Axel Aronio De Romblay
email: axel.aronio-de-romblay@telecom-paristech.fr

Telecom Paristech

SYMBOLIC DATA ANALYSIS: Regression on Gaussian symbols

Keywords: Symbolic data, Big Data, Linear regression, Maximum likelihood, Gaussian symbols

In classical data analysis, data are single values. This is the case if you consider a dataset of n patients which age and size you know. But what if you record the blood pressure or the weight of each patient during a day ? Then, for each patient, you do not have a single-valued data but a set of values since the blood pressure or the weight are not constant during the day.

Suppose now that you do not want to record blood pressure a thousand times for each patient and to store it into a database because your memory space is limited. Therefore, you need to aggregate each set of values into symbols: intervals (lower and upper bounds only), box plots, histograms or even distributions (distribution law with mean and variance)... Thus, the issue is to adapt classical statistical tools to symbolic data analysis. More precisely, this article is aimed at proposing a method to fit a regression on Gaussian distributions. This paper is divided as follows: first, it presents the computation of the maximum likelihood estimator and then it compares the new approach with the usual least squares regression.

Introduction

Symbolic data were first introduced by Diday (1987). A realization of a symbolic-valued variable may take a finite or an infinite set of values in R p . A random variable that takes a finite set of either quantitative or qualitative values is called a multi-valued variable. A variable that takes an infinite set of numerical values ranging from a low to a high value is called an interval-valued variable. A more complex symbolic-valued variable may have weights, probabilities, capacities, credibilities or even a distribution associated with its values. This class variable is called modal-valued. Classical data are a special case of symbolic data where the internal distribution puts the probability 1 on a single point value in R p . Symbolic data analysis offers a solution to the massive data problems, especially when the entities of interest are groups or classes of observations. Recent advances in technology enable storage of extremely large databases. Larger datasets provide more information about the subjects of interest. However, performing even simple exploratory procedures on these datasets requires a lot of computing power. As a result, much research effort in recent years has been steered toward finding more efficient methods to accommodate large datasets. In many situations, characteristics of classes of observations are of higher interest to an analyst than those of individual observations. In these cases, individual observations can be aggregated into classes of observations. A series of papers, Diday (1995), Diday et al. (1996), Emilion (1997) and Diday andEmilion (1996, 1998), established mathematical probabilistic framework for classes of symbolic data. These results were extended to Galois lattices in the symbolic data context in Diday and Emilion (1997,1998,2003) and Brito and Polaillon (2005). Beyond those fundamental results, a few recent papers (2010) have presented likelihood functions for symbolic data but none of them came up with concrete results or closed form solutions. Thus, in this paper, we mainly concentrate on trying to have an expression of the symbolic likelihood that is valid and usable. Furthermore, we focus on Gaussian symbolic data which is very common. Moreover, some actual work refers to uniform distributions but struggle to get a workable solution.

General settings

Let X a dataset of n observations and y the corresponding target:

X =    x 1 . . . x n    , x i ∈ R p , i = 1 . . . n y =    y 1 . . . y n    , y i ∈ R, i = 1 . . . n
We suppose y = X β + , ∼ N (0, σ 2 I n) and we want to estimate θ = (β, σ 2), β ∈ R p and σ ∈ R 4 Gaussian symbols

Definitions

Here, we consider the case where each observation x i is no more a point in R p but a p dimensional normal distribution with known parameters µ i and Σ i :

y i |x i ∼ N (x i β, σ 2) x i ∼ N (µ i , Σ i)
Furthermore, we suppose that both samples y i |x i and x i are iid.

Symbolic likelihood

First, let us compute the density of (y,X) or (y, x 1 , . . . , x n) :

p(y, X) = p(y|X)p(X)
where each term is given by:

p(X) = n i=1 (2π) -p 2 |Σ i | -1 2 exp - 1 2 (x i -µ i) Σ -1 i (x i -µ i) (1)
p(y|X) = n i=1 (2π) -1 2 (σ 2) -1 2 exp - 1 2 (y i -x i β) 2 σ 2 (2)
Thus, we can write the joint distribution as:

p(y, X) = C.exp - 1 2 ||y -Xβ|| 2 σ 2 + n i=1 < x i |Σ -1 i x i > (3)
using the following notations:

C = (2π) -n(p+1) 2 σ -n n i=1 |Σ i | -1 2 and x i = x i -µ i
Finally, we can write the log-likelihood:

l(θ, µ i , Σ i , y i) = log(p(y)) = log x1 . . . xn p(y, X)dx 1 . . . dx n (4)
Indeed, from (4), we can easily notice that y is a normal distribution with parameters µ y and Σ y .

E[y] = E[Xβ] = M β (5)
with

: M =    µ 1 . . . µ n   
If we suppose that X and are independents:

Σ y = V ar(y) = V ar(Xβ) + V ar() = E[Xβ.(Xβ)] -E[Xβ].E[Xβ] + σ 2 I n
where:

E[Xβ.(Xβ)] = E[((x i β)(x j β)) i,j] = E[(β (x i x j)β) i,j] = (β (Cov(x i , x j) + µ i µ j)β) i,j = (β δ i,j Σ i β) i,j + M ββ M
As a conclusion:

Σ y = (β δ i,j Σ i β) i,j + σ 2 I n =    β Σ 1 β + σ 2 (0) . . . (0) β Σ n β + σ 2    (6)
And the log likelihood is given by :

l(θ, µ i , Σ i , y i) = - n 2 log(2π) - 1 2 n i=1 log(β Σ i β + σ 2) - 1 2 (y -M β) Σ -1 y (y -M β) (7)

Maximum Likelihood Estimator

Let us see if we can get a closed form for β M LE by computing the partial derivative of the log-likelihood with respect to β :

We write: l

1 (β) = n i=1 log(β Σ i β + σ 2) and l 2 (β) = (y -M β) Σ -1 y (y -M β) ∂l 1 ∂β (β) = 2 n i=1 Σ i β β Σ i β + σ 2 ∂l 2 ∂β (β) = n i=1 ∂ ∂β (y i -< µ i |β >) 2 β Σ i β + σ 2 = n i=1 - 2(y i -< µ i |β >) 2 Σ i β (β Σ i β + σ 2) 2 - 2(y i -< µ i |β >)µ i β Σ i β + σ 2
Now, if we gather the two terms and factorize, we can get:

∂l ∂β (θ, µ i , Σ i , y i) = 0 ⇐⇒ n i=1 1 β Σ i β + σ 2 y i µ i -1 - y i 2 β Σ i β + σ 2 Σ i β = 0 (8)
where:

y i -< µ i |β >= y i -y i = y i
With the general settings (Σ i = 0), we cannot get a closed form for β M LE . Besides, we do not know σ 2 . Let us remind the expression of the partial derivative of the log likelihood with respect to β :

∂l ∂β (θ, µ i , Σ i , y i) = n i=1 1 β Σ i β + σ 2 y i µ i -1 - y i 2 β Σ i β + σ 2 Σ i β (9) ∂l 1 ∂σ 2 (σ 2) = n i=1 1 β Σ i β + σ 2 ∂l 2 ∂σ 2 (σ 2) = - n i=1 y i β Σ i β + σ 2 2 Thus: ∂l ∂σ 2 (θ, µ i , Σ i , y i) = 1 2 n i=1 1 β Σ i β + σ 2 y i 2 β Σ i β + σ 2 -1 (10)
To conclude, we have:

∇l(θ) = n i=1 ∇l (i) (θ) (11)
with:

∇l (i) (θ) =     1 β Σiβ+σ 2 y i µ i -1 - yi 2 β Σiβ+σ 2 Σ i β 1 2 1 β Σiβ+σ 2 yi 2 β Σiβ+σ 2 -1     (12)

Comments

• Finally, we do have an explicit formula for the gradient of the log likelihood, which is a sum of n vector in a p+1 dimensional space. Thus, with (11) or (12), we can run a full-batch or a stochastic gradient descent algorithm to get an approximation of θ M LE .

• We also notice that we can easily recover the 'usual' least square regression case where Σ i → 0 and

x i ↔ µ i : n i=1 1 σ 2 y i µ i = 0 ⇐⇒ (y -Xβ) X = 0 (13) 1 2σ 2 n i=1 y i 2 σ 2 -1 = 0 ⇐⇒ - n 2σ 2 + 1 2σ 4 (y -Xβ) (y -Xβ) = 0 (14)
• We supposed that there is no intercept. Indeed, we can get rid of it easily if we first apply the following transformation:

x i ∼ N µ i 1 , Σ i 0 and β ∈ R p+1
• After estimating β, we can deduce an unbiased prediction: y j = µ j β

• We expect σ 2 → +∞ when Σ i → +∞. Indeed, if we plot the log-likelihood as a function of σ 2 for different values of Σ i (we suppose that the Σ i are equals for all i: see more details in Appendix), we get this result:

Figure 1: log-likelihoods for different Σ i

• From (6), we can see that the variance of y i depends on Σ i but especially on β which makes sense. Indeed, if p is large and each coordinate is large, the locations of the y i are not accurate. This can lead to an issue when fitting the regression since we can have overlapping symbols...

Results

In this section, we simulate different datasets and we compare the maximum likelihood estimation with the naive solution of fitting a regression on (µ i , y i). We remind the settings: we get (µ i , Σ i , y i) and we want to estimate β (and σ 2). Let us note m, Σ, s 1 and s 2 the following parameters:

Conclusion

From these results, we can see that the Maximum Likelihood Estimator is always more accurate than fitting a naive least squares regression on the (µ i , y i). Nevertheless, the computation time is much longer with a simple gradient descent even if you get an 'appropriate' learning rate and you start with a 'good' initialization. To face this issue, it is highly recommanded to start with β 0 = (M M) -1 M y. Thus, it will take just a few seconds to get an 'accurate' approximation of β M LE . Besides, from the graphics, we can notice that:

• When the quantity β Σ i β + σ 2 is 'large' (cf Figure 5, Figure 7 and Figure 11), the MLE is highly more accurate than the naive estimator. Indeed, the naive estimator does not take into account the internal variation inside a symbol and thus it is very biased. But in this case, we need to run more iterations.

• When n is 'large' (cf Figure 9): we need to run less iterations but each iteration takes more time. The more you get symbols, the more accurate are the two estimators. Here, it is preferable to run a stochastic gradient descent algorithm: it will be definitely faster but a bit less accurate (unless you run some more iterations).

• When p is 'large' (cf Figure 13): the difference between both estimators is negligible. The MLE approximation needs a lot of iterations and subsampling is not a good solution to speed up the convergence.

•

 M = uniform(0,m,(n,p)) : each coordinate of M (see definition in section 4.2) is generated uniformly between 0 and m. • Σ = [Σ i for i in range(n)] = [np.diag(uniform(s 1 ,s 2 ,p)) for i in range(n)] : we suppose here that within a symbol the p features are independents and we generate a diagonal matrix of each Σ i where the diagonal coefficients are uniformly taken between [s 1 , s 2]. 4.5.1 Dataset 1 (reference dataset): n=100, p=5, m=100, [s 1 , s 2]=[0.1, 1], σ 2 =0.5, β ∈[-2,2]

Figure 2 :

 2 Figure 2: Convergence to the ML estimator Figure 3: MSE for each method

Figure 4 :

 4 Figure 4: Convergence to the ML estimator Figure 5: MSE for each method

Figure 6 :

 6 Figure 6: Convergence to the ML estimator Figure 7: MSE for each method

Figure 8 :

 8 Figure 8: Convergence to the ML estimator Figure 9: MSE for each method

Figure 10 :

 10 Figure 10: Convergence to the ML estimator Figure 11: MSE for each method

Figure 12 :

 12 Figure 12: Convergence to the ML estimator Figure 13: MSE for each method

6 Acknowledgment I would like to thank my supervisor Scott Sisson who guided me through my research exchange and who helped me. I also would like to thank all the administration team at UNSW for their welcome and their useful help to set up my office.