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PROLEGOMENA

These notes are freely inspired by many books [LBO3, [Dav07, [Hell3\ Bre83. Rud80, RS/
Kat95, Ray17, Zwol2]. They also owe very much to some lecture notes by Z. Ammari, C.
Gérard and S. Vii Ngoc. The Reader is warned that these notes are devoted to teaching. They
only exist in order to refresh the memory of the Author and, consequently, some important
comments do not appear in this electronic document. Hopefully, the students will also help
correcting my mistakes, won’t they?



1. PRELIMINARY CONSIDERATIONS

This section is here to help the reader revising some notions that he encountered in the past.

1.1. A question. We endow the space L?(I) with the usual scalar product

(u,v)g(f):/u@dx.
I

We define
HY(I) = {¢ € L2(I) : ¢ € L*(])},

and we endow it with the following Hermitian form
<U, ’U>H1(]) = (u, ’U>|_2(]) + <UI,U/>|_2(]) .
Lemma 1.1. (H'(I), (-, -)u1(s)) is a Hilbert space.
We define

1 Fo
Ho(Z) = %5 (1)
Lemma 1.2. (H{(I), (-, -)n1(r)) is a Hilbert space.

For J = (a,b), we let

Sy WP de
(1.1) A= in
' very() [ lwRde’

and we would like to give an explicit value of \;.

1.2. An answer.

Lemma 1.3 (Sobolev embedding). The following assertions hold.
(i) We have H'(R) C €°(R) and, for all ¢» € H'(R),

VeeR, [¥(z)| < \/—||@/J||H1(R
(ii) We have H}(J) C €°(J) and, for all y» € H}(J), 1(a) = ¥ (b) = 0 and

Vee d, @) <2 e
(iii) For all vy € H{(J), we have, for all z,y € J,

[¥(x) =)l < Ve =yl oo

Proof. Let us deal with (i). We use the (unitary) Fourier transform to get, for all ¢» € H'(R),
[l = [ 1+ ENTOR de.

In particular, we deduce, by Cauchy-Schwarz, that 1) € L!(R). By using the inverse Fourier

transform, we get
VzeR, (z / Y(€)e™ ™t de .
\/_

By dominated convergence, we see that 1) is continuous. Moreover, it goes to 0 by the Riemann-
Lebesgue lemma. In addition,

Ve e [0,1], ()] < (2m)” 2||¢||L1 < 2m) 72 148 e 1) ? e



Let us now consider (il). Consider v € H}(J). Let us extend 1) by zero outside .J and denote
by 1 this extension. We have 1) € L*(R). Since %;°(.J) is dense in H{(.J), we can consider a

sequence (1,) C 65°(J) converging to ¢ in H!'-norm. Note that, for all n, p € N,

(12) ||wn_¢m||H1 = ‘|¢n_¢m‘|H1(J .

Thus, (¢),,) converges in H'(R) to some v. Since (1,,) converges in L*(R) to 1), we get v = ¢ €

H!(R). By (i), we deduce that 1) is continuous on J. Coming back to (I.2) and using again (i),
we get that (¢,) uniformly converges to 9. In particular, ¢)(a) = ¢ (b) = 0. Then, we write,

forall x € J,
— [ i

[ ()] < 1219 ]|z

Let us prove (iii). We use again the sequence (1,) and we write, for all z,y € J,

() /w B,

and we use the Cauchy-Schwarz inequality. U

so that

Lemma 1.4. The infinimum (1.1)) is a minimum.

Proof. Let (1,,) be a minimizing sequence such that ||¢,[|2(;y = 1. In particular (1) is
bounded in L?(J). Thus, (1,) is equicontinuous on [a,b] and pointwise bounded. We can
apply the Ascoli theorem and we may assume that (1),,) uniformly converges to ) on [a, b] and
thus in L*(J). We get [|¢| 2(;y = 1. Since (¢,) is bounded in Hj(J), we can assume that it
is weakly convergent (to ¢) in H}(.J), and thus (why?) in D’(J). We must have ¢ = /. We
deduce

: : / /

liminf [ |z 2 (1970

since (¢/,) weakly converges in L(.J) to ¢’ (why?). We get

A > 19 [R2
where ¢ € Hj(J) and [[4)[| 2,y = 1. It follows that
19 1E200y = A1 -
O
Lemma 1.5. Let ) be a minimum. Then, 1) satisfies, in the sense of distributions on J,
(1.3) —¢" =M.
Proof. Let ¢ € 65°(J) and € > 0. We define
f(e) — f] |(w + 690>/’2 dx
fJ W’ + 590|2 dz
We get f/(0) = 0 and then
/W@'dm =\ / Yvodr.
J J
O

Lemma 1.6. The A\, for which there are non trivial solutions to (1.3)) being 0 at a and at b are
exactly the numbers (b—a) ~?n*n® where n. € N*. The corresponding solutions are proportional
to sin(nw(b—a)™t).
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1.3. Some density results. The Reader is invited to read [Bre83, Section IV. 4]. Let us con-
sider a sequence of smooth non-negative functions (p,)nen+ such that [, p,(z)dz = 1 with
suppp, = B (0, %) Consider a smooth function with compact support 0 < y < 1 equal to 1 in
a neighborhood of 0, and define y,,(-) = x(n™'-).

Lemma 1.7. Let p € [1,+0). Let f € LP(R?). Then, p,, x f and x,,(pn x f) converges to f in
LP(R?). In particular, 65°(R?) is dense in (LP(R), || - ||y ga))-

Proof. Lete > 0 and f € % (R?) such that || f — fol|ismre) < €.
We have

o Iol@) = @) = [ a0) ol =) = fole)) o,

and, by the Holder inequality (with measure p,, dy),

lowsfo = folla < [ [ pa@lfole =9) = @) dy e

By using the uniform continuity of f, and the support of p,,, we see that p,, x fo converges to f
in L?(R?). It remains to notice that

lon* (f = fo)llr@ay < [1f = folliomey

to see that p, x f converges to f in LP(R?).
Then, we consider

10 = o s flsen < [ (1= 0@ [ il = )P dydo,

and we get

0= MR < [ [ 0=l + )Pl dyds

< /|  Wepar

and the conclusion follows since f € LP(RY). d
Lemma 1.8. Let k € N. €5°(R?) is dense in (H*(R), || - ||pe ga))-

Proof. Let us only deal with the case k = 1. Let f € HY(R?). We let f, = xn(pn * f).
First, notice that ( f,,) converges to f in L2(R?). Then, we have

fr,L:X/rzpn*f+ann*f,'

The first term converges to 0 in L?(R?) and the second one goes to f’ in L2(IR%).

Consider
B'(R) = {¢ € H'(R) : 29 € L*(R)} C L*(R).
We let, for all p, ¢ € BY(R),
Q(e, ) = (0, V) w) + (T@, 2V) 2w -
Lemma 1.9. (B'(R), Q) is a Hilbert space.

The following lemma will be convenient.

Lemma 1.10. 65°(R) is dense in (B'(R), || - ||ls:(r))-
6



Proof. Let us recall Lemma Let f € B'(R). As in Lemma|1.8] we introduce the sequence
fn = Xn(pn * f). We have seen that f,, goes to f in H!(R). Let us prove that z f,, goes to z f in
L%(R). Since zf € L*(R), xn(pn * (zf)) goes to xf € L*(R). We write

xfn(x) - If(l’) = TXnPn * f(x) - C(,’f(l’) = n_IXnﬁn * f(l’) + XnPn * (J}f) - :(,’f(l’) )
with p,,(y) = n?yp(ny). Then, we get

[Xnfn * fllze) < lonllim | fllee = 16)eC) i@l fllee) -

The conclusion follows. O

Exercise 1.11. Consider
V.={y € L2(]R) (0, + )Y € LQ(R)} C L2(]R).
We let, for all p, 1) € V.,

Q+(p, V) = (v, V)2m) + (£0x + ), (02 + 7)) L2w) -

i. Show that (V, ()+) is a Hilbert space.
ii. Let f € V. Show that the sequence f,, = x,(pn * f) converges in V..

Proposition 1.12. We have H' (R, ) C €°(R.). Moreover, €°(R,) is dense in H'(R ).

Proof. The main point is to prove the existence of an extension operator. The following lines
are inspired by [Bre83, Lemme IX.2].

Let ¢ € H'(R,). We define ¢ the function defined by ¢ (z) = ¢ (x)1g, (z)+¢(—2)1r_(x).
Let us prove that ¢ € H'(R) and [ 2||¢Ha1(R+)_- Obviously, we have ¢ € L*(R). Let
¢ € ¢5°(R) and consider

- ;wwmwﬂw+¢%%»m
T

0

(W, Yo = “%w¢mw+/w4www

with ®(t) = ¢(t) — p(—t), for all t € R. Consider a smooth even function x being 0 on
(—1,1) and 1 away from (—1,1). We let x,,(t) = x(nt). We have (x,,®)|j0+00) € C5°(Ry).
Since ¢ € H' (R, ), there exists un function f € L*(R,) such that, for all ¢ € €;°(R,),

W, ) 2wy = —(f, O)2ry) -
By changing # into 1), we have
+oo
<ﬁ7 Xn(p/>L2(R) = ¢(t)Xn(t)‘I)/(t) de

0
+oo +oo

=, (1) (xn®)'(t) dt — i ()X (1) () dt

= _<f7an)>L2(R+) - ; w(t)X;(t)q)(t) de

By using the behavior of ® at 0 and a support consideration, we get
“+o0o

lim ()X, (6)P(t)dt =0,
n—+oo [
7



and we deduce
(W, 0"y = —(f, P)ew,) ;
and thus
|@7 ¢/>L2(R)’2 < 2HfHE2(R+)||<PHE2(R) .
This proves that ¢ € H'(RR) and the relation between the H'-norms follow. Thus ¢ € €°(R).
The conclusion about the density follows from Lemma|I.§] U

2. UNBOUNDED OPERATORS

In this section, &/ and F' are Banach spaces. For a slightly different presentation of the
concepts in this section, one can consult [LB0O3, Chapitre 10].

2.1. Definitions.

Definition 2.1 (Unbounded operator). An operator is a pair (Dom (7),T") where Dom (T') is a
linear subspace of £ and T is a linear map from Dom (7') to F'. Dom (T') is called the domain
of T

Definition 2.2 (Graph). The graph of (Dom (T"),T') is
I'T)={(z,Tz),2 € Dom (T)} C E x F'.
Definition 2.3 (Graph norm). Let (Dom (7"), T') be an operator. For all z € Dom (T"), we let
lzllr = llzlle + T[]

Definition 2.4 (Extension). Let (Dom (T"), T") and (Dom (S), S) two operators. We say that S
is an extension of 7" and we write 7" C .S when I'(T") C I'(5).

Definition 2.5 (Closed operator). (Dom (7°),T)) is said closed when I'(T") is closed in E x F.

Proposition 2.6. The following assertions are equivalent.
i. (Dom (7)), T) is closed.
ii. For all (u,) € Dom (TN such that v, — u and Tu,, — v, we have v € Dom (T') and
v="Tu.
iii. (Dom (T), (-, -)r) is a Banach space.

Exercise 2.7. Take £ = F = L*(R?). Prove that the operator (H?(R?), —A) is closed.

Proposition 2.8. Let (Dom (T'),T) be a closed operator. There exists ¢ > 0 such that
Vu € Dom(T), [Tull > clul .
if and only if T' is injective with closed range.

Proof. Let us assume that the inequality holds. The injectivity is obvious. Let us consider (v,,)
in the range of 7" such that (v, ) converges to v € H. For all n € N, there exists u,, € Dom (7T')
such that v,, = T'u,,. We deduce that (u,) is a Cauchy sequence so that it converges to some
u € H. Since T is closed, we find that « € Dom (T") and v = T'u.

Let us assume that 7" is injective with closed range. (ran T, ||-||) is a Banach space. T induces
a continuous bijection from (Dom (T), || - ||7) to (ran T, || - ||). The inverse is continuous by the
Banach theorem. U

Exercise 2.9. Prove that there exists a constant ¢ > 0 such that
Vo e H*(RY), [[(-A+ Deollzway = cllollzmay -

Show that this holds for ¢ = 1. What is the optimal ¢?
8



Closed operators are generalizations of bounded operators.

Proposition 2.10. Let (Dom (T'),T) be an operator. Assume that Dom (T)) = E. Then, the
operator (Dom (T'),T') is closed if and only if T' is bounded.

Example 2.11. Let Q € R?and K € L2(Q x Q). For all ¢ € L2(€2), we let

T (x /K x, Y)Y
Tk : L2(Q) — L*(Q) is well-defined and bounded. Moreover, || Tk || < || K||iz@xq)-

Definition 2.12 (Closable operator). (Dom (T"), T') is said closable when it has a closed exten-
sion. In this case, the smallest (in the sense of graph inclusion) closed extension is called the
closure of 7" and it is denoted by 7.

Proposition 2.13. The following assertions are equivalent.
i. (Dom (T"),T) is closable.
ii. T'(T) is the graph of an operator.
iti. For (u,) € Dom (T)N such that u,, — 0 and Tu,, — v, we have v = 0.

In this case, we have T'(T) = T'(T).
Exercise 2.14. The closure of (65°(R?), —A) is (H?(R%), —A).

Exercise 2.15. Take £ = L%(R?) and F' = C. Consider the operator 7' defined on Dom (T') =
652 (RY) by T = ¢(0). T is not closable.

2.2. Adjoint and closedness.

2.2.1. About the adjoint of bounded operators. In this section, E/ and F' are vector spaces. Let
us recall what the adjoint of an operator is, in the case of bounded operators.

Definition 2.16. Let ' € L(E, F). Forall p € ' = L(F,C),weletT'(p) =poT € E'.
Proposition 2.17. Let T € L(E, F). ThenT' € L(F', E') and ||T||z(g,r) = [|T"]| (7,57

Proof. T' is clearly linear. Let us show that it is continuous. We have

T/ , T/
1Ty = sup L2 _ gy, gy WDl ey
verngoy el pernjoy zemvioy 12| 2]l #

For the converse inequality, we write, with a corollary of the Hahn-Banach theorem,

Tz o(Tx
o = sup L2lle gy gy 1Ty
e} 1Tl zemor vernioy @l e llz] e

Definition 2.18. If A C F, we let
T={peE pa=0},
and, for all B C E’, we let
B°={x € E:Vpe B,p(x)=0}.
There is a deep connection between this notion of orthogonality and the adjoint.
Proposition 2.19. Let T € L(E, F). We have
ker 7" = (ranT)™*, ker T = (ranT")°.



Proof. The first equality is a reformulation of the definitions. We have
(ranT)° ={zx e E:Vpe F' : T'p(x) =0} =ker T,
by the Hahn-Banach theorem. U

Lemma 2.20. Assume that (E,|| - ||) is a Banach space. Let us write E = Ey ® E, with F;
and Es closed. Then, the projections 11y, and 11, are bounded.

Proof. For all x € E, there exists a unique (r1,%2) € F; X Es such that z = x; + z5. We
introduce the norm defined for all x € E by

21" = Tl ]l + llz2l
(E,|| - |I') is a Banach space. We have
VeeE, |zl < |zl
By the Banach theorem, || - || and || - ||’ are equivalent, and thus there exists C' > 0 such that

Vee B, x| <C|z|.

Let us recall the notion of codimension.

Definition 2.21. Let £ be a vector space and £} and E5 two subspaces such that £ = F; & Es.
Assume that dim £y < +o00. Then, all the supplements of F; are finite dimensional and have
the same dimension. This dimension is called codimension of £ and denoted by codim £ .

The notion of orthogonality is convenient to estimate the codimension.

Proposition 2.22. Assume that E is a Banach space. Let us write . = FE| & Es with E closed
and E, finite dimensional. Then, we have dim Fi- = dim E, = codimE).

Proof. Consider N € N\ {0}. Let (e,,)1<n<n be a basis of E,. We can consider (e];);<,<ny the
dual basis. We consider (e} I1g, )1<n,<n. By Lemma[2.20] this is a free family in £ being 0 on
E;. Thus dim E{- > N.

If p € E{f and x € E, we can write x = x| + 9, with (21, 75) € E; X E», and thus

p(x) = plaz) =Y _eh(x = e (Mga)p(en),

n=1 n=1

so that dim Ej- < N. O

2.2.2. The case of Hilbert spaces. Let us now assume that £ = F' = H is separable Hilbert
space. In this case, we define the adjoint of an unbounded operator. But, first, let us discuss the
bounded case.

Proposition 2.23 (Adjoint of a bounded operator). Let T' € L(H) be a bounded operator. For
all x € H, there exists a unique T*x € H such that

YyeH, (Tyz)= (y,Trx).
T™ is a bounded operator (called the adjoint of T)).
Proof. This a an application of the Riesz representation theorem. U

There is, of course, a relation between 7% and 7".
10



Definition 2.24. Let us denote by ¢ : H — H' the application defined by

VueH, VoeH, _Z(u)(p) = (p,u).
We recall that J is a bijective isometry by the Riesz representation theorem.

Proposition 2.25. Let T € L(H). We have T* = 7 'T' 7.
Proof. Consider (z,y) € H? and

(@, 77T Jy) =T Jy(x) = (Jy)(T2) = (Tz,y) = (+.T"y) .
U

Exercise 2.26. We let H = (*(Z, C), equipped with the usual Hermitian scalar product. For all
u € H,welet, foralln € Z, (S_u),, = u,_1 and (S 1), = Up11.

i. Show that S_ and S, are bijective isometries.

ii. Prove that S} = S%.

Proposition 2.27 (Adjoint of an unbounded operator). Let (Dom (T'),T') be an operator with
dense domain. We let

Dom (T7) = {x € H : Dom (T') > y — (T'y, x)is continuous for the topology of H} .
For all x € Dom (T™), there exists a unique T*x € H such that

Vy € Dom (T)), (Ty,z) = (y,T"x).

(Dom (T™*), T*) is an operator. It is called adjoint of T
Proof. It is a consequence of the Riesz representation theorem. U
Definition 2.28. We say that (Dom (T"), T) is self-adjoint when 7" = T™*.
Example 2.29. Consider Exercise[2.26] Then S + S_ is self-adjoint.

Example 2.30. Let us consider (X, .A, ;1) a measure space, with a o-finite measure ;.. We let
H = L*>(X, A, ;1) and consider a C-valued measurable function f. We define

Dom (Ty) = {¢ e H: f¢ € H},
and, for all ©» € Dom (T%), Ty = f1).
i. If f € L*(X, A, i), we have Dom (7f) = H and T is bounded.
ii. The domain Dom (7) is dense in H.
iii. The domain of the adjoint of 7} is given by Dom (T}) and T} = T%. In particular, when f
is real-valued, T is self-adjoint.

Exercise 2.31. Take H = L%*(R). Consider Dom (T') = H'(R) and T = —id,. What is
(Dom (T™),T*)? And if we choose Dom (T") = €5°(R)?

Proposition 2.32. Let us define J : H x H > (z,y) — (—y,x) € H x H. We equip H x H with
the natural scalar product. If T' is an operator with dense domain, we have

L(T*) = JI(T))", T(T)=JIT))*.
In particular, T™ is closed.

Proposition 2.33. Let (Dom (T'),T) and (Dom (S),S) two operators. If T C S, we have
ST T

Proposition 2.34. Let us consider a densely defined operator T. Then, T' is closable if and
only if Dom (T*) is dense. In this case, (T*)* =T.
11



Proof. Assume that Dom (7™) is dense. Then, we have I'((7™)*) = I'(T). Thus, I'(T) is a
graph and (T%)* =T.
Assume that T is closable. Let v € Dom (T*)%. We have (0,v) € J(I'(T*))* = I'(T)

I'(T). Thus, v = 0. O
Proposition 2.35. IfT is closable with dense domain, we have T =T~

Proof. Wehave T = (T*)™ =T~ = T*.

Proposition 2.36. Let us consider a densely defined operator T'. We have
ker(T*) = ran ()%,  ker(T*)* =ran (7).
In particular, T is injective if and only if T' has a dense range.
1<Dr00f. >Let x € kerT* and y € ran (7). We write y = Tz with z € Dom (7). We have
x,Tz) =0.

Let y € H such that (y, Tx) = 0 for all x € Dom (T"). We deduce that y € Dom (7) and
that (T*y, x) = 0 for all z € Dom (7). Thus, T*y = 0. O

2.2.3. Creation and annihilation operators. Let us discuss two important examples to illustrate
the above abstract propositions. Let us introduce the following differential operators, acting on
Dom (a) = Dom (¢) = . (R),
1
a=—(0,+x), c=
(0 )
The domains of their adjoints are
Dom (a*) = {1 € LX(R) : (~, + )b € L2(R)},

Dom (¢*) = {4 € LA(R) : (9, + )¢ € L3(R)},

(=0, + ).

Sl

and,

Vi € Dom (a*), a*p = i(—(% +x),

Vi € Dom (¢*), c"¢ = E((% + ).

In particular, we see that a C ¢* and ¢ C a*. Thus, a and c are closable and their closures
satisfya C ¢*and ¢ C a*.

Lemma 2.37. We have
Dom (@) = Dom (¢) = B}(R).

Proof. For all u € . (R), we have
2]aull* = llw/|I* + [lzull* — |lu]®

2cull® = [lu/[I* + llzull® + [lull*.

Now, take u € Dom (@). By definition, we have (u,au) € T'(a). There exists (u,) € Dom (a)"
such that (u,,) converges to u and (au,,) converges to au. We deduce that (u/,) and (zu,,) are
Cauchy sequences in L*(R). We get that v/ € L*(R) and zu € L*(R). We get Dom (a) C
B!(R). We proceed in the same way for €.

Let us now deal with the reversed inclusion. Take u € B'(R). By Lemma there exists a

sequence (u,,) of smooth functions with compact support such that u,, converges to « in B! (R).
12



In particular, (au,) and (cu,) are convergent in L?(R). We deduce that v € Dom (@) and
u € Dom (2).
U

Now, we use the results of Exercise[1.11} For example, if 1) € Dom (c*), we have ¢ € L*(R)
and (0, + )1 € L%(R). There exists (v,,) € - such that 1,, converges to ¢ and (9, + z),
converges to (0, + z)1 € L?(R). We get that (¢/,) and (x1),) are Cauchy sequences. Thus
1) € B'(R). We deal with a* in the same way. We get that

Dom (¢*) = Dom (a*) = B'(R).
We deduce that

a=c", ¢c=a".

By using Propositions and [2.35] we get

a*=a"=¢, c=¢c =a.
In other words, the closures of a and c are adjoint of each other and they share the same domain
BY(R).
2.3. Self-adjoint operators and essentially self-adjoint operators.

2.3.1. Symmetric and self-adjoint operators.

Definition 2.38. A densely defined operator 7" is said symmetric if 7" C 7. It is said self-
adjoint if T = T™.

Note that a symmetric and densely defined operator is closable.
Proposition 2.39. The operator T' is symmetric if and only if
Vu,v € Dom (T), (Tu,v) = (u,Tv).
In particular, for all w € Dom (T), (Tu,u) € R.
Exercise 2.40. Take H = L?(R). Show that (¢°(R), —id,) is symmetric.

Exercise 2.41. Let P € R[X] be a polynomial of degree n. Show that the differential operator
(H*(R9), P(D)) is symmetric. Here D = —id,. Use the Fourier transform and Example

Exercise 2.42. Give an example of non-symmetric operator.

Proposition 2.43. Let us consider a symmetric operator T. Let z = « + i with (o, 5) €
R x R*. Then,
Vu € Dom (T), [T = z)ull = |Bl[lull .

If, moreover, T' is closed, T' — z is injective with closed range.
Proof. Let u € Dom (T"). We have
(T = 2)ull® = (T = a)u —iBull* = (T — a)ull® + B°[|ull* + 2Re (T — a)u, (=iB)u) ,

and thus
1T = 2)ul® = (T = ayull® + B2[lull® > 52|l

Proposition 2.44. Let us consider a symmetric operator T'. Then, T' is closable and
TCcTCT*.
T is self-adjoint if and only if T =T = T*.
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Proposition 2.45. Let T' be a closed and symmetric operator. Then, T’ is self-adjoint if and
only if T™ is symmetric.

Proof. Assume that T* is symmetric. Wehave T Cc T C T* C (T*)* =T =T. d

Proposition 2.46. Let T' be a symmetric operator. The following assertions are equivalent.
i. T is self-adjoint.
ii. T is closed and ker(T* £+ 1) = {0}.
iii. ran (T 4+4) = H.
Proof. If T is self-adjoint, 7" is closed and ker(7™ £ i) = ker(7 4+ i) = {0}.
Then, we assume that 7" is closed and ker(7™* £+ i) = {0}. Thus, 7' F i has a dense range and
the range is closed.
Finally, we assume that ran (7" 4+ i) = H. Let us prove that Dom (7*) C Dom (7"). Take
u € Dom (7™) and consider (7 —i)u. There exists v € Dom (7") such that (7" —i)u = (T'—i)w.
Then, (T — ¢)u = (T* — i)v and ker(7T* — i) = {0}.We deduce that u — v = 0.
U
Exercise 2.47. Take H = L%(R?). Consider V € L*(R? R) and the operator —A + V' with
domain H?(R). Is it self-adjoint?
Exercise 2.48. Take H = L%(R ).
i. Is the operator (H'(R, ), —i0,) symmetric?
ii. Is the operator (H} (R, ), —id,) symmetric?
iii. Show that the domain of the adjoint of (H} (R, ), —id,) is H (R ).
iv. By using Proposition[2.46] prove that (H}(R.), —id,) is not self-adjoint.
Exercise 2.49. Take H = L*(R,). We let Dom (T') = {¢» € H3(Ry) : v/(0) = —u(0)} and
T = —02. Is this operator self-adjoint? We recall that H?(R ;) is continuously embedded in

¢'(R.) (see Proposition [1.12)).

2.3.2. Essentially self-adjoint operators.

Definition 2.50. A symmetric operator is essentially self-adjoint if its closure is self-adjoint.
Proposition 2.51. Let T' be a symmetric operator. Then, T' is essentially self-adjoint if and only
if T =T

Proof. If T is essentially self-adjoint, we have T" =T. Since T* = T, the conclusion follows.

Conversely, let us assume that 7' = 7. Then T =7 =T. U

Exercise 2.52. Take H = L?(R%). We take (45°(R%), —A). Is this operator essentially self-
adjoint? What is the adjoint?

Proposition 2.53. If T is essentially self-adjoint, it has a unique self-adjoint extension.

Proof. Let us consider S a self-adjoint extension of 7. We have T' C .S so that TcS=5C
T =T. O
Proposition 2.54. The following assertions are equivalent.

1. T is essentially self-adjoint.

ii. ker(T* £1) = {0}.
iii. ran (T +4) = H.
Proof. If T is essentially self-adjoint, T is self-adjoint and thus ker(T" =+ 4) = ker(T* 4 1) =
{0}. If ker(T™ £ i) = {0}, then ran (7" & ¢) = H. Finally, we assume that ran (7" £+ ¢) =

H.
We get ker(T* 4 i) = {0} and ran (T 4 i) = H. Therefore T is self-adjoint. O
14



Exercise 2.55. Take H = L?(I) with I = (0,1). Consider (¢5°(1), —0?). Is it essentially
self-adjoint?

2.3.3. A criterion for essential self-adjointness for Schrodinger operators.

Lemma 2.56. Let f € L2 (RY) such that Af € L2 (RY). Then, there exists a sequence

loc loc

(fn) € € (RYN such that (f,) tends to f and (Af,) tends to Af in L2 (R?).

loc

Proof. 1t is sufficient to adapt the proof of Lemma|I.§] O

Lemma 2.57. Let ¢ and x two smooth functions with compact supports, with x real-valued.
We have

[ e19elas < 2l + 41Tl
R

Proof. We write

(Ap, x*0) = (Vo, V*0)) = IXVell® + 2(x Ve, (V) ).
By using the Cauchy-Schwarz inequality, we have

1
2[(xVe, (VX)) )| < §H><Vso||2 +2[[(VX)ell?.
We deduce the desired estimate. O
Lemma 2.58. Let f € L2 (R?) such that Af € L2 (RY). Then f € HL. (R?).

loc loc loc

Proof. We consider the sequence (f,,) given in Lemma and we use Lemma with
© = fn— f,- We easily deduce that (V f,,) is convergent in L? (R¢) and that the limit is V f in
the sense of distributions. U

Lemma 2.59. Let f € L2 _(R?) such that Af € L2 _(R?). Then f € HZ (R?).

loc loc

Proof. Let x be a smooth function with compact support. We have just to show that xf &€
H2(R?). We have A(xf) = xAf +2Vx - Vf + fAx € L2(R?) by Lemma [2.58 Thus, by
considering the Fourier transform of y f, we easily find that (¢)2yf € L2(R%) and we deduce
that y f € H*(R?). O

Proposition 2.60. Let us consider V € €°°(R? R) and the operator T with domain € °(R?)
acting as —A+V. We assume that T is semi-bounded from below, i.e., there exists C' € R such
that

Vo € GRRY),  (Tu,u) > Clluf?.
Then, T' is essentially self-adjoint.

Proof. We follow the presentation in [Hell3, Theorem 9.15]. Up to a translation of V', we can
assume that C' = 1. Let us prove that the range of 7" + i is dense. Let us consider f € L?(R?)
such that, for all u € €°(RY),

(fi(T+1)u) =0.
We get, in the sense of distributions, that

(-A+VFi)f =0.
With Lemma [2.59, we get that f € HZ (R%). By induction, we get that f € HX (RY). From

loc loc
this and the Sobolev embedding H*(R?) — €°(R?) when s > £, we deduce that f € € (R?).
Now, take u € €°°(R%) and consider x € %°(R? R) supported in B(0,2) and equal to 1
on B(0,1). Forall n > 1, we let, for all z € R?,
Xn(z) = x(n""2).
15



We write
(f. (T £i)(xpu)) =0,
and we have

AT £ E0) = [ (TITOED + (V03 f7) do.

We get

VIV(EE) di = /R XV () d + /R V- (Vxade

Rd
Thus,

/ VIV (ET) de = / V () V () da— / V0V () da / V (V)T da
Rd Rd Rd Rd

and

VIVOEE) e = [ V0 NV0en) = [ Ve da

Rd
T / Vf - (Vo) xott) da — / PV, - Vide.
R4 Rd

We can choose u = f, take the real part to get

[ IV0ahE 4 ViafPas = [ 1793 ds.
R4 Rd
The r.h.s. goes to zero when n goes to +o00. By assumption, this implies that
liminf ||x,f]|> = 0.
n—-+0o
The conclusion follows from the Fatou lemma. U

Example 2.61. The operator with domain 4§°(R) acting as —9? + 22 is essentially self-adjoint.
Show that, in fact, this operator is bounded from below by 1.

Exercise 2.62. Take H = L*(R?). We take Dom (T') = 6§°(R?). For ¢» € Dom (T), we let
T = (=02, + (—i0,, — x1)?)¢. Is this operator essentially self-adjoint?

2.4. Lax-Milgram theorems. In this section, we adopt the presentation in [Hell 3, Chapter 3].

Theorem 2.63. Let V be a Hilbert space. Let () be a continuous sesquilinear form on'V x V.
Assume that there exists o > 0 such that, for all uw € V, we have

|Qu, )| > allully,

The operator <f defined by
Vv €V, Quv) = (u,v)y
is a continuous isomorphism of V onto V with bounded inverse.

Proof. The operator <7 is well defined by the Riesz representation theorem. It is bounded
since () is continuous. It is clearly injective. Let us show that the range of .27 is closed and
dense. We easily get that ran </ = {0} so that the range is dense. Moreover, we have, by
Cauchy-Schwarz, forall u € V,

allully < llully-

Thus, the range is closed. u
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Theorem 2.64. In addition to the hypotheses of Theorem assume that H is a Hilbert space
such that V is continuously embedded and dense in H. Then the operator £ defined by

Vu € Dom(.¥), YveV, Q(u,v) = (Lu, vy

where

Dom(%) = {u € V : themapv — Q(u,v) is continuous on'V for the norm of H} ,

satisfies the following properties:
(i) Z is bijective from Dom(.Z) onto H,
(i) Z is closed.
(iii) Dom(Z) is dense in V and in H,
av) If Q is the adjoint sesquilinear form defined by

Vu,v eV, Qu,v) = Q(v,u),
then & = £*.

Proof. By density and the Riesz theorem, .Z is well defined.
Let us deal with (). For all w € Dom (.%), we have
1 Zullllull = allully, = acllull*,
where ¢ > 0 1s such that
VueV, clul < ||luly.
We deduce that .Z is injective.
Let us prove the surjectivity. Let w € H. We look for u € Dom (%) such that Zu = w.
This is equivalent to
VoeH, (ZLu,p)=(w,p).
We notice that V > ¢ — (w, ) is continuous. Thus, there exists v € V such that, for all
peV,
(w, ) = (v, ).
We letu = &/ ~'v € V so that
VoV, (wg) =0Qup).
We deduce that u € Dom (.¢) and
Vo eV, (w,p) = (Lu, ).

By density, we get Lu = w.
Therefore .Z is bijective. We get that £ ~! is continuous and ||.£ || < (ac)~'. Therefore
% is closed. This proves (i)
Now, we prove (fii). Let u € Dom (). We have
Vo € Dom (£), (u,v)y =0.
The operator o7* € L(V) is bijective. There exists a unique w € V such that u = .&/*w. Thus,
Vv € Dom ((£), (w,&v)y =0,
so that
Vv € Dom (£), Q(v,w) =0,
and therefore
Vv € Dom (), (ZLv,w)=0.

By surjectivity of .Z, we get w = 0 and then u = 0.
17



Let us now deal with (iv). Let us prove that .£* C #. Letu € Dom (Z*). For all
¢ € Dom (Z), (Lo, u) = (v, L*u). We notice that V > ¢ — (¢, L*u) is continuous for
|| - |- Thus, there exists v € V such that

VQOGV, <907$*u>:<907v>v'
In particular, we have
Vo € Dom (Z), (ZLyp,u)= (p, L u) = (p,v)y.
There exists w € V such that v = o/*w and thus
Vo € Dom (&), (Lp,u) = (p, L u) = (p,v)y = Qlp,w) = (Lp,w).
By surjectivity of .Z, we get u = w € V. Then

Vio € Dom (L), Q(u,¢) = Qlp,u) = (¢, L) .
We get u € Dom (.:?7) and

Vo € Dom (Z), (Lu, o) = (o, L*u).

By density of Dom (.¢), we deduce that .Z* C .Z. Let us now prove the converse inclusion.
Let u € Dom (.£). We have

Vo € Dom (£), (Ly,u) = Qp,u) = Qu, ) = (Lu, ) = (g, Lu).
It follows that u € Dom (.£*) and that £*u = Zu. O

2.5. Examples.

2.5.1. Dirichlet Laplacian. Let 2 C R? be an open set. Here, we consider V = H}(2) and we
define the sesquilinear form

QDir(u,v):/Vu-W%—uﬂdx.
Q

The form QP is Hermitian, continuous, and coercive on V. In Theorem we have &/ =
Idy.

The self-adjoint operator .#’P'* — Id given by Theorem is called Dirichlet Laplacian on
Q. The domain of .ZP" is

Dom (ZP™") = {4y € H}(Q) : —Av € L2(Q)}.
If the boundary of € is smooth, we have
Dom (.Z) = Hy(Q) N H*(Q) .
This characterization of the domain is not true if the boundary is not smooth.

2.5.2. Neumann Laplacian. Let Q C R? be an open set. Here, we consider V = H!(Q2) and
we define the sesquilinear form

QNe“(um):/VU-WjLude.
Q

The form () is Hermitian, continuous, and coercive on V. In Theorem[2.64] we have ./ = Idy.
The self-adjoint operator .#~°" — Id given by Theorem is called Neumann Laplacian
on €. If the boundary of €2 is smooth, the domain of .ZN°" is

Dom (ZN") = {¢p € H'(Q) : —Ay € L*(Q), Vi -n =0 ondQ}.
18



We have
Dom (.ZN") = {x) € HY(Q2) NH*(Q) : Vb - n =0 on 9N} .
This characterization of the domain is not true if the boundary is not smooth.
2.5.3. Harmonic oscillator. Let us consider the operator
Ho = (€5°(R), —02 + 27).

This operator is essentially self-adjoint as we have seen in Example [2.61] Let us denote by #
its closure. The operator H is called the harmonic oscillator. We have

Dom (H) = Dom (H;) = {1 € L*(R) : (=02 + 2°)y € L*(R)}.

We recall Lemma

Theorem can be applied and &7 = Id. Let us now consider Theorem [2.64| with H =
L2(R). The assumptions are satisfied since ) is continuously embedded and dense in L*(R).
The operator . associated with () is self-adjoint, its domain is

Dom (Z) = {1 € BY(R) : (=02 + 2°)y € L*(R)}.
The operator . satisfies in particular
(=02 + 2*)u,v) = Qu,v) = (Lu,v),
for all u,v € €5°(R). This shows that . is a self-adjoint extension of H,. Thus, .¥ = H.

3. SPECTRUM
3.1. Definitions and basic properties.
3.1.1. Holomorphic functions valued in a Banach space. Let E be a Banach space.

Definition 3.1. Let {2 be a non-empty open set in C. We say that f : 2 — FE is holomorphic
when, for all zg € €, the limit
o 1) = I ()

Z—r20 2 — ZO
exists. It is denoted by f’(2).

Lemma 3.2. Let A C E such that ((A) is bounded for all { € E'. Then A is bounded.

Proposition 3.3. Let f : Q) — E. f is holomorphic if and only if it is weakly holomorphic, i.e.,
¢ o f is holomorphic on QQ for all { € E'.

Proof. Let us assume that £ o f is holomorphic on €2 for all / € E’. Let us first prove that f is
continuous. Take z; € (2 and define for » > 0 such that D(z,r) C €,

A= {M,ZGD(zo,r)\{zo}} CE.

Z— 20
We observe that /(A) is bounded for all / € E’. We deduce that A is bounded. This proves the
continuity of f at 2.
Take 2z, € €2 and I a circle with center z, and radius r such that D(zy,r) C Q. Since f is
continuous, we can define, for z € D(z,r),

1 [ f(¢)
Fz)= — [ 25 qc.
(2) QiWAC—de
By the Cauchy formula, we get, for all ¢ € E’ and z € D(zy, 1),
(o f(z) = L/wdg_

2 Jp (=2
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Using the Riemannian sums, we find
t(f(z) = F(2)) = 0.
By the Hahn-Banach theorem, we deduce that F'(z) = f(z). From this, it is easy to show that
f has a power series expansion and thus it is holomorphic. U
By using the classical Liouville theorem, we get the following.

Corollary 3.4. Let f : C — E be holomorphic. If f is bounded, then it is constant.

3.1.2. Basic definitions and properties. Let T be a closed operator on H or a bounded operator
on a Banach space E.

Definition 3.5. We let
p(T)={z€ C:T — zisbijective}, sp(T)=C\ p(T).
p(T) is called the resolvent set of 7. sp(7") is called the spectrum of 7.

Definition 3.6. An eigenvalue of 7" is a number A € C such that ker(7" — \) # {0}. The set
formed by the eigenvalues is called point spectrum.

Proposition 3.7. In finite dimension, the spectrum coincides with the point spectrum.

Exercise 3.8. Here H = C". Let ¢ > 0 and define the matrix M, () = (m;;)1<i<n With
1<5<n

Mp1 =¢€,m;;+1 = Lforalli e {1,...,n — 1}, and 0 otherwise.
i. What is the spectrum of M, (¢)?
ii. What is the behavior of the spectrum when n goes to +00?

Exercise 3.9. What are the spectra of @ and ¢ defined in Section [2.2.3]?

Proposition 3.10. For all z € p(T), T — z is bijective with bounded inverse. In this case, we
let Rp(z) = (T — 2)~%

Proposition 3.11. p(T') is an open set and p(T') > z — Rr(2) is holomorphic.

Lemma 3.12 (Weyl sequences). Let us consider an unbounded closed operator (T, Dom(T)).
Assume that there exists a sequence (u,,) € Dom (T) such that ||u,||n = 1, (u,) and

lim (T"— MNu, =0

n—-+4o0o

in H. Then \ € sp(T).
A sequence (u,,) as in Lemma is called a Weyl sequence.

Example 3.13. We let H = L?(I), with I = (0,1). Take f € €°([0, 1], C). We consider the
operator T : L2(I) 3 ¢+ f1p € L(I). T is bounded and ||T|| < || f||co-
i. If A ¢ ran(f), then, the multiplication operator by (f — \)~! is bounded and it is the
inverse of 7. In particular, this shows that sp(7") C ran (f).
ii. Let us now take zo € (0,1) and let A\ = f(x¢). Let x € €°°(R) with ||x||.2) = 1. Forn
large enough, we consider the sequence

un(z) = Vnx(n(x — x0)),
and we notice that the support of u,, is included in [0, 1]. Moreover, we have ||u,|n = 1.
By dominated convergence, we have
lim (T"— MNu, =0.

n—-+oo

This shows that A € sp(7'). We get f(I) C sp(7'). Since the spectrum is closed and f

continuous, we get f([0, 1]) C sp(7T).
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iii. If X is an eigenvalue of 7T, there exists ¢ € L?(I) such that ||1||q = 1 and (f — \)yp = 0.
Thus the measure of {f = A} is positive. Conversely, if A = {f = A} has a non zero
measure, 1 4 is not zero and satisfies 714 = A1 4.

Actually, we can generalize this last example.
Exercise 3.14. We use the notations of Example We define the essential range of f as
ranes(f) ={A € C:Ve >0, u({|f — Al > €}) > 0}.

i. Prove that, if A ¢ ran . (f), then A € p(T%).
ii. Let A € ran (f) ande > 0. By using A, = {|f—\| > ¢}, find a function ¢). € Dom (T’%)
such that || (Ty — )/l < 2|1 [
iii. Conclude that ran s(f) = sp(T%).

Exercise 3.15. Here H = (*(Z). We recall that L*(S*, C) is isometric to ¢?(Z) via the Fourier
series and the Parseval formula.

i. For all u € H, we let, for all n € Z, (S_u), = u,_1. By using the result of Exercise
[3.14] (or Exercise [3.13)) and the Fourier series, find the spectrum of S_. What is the point
spectrum of S_?

ii. Forall u € H, we let, for all n € Z, (T'w),, = t,,_1 + u,_1. Find the spectrum of 7.

Proposition 3.16 (Resolvent formula). For all z1, zo € p(T'), we have
Rr(z1)Rr(22) = Rr(z2)Rr(z1)

and
(21 — 22) Rr(21) Rr(22) = Rr(z1) — Rp(22) .

3.1.3. About the bounded case.
Definition 3.17 (Spectral radius). Let T € L(E). We let

r(T) = sup |A|.
Xesp(T)

Proposition 3.18. Let T' € L(E). Then,
r(T) < |71

Moreover, X
r(T) = limsup [|[T"||~ .

n—-+0o
Proof. For all z € C with |z| > ||T||, we have
T—z2=2z:2"'T—-1d),
so that

—+00
(3.1) Rp(z2)=(T—2)'=2'(z"'"T—1d) ' = 271> 1"z,
n=0

If A € sp(T"), we have A" € sp(7™) and thus, for all n € N*,
"
r(T) < 17"~

Moreover, Ry is holomorphic on {z € C : |z| > r(T')} (and not on the exterior of a smaller
disk) so that, by the Hadamard formula,

r(T) > limsup | T .

n—-+o0o
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Lemma 3.19. Let T € L(E). The sequence is (|| T"||% ) nen~ convergent to infpen- | T7|7.

Proof. We can assume that 7" # 0 for all n € N*. We let u,, = ||7™"||. We have
Vn,p e N, tppp <up +u,.
Let p € N*. We write n = gp + r with r € [0, p).We have

U < quy + ;.

Thus,
Uy U
n p n
We have, for all p € N*,
u u
limsup — < -2,
n—4oo M P

Proposition 3.20. If T € L(E), then sp(T) # 0.

Proof. We use Proposition and (3.1) to see that, if p(7") = C, Ry is bounded on C. Then,
we apply Corollary [3.4|to see that Ry is constant. We again use (3.1)) to notice that Ry goes to
0 at infinity. So Ry = 0 and this is a contradiction. U

3.1.4. Spectrum of the adjoint.

Proposition 3.21. Let (Dom (T'),T) be a closed and densely defined operator. Then, T :
Dom (T)) — H is bijective if and only if T* : Dom (T*) — H is bijective. In this case,
(T*)fl — (Tfl)*.

Proof. Assume that T is bijective. Since ran (7') = H, we get that ker(7™) = {0}. Moreover,

we also get that ran (7™) is dense in H since ker(7") = {0}. Consider the bounded operator
T~! = H — H (by the Banach theorem). Its adjoint (77~!)* : H — H is also bounded:

vyeH, [Tyl <Clyll.
If z € Dom (T%) and v € H, we have
(T Trz,v) = (T*z, T~ ") = (2, TT ") = (x,v),
so that
(T)*T* = Idpom ) -

We deduce that ran (7™) is closed. Thus 7 is bijective.
If 7 is bijective, we use Proposition [2.34]to get 7** = T'. Thus, T is bijective. Note also
that, for all u € H and v € Dom (T'),

(T7)"u, Tv) = (u,v),

so that (T~1)*u € Dom (T*) and T*(T~1)* = Idp.
U

Corollary 3.22. Let (Dom (T'),T) be a closed and densely defined operator. Then, sp(T) =
sp(T™*). Here the bar denotes the complex conjugation.

Proof. Let z € C and apply Proposition toT — z. O
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3.2. Spectral radius and resolvent bound in the self-adjoint case.
Definition 3.23 (Normal operator). Let T' € £(H). T is normal when T7* = T*T.
Proposition 3.24. Let T' € L(H) be a normal operator. Then,

r(T) = [T
Proof. Let us start to deal with the case when T' = T*. We have || T?|| = ||T||*. Indeed, we
have, for all S € L(H),
Su, v
sl = sup NS00I

w0 vzo ullllofl
For S = T? = T*T, we find
(Tu T [Tul?

|T% = sup
w0 w20 |ull][v]l

But, we obviously have ||T?|| < ||T||>. By Lemma[3.19, we have
: ik : np L
i T = T 77 = T

Let us now assume that 7" is normal. Note that 777" is self-adjoint so that r(7%71") = ||T*T|| =
|T'||?. We have used that the general facts that ||S*|| = ||S]|, and ||S*S|| = ||S||*. Since T is
normal, we have

= ||T|?.
P e~

n—-+oo n—-+o0o n—-+00

WTT) = lim [(T'T)[* = T [T (0] = ( lim ()" ) _ (7).

Corollary 3.25. Let T € L(H) be a normal operator. If sp(T) = {0}, then T = 0.
3.2.1. Resolvent bounds.

Proposition 3.26. Let T' € L(H) be a normal operator. For all z ¢ sp(T), we have
1

1T =27 = Gt

Exercise 3.27. Consider that H = C¢, with d > 2 and equipped with the canonical scalar
product.

i. Let T € L(H). We assume that d > 3 and that, for all strict subspace F' of H such that

T(F) C F, Tjp is normal.

a. Assume that 7" has at least two distinct eigenvalues. By using the decomposition in
characteristic subspaces, show that 7" is diagonalizable. Prove then that the characteris-
tic subspaces are orthogonal.

b. Assume that 7" has only one eigenvalue A and let N = 7" — AlId. Prove that N = 0.

c. Conclude that 7" is normal.

ii. Let 7" € £(H) be a non-normal operator.

a. Show that there exists /' C H of dimension two and invariant by 7" such that S := T}
1s non-normal.

b. Prove that there exists a (z,) sequence (in the resolvent set of S) converging to an
element A in the spectrum of .S and such that

1
dist(z,,sp(S))
23
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c. Deduce that there exists z in the resolvent set of 7" such that

1
T—2)Y > ———r.
I =271 > Gtz spty)
Proposition 3.28. Let (T',Dom (7)) be a self-adjoint operator. For all z ¢ sp(T), we have
1
dist(z,sp(T))
Proof. Let z ¢ sp(T). We have ((T — 2)~')" = (T — z)~!. The operators (T' — z)~! and
(T — z)~! commute. Thus (T — 2)~! is normal and

T =) =

1

(T =2 =r((T-2)7") = st sp(T))

sp(T—2)")={(A=2)"", xesp(D)}.

3.3. About the Riesz projections.
3.3.1. Properties.

Proposition 3.29. Let us consider an unbounded closed operator (T, Dom(T)) and A an iso-
lated element of sp(T'). Let I'y be a contour that enlaces only \ as element of the spectrum of

T and define
1
P)\sz (z—T)*ldz.
2T Jr,
The bounded operator Py : H — Dom(T') C H commutes with T' and does not depend on the
choice of I'y. P, is a projection and
1
(3:2) Py—ld=o— [ ((=N'(T-N(C-T)"d.

2im Jp,
We say that \ has finite algebraic multiplicity when the rank of P, is finite.

Proof. We notice P, is well defined and bounded since the integral is understood in the Rie-
mannian sense. Then P, commutes with 7" since 7’ is closed and the integral can be approx-
imated by the Riemannian sums. The fact that P, does not depend on the contour enlacing A
comes from the holomorphy of the resolvent.

There exist 0 < r < 7 such that

1 1
PA:+ (Z—T>_1dZ:— (Z—T)_le.
2T Jo(r) 2 Jom)

Thus,
9 1

P [ [ E@Riwdwds,
A (2271')2 zeC(A\,r) JweC(\fF) ( )

and, by the resolvent formula and the choice of r and 7,

p? — 1 / / Rr(2) — Br(w) dz dw
T 2im)? Jueconn Jrecon S

1 R 2
P} = — 5 / / r() dwdz = .WQ / Ry(z)dz = Py.
(2im)? Joeconr) Jwecinm 2 — W (207)? Juweconr
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Lemma 3.30. Let us consider an unbounded closed operator (T, Dom(T)) and X an isolated
element of sp(T"). Then we have either 1 € sp(Py) or 1 € sp(Py). In any case, we have Py # 0.

Proof. Before starting the proof, let us observe that A € sp(T") iff A € sp(T™).
We have just to consider the following cases:

i. T — X is injective with closed range. We have ker(T* — \) # {0} and we consider

0 # u € ker(T* — X). We have

1
P;=— - Tt d¢.
We apply Formula (3.2) to A, T'y and T to get that Pju = w.
ii. or there exists a Weyl sequence (u,) associated with A: the sequence ((T" — A)u,,) goes
to zero and ||u,| = 1. Again with Formula (3.2)), we have (P — Id)u,, — 0, and thus
1 € sp(Py) (by Lemma|3.12).

4

3.3.2. About the finite dimension. In this section, we discuss the case when H is finite dimen-
sional and 7" € L(H).

Proposition 3.31. Let A\ € sp(T'). Then, \ is an eigenvalue. If I'y is a contour enlacing only A,
then P, is the projection on the algebraic eigenspace associated with \.

k
Proof. It is well known that H = EB H; where the H; are the algebraic eigenspaces associated
j=1
with the distinct eigenvalues. They are stable under 7". We can assume that H; is associated
with \. There exists a basis of H such that the matrix of 7" is block diagonal (77, ..., T;) where
the 7} is the (upper triangular) matrix of Ty,. In this adapted basis, the matrix of P is also
block diagonal (Py 1, . .., Py ). By holomorphy, we have P, ; = 0 when j # 1. By considering
the structure of the triangular matrix of (7} — z)_l, we see that P, ; = Id. Therefore P, is the
projection on H; and associated with the direct sum. U

Let us come back to the infinite dimensional situation.

Corollary 3.32. If A € sp(T) is isolated with finite algebraic multiplicity, then it is an eigen-
value.

Proof. The projection P = P, commutes with 7". Thus we may write
T = ,—T|ranP D ﬂkerP .

The spectrum of 7" is the union of the corresponding spectra and A is still isolated in these
spectra.
By definition, we have

L (C_T]kerp)_ldgz()'

2T Jp
Thus, A does not belong to sp(T| wer p)- Therefore, \ belongs to the spectrum of the "matrix”
Tiran p and it is an eigenvalue. ]
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3.3.3. Fredholm operators: definition and first properties.

Definition 3.33. Let £ and F' two Banach spaces. An application 7' € L(F, F) is said to be
Fredholm when dim ker 7" < +o00, codimranl" < +o0. By definition, we call index of 7" the
following number

ind 7" = dim ker(7") — codimran (7).
The set of the Fredholm operators from £ to F' is denoted by Fred(E, F').

Example 3.34. Consider H = ¢*(N) and, for v € H, define Tu by (T'w),, = u,,; foralln € N.
T is a Fredholm operator of index 1.

We will see in Lemma5.1]that ran 7" is closed, but we can already give an elementary proof.
Proposition 3.35. Let T' € Fred(E, F'). Then ranT is closed.

Proof. Let us write E = kerT @ E, with E closed. Then, T : E — Fis injectiv~e. Let us also
write /' =ranT @ F', with F’ finite dimensional. Consider a basis ( f;)1<j<y of F'.
Let us consider the application

S:Ex(C”B(x,v)HTx—i—ZvjijF.
j=1

S is continuous and bijective between two Banach spaces. Thus, its inverse is continuous
and there exists C' > 0 such that, for all f € F,

1S™ fll e < Cllfllr,
and, for all (z,v) € E x Cn,
2]l + lvllen < ClIS (@, 0)]r -
Taking v = 0, we easily deduce that ran 7" is closed. |

In the case of an unbounded operator 7" : Dom (1) C E — F, we say that T" is Fredholm
when 7' is closed and 7" € L((Dom (T'), || - ||1), F’) is Fredholm.

Proposition 3.36. In the case when E and F' have finite dimension, we have T' € Fred(FE, )
andindT = dim ¥ — dim F.

Proposition 3.37. Let T' € L(E, F). Then, T is Fredholm if and only if dimker T' < +oc and
dimker 77 < +o0, and ran (T') is closed. In this case, we have

ind T = dimker(7T") — dimker(7T") .

Proof. By Propositions and [2.22] we have ker(7”) = ran (T)* and dimran (T)* =
codimran (7") since the range of 7" is closed (see Proposition 3.35). U

The following consequence can actually be proved directly.

Proposition 3.38. Ler (T, Dom(T")) be a closed operator on H. T is a Fredholm operator when
dimker(7T") < 400, dimker(7T™*) < +o00, and ran (T') is closed. The index of T is

indT = dimker(7T") — dim ker(7™) .
A remarkable property is the following.

Proposition 3.39. Let T' € Fred(E, F') with index 0. Then, T is injective if and only if T is
surjective.
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3.3.4. Spectrum and Fredholm operators.

Definition 3.40. We define

i. essential spectrum: \ € sp.(7") if T — A is not Fredholm with index 0 from Dom (7") into
H,

ii. discrete spectrum: A € spy,(7T') if A is isolated in the spectrum of 7', with finite algebraic
multiplicity and such that ran (7" — \) is closed.

Note that sp. (7)) C sp(7"). We will illustrate these general definitions in the next sections,
especially in the case of self-adjoint operators when these sets are complementary.

4. COMPACT OPERATORS

4.1. Reminders. The proofs of the following reminded results can be found in [LB03, Chapitre
3] or in [Bre83, Chapter VI].

Definition 4.1. Let £ and F' be two Banach spaces. A linear map 7' is said to be compact when
T(Bg(0,1)) is relatively compact (or, equivalently, precompact) in F'.
Proposition 4.2. The following assertions are equivalent.
i. T € K(E,F) is compact.
ii. For all B C E with B bounded, T'(B) is relatively compact in F.
iii. For all bounded sequence (u,) € EV, (Tu,) has a convergent subsequence.
Proposition 4.3. IC(E, F) is a closed subspace of L(E, F).
Proposition 4.4. [C(E, F') is a left and right ideal of L(E, ).
Proposition 4.5. If T' € L(E, F) has finite rank, it is compact.
Proposition 4.6. If T' € C(E, F') is compact, it transforms weakly convergent sequences into
convergent sequences. The converse is true when E is reflexive.
Proposition 4.7. T' € L(E, F) is a compact operator ifand only if T' € L(F', E') is a compact
operator.

Proposition 4.8. Let T' € KC(E) be a compact operator. Then 1dg + K is Fredholm.

Proof. By the Riesz theorem, we have that dim ker(Idp + K) < +oc. By Proposition 4.7, we
have 7" € K(E') and thus dim ker(Idg + K’) < +oc. Then, let us show that ran (Idg + K)
is closed. Let us consider a sequence (u,,) such that (u,, + T'u, ) converges to f. We let

d,, = dist(uy,, ker(Idg + K)),

and we notice that there exists v,, such that d,, = ||u,, — v,||. Let us show that (d,,) is bounded.
If it were not the case, up to a subsequence extraction, we could assume that (d,,) tends to +o0.
We write

U, + Ty = Uy — vy + T(uy — vy) .
Letting

we would get (w,, + T'w,) converges to 0. By compactness of T, we can assume that (w,,)
converges to some w € ker(Idg + K). But, we have

dist(wy,, ker(Idg + K)) =1,

and we get a contradiction. Thus, (d,,) is bounded and we can assume that (u,, — v, ) converges,
and the closedness of the range follows.
We conclude with Proposition O
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4.2. A compactness criterion. In order to prove that an operator is compact, the following
criterion of relative compactness in L?(£2) will be useful. The proof of this criterion is based on
the Ascoli theorem (see [[Bre83), Section IV.5]).

Theorem 4.9 (Riesz-Fréchet-Kolmogorov). Let Q C RY be an open set and F a bounded
subset of LP(QY), with p € [1,4+00). We assume that

Ve>0,Jwcc, VfeF, |fleowle¢
and that
Ve >0,Yw CC Q,36>0, 0<dist(w,0Q), VIR < VfeF, |[|mnfliw <ec,
where T, f(x) = f(x + h) — f(z). Then, F is relatively compact in L?(€2).

How to get the control of the translations in practice? By using a density argument and the
Taylor formula, we can get the following proposition (see [Bre83, Proposition I1X.3]).

Proposition 4.10. Let p € (1,+00] and u € LP(Q)). Then u € WP(Q) if and only if there
exists C > 0 such that, for all w CC Q and h € (0, dist(w, CQ)), we have

Il < CIAl.
In this case, we can take C' = ||Vul|Lr(). If p = 1 and u € W"1(Q2), we still have
[TnullLrw) < [[Vullpyelhl-

Working slightly more, we can prove the following important theorem [Bre83, Theorem
IX.16].

Theorem 4.11. Let 2 be a bounded open subset of R? with € boundary. Let p € [1,+00].
The injection W'P(Q)) in LP(Q)) is compact.

Exercise 4.12. Consider the operator . = —A with domain H?(R?) and take A € R _.

i. Show that A € p(.Z).
ii. Consider then a function V' € >°(R¢, C) such that VV is bounded and lim|,| 4o V (z) =
0. Prove that V(£ — \)~1 : L2(RY) — L2(RY) is compact.

Exercise 4.13. Consider
BY(R) = {¢ € H'(R) : 2 € L2(R)} C LX(R).
Prove that the injection of B'(R) in L?(IR) is a compact operator.
Actually, there is a direct proof that the injection of H}(£2) in L?(Q) is compact (for any (2).

Lemma 4.14. Let ) be an open set in R%. For all u € H}(Q), consider its extension by zero
outside §, denoted by u. Then u € H{(R?) and ||ul| ra) = [|ullm o).

Proof. Clearly, u € L*(R?) and ||u| 2(ra) = ||ul|i2(0). We know that, by definition, €5°(€2) is
dense in H}(€2). Consider a sequence (uy,)neny C 65°(52) converging to u in H!'-norm. For all
n € N, we have u,, € €5°(R?). For all n,p € N, we have

||un - up||H1(Q) = ||% - @HHl(Rd) .

Thus, (u,,) is a Cauchy sequence in H!(R?). We deduce that (u,,) converges in H'(R?) to some

v € HY(R?). We have v = u and the equality of the norms. O
Theorem 4.15 (Kato-Rellich). Let ) be an open set in R%. The injection of H}(Q2) in L%(Q) is
compact.
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Proof. Let us prove that, if (u,),cy weakly converges to u in H}(€2), it strongly converges to u
in L%(©). The sequence (uy,)ney is bounded in H} (). Let e > 0.

For all n € N, we let f,, = u, and we define f = u. By the Parseval formula, it is sufficient
to show that f,, converges to f in L2(R%).

We notice that, for all £ € R?,

£ = [ wnla)e e da,

so that
We recall that (u,,),en weakly converges to u in H}(Q2) and, in particular, for all ¢ € L%(Q2),

/u,@dx%/u@dx.
Q Q

We choose p(x) = e and thus, for all £ € RY, £, (&) — f(€).
Moreover, we have

ety = talBoen = [ (PO .

In particular, there exists R > 0 such that, for all n € N,

/ P de <c.
||>R

Up to changing R, we also have

/ FOPRdE <.
|&|>R

Let us now write

I = A = |

lz|<R

&) = SOPAE+ [ 106 - FOP e,

|z|>R
We deal with the first integral by using the dominated convergence theorem (the sequence ( f,,)
is uniformly bounded). U

4.3. Operators with compact resolvent. In practice, we meet unbounded and closed opera-
tors. To describe the spectrum of such operators, we can consider their resolvents (which are
bounded) and prove, in good situations, that they are compact. The next propositions explain
that it is sufficient to prove that the injection of the domain in the ambiant Hilbert space is
compact.

Proposition 4.16. Let (T,Dom (T)) be a closed operator and zy € p(T). If (T — z)~ " is
compact, then, for all z € p(T), (T — z)~' is compact.

Proof. It follows from the resolvent formula (Proposition |3.16)) and from the fact that the alge-
bra of compact operators is an ideal of L(H). O

Let us provide a useful criterion for the compactness of a resolvent.

Proposition 4.17. A closed operator (T, Dom (T)) has compact resolvent if and only if the
injection (Dom (T'), || - ||7) < H is compact.
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Proof. Assume that the injection is compact. Thanks to the closed graph theorem, for z ¢
sp(T), (T —2)"': (H,]| - |[n) = (Dom (T),|| - ||7) is bounded. The conclusion follows since
the compact operators form an ideal in the algebra of bounded operators.

Conversely, assume that the resolvent is compact. Take 2, € p(7’) and consider

{u € Dom (T) : ||u]| + ||Tu|| <1} C {u € Dom (T) : ||u|| + ||(T = zo)u|| <1+ |20|},
and then
{u € Dom (T) : [Jul| + (T — zo)ull <1+ |z0|} C (T — 29) " (B(0,1 + |z])) -
]

Proposition 4.18. Consider two Hilbert spaces V and H such that V C H with continuous
injection and with V' dense in H. Assume that () is a continuous, coercive and Hermitian
sesquilinear form on 'V and let T' be the self-adjoint operator associated with (). Let us denote

by || - |l the norm induced by Q, i.e., |u|g = \/Q(u,u), and by || - || the graph norm on

Dom (7).
If (Dom (@), || - llg) <= H is compact then T has compact resolvent.
Proof. Tt is sufficient to notice that, by the Cauchy-Schwarz inequality, (Dom (T'),| - ||7) —

(Dom (@), ]| - |lo) is bounded.
Remark 4.19. The converse is true. See Exercise

Exercise 4.20. Let © C R? be a bounded open set. Prove that the Dirichlet Laplacian on € has
compact resolvent.

Exercise 4.21. Prove that the harmonic oscillator defined in Section has compact resol-
vent.

5. FREDHOLM THEORY
In this section, we follow [Zwo12, Appendix D].
5.1. Grushin formalism. In this section, we consider two Banach spaces X; and X5.

Lemma 5.1. Let T € L(X,, X5) be a Fredholm operator. We write X| = ker(T) & X, (with
X a closed subspace) and X, = ran (T) ® Xo.

We let n, = dimker(T) and n_ = codimran (T) = dim Xo. We introduce (k;)i<j<n, @
basis of ker(T') and (k})1<j<n_ a basis of Xy. We let

T R_
M= <R+ 0 ) ’
where R_ : C"~ — X, is defined by R_a = Z?;l ajki and Ry @ Xy — C"* is defined
by Ry (u) = (ki (u))i<j<n,. Then, M : X1 x C"= — Xy x C"* is bijective (with bounded

j
inverse) and the range of 'I' is closed.

Proof. Let us consider (f,d) € X3 x C"*+ and look for (e, ¢) € X; x C"= such that M (i) =

(“Z;) . This is equivalent to

Te=f—R.c, R,e=d,
f can be uniquely written as f = ¢ + f, with ¢ € ranT and f, € X,. Thus, we must
choose for ¢ the coordinates of f; in the basis (k’;)lgjgn_. Now, we can write e = k + ey with

k € ker T and e, € X;. The constraint R, e = d means that the coordinates of k in the basis
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(k?j)lgjgn . are d. Then, we are reduced to solve Tey = f — R_c, but T" induces a bijection
from X; — ran7'. Therefore, e, is uniquely determined.

To see that the range of T is closed, we write ran (T) = TX; = (T R-) <)él) :

Lemma 5.2. Let T € L(X1, X») and consider the operator matrix

T R_
Ry 0 )"
with R_ : C"~ — Xy and R, : X1 — C"t bounded. Assume that M is bijective. We denote

by & its (bounded) inverse:
_(E E
(2 5.

Then, T is a Fredholm operator and we have indT' = ind (Ey) = ny — n_ and T is bijective
if and only if Ey is bijective.

Proof. We write that £ is the inverse on the right:
TE+ R_E_=Id

R+E+ - Id
TE.+R_Ey=0
R+E = 0

and on the left:
ET + E+R+ — Id

E_R_=1d
E_-T+ EyR, =0
ER_=0.

From this, we get that R, and £'_ are surjective and that R_ and F; are injective. By elemen-
tary considerations, we see that if 7" is bijective, £, must be so. Conversely, suppose that £ is
bijective. Then, consider

(5.1) E—-E.E'E_,

and check that it is the inverse of 7.

Let us finally discuss the result about the Fredholm property and the index. We can check
that the injective application E, sends ker E; into ker(7") and that F, : ker £y — ker(7)
is a bijection. Let us consider a subspace H such that C"~ = ran Ejy & H. We recall that
E_ :— C"- is surjective and notice that £_ : ran (T') — ran Ej. Then, consider the induced
map, denoted by E*, X, > z — IIzE_(z) € H. F'is surjective. E* is injective. Indeed, if
[IyE_v=0withv € Xg, we have F_v € ran Ej so that we can write £_v = Fyw and we
deduce that v € ran (7") and thus v = 0.

We deduce that 7" is Fredholm and that

ind7T' =indEy=ny —n_.
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5.2. On the spectrum of compact operators. In the following theorem, we recall some fun-
damental facts about compact operators. In particular, we will notice that the non-zero spectrum
of a compact operator is discrete.

Theorem 5.3 (Fredholm alternative). Let ' € L(E) be a compact operator. Then, we have

(1) If E is of infinite dimension, then 0 € sp(T).
(ii) Forall z € U = C\ {0}, T — z is a Fredholm operator of index 0.
(iii) ker(T" —Id) = {0} if and only if range(T — Id) = E.
(iv) The elements of sp(T') \ {0} are isolated with finite algebraic multiplicity and the only
possible accumulation point of the spectrum is 0.
(v) The non-zero spectrum of 'T' is discrete.

Proof. The point (i) is a consequence of the fact that the set of compact operators forms a ideal
of bounded operators and from the Riesz theorem. Let us consider the point (ii). By Proposition
T — z is a Fredholm operator.

Then, by Lemma 5.2] applied to the operator T + P (with P = (z; — z)ldand T' = T — z,
21 € U), the application U 3 z — ind (T — zId) is locally constant and thus constant since U
is connected. For z large enough, we know that 7" — zId is bijective and thus of index 0. From
this, we deduce the point (iii). Let us now prove the point (iv)). Let us introduce

Vi={z€U:3r>0:D(z,r) Csp(T)}.

V' is open by definition. Let us prove that is closed in U. Let us consider a sequence V' >
Zn — 2o € U. We apply again Lemma [5.2] (with P = (2 — zyo)ldand T = T — z). In
a neighborhood of z.,, 7' — z is not bijective if and only if det Ey(z) = 0. But det Ej is
holomorphic in a neighborhood of z.,. Therefore, its zeros are isolated unless det £y = 0. By
definition z,,, we must have det £y = 0 in a neighborhood of z.,. Thus z,, € V. We deduce
that V' = U or V = () and we get that V' = (). Now let us consider z; € sp(7T") \ {0}. Then, in
a neighborhood of 21, T' — z is not bijective if and only if det Ey(z) = 0. Since V' = (), det Ey
is not zero near z; and thus (by holomorphy), its zeros are isolated. Finally, we recall and
thus we have, near each point of the spectrum in U,

(T —2)" = E(z) — E+(2)Ey ' (2) E-(2),

and we deduce that the resolvent is meromorphic in U. The operator coefficients of the poles
are finite rank operators and we deduce the result about the multiplicity by using the Riesz
projections. U

Remark 5.4. The Reader is invited to compare our presentation to the one in [Bre83|, Section
VIL3].

Proposition 5.5. Let (Dom (T'),T) be a closed operator. Assume that the resolvent set is not
empty and that the resolvent is compact. Then, the spectrum of T’ is discrete.

Remark 5.6. Even if a closed operator has compact resolvent (with a non empty resolvent set),
the discrete spectrum might be finite (and even empty!).

5.3. On the index of Fredholm operators.

Proposition 5.7. Let T' € L(E, F) be Fredholm, then so is T' € L(F',E') and indT" =
—ind 7.

Proof. 1t is sufficient to use Lemmas[5.1|and O
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Proposition 5.8. Let T' € L(E, F'). Then T is Fredholm if and only if there exist S € L(F, E),
K, € K(E), and Ky € K(F) such that

ST =1dg+ K, TS=Idr+ K>.
In this case, such an S is Fredholm.
Proof. If T' is Fredholm, by using Lemma/5.1]and the proof of Lemma[5.2] we get the operators
S, K7 and K as required.

Conversely, we use Proposition [4.8] to see that dim ker 7" < +o00 and Propositions [5.7] and
4.7 to get dimker 77 < +o0. O

Corollary 5.9. Let T € L( X1, X5) and U € L(Xs, X3) and be Fredholm operators. Then UT
is a Fredholm operator and
ind (UT) = ind U + ind T

Proof. The fact that U'T" is Fredholm comes from Proposition For t € [0, g] , consider the
operator from X5 x X; to X3 x Xo,

I _ Uu o0 costldyx, —sintldy,\ (Idx, O
K 0 Idx, ) \sintldx, costldy, 0o T)°
This is a product of three Fredholm operators. Thus (L;), e[o.] is a family of Fredholm oper-
2

ators. We have ind Ly = indU + ind T and ind Lz = ind (UT). Since [0,5] 3 ¢ = Ly is
continuous and the index locally constant, the conclusion follows.
i

Exercise 5.10. With the notations of Exercise 4.12} prove that A ¢ sp.(-£ + V).

Corollary 5.11. Let T € L(X1, X5) a Fredholm operator and K € K(X1, X5). Then T + K
is Fredholm and ind (T'+ K) = ind T.

Proof. It follows from Proposition[5.8]and Corollary [5.9] O

5.4. Toeplitz operators on the circle. The following presentation is inspired by a course given
by G. Lebeau at the Ecole Polytechnique.

In this section, we consider H = L?(S',C). If u € H, we denote by (u,,),cz the family of
the Fourier coefficients of u:

1 2
We define P : H — H by, for all u € H, (Pu),, = u, if n € Nand (Pu),, = 0if n < 0.
The range of P is called the Hardy space and denoted by 2.

Definition 5.12. Let a € ¢°(S',C). We let T'(a) = PM,P : H* — H?, where M, : H — H
is the multiplication by a. T'(a) is the Toeplitz operator of symbol a.

Lemma 5.13. Leta € €°(S', C). We have T'(a) € L(H?) and ||T|| < ||a|| -

VneZ, u, u(f)e="? do.

Lemma 5.14. Let n € Z. Then, [T'(e,,), P| is a finite rank operator (and thus it is compact).
Proposition 5.15. Let a € ¢°(S',C). Then, [M,, P| is a compact operator.

Proof. By the Fejér theorem, a can be approximated by trigonometric polynomials in || - ||-
norm. U

Proposition 5.16. Ler a,b € €°(S', C). Then, there exists K € K(H?) such that

T(a)T(b) = T(ab) + K .
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Proof. 1t is sufficient to use Proposition [5.15] O

Proposition 5.17. Let a € €°(S", C). Assume that a does not vanish. Then, T'(a) is a Fredholm
operator.

Proof. Tt is a consequence of Proposition with b = a1, O

Lemma 5.18. Let a € €°(S!,C). Assume that a vanishes on a non-empty open set. Then,
T'(a) is not a Fredholm operator.

Proof. Let us consider a closed bounded interval [y;,7,] C [0, 27| with 71 < -5 and on which
a is zero. If & € R and if p, is the translation by « defined by p,u(f) = u(d — «), we have
[pa, P] = 0. We choose o = 75 — 1. Then, there exists n € N such that (p,M,)" = 0.

By using commutators (see Proposition [5.13), we see that (p,T'(a))™ is compact. If T'(a)
were Fredholm so would be (p,1'(a))™ (see Proposition and there would exist S € L(H?)
and K € K(H?) (see Proposition [5.8) such that

S(paT ()" = Idy2 + I,

and thus Idy2 would be compact. This would be a contradiction. Therefore 7'(a) is not Fred-
holm.
O

Proposition 5.19. Let a € €°(S!, C). Assume that there exists 0y € S' such that a(6y) = 0.
Then, T'(a) is not a Fredholm operator.

Proof. For all € > 0, there exists a € €°(S*, C) such that ||a — ||« < ¢ and @ vanishes in a
neighborhood of 6. If @ were Fredholm, so would be @ by Lemma(5.2] With Lemma[5.18] this
would be a contradiction. i

Proposition 5.20. Let a € €'(S',C). Assume that a does not vanish. We can write a() =
7(0)e’9, with r > 0, o of class €. Then

. 2 _ 1 2m 1
indT(a) =indT(e'*) =k := a(2m) — a(0) = _/ Y 9.
2m 2im Jo a

Proof. Let us consider the following continuous family (at)te[Q”:
a;(0) = (1 — t)r(0) + t)e®

For all ¢t € [0,1], the function a; does not vanish. We see that (7'(a¢)):c[o,1] is a continuous
family of Fredholm operators. The index being preserved by perturbation, we get the first
equality. For the second one, we consider

£,(6) = e1-tiaO)+ikt _ pi(O)Fit [ (k—a’(u)) du
It defines a continuous 27-periodic function. We get
ind T(e") = ind T(e*) = k.

6. SPECTRUM OF SELF-ADJOINT OPERATORS
6.1. Compact normal operators.

Lemma 6.1. Let T' € T (H) be a normal operator.
i. If V C His a subspace such that T(V) C V, then T*(V+) c V4.
ii. We have ker(T) = ker(T™).
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Proof. Assume that V' is a subspace such that (V) C V and take u € V* andv € V. We
have

(T"u,v) = (u, Tv) =0.
For the second point, note that, for all z € H,
|Tz|? = (T*Tx,x) = (TT z,x) = ||T*z||*.
|

Theorem 6.2. Assume that H is infinite dimensional. Let us consider T' € L(H) be a compact
normal operator. Then, its non zero spectrum is discrete and 0 belongs to the spectrum. Let
us consider the sequence of the distinct non zero eigenvalues (\;)1<j<i (with k being possibly
+00) and let \y = 0. Then, we have the Hilbertian decompostion

and

where P; is the orthogonal projection on ker(T — \;).

Proof. If A\, € sp(T') \ {0}, then the corresponding eigenspaces are orthogonal. Indeed, if
u € ker(T — \) and v € ker(T — p), then, with Lemmal6.1]

0= (T = Nu,v) = (u, (T" = W) = (7 — N){u0).

‘We consider the Hilbertian sum
k
V=Pker(T - )\)).
j=1

V is stable under 7 so that, V' is stable under 7*. Thus, we can consider Tﬁ/ L€ E(VL). It
is a compact normal operator on V1. Its non zero spectrum does not exist. Therefore Tﬁ/ L €

L(V+) is a normal operator with zero spectrum and i 0. Thus V+ C ker T* = ker(T)

vi =T
and then V+ = ker 7.
Let us deal with the case kK = +oco. For u € H, we write

o0
u = Z Uj s
§=0
so that, forall N > 0and v € H,

2 400
= > NPl < Xl

J=N+1

N
(T = APu
=0

i

Proposition 6.3 (Self-adjoint operators with compact resolvent). Assume that H is infinite di-
mensional. Let us consider a self-adjoint operator T’ with compact resolvent. Then, its spec-
trum is real, discrete and can be written as a sequence tending to 400 in absolute value.
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Proof. We notice that the resolvent set is not empty (it contains 7) since 7 is self-adjoint. More-
over, the spectrum is real. We can use Proposition [5.5]to see that the spectrum of 7" is discrete.
The question is to know if the sequence of the eigenvalues of 7' tends to o0, or, equivalently,
if 0 is an accumulation point in the spectrum of the normal operator (7" + 4)~!. If it is not the
case, by using the Hilbert space decomposition, we see that the resolvent has finite rank and
thus Dom (7') is finite dimensional and then Dom (7") = H. This is not possible if H is infinite
dimensional. U

Exercise 6.4. Let QO C R be a bounded open set.

i. Prove that the spectrum of the Dirichlet (resp. Neumann) Laplacian on {2 is real, discrete
and can be written as a sequence tending to +-o0.
ii. If d =1and Q = (0, 1), exhibit a Hilbertian basis of L?(£2) made of functions in H}(2).

Exercise 6.5. Prove the statement in Remark 4.191

6.2. About the harmonic oscillator. Let us discuss the properties of a very important opera-
tor.

6.2.1. Definition of the harmonic oscillator and domain considerations. Let us consider the
operator

Ho = (65°(R), =0, + 7).
This operator is essentially self-adjoint as we have seen in Example Let us denote by H

its closure.
We have

Dom (H) = Dom (H;) = {1 € L*(R) : (=02 + 2°)y € L*(R)}.

By using the results of Section [2.5.3] we also see that # is the operator associated with the
sesquilinear form defined by

Vo, € BI(R), Q(p,9) = / (&0 + %) da.
R
We can prove the following separation property.

Proposition 6.6. We have
Dom (H) = {1 € H*(R) : 2%y € L*(R)}.

Proof. The proof is an illustration of the difference quotient method (see [Bre83, Section
IX.6]).

Let ¢» € Dom (H). It is sufficient to prove that )" € L?(R). There exists f € L*(R) such
that

Vo € 67 (R), (0¥, 0up) + (¥, 20) = (f,¢0),
where the bracket is now the L2-bracket. Since 1) € B'(R) and 4§°(R) is dense in B!(R), we
can extend this equality and get

Vo € BY(R),  (0:0,0up) + (20, 20) = (f, ).

Let us define the difference quotient

Qhw(az)zﬂﬁhfi_@(w), rE€R, h#0.

If ¢ € B(R), then Q1 € B}(R). We get
Vo € BY(R),  (0:¥, 0:Qng) + (00, 2Qnp) = ([, @)
3




It follows that
(8:5@0, athQO> = _<afoh¢a 83690>
and
(2, xQpp) = —(xQ_p, xp) — (Y(x — h), zp) — (x, p(x + h)) .
We find, for all ¢ € B'(R) and h # 0,
(0:Q-1¥, Oup) + (2Q-nt, x0) = —(f, Qnp) — (Y(z — h), xp) — (9, p(x + h)) .

Applying this equality to ¢ = Q_,, we get

(0:Q -1, 0,Q_n¥0) + (xQ_pth, xQ 1)

= —(f, QnQ_nY) — (Y(x — h), 2Q_pY) — (v, Q_pY(x + h)).

Then we notice that
|(f, QnQ-nV)| < || fllem |QnQ-n?||L2m®)
< [ fll2@) |02 Q-n¥ [l 2 ()
1
5 (HfHE?(R) + ||axQ—h1/f||E2(R)) ;

where we have used Proposition We can deal with the other terms in the same way and
thus get

10:Q 1122 gy + 12Q -1t 2 g
1
<3 <||f||EQ(IR) F10.Q w0 lIE2 ) + 191122 my + 12Q -t lIE2) + 9115wy + |h|\|¢|’a1(ﬂ{)> :
We deduce that
1Q-nBul P2 gy + 12Q-ntlIE2my < I F 12wy + 1012y + [0 11Br ) + [P ]F my -
We may again use Proposition and we conclude that 9,7 € H'(R) and z¢) € H'(R).

IN

U

6.2.2. Spectrum of the harmonic oscillator. We have seen in Exercise4.21]that 7{ has compact
resolvent. Actually, one could also directly use Propositions [6.6]and

Thus, the spectrum is real, discrete and it is a non-decreasing sequence (\,),>; tending to
-+o00o (we repeat the eigenvalue according to its multiplicity). We would like to compute these
eigenvalues.

Let us consider the following differential operators (acting on . (R))

(= (O t1), c=——(-0+).

V2 V2
We have
2ca = —02 +2* -1, la,c] =1.

Lemma 6.7. For all ¢, € .7 (R), we have
(ap, Y)L2m) = (@, V) 2m) -
Lemma 6.8. Foralln € N\ {0},
ac” =nc"t +c"a.

Proposition 6.9. Foralln > 1, we have \,, = 2n— 1. In particular, the eigenvalues are simple.
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Proof. We let go(x) = e~*"/2. We check that ag = 0. In particular, we have 1 € sp(H).
Forn € N, we let g, = ¢"gy. By induction, we see that g,, = H,,go where H, is a polynomial
of degree n. In particular, the functions g,, are in the domain of the harmonic oscillator.

Let us notice that

cac” =nc" + " la.

We get that
Hg, = 2n+ 1)g, .
In particular, {2n + 1,n € N} C sp(H).
Let us check that (g, )nen is an orthogonal family. Let n, m € N with n < m. Let us consider
<gmgm>L2(R) = <Cn907 Cm90>L2(R) = <amcn90790>L2(R) =0,
where we used Lemmas and@ ago = 0, and an induction procedure.

Let us check that the family is total. Take f € L*(R) such that, foralln € N, (f, g,.)12(r) = 0.
It follows that, for all n € N,

/ 2" f(z)e ™2 de = 0.
For all £ € R, we let )
F(¢) = / e~ f(2)e "2 du .
The function F' is well defined. Now, weﬂflotice that
Fo = [ Y 1 T g,
R k=0 ’
We can apply the Fubini theorem to get

= —T k 2
P& =Y ¢ /R Flay oL ez = .

Therefore, the Fourier transform of fe=*"/2is 0 and f = 0

If we denote by ( f,,)nen the L2-normalization of the family (g, )nen, (fr)nen is a Hilbertian
basis of L%(R) such that H f,, = (2n + 1) f,,.

Since the spectrum of H is discrete, we only have to care about the eigenvalues. Let us solve
Hip = Mp with A € R and ¢ € Dom (‘H). We write the following decomposition, converging
in L?(R),

¢ - Z(l/)? fn>L2(]R)fn .

neN

For all p € .(R), we have
(¢, (H=Ne)ew =0.
Thus, by convergence in L%(R), for all ¢ € . (R),

Z<¢7 fn>L2(R) <fn7 (H — A)@)LQ(R) =0.

neN
We choose ¢ = f;, to see that

Z(¢> fadez@) (fo, (2K +1) = N fo) e = (@, fi)eew ((2k+1) = A) = 0.
neN
If, for all £ € N, (¢, fi)i2ey = 0, then ¢ = 0. Therefore, there exists £ € N such that
(2k+1) — A =0.
We have proved that
sp(H) ={2n—1,n e N\ {0}}.
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Let us now prove the statement about the multiplicity. Consider a solution ¢ € Dom () of
Hiyp = (2n+ 1)9. For all k € N, we get

(¥, fe)e@ ((2k+1) = (2n+ 1)) = 0.
Thus, for k # n, (¥, fi)2r) = 0. Thus, 1 is proportional to f,. O

6.3. Characterization of the different spectra.

6.3.1. Properties.

Lemma 6.10. If T is self-adjoint, we have the equivalence: )\ € sp(T') if and only if there exists
a sequence (u,) € Dom (T') such that ||u,||ln = 1, and (T — N)u, — 0in H.
n—--—+oo
Proof. Let us notice that if there exists a sequence (u,,) € Dom (T") such that ||u,||n = 1, (u,)
and (T — Nu, N 0 then A\ € sp(T) (see Lemma 3.12).
n—-+0oo

If A ¢ R, then since T is self-adjoint, 7" — \ is invertible (with bounded inverse because 7'
is closed). Now, for A € R, if there is no sequence (u,,) C Dom (T') such that ||u,||n = 1, (u,)
and (T — N)u, — 0, then we can find ¢ > 0 such that

n—-+0o0o

(T — Nul|| > ||, Vu € Dom (T) .

Therefore T'— A is injective with closed range. But, since 7'— A = (T'— \)*, the range of 7' — A
is dense in H and so 7" — \ is surjective.
O

Lemma 6.11 (Weyl criterion). If T is self-adjoint, then A € sp.(T') if and only if there exists
a sequence (u,) C Dom (T') such that ||u,|ln = 1, (u,) has no subsequence converging in H,
and (T — Nu, — 0inH.
n—>-—400
Proof. Tf X € sp(T) \ spess(T'), the operator 7" — X is Fredholm. Let (u,,) C Dom (7') such that
|l tn|ln = 1 and lim,, oo (T" — N)u,, = 0.

The operator T' — \ : ker(T' — \)* — ran (7' — \) is injective with closed range. Therefore,
there exists ¢ > 0 such that, for all w € ker(T — \)*, (T — Nw|| > c|lw||. We write
Uy = Uy, + Wy, With v, € ker(T — \) and w,, € ker(T — \)*. We have

1T = Nua|* = (T = Mywa|* + (T = Mwal*,

and we deduce that w,, — 0. Moreover, (v,) is bounded in a finite dimensional space, thus
there exists a converging subsequence of (u,,).

Conversely, let us assume that A € sp(7") and that any sequence (u,,) C Dom (7") such that
|tun|ln = 1 and lim,,_, , oo (T" — A)u,, = 0 has a converging subsequence.

The kernel ker(7" — \) is finite dimensional. Indeed, if it were of infinite dimension, one
could construct a infinite orthonormal family (u,,) in ker(7"— \) and in particular we would get
u, — 0, which is a contradiction. Let us now check that

Je>0,Yu € ker(T — N, (T — Nul| > c|lul| .

If not, there exists a normalized sequence (u,,) in ker(T — \)* such that ||(T" — A)u,| — 0.
By assumption, we may assume that (u,,) converges towards some u,, that necessarily belongs
to ker(7T"— \)*. But since 7' — \ is closed (it is self-adjoint), we have (7' — \)u,, = 0 so that
Uso = 0, and this is a contradiction.

We deduce that the range of 7" — X is closed. U

The following lemma is a slight improvement of Lemma [6.11]
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Lemma 6.12. Assume that T is self-adjoint. Then \ € sp.(T') if and only if there exists a
sequence (u,) C Dom (T') such that ||u,||n = 1, (u,) converges weakly to 0, and
lim (T'—ANu, =0, inH.
n—+oo

Proof. Let X € sp (7). If dimker(7"— Ald) = +o0, then (by considering a Hilbertian basis
of the kernel) we can easily construct a orthonormal sequence (v,,) weakly converging to 0 such
that (7' — \)v, = 0.

Therefore, we consider the case when dim ker(7' — \) < +oo. By Lemmal6.11] there exists
a sequence (u,) C Dom (T") such that ||u,||n = 1 with no converging subsequence such that
we have lim,, , ; o(T — N)u, = 0in H.

We can write

Uy = Ty + Ky, with G, € ker(T — N, k, € ker(T — \).
We have (T' — A\)u, — 0 and we may assume (up to a subsequence extraction) that (k)

n—-+0oo
converges to k. Since (u,) has no converging subsequence, (,,) does not converge, and so it

does not go to 0. Therefore, up to another extraction, we may assume that

deg > 0,Yn e N, ||a,]| > 0.

Now set @, = r2-; then (T"— A\)@i, — 0. Up to another extraction, we may assume that

llanll” n—s+00

(ii,,) converges weakly to some @ € ker(T — \)L. We have
Vv € Dom (T), (u,(T —X)v)y=0.

We deduce that & € Dom (T7*) = Dom (T') and that (T"— \)a = 0. Thus @ = 0.
In any case, we have found a sequence with the required property. For the converse, it is just
an application of Lemma|6.11 O

Definition 6.13. We call Fredholm spectrum of 7' the complement of the essential spectrum of
T in the spectrum of 7'.

Lemma 6.14. Let T be self-adjoint. We have the following properties.

i. If A € sp(T) is not isolated, then \ € sp(T).

ii. The Fredholm spectrum is formed by isolated eigenvalues of finite multiplicity.
iii. If A € sp(T) is isolated, then it is an eigenvalue.
iv. All isolated eigenvalues of finite multiplicity belong to the Fredholm spectrum.

In particular, the discrete spectrum coincides with the Fredholm spectrum.

Proof. Let us prove (i) and (ii). Let A € sp(7T') \ spess(T)-

There exists a Weyl sequence (u,,) of unit vectors such that (7" — \)u,, — 0. We may assume
that (u,,) converges to some u (of norm 1) and we get (7" — A)u = 0. The eigenvalue A has
finite multiplicity. Let us prove that it is isolated. If this were not the case, then one could
consider a non-constant sequence A, tending to A. Moreover, one could find a sequence (u,,)
of unit vectors such that

|)‘_>\n’

We may assume that (u,,) converges to some © € Dom (7°) and thus one would get (7" — \)u =
0, and so

(T — X)u,un) = (A= N {u, uy) .

By the Cauchy-Schwarz inequality, (u,,u) — 0 and we get u = 0, which is a contradiction.
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Let us now prove (fii). Consider an isolated point A € sp(7"). By definition, this means that
there exists €y > 0 such that, for all © # X such that | — \| < &y, we have p ¢ sp(7T'). For all
e € (0,&0), we introduce

1
P.=— —T)td¢ =P,
where I, is the circle of radius ¢ centered at \.
Since T is closed (and using Riemannian sums), P, is valued in Dom (7") and

1 1
T—-\NP=— [ (T-XN(-T)"d(=— ~ AN —-T)1tdc.
1 -np=g [ @one-mtac= o [ a1
Now, we use the resolvent bound to get (as soon as ¢ is chosen small enough):
1T =07 < st
A=

Thus, we infer that ||(T"— A\)P|| < e forall € € (0,&q). Therefore, P is valued in ker(7" — \).
It remains to apply Lemma [3.30]

Let us now consider (iv)). Since A is isolated, shows that it cannot belong to the spectrum
of the restriction 7|y (r— ). Thus, there exists ¢ > 0 such that

Vu € ker(T — \)*, (T — Nul| > c||ul| .
We deduce that the range of 7" — A is closed and that 7' — A is Fredholm, since we have
dimker(7 — \) < +o0. O
Finally, let us prove another useful property.

Lemma 6.15. Let T be self-adjoint. Consider \ € sp.(T'). Then, for all N € N* and ¢ > 0,
there exists an orthonormal family (uS)1<,<n such that, foralln € {1,... N},

(T = Nupll < €.

Proof. If A is isolated, then it is an eigenvalue of infinite multiplicity (see Lemma and
the conclusion follows. Let ¢ € (0,1). If A is not isolated, we may consider a sequence of
distinct numbers of the spectrum (\,),cn tending to A and such that, for all j,k € N, we
have |A\; — A\¢| < 5. If N = 1, by the Weyl criterion, we get the existence of u{ such that
(T — Ap)ug|| < 5. The conclusion follows for NV = 1 since [\ — A;| < £. Let us now only

treat the case when NV = 2. By the Weyl criterion, we can find u{ and @5 of norm 1 such that
€ . €
1T = Auill = 1A = Aol 1T = Ao)az]| = 1A = Aol

Since T is self-adjoint and by computing (7" — Ay )uf, @5), we find |(u5, u5)| < €. Setting
uy = i — (U, uy)us
we have

e I
1T = Do)l < S = dal 4+ (|As = Dol + 1A = dol) -

Moreover, ||u5]| > +/1 — €2. Up to changing ¢, the conclusion follows for N = 2. We leave
the case N > 3 to the reader. Ol
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6.3.2. Determining the essential spectrum: an example. As in Exercises d.12] and [5.10], we
consider a function V € #*°(R% R) such that VV is bounded and lim,_, o V(z) = 0.
We are interested in the essential spectrum of the operator . + V' with domain H?*(R). This
operator is self-adjoint. Therefore its spectrum is real. Moreover, with Exercise[5.10, we have
SPess(-Z + V) C [0, +00).

Let us prove that sp.(-Z + V') = [0, +00). Let us start by showing that 0 € sp..(-Z + V).
For that purpose, we use Lemma Let us consider x € €5°(R?) such that ||x|| 2re) = 1.

For n € N, we consider x,,(z) = n~2x(n~*x — ne;). The sequence (,) is L?-normalized and
converges to 0 weakly. For n large enough, we have

I(Z +V)xall = [ZLxall = O(n7%).
Let us now consider k& € R and the sequence Y, = €**y,,. We have
(L +V = E)xnpell = (L +V = E)x + [£, e xall -

But,
e [L e = k* - 2ikV
and we deduce that k% € sp. (£ + V), forall k € R.

6.4. Min-max principle.

6.4.1. Statement and proof. We now give a standard method to estimate the discrete spectrum
and the bottom of the essential spectrum of a self-adjoint operator 7" on an Hilbert space H. We
recall first the definition of the Rayleigh quotients of a self-adjoint operator 7'.

Definition 6.16. The Rayleigh quotients associated with the self-adjoint operator (semi-bounded
from below) 7" on H with domain Dom (7") are defined for all positive natural number n by

T
pn(T) = sup inf (T, u)n

Y1,y —1 WESPaAN (W1, Pn—1)+ <U/7 U>H
u€Dom (T),u#0

Remark 6.17. Note that, if 7' comes from a quadratic form () via a representation theorem a
la Lax-Milgram, we can replace u € Dom (7') by v € Dom (@) and (T'u, u) by Q(u).

Lemma 6.18. If T is self-adjoint with non negative spectrum, then (T > 0.
Proof. Let us assume that u1(7") < 0. We define the sesquilinear form
Q(u,v) = (T = (7)) "u, v)
on H; () is non-negative. Thus, the Cauchy-Schwarz inequality provides, for u,v € H,
(T = (7)), 0) | < (T = (7)) ", w) 2 (T — pua(T)) Mo, )2

We take v = (T — 1 (7)) 'u and deduce for all u € H,

(T = pa(T)) " ull < HT = pa(T)) 2T = ()~ w2
and thus, for all v € Dom (T),

[l < (T = (7)) M2 (0, (T = (T))v) 2 .

By the definition of p;(7'), there is a sequence (v,,), ||v,|| = 1, such that (T'v,, v,,) — p1(T)
and we get a contradiction. U

N

The following statement gives the relation between Rayleigh quotients and eigenvalues.
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Theorem 6.19. Let T' be a self-adjoint operator with domain Dom (T'). We assume that T
is semi-bounded from below. Then the Rayleigh quotients ., of T' form a non-decreasing
sequence and one of the following holds

i. p,(T) is the n-th eigenvalue counted with mutliplicity of T and T has only discrete spec-
trum in (—oo, 1, (T)).
ii. p1,,(T) is the bottom of the essential spectrum and, for all j > n, 1;(T) = pu,(T).
Proof. Let us provide an elementary proof which does not use the spectral projections. First it
is easy to see that the sequence (1,,) is non-decreasing. Then, we notice that
(6.1) a < pt, = (—00,a) Nsp(T) =10.

Indeed, if A € (—o0,a) were in the essential spectrum, by Lemma [6.15} for all N > 1 and
€ > 0, we could find an orthonormal family (u;);c(1,..,n3 such that ||(7" — A)u;|| < —. Then,

,,,,, VN
given n > 1 and taking N > n, for all (¢1,...,1,_1) € H, there exists a non-zero u in the
intersection span (uy, ..., uy) Nspan (Y1, ..., ¢, 1)t We write u = Zjvzl aju; and notice

that

(u,uhw — ]

1

N 2
(Tl IT =Xl (Z (T - A)ujn?) <At

j=1
and thus p,, < A + €. For € small enough, we get i, < a, which is a contradiction. If 7y is the
infimum of the essential spectrum (suppose that it is not empty), we have u,, < . Note also
that if p,, = +oo for some n, then the essential spectrum is empty. This implies the second
assertion.

It remains to prove the first assertion. Thus, we assume that j,, < . By the same consid-
erations as above, if a < y,, the number of eigenvalues (with multiplicity) lying in (—o0, a)
is less than n — 1. Let us finally show that, if a € (p,,y), then the number of eigenvalues in
(—o0, a) is at least n. If not, the direct sum of eigenspaces associated with eigenvalues below
a would be spanned by vy, ..., and

T
s i Lwww
u€span (¢1,...,¢0n 1)+ <u>u>H
w€Dom (T'),u#0

where we have used Lemma and the fact that sp(7}z) C [a, +-00), with
F =span ({1, ..., 1)".

— Y

U
An often used consequence of this theorem (or of its proof) is the following proposition.

Proposition 6.20. Suppose that there exists a € R with a < inf sp(T') and an n-dimensional
space V C Dom T such that

(Ty, o) < alvl?, VeV,

Then, the n-th eigenvalue exists and satisfies
M(T) <a.

Exercise 6.21. Let 2 C R? be an open bounded set. Prove that there exists ¢(£2) > 0 such that,
for all ¢ € Hj(92),

/Q Ve > ()62,

What is the optimal ¢(€2)? We will consider the Dirichlet Laplacian on (2.
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Exercise 6.22. Consider the self-adjoint operator . associated with the quadratic form

Vi e HI(R), Q)= /R WP+ V()P d,

where V' € €;°(R, R).

i. What is the essential spectrum?
ii. We assume that [, V() dz < 0. Prove that the discrete spectrum is not empty.

7. EXAMPLES

7.1. Sturm-Liouville’s oscillation theorem. We consider the operator . = —9? + V(x),
with V' € C>([0, 1]), on [0, 1] and domain

Dom () = {¢ € H{((0,1)) : (=02 4+ V(2))¥ € L*((0,1))} .

Z is a self-adjoint operator with compact resolvent. Therefore, we may consider the non-
decreasing sequence of its eigenvalues (A, ),>1.

Lemma 7.1. The eigenvalues of £ are simple.

Proof. 1t follows from the Cauchy-Lipschitz theorem. U

For all n > 1, let us consider an L?-normalized eigenfunction w,, associated with \,,. Notice
that (u,,, u,,) = 01if n # m and that the zeros of u,, are simple and thus isolated.

Theorem 7.2. For all n > 1, the function u,, admits exactly n — 1 zeros in (0, 1).

Proof. Let us denote by Z,, the number of zeros of u,, in (0, 1).
Let us prove that Z,, < n— 1. If the eigenfunction u,, admits at least n zeros in (0, 1), denoted
by z1,...,2,. Welet zgp = 0 and 2,1 = 1. We define (uy,;)j=o,..n bY un j(x) = u,(x) for

x € [z, %;41] and u, ;(z) = 0 elsewhere. It is clear that these functions belong to the form
domain of .# and that they form an orthogonal family. By integrating by parts, we get

Yo € span up,;, Q(v,v) < >‘TL||U||EQ((O,1))‘
j€{0,...,n}

By the min-max principle, we get A\,.1 < A, and this contradicts the simplicity of the eigen-
values.

Let us now prove that Z,, > 7, | + 1. It is sufficient to show that if u,,_; is zero in z
and z; (two consecutive zeros, for example w,,_; is positive on (2, z1)), then w,, vanishes in
(20, 21). Indeed, this would imply that u,, vanishes at least Z,,_; + 1 times. For that purpose we
introduce W ( f1, f2) = f1fo — f1f} and compute

W(Un—ly un)/ - (An - An—l)un—lun .

Assume that u,, does not vanish on (zo, z1). For instance u,, > 0 on (2, z1). Then, we get
W (tp—1,u,) > 0. We have W (1, u,)(20) > 0 and W (u,—1, u,)(21) < 0, and thus we get
a contradiction.

The conclusion follows easily. U

7.2. Weyl’s law in one dimension.
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7.2.1. Two examples.

Definition 7.3. If (£, Dom (L)) is a self-adjoint operator and £ € R, N (L, E) denotes the
number of eigenvalues of £ below FE.

Let HP™ = h?D? be the Dirichlet Laplacian on (0, 1). Its domain is given by
Dom (H}™) = H?(0,1) N H5(0, 1),
and H})™ has compact resolvent. We can easily compute the eigenvalues:
Ao (HRY) = BPn*n®, n €N\ {0},
so that, for £ > 0,

h—0 Th 27Th )E(0,1)xR: £2<E}

In the same way, we can explicitly compute the eigenvalues when H;, = h2D? + x2. We have
An(Hp) = (2n—=1)h,  neN\{0},
so that, for & > 0,

E 1
N E) ~ —=— dz d§.
(H]“ ) h—0 2h 2mh {(z,£)€R?: 2422<E} v £

From these examples, one could guess the more general formula

N (H, B) ~ —— drdé = — /\/E V), dz .

h—0 27h {(z,6)€R2: €24V (z)<E}

7.2.2. Statement in one dimension. We propose to prove the following version of the Weyl law
in dimension one. It generalizes the previous two asymptotic formulas. For a more general
presentation, one can read [RS| Vol. IV, Section XIII.15].

Proposition 7.4. Let V : R — R be a piecewise Lipschitzian function with a finite number of
discontinuities and which satisfies:

1.V = lio whenx — Foowith {y < {_;

ii. /({100 — V)4 belongs to L' (R).
Consider the operator H;, = h>*D? + V (x) and assume that the function (0,1) > h — E(h) €
(—00, V1) satisfies

i. forany h € (0,1), {xr e R: V(z) < E(h)} = [min(E(h)), Tmax(E(h))];
i, B BR)) — 2 (E(R))) 5, 0

iii. B(h) = Ey < lyo.
_)
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7.2.3. Proof. The following lemma is a consequence of the definition of the Rayleigh quo-
tients.

Lemma 7.5 (Dirichlet-Neumann bracketing). Let (s;);cz be a subdivision of R and consider
the operators (with Dirichlet or Neumann conditions on the points of the subdivision)

Dlr/Neu @ HDlr/Neu

JEZ

where ’HD;/NEU is the Dir/Neu realization of h*D? + V (x) on (s;, s;11). We have, in terms of
the domains of the quadratic forms,

Dom (QP™) € Dom (Q;,) C Dom (Q}"),
and the Rayleigh quotients satisfy, for all n > 1,
pn(H ™) < pin(Hn) < pa(HR") -

We can now start the proof of Proposition [7.4]

We consider a subdivision of the real axis (s;(h®));ecz, which contains the discontinuities
of V, for which there exist ¢ > 0, C' > 0 such that, for all j € Z and h > 0, ch® <
si+1(h*) — sj(h*) < Ch®, where a > 0 is to be determined. Denote

Jmin(PY) = min{j € Z : s;(h) > zmin(E(h))},
Imax(h®) = max{j € Z : s;(h*) < zmax(E(h))}.

For j € Z we introduce the Dirichlet (resp. Neumann) realization on (s;(h®), s;+1(h®)) of
h*D? + V (z) denoted by ’HD” (resp. ’HNe“) The Dirichlet-Neumann bracketing implies that

Jmax(h®) Jmax (h*)+1
> ONHPEE() <NH E(h) < Y NHYS, E(R)).
Jj=Jmin(h®) j=Jmin(h®)—1

Let us estimate N(#}), E(h)). If Q) denotes the quadratic form of H})¥, we have

sj+1(h%)
QU () < / B @) + Vil @)Pdz, W € Go((55(h%), 5141 (h))

5 (h)
where

‘/jvsupvh = SUp V(x> ’
2€(s5(h*),554+1(h?))
We infer that

NS B() 2 # {2 10 < oy (1) = 5,00) (B ~ Vi) |

so that

NCHES () 2 (850 (1) = 5,01 (D) = Vo), = 1.

and thus
Jmax(h®)
Ny, E(h)) >
j:*]min(ha)
1 Jmax (h®)
— D (5™ = s (W) B = Viwpn)y = Umax(5) = Jain(h) 4 1)
j:Jmin(ha)
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Let us consider the function

and analyze

Jmax(ha)

S (spalh®) - sj<ha>>¢ (B) = Vi), ~ [ folo)
J=Jmin(h*)
Jma sj+1(h®)
/ (1)~ Vimpa)y ~ () o
J Jmln
Fmax E(h $Jmin (h%)
+ / r)dx + / fn(x)de
Jmmx Imin(E(h))
"max(h“) sy41(h) .
S Z / \/(E(h> - ‘/},sup,h)+ - fh(l’) dx + Ch®.
=T () 7 53 (0%)

Using the trivial inequality |\/ay — /b1 | < \/|a — b|, we get
(@) = \/(B(R) = Viupa) | < wv Viual.

Since V' is Lipschitzian on (s;(h*), sj+1(h )) we get:

Jmax(B®) s (h )
Z (1) = Visup) . — f1(@) dz| < (Jmax(h®) = Jonin(h*) + 1) CROR/2.
j=Jmin (h®) ¥ %

This leads to the optimal choice o = % and we obtain the lower bound

Jmax(h?/3)

N(HPY, E(h)) > W—lh ( /R fi(@) Az = Ch(Jmax(B*) = Jin (h*?) + 1)) :

j:Jmin(h2/3)
It follows that

N E0) = 2 ([ o) do = CHS (B0 = il (1)~ Cn)

Note that f;,(z) < /({40 — V(2))4, so that we can apply the dominated convergence theo-
rem. We can deal with the Neumann realizations in the same way.
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8. HILLE-YOSIDA’S THEOREM

For this section, the Reader might want to consult [Yos95, Chapter 1X] or [Bre83, Chapter
VII].

8.1. Semi-groups.
Definition 8.1. Let F be a Banach space. A ¢-semigroup is family (7});>o of bounded oper-
ators on E such that
1. forall s,t > 0, T;Ts =T},
i. Ty = Id,
iii. forall x € F, R, 3 z + Tix is continuous.
Lemma 8.2. Let (T})1>0 be a €°-semigroup. Then, there exist M > 0 and ¢ > 0 such that
vVt >0, ||| < Me®.
Proof. Forallt > 0, we have
1T < 172" sup [T -

s€[0,1]
Now, for all z € FE, the family (||7sz||)scjo,1) is bounded (by continuity of the semi-group on
the compact [0, 1]). Since F is a Banach space, we can use the Banach-Steinhaus theorem to
deduce that (7}).co,1) is bounded.
The conclusion follows with ¢ = In || T3 || and M = sup¢(g 1) || 75]]- O

Definition 8.3. Let (7}):>o be a ¢°-semigroup. We let

Dom (A) = {x € E: limt T} — Id)x exists} :
t—0t+

and, for all z € Dom (A), we let Az = lim;_,o+ t~ (T} — Id)x. The operator A is called the

infinitesimal generator of the semigroup. Let us discuss some properties of A. In the following

the integrals can be understood in the Riemannian sense.

Proposition 8.4. Let (T});>q be a ¢°-semigroup and A its generator. Then,
1 t+e
() forall x € Fandt > 0, lim — T.xds =Tz,

e—=0 ¢
(i) forallx € Eandt >0, [} Tyx ds € Dom (A) and A [, Tyxds = (T; — 1d)z,
(iii) for all x € Dom (A) and t > 0, Tz € Dom (A) and t — T,z is of class € and
d(Tyx)
dt
(iv) for all v € Dom (A), forall s,t > 0, (T; — Ty)x = [L AT,z dr.

Proof. The point (i) follows from the continuity. From the point (ii), we write, for all £ > 0,

t t t
e (T, —1d) / Txds=¢e! / Tyyexds —e! / T,x ds
0 0 0

t 1 t+e 1 £
5_1(T5—Id)/ Tsxds:—/ Tuxdu——/ T,xdu.
0 € J € Jo

Thus, we can take the limit ¢ — 0 and the equality follows. Let us consider (). Let ¢ > 0,
x € Dom (A), and t > 0. We have

= AT,x =T, Ax ,

and thus

1 1
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The right-hand-side has a limit, when ¢ — 0%, T;(Az) by definition of Dom (A) and continuity
of T;. Thus, by definition of Dom (A), we get Tix € Dom (A) and AT,z = T Ax. We have to
check the derivability on the left at £ > 0. We write

e (T —Ty_.x) =T, (e (T.x —x)) =T,_.(Az) + Ty_.(¢ *(Tox — x) — Ax).

Since ¢t > ||T;|| is locally bounded (by Lemma [8.2)), the conclusion follows. The point
follows from the point (iii]). O

Proposition 8.5. Let (T})1>¢ be a ¢ -semigroup and A its generator. Then, Dom (A) is dense
and A is closed.

Proof. For e > 0, we let R. = ¢! [ T,xds. Letx € E. We have R.x € Dom (A) and
lim,_,o R.x = x. Thus, Dom (A) is dense.

Then, we consider (x,,) € Dom (A)Y such that z,, — = and Az,, — y. Forall t > 0, we
have

t
(T, — Id)z, = / T,Ax, ds,
0

and thus, since s — ||T}]| is locally bounded,

t
(T, — Id)x = / Tsyds.
0
Dividing by ¢ and taking the limit ¢ — 0" we find that z € Dom (A) and y = Ax. 0
8.2. Hille-Yosida’s theorem.
Definition 8.6. A contraction on F is a linear map such that | 7|| < 1.

Theorem 8.7 (Hille-Yosida’s theorem). An operator A is the infinitesimal generator of a con-
traction semigroup (T});>¢ if and only if
i. Ais closed and Dom (A) is dense,
ii. (0,4+00) C p(A) and, for all X > 0,

(A= N7 <A

8.2.1. Necessary condition. If A is the infinitesimal generator of a contraction semigroup
(T1)+>0, we have already seen that A is closed and Dom (A) is dense.
Then, for A > 0 and z € E, we define

—+o00
Ryx = / e M dt.
0

It is indeed well defined since ||e*T;z|| < e=*!||z||. Note that
[Razll < A7l
Let us check that Ryz € Dom (A). For all € > 0, we write, by continuity,
“+oo
e (T, —Id)Ryr = ¢! / e M(Tyyex — Thx) dt .
0
Thus,
+o00 +oo
e N T, —1d)Ryz = ¢ te / e M dt — et / e MT,xdt,
€ 0
so that
+o00 €
e (T, —1d)Ryx = e (e — 1) / e Mz dt — et / e Mz dt.
0 0

This proves that Ryz € Dom (A) and ARyx = ARyz — x. Thus, (A — A)R, = Id. We can

also check that Ry(A — A) = Idpom (4)-
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8.2.2. Sufficient condition. Let us now assume that A is closed and Dom (A) is dense and that
(0,+00) C p(A) and, forall A > 0, |[(A — )7 < AL

The idea is to approximate A by a bounded operator and use the exponential. For A > 0, we
let S, = )\(/\ — A)fl and A)\ = AS)\

For x € Dom (A), we have

AN = A) e — (A= A\ — A) e = (A — A) Az,

so that

lim Syz==x.
A—400

Note that ||.S)|| < 1 and Dom (A) is dense. Thus, for all z € E,

lim Syz==x.
A—400

Since Sy A = AS) on Dom (A), we deduce that
Ve € Dom(A), lim Ayz = Az.
A—400

Note that A, is a bounded operator. We have, for all ¢ > 0 and A > 0,

etA* _ e—t/\—',-t)\QR,\

Y

so that
e < 1.

Then, we write

L d
etA/\x o etA#x — _etsA)\et(lfs)A#a: dS ;
o ds

so that, forallt > 0, A >0and x € FE,
||etAA:U - etA”xH < t||Ayx — Azl

Therefore, for all z € Dom (A), limy_; o e exists locally uniformly in ¢. By density of
Dom (A) and ||| < 1, this limit exists for all z € E and we let

Tz = lim ez,
A—+00
We can check that (7});> is a contraction 4’°-semigroup. Let us consider B its generator. Let

x € Dom (A) and € > 0. We have

e T, —1d)r = lim e (e —Id)r = lim 5_1/ M Ay ds = 5_1/ T,Axds.
A—+00 A—+o0 0 0
We deduce that x € Dom (B) and Bz = Az. Thus A C B.
Since 1 € p(A), we have (1—A)Dom (A) = E. But, 1 € p(B) sothat (1—B)Dom (B) = FE.
It follows that Dom (B) C Dom (A).

8.3. Stone’s theorem.

Theorem 8.8 (Stone’s theorem). Let H be a self-adjoint operator. There exists a unique €°-
unitary group (Uy);er such that
(i) U; : Dom (H) — Dom (H),
(ii) for all w € Dom (H), Uy € €' (R,H) N ¢°(R, Dom (H)),
(iii) for all w € Dom (H), SUwu = iHUwu = iU, Hu,
(IV) UO =Id.
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We let U, = e forall t € R.
Conversely, if (Uy)ier is a €°-unitary group, then, there exists a unique self-adjoint operator
H such that, for allt € R, U, = e The domain is

Dom (H) = {u €H: sup t U —ul| < —l—oo} :

0<t<1
8.3.1. Necessary condition. Let H be a self-adjoint operator.  is closed with dense domain.
For all A > 0, we have already seen that +iH — ) is bijective and that ||(+iH — )7} <
A1, Therefore the operators +iH are the generators of 4°-semigroups (Uti)tzo. We have
LU Ufu = —iHU; Ufu + U iHU u = 0. We get that, for all ¢ > 0, U U u = u. We let
U, = U;r fort > 0and Uy = UZ, fort < 0. (Uy)er is a ¢"-group. We have, for all ¢ € R,
U] = iHU,. For all u € Dom (H ), we have

d
Ul = ((HUu, Ups) + (Uya, iHUu) = 0.
Thus, (Uy)ier is unitary.

8.3.2. Sufficient condition. Let (Uy);cr is be a €’-unitary group. Let us write the generator of
(Up)i>0 as iH. H is closed and has a dense domain. Moreover ran (H +i) = H. Differentiating
UU_y = 1d, we get that —iH is the generator of (U_;);>o. In particular ran (H — i) = H.
Differentiating ||U;u||* = ||ul|?, we get that H is symmetric. We deduce that H is self-adjoint.

We have

Dom (H) C {u €H: sup t |Uu —ul| < +oo} :
0<t<1
Then, take u € H such that

sup ¢t | U — || < 400,
0<t<1

and consider v € Dom (H). We have
|(u, Hv)| = lim [(u, Uv —v)| = lim [(U_u — u,v)| < Clv||.
t—0t t—0+

This shows that u € Dom (H*) = Dom (H).

9. ABOUT THE SPECTRAL MEASURE

9.1. A functional calculus based on the Fourier transform. The aim of this section is to
introduce the Reader to the notion of spectral measure associated with a self-adjoint operator.
One can consult [RS, Vol. I, Chapter VII] for an alternative presentation or the older references
[Sto90, Hal9g]).

If H is a self-adjoint operator we would like to define functions of A such that

(i) f(H) : Dom (H) — Dom (H),

(i) [f(H),H]| =0, 0onDom (H),
(iii) f(H) + g(H) = (f + g)(H), on Dom (f(H)) N Dom (g(H)),

(v) f(H)g(H) = (fg)(H), on {u € Dom (g(H)) : g(H)u € Dom (f(H))},

V) f(H)" = f(H).
We will construct such a functional calculus by using the inverse Fourier transform. We will
denote by .# the Fourier transform, defined on . (R) by

F() = [ vla)e
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Definition 9.1. Let H be a self-adjoint operator. For all f € .(R) and u € H, we let

1 ,
F(HYu = — / F (B udt.
2r Jr
Note that f(H) € L(H).
Proposition 9.2. Forall f, g € .7 (R), we have ({)—(v).

Proof. We leave this proof to the reader. It uses the fact that the Fourier transform of a convo-
lution of two functions is the product of their Fourier transforms. U

We introduce A = .7 (R) & C and we extend our functional calculus (we add the constants!)
by letting, for all f € A,
J(H) = fo(H) + Xold € L(H),
where (fy, o) € L (R) x Cis defined by f = fy + Ao.

Proposition 9.3. We have, for all f,g € A, (i)—(v).
Lemma 9.4. Let f € Awith f > 0. Then, we have, for all u € H,
(f(H)u,u) > 0.
Proof. Let e > 0. The function (¢ + f)2 belongs to .A. We have
1 1

e+ f)2(H)(e+ f)>(H) = (e + f)(H).
Thus, since (¢ + f)2 (H) is symmetric, for all u € H,

(u, (e + /) (H)w) = (e + [Z(H)[I* = 0.
Then, we take the limit ¢ — 0. ]
Lemma 9.5. Forall f € A, we have ||f(H)| < || fl]-

Proof. Let us consider g = || f||% — | f|* € A. We get, for all u € H,
(g(H)u,u) >0,

so that
0 < (IfP(H ), u) < (| FIEw]l?
But, we have

(P (H)u,w) = ((F))H)u,u) = (F(H) [ (H)u,w) = (FH)FH)u,u) = [ H )l

Lemma 9.6. Consider x € €5°(R,R) such that 0 < x < 1 equal to 1 in a neighborhood of 0.
For R > 0, we let xr(-) = x(R™1.). Then, for all u € H,

i =

Proof. By definition, we have

dxn(H)u = / Fxn(t)e ™ dt / R(F ) (RE)eu dt / (Fx)(#)e /Py it
R R R
We have, by continuity of the group, for all ¢ € R,
lim e/ By = .
R—+4o00
Moreover,

I(ZX) @)™ Pl < UFx)Ol]lull.
52



Therefore, we can use the dominated convergence theorem in the context of the Riemann inte-
gration (or notice directly that the convergence is uniform on the compacts) and we get

: 1 o~
REIEOO xr(H)u = %/Ri/x(t)u dt = x(0)u = u.

9.2. Where the spectral measure comes into play.
9.2.1. Extending a map.
Definition 9.7. For all f € . (R) and u,v € H, we let
wuo(f) = (f(H)u,v) .
Lemma 9.8. The following holds.
i. Forall f € Z(R), w..(f) is a continuous sesquilinear form on H and

Jleo-,- (O < 1 Nloo -

ii. For all w € H, the linear form w,, : S (R) > f — w,.(f) € C is non-negative and
continuous for the topology of || - || se-
iii. If S(H x H, C) denotes the set of the continuous sesquilinear form on H, the map

(LR, - llee) 2 f = w..(f) € (S(HxH,C), |- ]])

is linear and continuous. It can be uniquely extended as a continuous linear map on
(€°%(R), || - lo)- Keeping the same notation w..(f) for the extended map, we have

Vf€ER), [w (Al < flle
and, for all f € €°,(R), with f > 0, we have w..(f) > 0.

By the Riesz representation theorem, we can extend the functional calculus to continuous
functions tending to zero at infinity.

Proposition 9.9. Let f € €°,(R). There exists a unique bounded operator, denoted by f(H),
such that, for all u,v € H,

(f(H)u,v) = wun(f) .-
We have ({)—(v). Moreover, we have

LFCEDI < []f oo -

9.2.2. About the Riesz-Markov theorem and definition of the spectral measure. Let us now
recall a classical representation theorem (see [Rud80, Théoreme 2.14]).

Theorem 9.10. Let X be a separated and locally compact topological space. Let w be a non-
negative form on 69(X).

Then, there exists a o-algebra M containing the Borelian sets of X and a unique non-
negative measure [, on M such that

Ve GAR), w(f) =/deu.

Moreover, this measure i is regular.

We apply this theorem to w,,, and we get a measure (., ,, (the spectral measure associated
with u) and a o-algebra M, ,,. Now, we let

M = muGH-/\/lu,u .

It is still a o-algebra containing the Borelian sets.
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Lemma 9.11. For all u € H, the measure ., is finite, and ji,(R) = ||ul|>.
Proof. We recall Lemma Let u € H. We use the function xg. We have, for all R > 0,

wuu(Xr) < |Jull,
and
. _ 2
Jim - w(xr) = [l
Moreover, we have

raln) = [ Xn0N) ).
R
With the Fatou Lemma, we get

fn(R) < limin / (V) ditu () < 2 < +o0.
R—+oo Jp

Thus, the measure (i, ,, is finite. It remains to use the dominated convergence theorem to see
that

||uH2 = REH}OO wu,U(XR) = UU,U(R) .

g

Definition 9.12. For (2 is a Borelian set, we consider the application ¢ : H — R, defined by
Houw— / Todityu = tuu(2).
R

Lemma 9.13. qq, is a continuous quadratic form.

Proof. Note that 0 < 11,,(2) < |lul|*. In particular, once we will have proved that qq is a
quadratic form, it will be a continuous quadratic form (by using the polarization formula).

Since, for all v € H, p,,,, is a measure, we only have to prove the result when (2 is an open
set and even when (2 is an interval in the form [a, b]. In this case, we introduce the sequence
of continuous and piecewise affine functions ( f,,) such that f,(z) = 1 on [a, b], f,.(x) = 0 for
r<a-— % andz > b+ % By dominated convergence, we have
lim (f,(H)u,u) = lim / S dptu = puu()

n—+oo Jp

n—-+00

and the conclusion follows from the polarization formula. U

Proposition 9.14. Let f : R — C be a bounded Borelian function. Then there exists a unique
continuous sesquilinear form . .(f) on H such that

Vu & H7 @wu(f) = / fdﬂmu.
R

Proof. With Lemma [9.13] this result is known for f = 1, for all Borelian set ¢2. From
the measure theory, one knows that all bounded Borelian function is a uniform limit of step
functions. This implies that v —> fR fdpey 1s a quadratic form. It is continuous since

|Jo £ dttu] < [ flloolull?. O

From this proposition, we can define f(H) via the Riesz representation theorem.

Proposition 9.15. Let f : R — C be a bounded Borelian function. There exists a unique
bounded operator, denoted by f(H), such that, for all u € H,

UWM@ZANMW
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When f € 6%, or f € A, we recover the same f(H).
Proposition 9.16. Let t € R and consider f(-) = €. We have f(H) = e, In particular,

9.1) Vu e H,VteR, (e u,u) = / e Aty (M) -
R
Proof. Let us consider p € 65°(R) such that 0 < p < 1, supp(p) C [—1,1] and [; p(x) dz =

27. We introduce y € . (R) such that % x = p. For all n € N*, we let
pu(r) = np(n-) = F(x(n™")).
Note that
x(n ) = @0 [ pu(wpetdg = 2m) [ pla)eiag.
R R

Thus, lim,, 1o x(n7'2) = Tand ||x(n™!) |l < 1.
Let us consider f,(-) = x(n™!)e € #(R). For all u € H, we have

<nmmm:4nmw.

By the dominated convergence theorem, we have
i [ udin = [ €% i),
n—-+o0o R R

But, we also have
Fu(H)u = (27)! / F (MM ud) = (2m)! / pu(h — )My d),
R R

and then

so that

Therefore, we have, for all © € H,

(e"Hy,u) = /Reit’\ Aty u(N) -

9.3. Spectral projections.

9.3.1. Properties.
Definition 9.17. Let Q) be a Borelian set. We let E = 1o (H).

Proposition 9.18. There holds:

(i) £y =0and Er = 1d.

(ii) For all Borelian set €), Eq is an orthogonal projection.
(iii) For all Borelian sets )y and Qs, Fq, Eq, = Eq,nq,-
(iv) Ler Q2 = ieN Q; be a Borelian partition. Then, for all u € H,

N
lim Z Eq,u = Equ.

N—+400
Jj=0
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Proof. For the first point, we use Lemma[0.11] The proof of the other points uses the proof of
the Riesz-Markov theorem (see [Rud80, p. 51]). Let V' C R be an open set. We have

pua(V) = sup{(f(H)u,v), fEGR), 0<f<Ty}.

By using an exhaustion by compact sets of V' and Urysohn’s lemma (see [Rud80, Lemme
2.12]), we can construct a non decreasing sequence (f,) C 2(R) such that f, f,, = f, for all
m > nand lim,,_, ., f, = 1. For all u € H, we have

(o (H)u, ) = / ol At

and thus, by Beppo Levi’s theorem,
lim (f,(H)u,u) = (1y(H)u,u).

n—-+o0o

This implies that, for all u,v € H,
lim (f,(H)u,v) = (1y(H)u,v).

n—-+4o0o

We have, for all m > n,

{Fon(H )u, fu(H ) w) = ((fufon) (H)u, w) = (fu(H)u, u)
Taking the limit m — 400, we get
(fo(H) Ly (H)u,u) = (Ly (H)u, fu(H)"u) = Ly (H)u, u) ,
so that, for all v € H,
1y (H)*u,u) = (1y(H)u,u) .
Thus 1y (H)* = Ty(H) and it is clear that the operator 1y () is self-adjoint (by using that

fn = fn). If V] and V5 are two open sets, we easily get, by considering associated sequences of
functions,

1y, (H)]le (H) = Tvinv, (H) :
Easy manipulations allow to extend this to Borelian sets.
Let us prove (iv). Take u € H. For all n > p, we have

>t (| = <Z o, (H)u, > 1Qj(H)u> = (3 o, (H)us) = /R > o, it

we get the desired convergence by the Cauchy criterion. U
Corollary 9.19. For all bounded step function f : R — C, we have (iii)—(v), and
LA < N1l -

Proof. The last inequality comes from the fact that, for all u € H,

Hf(H)UH2=<f(H)*f(H)u,U>=<7(H)f(H)u,U>=<(7f)(H)u,U>=/R\fIQduu,u.
O

All bounded Borelian function can be uniformly approximated by a sequence of step func-
tions.

Proposition 9.20. For all bounded Borelian functions, we have (i)—(v), and
LFCEDI < []f oo -
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Proof. Points ({ii)-(v]) are obtained by considering uniform limits of step functions.
We have just to check (i) and (ii). Let v € Dom (H) and ¢ > 0. Then, we have, with the
multiplication property and Proposition[9.16]

eisH —Id eisH —1d
—fH)u= f(H)——u.
€ €
The conclusion follows by taking the limit ¢ — 0. U

Proposition 9.21. Let Q) be a bounded Borelian set. Then, for all u € H, we have 1(H)u €
Dom (H).

Proof. For all ¢ > 0 and u € H, we have, by Propositions and [9.20]
2
-,

9.3.2. Extension to unbounded functions.

eie)\ -1

€

eisH —1Id

3

2
Q

Definition 9.22. Let f : R — C be a Borelian function. We let

Dom (£(H)) = {w e H: [ If* o < +o0).

For all w € Dom (H), we let

with f,(A) = f(A)Lj5<n(N).

Note that this definition is consistent since, for all u € Dom (H ), and all m > n,

V(falH) = Fo(HD)ulf? = / o= Fol djta = /{ P

Lemma 9.23. Let f : R — C be a Borelian function. Then Dom (f(H)) is dense.

Proof. For all ¢ € H, we let ¢, = 1|7<,(H )p. The sequence (¢, )nen converges to ¢.
For all £ € N, we have

1 (H)pul? = / il A g = / el Lz it = / P it it
Thus, for £ > n, we have

/R el i < ¥l

By the Fatou lemma, it follows

/ P g, < n2llg]l? < +o0.
R

The density follows.

Let us explain why f(H)p, = fo(H)p. We have fi(H)pn, = (f1p<klifi<n)(H)p =
fn(H )pr. We can take the limit & — 400 and we find f(H )y, = fu(H)ep. O

Proposition 9.24. Let us consider f = Idg. We have f(H) = H.
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Proof. We must check that
Dom(H) ={u€H: / A2 dfty < +00}.
R
Thanks to Proposition 9.16, we have, for all u € H,

eisH_Id 2_/ eis)\_l
R

€ €
u = Hu. Thus, by the Fatou lemma, it follows that

2
u

d ey -

e’sH_1d
€

= [ N
R

Conversely, if [, |A|* djuy,, < 400, and noticing that

If w € Dom (H), we have lim._,,

2
<A,

e

3

. 2
we get that 6EHT_IduH is bounded for € € (0, 1]. Thus, u € Dom (H ). Note that this implies

that

P = [ P g
Then, we consider f,(\) = AL|y<,(A) and we write, for all u € H,
(fo(H)u,u) = / A< (A) dptn -
R

By the Cauchy-Schwarz inequality, we have

1
2
J s = ([ NPl
R R

and thus, we can use the dominated convergence theorem to get, for all u € Dom (H),

(F(H ) = [ Mdpu = (Huu),
R
where we used the derivative of (9.1)) for the last equality. The conclusion follows. U

Proposition 9.25. If Q) is a bounded Borelian, we have, for all u € Dom (H),
11o(H)Hul

< sup [A[f[ul] .
AEQ

In particular, 1o(H)H can be extended as a bounded operator on H.

Proof. For all n € N*, we let f,(\) = Ax(n~'\). For all u € Dom (H), we have, for all
m > n,

D) = FuEYIP = [ 1) = S P <4 [ AP
R n<[A|[<m
Thus, (f,(H)u),en+ is a Cauchy sequence and its converges. By considering ( f,,(H)u, u), we

deduce that
Vu € Dom (H), lir+n fo(H)u = Hu.
n—-+0oo
Now, for alln € N* and u € H,
Lo (H) fo(H)ul| < sup [Alful].-
PY=9)
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Taking the limit for u € Dom (H), we get the result. O

Proposition 9.26. In the class of Borelian functions, we have (i)—(v). f(T) is closed with
dense domain.

Proof. The density of the domain comes from Lemma For all u,v € Dom (f(H)) =
Dom (f(H)), we have

(f(H)u,v) = nhm (fo(H)u,v) = lim <u,ﬁ(H)v) = <U,T(H)’U>.

n—-+00

This shows that f(H) C f(H)*. Let us now take v € Dom (f(H)*). We have, for all u €
Dom (f(H)),
(f(H)u,v) = (u, f(H)"v),
so that
[(f(H)u,v)| < |[f(H) l[[[ul].-
For all n € N, we take u = u,, = 17<n With ¢ € H (see the proof of Lemma[9.23)). We get,

foralln € Nand ¢ € H,
[(fu(H ), 0)| < || F(H) 0|l
and thus

(. Fu(H)O)| < || f(H) |||l o]l -
We deduce that, for all n € N,

/R Fal? gy = ([T (Y02 < £ 0

By the Fatou lemma, we get that v € Dom (f(H)). This proves that f(H)* = f(H). In
particular, this establishes that f(H) is closed as the adjoint of f(H).
It remains to prove (iv). We have, for all u € H,

Jm(H)gn(H)u = (frmgn)(H)u.
Then,

D El = [ 1o Planf? it
so that, for all u € {v € Dom (g(H)) : g(H)v € Dom (f(H))},

hm1nf11m1nf/|fm| ) At < || fF(H)g(H)ul?.

m—+00 n—

By the Fatou lemma, it follows that u € Dom ( (fg)(H )) We have

and it remains to take the limits. Il
9.3.3. Characterization of the spectra.

Proposition 9.27. \ € sp(H) if and only if, for all ¢ > 0, 1(x_. x1)(H) # 0. In particular, for
all u € H, the support of ji,,,, is contained in sp(H ).

Proof. Assume that, for all € > 0, 1(x_. 4)(H) # 0. We can consider u. € H such that
|us|| = 1 and
Lon—ente)(H)ue = u. € Dom (H).
We write
I(CH = Nuel|* = [ Ta—c i) (H)(H = Mue|® < 2.

Thus, A € sp(H).
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Conversely, assume that there exists g > 0 such that 1y, r1<) (H) = 0. Let us consider
the bounded operator 17 defined via

VueH, (Rywu,u)= / (=N " gty -

ln—Al>e0

By considering, for all ¢ € (0, 1] and all u € H,

itH _ 1q 2 -1
¢ R)\’U, = / (,LL—)\>72 ¢ d,umu S / )\2(/%—)\)72 d/vLu,u < +OO,
¢ =20 ¢ ln=Al>0

we get that Ryu € Dom (H ). With Proposition (9.26] we write, for all u € H,

((H — X) Ry, u) = / Qi = [l

|u—Al=e0

A 2

This shows that (H — A\) Ry = Id. In the same way, we get that Ry(H — A) = Idpom (z). Thus,
A€ p(H). O

Exercise 9.28. For 2 ¢ sp(H), we introduce the Borelian function f,(z) = (z — z)~'. Show
that f,(H) = (H — z)~%.
Let us give a useful example of application of the functional calculus.

Proposition 9.29 (Stone’s formula). Consider a,b € R such that a < b. We have, for allu € H,

lim i/{ (U= O i)™ = (= (i) = % (L () + Loy () .

e—0+ 2T

Proof. For € > 0, we introduce, for all x € [a, b],

fe(z) = L/ (z—(\+ ie)) " — ((x — (A — ie))_l) dA,
[a.0]

2

and we notice that, for all z € [a, b],

1 b—ux a—x
fe(m):;(arctan( . )—arctan( . )),

lim f.(z) =

e—0t

and |f.(z)| < 1. Since, for all u € H,

\(f-(H) — g(H))ul]? = / o0 = g(@)]? djt.

we get, by dominated convergence,

so that
(La(2) + Liapy (@) = g(z),

N | —

lim f.(H)u = ! (Lo (H) 4 Loy (H)) .

e—0t 2

By using Riemannian sums and Exercise 9.28, we get, for all £ > 0,

1
fe(H) = —/ ((H —(A+ z'»s))_1 —((H—-(\- z's))_l) dA,
227’( [a,b]
and the conclusion follows. O
Lemma 9.30. Let f be a Borelian function. If u € Dom (H) satisfies Hu = \u, then f(H)u =

f(N)u.

60



Proof. We have, for all t € R, ey = ey, Thus, for all f € .7(R), by the inverse Fourier
transform, we have f(H)u = f(A\)u. This can be extended to f € ¢°,(R) by density and then
to all Borelian function. O

Proposition 9.31. \ belongs to the point spectrum if and only if 1;,3(H) # 0. Moreover,
1x}(H) is the orthogonal projection on ker(H — ).

Proof. If there exists u € Dom (H) with u # 0 such that Hu = Au, then 15y (H)u = u # 0.
Conversely, assume that 14y, (H) # 0. Then, take u # 0 such that 11 (H)u = u. We get
H1y(H)u = Hu and thus A\u = Hu. O

Proposition 9.32. \ € sp.(H) if and only if, for all ¢ > 0, dimran 1. x40 (H) = +oc.

Proof. If X ¢ sp.(H), it is isolated with finite multiplicity. Then, for some ¢ > 0, we have
1()\757)\+8)(H) = ]l{)\}<H). We have ran ]l{)\}(H) = ker(H — )\)
Conversely, if A is not isolated with finite multiplicity, dimran 1 (y_. ;) (H) = +oo (we
have an infinite orthonormal family in the range of the projector).
O
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