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Statistical models in engineering and physics?
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There is a wide variety of situations where getting data about a
system performance can be extremely expensive:

real world experiments in particular
I destructive tests
I prototyping

and even numerical experiments (e.g. non linear, with
uncertainties, . . . ): Numerical experiments are less expensive
but can be very time consuming! (expl.: 15 min / execution,
5 parameters, a grid with 10 levels, total time = 105 × 15 min
> 2 years and 10 months)
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Example: boat hull design

real numerical
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Example: volcano internal structure identification

real numerical

Range change measured prior to the May 2016 Piton de
la Fournaise eruption. It may correspond to a source

inflation + a stratisfied atmospheric signal.

(thanks J.-L. Froger)

Finite elements mesh of the Piton de la
Fournaise.

(thanks V. Cayol)
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In all these cases, the quantity of interest (drag, misfit . . . ) can be
seen as a function of the input parameters

y = f (X )

where f is a costly to evaluate function.

In the following, we will assume that
X ∈ Rd : There are d input variables,
y ∈ R: The output is a scalar.
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The fact that f is costly to evaluate changes a lot of things...

1. Representing the function is not possible...
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The fact that f is costly to evaluate changes a lot of things...

2. Computing integrals is not possible...

x>

>f
+ +

+
+ +

+

What is the mean value of f ?
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The fact that f is costly to evaluate changes a lot of things...

3. Uncertainty propagation is not possible...
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The fact that f is costly to evaluate changes a lot of things...

4. Sensitivity analysis is not possible...
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The fact that f is costly to evaluate changes a lot of things...

5. Optimisation is also tricky...
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The principle of statistical modelling is to use the data to build a
mathematical approximation of the function.

x>

>
+ +

+

+

m

The model can then be used to answer all previous questions
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Of course, there is a difference between f and m...
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Why statistical models?
We want to be able to quantify the model error:

x>

>
f

+ +

+

+

m

The confidence intervals can be used to obtain a measure of
uncertainty on the value of interest.
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In the sequel, we will use the following notations :
The set of observation points will be represented by a n × d
matrix X = (X1, ...,Xn)t

The vector of observations will be denoted by F : Fi = f (Xi )
(or F = f (X )).

There are many surrogate methods available on the market
Linear regression
Smoothing splines
Gaussian process regression
Neural Networks
...

In this course we will focus on Gaussian Process Regression.
(This notation may a few times be ambiguous as X will also denote the random variable associated to x but the

context should allow understanding)
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Two breadcrumb examples related to the identification of a
spherical magma reservoir from measured displacements
along a satellite line of sight:

1) the processing of surface
measures for i) reconstructing
missing measures and ii) de-
noising,

2) minimizing the missfit be-
tween a Mogi model of a
spherical reservoir and the sur-
face measures.
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Misfit minimization problem:

min
x∈[xL,xU ]⊂Rd

f (x) where the misfit is

f (x) =
1
2(U(x)− Um)>C−1(U(x)− Um)

Um: m × 1 displacements projected on the line of sight.
U(x): m × 1 Mogi model displacements projected on the line
of sight.
x : identification variables, the coordinates, radius and
overpressure of a spherical magma reservoir,
x = {xs, ys, zs, a, p}, resp.
C : m ×m covariance matrix of the measures.
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Misfit minimization problem:
⇒ demo with plots 3d full grid.R

The bullets are the m = 220 measure locations (under-sampled from the full grid with the quadtree method).
target reservoir (left): xs = 367000, ys = 7650300, zs = 0 (UTM m), a = 500 m, p = 20 MPa.
trial reservoir (right): xs = 365000, ys = 7649800, zs = −2000 (UTM m), a = 500 m, p = 300 MPa.
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Gaussian Process Regression
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This section is organised in 3 subsections:

1. Univariate and multivariate normal distributions
2. Gaussian processes
3. Gaussian process regression
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1D normal distribution

We say that X ∼ N (µ, σ2) if it has the following pdf:

f (x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)

The distribution is characterised by
mean: µ = E[X ]
variance: σ2 = E[X 2]− E[X ]2
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One fundamental property: a linear combination of independant
normal distributed random variables is still normal distributed.
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Multivariate normal distribution

Definition
We say that a vector Y = (Y1, . . . ,Yn)t follows a multivariate
normal distribution if any linear combination of Y follows a normal
distribution:

∀α ∈ Rn, αtY ∼ N

The distribution of a Gaussian vector is characterised by
a mean vector µ = E[Y ]

a covariance matrix Σ = E[YY t ]− E[Y ] E[Y ]t

Property:
A covariance matrix is

symmetric Ki ,j = Kj,i

positive semi-definite ∀α ∈ Rn, αtKα ≥ 0.
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The density of a multivariate Gaussian is:

fY (x) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2(x − µ)tK−1(x − µ)

)
.

x1

x
2

d
en
sity
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Samples from a multivariate normal
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Exercise
For X = (X1, . . . ,Xn) with Xi independent and N (0, 1), and a
n × n matrix A, what is the distribution of AX?
For a given covariance matrix K and independent N (0, 1)
samples, how can we generate N (µ,K ) random samples?

⇒ R demo
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Counter example
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Y1 and Y2 are normally distributed but the couple (Y1,Y2) is not.
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Conditional distribution
2D multivariate Gaussian conditional distribution:

x
1

x 2

f
Y

µc

√
Σc

The conditional distribution is still Gaussian!
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Conditional distribution
Let (Y ,Z ) be a Gaussian vector (Y and Z may both be vectors)
with mean (µY , µZ )t and covariance matrix(

cov(Y ,Y ) cov(Y ,Z )
cov(Z ,Y ) cov(Z ,Z )

)
.

The conditional distribution of Y knowing Z is still multivariate
normal Y |Z ∼ N (µcond ,Σcond ) with

µcond = E[Y |Z ] = µY + cov(Y ,Z ) cov(Z ,Z )−1(Z − µZ )

Σcond = cov[Y ,Y |Z ] = cov(Y ,Y )− cov(Y ,Z ) cov(Z ,Z )−1 cov(Z ,Y )
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3D Example
3D multivariate Gaussian conditional distribution:

x
1

x 2

x
3
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2. Gaussian processes

The multivariate Gaussian distribution can be generalised to
random processes:

Definition
A random process Z over D ⊂ Rd is said to be Gaussian if

∀n ∈ N,∀xi ∈ D, (Z (x1), . . . ,Z (xn)) is a Gaussian vector.

The distribution of a GP is fully characterised by:
its mean function m defined over D
its covariance function (or kernel) k defined over D × D:
k(x , y) = cov(Z (x),Z (y))

We will use the notation Z ∼ N (m(.), k(., .)).
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Let’s look at the sample paths of a Gaussian Process!

⇒ Shiny App:
https://github.com/NicolasDurrande/shinyApps

In order to simulate sample paths from a GP Z ∼ N (m(.), k(., .)),
we consider the samples discretised on a fine grid.

Exercise: Simulating sample paths
Let X be a set 100 regularly spaced points over the input space of
Z .

What is the distribution of Z (X ) ?
How to simulate samples from Z (X ) ?

MDIS 2017 Introduction to Gaussian Process Surrogates Models 30 / 100

https://github.com/NicolasDurrande/shinyApps


Statistical Models Gaussian Process regression Param. estim. Model validation Kernel Design Model based optim. Robust optim. Conclusions

A kernel satisfies the following properties:
It is symmetric: k(x , y) = k(y , x)

It is positive semi-definite (psd):

∀n ∈ N,∀xi ∈ D,∀α ∈ Rn,
n∑

i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0

Furthermore any symmetric psd function can be seen as the
covariance of a Gaussian process. This equivalence is known as the
Loeve theorem.
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There are a lot of functions that have already been proven psd:

constant k(x , y) = σ2

white noise k(x , y) = σ2δx,y

Brownian k(x , y) = σ2 min(x , y)

exponential k(x , y) = σ2 exp (−|x − y |/θ)

Matern 3/2 k(x , y) = σ2 (1 + |x − y |) exp (−|x − y |/θ)

Matern 5/2 k(x , y) = σ2 (1 + |x − y |/θ + 1/3|x − y |2/θ2) exp (−|x − y |/θ)

squared exponential k(x , y) = σ2 exp
(
−(x − y)2/θ2)

...

The parameter σ2 is called the variance and θ the length-scale.
⇒ Shiny App
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Here is a list of the most common kernels in higher dimension:

constant k(x , y) = σ2

white noise k(x , y) = σ2δx,y

exponential k(x , y) = σ2 exp
(
−||x − y ||θ

)
Matern 3/2 k(x , y) = σ2 (1 +

√
3||x − y ||θ

)
exp
(
−
√

3||x − y ||θ
)

Matern 5/2 k(x , y) = σ2
(

1 +
√

5||x − y ||θ +
5
3 ||x − y ||2θ

)
exp
(
−
√

5||x − y ||θ
)

Gaussian k(x , y) = σ2 exp
(
−1

2 ||x − y ||2θ
)

where

||x − y ||θ =

( d∑
i=1

(xi − yi )
2

θ2
i

)1/2

.

⇒ R demo
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3. Gaussian process regression
We assume we have observed a function f for a set of points
X = (X1, . . . ,Xn):
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The vector of observations is F = f (X ) (ie Fi = f (Xi ) ).
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Since f in unknown, we make the general assumption that it is the
sample path of a Gaussian process Z ∼ N (0, k):
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What would be the next step?
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If we remove all the samples that do not interpolate we obtain:
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It can summarized by a mean function and 95% confidence
intervals.
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In practice, the conditional distribution can be obtained analyticaly:

By definition, (Z (x),Z (X )) is multivariate normal so we know the
distribution of Z (x)|Z (X ) = F is N (m(.), c(., .)) with:

m(x) = E[Z (x)|Z (X )=F ]

= k(x ,X )k(X ,X )−1F
c(x , y) = cov[Z (x),Z (y)|Z (X )=F ]

= k(x , y)− k(x ,X )k(X ,X )−1k(X , y)
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A few remarkable properties of GPR models
They (can) interpolate the data-points
The prediction variance does not depend on the observations
The mean predictor does not depend on the variance
parameter
They (usually) come back to zero when we are far away from
the observations.

Can we prove them?
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Changing the kernel has a huge impact on the model:

Gaussian kernel: Exponential kernel:
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This is because changing the kernel means changing the prior on f

Gaussian kernel: Exponential kernel:
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There is no kernel that is intrinsically better... it depends on data!
Gaussian kernel: Exponential kernel:

The kernel has to be chosen accordingly to our prior belief on the
behaviour of the function to study:

is it continuous, differentiable, how many times?
is it stationary ?
...
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Example
Let’s recreate the map of displacements using a subset of the data

⇒ R demo
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We are not always interested in models that interpolate the data.
For example, if there is some observation noise: F = f (X ) + ε. Let

N be a process N (0, n(., .)) that represent the observation noise.
The expressions of GPR with noise are

m(x) = E[Z (x)|Z (X ) + N(X )=F ]

= k(x ,X )(k(X ,X ) + n(X ,X ))−1F

c(x , y) = cov[Z (x),Z (y)|Z (X ) + N(X )=F ]

= k(x , y)− k(x ,X )(k(X ,X ) + n(X ,X ))−1k(X , y)
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Examples of models with observation noise for n(x , y) = τ2δx ,y :
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The values of τ2 are respectively 0.001, 0.01 and 0.1.
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Parameter estimation
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We have seen previously that the choice of the kernel and its
parameters have a great influence on the model.

In order to choose a prior that is suited to the data at hand, we
can consider:

minimising the model error
Using maximum likelihood estimation

We will now detail the second one.
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Definition
The likelihood of a distribution with a density fX given some
observations X1, . . . ,Xp is:

L =
p∏

i=1
fX (Xi )

This quantity can be used to measure the adequacy between
observations and a distribution.
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In the GPR context, we often have only one observation of the
vector F . The likelihood is then:

L = fZ(X)(F ) =
1

(2π)n/2|k(X ,X )|1/2 exp
(
−1

2F tk(X ,X )−1F
)
.

It is thus possible to maximise L – or log(L) – with respect to the
kernel’s parameters in order to find a well suited prior.

⇒ R demo
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Model validation
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We have seen that given some observations F = f (X ), it is very
easy to build lots of models, either by changing the kernel
parameters or the kernel itself.

The interesting question now is to know how to get a good model.
To do so, we will need to answer the following questions:

What is a good model?
How to measure it?
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The idea is to introduce new data and to compare the model
prediction with reality
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Since GPR models provide a mean and a covariance structure for
the error they both have to be assessed.
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Let Xt be the test set and Ft = f (Xt) be the associated
observations.

The accuracy of the mean can be measured by computing:

Mean Square Error MSE = mean((Ft −m(Xt))2)

A “normalised” criterion Q2 = 1−
∑

(Ft −m(Xt))2∑
(Ft −mean(Ft))2

On the above example we get MSE = 0.038 and Q2 = 0.95.
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The predicted distribution can be tested by normalising the
residuals.

According to the model, Ft ∼ N (m(Xt), c(Xt ,Xt)).

c(Xt ,Xt)−1/2(Ft −m(Xt)) should thus be independents N (0, 1):

standardised residuals
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When no test set is available, another option is to consider cross
validation methods such as leave-one-out.

The steps are:
1. build a model based on all observations except one
2. compute the model error at this point

This procedure can be repeated for all the design points in order to
get a vector of error.
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Model to be tested:
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Step 1:
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Step 2:
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Step 3:
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We finally obtain:

MSE = 0.24 and Q2 = 0.34.

We can also look at the residual distribution. For leave-one-out,
there is no joint distribution for the residuals so they have to be
standardised independently.

standardised residuals
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Kernel Design
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Making new from old: Many operations can be applied to psd
functions while retaining this property

Kernels can be:
Summed together

I On the same space k(x , y) = k1(x , y) + k2(x , y)
I On the tensor space k(x , y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
I On the same space k(x , y) = k1(x , y)× k2(x , y)
I On the tensor space k(x , y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
I k(x , y) = k1(f (x), f (y))

How can this be useful?
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Sum of kernels over the same space
Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.

1960 1970 1980 1990 2000 2010 2020 2030

320

340

360

380

400

420

440

Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel:

kse(x , y) = σ2 exp
(
−(x − y)2

θ2

)
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400
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The results are terrible!
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Sum of kernels over the same space
What happen if we sum both kernels?

k(x , y) = kse1(x , y) + kse2(x , y)
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The model is drastically improved!
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Sum of kernels over the same space
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Sum of kernels over the same space
We can try the following kernel:

k(x , y) = σ2
0x2y2 + kse1(x , y) + kse2(x , y) + kper (x , y)
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Once again, the model is significantly improved.
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Sum of kernels over the same space
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Sum of kernels over tensor space
Property

k(x , y) = k1(x1, y1) + k2(x2, y2)

is valid covariance structure.
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0.8
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+

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
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0.6
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1.0
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0.4

0.6
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1.0

=

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.5

1.0

1.5

Remark: From a GP point of view, k is the kernel of

Z (x) = Z1(x1) + Z2(x2)
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Sum of kernels over tensor space
We can have a look at a few sample paths from Z :

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

2
1

0
1
2
3
4

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

3
2
1

0
1
2

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

1.5
1.0
0.5

0.0
0.5
1.0
1.5

⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional inputs spaces
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Product over the same space
Property

k(x , y) = k1(x , y)× k2(x , y)

is valid covariance structure.

Example
We consider the product of a squared exponential with a cosine:

× =
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Product over the tensor space
Property

k(x , y) = k1(x1, y1)× k2(x2, y2)

is valid covariance structure.

Example
We multiply 2 squared exponential kernel
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Calculation shows this is the usual 2D squared exponential kernel.
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Composition with a function

Property
Let k1 be a kernel over D1 × D1 and f be an arbitrary function
D → D1, then

k(x , y) = k1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(f (xi )︸︷︷︸
yi

, f (xj)︸︷︷︸
yj

) ≥ 0

Remarks:
k corresponds to the covariance of Z (x) = Z1(f (x))

This can be seen as a (non-linear) rescaling of the input space
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Example
We consider f (x) = 1

x and a Matérn 3/2 kernel
k1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel
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All these transformations can be combined!

Example
k(x , y) = f (x)f (y)k1(x , y) is a valid kernel.

This can be illustrated with f (x) = 1
x and

k1(x , y) = (1 + |x − y |)e−|x−y |:

Kernel
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Example

⇒ R demo
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Other kernel design methods

There are two other popular methods for kernel design:
Bochner Theorem
There is an equivalence between positive measures and
stationnary positive definite functions.
Linear operators
If the function to approximate has particular properties that
can be obtained via a linear transform, it is possible to build a
GP with the wanted properties. For example, one can build
symmetric GPs or GPs with integral equal to zero.
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Model based optimization methods
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If the number of function evaluations are limited, we can run the
optimization on the model instead of running it directly on the
function

x>

>
f

+ +

+

+

m

x* x*

In the end, we hope that:
argmin(m) ≈ argmin(f )

min(m) ≈ min(f )
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Overall framework

x costly function observations

x surrogate model approximations

Design of Experiments

In practice, it is risky to take decisions based only on the model...

On the other hand, the model can be used to guide us in the
search for the optimum.
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Global optimization methods are a trade-off between
Exploitation of past good results
Exploration of the space

How can GPR models be helpful?
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In our example, the best observed value is 1.79
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Various criteria can be studied
probability of improvement
Expected improvement
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Probability of Improvement:

PI(x) = cdf
(

min(F )−m(x)√
(c(x , x))

)
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The point with the highest PI is often very close to the best
observed value. We can show that there is a x in the
neighbourhood of x∗ such that PI(x) ≥ 0.5.

For such points, the improvement cannot be large...

Can we find another criterion?
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Expected Improvement:

EI(x) =

∫ min(F )

−∞
max (0,Y (x)) dy(x) = · · · =√

c(x , x)(u(x)cdf (u(x)) + pdf (u(x))) with u(x) =
min(F )−m(x)√

(c(x , x))
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Expected Improvement

Let’s see how it works... iteration 1
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Expected Improvement

Let’s see how it works... iteration 2
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Expected Improvement

Let’s see how it works... iteration 3
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Expected Improvement

Let’s see how it works... iteration 4
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Expected Improvement

Let’s see how it works... iteration 5
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Expected Improvement
This algorithm is called Efficient Global Optimization (EGO,
Jones et al., 1998):

1. make an initial design of experiments X and calculate the
associated F , t = length(F )

2. built a GP from (X ,F ) (max. log-likelihood on σ and θi ’s)
3. Xt+1 = arg maxx EI(x)

4. calculate Ft+1 = f (Xt+1), increment t
5. stop (t > tmax) or go to 2.

+ EGO provides a good trade-off between exploitation and
exploration without arbitrary parameters.

+ It requires few function observations (10 in the example) to
get close to optimal regions.
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Example in 5d: surface displacements misfit minimization
⇒ demo with mainInversionPunctualDisplSource.R
!!! normalize the data: WLS has a few very large values, it is
always > 0: make it more gaussian, wls norm = log(1 + wls) and
all x ’s and wls norm between 0 and 1.
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LEARNING
 SET

100 {xs, ys, zs, a, p}
points chosen through
an optimized Latin
Hypercube Sam-
pling (R libraries
DiceDesign or lhs).
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(demo with mainInversionPunctualDisplSource.R, cont.)
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TEST SET
RMSE=0.3131

 Q2=0.8909

110 random {xs, ys, zs, a, p} test points.
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(demo with mainInversionPunctualDisplSource.R, cont.)
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(demo with mainInversionPunctualDisplSource.R, cont.)
EGO parameters: anisotropic Matèrn 5/2 kernel, GP updated
(log-likelihood maximized) every 5 added points, BFGS with bounded
variables (from optim() function) restarted from random initial points
for maximizing log-likelihood and EI.
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. W
LS

Preferential sampling
of good regions of S,
but global therefore
sometimes increasing
WLS. Lower bound
on θi ’s increased from
0.08 to 0.1 at t = 250
(xi ’s and θi ’s normed
between 0 and 1).
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(demo with mainInversionPunctualDisplSource.R, cont.)
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(demo with mainInversionPunctualDisplSource.R, cont.)
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a^3 * p = const.

● 15% best solutions
ideal solutions Mogi model only dependency

in a and p is through a3 × p:
it is not identifiable.

EGO tells it by preferential
sampling in the valley

a3 × p = const. = a?3 × p?

Other EGO output: a statistical model of WLS.
The last length scales are an indication of the sensitivity of WLS to each
variable: a, p and zs are very sensitive (θi ’s small, in [0.08, 0.1]), xs a
little sensitive (θ in [0.1, 2.5]) and ys insensitive (θ ≈ 3).
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Difficulties and challenges with EGO

Standard GPs are limited to n ≈ 1000 points (covariance
matrix inversion).
EGO clusters points in good regions, the covariance matrix
may become ill-conditionned if length scales θi are too large
w.r.t. X .
Although the method perfectly applies to large dimensional
spaces (d > 100), larger d may require larger n, back 2 lines
above.
EGO does not converge in the traditional sense: it creates
dense samples in the volume of S. The efficiency comes from
the order in which points are sampled.

⇒ these are the topics of current research. Let’s mention a few
extensions next.
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EGO continuations
Parallelized EGO: estimate the EI of groups of points, cf.
Ginsbourger et al.
Finite budget: EI of a single x is only optimal at the last
iteration. Theory of dynamic EI, cf. Ginsbourger et al.
EGO and bad covariance matrix conditioning: replace points
that are close-by by one point and the associated derivatives
(cf. M. Osborn, L. Laurent), regularizations (cf. Le Riche et
al.)
SUR strategies: (Step-wise Uncertainty Reduction), reduce
the entropy of the optimum (cf. Vasquez et al.), or the
average probability of incursions below min(F ) (cf. Picheny).
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Related problems addressed with GPs

EGO with constraints: minx f (x) s.t. g(x) ≤ 0, multiply the
EI by the probability of constraints satisfaction.
GP for target attainment: find the set of x s.t. f (x) = T ,
change the EI into c(x , x)× pdf ((T −m(x))/sqrt(c(x , x))),
cf. Picheny et al.
GP for probability estimation: find P(f (x ,U) ≤ T ) where U
is a random vector.
GP for multi-objective optimization: minx{f1(x), . . . fm(x)},
cf. Binois et al.
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Robust optimization
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Can EGO be adapted when observations are noisy?

First of all, using the current best observation as a minimum does
not make much sense...

Some solutions are
S1 Build a new model that interpolates m(X ) at X where m(X )

accounts for the noise (non interpolating GP, e.g. with a
white noise part in the kernel).

S2 Include observation noise and replace min(F ) by min(m(X ))
in the EI expression

S3 Similar to 2 but consider an Expected Mean Improvement (V.
Picheny).
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Solution 1

iteration 0
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(noisy observations and their denoised versions are both shown as black crosses)
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Solution 1

iteration 2
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Solution 1

iteration 3
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Solution 1

iteration 4
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Concluding remarks

MDIS 2017 Introduction to Gaussian Process Surrogates Models 99 / 100



Statistical Models Gaussian Process regression Param. estim. Model validation Kernel Design Model based optim. Robust optim. Conclusions

Conclusions
Gaussian Processes offer a mathematically funded and
versatile framework for building statistical models.
The main assumptions are: the phenomenon output is
Gaussian, functional choice of covariance function (kernel).
The statistical model needs physical knowledge: through data
+ expertise guiding the choice of kernel (which may come
from the physical model).
The statistical model is in essence complementary to the
physical model and typically useful for decision making
(optimization, uncertainty propagation, . . . ).
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