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LECTURE NOTES: INVARIANT DISTRIBUTIONS FOR PARABOLIC
SPDES AND THEIR NUMERICAL APPROXIMATIONS

CHARLES-EDOUARD BRÉHIER

Invariant distributions – also referred to as invariant probability distributions – are sta-
tionary configurations, in a statistical sense, of stochastic evolution systems (but not in a
pathwise sense). In ergodic regimes, they appear as long-time limits, starting from any initial
configuration.

To perform numerical simulations, approximations are performed. Natural questions arise,
such as: existence and uniqueness of invariant distributions for the discretized systems?
speed of convergence to equilibrium? error estimates?

These notes are concerned with these questions for some examples of parabolic, semilinear,
Stochastic Partial Differential Equations. Recent work highlights similarities and differences
with respect to the finite dimensional situations (SDEs).

Acknowledgments

These notes correspond with lectures given by the author at the Chinese Academy of
Science, Beijing, in November 2017. The author would like to thank Professors Jialin Hong
and David Cohen for the invitation to give these lectures in the Forum on Numerical Methods
for SDEs and SPDEs, as well as the local organizers and all the participants.

1. Model

Model: parabolic, semilinear, Stochastic Partial Differential Equations

(1) dX(t) = AX(t)dt+ F (X(t))dt+
√

2dW (t) , X(0) = x.

We only consider additive noise perturbations.
References: some lecture notes [2], [11]. Monograph: [8].

1.1. Setting.

State space. H is an infinite dimensional separable Hilbert space.
Notation:
• | · | is the norm, 〈·, ·〉 is the inner product,
• ‖ · ‖L(H) is the operator norm, on the space of L(H) of bounded linear operators on
H,
• ‖·‖L2(H) is the Hilbert-Schmidt norm on the space L2(H) ⊂ L(H) of Hilbert-Schmidt
operators on H.

Running example: H = L2(0, 1).
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Linear operator A. There exists a complete orthonormal system
(
en
)
n∈N of H – i.e.

〈en, em〉 = 1n=m and Span {en, n ∈ N} = H – such that

• Aen = −λnen, for all n ∈ N, with 0 < λ1 ≤ . . . ≤ λn ≤ . . .,
• λn ∼

n→∞
cn2 →

n→∞
∞ for some c ∈ (0,∞).

Running example: Ax = x′′ for x ∈ D(A), with domain D(A) = H2(0, 1) ∩ H1
0 (0, 1)

(homogeneous Dirichlet boundary conditions). Then en(·) =
√

2 sin(·nπ) and λn = (πn)2.
Notation: for α ∈ [0, 1]

|x|2α :=
∑
n∈N

λ2α
n |〈x, en〉|2 , (−A)αx =

∑
n∈N

λαn〈x, en〉en , ∀ x ∈ D(−A)α = {z ∈ H, |z|α <∞} .

Noise: cylindrical Wiener processW . Let a probability space (Ω,F ,P), with a filtration(
Ft
)
t≥0

, be fixed.
Define

W (t) =
∑
n∈N

βn(t)en

where
(
βn
)
n∈N is a sequence of independent standard one dimensional Wiener processes

(adapted to the filtration).
Important remarks:

• the definition does not depend on the choice of the basis of H.
• For any t > 0, W (t) /∈ H almost surely.
• If B ∈ L2(H), then the process

(
BW (t)

)
t≥0

is well-defined on H.

For x ∈ H, the real-valued process
(
〈W (t), x〉

)
t≥0

is well-defined. It is centered and
Gaussian. Correlations:

E
[
〈W (t), x〉〈W (s), y〉

]
= min(t, s)〈x, y〉.

Noise is white in space: 〈W (t), x〉 and 〈W (t), y〉 are independent if 〈x, y〉 = 0, in particular if
x and y have disjoint supports. Other interpretation: Fourier components 〈W (t), en〉 = βn(t)
are statistically identical.

Let us discuss interpretation in temrs of Space-time white noise: note that W (t) =
〈ξ,1[0,t]〉L2(R+) is formally the antiderivative in time of the space-time white noise

ξ =
∑
k,n∈N

γk,nfk ⊗ en

where
(
fk
)
k∈N is a complete orthonormal system of L2(R+), and

(
γn,k
)
k,n∈N are independent

standard Gaussian random variables. Correlations: formally E[ξ(t, θ)ξ(s, η)] = δtsδθη.
In this notes, we only consider cylindrical Wiener process – space-time white noise. This

results in processes with low regularity properties. One way to increase regularity would be
to add spatial correlations (with a Q-Wiener processes instead). Some of the results extend
easily, some do not remain true – let us mention the expression of the invariant distribution
for gradient type SPDEs.
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Nonlinear coefficient F . The function F : H → H is assumed globally Lipschitz contin-
uous, and bounded.

For the analysis of the error in numerical schemes, more regularity will be required.
Running example: F (x)(·) = f

(
x(·)

)
on (0, 1), with f : R → R bounded and globally

Lipschitz continuous.

1.2. Mild solutions, global well-posedness.

Linear equation, semi-group. Solving the linear PDE ẋ = Ax with initial condition x0:

x(t) = etAx0 =
∑
n∈N

e−tλn〈x0, en〉en.

True not only for x0 ∈ D(A), but also for x0 ∈ H.
Parabolic effects:
• Regularization: for α ∈ [0, 1], and t ∈ (0,∞),

‖(−A)αetA‖L(H) ≤
cα

(t ∧ 1)α
,

with cα ∈ (0,∞).
• Dissipation:

‖etA‖L(H) ≤ e−λ1t.

Long-time behaviour: for any initial condition x0 ∈ H, exponentially fast,

etAx0 →
t→∞

0.

Stochastic convolution. Meaning of solving the SPDE dX = AXdt+
√

2dW (t)?
Mild solution (with initial condition 0):

WA(t) =

∫ t

0

e(t−s)A
√

2dW (s),

called the stochastic convolution.
In components: independent Ornstein-Uhlenbeck processes,

〈WA(t), en〉 =

∫ t

0

e−λn(t−s)
√

2dβn(s),

solutions of dxn = −λnxndt+
√

2dβn(t).
Why is this well-defined: (infinite dimensional version of Itô’s isometry formula)

E|WA(t)|2 = 2

∫ t

0

‖e(t−s)A‖2
L2(H)ds = 2

∑
n∈N

∫ t

0

|e(t−s)Aen|2ds =
∑
n∈N

1

λn

(
1− e−2λnt

)
<∞.

Regularity properties:
• sup

t≥0
E|WA(t)|2α <∞ if and only if α ∈ [0, 1

4
).

• E|WA(t)−WA(s)|2 ≤ Cκ|t− s|
1
2
−κ, for all κ ∈ (0, 1

2
).

• In the running example: trajectories of WA are 1
4
− κ Hölder continuous in time,

1
2
− 2κ Hölder continuous in space. Notice the parabolic scaling.
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Note the useful inequality (which may be combined with the regularization estimate
above):

‖etA − esA‖L(H) ≤ Cα|t− s|α‖emin(t,s)A‖L(H,D((−A)α)).

Mild solutions for the semilinear SPDE. Let x0 ∈ H. There exists a unique adapted
process

(
X(t)

)
t≥0

, continuous, with values in H, which satisfies, for all t ≥ 0,

X(t) = etAx0 +

∫ t

0

e(t−s)AF (X(s))ds+
√

2

∫ t

0

e(t−s)AdW (s).

This process is the unique mild solution of the semilinear SPDE

dX = AXdt+ F (X)dt+
√

2dW (t) , X(0) = x0.

Since noise is additive, X(t) = R(t) +WA(t), where
(
R(t)

)
t≥0

solves the random PDE

dR(t)

dt
= AR(t) + F

(
R(t) +WA(t)

)
, R(0) = x0.

Same regularity properties as the stochastic convolution (for positive times, if the initial
condition x0 is not sufficiently regular).

Example of estimate: for α ∈ [0, 1
4
), and T ≥ 0, for all t ∈ (0, T ],

E|(−A)αX(t)|2 ≤ Cα(T )
(
1 +
|x0|2

t2α
)
.

2. Invariant distributions: existence, uniqueness, convergence

Assume that the initial condition of the SPDE is random (and independent of the noise(
W (t)

)
t≥0

). For positive times t, what is the law of X(t)? What happens when t→∞?
References (not exhaustive, but sufficient for our purpose; see references therein): [9],[7].

2.1. Definition. The solution of the SPDE is a Markov process. Introduce the evolution
semigroup

(
Pt
)
t≥0

, by

Ptϕ(x) = Ex
[
ϕ(X(t))

]
for bounded measurable functions ϕ : H → R, where Ex denotes the expectation, assuming
the initial condition is X(0) = x. The Markov property means that Pt+s = PtPs for all
t, s ≥ 0.

If X(0) has distribution µ0, then X(t) has distribution µt given by the equivalent formu-
lations ∫

ϕdµt =

∫
Ptϕdµ0 , µt = P ?

t µ0.

A distribution µ is invariant if

µ0 = µ =⇒ µt = µ, ∀ t ≥ 0.

Questions: existence, uniqueness? convergence to invariant distributions starting from an
arbitrary distribution?

Some particular cases:
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• Assume F = 0. Then the SPDE dX = AXdt +
√

2dW (t) admits a (unique, as
explained below) invariant distribution ν∞, which is Gaussian, centered, and has co-
variance operator (−A)−1. More explicitly, ν∞ is the law of the H-valued random
variable

∑
n∈N

γn√
λn
en where

(
γn
)
n∈N are independent standard Gaussian random vari-

ables. Verification is straightforward.
• Assume F = −DV is the Fréchet derivative of a C1 function V : H → R. Then the
SPDE dX = AXdt−DV (X)dt+

√
2dW (t) admits a (unique) invariant distribution

µ∞(dx) = Z−1e−V (x)ν∞(dx),

when the normalizing constant Z =
∫
H
e−V (y)ν∞(dy) is well-defined, in (0,∞) – for

instance, if V is bounded.
Note that this formula is valid only when considering space-time white noise per-

turbation.
Running example: ν∞ is the law of a Brownian Bridge on (0, 1), µ∞ is the law of a

conditioned diffusion.

2.2. Existence. The general strategy is based on the Krylov-Bogoliubov criterion. For
precise statements, see for instance [9, Section 3.1], [7, Theorem 5, Chapter 2].

The ideas are as follows. Let x0 ∈ H be an arbitrary initial condition. Since F is assumed
to be bounded, one shows the uniform in time moment estimate below: for all t ≥ 0,

E|(−A)αX(t)|2 ≤ Cα
(
1 +
|x0|2

t2α
)
.

with Cα ∈ (0,∞) for all α ∈ (0, 1
4
).

Moreover, note that for every R ∈ (0,∞), the set{
x ∈ H;

∞∑
n=1

λ2α
n |〈x, en〉|2 ≤ R

}
is compact (in H, for the | · | norm) when α ∈ (0, 1

4
) – but, of course, not when α = 0.

As a consequence, the family of distributions
(
πt
)
t≥0

defined by

πt =
1

t

∫ t

0

P ?
s δx0ds

is tight. By Prokhorov’s Theorem, let

π = lim
n→∞

πtn

for some increasing sequence tn → ∞. In other words, for all bounded and continuous
ϕ : H → R,

∫
ϕdπtn →

n→∞

∫
ϕdπ.

It remains to prove that π is an invariant distribution. Another assumption is required:
the semigroup

(
Pt
)
t≥0

is Feller. This means that, for any t ≥ 0, if ϕ : H → R is continuous
and bounded, then Ptϕ is continuous (and bounded). In our case, the semigroup is indeed
Feller.
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Let t > 0. On the one hand, P ?
t πtn →

n→∞
P ?
t π. Observe that the Feller property is crucial

to get this convergence. On the other hand,

P ?
t πtn =

1

tn

∫ t+tn

t

P ?
s δx0ds

= πtn +
1

tn

(∫ t+tn

tn

P ?
s δx0ds−

∫ t

0

P ?
s δx0ds

)
→
n→∞

π.

Thus P ?
t π = π, for all t ≥ 0, which concludes the proof that π is an invariant distribution.

The arguments given above can also be applied for the discretized systems considered in
the sequel.

2.3. Uniqueness. A general criterion is Doob’s Theorem: strong Feller property and irre-
ducibility imply the uniqueness of the invariant distribution. In our context, this strategy
applies because the noise is non-degenerate: it is a cylindrical Wiener process.

When noise is degenerate (for instance even when a finite number of modes are forced), the
situation is much more difficult than for SDEs: see the works of Hairer-Mattingly (asymptotic
strong Feller property, hypoellipticity in infinite dimension), Kuksin-Shirikyan...

When considering a discrete space version, results for SDEs apply. On the contrary, up to
my knowledge, the application of these arguments in the discrete-time setting, in the infinite
dimensional framework, has not been performed so far, and is an open question.

Under a stronger assumption given below, much simpler arguments yield the uniqueness
property. In addition, their application to the time-discretized systems is straightforward.
In the sequel, we will thus assume that

Lip(F ) = LF < λ1.

Consider two arbitrary initial conditions x1, x2 ∈ H, and a single realization of the driving
noise process

(
W (t)

)
t≥0

. Let
(
X(t, x1)

)
t≥0

and
(
X(t, x2)

)
t≥0

denote the solutions of the
SPDE, with X(0, x1) = x1 and X(0, x2) = x2. Then, almost surely,

1

2

d|X(t, x2)−X(t, x1)[2

dt
≤ −(λ1 − LF )|X(t, x2)−X(t, x1)|2,

and, thanks to Gronwall’s lemma, for all t ≥ 0

E|X(t, x2)−X(t, x1)|2 ≤ e−2(λ1−LF )t|x2 − x1|2.
Uniqueness of the invariant distribution is then straightforward.

2.4. Convergence. Consider an arbitrary initial condition x0 ∈ H, and assume LF < λ1.
Let ϕ : H → R be Lipschitz continuous. Then∣∣E[ϕ(X(t, x0))

]
−
∫
ϕdµ∞

∣∣ ≤ C(ϕ, |x0|)e−(λ1−LF )t,

in other words, convergence to equilibrium is exponentially fast. In addition, the unique
invariant distribution µ∞ is ergodic.
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For our purpose of estimating
∫
ϕdµ∞, this can be interpreted as follows: ϕ(X(t, x0) is

an estimator of that quantity, with a bias which vanishes exponentially fast when t is large.
For a given error, this gives a way of choosing t.

This is a nice and important property, which we would like to be preserved by discretization
schemes.

3. Numerical schemes

A recent monograph: [13], see also references therein.
Goal: simulatable schemes to estimate averages µ∞(ϕ) =

∫
H
ϕdµ∞, and provide error

bounds, for (large?) classes of test functions ϕ.
Several discretizations are necessary:
• space discretization of

– the solution: values in a finite dimensional space
– the noise: truncate the series,

• time discretization of
– the solution: build a discrete-time Markov chain
– the noise: use increments.

Fully or semi-discrete approximations may be considered, and may be studied in the same
framework.

Let us introduce discretization parameters: space dimension N ∈ N, time step size ∆t ∈
(0, 1).

3.1. Definitions.

Space-discretization. In these notes, we consider the spectral Galerkin method only.
For N ∈ N, let

HN = span {e1, . . . , eN} ,
and PN ∈ L(H) the associated orthogonal projection. Note that ‖PN‖L(H) = 1.

Discretization of the noise consists in replacing the infinite sum W (t) =
∑

n∈N βn(t)en
with the finite sum

∑N
n=1 βn(t)en = PNW (t).

Discretization of the equation consists in replacing F with PNF , and dW with PNdW .
Spectral Galerkin scheme:

dXN(t) = AXN(t)dt+ PNF (XN(t))dt+
√

2PNdW (t) , XN(0) = PNX(0).

Mild formulation:

XN(t) = etAPNX(0) +

∫ t

0

e(t−s)APNF (XN(s))ds+
√

2PN

∫ t

0

e(t−s)AdW (s).

Since HN is a finite dimensional space, with dimension N , XN may be considered as the
solution of a SDE.

In practice, general Finite Element methods are more useful than the spectral Galerkin
method: anyway, this is a good toy model, which is important for the analysis of all schemes.
The analysis is simpler, since projection operators PN commute with A and etA.
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Time-discretization. Let ∆t ∈ (0, 1) (the assumption ∆t < 1 is only for convenience).
We consider discretization by the linear implicit Euler scheme.
First, increments of the noise are denoted by

∆Wn = W
(
(n+ 1)∆t

)
−W

(
n∆t

)
.

The scheme is then defined by

X∆t
n+1 = X∆t

n + ∆tAX∆t
n+1 + ∆tF (X∆t

n ) +
√

2∆Wn

= S∆tX
∆t
n + ∆tS∆tF (X∆t

n ) +
√

2S∆t∆Wn,

where S∆t = (I −∆tA)−1. Only the second line makes sense. Initial condition is X∆t
0 = x0.

This scheme is well-defined, indeed S∆t is an Hilbert-Schmidt operator: ∆Wn /∈ H, but
E|S∆t∆Wn|2 = ∆t‖S∆t‖2

L2(H), with

‖S∆t‖2
L2(H) =

∞∑
n=1

1

(1 + λn∆t)2
<∞.

Moreover, S∆t is a “nice approximation” of e∆tA. For instance, note that ‖S∆t‖L(H) = 1
1+λ1∆t

.
There is a version of the mild formulation, which is useful to prove moment bounds (and

ultimately error estimates):

X∆t
n = Sn∆t + ∆t

n−1∑
k=0

Sn−k∆t F (X∆t
k ) +

√
2
n−1∑
k=0

Sn−k∆t ∆Wk.

Note that an explicit discretization is not appropriate, for (at least) two reasons: the noise
W (t) does not take values in H, and the explicit discretization of ẋ = Ax does not make
sense.

Full-discretization. Combining space and time discretization schemes is possible: the full-
discretization scheme is defined by

XN,∆t
n+1 = S∆tX

N,∆t
n + ∆tS∆tPNF (XN,∆t

n ) +
√

2S∆tPN∆Wn.

Note that PN commutes with S∆t, which simplifies the definition and the analysis of the
scheme.

The discretization parameters N and ∆t are independent of each other. In the sequel, we
consider the discretization separately, however it is straightforward to adapt the approach
and the results for the full-discretization scheme.

3.2. Invariant distributions.

Existence. It is sufficient to assume that F is bounded. Proof follows the Krylov-Bogoliubov
strategy, thanks to appropriate moment bounds.

• Space-discretization. Note that XN takes values in the finite dimensional space HN :
proving that for fixed N

sup
t≥0

E|XN(t)|2 <∞

is sufficient to obtain the required tightness (all norms are equivalent, thus no need
of α > 0).
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• Time-discretization. The state space is the infinite dimensional space H, thus it is
necessary to consider E|(−A)αX∆t

n |2, with α > 0. Observe that X∆t
n = R∆t

n + Z∆t
n ,

where
(
Z∆t
n

)
n≥0

is the solution of the equation when F = 0 (and thus approximates
the stochastic convolution)

Z∆t
n+1 = S∆tZ

∆t
n +

√
2S∆t∆Wn , , Z∆t

0 = 0,

and
R∆t
n+1 = S∆tR

∆t
n + ∆tS∆tF (R∆t

n + Z∆t
n ).

On the one hand,

E|(−A)αZ∆t
n |2 = 2∆t

n−1∑
k=0

‖(−A)αSn−k∆t ‖
2
L2(H)

≤
∞∑
p=1

2λ2α
p

λp(2 + λp∆t)

(
1− 1

(1 + λp∆t)2n

)
,

thus, for all α ∈ [0, 1
2
)

sup
n≥0

E|(−A)αZ∆t
n |2 ≤Mα,∆t <∞.

Observe that α ∈ [1
4
, 1

2
) is allowed: however, uniform results with respect to the time

step size ∆t ∈ (0, 1) only hold true when α < 1
4
, consistently with the continuous-time

limit:
sup

∆t∈(0,1)

Mα,∆t <∞ ⇐⇒ α ∈ [0,
1

4
).

On the other hand,

E|(−A)αR∆t
n |2 ≤ 2|(−A)αSn∆tx0|2 + 2∆t

n−1∑
k=0

E|(−A)αSn−k∆t F (X∆t
k )|2

≤ Cα|x0|2

(n∆t)2α
+ C∆t

n−1∑
k=0

‖(−A)αSn−k∆t ‖
2
L(H)

≤ Cα
(
1 +

|x0|2

(n∆t)2α

)
.

Combining the estimates, for α ∈ (0, 1
4
), there exists Cα ∈ (0,∞), such that for all

n ∈ N
E|(−A)αX∆t

n |2 ≤ Cα
(
1 +

|x0|2

(n∆t)2α

)
,

and the Krylov-Bogoliubov criterion may then be applied.

Uniqueness. First, what can be said with only the assumption that F is bounded?
• Space discretization. For N ∈ N, the stochastic evolution equation is a SDE, with
values in the finite dimensional space N . The diffusion is non-degenerate, the Doob’s
criterion thus applies. The generator LN of the diffusion is an elliptic operator, one
may directly look at the equation (LN)?ρN = 0, which admits a unique solution such
that

∫
ρN(x)dx = 1.
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• Full discretization. For fixed N ∈ N, the process
(
XN,∆t
n

)
n≥0

can be shown to have
a unique invariant distribution, for sufficiently small ∆t, precisely for ∆t ∈ (0,∆tN).
This comes from application of SDE results, see for instance [14].

However, up to my knowledge, it is an open question to determine whether

inf
N∈N

∆tN > 0 or inf
N∈N

∆tN = 0.

• Time discretization. It corresponds to taking the limit N →∞ in the full discretiza-
tion scheme. The answer is not known, it depends on the solution to the above
question above.

Let us now add the assumption LF < λ1. Uniqueness and exponential convergence are
then obtained by straightforward arguments.

• Space discretization. Thanks to the equality ‖PN‖L(H) = 1, one obtains again

|XN(t, x2)−XN(t, x1)| ≤ e−(λ1−LF )t|x2 − x1|,

with solutions driven by the same noise process. Uniqueness and exponential conver-
gence follows.
• Time discretization. One obtains

|X∆t
n (x2)−X∆t

n (x1)| ≤ (1 + LF∆t)n

(1 + λ1∆t)n
|x2 − x1| ≤ e

− (λ1−LF )

1+λ1∆t
n∆t|x2 − x1|,

for solutions driven by the same noise process, starting from different initial conditions
x1, x2 ∈ H. Uniqueness and exponential convergence follows.
• Full discretization. Straightforward by combining the two cases.

Conclusion. For N ∈ N and ∆t ∈ (0, 1), there exists unique invariant distributions
• µN∞, space discretization,
• µ∆t

∞ , time discretization,
• µN,∆t∞ , full discretization.

Moreover, for Lipschitz continuous functions ϕ : H → R, and all t ≥ 0 and n ≥ 0,∣∣Eϕ(XN(t))−
∫
ϕdµN∞

∣∣ ≤ C(ϕ, |x0|)e−(λ1−LF )t,∣∣Eϕ(X∆t
n )−

∫
ϕdµ∆t

∞
∣∣ ≤ C(ϕ, |x0|)e−

(λ1−LF )

1+λ1∆t
n∆t

.

4. Analysis of the error

It remains to study the discretization error (bias)∫
ϕdµN∞ −

∫
ϕdµ∞ ,

∫
ϕdµ∆t

∞ −
∫
ϕdµ∞,

for classes of functions ϕ : H → R to be identified.
A first step is to study the case F = 0: the invariant distributions are Gaussian, explicit

computations can be performed and identification of the orders of convergence is easily done.
The second step is to generalize these results in the semilinear case, F 6= 0. The analysis

is much more complicated, but the situation is rather well-understood now.
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4.1. The Gaussian case. Assume F = 0, i.e. consider the SPDE

dZ(t) = AZ(t)dt+
√

2dW (t).

Invariant distributions of the numerical approximations: let N ∈ N, ∆t ∈ (0, 1),
• ν∞ = µ∞ is the centered Gaussian distribution on H, with covariance operator Q∞ =

(−A)−1,
• νN∞ = µN∞ is the centered Gaussian distribution on H, with covariance operator QN

∞ =
PN(−A)−1PN ,
• ν∆t
∞ = µ∆t

∞ is the centered Gaussian distribution on H, with covariance operator
Q∆t
∞ = (−A)−1

(
I − ∆t

2
A
)−1.

More explicitly: let
(
γp
)
p∈N denote independent standard real-valued Gaussian random

variables. Then
• ν∞ is the law of

∑
p∈N

1√
λp
γpep,

• νN∞ is the law of
∑N

p=1
1√
λp
γpep,

• ν∆t
∞ is the law of

∑
p∈N

1√
λp

√
2√

2+λp∆t
γpep.

Regularity of test functions ϕ : H → R matters: the order of convergence depends on
control of derivatives. Notation:

‖ϕ‖0 = sup
x∈H
|ϕ(x)|,

‖ϕ‖1 = ‖ϕ‖0 + sup
x 6=y∈H

|ϕ(x)− ϕ(y)|
|x− y|

,

‖ϕ‖2 = sup
x∈H
|ϕ(x)|+ sup

x∈H
|Dϕ(x)|H + sup

x∈H
‖D2ϕ(x)‖L(H).

Theorem 1. For any κ ∈ (0, 1
2
), there exists Cκ ∈ (0,∞) such that for all functions ϕ :

H → R of class C2,∣∣ ∫ ϕdνN∞ −
∫
ϕdν∞

∣∣ ≤ Cκ‖ϕ‖2
1

λ
1
2
−κ

N

,
∣∣ ∫ ϕdν∆t

∞ −
∫
ϕdν∞

∣∣ ≤ Cκ‖ϕ‖2∆t
1
2
−κ.

The proof of this result is straightforward (but is specific to the Gaussian case). It follows
the arguments from [5, Lemma 3.4]. As mentioned during the lectures, by Dr. Zhihui Liu,
in that result one may in fact choose κ = 0.

The order of convergence 1
2
is optimal: use the test function ϕ(x) = exp(−|x|2), see [5,

Remark 3.1]. precisely, one way of writing this result is as follows:

lim sup
N→∞

λrN sup
‖φ‖2≤1

|
∫
φdν∞ −

∫
φdνN∞| =

{
0, ∀ r ∈ [0, 1

2
)

∞, ∀ r ∈ (1
2
, 1)

,

lim sup
∆t→0

1

∆tr
sup
‖φ‖2≤1

|
∫
φdν∞ −

∫
φdν∆t

∞ | =

{
0, ∀ r ∈ [0, 1

2
)

∞, ∀ r ∈ (1
2
, 1)

.

For less regular test functions, orders of convergence need to be modified. See [3].
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Theorem 2. If bounded continuous test functions ϕ : H → R are considered, there is no
order of convergence:

lim sup
N→∞

sup
‖φ‖0≤1

|
∫
φdν∞ −

∫
φdνN∞| > 0 , lim sup

∆t→0
sup
‖φ‖0≤1

|
∫
φdν∞ −

∫
φdν∆t

∞ | > 0.

If bounded Lipschitz continuous test functions are considered, the order of convergence is 1
4
:

lim sup
N→∞

λrN sup
‖φ‖1≤1

|
∫
φdν∞ −

∫
φdνN∞| =

{
0, ∀ r ∈ [0, 1

4
)

∞, ∀ r ∈ (1
4
, 1

2
)

,

lim sup
∆t→0

1

∆tr
sup
‖φ‖1≤1

|
∫
φdν∞ −

∫
φdν∆t

∞ | =

{
0, ∀ r ∈ [0, 1

4
)

∞, ∀ r ∈ (1
4
, 1

2
)

.

Generalizations of Theorem 1 to the semilinear case, F 6= 0, requires much more involved
arguments. The challenge is to obtain the same order of convergence 1

2
, when considering

test functions of class C2 with bounded first and second order derivatives. Two strategies
which have been used to prove the generalizations are explained below – each for one type
of discretization only, but both approaches apply for temporal and spatial discretization.

4.2. The semilinear case: space-discretization, Poisson equation approach. Refer-
ence: [4].

Main tool: Poisson equation. Generalization in the infinite dimensional case of [15]. Used
for stochastic nonlinear Schrödinger equations in [12].

Assume that LF < λ1: there exists unique invariant distributions µ∞ (exact problem) and
µN∞, for N ∈ N. Moreover, convergence to equilibrium is exponentially fast, with a uniform
rate with respect to N ∈ N.

The presentation is simpler than in the mentioned references, in particular we do not
introduce time-averages, we directly focus at error at equilibrium. Note also that we skip
some technical details, such as auxiliary spectral Galerkin approximation to justify the use
of the objects in the infinite dimensional setting.

Introduce the notation

ϕ = ϕ−
∫
ϕdµ∞.

The associated Poisson equation is

LΨ = −ϕ ,

∫
Ψdµ∞ = 0,

with the infinitesimal generator

Lφ(x) = 〈Ax+ F (x), Dφ(x)〉+ Tr
(
D2φ(x)

)
,

for appropriate functions φ : H → R: in order to give meaning to all the terms in the
expression of Lφ(x), assuming φ of class C2 is not sufficient.

Let us first explain why the solution Ψ of the Poisson equation is useful.
12



On the one hand, the error may be written∫
ϕdµN∞ −

∫
ϕdµ∞ =

∫
ϕdµN∞ = −

∫
LΨdµN∞

= −
∫ (
〈Ax+ F (x), DΨ(x)〉+ Tr

(
D2Ψ(x)

))
dµN∞(x).

On the other hand, since µN∞ is the unique invariant distribution for XN ,

0 =

∫
LN(Ψ ◦ PN)dµN∞ =

∫ (
〈Ax+ PNF (x), DΨ(x)〉+ Tr

(
PND

2Ψ(x)
))
dµN∞(x),

where LN is the infinitesimal generator for the (SDE) evolution of XN .
Thus, summing the two equations, the error has the following expression:∫
ϕdµN∞ −

∫
ϕdµ∞ =

∫
〈(PN − I)F (x), DΨ(x)〉dµN∞(x) +

∫
Tr
(
(PN − I)D2Ψ(x)

)
dµN∞(x).

To obtain rates of convergence, estimates on the derivatives of Ψ are required. They are
of the following type:

|(−A)αDΨ(x)| ≤ Cα , ‖(−A)βD2Ψ(x)(−A)γ‖L(H) ≤ Cβ,γ,

equivalently, in terms of differentials,

DΨ(x).
(
(−A)αh

)
≤ Cα|h| , D2Ψ(x).

(
(−A)βh1, (−A)γh2

)
≤ Cβ,γ|h1||h2|,

with a range for values of α, β, γ made precise below.
With such estimates, error terms are controlled as follows, using ‖(I−PN)(−A)−α‖L(H) ≤

Cα
λαN

, equivalently |(I − PN)x| ≤ Cα
λαN
|(−A)αx|.

First,∣∣∣ ∫ 〈(PN − I)F (x), DΨ(x)〉dµN∞(x)
∣∣∣ ≤ C‖(I − PN)(−A)−α‖L(H)sup

x∈H
|(−A)αDΨ(x)|.

Second,∣∣∣ ∫ Tr
(
(PN − I)D2Ψ(x)

)
dµN∞(x)

∣∣∣ ≤ Cβ,γTr
(
(−A)−

1
2
−κ)‖(I − PN)(−A)

1
2

+κ−β−γ‖L(H)

× sup
x∈H
‖(−A)βD2Ψ(x)(−A)γ‖L(H).

To get order of convergence 1
2
− κ, it remains to prove that we are allowed to choose α =

β = γ = 1
2
− κ in the estimates of derivatives of Ψ.

Now, let us discuss well-posedness and properties of the solution Ψ of the Poisson equation.
In fact, note that ϕ solves the centering condition

∫
ϕdµ∞ = 0, thus the function

Ψ(x) = −
∫ ∞

0

E
[
ϕ(X(t, x))

]
dt

is well-defined. Let u(t, x) = E
[
ϕ(X(t, x))

]
. Indeed, thanks to the exponential convergence

estimate,
∣∣u(t, x)

∣∣ ≤ C(ϕ, |x|)e−(λ1−LF )t.
It is possible to check that (up to finite dimensional approximations to justify the expres-

sions and computations, with bounds independent of the dimension)
• u(t, ·) is of class C2, for any t ≥ 0,

13



• the spatial derivatives satisfy, for t > 0,

|(−A)αDu(t, x)| ≤ Cαt
−αe−ct , ‖(−A)βD2u(t, x)(−A)γ‖L(H) ≤ Cβ,γt

−β−γe−ct,

with c > 0, for α ∈ [0, 1) and β, γ ∈ [0, 1) such that β + γ < 1,
• u solves the Kolmogorov equation

∂u(t, x)

∂t
= Lu(t, x) , t > 0, x ∈ H.

with initial condition u(0, ·) = ϕ,
• Ψ = −

∫∞
0
u(t, ·)dt solves the Poisson equation LΨ = ϕ with

∫
Ψdµ∞ = 0,

• the derivatives of Ψ satisfy

|(−A)αDΨ(x)| ≤ Cα , ‖(−A)βD2Ψ(x)(−A)γ‖L(H) ≤ Cβ,γ,

for α ∈ [0, 1) and β, γ ∈ [0, 1) such that β + γ < 1.
The estimates on the spatial derivatives of u may be interpreted as a regularization prop-

erty: indeed, at time t = 0, u(0, ·) = ϕ is only assumed of class C2, and to satisfy the estimate
only for α = β = γ = 0. At positive times t > 0 (and, after integration, for Ψ), positive
values of α, β, γ > 0 can be chosen, with singularities t−α, t−β, t−γ in the estimates.

4.3. The semilinear case: time-discretization, Kolmogorov equation approach.
Reference: [1].

Main tool: Kolmogorov equation. Generalization in the infinite dimensional case of [16]
(for instance). Used for stochastic nonlinear Schrödinger equations in [6].

We will not give lots of details, in particular because controlling some of the error terms
requires tools such as Malliavin integration by parts.

The idea is to control the weak error∣∣Eϕ(X∆t
n )− Eϕ(X(n∆t))

∣∣
and to prove upper bounds which do not depend on t = n∆t, i.e. of the type Cκ‖ϕ‖2∆t

1
2
−κ.

Letting t = n∆t→∞ then yield a control of∣∣ ∫ ϕdµ∆t
∞ −

∫
ϕdµ∞.

The expansion of the error uses the solution u of the (infinite dimensional) Kolmogorov
equation

∂u(t, x)

∂t
= Lu(t, x) , t > 0, x ∈ H.

with initial condition u(0, ·) = ϕ.
Indeed, the weak error may be expanded as follows,

Eϕ(X∆t
n )− Eϕ(X(n∆t)) = Eu(0, X∆t

n )− Eu(n∆t,X∆t
0 )

=
n−1∑
k=0

E
[
u
(
(n− 1− k)∆t,X∆t

k+1

)
− u
(
(n− k)∆t,X∆t

k

)]
=

n−1∑
k=0

(
ak + bk + ck

)
14



with

ak =

∫ (k+1)∆t

k∆t

E〈AS∆tX
∆t
k − AX̃∆t(t), Du

(
n∆t− t, X̃∆t(t)

)
〉dt,

bk =

∫ (k+1)∆t

k∆t

E〈S∆tF (X∆t
k )− F (X̃∆t(t)), Du

(
n∆t− t, X̃∆t(t)

)
〉dt,

ck =

∫ (k+1)∆t

k∆t

ETr
((
S2

∆t − I
)
D2u

(
n∆t− t, X̃∆t(t)

))
dt

where the auxiliary process satisfies X̃∆t(k∆t) = X∆t
k (interpolation) and evolves through

dX̃∆t(t) = AS∆tX
∆t
k dt+ S∆tF (X∆t

k )dt+
√

2S∆tdW (t) , t ∈
(
k∆t, (k + 1)∆t

)
.

Similarly to the analysis of the spectral Galerkin discretization, the key inequality to
obtain order of convergence is

‖(S∆t − I)(−A)−α‖L(H) ≤ Cα∆tα.

And estimates of the type

|(−A)αDu(t, x)| ≤ Cαt
−αe−ct , ‖(−A)βD2u(t, x)(−A)γ‖L(H) ≤ Cβ,γt

−β−γe−ct,

with rate c > 0, are required – in order to consider the regime n∆t→∞. They are satisfied
with α = β = γ = 1

2
− κ.

The control of the terms ak, bk is not trivial. Indeed, naive estimates are obtained using
Hölder regularity estimates with exponent 1

4
−κ: but they only yield an order of convergence

1
4
−κ, instead of 1

2
−κ. The solution, following [10], is to use a Malliavin integration by parts,

to replace some stochastic integrals. We do not give more details in these lecture notes.

References

[1] C.-E. Bréhier. Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven
by space-time white noise. Potential Anal., 40(1):1–40, 2014.

[2] C.-E. Bréhier. A short introduction to stochastic pdes. 2014.
[3] C.-E. Bréhier. Influence of the regularity of the test functions for weak convergence in numerical dis-

cretization of spdes. arXiv preprint arXiv:1709.09370, 2017.
[4] C.-E. Bréhier and M. Kopec. Approximation of the invariant law of SPDEs: error analysis using a

Poisson equation for a full-discretization scheme. IMA J. Numer. Anal., 37(3):1375–1410, 2017.
[5] C.-E. Bréhier and G. Vilmart. High Order Integrator for Sampling the Invariant Distribution of a Class

of Parabolic Stochastic PDEs with Additive Space-Time Noise. SIAM J. Sci. Comput., 38(4):A2283–
A2306, 2016.

[6] C. Chen, J. Hong, and X. Wang. Approximation of invariant measure for damped stochastic nonlinear
Schrödinger equation via an ergodic numerical scheme. Potential Anal., 46(2):323–367, 2017.

[7] P. Constantin, A. Debussche, G. P. Galdi, M. Ruzcka, and G. Seregin. Topics in mathematical fluid
mechanics, volume 2073 of Lecture Notes in Mathematics. Springer, Heidelberg; Fondazione C.I.M.E.,
Florence, 2013. Lectures from the CIME Summer School held in Cetraro, September 2010, Edited by
Hugo Beirão da Veiga and Franco Flandoli, Fondazione CIME/CIME Foundation Subseries.

[8] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.

[9] G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems, volume 229 of London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.

[10] A. Debussche. Weak approximation of stochastic partial differential equations: the nonlinear case. Math.
Comp., 80(273):89–117, 2011.

15



[11] M. Hairer. An introduction to stochastic pdes. arXiv preprint arXiv:0907.4178, 2009.
[12] J. Hong, X. Wang, and L. Zhang. Numerical analysis on ergodic limit of approximations for stochastic

NLS equation via multi-symplectic scheme. SIAM J. Numer. Anal., 55(1):305–327, 2017.
[13] G. J. Lord, C. E. Powell, and T. Shardlow. An introduction to computational stochastic PDEs. Cam-

bridge Texts in Applied Mathematics. Cambridge University Press, New York, 2014.
[14] J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for SDEs and approximations: locally

Lipschitz vector fields and degenerate noise. Stochastic Process. Appl., 101(2):185–232, 2002.
[15] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Convergence of numerical time-averaging and

stationary measures via Poisson equations. SIAM J. Numer. Anal., 48(2):552–577, 2010.
[16] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differ-

ential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan,
43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

E-mail address: brehier@math.univ-lyon1.fr

16


	Acknowledgments
	1. Model
	1.1. Setting
	State space
	Linear operator A
	Noise: cylindrical Wiener process W
	Nonlinear coefficient F
	1.2. Mild solutions, global well-posedness
	Linear equation, semi-group
	Stochastic convolution
	Mild solutions for the semilinear SPDE

	2. Invariant distributions: existence, uniqueness, convergence
	2.1. Definition
	2.2. Existence
	2.3. Uniqueness
	2.4. Convergence

	3. Numerical schemes
	3.1. Definitions
	Space-discretization
	Time-discretization
	Full-discretization
	3.2. Invariant distributions
	Existence
	Uniqueness
	Conclusion

	4. Analysis of the error
	4.1. The Gaussian case
	4.2. The semilinear case: space-discretization, Poisson equation approach
	4.3. The semilinear case: time-discretization, Kolmogorov equation approach

	References

