First of all, for the sake of conciseness, we call

α := EA, β :=
µA

χ
, λ := EJ. (3.39)

Then, eqs. (3.32) become[
α

(
w′ − v

ρ

)]′
=
β

ρ

(
v′ +

w

ρ
− ϕ

)
− r,[

β

(
v′ +

w

ρ
− ϕ

)]′
= −α

ρ

(
w′ − v

ρ

)
− p,

(−λϕ′)′ = β

(
v′ +

w

ρ
− ϕ

)
+m.

(3.40)

We remark that in the limit case of an arch that tends to be a straight rod, i.e. for ρ→∞,
the above equations become

(αw′)
′
= −r,

[β (v′ − ϕ)]
′
= −p,

(−λϕ′)′ = β (v′ − ϕ) +m,

(3.41)

that are just the equations of the Timoshenko’s rod model.

We can obtain an equivalent expression of eqs. (3.40), where p appears directly into the
third equation and where the first and third equations contain exclusively the extension
and bending stiffnesses, α and λ. To this purpose, it is sufficient to replace successively
eqs. (3.29) and (3.23) into eqs. (3.36) and (3.38) to obtain[

α

(
w′ − v

ρ

)]′
= −1

ρ
(λϕ′)

′ − r − m

ρ
,[

β

(
v′ +

w

ρ
− ϕ

)]′
= −α

ρ

(
w′ − v

ρ

)
− p,

(λϕ′)
′′

=
α

ρ

(
w′ − v

ρ

)
+ p−m′.

(3.42)

Unlike the case of the balance equations, it is not possible to uncouple the elastic equi-
librium equations. Six boundary conditions complete eqs. (3.42), they specify either the
values of v, w and ϕ or of their derivatives, at the ends of the arch.

3.6.3 The Euler-Bernoulli model for arches

Let us now generalize the Euler-Bernoulli rod model to arches, assuming that the cross
section remains plane and orthogonal to the deformed centerline of the arch, i.e.

ϕ = v′. (3.43)
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Then, eqs. (3.42) become[
α

(
w′ − v

ρ

)]′
= −1

ρ
(λv′′)

′ − r − m

ρ
,

(λv′′)
′′

=
α

ρ

(
w′ − v

ρ

)
+ p−m′.

(3.44)

The third equation, where the shear stiffness β appears, is now meaningless; the shear
T can be recovered, once solved the above equations, which still needs six boundary
conditions, using eq. (3.35).

It is easily checked that for ρ→∞ we get the Euler-Bernoulli rod equations.

3.6.4 Arches of constant section

A particular case is that of an arch with a constant section; in such a case α′ = β′ = λ′ = 0,
so eqs. (3.42) become

α

(
w′ − v

ρ

)′
= −1

ρ
λϕ′′ − r − m

ρ
,

β

(
v′ +

w

ρ
− ϕ

)′
= −α

ρ

(
w′ − v

ρ

)
− p,

λϕ′′′ =
α

ρ

(
w′ − v

ρ

)
+ p−m′.

(3.45)

and eqs. (3.44)

α

(
w′ − v

ρ

)′
= −1

ρ
λv′′′ − r − m

ρ
,

λviv =
α

ρ

(
w′ − v

ρ

)
+ p−m′.

(3.46)

3.6.5 Circular arches

A particularly important case of arches is that of circular arches; in such a case, ρ =
const. ⇒ ρ′ = 0, and actually ρ is just the radius of the circle of which the arch is only
a circular segment.

It is interesting to see what happens to the equations for the case of constant section: eqs.
(3.45) become

α

(
w′′ − v′

ρ

)
= −1

ρ
λϕ′′ − r − m

ρ
,

β

(
v′′ +

w′

ρ
− ϕ′

)
= −α

ρ

(
w′ − v

ρ

)
− p,

λϕ′′′ =
α

ρ

(
w′ − v

ρ

)
+ p−m′,

(3.47)
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while eqs. (3.46) become

α

(
w′′ − v′

ρ

)
= −1

ρ
λv′′′ − r − m

ρ
,

λviv =
α

ρ

(
w′ − v

ρ

)
+ p−m′.

(3.48)

3.7 Examples

We give here some examples of the use of the theory developed in this Chapter. All the
cases concern circular arches with a constant section. The first two examples have been
treated using eqs. (3.47), i.e. the general theory. Then, they have been also treated
using eqs. (3.48) of the Euler-Bernoulli model; the results coincide almost perfectly with
those reported below, that is why they have not been reported here. The third example
concerns an isostatic case, hence the balance equations are sufficient. All the results
have been found numerically, using a standard commercial code (Mathematica). All the
diagrams in the figures have been normalized, and the deformed shape exaggerated, hence
the scale of the diagrams is not real.

3.7.1 Example 1

As a first example, we consider the case of a circular arch of constant section loaded by
a uniform load q = 10 t/m, with ρ = 10 m, spanning a chord ` = 17.1 m, see Fig. 3.7.
The cross section is rectangular, with the base b = 1 m and the thickness h = 2 m; the
Young’s modulus is E = 200 MPa, the Poisson’s ration ν = 0.2, the shear factor χ = 1.2.
Hence, we get α = 4× 107 kN, β = α/2.88 = 1.39× 108 kN and λ = α/3 = 1.33× 108 kN
m2. The ends of the arch are clamped. Hence, the appropriate boundary conditions are
w = v = ϕ = 0 at both the ends.

!

V1 V2 

H2 

x 
!

y 
!

q 

Figure 3.7: Example 1: a uniformly loaded circular arch.

In the following Figures, we report the diagrams, referred to an horizontal axis or to the
arch axis, in grey, of w, v, ϕ, N, T, M and finally of the deformed shape. N is negative
everywhere, i.e. the arch is compressed all along s, as it must be, while M changes of
sign, as a consequence of the clamped edges.
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Figure 3.8: Diagrams of w, blue, v, red, and ϕ, green, example 1.

! !

Figure 3.9: Diagrams of N , blue, M , red, and T , green, example 1.

3.7.2 Example 2

A second example is that of a semicircular arch, with constant section, acted upon by a
vertical force F = 5 kN on the top, see Fig. 3.11. In this case, ρ = 0.865 m, α = 1.5×107

MPa, β = α/2.88 and λ = α/12× 104.

Thanks to the symmetry of the problem, we can study just one half of the structure, acted
upon by a force equal to F/2 and with a slide as a constraint on the top of the arch. The
appropriate boundary conditions are hence: at the left end, w = ϕ = 0, T = −F/2 ⇒
β(v′ + w/ρ − ϕ) = −F/2, while at the right end it is w = v = ϕ = 0. The following
diagrams, referring to only half of the arch, show the results for this example.

3.7.3 Example 3

This last example concerns a three-hinge arch, hence an isostatic case. For this reason,
we can simply consider the equilibrium equations, either in the form (3.5) or in the form
of eqs. (3.36) and (3.38).

The problem is analogous at those of Example 2 and in particular the data are the same,
but now the arch has an hinge also at the top, in correspondence of the force F . Again,
we can study just one half of the structure, see Fig. 3.15. The boundary conditions now
concern exclusively T and M . In fact, no information is given about the value of N at
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Figure 3.10: Deformed shape of the arch, example 1.
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Figure 3.11: Example 2: a circular arch with a concentrated vertical load.

the edges of the arch. In particular, the boundary conditions are: at the left edge, M = 0
and T = −F/2, while at the right edge M = 0. If the system of the two differential
equations (3.36) and (3.38) is used, then the condition of the shear force must be written
in terms of the derivative of M , eq. (3.5)3: T = −F/2 ⇒ M ′ − m = −F/2. In this
case, we have just solved numerically eqs. (3.36) and (3.38), and then obtained T from
(3.5)3. The displacement components w, v and ϕ have been obtained by the procedure
described in Sect. 3.6.1; in particular, the three boundary conditions for integrating the
compatibility equations (3.23) are w = 0 at the left end and w = v = 0 at the right one.
The results are presented in Figs. 3.16 to 3.18. To remark that the rotation ϕ is almost
constant.

We remark that in this particular case the balance equations have an analytical solution,
that can be easily found using either eqs. (3.5) or eqs. (3.36) and (3.38):

N = −F
2

(sin θ + cos θ),

T =
F

2
(sin θ − cos θ),

M =
F

2
ρ(1− sin θ − cos θ).

(3.49)

3.8 Exercices

1. Write the equations of the elastic equilibrium of arches using as variable the angle
θ of a polar frame instead of s.

2. Write and solve analytically the balance equations for the circular arch of constant
section in Fig. 3.19. Try also to find the functions N, T and M using basic
equilibrium considerations.
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Figure 3.12: Diagrams of w, blue, v, red, and ϕ, example 2.

!
!

Figure 3.13: Diagrams of N , blue, M , red, and T , green, example 2.

3. For the previous exercice, find the horizontal displacement of the loaded node using
the dummy load method (A, J,E, ν and χ are given).

4. Consider again the Example 1, Sect. 3.7.1; in place of the clamped edges, consider
a hinge at the left end and a simple horizontal support at the right one. Using the
dummy load method find the displacement of the right edge (neglect the effects of
N and T ).

5. Still for the Example 1 of Sect. 3.7.1, be A = A0 cos θ, J = J0 cos θ the variation
of the cross section area and moment of inertia, respectively, with the angle θ, the
angle of the polar coordinates in a frame centered in the center of the arch. A0 and
J0 are the values for θ = 0 and they coincide with those specified in the Example 1.
Using θ as independent variable, write the equations of the elastic equilibrium for
the two cases of the general theory and of the Euler-Bernoulli model.
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Figure 3.14: Deformed shape of the arch, example 2.
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Figure 3.15: Example 3: three-hinged arch.

!

!

Figure 3.16: Diagrams of w, blue, v, red, and ϕ, example 3.
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!

Figure 3.17: Diagrams of N , blue, M , red, and T , green, example 3.

Figure 3.18: Deformed shape of the arch, example 3.
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Figure 3.19: Arch of exercice 2.
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Chapter 4

Plates

4.1 Problem definition: basic assumptions

A plate, see Fig. 4.1, is a solid Ω bounded by two parallel planes, the upper and lower
faces ST and SB, and by a lateral surface SL, orthogonal to the two faces, so that, finally,
a plate is just a flat cylinder. The mid-plane is the plane at equal distance from the two
faces. We introduce the orthonormal Cartesian frame {o;x, y, z}, with the axes x and y
that belong to the mid-plane. Be h the thickness of the plate; for a solid to be really a
plate, it must be h << d, with d the mean chord of the mid-plane. The contour of the
plate is the line γ intersection of SL with the mid-plane. Usually, plates are classified as
follows:

• thin plates:
h

d
.

1

10
;

• moderately thick plates:
1

10
.
h

d
.

1

5
;

• thick plates:
h

d
&

1

5
.

	

	
	 	
	

h

SL
SB

ST

!

nx

y

z

o
"

o
!

y

x
s

p

n

t

Figure 4.1: General sketch of a plate.
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We assume that displacements, rotations and strains are small. As a consequence, the
small strain tensor ε can be taken as an appropriate measure of deformation and the
equilibrium equations can be written in the undeformed configuration Ω.

We consider elastic plates, i.e. plates composed by linearly elastic materials whose con-
stitutive law is specified by the Lamé’s equations:

σ =
E

1 + ν

(
ε+

ν

1− 2ν
trε I

)
. (4.1)

Finally, the problem so defined is linear.

Concerning the loading, we consider:

• distributed body forces b(p) on Ω;

• distributed surface tractions τ
(
x, y,±h

2

)
on ST and SB;

• distributed line forces F̂ and couples M̂ on SL;

• distributed couples inside Ω are excluded.

In addition, we consider even distribution of the forces, with respect to the mid-plane, i.e.

b(x, y, z) = b(x, y,−z), τ (x, y, z) = τ (x, y,−z), (4.2)

and in particular

τ

(
x, y,

h

2

)
= τ

(
x, y,−h

2

)
. (4.3)

There are different possible approaches to the construction of a plate theory; we will
follow here a classical axiomatic approach, i.e. an approach based upon the a-priori (i.e.
axiomatic) choice of a displacement field. Such choice corresponds to a kinematical model,
characterizing the theory.

Putting u = (u, v, w) the displacement vector, we need to specify how the three compo-
nents u = u(x, y, z), v = v(x, y, z), w = w(x, y, z) of u vary, and in particular how they
change across the thickness, i.e. along z. This choice is suggested, of course, by the par-
ticular geometry of the plate. In particular, being h/d a fundamental parameter defining
the plate, kinematical models differ from each other as a function of h/d.

4.2 The Kirchhoff model for thin plates

4.2.1 The displacement field

In Fig. 4.2 it is schematically represented a cross-section of the plate, along the plane
x− z, before and after the deformation. Let us consider the segment AC, orthogonal to
the mid-plane, with B its intersection with the mid-plane and p a point of AC with the
distance z from the mid-plane. After the deformation each material point of the plate

54



C
op

yr
ig

ht
 P

. V
an

nu
cc

i –
 U

V
S

Q
 

pa
ol

o.
va

nn
uc

ci
@

m
ec

a.
uv

sq
.fr

1

z

x

A

B

C

ph/2

h/2

A’

B’

C’

βx
p’

βx

w0

u0

u

w

z

z
u(p)

u(B)

Figure 4.2: Kirchhoff’s kinematics in the {x, z} plane.

moves to a new position indicated by a prime: p goes into p′, B into B′ and so on. We
can express the displacement u(p) as

u(p) = p′ − p = p′ −B′ +B′ −B +B − p = u(B)− ze3 + p′ −B′, (4.4)

i.e. we can decompose the displacement of any point of Ω as the sum of the displacement
of its projection onto the mid-plane plus a position vector, B−p, and a local displacement,
p′ − B′, which is the displacement of p′ relative to B′. Because B = (x, y, 0), u(B) =
u(x, y, 0), so we put

u0 := u(x, y, 0) = (u0(x, y), v0(x, y), w0(x, y)); (4.5)

u0(x, y) is a bi-dimensional vector field describing the displacement of the points of the
mid-plane. We need now to define the local displacement p′ − B′. It is exactly at this
point that a kinematical model is needed.

The Kirchhoff model is based upon three assumptions concerning the deformation of any
segment AC. According to the Kirchhoff model, any material segment orthogonal to the
mid-plane remains:

• i. a straight segment;

• ii. orthogonal to the deformed mid-surface;

• iii. of the same length.

The third assumption of Kirchhoff states that

|p−B| = |p′ −B′| = z; (4.6)

if β is the angle that the deformed segment A′C ′ forms with the axis z, then, because of
the first Kirchhoff assumption,

p′ −B′ = (−z sin βx,−z sin βy, z cos β), (4.7)

where βx and βy are the angles that z forms with the projections of A′C ′ onto the planes
x − z and y − z, respectively. It is an easy task to show that βx ≤ β, βy ≤ β, Fig.
4.3. The second Kirchhoff assumption lets now affirm that the angle formed by the line
intersection of the plane containing axis z and A′C ′ with the tangent plane, in B′, to the

55



x

z

y

!x !y!

o

Figure 4.3: Angles scheme.

bent mid-surface and by the projection of A′C ′ onto the plane x−y is exactly β; the same
is valid also for the projection angles βx and βy. If now we use the assumption of small
rotations, then

β → 0⇒ βx → 0, βy → 0⇒


β ' sin β ' tan β, cos β ' 1,

βx ' sin βx ' tan βx =
∂w0

∂x
,

βy ' sin βy ' tan βy =
∂w0

∂y
.

(4.8)

Hence,

p′ −B′ '
(
−z∂w0

∂x
,−z∂w0

∂y
, z

)
, (4.9)

i.e. within the Kirchhoff model, the local displacement is a linear function of z. Finally

u(p) =


u0(x, y)− z∂w0(x, y)

∂x

v0(x, y)− z∂w0(x, y)

∂y
w0(x, y)

 . (4.10)

Some remarks about this result:

• u(p) depends linearly upon z,so all the problem is reduced to find find the planar
vector field u0(x, y) describing the displacement of the points of the mid-plane;
the 3D problem has hence reduced to a 2D one, but this passage, that simplifies
remarkably the problem, has heavy consequences, as we will see in the following;

• the kinematics assumptions of the Kirchhoff model are rather heavy; namely, the
second one eliminates out-of-plane shear deformations, giving on one hand an in-
creased stiffness to the plate, that cannot deform for shear, and, on the other hand,
causing difficulties in the computation of the transversal shear stresses;

• the Kirchhoff assumptions are plausible only for thin plates; when this is not true,
they should be removed, especially the first and second ones, passing in this way to
higher order theories.
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4.2.2 Strain field

The strain field ε(p) can be easily calculated using the displacement field u(p):

ε(p) =
∇u(p) +∇u(p)>

2
=

∂u0

∂x
− z∂

2w0

∂x2

1

2

(
∂u0

∂y
+
∂v0

∂x

)
− z ∂

2w0

∂x∂y
0

1

2

(
∂u0

∂y
+
∂v0

∂x

)
− z ∂

2w0

∂x∂y

∂v0

∂y
− z∂

2w0

∂y2
0

0 0 0

 .
(4.11)

So, εxz = εyz = εzz = 0: as a consequence of the Kirchhoff model, ε is planar. Contrarily
to what often said, however, this is not a plane strain state, because w is not identically
null and u and ε depend upon z too. Actually, a plane strain state is typical of long
cylinders acted upon by forces that do not vary along the axis of the cylinder; here, the
only thing that can be said is that in the Kirchhoff model ε is planar.

4.2.3 Stress field

About the stress field σ(p) a supplementary assumption is made: ∀p ∈ Ω,

σzz = 0. (4.12)

This assumption, common also to other plates theories, can be justified as follows:

• from the inverse Lamé’s equation,

ε =
1 + ν

E
σ − ν

E
trσ I, (4.13)

we get

εzz =
σzz − ν(σxx + σyy)

E
, (4.14)

and because in the Kirchhoff model εzz, we get

σzz = ν(σxx + σyy); (4.15)

• for common materials, 0 < ν < 1/2, so σzz is at most of the same order of magnitude
of σxx and σyy;

• for the assumptions on the loads, σzz is a smooth function of z; so, because σzz is
regular and the plate thin, its value cannot increase very much inside th plate with
respect to the values that σzz has on the faces of the plate;

• because the value of σzz on SB and ST is just the value of the contact forces applied
to the faces, i.e. τz, it has not, in usual situations, a great value compared to the
design values of σxx and σyy. For this reason, we can neglect σzz and finally consider
that it is null.

57



These arguments are merely empirical; of course, they are not valid in some situations,
i.e. in correspondence of concentrated loads, e.g. impact forces, or of supporting parts. In
such cases the stress sate is properly a 3D one and in such zones the behavior is, locally,
far from that of a plate.

Because εxz = εyz, from eq. (4.1) we get also

σxz =
E

1 + ν
εxz = 0, σyz =

E

1 + ν
εyz = 0, (4.16)

so finally also the stress field is planar:

σ =

 σxx σxy 0
σxy σyy 0
0 0 0

 . (4.17)

This is a strange situation, because in elasticity, a plane stress state is incompatible with
a plane strain one and vice-versa. However, because ε(p) depends upon x, y and z, this
is the same also for the stress field: σ(p) is not a plane field.

A dramatic consequence of eq. (4.16) is that the plate cannot be equilibrated under the
action of loads that have a component orthogonal to the mid-plane: strictly speaking,
the Kirchhoff model concerns plates that are loaded in their plane or by couples on the
boundary. This problem will be solved making use directly of the equilibrium equations,
cf. Sec. 4.2.9.

We remark also that eq. (4.16) is a consequence not only of the kinematical model, but
also of the constitutive law: for generally oriented anisotropic plates, σxz and σyz are in
general not null, also for the Kirchhoff model.

We can now obtain the constitutive law for a Kirchhoff plate: from eq. (4.13) we get

εxx =
1

E
(σxx − νσyy),

εyy =
1

E
(σyy − νσxx),

εxy =
1 + ν

E
σxy,

(4.18)

that once inverted give

σxx =
E

1− ν2
(εxx + νεyy),

σyy =
E

1− ν2
(εyy + νεxx),

σxy =
E

1 + ν
εxy = 2Gεxy.

(4.19)

We can put the last result in matrix form:
σxx

σyy

σxy

 =


E

1− ν2

νE

1− ν2
0

νE

1− ν2

E

1− ν2
0

0 0 G




εxx

εyy

2εxy

 , (4.20)
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or synthetically
σ = D ε, (4.21)

with D the matrix in eq. (4.20). It can be checked that D corresponds to the so-called
reduced stiffness matrix, typical of a plane stress state: finally, though the assumptions of
the Kirchhoff model do not coincide with those typical of a plane stress state (σ is not
a plane field), the plate’s constitutive law, eq. (4.20) is just like that of a plane stress
state.

4.2.4 Internal actions

The internal actions, forces and couples, are obtained integrating through the thickness
the stress field. In particular, we introduce:

• the extension tensor N, defined as

N =

∫ +h
2

−h
2

σ dz, (4.22)

whose components


Nx

Ny

Nxy

 =



∫ +h
2

−h
2

σxx dz∫ +h
2

−h
2

σyy dz∫ +h
2

−h
2

σxy dz


(4.23)

are represented in Fig. 4.4;

• the transverse shear forces

Tx =

∫ +h
2

−h
2

σxz dz, Ty =

∫ +h
2

−h
2

σyz dz, (4.24)

also represented in Fig. 4.4,

• the bending tensor M, defined as

M =

∫ +h
2

−h
2

z σ dz, (4.25)

whose components


Mx

My

Mxy

 =



∫ +h
2

−h
2

z σxx dz∫ +h
2

−h
2

z σyy dz∫ +h
2

−h
2

z σxy dz


(4.26)

are still represented in Fig. 4.4.
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Figure 4.4: Internal actions.

Being integrals of a planar symmetric second-rank tensor, both N and M are planar sym-
metric second-rank tensors too; in addition, they are plane fields too: N = N(x, y),M =
M(x, y). To remark that the units of N and of the shear forces Tx and Ty are a force per
unit length, while those of M are a force.

4.2.5 Uncoupling bending and extension

The expression of ε can be written in the form

ε = ε0 + z κ, (4.27)

where

ε0 =


ε0
xx

ε0
yy

2ε0
xy

 =



∂u0

∂x
∂v0

∂y

∂u0

∂y
+
∂v0

∂x


(4.28)

is the in-plane deformation tensor, describing the strain of the mid-plane, while

κ =


κx

κy

2κxy

 =



−∂
2w0

∂x2

−∂
2w0

∂y2

−2
∂2w0

∂x∂y


(4.29)

is the curvatures tensor, describing the bending of the mid-plane. Using this decomposi-
tion of ε, we can write

σ = Dε = Dε0 + zDκ (4.30)

and because D, ε0 and κ do not depend upon z, we get

N = Dε0

∫ +h
2

−h
2

dz + Dκ
∫ +h

2

−h
2

z dz = h Dε0,

M = Dε0

∫ +h
2

−h
2

z dz + Dκ
∫ +h

2

−h
2

z2 dz =
h3

12
Dκ,

(4.31)
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i.e. N depends only upon in-plane strains and M only upon curvatures: there is not
any no coupling between extension and curvatures nor between bending and in-plane
deformation. Actually, the absence of any coupling effect is due to two facts: on one
hand, geometry (the flatness of the plate) and on the other hand homogeneity (the plate
is composed by a unique layer): generally speaking for shells, i.e. ”curved plates”, and
laminates, i.e. plates obtained superposing layers, coupling effects are present. Finally,
extension and bending of the plate can be examined separately, they do not interact.

A plate that is subjected only to in-plane forces, so that κ = o ⇒ M = o, is called a
(flat) membrane (curved membranes exist too, e.g. an inflated balloon). The membrane
regime, however, is compatible only with a distribution of the forces which is point-wise
symmetric with respect to the mid-plane, assumption that we make in the following.

4.2.6 Balance equations

There are different ways for writing local balance equations. A standard approach is to
write the equilibrium to translation and rotation of a small part of the plate, and then
discard higher order terms. We prefer here a more concise approach: starting from the
3D equilibrium equations,

divσ + b = o, (4.32)

where b(p) is the field of body forces (forces per unit volume) on Ω, we obtain, after
integration on z, ∫ h

2

−h
2

(
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ bx

)
dz = 0,∫ h

2

−h
2

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ by

)
dz = 0,∫ h

2

−h
2

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ bz

)
dz = 0.

(4.33)

Because the integration bounds are fixed, we can bring the differential operators outside
the integration symbol:

∂

∂x

∫ h
2

−h
2

σxx dz +
∂

∂y

∫ h
2

−h
2

σxy dz +

∫ h
2

−h
2

(
∂σxz
∂z

+ bx

)
dz = 0,

∂

∂x

∫ h
2

−h
2

σxy dz +
∂

∂y

∫ h
2

−h
2

σyy dz +

∫ h
2

−h
2

(
∂σyz
∂z

+ by

)
dz = 0,

∂

∂x

∫ h
2

−h
2

σxz dz +
∂

∂y

∫ h
2

−h
2

σyz dz +

∫ h
2

−h
2

(
∂σzz
∂z

+ bz

)
dz = 0,

(4.34)

so that, introducing eqs. (4.23) and (4.24), we get

∂Nx

∂x
+
∂Nxy

∂y
+ fx = 0,

∂Nxy

∂x
+
∂Ny

∂y
+ fy = 0,

(4.35)
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and
∂Tx
∂x

+
∂Ty
∂y

+ fz = 0, (4.36)

with1

fx = [σxz]
h
2

−h
2

+

∫ h
2

−h
2

bxdz = 2τx +

∫ h
2

−h
2

bxdz

fy = [σyz]
h
2

−h
2

+

∫ h
2

−h
2

bydz = 2τy +

∫ h
2

−h
2

bydz

fz = [σzz]
h
2

−h
2

+

∫ h
2

−h
2

bzdz = 2τz +

∫ h
2

−h
2

bzdz.

(4.37)

Equations (4.35) are the extension, or membrane, equilibrium equations of the plate, while
eq. (4.36) is the transverse shear equilibrium equation.

The bending equilibrium can be obtained in a similar way, now integrating eq. (4.32)
once multiplied by z, the distance of each component σij(p) from the mid-plane:∫ h

2

−h
2

z

(
∂σxx
∂x

+ z
∂σxy
∂y

+ z
∂σxz
∂z

+ z bx

)
dz = 0,∫ h

2

−h
2

(
z
∂σxy
∂x

+ z
∂σyy
∂y

+ z
∂σyz
∂z

+ z by

)
dz = 0,∫ h

2

−h
2

(
z
∂σxz
∂x

+ z
∂σyz
∂y

+ z
∂σzz
∂z

+ z bz

)
dz = 0.

(4.38)

Because we are interested in the bending of the plate, the third equation of (4.41) can
be discarded, as it concerns the equilibrium to rotation about the axis z. Observing that

z
∂σαβ
∂α

=
∂zσαβ
∂α

α, β ∈ {1, 2}, (4.39)

and that, because b(p) is an even function, zb(p) is an odd one so that∫ h
2

−h
2

z bxdz =

∫ h
2

−h
2

z bydz = 0, (4.40)

we get

∂

∂x

∫ h
2

−h
2

zσxx dz +
∂

∂y

∫ h
2

−h
2

zσxy dz +

∫ h
2

−h
2

z
∂σxz
∂z

dz = 0,

∂

∂x

∫ h
2

−h
2

zσxy dz +
∂

∂y

∫ h
2

−h
2

zσyy dz +

∫ h
2

−h
2

z
∂σyz
∂z

dz = 0.

(4.41)

1Thanks to the assumption of symmetrical distribution of the actions, τ
(
x, y,−h

2

)
= τ

(
x, y, h2

)
=

(τx, τy, τz); but τ
(
x, y,±h

2

)
= σ

(
x, y,±h

2

)
n
(
x, y,±h

2

)
and n

(
x, y,−h

2

)
= −n

(
x, y, h2

)
= (0, 0,−1),

so that τ
(
x, y,−h

2

)
= (τx, τy, τz) = (−σxz,−σyz,−σzz)−h

2
and τ

(
x, y, h2

)
= (τx, τy, τz) =

(σxz, σyz, σzz)h
2
⇒ [σxz]

h
2

−h
2

= 2τx, [σyz]
h
2

−h
2

= 2τy, [σzz]
h
2

−h
2

= 2τz.
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Integration by parts gives, cf. Note 1 and eq. (4.24),∫ h
2

−h
2

z
∂σxz
∂z

dz = [zσxz]
h
2

−h
2

−
∫ h

2

−h
2

σxz dz = −Tx,∫ h
2

−h
2

z
∂σyz
∂z

dz = [zσyz]
h
2

−h
2

−
∫ h

2

−h
2

σyz dz = −Ty.
(4.42)

If now we introduce eq. (4.26) we obtain

∂Mx

∂x
+
∂Mxy

∂y
= Tx,

∂Mxy

∂x
+
∂My

∂z
= Ty,

(4.43)

and introducing this result into eq. (4.36) we get the unique second-order equation in-
cluding bending and shear equilibrium:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ fz = 0. (4.44)

4.2.7 Elastic equilibrium equations

Injecting into eq. (4.31)1 the expressions of D and ε0 we get

Nx =
E h

1− ν2

(
∂u0

∂x
+ ν

∂v0

∂y

)
,

Ny =
E h

1− ν2

(
ν
∂u0

∂x
+
∂v0

∂y

)
,

Nxy = G

(
∂u0

∂y
+
∂v0

∂x

)
,

(4.45)

which injected into eq. (4.35) gives (G = E/2(1 + ν))

E h

1 + ν

[
1

1− ν

(
∂2u0

∂x2
+ ν

∂2v0

∂x∂y

)
+

1

2

(
∂2u0

∂y2
+
∂2v0

∂x∂y

)]
+ fx = 0,

E h

1 + ν

[
1

2

(
∂2u0

∂x∂y
+
∂2v0

∂x2

)
+

1

1− ν

(
ν
∂2u0

∂x∂y
+
∂2v0

∂y2

)]
+ fy = 0.

(4.46)

These are the elastic membrane equilibrium equations for isotropic homogeneous plates;
they are the 2D equivalent of the rod extension equilibrium equation EA w”+pz = 0.

Similarly, if now we inject into eq. (4.31)2 the expressions of D and κ, we obtain

Mx = −h
3

12

E

1− ν2

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
,

My = −h
3

12

E

1− ν2

(
∂2w0

∂y2
+ ν

∂2w0

∂x2

)
,

Mxy = −h
3

12

E

1 + ν

∂2w0

∂x∂y
,

(4.47)
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that inserted into eq. (4.44) gives

h3

12

E

1− ν2

(
∂4w0

∂x4
+ 2

∂4w0

∂x2∂y2
+
∂4w0

∂y4

)
= fz. (4.48)

Usually, the symbol D is used to denote the bending stiffness of the plate per unit of
length:

D =
h3

12

E

1− ν2
, (4.49)

so that, once introduced the classical double laplacian differential operator,

∆2 =
∂4•
∂x4

+ 2
∂4•

∂x2∂y2
+
∂4•
∂y4

, (4.50)

eq. (4.48) can be rewritten in the form

D∆2w0 = fz. (4.51)

This is the celebrated Germain-Lagrange equation (1816); it is the 2D corresponding of
the elastic bending equilibrium equation EJ viv = py for rods: the Kirchhoff model is,
for plates, the equivalent of the Euler-Bernoulli model for the bending of rods. Actually,
because h3/12 is the moment of inertia, about axes x or y, of a unit length cross section
of the plate, the true difference between the 1D case, rods, and the 2D one, plates, is in
the term 1− ν2, which is a consequence of the reduced stiffness D, hence of the fact that
σ(p) is planar: plates are intrinsically stiffer than rods.

Equations (4.46) and (4.51) are the elastic equilibrium equations of plates, respectively for
membrane and for bending.

In the same way, from the equilibrium equations for bending, eq. (4.43), we get:

Tx =
∂Mx

∂x
+
∂Mxy

∂y
= −h

3

12

E

1− ν2
[w0,xxx + νw0,xyy + (1− ν)w0,xyy] ,

Ty =
∂Mxy

∂x
+
∂My

∂z
= −h

3

12

E

1− ν2
[w0,xxy + νw0,xyy + (1− ν)w0,yyy] ,

(4.52)

i.e.

Tx = −h
3

12

E

1− ν2
∆w0,x,

Ty = −h
3

12

E

1− ν2
∆w0,y.

(4.53)

4.2.8 Expressions for stresses

Inverting eqs. (4.31) gives

Dε0 =
N

h
, Dκ =

12

h3
M, (4.54)

that injected into eq. (4.30) gives

σ =
1

h
N +

12

h3
M z. (4.55)

This formula generalizes to plates the Navier’s formula, giving the normal stress distri-
bution in beams subjected to bending and extension.
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4.2.9 Transverse shear stresses

We can now go back to the problem of determining the transverse shear stresses σxz and
σyz, that, as we have seen, are incompatible with the Kirchhoff’s assumptions. Actually,
we can find them using the equilibrium equations: from eqs. (4.33)1,2, we get

σxz = −
∫ h

2

−h
2

(
∂σxx
∂x

+
∂σxy
∂y

+ bx

)
dz,

σyz = −
∫ h

2

−h
2

(
∂σxy
∂x

+
∂σyy
∂y

+ by

)
dz.

(4.56)

Let us transform these equations: from (4.55) we get

σxx =
Nx

h
+

12

h3
Mxz,

σyy =
Ny

h
+

12

h3
Myz,

σxy =
Nxy

h
+

12

h3
Mxyz,

(4.57)

that injected into eq. (4.56) gives

σxz = −
∫ h

2

−h
2

1

h

(
∂Nx

∂x
+
∂Nxy

∂y

)
+ bx dz −

12

h3

∫ h
2

−h
2

(
∂Mx

∂x
+
∂Mxy

∂y

)
z dz,

σyz = −
∫ h

2

−h
2

1

h

(
∂Ny

∂y
+
∂Nxy

∂x

)
+ by dz −

12

h3

∫ h
2

−h
2

(
∂My

∂y
+
∂Mxy

∂x

)
z dz.

(4.58)

If now we use eqs. (4.35), (4.37) and (4.43) we get

σxz = −2τx −
12

h3

∫ h
2

−h
2

z Tx dz,

σyz = −2τy −
12

h3

∫ h
2

−h
2

z Ty dz,

(4.59)

and finally

σxz = −2τx −
6

h3
Txz

2 + cx,

σyz = −2τy −
6

h3
Tyz

2 + cy,
(4.60)

with cx and cy two integration constants that can be determined through the boundary
conditions. Because we have integrated two first-order equilibrium equations, we only
have one boundary condition for each stress equation, that allows for determining just
one integration constant, while there are two boundaries, SB and ST , on which the stresses
σxz or σyz must match the value of the applied surface tractions. Because σxz and σyz
are quadratic functions of z, this is possible only if the boundary conditions on SB and
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ST are the same, i.e. if the plate is loaded symmetrically with respect to the mid-plane,
assumption that we have made.

If we put that

σxz

(
±h

2

)
= τx, σyz

(
±h

2

)
= τy, (4.61)

we get

cx = 3τx +
3

2h
Tx, cy = 3τy +

3

2h
Ty, (4.62)

and finally

σxz = τx +
6

h
Tx

(
1

4
− z2

h2

)
,

σyz = τy +
6

h
Ty

(
1

4
− z2

h2

)
.

(4.63)

In the most common case of null tangential loads on SB and ST , i.e. for τx = τy = 0, we
obtain the classical result

σxz =
6

h
Tx

(
1

4
− z2

h2

)
,

σyz =
6

h
Ty

(
1

4
− z2

h2

) (4.64)

for plates acted upon uniquely by transversal forces; these formulae generalize to plates
the classical result of the Jourawski’s formula for the shear stresses in beams. They state
that the variation of the transverse shear stresses σxz and σyz through the thickness of
the plate is parabolic and that the maximum is get in correspondence of the mid-plane,
where they attain 1.5 times their average value:

σmaxxz =
3

2

Tx
h
, σmaxyz =

3

2

Ty
h
. (4.65)

4.2.10 Boundary conditions

The equilibrium equations (4.35) and (4.44) are not sufficient to determine all the static
unknowns: plates are intrinsically hyperstatic bodies. We need hence to introduce in the
computation not only the balance equations, but also the constitutive law, i.e. we need
to make use of the elastic equilibrium equations (4.46) and (4.51). These are partial
differential equations of the second and fourth order respectively. The question of how
many and which boundary conditions are to be associated to eqs. (4.46) and (4.51) has
needed a long period to be solved and the arguments that lead to the solution are detailed
below. In order to write the boundary conditions, we refer to a generic situation for the
boundary of the plate, the lateral surface SL whose trace in the mid-plane is the curve γ,
see Fig. 4.5; at a point p ∈ γ,n = (nx, ny) and t = (−ny, nx) are the unit vectors of the
mid-plane respectively orthogonal and tangent to γ.

On an infinitesimal surface element dω ∈ SL of width ds, there are the actions Nn =
(Nn, Nt) for extension, Tn, for shear, and Mn = (Mn,Mt) for bending, see again Fig. 4.5.

66



	

	
	 	
	

h

SL
SB

ST

!

nx

y

z

o
"

o
!

y

x
s

p

n

t

	
	 	
	

ds

t

Nn

Ntn

MtnSL !d#Tn
Mn

n

p

	

	
	 	
	

h

SL
SB

ST

!

nx

y

z

o
"

o
!

y

x
s

p

n

t

	
	 	
	

ds

t

Nn

Nt

MtSL !d#Tn
Mn

n

p

Figure 4.5: Boundary actions.

Because N and M are second-rank tensors, we have that

Nn = N n→
{
Nn = (n⊗ n) ·N = Nxn

2
x + 2Nxynxny +Nyn

2
y,

Nt = (t⊗ n) ·N = Nxy(n
2
x − n2

y) + nxny(Ny −Nx),
(4.66)

and in the same way

Mn = M n→
{
Mn = (n⊗ n) ·M = Mxn

2
x + 2Mxynxny +Myn

2
y,

Mt = (t⊗ n) ·M = Mxy(n
2
x − n2

y) + nxny(My −Mx).
(4.67)

For what concerns Tn, it is obtained by simple projection on n of the shear forces vector
T = (Tx, Ty):

Tn = T · n = Txnx + Tyny. (4.68)

In the same way, we can proceed for the displacement vector of the mid-plane, u0 =
(u0, v0, w0). In particular, we need to project u0 on n, t and ez, the unit vector of the axis
z:

un = u0 · n = (u0, v0, w0) · (nx, ny, 0) = u0nx + v0ny,

ut = u0 · t = (u0, v0, w0) · (−ny, nx, 0) = −u0ny + v0nx,

uz = u0 · ez = (u0, v0, w0) · (0, 0, 1) = w0.

(4.69)

We can now write the boundary conditions for any point of the border and let us begin
with the boundary conditions for the membrane equations:

• kinematical (or geometrical) conditions:

un = ûn, ut = ût; (4.70)

• natural conditions:
Nn = F̂n, Nt = F̂t, (4.71)

where ûn, ût, F̂n and F̂t are known values. A list, not exhaustive but comprehending the
more important and common cases of boundary conditions for the membrane equations,
is given below:

• supported border: un = 0, ut = 0;
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• supported border free to slide along t : un = 0;

• free unloaded border: Nn = 0, Nt = 0;

• free loaded border: Nn = F̂n, Nt = F̂t.

Let us now consider the boundary conditions for the bending equation; now, a point p ∈ γ
can have:

• a displacement along z: w0;

• a rotation about t:
∂w0

∂n
;

• a rotation about n:
∂w0

∂t
.

Statically, the possible actions are:

• a shear: Tn;

• a bending moment: Mn;

• a twisting moment: Mt.

The conditions to be written must be specified for each case, let us see the most important
ones.

4.2.10.1 Simply supported edges

In this case the boundary conditions are

w0 = 0, Mn = 0. (4.72)

For the case of a border orthogonal to the x-axis, i.e. for n = ex,

Mn = Mx = −h
3

12

E

1− ν2

(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
, (4.73)

so the natural condition becomes

∂2w0

∂x2
+ ν

∂2w0

∂y2
= 0. (4.74)

Because on such a border x = const. and w0 = 0,

∂2w0

∂y2
= 0, (4.75)

and finally the natural boundary condition can be written

∂2w0

∂x2
= 0. (4.76)

For this particular case, originally, Navier proposed the boundary conditions

w0 = 0, ∆w0 = 0, (4.77)

that actually are equivalent to the above ones.
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4.2.10.2 Clamped edges

For such a case, the boundary conditions are

w0 = 0,
∂w0

∂n
= 0. (4.78)

To recall that

∂w0

∂n
= ∇w0 · n =

(
∂w0

∂x
,
∂w0

∂y
,
∂w0

∂x

)
· (nx, ny, 0) =

∂w0

∂x
nx +

∂w0

∂y
ny. (4.79)

4.2.10.3 Free edges

According to the approach of Poisson (1829), there are three boundary conditions to be
written for a free edge:

Tn = F̂z, Mn = M̂n, Mt = M̂t. (4.80)

Actually, this is true also for the two previous cases, where one could write:

• simply supported edge:

w0 = 0⇒ Tn 6= 0,
∂w0

∂t
= 0⇒Mt 6= 0, Mn = 0⇒ ∂w0

∂n
6= 0;

• clamped edge:

w0 = 0⇒ Tn 6= 0,
∂w0

∂t
= 0⇒Mt 6= 0,

∂w0

∂n
= 0⇒Mn 6= 0.

However, this approach is false: in fact,
∂w0

∂n
and

∂w0

∂t
are not independent, so the number

of boundary conditions cannot be three. The reduction of the number of boundary condi-
tions from 3 to 2, and their correct expression, can be illustrated by a classical procedure
due to Kelvin, detailed in the next Section2.

4.2.10.4 The Kelvin’s reduction of the boundary conditions

Let us imagine of subdividing the plate’s edge into a series of parallel stripes of infinites-
imal width ds, see Fig. 4.6. On each stripe acts a shear

Tn ds (4.81)

and a twisting moment
Mt ds. (4.82)

We add, ideally, two equal and opposite couples to each stripe: the first one is the couple

−M ′
t ds, (4.83)

2The method proposed by Kelvin (1867) to introduce the correct boundary conditions was first estab-
lished by Kirchhoff through a variational approach (1850).
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Figure 4.6: Kelvin’s reduction of the boundary conditions.

result of the shear stress −σ′tn, opposite of the actual one σtn. The second couple is
composed by two vertical forces ±V ′n applied on the edges of the stripe, so as that

V ′n ds = M ′
t ds⇒ V ′n = M ′

t . (4.84)

On the following stripe, in the sense of t, we add the couple −(M ′
t + dM ′

t)ds and the
opposite one (V ′n + dV ′n)ds and so on for all the stripes. On the edge shared by two
neighbouring stripes, the forces −V ′n and (V ′n + dV ′n) give the net force, per unit length,

dV ′n
ds

=
dM ′

t

ds
, (4.85)

while the twist moment, per unit length, becomes Mt − M ′
t . For the Saint Venant’s

Principle, because the moments −M ′
tds and V ′nds are equilibrated, the static and elastic

regime of the plate is not affected sufficiently far from the edge (for a distance, say, of the
order of the plate’s thickness). If now we chose M ′

t = Mt, the twisting moment is null
on the boundary and it is substituted by a distribution of vertical forces, per unit length,
equal to

dVn
ds

=
dMt

ds
. (4.86)

These forces, called substitution forces, are statically equivalent to the twist moment Mt.
The vertical reaction of a support is hence not Tn, but

T ∗n = Tn +
dMt

ds
. (4.87)

The force T ∗n is called the Kirchhoff’s shear. Mechanically, this result shows that in the
Kirchhoff’s model the action of Mt on an edge does not give rise to a deformation, but
only to a reaction, in the form of a vertical force.

Finally, the correct boundary conditions are just two and namely:

• for a free edge:

T ∗n = F̂z, Mn = M̂n → w0 6= 0,
∂w0

∂n
6= 0,

∂w0

∂t
6= 0; (4.88)

• for a simply supported edge:

w0 = 0, Mn = 0 → T ∗n 6= 0,
∂w0

∂n
6= 0,

∂w0

∂t
= 0; (4.89)
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• for a clamped edge:

w0 = 0,
∂w0

∂n
= 0 → T ∗n 6= 0, Mn 6= 0,

∂w0

∂t
= 0. (4.90)

We can also obtain an expression of T ∗n as function of w0: if, e.g., n = ex, then

T ∗n = T ∗x = Tx +
∂Mxy

∂y
= −h

3

12

E

1− ν2

[
∂3w0

∂x3
+ (2− ν)

∂3w0

∂x∂y2

]
; (4.91)

in the same way, if n = ey, we get

T ∗n = T ∗y = Ty +
∂Mxy

∂x
= −h

3

12

E

1− ν2

[
∂3w0

∂y3
+ (2− ν)

∂3w0

∂x2∂y

]
. (4.92)

Then,
T ∗n = T ∗xnx + T ∗y ny. (4.93)

As a last point, we need to consider the case of a discontinuous Mt at some s = s0. In
such a case, the substitution force is

R = lim
ε→0

∫ s0+ε

s0−ε

dMt

ds
ds = M+

t −M−
t , (4.94)

i.e., R is exactly the difference of the twist moment immediately after and before s0. This
situation is typical of corners; in particular, for a right angle,

M+
t = M−

t ⇒ R = −2M−
t . (4.95)

For a corner formed by two orthogonal sides parallel to the axes x and y, we get, see Fig.
4.7

R = −2|Mxy| = −
h3

6

E

1 + ν

∣∣∣∣ ∂2w0

∂x∂y

∣∣∣∣ . (4.96)

This is a vertical downward reaction that the supports must give near the corners of a
rectangular bent plate.

4.2.11 Some exact solutions

4.2.11.1 Elliptic plate

For an elliptic plate loaded by a uniformly distributed load q and clamped on the edge,
the deflection is

w0(x, y) =
q

D

(
x2

a2
+ y2

b2
− 1
)2(

24
a4

+ 24
b4

+ 16
a2b2

) , (4.97)

where a and b are the semi axes along x and y, respectively; the maximum deflection is

wmax0 = w0(0, 0) =
q

D

1(
24
a4

+ 24
b4

+ 16
a2b2

) . (4.98)
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Figure 4.7: The substitution force near a right angle corner.

4.2.11.2 Circular plate

A clamped, uniformly loaded, circular plate of radius R is a particular case of the previous
elliptic plate, where a = b = R:

w0(x, y) =
q

64 D

(
x2 + y2 −R2

)2
, (4.99)

with a maximum deflection in the plate’s center:

wmax0 = w(0, 0) =
q R4

64 D
. (4.100)

In polar coordinates it is

w0(r, θ) =
q

64 D
(R2 − r2)2, 0 ≤ r ≤ R : (4.101)

the deflection depends uniquely on the distance r from the plate’s center, while it is
independent from the angle θ.

4.2.11.3 Equilateral triangular plate

For a plate like that in Fig. 4.8, uniformly loaded by a load q and simply supported on
the edges, it is

w0(x, y) =
q

64 a D

[
x3 − 3x2y − a(x2 + y2) +

4

27
a3

](
4

9
a2 − x2 − y2

)
. (4.102)

4.2.11.4 Anticlastic bending

Let us consider the square plate ABCD in Fig. 4.9; we want to examine to which load
and boundary conditions corresponds the solution

w0(x, y) = −M(x2 − y2)

2D(1− ν)
. (4.103)
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Figure 4.8: Triangular simply supported plate.

Because
∂2w0

∂x2
= −∂

2w0

∂y2
= − M

D(1− ν)
, (4.104)

then
∆w0 = 0⇒ ∆2w0 = 0→ p = 0, (4.105)

i.e. there is not a distributed load on the plate. We remark that for y = ±x, i.e. along
the square’s diagonals, w0 = 0: the diagonals do not move nor deform. Also,

  l

  !

  "

  o

  a

  o   xA’

  y

B’

C’

D’

  !  "

A

BC

D

Figure 4.9: Anticlastic bending.

∂w0

∂e
= ∇w0 · e = − M

D(1− ν)
(x,−y) · (ex, ey). (4.106)

So, if e is parallel to one of the diagonals, e = 1√
2
(1,±1)⇒

∂w0

∂e
= ∇w0 · e = − M√

2D(1− ν)
(x∓ y), (4.107)
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and on a line parallel to e, y = ±x+ a, a = const, we get

∂w0

∂e
= ∇w0 · e = ± M a√

2D(1− ν)
: (4.108)

the slope along the segments parallel to the diagonals is constant: such segments remain
straight lines and the final bent surface is a ruled surface (i.e. through any point of the
plate pass two orthogonal lines entirely belonging to the deformed surface). Then,

Mx = −D
(
∂2w0

∂x2
+ ν

∂2w0

∂y2

)
= M,

My = −D
(
∂2w0

∂y2
+ ν

∂2w0

∂x2

)
= −M,

Mxy = −D(1− ν)
∂2w0

∂x∂y
= 0,

(4.109)

From eq. (4.103) we see that lines parallel to axis x deforms into a concave parabola,
while those parallel to axis y into a convex one. In addition, the edges of the plate are
not fixed, as it is easily checked:

w0

(
± `

2
, y

)
6= 0, w0

(
x,± `

2

)
6= 0,

∂w0

∂n

∣∣∣∣
x=± `

2

= ±∂w0

∂x

∣∣∣∣
x=± `

2

6= 0,

∂w0

∂n

∣∣∣∣
y=± `

2

= ±∂w0

∂y

∣∣∣∣
y=± `

2

6= 0,

(4.110)

and

T ∗x = Tx +
∂Mxy

∂y
= Tx = −D∆w0,x = 0,

T ∗y = Ty +
∂Mxy

∂x
= Ty = −D∆w0,y = 0.

(4.111)

So, finally, the only way to deform the plate is to act upon it with distributed bending
couples on the edges: −M on x = ± `

2
, M on y = ± `

2
, like in Fig. 4.10. Now, let us

Figure 4.10: Anticlastic bending: actions on the boundary and bent plate.

consider the part A’B’C’D’ of the plate shaded in Fig. 4.9; w0 is still the same, but now
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the boundary is different. Nevertheless, because the boundary is parallel to the diagonals,
we already know that it remains straight. As a consequence, bending moments are null
along these lines, but not necessarily the twisting moments. In fact, because the unit
normal to the boundary of the shaded part is n = 1√

2
(1,±1), we get

Mn = Mxn
2
x + 2Mxynxny +Myn

2
y = M(n2

x − n2
y) = 0,

Mt = Mxy(n
2
x − n2

y) + nxny(My −Mx) = −2M nxny = ±M,

Tn = Txnx + Tyny = 0.

(4.112)

So, in A’ and C’ we have a net vertical force R = −2M while in B’ and D’ R = 2M ; finally,
the plate A’B’C’D’ is like in Fig. 4.11. For ending, we remark that the same problem can
be studied in the frame {ξ, η}, Fig. 4.9. Because x = ξ cos θ− η sin θ, y = ξ sin θ+ η cos θ,
we get

w0(ξ, η) =
M ξ η

D(1− η)
. (4.113)

This problem is called the anticlastic bending of plates. It is currently used in laboratory
tests, because, on one hand, it is rather easy to be realized, on the other hand, the stress
and strain fields are homogeneous, so allowing reliable measures.

Figure 4.11: Anticlastic bending: actions on the corners and bent plate.

4.2.11.5 Navier’s method for rectangular plates

Let us consider a rectangular simply supported plate, 0 ≤ x ≤ a, 0 ≤ y ≤ b. If the plate
is loaded by a distributed load of the type

q(x, y) = qmn sin
mπx

a
sin

nπy

b
, (4.114)

then it is easy to check that the solution w0(x, y) that satisfies both the field equation
(4.51) and the boundary conditions (4.72) is

w0(x, y) = wmn sin
mπx

a
sin

nπy

b
. (4.115)

Because

∆2w0 = π4

(
m2

a2
+
n2

b2

)2

wmn sin
mπx

a
sin

nπy

b
, (4.116)
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we get that ∀m,n it must be

π4

(
m2

a2
+
n2

b2

)2

wmn =
qmn
D
⇒ wmn =

qmn

π4
(
m2

a2
+ n2

b2

)2
D
. (4.117)

As any load function can be expressed by a double Fourier series,

q(x, y) =
∞∑
m=0

∞∑
n=0

qmn sin
mπx

a
sin

nπy

b
, (4.118)

with

qmn =
4

ab

∫ a

0

∫ b

0

q(x, y) sin
mπx

a
sin

nπy

b
dx dy, (4.119)

a solution for a generic load can be obtained superposing the solutions wmn of each
harmonic. In particular, for q(x, y) = q = const, we get

qmn =
16 q

π2mn
, m, n = 1, 3, 5, ... (4.120)

the double series converges quickly for w0 but slowly for M. Also, it is worth noting that
to represent correctly a load, it is often needed to use a large number fo terms in the series
describing q(x, y).

4.2.11.6 Levy’s method for rectangular plates

This method for simply supported plates 0 ≤ x ≤ a, − b
2
≤ y ≤ b

2
, makes use of simple

series: the deflection w0 is expressed as

w0(x, y) = wg(x, y) + wp(x, y), (4.121)

where wg(x, y) is the general integral of the homogeneous equation

∆2w0 = 0, (4.122)

while wp(x, y) is a particular integral. Generally speaking,

wg(x, y) =
∞∑
n=1

Yn(y) sin anx, an =
nπ

a
. (4.123)

This expression is a solution of (4.122) if and only if

Y iv
n (y)− 2a2

nY
′′
n (y) + a4

nYn(y) = 0 ∀n. (4.124)

The general integral of this equation is

Yn(y) = An sinh any +Bn cosh any + Cnany sinh any +Dnany cosh any. (4.125)

The particular integral wp(x, y) depends on the load; for a uniformly distributed load q,

wp(x, y) =
q

24D
(x4 − 2ax3 + a3x) =

4qa4

π5D

∞∑
n=1

1

n5
sin anx, n = 1, 3, 5, ... (4.126)
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It can be easily checked that wg(x, y) and wp(x, y) satisfy the boundary conditions for
x = 0 and x = a. In addition, for a uniform load only the second and third terms are not
null, because for symmetry it must be Yn(y) = Yn(−y). In such a case we get

w0(x, y) =
qa4

D

∞∑
n=1

(
4

n5π5
+ ξn cosh any + ηn

nπy

a
sinh any

)
sin

nπx

a
, n = 1, 3, 5, ...

(4.127)
The coefficients ξn and ηn are determined by the boundary conditions:

w0(x,± b
2

) = 0,
∂2w0

∂y2

∣∣∣∣
y=± b

2

= 0, (4.128)

that give

ξn = −4 + 2ϕn tanhϕn
n5π5 coshϕn

, ηn =
2

n5π5 coshϕn
, ϕn =

nπb

2a
. (4.129)

This series is very quickly convergent, practically a very good estimation for w0 is ob-
tained just with the first term; for M more terms are needed, but the convergence is still
rapid.

4.3 The Reissner-Mindlin theory

The main problem with the Kirchhoff’s theory is the absence of transverse shear strains,
due to the second kinematical assumption of the model, see Sect. 4.2.1, which engen-
ders the vanishing of the transverse shear stresses3. It seems hence obvious, in order
to let appear transverse stresses σxz and σyz, to remove the second kinematical assump-
tion of conservation of the orthogonality of the normal segments. This has been done
independently, and following two different approaches, by Reissner (1945) and Mindlin
(1951).

Removing the second Kirchhoff’s kinematical assumption means that a segment originally
orthogonal to the mid-plane will be no more orthogonal to the deformed mid-surface. How-
ever, we preserve the first and third kinematical assumptions of Kirchhoff: any orthogonal
segment remains straight and of the same length.

Geometrically speaking, this means that in the plane {x, z}, see Fig. 4.12, it will be

ψx =
π

2
+ ϕx − βx. (4.130)

The shear strain is hence (recall that for the small strain assumption, βx ' tan βx = ∂w0

∂x
)

γx =
π

2
− ψx = βx − ϕx '

∂w0

∂x
− ϕx. (4.131)

Similarly,

γy =
π

2
− ψy = βy − ϕy '

∂w0

∂y
− ϕy, (4.132)

3We have seen that, with the assumption of symmetric loads distribution, these can be calculated
using the equilibrium equations
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Figure 4.12: Reissner-Mindlin’s kinematics in the {x, z} plane.

and the displacement field is then (the small strain assumption is still used)

u(x, y, z) =

 u0(x, y)− zϕx(x, y)
v0(x, y)− zϕy(x, y)

w0(x, y)

 (4.133)

so that now the strain tensor becomes

ε(p) =
∇u(p) +∇u(p)>

2
=

∂u0
∂x
− z ∂ϕx

∂x
1
2

(
∂u0
∂y

+ ∂v0
∂x

)
− 1

2
z
(
∂ϕx

∂y
+ ∂ϕy

∂x

)
1
2

(
∂w0

∂x
− ϕx

)
1
2

(
∂u0
∂y

+ ∂v0
∂x

)
− 1

2
z
(
∂ϕx

∂y
+ ∂ϕy

∂x

)
∂v0
∂y
− z ∂ϕy

∂y
1
2

(
∂w0

∂y
− ϕy

)
1
2

(
∂w0

∂x
− ϕx

)
1
2

(
∂w0

∂y
− ϕy

)
0

 .
(4.134)

Hence, we still can write eq. (4.30), but now the definition of the curvatures changes:

κ =



−∂ϕx
∂x

−∂ϕy
∂y

−
(
∂ϕx
∂y

+
∂ϕy
∂x

)


. (4.135)

Also, now εxz and εyz are different from zero. For the planar part, we still can write eq.
(4.30), but now in addition we have also

τ = Gγ, (4.136)

i.e. {
σxz

σyz

}
=

[
G 0

0 G

]{
2εxz

2εyz

}
. (4.137)

Hence, with the Reissner-Mindlin theory, we can obtain the transverse shear stresses
directly from the constitutive law. However, we find here a problem of the Reissner-
Mindlin theory: σxz and σyz are constant through the thickness, because εxz and εyz are,
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as consequence of the assumption that any orthogonal segment remains straight also in
the bent plate. This result is mechanically inconsistent: on one hand, we obtain tangential
stresses σzx = σxz and σzy = σyz different from zero on ST and SB, which is correct only
if an equal external tangential load is applied. On the other hand, we know, see Sect.
4.2.9, that the correct variation with z of σxz and σyz is parabolic.

To solve this inconsistency, one should pass to higher order theories (namely, to the Third
Order Shear Deformation Theory of Reddy). In the framework of the Reissner-Mindlin
theory, however, a correction function ξ(z) is then introduced to have a parabolic variation
of σxz and σyz through the thickness:

ξ(z) = τ

[
1−

(
z

h/2

)2
]
. (4.138)

The constant τ can be determined in different ways. A first one, is to conserve the value
of the shear stress in correspondance of z = 0, which is equivalent to fix as fundamental
parameter the shear deformation γ(z = 0); then

τ =
T

h
, (4.139)

i.e. τ corresponds to the mean value of the shear stress produced in the Reissner-Mindlin
model without corrections by the shear action T . If, instead, we conserve the shear action
T , then

τ =
3

2

T

h
. (4.140)

Finally, the choice commonly done is to put

τ =
5

4

T

h
, (4.141)

i.e. a mean value: neither the shear stress nor the shear action are conserved. With such
a choice for τ we get

σxz = 2Gεxz(x, y)ξ(z) =
5

4

E

2(1 + ν)

[
1−

(
z

h/2

)2
](

∂w0

∂x
− ϕx

)
,

σyz = 2Gεyz(x, y)ξ(z) =
5

4

E

2(1 + ν)

[
1−

(
z

h/2

)2
](

∂w0

∂y
− ϕy

)
,

(4.142)

which gives

Tx =

∫ +h
2

−h
2

σxz dz =
5

6

E h

2(1 + ν)

(
∂w0

∂x
− ϕx

)
,

Ty =

∫ +h
2

−h
2

σyz dz =
5

6

E h

2(1 + ν)

(
∂w0

∂y
− ϕy

)
.

(4.143)

The correction factor is hence λ = 5
6

for the shear forces, while λ = 5
4

for the shear
stress.
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The expression of N does not change with respect to the Kirchhoff’s theory, while for M
we get

M =
h3

12
Dκ⇒



Mx = −h
3

12

E

1− ν2

(
∂ϕx
∂x

+ ν
∂ϕy
∂y

)
,

My = −h
3

12

E

1− ν2

(
∂ϕy
∂y

+ ν
∂ϕx
∂x

)
,

Mxy = −h
3

12

E

1 + ν

(
∂ϕx
∂y

+
∂ϕy
∂x

)
.

(4.144)

The equilibrium equations (4.35), (4.36) and (4.43) do not change, of course; passing to
a unique, higher order equation for bending equilibrium, like eq. (4.44), is now meaning-
less, because we cannot obtain an equation of elastic equilibrium depending on a unique
unknown, w0(x, y). In fact, the elastic equilibrium equations can be obtained, as usual,
injecting the expressions of Tx, Ty,Mx,My and Mxy into the shear and bending equilibrium
equations (the extension equilibrium equations (4.46) do not change), to obtain

h2

6(1− ν)

[
∂2ϕx
∂x2

+ (1− ν)
∂2ϕx
∂y2

+
∂2ϕy
∂x∂y

]
+ λ

(
∂w0

∂x
− ϕx

)
= 0,

h2

6(1− ν)

[
(1− ν)

∂2ϕy
∂x2

+
∂2ϕy
∂y2

+
∂2ϕx
∂x∂y

]
+ λ

(
∂w0

∂y
− ϕy

)
= 0,

λ
E h

2(1 + ν)

(
∂2w0

∂x2
+
∂2w0

∂y2
− ∂ϕx

∂x
− ∂ϕy

∂y

)
+ fz = 0.

(4.145)

These are three second-order coupled partial differential equations; the unknowns are
w0(x, y), ϕx(x, y) and ϕy(x, y). Three boundary conditions are hence needed for each
point of the boundary; they must prescribe either

• kinematical conditions: the value of w0, ϕx, ϕy (or, more generally, ϕn and ϕt), or:

• natural conditions: the value of Tn,Mn,Mt.

Finally, with the Reissner-Mindlin theory there is no more the problem of the boundary
conditions found in the Kirchhoff’s theory. Actually, this was a consequence of the kine-
matical constraint imposed by the second Kirchhoff’s assumption so that, once removed
such assumption, the problem disappears.

4.4 The Von Karman theory

The assumption of linear strains, done in the two previous theories, fails to account for
the so-called membrane effect, by which the tensions in a deflected plate help to react the
applied lateral loads, i.e. the surface loads orthogonal to the mid-plane.

In order to take into account of such an effect, we introduce a measure of the strain
suitable for geometric non-linearities: the Green-Lagrange strain tensor L:

L =
1

2
(∇u +∇u> +∇u>∇u); (4.146)
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if, for the sake of convenience, we still indicate L by ε, then the components εij now are4:

εxx = u,x +
1

2

(
u2
,x + v2

,x + w2
,x

)
,

εyy = v,y +
1

2

(
u2
,y + v2

,y + w2
,y

)
,

εzz = w,z +
1

2

(
u2
,z + v2

,z + w2
,z

)
,

εxy =
1

2
(u,y + v,x + u,xu,y + v,xv,y + w,xw,y) ,

εxz =
1

2
(u,z + w,x + u,xu,z + v,xv,z + w,xw,z) ,

εyz =
1

2
(v,z + w,y + u,yu,z + v,yv,z + w,yw,z) .

(4.147)

In the theory of plates of Von Karman (1910), only some of the quadratic terms are
retained, namely: the quadratic terms in w,x, w,y are retained, the other ones, discarded.
Von Karman justifies this choice as follows:

• u2
,x is negligible with respect to u,x; the same is true for v2

,y and w2
,z;

• a similar argument is used also for the terms v,yv,z, w,yw,z, u,zu,x, w,zw,x, u,xu,y, v,xv,y;

• the terms v2
,x, u

2
,y, w

2
,y, u

2
,z, v

2
,z are of the same order of the dropped terms;

• w,x and w,y are the slopes of cross sections of the deformed mid-plane: they can be
large compared to the strain components.

So, finally:

εxx = u,x +
1

2
w2
,x,

εyy = v,y +
1

2
w2
,y,

εzz = w,z,

εxy =
1

2
(u,y + v,x + w,xw,y) ,

εxz =
1

2
(u,z + w,x) ,

εyz =
1

2
(v,z + w,y) .

(4.148)

We introduce again the vector u0(x, y), displacement of the points of the mid-plane and
we need to specify how u, v, w vary through the thickness. To this purpose, the Von
Karman’s theory makes the same kinematical assumptions of the Kirchhoff’s theory, so

4For the sake of shortness, we indicate partial derivatives by a comma followed by the differentiation
variable, e.g. ∂u

∂x = u,x etc.
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that eq. (4.10) still holds and

εxx = ex − z w0,xx,

εyy = ey − z w0,yy,

γxy = 2εxy = exy − 2z w0,xy,

εxz = εyz = εzz = 0,

(4.149)

where we have put

ex = u0,x +
1

2
w2

0,x,

ey = v0,y +
1

2
w2

0,y,

exy = u0,y + v0,x + w0,xw0,y.

(4.150)

Still like in the Kirchhoff’s theory, we assume σzz = 0, while σxz = σyz = 0 as consequence
of the constitutive law and of the kinematical assumptions, that lead, as in the Kirchhoff’s
theory, to εxz = εyz = 0. Finally, for σ we obtain once more the results of the Kirchhoff’s
theory, eq. (4.19), but now the definition of the strain is different.

Let us now follow a variational approach for finding the equilibrium equations (the same
approach can be used also for the classical theory of Kirchhoff5).

The strain energy density is

U =
1

2
σ · ε =

1

2

E

1− ν2

[
(εxx + νεyy)εxx + (εyy + νεxx)εyy +

1− ν
2

γ2
xy

]
=

G

1− ν

(
ε2
xx + ε2

yy + 2νεxxεyy +
1− ν

2
γ2
xy

)
,

(4.151)

by consequence, the total strain energy of the plate is

Up =

∫
Ω

U dω =

∫
S

(∫ h
2

−h
2

U dz

)
dx dy, (4.152)

where S denotes the mid-surface. Once the integration over z done, we get

Up = Um + Ub, (4.153)

where

• Um: membrane strain energy, linear in h:

Um =
G h

1− ν

∫
S

[(
u0,x +

w2
0,x

2

)2

+

(
v0,y +

w2
0,y

2

)2

+ 2ν

(
u0,x +

w2
0,x

2

)(
v0,y +

w2
0,y

2

)
+

1− ν
2

(u0,x + v0,y + w0,xw0,y)
2

]
dx;

(4.154)

5To this purpose, the reader is addressed to the classical text of Langhaar, see the suggested references.
In such a text, a presentation of the the variational approach to the boundary conditions is also given.
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• Ub: bending strain energy, cubic in h:

Ub =
G h3

12(1− ν)

∫
S

[
w2

0,xx + w2
0,yy + 2νw0,xxw0,yy + 2(1− ν)w2

0,xy

]
dx dy. (4.155)

The potential energy of a lateral load q(x, y) acting on the plate is

Uq = −
∫
S

q(x, y) w0(x, y) dx dy, (4.156)

so finally the total potential energy is the functional

V = UM + Ub + Uq. (4.157)

The principle of the minimum total potential energy is then used: the equilibrium con-
figuration is that giving the least value of V . We need hence to write the conditions
giving the minimum of the quadratic functional V of the two independent variables x and
y. These conditions are the Euler-Lagrange equations for V : they are the equilibrium
equations for the plate. To this purpose, we notice that

V =

∫
S

F (u0, u0,x, u0,y; v0, v0,x, v0,y;w0, w0,x, w0,y, w0,xx, w0,xy, w0,yy;x, y)dx dy, (4.158)

i.e. F is a functional of three independent functions, u0, v0 and w0, so we need to write
three Euler-Lagrange equations:

∂F

∂ξ
− ∂

∂x

∂F

∂ξ,x
− ∂

∂y

∂F

∂ξ,y
+

∂2

∂x2

∂F

∂ξ,xx
+

∂2

∂x∂y

∂F

∂ξ,xy
+

∂2

∂y2

∂F

∂ξ,yy
= 0, (4.159)

where ξ can be either u0, v0 or w0. Because

F =
G h

1− ν

[(
u0,x +

w2
0,x

2

)2

+

(
v0,y +

w2
0,y

2

)2

+2ν

(
u0,x +

w2
0,x

2

)(
v0,y +

w2
0,y

2

)
+

1− ν
2

(u0,x + v0,y + w0,xw0,y)
2

]
+

G h3

12(1− ν)

[
w2

0,xx + w2
0,yy + 2νw0,xxw0,yy + 2(1− ν)w2

0,xy

]
− q w0,

(4.160)

we get finally the three equilibrium equations of the plate (the third one is simplified using
the first two equations):

(ex + νey),x +
1− ν

2
exy,y = 0,

1− ν
2

exy,x + (ey + νex),y = 0,

∆2w0 =
q

D
+

12

h2
[(ex + νey)w0,xx + (ey + νex)w0,yy + (1− ν)exyw0,xy] .

(4.161)

The internal actions as defined in eq. (4.22) become now, through eqs. (4.19) and (4.149),

Nx =
E h

1− ν2
(ex + νey),

Ny =
E h

1− ν2
(ey + νex),

Nxy = G h exy =
E h

2(1 + ν)
exy.

(4.162)
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By consequence, eqs. (4.161)1,2 can be written in terms of components of membrane
internal actions; some simple calculations give

Nx,x +Nxy,y = 0,

Nxy,x +Ny,y = 0.
(4.163)

We find again eqs. (4.35) for the case fx = fy = 0, i.e. when loads parallel to the
mid-plane are null (an assumption tacitly done in this case, where the only action is the
lateral load q). The above two extension equilibrium equations can be solved using the
technique of the Airy’s stress function χ(x, y):

Nx = χ,yy, Ny = χ,xx, Nxy = −χ,xy. (4.164)

If N is related to χ(x, y) by the previous relations, than eqs. (4.163) are automatically
satisfied: the problem of determining N is reduced to the that of finding a unique scalar
function, χ(x, y). For what concerns eq. (4.161)3, it becomes

D∆2w0 = q +Nxw0,xx +Nyw0,yy + 2Nxyw0,xy, (4.165)

and introducing χ,

D∆2w0 = q + χ,yyw0,xx + χxxw0,yy − 2χ,xyw0,xy. (4.166)

A second relation between w0(x, y) and χ(x, y) can be easily obtained: from the equations
of Nx, Ny and Nxy we get

h ex =
1

E
(Nx − νNy) =

1

E
(χ,yy − νχ,xx),

h ey =
1

E
(Ny − νNx) =

1

E
(χ,xx − νχ,yy),

h exy =
Nxy

G
= −χ,xy

G
,

(4.167)

while
ex,yy + ey,xx − exy,xy = w2

0,xy − w0,xxw0,yy. (4.168)

Eliminating ex, ey and exy by means of the previous equations gives

∆2χ = E h(w2
0,xy −−w0,xxw0,yy). (4.169)

Equations (4.166) and (4.169) are the fundamental relations in the Von Karman theory of
plates. They reduce the problem to the search of two bi-dimensional functions, w0(x, y)
and χ(x, y). The use of χ automatically ensures the in-plane equilibrium and N is found
by derivation, once χ known.
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4.5 Exercises

1. Check that the solution for a circular clamped plate of radius R, loaded by a uniform
load q is, in polar coordinates,

w(r, θ) =
q

64D
(R2 − r2)2.

Calculate then the deflection in the center and the couples on the boundary.

2. Using the inverse method, study the case of a rectangular plate, whose sides 2a and
2b are parallel to the axes x and y respectively, with origin at the plate’s center,
and whose solution is the field of vertical displacements

w = c[(x2 − a2)2 + (y2 − b2)2], c < 0.

In particular, find the conditions on the boundary (displacements and forces) and
calculate the deflection and the moments in the plate’s center.

3. Study a simply supported rectangular plate of sides a and b subjected to the sinu-
soidal load

p(x, y) = p0 sin
π x

a
sin

π y

b
.

4. Consider a simply supported square plate of side `, acted upon by a uniform load p;
compare the results for the deflection and moments in the plate’s center using first
the Navier and then the Levy approach.
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