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Classes of material behaviour : relevant variables Linear elastic behaviour: linear elastic fracture mechanics (K)

The fracture mechanics concepts were still unknown Causes of fracture:

• Welded Structure rather than bolted, offering a substantial assembly time gain but with a continuous path offered for cracks to propagate through the structure.

• Low quality of the welds (presence of cracks and internal stresses) • Low quality steel, ductile/brittle transition around 0°C

Foundations of fracture mechanics : The Liberty Ships

One basic assumption :

The structure contains a singularity (ususally a geometric discontinuity, for example: a crack)

Two main questions :

What are the relevant variables to characterize the risk of fracture and to be used in fracture criteria ?

What are the suitable criteria to determine if the crack may propagate or remain arrested, the crack growth rate and the crack path ?

Classes of fracture mechanisms : criteria • Gc is a material constant (single mechanism, surfacic mechanism only)

• What if non isothermal conditions are considered ?

• Unsteady crack growth criteria, non applicable to steady crack propagation,

• 

Order of this singularity

Linear elasticity: 
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Fracture modes

Various fractures in compression

Fracture modes 

Various fractures in torsion
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Balance equations

Compatibility

Linear elasticity 
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Westergaard's stress function : 
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Similitude principle

(geometry locally planar, with a straigth crack front, self-similar, singularity) 
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Williams expansion

A self-similar solution in the form is sought directly as follows :
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Dans ce cas g() doit vérifier

Williams expansion

A self-similar solution in the form is sought directly as follows :
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The solution is sought as follows :
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Boundary conditions are defined along the crack faces which are defined as free surface (fluid pressure & friction between faces are excluded)
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Williams expansion

A sery of eligible solutions is obtained :
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La solution en contrainte s'exprime alors à partir des dérivées d'ordre 2 de F, toutes les valeurs de n sont possibles, tous les modes apparaissent • History effects in mixed mode

Williams expansion

Williams versus Westergaard
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• Observations 

•

  2700 Liberty Ships were built between 1942 and the end of WWII • The production rate was of 70 ships / day • duration of construction: 5 days • 30% of ships built in 1941 have suffered catastrophic failures

  grain boundary corrosion, creep, oxydation, persistent slip band in fatigue etc… ) • Plastic zone scale or damaged zone (material hardening or softening, continuum damage, ductile damage.problem, planar crack with a straight crack) Curved cracks, branched cracks, merging cracks (3D problem, nonplanar cracks, curved crack fronts) Short cracks (3D problem, influence of free surfaces, scale and gradients effects) energy release rate G Criteria : An unsteady crack growth occurs if the cohesion energy released by the structure because of the creation of new cracked surfaces reaches the energy required to create these new cracked surfaces the elastic energy of the structure : variation of the surface energy of the structure (Rice's integral if q is coplanar) q vector: the crack front motion If the crack faces are free surfaces (no friction, no fluid pressure …), If volume forces can be neglected (inertia, electric field...)Then the J integral is shown to be independent of the choice of the selected integration contour 𝐺 = 𝐽= Γ 𝜑 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑦 -𝜎𝑛. faces must be free surfaces (no friction, no fluid pressure)

  The surfacic energy 2 may be negligible compared with the energy dissipated in plastic work or continuum damage / localization process Linear Elastic Fracture Mechanics (LEFM) Characterize the state of the structure where useful (near the crack front where damage occurs) for a linear elastic behavior of the material Stress concentration factor Kt of an elliptical hole, With a length 2a and a curvature radius r

F=F

  the plane is defined by a complex number z = x + i y Z a function of z : Z(z)=F(x,y) y=0 x=+a & y=0 x=-a Symmetric with respect to y=0 & x=0 2D problem, plane (x,y) : S zz =n(S xx +S yy ) 6 boundary or symmetry conditions 2 singularities, 0 boundary conditions along the crack faces Exact solution Taylor's development with respect to the distance to the crack front Separated variables Similitude principle Boundary conditions & Symmetries symmetries

  for any 2D problem, with symmetries along the planes y=0 & x=0, and biaxial BCs



  

  for the 3 modes, determined for one specific geometry -Taylor development, 1 st order → asymptotic solution generalized to any other cracks -First order -Solution expressed with separate variables f (r) g () and f (r) self-similar -Solution : f (r) a power function, r  , with  = -1/2 -Higher Orders -A unique stress intensity factor for all terms -The exponent of (r/a) increasing with the order of the Taylor's development -Boundary conditions -Singularity along the crack front, symmetries, planar crack and straight front -no prescribed BCs along the crack faces, -Boundary conditions defined at infinity 6 independent components of the stress tensor at infinity → 6 degrees of freedoms in MLER: KI, KII, KIII and T, Tz, and G

-

  The boundary conditions are free surface conditions along the crack faces (apply on 3 components of the stress tensor), no boundary condition at infinity → absence of T, Tz, and G -Super Singular terms → missing BCs -The first singular term of the Williams expansion is identical to the first term of the Taylor expansion of the exact solution of Westergaard -The stress intensity factors of the higher order terms are not forced to be the same as the one of the first term, -advantage, leaves some flexibility to ensure the compatibility of the solution with a distant, non-uniform field -drawbacks, it replaces the absence of boundary conditions at infinity by condition of free surface on the crack, and it lacks 3 BCs, it is obliged to add constraints T, Tz, and G

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

POD based post treatment Elastic domain : generalized Von Mises Criterion

  Same values of K max , K min , DK for each mode Fatigue crack growth experiments Solution of an elastic FE analyses with 𝑲 𝒊 ∞ =1MPa.m 1/2 for each mode 𝒗 𝒓é𝒔𝒊𝒅𝒖_𝒊 𝑷, 𝒕 = 𝒗 𝑬𝑭_𝒊 𝑷, 𝒕 -𝝂 𝒊 𝒆 𝑷, 𝒕 𝑷𝑶𝑫𝟏 → 𝒗 𝒓é𝒔𝒊𝒅𝒖_𝒊 𝑷, 𝒕 ≈ 𝝆 𝒊 𝒕 . 𝒖 𝒊 𝒄 (𝑷)

	Growth criteria in mixed mode conditions ? POD based post treatment Model
	𝑑𝑁 𝑢 𝑖 𝑒 (𝑃) = 𝐶∆𝐾 𝑒𝑞 𝑚 𝑓 𝑌 = 𝐾 𝐼 ∞ -𝐾 𝐼 𝑋 𝐾 𝐼 𝑌 2 + 𝐾 𝐼𝐼 ∞ -𝐾 𝐼𝐼 𝑋 𝐾 𝐼𝐼 𝑌 𝒇 = 𝑲 𝑰 ∞ -𝑲 𝑰 𝑿 𝟐 𝑲 𝑰 𝒀 𝟐 + 𝑲 𝑰𝑰 ∞ -𝑲 𝑰𝑰 𝑿 𝟐 𝑲 𝑰𝑰 𝒀 𝟐 + 𝑑𝑎 Yield criterion	2 𝑲 𝑰𝑰𝑰 -1 𝑲 𝑰𝑰𝑰 𝒀 𝟐 ∞ -𝑲 𝑰𝑰𝑰 𝑿 𝟐	-𝟏
	𝛥𝐾 𝑒𝑞 = ∆𝐾 𝐼 𝒇 𝑮 𝑰 , 𝑮 𝑰𝑰 , 𝑮 𝑰𝑰𝑰 = 𝑮 𝑰 𝑮 𝑰 𝒀 + 𝑛 + 𝛽∆𝐾 𝐼𝐼 𝑮 𝑰𝑰 𝑮 𝑰𝑰 𝒀 + 𝑮 𝑰𝑰𝑰 𝑮 𝑰𝑰𝑰 𝒀 -𝟏	𝑛 + 𝛾∆𝐾 𝐼𝐼𝐼	𝑛 1	𝑛
	• Crack growth rate • Crack path • Simulation • Modelling Crack growth rate Crack path 𝑲 𝒊 𝒕 = 𝝂 𝒊 𝒆 𝑷, 𝒕 = 𝑲 𝒊 𝒕 𝒖 𝒊 𝒆 (𝑷) 𝒗 𝒓é𝒔𝒊𝒅𝒖_𝒊 𝑷, 𝒕 = 𝒗 𝑬𝑭_𝒊 𝑷, 𝒕 -𝝂 𝒊 𝑷𝝐𝑫 𝒗 𝑬𝑭_𝒊 𝑷, 𝒕 . 𝒖 𝒊 𝒆 (𝑷) 𝑷𝝐𝑫 𝒆 (𝑷). 𝒖 𝒊 𝒆 (𝑷) 𝒆 𝑷, 𝒕 𝑃𝑂𝐷2 → 𝑢 𝑖 𝑐 (𝑃) ≈ f 𝑟 𝑔 𝑖 𝑐 (𝜃) 𝑔 𝐼𝑦 𝑐 𝜃 = 𝜋 = 𝐼𝑦 1 𝑓 𝑌 = 𝐺 𝐼 𝐺 𝐼 𝑌 + 𝐺 𝐼𝐼 Flow rule 𝑌 -1 𝐺 𝐼𝐼 𝒔𝒊𝒈𝒏𝒆 𝑮 𝒊 𝝆 𝒊 = 𝝀 𝒀 𝑮 𝒊 𝑐 𝜃 = -𝜋 = 2 lim 𝑟→0 𝑓 𝑟 =1 𝐺 𝑖 = 𝑠𝑖𝑔𝑛 𝐾 𝑖 ∞ -𝐾 𝑖 𝑋 𝐾 𝑖 ∞ -𝐾 𝑖 Evolution equation 𝑋 2 𝐸 * 𝑲 𝑿 = 𝑪 𝝆 -𝚪 𝑲 𝑿𝒆𝒒 𝑴-𝟏 𝟏 + 𝚪 𝑲 𝑿𝒆𝒒 𝑲 𝑿 𝑴-𝟏 𝒅 𝝆 𝒅 𝒘𝒉𝒆𝒓𝒆 𝒅 = 𝑲 𝒆𝒒 𝑿
					131 159

Ideally elastic-plastic material  Y =600 MPa, E=200 GPa, n=0.3 plane strain, along the plane =0