Gaussian Process regression

Param. estim. Model validation Kernel Design Model based

When no test set is available, another option is to consider cross validation methods such as leave-one-out.

The steps are:

1. build a model based on all observations except one 2. compute the model error at this point This procedure can be repeated for all the design points in order to get a vector of error.

The fact that f is costly to evaluate changes a lot of things... 1. Representing the function is not possible... The fact that f is costly to evaluate changes a lot of things...

2. Computing integrals is not possible... The fact that f is costly to evaluate changes a lot of things...

3. Uncertainty propagation is not possible...

x > > f X f(X) > = x > > f X f(X) + + + +

1D normal distribution

We say that X ∼ N (µ, σ 2 ) if it has the following pdf:

f (x ) = 1 σ √ 2π exp - (x -µ) 2 2σ 2
The distribution is characterised by mean: 

µ = E[X ] variance: σ 2 = E[X 2 ] -E[X ]
∀α ∈ R n , α t Y ∼ N
The distribution of a Gaussian vector is characterised by

a mean vector µ = E[Y ] a covariance matrix Σ = E[YY t ] -E[Y ] E[Y ] t Property: A covariance matrix is symmetric K i,j = K j,i
positive semi-definite ∀α ∈ R n , α t K α ≥ 0.
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The density of a multivariate Gaussian is:

f Y (x ) = 1 (2π) n/2 |Σ| 1/2 exp - 1 2 (x -µ) t K -1 (x -µ) .
x 1

x 2 de ns it y
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Samples from a multivariate normal

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 Y 1 Y 2 -5 0 5 -5 0 5 10 Y 1 Y 2

Exercise

For X = (X 1 , . . . , X n ) with X i independent and N (0, 1), and a n × n matrix A, what is the distribution of AX ?

For a given covariance matrix K and independent N (0, 1) samples, how can we generate N (µ, K ) random samples?

⇒ R demo 

Conditional distribution

2D multivariate Gaussian conditional distribution:

x 1 x 2 fY µ c √ Σ c
The conditional distribution is still Gaussian! A kernel satisfies the following properties:

It is symmetric: k(x , y ) = k(y , x )
It is positive semi-definite (psd):

∀n ∈ N, ∀x i ∈ D, ∀α ∈ R n , n i=1 n j=1 α i α j k(x i , x j ) ≥ 0
Furthermore any symmetric psd function can be seen as the covariance of a Gaussian process. This equivalence is known as the Loeve theorem.
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There are a lot of functions that have already been proven psd: Here is a list of the most common kernels in higher dimension:

constant k(x , y ) = σ 2 white noise k(x , y ) = σ 2 δx,y Brownian k(x , y ) = σ 2 min(x , y ) exponential k(x , y ) = σ 2 exp (-|x -y |/θ) Matern 3/2 k(x , y ) = σ 2 (1 + |x -y |) exp (-|x -y |/θ) Matern 5/2 k(x , y ) = σ 2 1 + |x -y |/θ + 1/3|x -y | 2 /θ 2 exp (-|x -y |/θ) squared exponential k(x , y ) = σ 2 exp -(x -y ) 2 /θ 2 . . .
constant k(x , y ) = σ 2 white noise k(x , y ) = σ 2 δx,y exponential k(x , y ) = σ 2 exp -||x -y || θ Matern 3/2 k(x , y ) = σ 2 1 + √ 3||x -y || θ exp - √ 3||x -y || θ Matern 5/2 k(x , y ) = σ 2 1 + √ 5||x -y || θ + 5 3 ||x -y || 2 θ exp - √ 5||x -y || θ Gaussian k(x , y ) = σ 2 exp - 1 2 ||x -y || 2 θ where ||x -y || θ = d i=1 (x i -y i ) 2 θ 2 i 1/2 . ⇒ R demo MDIS 2017
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Gaussian process regression

We assume we have observed a function f for a set of points X = (X 1 , . . . , X n ):

0 5 10 15 x -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 f The vector of observations is F = f (X ) (ie F i = f (X i ) ).
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Since f in unknown, we make the general assumption that it is the sample path of a Gaussian process Z ∼ N (0, k): If we remove all the samples that do not interpolate we obtain: In practice, the conditional distribution can be obtained analyticaly:

By definition, (Z (x ), Z (X )) is multivariate normal so we know the distribution of Z (x )|Z (X ) = F is N (m(.), c(., .)) with: There is no kernel that is intrinsically better... it depends on data!

m(x ) = E[Z (x )|Z (X )=F ] = k(x , X )k(X , X ) -1 F c(x , y ) = cov[Z (x ), Z (y )|Z (X )=F ] = k(x , y ) -k(x , X )k(X , X ) -1 k(X ,
Gaussian kernel: Exponential kernel:

The kernel has to be chosen accordingly to our prior belief on the behaviour of the function to study: We are not always interested in models that interpolate the data. For example, if there is some observation noise: F = f (X ) + ε. Let N be a process N (0, n(., .)) that represent the observation noise.

The expressions of GPR with noise are

m(x ) = E[Z (x )|Z (X ) + N(X )=F ] = k(x , X )(k(X , X ) + n(X , X )) -1 F c(x , y ) = cov[Z (x ), Z (y )|Z (X ) + N(X )=F ] = k(x , y ) -k(x , X )(k(X , X ) + n(X , X )) -1 k(X , y ) MDIS 2017 Introduction to Gaussian Process Surrogates Models
Examples of models with observation noise for n(x , y ) = τ 2 δ x ,y : 0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 x Z(x)|Z(X) + N (X) = F 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 x Z(x)|Z(X) + N (X) = F 0.0 0.2 0.4 0.6 0.8 1.0 -1 0 1 2 3 4 x Z(x)|Z(X) + N (X) = F
The values of τ 2 are respectively 0.001, 0.01 and 0.1.
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Parameter estimation
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We have seen previously that the choice of the kernel and its parameters have a great influence on the model.

In order to choose a prior that is suited to the data at hand, we can consider:

minimising the model error

Using maximum likelihood estimation

We will now detail the second one. 

Definition

The likelihood of a distribution with a density f X given some observations X 1 , . . . , X p is:

L = p i=1 f X (X i )
This quantity can be used to measure the adequacy between observations and a distribution.
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In the GPR context, we often have only one observation of the vector F . The likelihood is then:

L = f Z (X ) (F ) = 1 (2π) n/2 |k(X , X )| 1/2 exp - 1 2 F t k(X , X ) -1 F .
It is thus possible to maximise L -or log(L) -with respect to the kernel's parameters in order to find a well suited prior.

⇒ R demo We have seen that given some observations F = f (X ), it is very easy to build lots of models, either by changing the kernel parameters or the kernel itself.

The interesting question now is to know how to get a good model.

To do so, we will need to answer the following questions:

What is a good model?

How to measure it?
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The idea is to introduce new data and to compare the model prediction with reality 0.0 0.2 0.4 0.6 0.8 1.0

-1 0 1 2 x Z(x)|Z(X) = F
Since GPR models provide a mean and a covariance structure for the error they both have to be assessed.
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Let X t be the test set and F t = f (X t ) be the associated observations.

The accuracy of the mean can be measured by computing:

Mean Square Error MSE = mean((F t -m(X t )) 2 ) A "normalised" criterion Q 2 = 1 - (F t -m(X t )) 2 (F t -mean(F t )) 2
On the above example we get MSE = 0.038 and Q 2 = 0.95.
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The predicted distribution can be tested by normalising the residuals.

According to the model,

F t ∼ N (m(X t ), c(X t , X t )). c(X t , X t ) -1/2 (F t -m(X t ))
should thus be independents N (0, 1): Model to be tested: Step 1: Step 2: Step 3:

standardised residuals Density -3 -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 Normal Q-Q Plot
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F MDIS 2017
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F MDIS 2017
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F MDIS 2017
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F MDIS 2017
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We finally obtain:

MSE = 0.24 and Q 2 = 0.34.
We can also look at the residual distribution. For leave-one-out, there is no joint distribution for the residuals so they have to be standardised independently. 

standardised residuals Density -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -2 -1 0 1 2 Normal Q-Q Plot
k(x , y ) = k 1 (x 1 , y 1 ) + k 2 (x 2 , y 2 )
is valid covariance structure. Remark: From a GP point of view, k is the kernel of

Z (x ) = Z 1 (x 1 ) + Z 2 (x 2 )
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Sum of kernels over tensor space

We can have a look at a few sample paths from Z : Product over the same space

Property k(x , y ) = k 1 (x , y ) × k 2 (x , y )
is valid covariance structure.

Example

We consider the product of a squared exponential with a cosine:

× = MDIS 2017
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Product over the tensor space

Property k(x , y ) = k 1 (x 1 , y 1 ) × k 2 (x 2 , y 2 )
is valid covariance structure.

Example

We multiply 2 squared exponential kernel Calculation shows this is the usual 2D squared exponential kernel.
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Composition with a function

Property

Let k 1 be a kernel over D 1 × D 1 and f be an arbitrary function

D → D 1 , then k(x , y ) = k 1 (f (x ), f (y )) is a kernel over D × D. proof a i a j k(x i , x j ) = a i a j k 1 (f (x i ) yi , f (x j ) yj ) ≥ 0 Remarks: k corresponds to the covariance of Z (x ) = Z 1 (f (x ))
This can be seen as a (non-linear) rescaling of the input space All these transformations can be combined!

Example

k(x , y ) = f (x )f (y )k 1 (x , y ) is a valid kernel.
This can be illustrated with Probability of Improvement:

f (x ) = 1 x and k 1 (x , y ) = (1 + |x -y |)e -|x -
PI(x ) = cdf min(F ) -m(x ) (c(x , x )) 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 MDIS 2017
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The point with the highest PI is often very close to the best observed value. We can show that there is a x in the neighbourhood of x * such that PI(x ) ≥ 0.5.

For such points, the improvement cannot be large...

Can we find another criterion?
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E I(x ) = min(F ) -∞ max (0, Y (x )) dy (x ) = • • • = c(x , x )(u(x )cdf (u(x )) + pdf (u(x ))) with u(x ) = min(F ) -m(x ) (c(x , x )) 0.0 0.
Note the patterns in new points. Accumulation at lower bound of a and mid interval of p before t = 250.
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Note the "function" for the (a, p) pair, i.e., a (p ).
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+

  What is the mean value of f ?

⇒

  They are additive (up to a modification) Tensor Additive kernels are very useful for Approximating additive functions Building models over high dimensional inputs spaces MDIS 2017 Introduction to Gaussian Process Surrogates Models 68 / 100

  Process Surrogates ModelsExampleWe consider f (x ) = 1x and a Matérn 3/2 kernel k 1 (x , y ) = (1 + |x -y |)e -|x -y | .

  We say that a vector Y = (Y 1 , . . . , Y n ) t follows a multivariate normal distribution if any linear combination of Y follows a normal distribution:

	Multivariate normal distribution			
	Definition				
			0.4		
			0.3		
		density	0.2		
			0.1		
		2	0.0		
			-4	-2	0	2	4
					x
	One fundamental property: a linear combination of independant
	normal distributed random variables is still normal distributed.
	MDIS 2017	Introduction to Gaussian Process Surrogates Models		21 / 100

  If the number of function evaluations are limited, we can run the optimization on the model instead of running it directly on the function In practice, it is risky to take decisions based only on the model... On the other hand, the model can be used to guide us in the search for the optimum.

	Global optimization methods are a trade-off between	
	Overall framework Exploitation of past good results	
	y | : costly function 1.0 Exploration of the space Kernel 0.0 0.2 0.4 0.6 0.8 0 10 20 30 40 50 60 70 > f + m x D e s ig n o f E x p e r im e n t s How can GPR models be helpful? Sample paths 0.0 0.2 0.4 0.6 0.8 40 20 0 20 40 + observations 1.0 6 Introduction to Gaussian Process Surrogates Models Example MDIS 2017 ⇒ R demo + 5 + x surrogate model approximations 4 x > 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 x * x MDIS 2017 Introduction to Gaussian Process Surrogates Models MDIS 2017 Introduction to Gaussian Process Surrogates Models MDIS 2017 Introduction to Gaussian Process Surrogates Models	77 / 100 78 / 100 79 / 100
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In the end, we hope that:

argmin(m) ≈ argmin(f ) min(m) ≈ min(f )

  Example in 5d: surface displacements misfit minimization ⇒ demo with mainInversionPunctualDisplSource.R !!! normalize the data: WLS has a few very large values, it is always > 0: make it more gaussian, wls norm = log(1 + wls) and all x 's and wls norm between 0 and 1.

	Expected Improvement Expected Improvement Expected Improvement Expected Improvement (demo with mainInversionPunctualDisplSource.R, cont.) Expected Improvement (demo with mainInversionPunctualDisplSource.R, cont.) EGO parameters: anisotropic Matèrn 5/2 kernel, GP updated
	(log-likelihood maximized) every 5 added points, BFGS with bounded
	Let's see how it works... iteration 1 Let's see how it works... iteration 2 Let's see how it works... iteration 3 Let's see how it works... iteration 4 Let's see how it works... iteration 5 variables (from optim() function) restarted from random initial points
	5 6 5 6 5 6 5 6 5 6 for maximizing log-likelihood and EI. 4 4 8 12 16 log(wls_test) 8 12 16 log(wls_test)	log(wls_test)	4 8 12 16
			6 364000 366000 368000			7649000	7650500	-3000	-1000	1000
	norm_wls norm_wls norm. WLS	364000 366000 368000 -1 0 1 2 xs -1 0 1 2 2 log(wls_test) 1 0 -1 -2 200 600 1000	4 8 12 16	norm_wls norm_wls	1 2 3 4 5 0.0 0 1 2 3 4 0.0 0 1 2 3 4 0.0 0 1 2 3 4 0.0 0 1 2 3 4 0.0 0 1 2 3 4 7649000 -1 0 1 2 -1 0 1 2 xs 200 600 a -400	0.2 0.2 0.2 0.2 0.2 7650500 ys 1000 0 400	log(wls_test)	norm_wls	0.4 0.4 0.4 0.4 0.4 -3000 -1 0 1 2 LEARNING 0.6 0.6 0.6 0.6 0.6 -1000 1000 zs ys -400 0 400 4 8 12 16 SET p	0.8 0.8 0.8 0.8 0.8 Preferential sampling 1.0 1.0 1.0 1.0 zs 100 {xs, ys, zs, a, p} of good regions of S, points chosen through an optimized Latin Hypercube Sam-pling (R libraries DiceDesign or lhs). but global therefore TEST SET RMSE=0.3131 Q2=0.8909 sometimes increasing WLS. Lower bound on θ i 's increased from 0.08 to 0.1 at t = 250 (x i 's and θ i 's normed 1.0 between 0 and 1).
	2 110 random {xs, ys, zs, a, p} test points. a p 0 0 50 100 150	200	0.4	250	0.6	0.8	1.0
					point number				
	MDIS 2017 MDIS 2017 MDIS 2017 MDIS 2017 MDIS 2017 MDIS 2017 MDIS 2017					Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models Introduction to Gaussian Process Surrogates Models	83 / 100 84 / 100 84 / 100 84 / 100 84 / 100 84 / 100 87 / 100

Conditional distribution

Let (Y , Z ) be a Gaussian vector (Y and Z may both be vectors) with mean (µ Y , µ Z ) t and covariance matrix

.

The conditional distribution of Y knowing Z is still multivariate normal Y |Z ∼ N (µ cond , Σ cond ) with

Introduction to Gaussian Process Surrogates Models

Making new from old: Many operations can be applied to psd functions while retaining this property Kernels can be: Summed together

On the same space k(x , y ) = k1(x , y ) + k2(x , y ) On the tensor space k(x , y ) = k1(x1, y1) + k2(x2, y2)

Multiplied together

On the same space k(x , y ) = k1(x , y ) × k2(x , y ) On the tensor space k(x , y ) = k1(x1, y1) × k2(x2, y2)

Composed with a function

How can this be useful? 

Sum of kernels over the same space

We first consider a squared-exponential kernel: 1950 1960 1970 1980 1990 2000 

Sum of kernels over the same space

We can try the following kernel:

Sum of kernels over the same space

We can try the following kernel: Once again, the model is significantly improved.
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Other kernel design methods

There are two other popular methods for kernel design:

Bochner Theorem There is an equivalence between positive measures and stationnary positive definite functions.

Linear operators

If the function to approximate has particular properties that can be obtained via a linear transform, it is possible to build a GP with the wanted properties. For example, one can build symmetric GPs or GPs with integral equal to zero.
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In our example, the best observed value is 1.79 (demo with mainInversionPunctualDisplSource.R, cont.) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 200 400 600 800 

Related problems addressed with GPs

EGO with constraints: min x f (x ) s.t. g(x ) ≤ 0, multiply the EI by the probability of constraints satisfaction.

GP for target attainment: find the set of x s.t.

GP for probability estimation: find P(f (x , U) ≤ T ) where U is a random vector.

GP for multi-objective optimization: min x {f 1 (x ), . . . f m (x )}, cf. Binois et al.
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Can EGO be adapted when observations are noisy?

First of all, using the current best observation as a minimum does not make much sense... 

Conclusions

Gaussian Processes offer a mathematically funded and versatile framework for building statistical models.

The main assumptions are: the phenomenon output is Gaussian, functional choice of covariance function (kernel).

The statistical model needs physical knowledge: through data + expertise guiding the choice of kernel (which may come from the physical model).

The statistical model is in essence complementary to the physical model and typically useful for decision making (optimization, uncertainty propagation, . . . ).

MDIS 2017

Introduction to Gaussian Process Surrogates Models 100 / 100