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PROLEGOMENA

These notes are freely inspired by many books [LB03, Dav07, Hel13, Bre83, Rud80, RS,
Kat95, Ray17, Zwo12]. They also owe very much to some lecture notes by Z. Ammari, C.
Gérard and S. Vũ Ngo. c. The Reader is warned that these notes are devoted to teaching. They
only exist in order to refresh the memory of the Author and, consequently, some important
comments do not appear in this electronic document. Hopefully, the students will also help
correcting my mistakes, won’t they?
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1. PRELIMINARY CONSIDERATIONS

This section is here to help the reader revising some notions that he encountered in the past.

1.1. A question. We endow the space L2(I) with the usual scalar product

〈u, v〉L2(I) =

∫
I

u v dx .

We define
H1(I) = {ψ ∈ L2(I) : ψ′ ∈ L2(I)} ,

and we endow it with the following Hermitian form

〈u, v〉H1(I) = 〈u, v〉L2(I) + 〈u′, v′〉L2(I) .

Lemma 1.1. (H1(I), 〈·, ·〉H1(I)) is a Hilbert space.

We define
H1

0(I) = C∞0 (I)
H1

.

Lemma 1.2. (H1
0(I), 〈·, ·〉H1(I)) is a Hilbert space.

For J = (a, b), we let

(1.1) λ1 = inf
ψ∈H1

0(J)
ψ 6=0

∫
J
|ψ′|2 dx∫

J
|ψ|2 dx

,

and we would like to give an explicit value of λ1.

1.2. An answer.

Lemma 1.3 (Sobolev embedding). The following assertions hold.
(i) We have H1(R) ⊂ C 0(R) and, for all ψ ∈ H1(R),

∀x ∈ R , |ψ(x)| ≤ 1√
2
‖ψ‖H1(R) .

(ii) We have H1
0(J) ⊂ C 0(J) and, for all ψ ∈ H1

0(J), ψ(a) = ψ(b) = 0 and

∀x ∈ J , |ψ(x)| ≤ |J |
1
2‖ψ′‖L2(J) .

(iii) For all ψ ∈ H1
0(J), we have, for all x, y ∈ J ,

|ψ(x)− ψ(y)| ≤
√
|x− y|‖ψ′‖L2(J) .

Proof. Let us deal with (i). We use the (unitary) Fourier transform to get, for all ψ ∈ H1(R),

‖ψ‖2
H1(R) =

∫
R
(1 + ξ2)|ψ̂(ξ)|2 dξ .

In particular, we deduce, by Cauchy-Schwarz, that ψ̂ ∈ L1(R). By using the inverse Fourier
transform, we get

∀x ∈ R , ψ(x) =
1√
2π

∫
R
ψ̂(ξ)eixξ dξ .

By dominated convergence, we see that ψ is continuous. Moreover, it goes to 0 by the Riemann-
Lebesgue lemma. In addition,

∀x ∈ [0, 1] , |ψ(x)| ≤ (2π)−
1
2‖ψ̂‖L1(R) ≤ (2π)−

1
2‖〈ξ〉−1‖L2(R)‖〈ξ〉ψ̂‖L2(R) .
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Let us now consider (ii). Consider ψ ∈ H1
0(J). Let us extend ψ by zero outside J and denote

by ψ this extension. We have ψ ∈ L2(R). Since C∞0 (J) is dense in H1
0(J), we can consider a

sequence (ψn) ⊂ C∞0 (J) converging to ψ in H1-norm. Note that, for all n, p ∈ N,

(1.2) ‖ψn − ψm‖H1(R) = ‖ψn − ψm‖H1(J) .

Thus, (ψn) converges in H1(R) to some v. Since (ψn) converges in L2(R) to ψ, we get v = ψ ∈
H1(R). By (i), we deduce that ψ is continuous on J . Coming back to (1.2) and using again (i),
we get that (ψn) uniformly converges to ψ. In particular, ψ(a) = ψ(b) = 0. Then, we write,
for all x ∈ J ,

ψn(x) =

∫ x

a

ψ′n(t) dt ,

so that
|ψn(x)| ≤ |J |

1
2‖ψ′n‖L2(J) .

Let us prove (iii). We use again the sequence (ψn) and we write, for all x, y ∈ J ,

ψn(x)− ψn(y) =

∫ y

x

ψ′n(t) dt ,

and we use the Cauchy-Schwarz inequality. �

Lemma 1.4. The infinimum (1.1) is a minimum.

Proof. Let (ψn) be a minimizing sequence such that ‖ψn‖L2(J) = 1. In particular (ψ′n) is
bounded in L2(J). Thus, (ψn) is equicontinuous on [a, b] and pointwise bounded. We can
apply the Ascoli theorem and we may assume that (ψn) uniformly converges to ψ on [a, b] and
thus in L2(J). We get ‖ψ‖L2(J) = 1. Since (ψn) is bounded in H1

0(J), we can assume that it
is weakly convergent (to φ) in H1

0(J), and thus (why?) in D′(J). We must have φ = ψ′. We
deduce

lim inf
n→+∞

‖ψ′n‖L2(J) ≥ ‖ψ′‖L2(J)

since (ψ′n) weakly converges in L2(J) to ψ′ (why?). We get

λ1 ≥ ‖ψ′‖2
L2(J) ,

where ψ ∈ H1
0(J) and ‖ψ‖L2(J) = 1. It follows that

‖ψ′‖2
L2(J) = λ1 .

�

Lemma 1.5. Let ψ be a minimum. Then, ψ satisfies, in the sense of distributions on J ,

(1.3) − ψ′′ = λ1ψ .

Proof. Let ϕ ∈ C∞0 (J) and ε > 0. We define

f(ε) =

∫
J
|(ψ + εϕ)′|2 dx∫
J
|ψ + εϕ|2 dx

.

We get f ′(0) = 0 and then ∫
J

ψ′ϕ′dx = λ1

∫
J

ψϕ dx .

�

Lemma 1.6. The λ1 for which there are non trivial solutions to (1.3) being 0 at a and at b are
exactly the numbers (b−a)−2n2π2 where n ∈ N∗. The corresponding solutions are proportional
to sin(nπ(b− a)−1·).
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1.3. Some density results. The Reader is invited to read [Bre83, Section IV. 4]. Let us con-
sider a sequence of smooth non-negative functions (ρn)n∈N∗ such that

∫
Rd ρn(x) dx = 1 with

suppρn = B
(
0, 1

n

)
. Consider a smooth function with compact support 0 ≤ χ ≤ 1 equal to 1 in

a neighborhood of 0, and define χn(·) = χ(n−1·).

Lemma 1.7. Let p ∈ [1,+∞). Let f ∈ Lp(Rd). Then, ρn ? f and χn(ρn ? f) converges to f in
Lp(Rd). In particular, C∞0 (Rd) is dense in (Lp(R), ‖ · ‖Lp(Rd)).

Proof. Let ε > 0 and f ∈ C 0
0 (Rd) such that ‖f − f0‖Lp(Rd) ≤ ε.

We have

ρn ? f0(x)− f0(x) =

∫
Rd
ρn(y)(f0(x− y)− f0(x)) dy ,

and, by the Hölder inequality (with measure ρn dy),

‖ρn ? f0 − f0‖pLp(Rd)
≤
∫
Rd

∫
Rd
ρn(y)|f0(x− y)− f0(x)|p dy dx .

By using the uniform continuity of f0 and the support of ρn, we see that ρn ? f0 converges to f0

in Lp(Rd). It remains to notice that

‖ρn ? (f − f0)‖Lp(Rd) ≤ ‖f − f0‖Lp(Rd) ,

to see that ρn ? f converges to f in Lp(Rd).
Then, we consider

‖(1− χn)ρn ? f‖pLp(Rd)
≤
∫
Rd

(1− χn(x))p
∫
Rd
ρn(y)|f(x− y)|p dy dx ,

and we get

‖(1− χn)ρn ? f‖pLp(Rd)
≤
∫
|x|≥n−1

∫
Rd

(1− χn(x+ y))pρn(y)|f(x)|p dy dx

≤
∫
|x|≥n−1

|f(x)|p dx ,

and the conclusion follows since f ∈ Lp(Rd). �

Lemma 1.8. Let k ∈ N. C∞0 (Rd) is dense in (Hk(Rd), ‖ · ‖Hk(Rd)).

Proof. Let us only deal with the case k = 1. Let f ∈ H1(Rd). We let fn = χn(ρn ? f).
First, notice that (fn) converges to f in L2(Rd). Then, we have

f ′n = χ′nρn ? f + χnρn ? f
′ .

The first term converges to 0 in L2(Rd) and the second one goes to f ′ in L2(Rd).
�

Consider
B1(R) = {ψ ∈ H1(R) : xψ ∈ L2(R)} ⊂ L2(R) .

We let, for all ϕ, ψ ∈ B1(R),

Q(ϕ, ψ) = 〈ϕ, ψ〉H1(R) + 〈xϕ, xψ〉L2(R) .

Lemma 1.9. (B1(R), Q) is a Hilbert space.

The following lemma will be convenient.

Lemma 1.10. C∞0 (R) is dense in (B1(R), ‖ · ‖B1(R)).
6



Proof. Let us recall Lemma 1.8. Let f ∈ B1(R). As in Lemma 1.8, we introduce the sequence
fn = χn(ρn ? f). We have seen that fn goes to f in H1(R). Let us prove that xfn goes to xf in
L2(R). Since xf ∈ L2(R), χn(ρn ? (xf)) goes to xf ∈ L2(R). We write

xfn(x)− xf(x) = xχnρn ? f(x)− xf(x) = n−1χnρ̃n ? f(x) + χnρn ? (xf)− xf(x) ,

with ρ̃n(y) = n2yρ(ny). Then, we get

‖χnρ̃n ? f‖L2(R) ≤ ‖ρ̃n‖L1(R)‖f‖L2(R) = ‖(·)ρ(·)‖L1(R)‖f‖L2(R) .

The conclusion follows. �

Exercise 1.11. Consider

V± = {ψ ∈ L2(R) : (±∂x + x)ψ ∈ L2(R)} ⊂ L2(R) .

We let, for all ϕ, ψ ∈ V±,

Q±(ϕ, ψ) = 〈ϕ, ψ〉L2(R) + 〈(±∂x + x)ϕ, (±∂x + x)ψ〉L2(R) .

i. Show that (V±, Q±) is a Hilbert space.
ii. Let f ∈ V . Show that the sequence fn = χn(ρn ? f) converges in V±.

Proposition 1.12. We have H1(R+) ⊂ C 0(R+). Moreover, C∞0 (R+) is dense in H1(R+).

Proof. The main point is to prove the existence of an extension operator. The following lines
are inspired by [Bre83, Lemme IX.2].

Let ψ ∈ H1(R+). We define ψ the function defined by ψ(x) = ψ(x)1R+(x)+ψ(−x)1R−(x).
Let us prove that ψ ∈ H1(R) and ‖ψ‖2

H1(R) = 2‖ψ‖2
H1(R+). Obviously, we have ψ ∈ L2(R). Let

ϕ ∈ C∞0 (R) and consider

〈ψ, ϕ′〉L2(R) =

∫ +∞

0

ψ(t)ϕ′(t) dt+

∫ 0

−∞
ψ(−t)ϕ′(t) dt

=

∫ +∞

0

ψ(t)(ϕ′(t) + ϕ′(−t)) dt

=

∫ +∞

0

ψ(t)Φ′(t) dt ,

with Φ(t) = ϕ(t) − ϕ(−t), for all t ∈ R. Consider a smooth even function χ being 0 on(
−1

2
, 1

2

)
and 1 away from (−1, 1). We let χn(t) = χ(nt). We have (χnΦ)|[0,+∞) ∈ C∞0 (R+).

Since ψ ∈ H1(R+), there exists un function f ∈ L2(R+) such that, for all φ ∈ C∞0 (R+),

〈ψ, φ′〉L2(R+) = −〈f, φ〉L2(R+) .

By changing ψ into χnψ, we have

〈ψ, χnϕ′〉L2(R) =

∫ +∞

0

ψ(t)χn(t)Φ′(t) dt

=

∫ +∞

0

ψ(t)(χnΦ)′(t) dt−
∫ +∞

0

ψ(t)χ′n(t)Φ(t) dt

= −〈f, χnΦ〉L2(R+) −
∫ +∞

0

ψ(t)χ′n(t)Φ(t) dt

By using the behavior of Φ at 0 and a support consideration, we get

lim
n→+∞

∫ +∞

0

ψ(t)χ′n(t)Φ(t) dt = 0 ,
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and we deduce
〈ψ, ϕ′〉L2(R) = −〈f,Φ〉L2(R+) ,

and thus
|〈ψ, ϕ′〉L2(R)|2 ≤ 2‖f‖2

L2(R+)‖ϕ‖2
L2(R) .

This proves that ψ ∈ H1(R) and the relation between the H1-norms follow. Thus ψ ∈ C 0(R).
The conclusion about the density follows from Lemma 1.8. �

2. UNBOUNDED OPERATORS

In this section, E and F are Banach spaces. For a slightly different presentation of the
concepts in this section, one can consult [LB03, Chapitre 10].

2.1. Definitions.

Definition 2.1 (Unbounded operator). An operator is a pair (Dom (T ), T ) where Dom (T ) is a
linear subspace of E and T is a linear map from Dom (T ) to F . Dom (T ) is called the domain
of T .

Definition 2.2 (Graph). The graph of (Dom (T ), T ) is

Γ(T ) = {(x, Tx) , x ∈ Dom (T )} ⊂ E × F .

Definition 2.3 (Graph norm). Let (Dom (T ), T ) be an operator. For all x ∈ Dom (T ), we let

‖x‖T = ‖x‖E + ‖Tx‖F .

Definition 2.4 (Extension). Let (Dom (T ), T ) and (Dom (S), S) two operators. We say that S
is an extension of T and we write T ⊂ S when Γ(T ) ⊂ Γ(S).

Definition 2.5 (Closed operator). (Dom (T ), T ) is said closed when Γ(T ) is closed in E × F .

Proposition 2.6. The following assertions are equivalent.
i. (Dom (T ), T ) is closed.

ii. For all (un) ∈ Dom (T )N such that un → u and Tun → v, we have u ∈ Dom (T ) and
v = Tu.

iii. (Dom (T ), 〈·, ·〉T ) is a Banach space.

Exercise 2.7. Take E = F = L2(Rd). Prove that the operator (H2(Rd),−∆) is closed.

Proposition 2.8. Let (Dom (T ), T ) be a closed operator. There exists c > 0 such that

∀u ∈ Dom (T ) , ‖Tu‖ ≥ c‖u‖ ,
if and only if T is injective with closed range.

Proof. Let us assume that the inequality holds. The injectivity is obvious. Let us consider (vn)
in the range of T such that (vn) converges to v ∈ H. For all n ∈ N, there exists un ∈ Dom (T )
such that vn = Tun. We deduce that (un) is a Cauchy sequence so that it converges to some
u ∈ H. Since T is closed, we find that u ∈ Dom (T ) and v = Tu.

Let us assume that T is injective with closed range. (ranT, ‖·‖) is a Banach space. T induces
a continuous bijection from (Dom (T ), ‖ · ‖T ) to (ranT, ‖ · ‖). The inverse is continuous by the
Banach theorem. �

Exercise 2.9. Prove that there exists a constant c > 0 such that

∀ϕ ∈ H2(Rd) , ‖(−∆ + 1)ϕ‖L2(Rd) ≥ c‖ϕ‖L2(Rd) .

Show that this holds for c = 1. What is the optimal c?
8



Closed operators are generalizations of bounded operators.

Proposition 2.10. Let (Dom (T ), T ) be an operator. Assume that Dom (T ) = E. Then, the
operator (Dom (T ), T ) is closed if and only if T is bounded.

Example 2.11. Let Ω ⊂ Rd and K ∈ L2(Ω× Ω). For all ψ ∈ L2(Ω), we let

TKψ(x) =

∫
Ω

K(x, y)ψ(y) dy .

TK : L2(Ω)→ L2(Ω) is well-defined and bounded. Moreover, ‖TK‖ ≤ ‖K‖L2(Ω×Ω).

Definition 2.12 (Closable operator). (Dom (T ), T ) is said closable when it has a closed exten-
sion. In this case, the smallest (in the sense of graph inclusion) closed extension is called the
closure of T and it is denoted by T .

Proposition 2.13. The following assertions are equivalent.
i. (Dom (T ), T ) is closable.

ii. Γ(T ) is the graph of an operator.
iii. For (un) ∈ Dom (T )N such that un → 0 and Tun → v, we have v = 0.

In this case, we have Γ(T ) = Γ(T ).

Exercise 2.14. The closure of (C∞0 (Rd),−∆) is (H2(Rd),−∆).

Exercise 2.15. Take E = L2(Rd) and F = C. Consider the operator T defined on Dom (T ) =
C∞0 (Rd) by Tϕ = ϕ(0). T is not closable.

2.2. Adjoint and closedness.

2.2.1. About the adjoint of bounded operators. In this section, E and F are vector spaces. Let
us recall what the adjoint of an operator is, in the case of bounded operators.

Definition 2.16. Let T ∈ L(E,F ). For all ϕ ∈ F ′ = L(F,C), we let T ′(ϕ) = ϕ ◦ T ∈ E ′.

Proposition 2.17. Let T ∈ L(E,F ). Then T ′ ∈ L(F ′, E ′) and ‖T‖L(E,F ) = ‖T ′‖L(F ′,E′).

Proof. T ′ is clearly linear. Let us show that it is continuous. We have

‖T ′‖L(F ′,E′) = sup
ϕ∈F ′\{0}

‖T ′ϕ‖E′
‖ϕ‖F ′

= sup
ϕ∈F ′\{0}

sup
x∈E\{0}

‖T ′ϕ(x)‖F
‖x‖E‖ϕ‖F ′

≤ ‖T‖L(E,F ) .

For the converse inequality, we write, with a corollary of the Hahn-Banach theorem,

‖T‖L(E,F ) = sup
x∈E\{0}

‖Tx‖F
‖x‖E

= sup
x∈E\{0}

sup
ϕ∈F ′\{0}

‖ϕ(Tx)‖
‖ϕ‖F ′‖x‖E

≤ ‖T ′‖L(F ′,E′) .

�

Definition 2.18. If A ⊂ E, we let

A⊥ = {ϕ ∈ E ′ : ϕ|A = 0} ,
and, for all B ⊂ E ′, we let

B◦ = {x ∈ E : ∀ϕ ∈ B ,ϕ(x) = 0} .

There is a deep connection between this notion of orthogonality and the adjoint.

Proposition 2.19. Let T ∈ L(E,F ). We have

kerT ′ = (ranT )⊥ , kerT = (ranT ′)◦ .
9



Proof. The first equality is a reformulation of the definitions. We have

(ranT ′)◦ = {x ∈ E : ∀ϕ ∈ F ′ : T ′ϕ(x) = 0} = kerT ,

by the Hahn-Banach theorem. �

Lemma 2.20. Assume that (E, ‖ · ‖) is a Banach space. Let us write E = E1 ⊕ E2 with E1

and E2 closed. Then, the projections ΠE1 and ΠE2 are bounded.

Proof. For all x ∈ E, there exists a unique (x1, x2) ∈ E1 × E2 such that x = x1 + x2. We
introduce the norm defined for all x ∈ E by

‖x‖′ = ‖x1‖+ ‖x2‖ .

(E, ‖ · ‖′) is a Banach space. We have

∀x ∈ E , ‖x‖ ≤ ‖x‖′ .

By the Banach theorem, ‖ · ‖ and ‖ · ‖′ are equivalent, and thus there exists C > 0 such that

∀x ∈ E , ‖x‖′ ≤ C‖x‖ .

�

Let us recall the notion of codimension.

Definition 2.21. Let E be a vector space and E1 and E2 two subspaces such that E = E1⊕E2.
Assume that dimE2 < +∞. Then, all the supplements of E1 are finite dimensional and have
the same dimension. This dimension is called codimension of E1 and denoted by codimE1.

The notion of orthogonality is convenient to estimate the codimension.

Proposition 2.22. Assume that E is a Banach space. Let us write E = E1⊕E2 with E1 closed
and E2 finite dimensional. Then, we have dimE⊥1 = dimE2 = codimE1.

Proof. Consider N ∈ N \ {0}. Let (en)1≤n≤N be a basis of E2. We can consider (e∗n)1≤n≤N the
dual basis. We consider (e∗nΠE2)1≤n≤N . By Lemma 2.20, this is a free family in E ′ being 0 on
E1. Thus dimE⊥1 ≥ N .

If ϕ ∈ E⊥1 and x ∈ E, we can write x = x1 + x2, with (x1, x2) ∈ E1 × E2, and thus

ϕ(x) = ϕ(x2) =
N∑
n=1

e∗n(x2)ϕ(en) =
N∑
n=1

e∗n(ΠE2x)ϕ(en) ,

so that dimE⊥1 ≤ N . �

2.2.2. The case of Hilbert spaces. Let us now assume that E = F = H is separable Hilbert
space. In this case, we define the adjoint of an unbounded operator. But, first, let us discuss the
bounded case.

Proposition 2.23 (Adjoint of a bounded operator). Let T ∈ L(H) be a bounded operator. For
all x ∈ H, there exists a unique T ∗x ∈ H such that

∀y ∈ H , 〈Ty, x〉 = 〈y, T ∗x〉 .

T ∗ is a bounded operator (called the adjoint of T ).

Proof. This a an application of the Riesz representation theorem. �

There is, of course, a relation between T ∗ and T ′.
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Definition 2.24. Let us denote by J : H→ H′ the application defined by

∀u ∈ H , ∀ϕ ∈ H , J (u)(ϕ) = 〈ϕ, u〉 .
We recall that J is a bijective isometry by the Riesz representation theorem.

Proposition 2.25. Let T ∈ L(H). We have T ∗ = J −1T ′J .

Proof. Consider (x, y) ∈ H2 and

〈x,J −1T ′J y〉 = T ′J y(x) = (J y)(Tx) = 〈Tx, y〉 = 〈x, T ∗y〉 .
�

Exercise 2.26. We let H = `2(Z,C), equipped with the usual Hermitian scalar product. For all
u ∈ H, we let, for all n ∈ Z, (S−u)n = un−1 and (S+u)n = un+1.

i. Show that S− and S+ are bijective isometries.
ii. Prove that S∗± = S∓.

Proposition 2.27 (Adjoint of an unbounded operator). Let (Dom (T ), T ) be an operator with
dense domain. We let

Dom (T ∗) = {x ∈ H : Dom (T ) 3 y 7→ 〈Ty, x〉is continuous for the topology of H} .
For all x ∈ Dom (T ∗), there exists a unique T ∗x ∈ H such that

∀y ∈ Dom (T ) , 〈Ty, x〉 = 〈y, T ∗x〉 .
(Dom (T ∗), T ∗) is an operator. It is called adjoint of T .

Proof. It is a consequence of the Riesz representation theorem. �

Definition 2.28. We say that (Dom (T ), T ) is self-adjoint when T = T ∗.

Example 2.29. Consider Exercise 2.26. Then S+ + S− is self-adjoint.

Example 2.30. Let us consider (X,A, µ) a measure space, with a σ-finite measure µ. We let
H = L2(X,A, µ) and consider a C-valued measurable function f . We define

Dom (Tf ) = {ψ ∈ H : fψ ∈ H} ,
and, for all ψ ∈ Dom (Tf ), Tfψ = fψ.

i. If f ∈ L∞(X,A, µ), we have Dom (Tf ) = H and Tf is bounded.
ii. The domain Dom (Tf ) is dense in H.

iii. The domain of the adjoint of Tf is given by Dom (Tf ) and T ∗f = Tf . In particular, when f
is real-valued, Tf is self-adjoint.

Exercise 2.31. Take H = L2(R). Consider Dom (T ) = H1(R) and T = −i∂x. What is
(Dom (T ∗), T ∗)? And if we choose Dom (T ) = C∞0 (R)?

Proposition 2.32. Let us define J : H×H 3 (x, y) 7→ (−y, x) ∈ H×H. We equip H×H with
the natural scalar product. If T is an operator with dense domain, we have

Γ(T ∗) = J(Γ(T ))⊥ , Γ(T ) = J(Γ(T ∗))⊥ .

In particular, T ∗ is closed.

Proposition 2.33. Let (Dom (T ), T ) and (Dom (S), S) two operators. If T ⊂ S, we have
S∗ ⊂ T ∗.

Proposition 2.34. Let us consider a densely defined operator T . Then, T is closable if and
only if Dom (T ∗) is dense. In this case, (T ∗)∗ = T .
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Proof. Assume that Dom (T ∗) is dense. Then, we have Γ((T ∗)∗) = Γ(T ). Thus, Γ(T ) is a
graph and (T ∗)∗ = T .

Assume that T is closable. Let v ∈ Dom (T ∗)⊥. We have (0, v) ∈ J(Γ(T ∗))⊥ = Γ(T ) =
Γ(T ). Thus, v = 0. �

Proposition 2.35. If T is closable with dense domain, we have T
∗

= T ∗.

Proof. We have T
∗

= (T ∗)∗∗ = T ∗ = T ∗.
�

Proposition 2.36. Let us consider a densely defined operator T . We have

ker(T ∗) = ran (T )⊥ , ker(T ∗)⊥ = ran (T ) .

In particular, T ∗ is injective if and only if T has a dense range.

Proof. Let x ∈ kerT ∗ and y ∈ ran (T ). We write y = Tz with z ∈ Dom (T ). We have
〈x, Tz〉 = 0.

Let y ∈ H such that 〈y, Tx〉 = 0 for all x ∈ Dom (T ). We deduce that y ∈ Dom (T ∗) and
that 〈T ∗y, x〉 = 0 for all x ∈ Dom (T ). Thus, T ∗y = 0. �

2.2.3. Creation and annihilation operators. Let us discuss two important examples to illustrate
the above abstract propositions. Let us introduce the following differential operators, acting on
Dom (a) = Dom (c) = S (R),

a =
1√
2

(∂x + x) , c =
1√
2

(−∂x + x) .

The domains of their adjoints are

Dom (a∗) = {ψ ∈ L2(R) : (−∂x + x)ψ ∈ L2(R)} ,
Dom (c∗) = {ψ ∈ L2(R) : (∂x + x)ψ ∈ L2(R)} ,

and,

∀ψ ∈ Dom (a∗) , a∗ψ =
1√
2

(−∂x + x)ψ ,

∀ψ ∈ Dom (c∗) , c∗ψ =
1√
2

(∂x + x)ψ .

In particular, we see that a ⊂ c∗ and c ⊂ a∗. Thus, a and c are closable and their closures
satisfy a ⊂ c∗ and c ⊂ a∗.

Lemma 2.37. We have
Dom (a) = Dom (c) = B1(R) .

Proof. For all u ∈ S (R), we have

2‖au‖2 = ‖u′‖2 + ‖xu‖2 − ‖u‖2

2‖cu‖2 = ‖u′‖2 + ‖xu‖2 + ‖u‖2 .

Now, take u ∈ Dom (a). By definition, we have (u, au) ∈ Γ(a). There exists (un) ∈ Dom (a)N

such that (un) converges to u and (aun) converges to au. We deduce that (u′n) and (xun) are
Cauchy sequences in L2(R). We get that u′ ∈ L2(R) and xu ∈ L2(R). We get Dom (a) ⊂
B1(R). We proceed in the same way for c.

Let us now deal with the reversed inclusion. Take u ∈ B1(R). By Lemma 1.10, there exists a
sequence (un) of smooth functions with compact support such that un converges to u in B1(R).

12



In particular, (aun) and (cun) are convergent in L2(R). We deduce that u ∈ Dom (a) and
u ∈ Dom (c).

�

Now, we use the results of Exercise 1.11. For example, if ψ ∈ Dom (c∗), we have ψ ∈ L2(R)
and (∂x + x)ψ ∈ L2(R). There exists (ψn) ∈ S N such that ψn converges to ψ and (∂x + x)ψn
converges to (∂x + x)ψ ∈ L2(R). We get that (ψ′n) and (xψn) are Cauchy sequences. Thus
ψ ∈ B1(R). We deal with a∗ in the same way. We get that

Dom (c∗) = Dom (a∗) = B1(R) .

We deduce that
a = c∗ , c = a∗ .

By using Propositions 2.34 and 2.35, we get

a∗ = a∗ = c , c∗ = c∗ = a .

In other words, the closures of a and c are adjoint of each other and they share the same domain
B1(R).

2.3. Self-adjoint operators and essentially self-adjoint operators.

2.3.1. Symmetric and self-adjoint operators.

Definition 2.38. A densely defined operator T is said symmetric if T ⊂ T ∗. It is said self-
adjoint if T = T ∗.

Note that a symmetric and densely defined operator is closable.

Proposition 2.39. The operator T is symmetric if and only if

∀u, v ∈ Dom (T ) , 〈Tu, v〉 = 〈u, Tv〉 .
In particular, for all u ∈ Dom (T ), 〈Tu, u〉 ∈ R.

Exercise 2.40. Take H = L2(R). Show that (C∞0 (R),−i∂x) is symmetric.

Exercise 2.41. Let P ∈ R[X] be a polynomial of degree n. Show that the differential operator
(Hn(Rd), P (D)) is symmetric. Here D = −i∂x. Use the Fourier transform and Example 2.30.

Exercise 2.42. Give an example of non-symmetric operator.

Proposition 2.43. Let us consider a symmetric operator T . Let z = α + iβ with (α, β) ∈
R× R∗. Then,

∀u ∈ Dom (T ) , ‖(T − z)u‖ ≥ |β|‖u‖ .
If, moreover, T is closed, T − z is injective with closed range.

Proof. Let u ∈ Dom (T ). We have

‖(T − z)u‖2 = ‖(T − α)u− iβu‖2 = ‖(T − α)u‖2 + β2‖u‖2 + 2Re 〈(T − α)u, (−iβ)u〉 ,
and thus

‖(T − z)u‖2 = ‖(T − α)u‖2 + β2‖u‖2 ≥ β2‖u‖2 .

�

Proposition 2.44. Let us consider a symmetric operator T . Then, T is closable and

T ⊂ T ⊂ T ∗ .

T is self-adjoint if and only if T = T = T ∗.
13



Proposition 2.45. Let T be a closed and symmetric operator. Then, T is self-adjoint if and
only if T ∗ is symmetric.

Proof. Assume that T ∗ is symmetric. We have T ⊂ T ⊂ T ∗ ⊂ (T ∗)∗ = T = T . �

Proposition 2.46. Let T be a symmetric operator. The following assertions are equivalent.
i. T is self-adjoint.

ii. T is closed and ker(T ∗ ± i) = {0}.
iii. ran (T ± i) = H.

Proof. If T is self-adjoint, T is closed and ker(T ∗ ± i) = ker(T ± i) = {0}.
Then, we assume that T is closed and ker(T ∗± i) = {0}. Thus, T ∓ i has a dense range and

the range is closed.
Finally, we assume that ran (T ± i) = H. Let us prove that Dom (T ∗) ⊂ Dom (T ). Take

u ∈ Dom (T ∗) and consider (T ∗−i)u. There exists v ∈ Dom (T ) such that (T ∗−i)u = (T−i)v.
Then, (T ∗ − i)u = (T ∗ − i)v and ker(T ∗ − i) = {0}.We deduce that u− v = 0.

�

Exercise 2.47. Take H = L2(Rd). Consider V ∈ L∞(Rd,R) and the operator −∆ + V with
domain H2(R). Is it self-adjoint?

Exercise 2.48. Take H = L2(R+).
i. Is the operator (H1(R+),−i∂x) symmetric?

ii. Is the operator (H1
0(R+),−i∂x) symmetric?

iii. Show that the domain of the adjoint of (H1
0(R+),−i∂x) is H1(R+).

iv. By using Proposition 2.46, prove that (H1
0(R+),−i∂x) is not self-adjoint.

Exercise 2.49. Take H = L2(R+). We let Dom (T ) = {ψ ∈ H2(R+) : u′(0) = −u(0)} and
T = −∂2

x. Is this operator self-adjoint? We recall that H2(R+) is continuously embedded in
C 1(R+) (see Proposition 1.12).

2.3.2. Essentially self-adjoint operators.

Definition 2.50. A symmetric operator is essentially self-adjoint if its closure is self-adjoint.

Proposition 2.51. Let T be a symmetric operator. Then, T is essentially self-adjoint if and only
if T = T ∗.

Proof. If T is essentially self-adjoint, we have T
∗

= T . Since T ∗ = T , the conclusion follows.
Conversely, let us assume that T = T ∗. Then T

∗
= T ∗∗ = T . �

Exercise 2.52. Take H = L2(Rd). We take (C∞0 (Rd),−∆). Is this operator essentially self-
adjoint? What is the adjoint?

Proposition 2.53. If T is essentially self-adjoint, it has a unique self-adjoint extension.

Proof. Let us consider S a self-adjoint extension of T . We have T ⊂ S so that T ⊂ S = S∗ ⊂
T ∗ = T . �

Proposition 2.54. The following assertions are equivalent.
i. T is essentially self-adjoint.

ii. ker(T ∗ ± i) = {0}.
iii. ran (T ± i) = H.

Proof. If T is essentially self-adjoint, T is self-adjoint and thus ker(T
∗ ± i) = ker(T ∗ ± i) =

{0}. If ker(T ∗ ± i) = {0}, then ran (T ± i) = H. Finally, we assume that ran (T ± i) = H.
We get ker(T ∗ ± i) = {0} and ran (T ± i) = H. Therefore T is self-adjoint. �
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Exercise 2.55. Take H = L2(I) with I = (0, 1). Consider (C∞0 (I),−∂2
x). Is it essentially

self-adjoint?

2.3.3. A criterion for essential self-adjointness for Schrödinger operators.

Lemma 2.56. Let f ∈ L2
loc(Rd) such that ∆f ∈ L2

loc(Rd). Then, there exists a sequence
(fn) ∈ C∞0 (Rd)N such that (fn) tends to f and (∆fn) tends to ∆f in L2

loc(Rd).

Proof. It is sufficient to adapt the proof of Lemma 1.8. �

Lemma 2.57. Let ϕ and χ two smooth functions with compact supports, with χ real-valued.
We have ∫

Rd
χ2|∇ϕ|2 dx ≤ 2‖χ∆ϕ‖‖χϕ‖+ 4‖(∇χ)ϕ‖2 .

Proof. We write

〈∆ϕ, χ2ϕ〉 = 〈∇ϕ,∇(χ2ϕ)〉 = ‖χ∇ϕ‖2 + 2〈χ∇ϕ, (∇χ)ϕ〉 .
By using the Cauchy-Schwarz inequality, we have

2|〈χ∇ϕ, (∇χ)ϕ〉| ≤ 1

2
‖χ∇ϕ‖2 + 2‖(∇χ)ϕ‖2 .

We deduce the desired estimate. �

Lemma 2.58. Let f ∈ L2
loc(Rd) such that ∆f ∈ L2

loc(Rd). Then f ∈ H1
loc(Rd).

Proof. We consider the sequence (fn) given in Lemma 2.56 and we use Lemma 2.57 with
ϕ = fn − fp. We easily deduce that (∇fn) is convergent in L2

loc(Rd) and that the limit is∇f in
the sense of distributions. �

Lemma 2.59. Let f ∈ L2
loc(Rd) such that ∆f ∈ L2

loc(Rd). Then f ∈ H2
loc(Rd).

Proof. Let χ be a smooth function with compact support. We have just to show that χf ∈
H2(Rd). We have ∆(χf) = χ∆f + 2∇χ · ∇f + f∆χ ∈ L2(Rd) by Lemma 2.58. Thus, by
considering the Fourier transform of χf , we easily find that 〈ξ〉2χ̂f ∈ L2(Rd) and we deduce
that χf ∈ H2(Rd). �

Proposition 2.60. Let us consider V ∈ C∞(Rd,R) and the operator T with domain C∞0 (Rd)
acting as−∆+V . We assume that T is semi-bounded from below, i.e., there exists C ∈ R such
that

∀ϕ ∈ C∞0 (Rd) , 〈Tu, u〉 ≥ C‖u‖2 .

Then, T is essentially self-adjoint.

Proof. We follow the presentation in [Hel13, Theorem 9.15]. Up to a translation of V , we can
assume that C = 1. Let us prove that the range of T ± i is dense. Let us consider f ∈ L2(Rd)
such that, for all u ∈ C∞0 (Rd),

〈f, (T ± i)u〉 = 0 .

We get, in the sense of distributions, that

(−∆ + V ∓ i)f = 0 .

With Lemma 2.59, we get that f ∈ H2
loc(Rd). By induction, we get that f ∈ H∞loc(Rd). From

this and the Sobolev embedding Hs(Rd)→ C 0(Rd) when s > d
2
, we deduce that f ∈ C∞(Rd).

Now, take u ∈ C∞(Rd) and consider χ ∈ C∞0 (Rd,R) supported in B(0, 2) and equal to 1
on B(0, 1). For all n ≥ 1, we let, for all x ∈ Rd,

χn(x) = χ(n−1x) .
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We write
〈f, (T ± i)(χ2

nu)〉 = 0 ,

and we have

〈f, (T ± i)(χ2
nu)〉 =

∫
Rd

(
∇f∇(χ2

nu) + (V ∓ i)χ2
nfu

)
dx .

We get ∫
Rd
∇f∇(χ2

nu) dx =

∫
Rd
χn∇f∇(χnu) dx+

∫
Rd
∇f · (∇χn)χnu dx .

Thus,∫
Rd
∇f∇(χ2

nu) dx =

∫
Rd
∇(χnf)∇(χnu) dx−

∫
Rd
f∇χn·∇(χnu) dx+

∫
Rd
∇f ·(∇χn)χnu dx ,

and∫
Rd
∇f∇(χ2

nu) dx =

∫
Rd
∇(χnf)∇(χnu) dx−

∫
Rd
f |∇χn|2u) dx

+

∫
Rd
∇f · (∇χn)χnu) dx−

∫
Rd
fχn∇χn · ∇u dx .

We can choose u = f , take the real part to get∫
Rd
|∇(χnf)|2 + V |χnf |2 dx =

∫
Rd
|f∇χn|2 dx .

The r.h.s. goes to zero when n goes to +∞. By assumption, this implies that

lim inf
n→+∞

‖χnf‖2 = 0 .

The conclusion follows from the Fatou lemma. �

Example 2.61. The operator with domain C∞0 (R) acting as−∂2
x+x2 is essentially self-adjoint.

Show that, in fact, this operator is bounded from below by 1.

Exercise 2.62. Take H = L2(R2). We take Dom (T ) = C∞0 (R2). For ψ ∈ Dom (T ), we let
Tψ = (−∂2

x1
+ (−i∂x2 − x1)2)ψ. Is this operator essentially self-adjoint?

2.4. Lax-Milgram theorems. In this section, we adopt the presentation in [Hel13, Chapter 3].

Theorem 2.63. Let V be a Hilbert space. Let Q be a continuous sesquilinear form on V × V .
Assume that there exists α > 0 such that, for all u ∈ V , we have

|Q(u, u)| ≥ α‖u‖2
V ,

The operator A defined by

∀u, v ∈ V , Q(u, v) = 〈A u, v〉V
is a continuous isomorphism of V onto V with bounded inverse.

Proof. The operator A is well defined by the Riesz representation theorem. It is bounded
since Q is continuous. It is clearly injective. Let us show that the range of A is closed and
dense. We easily get that ran A ⊥ = {0} so that the range is dense. Moreover, we have, by
Cauchy-Schwarz, for all u ∈ V ,

α‖u‖V ≤ ‖A u‖V .
Thus, the range is closed. �
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Theorem 2.64. In addition to the hypotheses of Theorem 2.63, assume that H is a Hilbert space
such that V is continuously embedded and dense in H. Then the operator L defined by

∀u ∈ Dom(L ), ∀v ∈ V , Q(u, v) = 〈L u, v〉H
where

Dom(L ) =
{
u ∈ V : the map v 7→ Q(u, v) is continuous on V for the norm of H

}
,

satisfies the following properties:
(i) L is bijective from Dom(L ) onto H,

(ii) L is closed.
(iii) Dom(L ) is dense in V and in H,
(iv) If Q̃ is the adjoint sesquilinear form defined by

∀u, v ∈ V , Q̃(u, v) = Q(v, u) ,

then L̃ = L ∗.

Proof. By density and the Riesz theorem, L is well defined.
Let us deal with (i). For all u ∈ Dom (L ), we have

‖L u‖‖u‖ ≥ α‖u‖2
V ≥ αc‖u‖2 ,

where c > 0 is such that
∀u ∈ V , c‖u‖ ≤ ‖u‖V .

We deduce that L is injective.
Let us prove the surjectivity. Let w ∈ H. We look for u ∈ Dom (L ) such that L u = w.

This is equivalent to
∀ϕ ∈ H , 〈L u, ϕ〉 = 〈w,ϕ〉 .

We notice that V 3 ϕ 7→ 〈w,ϕ〉 is continuous. Thus, there exists v ∈ V such that, for all
ϕ ∈ V ,

〈w,ϕ〉 = 〈v, ϕ〉V .
We let u = A −1v ∈ V so that

∀ϕ ∈ V , 〈w,ϕ〉 = Q(u, ϕ) .

We deduce that u ∈ Dom (L ) and

∀ϕ ∈ V , 〈w,ϕ〉 = 〈L u, ϕ〉 .
By density, we get L u = w.

Therefore L is bijective. We get that L −1 is continuous and ‖L −1‖ ≤ (αc)−1. Therefore
L is closed. This proves (ii).

Now, we prove (iii). Let u ∈ Dom (L )⊥V . We have

∀v ∈ Dom (L ) , 〈u, v〉V = 0 .

The operator A ∗ ∈ L(V) is bijective. There exists a unique w ∈ V such that u = A ∗w. Thus,

∀v ∈ Dom (L ) , 〈w,A v〉V = 0 ,

so that
∀v ∈ Dom (L ) , Q(v, w) = 0 ,

and therefore
∀v ∈ Dom (L ) , 〈L v, w〉 = 0 .

By surjectivity of L , we get w = 0 and then u = 0.
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Let us now deal with (iv). Let us prove that L ∗ ⊂ L̃ . Let u ∈ Dom (L ∗). For all
ϕ ∈ Dom (L ), 〈Lϕ, u〉 = 〈ϕ,L ∗u〉. We notice that V 3 ϕ 7→ 〈ϕ,L ∗u〉 is continuous for
‖ · ‖V . Thus, there exists v ∈ V such that

∀ϕ ∈ V , 〈ϕ,L ∗u〉 = 〈ϕ, v〉V .
In particular, we have

∀ϕ ∈ Dom (L ) , 〈Lϕ, u〉 = 〈ϕ,L ∗u〉 = 〈ϕ, v〉V .
There exists w ∈ V such that v = A ∗w and thus

∀ϕ ∈ Dom (L ) , 〈Lϕ, u〉 = 〈ϕ,L ∗u〉 = 〈ϕ, v〉V = Q(ϕ,w) = 〈Lϕ,w〉 .
By surjectivity of L , we get u = w ∈ V . Then

∀ϕ ∈ Dom (L ) , Q̃(u, ϕ) = Q(ϕ, u) = 〈ϕ,L ∗u〉 .

We get u ∈ Dom (L̃ ) and

∀ϕ ∈ Dom (L ) , 〈L̃ u, ϕ〉 = 〈ϕ,L ∗u〉 .

By density of Dom (L ), we deduce that L ∗ ⊂ L̃ . Let us now prove the converse inclusion.
Let u ∈ Dom (L̃ ). We have

∀ϕ ∈ Dom (L ) , 〈Lϕ, u〉 = Q(ϕ, u) = Q̃(u, ϕ) = 〈L̃ u, ϕ〉 = 〈ϕ, L̃ u〉 .

It follows that u ∈ Dom (L ∗) and that L ∗u = L̃ u. �

2.5. Examples.

2.5.1. Dirichlet Laplacian. Let Ω ⊂ Rd be an open set. Here, we consider V = H1
0(Ω) and we

define the sesquilinear form

QDir(u, v) =

∫
Ω

∇u · ∇v + uv dx .

The form QDir is Hermitian, continuous, and coercive on V . In Theorem 2.64, we have A =
IdV .

The self-adjoint operator L Dir − Id given by Theorem 2.64 is called Dirichlet Laplacian on
Ω. The domain of L Dir is

Dom (L Dir) = {ψ ∈ H1
0(Ω) : −∆ψ ∈ L2(Ω)} .

If the boundary of Ω is smooth, we have

Dom (L ) = H1
0(Ω) ∩ H2(Ω) .

This characterization of the domain is not true if the boundary is not smooth.

2.5.2. Neumann Laplacian. Let Ω ⊂ Rd be an open set. Here, we consider V = H1(Ω) and
we define the sesquilinear form

QNeu(u, v) =

∫
Ω

∇u · ∇v + uv dx .

The form Q is Hermitian, continuous, and coercive on V . In Theorem 2.64, we have A = IdV .
The self-adjoint operator L Neu − Id given by Theorem 2.64 is called Neumann Laplacian

on Ω. If the boundary of Ω is smooth, the domain of L Neu is

Dom (L Neu) = {ψ ∈ H1(Ω) : −∆ψ ∈ L2(Ω) , ∇ψ · n = 0 on ∂Ω} .
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We have
Dom (L Neu) = {ψ ∈ H1(Ω) ∩ H2(Ω) : ∇ψ · n = 0 on ∂Ω} .

This characterization of the domain is not true if the boundary is not smooth.

2.5.3. Harmonic oscillator. Let us consider the operator

H0 = (C∞0 (R),−∂2
x + x2) .

This operator is essentially self-adjoint as we have seen in Example 2.61. Let us denote by H
its closure. The operatorH is called the harmonic oscillator. We have

Dom (H) = Dom (H∗0) = {ψ ∈ L2(R) : (−∂2
x + x2)ψ ∈ L2(R)} .

We recall Lemma 1.9.
Theorem 2.63 can be applied and A = Id. Let us now consider Theorem 2.64 with H =

L2(R). The assumptions are satisfied since V is continuously embedded and dense in L2(R).
The operator L associated with Q is self-adjoint, its domain is

Dom (L ) = {ψ ∈ B1(R) : (−∂2
x + x2)ψ ∈ L2(R)} .

The operator L satisfies in particular

〈(−∂2
x + x2)u, v〉 = Q(u, v) = 〈L u, v〉 ,

for all u, v ∈ C∞0 (R). This shows that L is a self-adjoint extension ofH0. Thus, L = H.

3. SPECTRUM

3.1. Definitions and basic properties.

3.1.1. Holomorphic functions valued in a Banach space. Let E be a Banach space.

Definition 3.1. Let Ω be a non-empty open set in C. We say that f : Ω → E is holomorphic
when, for all z0 ∈ Ω, the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. It is denoted by f ′(z0).

Lemma 3.2. Let A ⊂ E such that `(A) is bounded for all ` ∈ E ′. Then A is bounded.

Proposition 3.3. Let f : Ω→ E. f is holomorphic if and only if it is weakly holomorphic, i.e.,
` ◦ f is holomorphic on Ω for all ` ∈ E ′.

Proof. Let us assume that ` ◦ f is holomorphic on Ω for all ` ∈ E ′. Let us first prove that f is
continuous. Take z0 ∈ Ω and define for r > 0 such that D(z0, r) ⊂ Ω,

A =

{
f(z)− f(z0)

z − z0

, z ∈ D(z0, r) \ {z0}
}
⊂ E .

We observe that `(A) is bounded for all ` ∈ E ′. We deduce that A is bounded. This proves the
continuity of f at z0.

Take z0 ∈ Ω and Γ a circle with center z0 and radius r such that D(z0, r) ⊂ Ω. Since f is
continuous, we can define, for z ∈ D(z0, r),

F (z) =
1

2iπ

∫
Γ

f(ζ)

ζ − z
dζ .

By the Cauchy formula, we get, for all ` ∈ E ′ and z ∈ D(z0, r),

` ◦ f(z) =
1

2iπ

∫
Γ

` ◦ f(ζ)

ζ − z
dζ .
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Using the Riemannian sums, we find

` (f(z)− F (z)) = 0 .

By the Hahn-Banach theorem, we deduce that F (z) = f(z). From this, it is easy to show that
f has a power series expansion and thus it is holomorphic. �

By using the classical Liouville theorem, we get the following.

Corollary 3.4. Let f : C→ E be holomorphic. If f is bounded, then it is constant.

3.1.2. Basic definitions and properties. Let T be a closed operator on H or a bounded operator
on a Banach space E.

Definition 3.5. We let

ρ(T ) = {z ∈ C : T − z is bijective} , sp(T ) = C \ ρ(T ) .

ρ(T ) is called the resolvent set of T . sp(T ) is called the spectrum of T .

Definition 3.6. An eigenvalue of T is a number λ ∈ C such that ker(T − λ) 6= {0}. The set
formed by the eigenvalues is called point spectrum.

Proposition 3.7. In finite dimension, the spectrum coincides with the point spectrum.

Exercise 3.8. Here H = Cn. Let ε ≥ 0 and define the matrix Mn(ε) = (mi,j)1≤i≤n
1≤j≤n

with

mn,1 = ε, mi,i+1 = 1 for all i ∈ {1, . . . , n− 1}, and 0 otherwise.
i. What is the spectrum of Mn(ε)?

ii. What is the behavior of the spectrum when n goes to +∞?

Exercise 3.9. What are the spectra of a and c defined in Section 2.2.3?

Proposition 3.10. For all z ∈ ρ(T ), T − z is bijective with bounded inverse. In this case, we
let RT (z) = (T − z)−1.

Proposition 3.11. ρ(T ) is an open set and ρ(T ) 3 z 7→ RT (z) is holomorphic.

Lemma 3.12 (Weyl sequences). Let us consider an unbounded closed operator (T,Dom(T )).
Assume that there exists a sequence (un) ∈ Dom (T ) such that ‖un‖H = 1, (un) and

lim
n→+∞

(T − λ)un = 0

in H. Then λ ∈ sp(T ).

A sequence (un) as in Lemma 3.12 is called a Weyl sequence.

Example 3.13. We let H = L2(I), with I = (0, 1). Take f ∈ C 0([0, 1],C). We consider the
operator T : L2(I) 3 ψ 7→ fψ ∈ L2(I). T is bounded and ‖T‖ ≤ ‖f‖∞.

i. If λ /∈ ran (f), then, the multiplication operator by (f − λ)−1 is bounded and it is the
inverse of T . In particular, this shows that sp(T ) ⊂ ran (f).

ii. Let us now take x0 ∈ (0, 1) and let λ = f(x0). Let χ ∈ C∞(R) with ‖χ‖L2(R) = 1. For n
large enough, we consider the sequence

un(x) =
√
nχ(n(x− x0)) ,

and we notice that the support of un is included in [0, 1]. Moreover, we have ‖un‖H = 1.
By dominated convergence, we have

lim
n→+∞

(T − λ)un = 0 .

This shows that λ ∈ sp(T ). We get f(I) ⊂ sp(T ). Since the spectrum is closed and f
continuous, we get f([0, 1]) ⊂ sp(T ).
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iii. If λ is an eigenvalue of T , there exists ψ ∈ L2(I) such that ‖ψ‖H = 1 and (f − λ)ψ = 0.
Thus the measure of {f = λ} is positive. Conversely, if A = {f = λ} has a non zero
measure, 1A is not zero and satisfies T1A = λ1A.

Actually, we can generalize this last example.

Exercise 3.14. We use the notations of Example 2.30. We define the essential range of f as

ran ess(f) = {λ ∈ C : ∀ε > 0 , µ({|f − λ| > ε}) > 0} .
i. Prove that, if λ /∈ ran ess(f), then λ ∈ ρ(Tf ).

ii. Let λ ∈ ran ess(f) and ε > 0. By usingAε = {|f−λ| > ε}, find a function ψε ∈ Dom (Tf )
such that ‖(Tf − λ)ψε‖H ≤ ε‖ψε‖H.

iii. Conclude that ran ess(f) = sp(Tf ).

Exercise 3.15. Here H = `2(Z). We recall that L2(S1,C) is isometric to `2(Z) via the Fourier
series and the Parseval formula.

i. For all u ∈ H, we let, for all n ∈ Z, (S−u)n = un−1. By using the result of Exercise
3.14 (or Exercise 3.13) and the Fourier series, find the spectrum of S−. What is the point
spectrum of S−?

ii. For all u ∈ H, we let, for all n ∈ Z, (Tu)n = un−1 + un−1. Find the spectrum of T .

Proposition 3.16 (Resolvent formula). For all z1, z2 ∈ ρ(T ), we have

RT (z1)RT (z2) = RT (z2)RT (z1) ,

and
(z1 − z2)RT (z1)RT (z2) = RT (z1)−RT (z2) .

3.1.3. About the bounded case.

Definition 3.17 (Spectral radius). Let T ∈ L(E). We let

r(T ) = sup
λ∈sp(T )

|λ| .

Proposition 3.18. Let T ∈ L(E). Then,

r(T ) ≤ ‖T‖ .
Moreover,

r(T ) = lim sup
n→+∞

‖T n‖
1
n .

Proof. For all z ∈ C with |z| > ‖T‖, we have

T − z = z(z−1T − Id) ,

so that

(3.1) RT (z) = (T − z)−1 = z−1(z−1T − Id)−1 = −z−1

+∞∑
n=0

T nz−n ,

If λ ∈ sp(T ), we have λn ∈ sp(T n) and thus, for all n ∈ N∗,

r(T ) ≤ ‖T n‖
1
n .

Moreover, RT is holomorphic on {z ∈ C : |z| > r(T )} (and not on the exterior of a smaller
disk) so that, by the Hadamard formula,

r(T ) ≥ lim sup
n→+∞

‖T n‖
1
n .

�
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Lemma 3.19. Let T ∈ L(E). The sequence is (‖T n‖ 1
n )n∈N∗ convergent to infn∈N∗ ‖T n‖

1
n .

Proof. We can assume that T n 6= 0 for all n ∈ N∗. We let un = ‖T n‖. We have

∀n, p ∈ N∗ , un+p ≤ un + up .

Let p ∈ N∗. We write n = qp+ r with r ∈ [0, p).We have

un ≤ qup + ur .

Thus,
un
n
≤ up

p
+
ur
n
.

We have, for all p ∈ N∗,
lim sup
n→+∞

un
n
≤ up

p
.

�

Proposition 3.20. If T ∈ L(E), then sp(T ) 6= ∅.

Proof. We use Proposition 3.11 and (3.1) to see that, if ρ(T ) = C, RT is bounded on C. Then,
we apply Corollary 3.4 to see that RT is constant. We again use (3.1) to notice that RT goes to
0 at infinity. So RT = 0 and this is a contradiction. �

3.1.4. Spectrum of the adjoint.

Proposition 3.21. Let (Dom (T ), T ) be a closed and densely defined operator. Then, T :
Dom (T ) → H is bijective if and only if T ∗ : Dom (T ∗) → H is bijective. In this case,
(T ∗)−1 = (T−1)∗.

Proof. Assume that T is bijective. Since ran (T ) = H, we get that ker(T ∗) = {0}. Moreover,
we also get that ran (T ∗) is dense in H since ker(T ) = {0}. Consider the bounded operator
T−1 = H→ H (by the Banach theorem). Its adjoint (T−1)∗ : H→ H is also bounded:

∀y ∈ H , ‖(T−1)∗y‖ ≤ C‖y‖ .

If x ∈ Dom (T ∗) and v ∈ H, we have

〈(T−1)∗T ∗x, v〉 = 〈T ∗x, T−1v〉 = 〈x, TT−1v〉 = 〈x, v〉 ,

so that
(T−1)∗T ∗ = IdDom (T ∗) .

We deduce that ran (T ∗) is closed. Thus T ∗ is bijective.
If T ∗ is bijective, we use Proposition 2.34 to get T ∗∗ = T . Thus, T is bijective. Note also

that, for all u ∈ H and v ∈ Dom (T ),

〈(T−1)∗u, Tv〉 = 〈u, v〉 ,

so that (T−1)∗u ∈ Dom (T ∗) and T ∗(T−1)∗ = IdH.
�

Corollary 3.22. Let (Dom (T ), T ) be a closed and densely defined operator. Then, sp(T ) =
sp(T ∗). Here the bar denotes the complex conjugation.

Proof. Let z ∈ C and apply Proposition 3.21 to T − z. �
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3.2. Spectral radius and resolvent bound in the self-adjoint case.

Definition 3.23 (Normal operator). Let T ∈ L(H). T is normal when TT ∗ = T ∗T .

Proposition 3.24. Let T ∈ L(H) be a normal operator. Then,

r(T ) = ‖T‖ .

Proof. Let us start to deal with the case when T = T ∗. We have ‖T 2‖ = ‖T‖2. Indeed, we
have, for all S ∈ L(H),

‖S‖ = sup
u6=0 ,v 6=0

|〈Su, v〉|
‖u‖‖v‖

.

For S = T 2 = T ∗T , we find

‖T 2‖ = sup
u6=0 ,v 6=0

|〈Tu, Tv〉|
‖u‖‖v‖

≥ sup
u6=0

‖Tu‖2

‖u‖2
= ‖T‖2 .

But, we obviously have ‖T 2‖ ≤ ‖T‖2. By Lemma 3.19, we have

lim
n→+∞

‖T n‖
1
n = lim

n→+∞
‖T 2n‖

1
2n = ‖T‖ .

Let us now assume that T is normal. Note that T ∗T is self-adjoint so that r(T ∗T ) = ‖T ∗T‖ =
‖T‖2. We have used that the general facts that ‖S∗‖ = ‖S‖, and ‖S∗S‖ = ‖S‖2. Since T is
normal, we have

r(T ∗T ) = lim
n→+∞

‖(T ∗T )n‖
1
n = lim

n→+∞
‖(T n)∗(T )n‖

1
n =

(
lim

n→+∞
‖(T )n‖

1
n

)2

= r(T )2 .

�

Corollary 3.25. Let T ∈ L(H) be a normal operator. If sp(T ) = {0}, then T = 0.

3.2.1. Resolvent bounds.

Proposition 3.26. Let T ∈ L(H) be a normal operator. For all z /∈ sp(T ), we have

‖(T − z)−1‖ =
1

dist(z, sp(T ))
.

Exercise 3.27. Consider that H = Cd, with d ≥ 2 and equipped with the canonical scalar
product.

i. Let T ∈ L(H). We assume that d ≥ 3 and that, for all strict subspace F of H such that
T (F ) ⊂ F , T|F is normal.
a. Assume that T has at least two distinct eigenvalues. By using the decomposition in

characteristic subspaces, show that T is diagonalizable. Prove then that the characteris-
tic subspaces are orthogonal.

b. Assume that T has only one eigenvalue λ and let N = T − λId. Prove that N = 0.
c. Conclude that T is normal.

ii. Let T ∈ L(H) be a non-normal operator.
a. Show that there exists F ⊂ H of dimension two and invariant by T such that S := T|F

is non-normal.
b. Prove that there exists a (zn) sequence (in the resolvent set of S) converging to an

element λ in the spectrum of S and such that

‖(S − zn)−1‖ > 1

dist(zn, sp(S))
.
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c. Deduce that there exists z in the resolvent set of T such that

‖(T − z)−1‖ > 1

dist(z, sp(T ))
.

Proposition 3.28. Let (T,Dom (T )) be a self-adjoint operator. For all z /∈ sp(T ), we have

‖(T − z)−1‖ =
1

dist(z, sp(T ))
.

Proof. Let z /∈ sp(T ). We have ((T − z)−1)
∗

= (T − z)−1. The operators (T − z)−1 and
(T − z)−1 commute. Thus (T − z)−1 is normal and

‖(T − z)−1‖ = r
(
(T − z)−1

)
=

1

dist(z, sp(T ))
,

since
sp
(
(T − z)−1

)
=
{

(λ− z)−1 , λ ∈ sp(T )
}
.

�

3.3. About the Riesz projections.

3.3.1. Properties.

Proposition 3.29. Let us consider an unbounded closed operator (T,Dom(T )) and λ an iso-
lated element of sp(T ). Let Γλ be a contour that enlaces only λ as element of the spectrum of
T and define

Pλ :=
1

2iπ

∫
Γλ

(z − T )−1 dz .

The bounded operator Pλ : H → Dom(T ) ⊂ H commutes with T and does not depend on the
choice of Γλ. Pλ is a projection and

(3.2) Pλ − Id =
1

2iπ

∫
Γλ

(ζ − λ)−1(T − λ)(ζ − T )−1 dζ .

We say that λ has finite algebraic multiplicity when the rank of Pλ is finite.

Proof. We notice Pλ is well defined and bounded since the integral is understood in the Rie-
mannian sense. Then Pλ commutes with T since T is closed and the integral can be approx-
imated by the Riemannian sums. The fact that Pλ does not depend on the contour enlacing λ
comes from the holomorphy of the resolvent.

There exist 0 < r < r̃ such that

Pλ =
1

2iπ

∫
C(λ,r)

(z − T )−1 dz =
1

2iπ

∫
C(λ,r̃)

(z − T )−1 dz .

Thus,

P 2
λ =

1

(2iπ)2

∫
z∈C(λ,r)

∫
w∈C(λ,r̃)

RT (z)RT (w) dw dz ,

and, by the resolvent formula and the choice of r and r̃,

P 2
λ =

1

(2iπ)2

∫
w∈C(λ,r̃)

∫
z∈C(λ,r)

RT (z)−RT (w)

z − w
dz dw .

Thus,

P 2
λ =

1

(2iπ)2

∫
z∈C(λ,r)

∫
w∈C(λ,r̃)

RT (z)

z − w
dw dz =

2iπ

(2iπ)2

∫
w∈C(λ,r)

RT (z) dz = Pλ .

�
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Lemma 3.30. Let us consider an unbounded closed operator (T,Dom(T )) and λ an isolated
element of sp(T ). Then we have either 1 ∈ sp(P ∗λ ) or 1 ∈ sp(Pλ). In any case, we have Pλ 6= 0.

Proof. Before starting the proof, let us observe that λ ∈ sp(T ) iff λ ∈ sp(T ∗).
We have just to consider the following cases:

i. T − λ is injective with closed range. We have ker(T ∗ − λ) 6= {0} and we consider
0 6= u ∈ ker(T ∗ − λ). We have

P ∗λ =
1

2iπ

∫
Γλ

(ζ − T ∗)−1 dζ .

We apply Formula (3.2) to λ, Γλ and T ∗ to get that P ∗λu = u.
ii. or there exists a Weyl sequence (un) associated with λ: the sequence ((T − λ)un) goes

to zero and ‖un‖ = 1. Again with Formula (3.2), we have (Pλ − Id)un → 0, and thus
1 ∈ sp(Pλ) (by Lemma 3.12).

�

3.3.2. About the finite dimension. In this section, we discuss the case when H is finite dimen-
sional and T ∈ L(H).

Proposition 3.31. Let λ ∈ sp(T ). Then, λ is an eigenvalue. If Γλ is a contour enlacing only λ,
then Pλ is the projection on the algebraic eigenspace associated with λ.

Proof. It is well known that H =
k⊕
j=1

Hj where the Hj are the algebraic eigenspaces associated

with the distinct eigenvalues. They are stable under T . We can assume that H1 is associated
with λ. There exists a basis of H such that the matrix of T is block diagonal (T1, . . . , Tk) where
the Tj is the (upper triangular) matrix of THj . In this adapted basis, the matrix of Pλ is also
block diagonal (Pλ,1, . . . , Pλ,k). By holomorphy, we have Pλ,j = 0 when j 6= 1. By considering
the structure of the triangular matrix of (T1 − z)−1, we see that Pλ,1 = Id. Therefore Pλ is the
projection on H1 and associated with the direct sum. �

Let us come back to the infinite dimensional situation.

Corollary 3.32. If λ ∈ sp(T ) is isolated with finite algebraic multiplicity, then it is an eigen-
value.

Proof. The projection P = Pλ commutes with T . Thus we may write

T = T|ranP ⊕ T| kerP .

The spectrum of T is the union of the corresponding spectra and λ is still isolated in these
spectra.

By definition, we have

1

2iπ

∫
Γ

(ζ − T| kerP )−1 dζ = 0 .

Thus, λ does not belong to sp(T| kerP ). Therefore, λ belongs to the spectrum of the ”matrix”
T|ranP and it is an eigenvalue. �
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3.3.3. Fredholm operators: definition and first properties.

Definition 3.33. Let E and F two Banach spaces. An application T ∈ L(E,F ) is said to be
Fredholm when dim kerT < +∞, codim ranT < +∞. By definition, we call index of T the
following number

indT = dim ker(T )− codim ran (T ) .

The set of the Fredholm operators from E to F is denoted by Fred(E,F ).

Example 3.34. Consider H = `2(N) and, for u ∈ H, define Tu by (Tu)n = un+1 for all n ∈ N.
T is a Fredholm operator of index 1.

We will see in Lemma 5.1 that ranT is closed, but we can already give an elementary proof.

Proposition 3.35. Let T ∈ Fred(E,F ). Then ranT is closed.

Proof. Let us write E = kerT ⊕ Ẽ, with Ẽ closed. Then, T : Ẽ → F is injective. Let us also
write F = ranT ⊕ F̃ , with F̃ finite dimensional. Consider a basis (fj)1≤j≤n of F̃ .

Let us consider the application

S : Ẽ × Cn 3 (x, v) 7→ Tx+
n∑
j=1

vjfj ∈ F .

S is continuous and bijective between two Banach spaces. Thus, its inverse is continuous
and there exists C > 0 such that, for all f ∈ F ,

‖S−1f‖Ẽ×Cn ≤ C‖f‖F ,

and, for all (x, v) ∈ Ẽ × Cn,

‖x‖E + ‖v‖Cn ≤ C‖S(x, v)‖F .

Taking v = 0, we easily deduce that ranT is closed. �

In the case of an unbounded operator T : Dom (T ) ⊂ E → F , we say that T is Fredholm
when T is closed and T ∈ L((Dom (T ), ‖ · ‖T ), F ) is Fredholm.

Proposition 3.36. In the case when E and F have finite dimension, we have T ∈ Fred(E,F )
and indT = dimE − dimF .

Proposition 3.37. Let T ∈ L(E,F ). Then, T is Fredholm if and only if dim kerT < +∞ and
dim kerT ′ < +∞, and ran (T ) is closed. In this case, we have

indT = dim ker(T )− dim ker(T ′) .

Proof. By Propositions 2.19 and 2.22, we have ker(T ′) = ran (T )⊥ and dim ran (T )⊥ =
codim ran (T ) since the range of T is closed (see Proposition 3.35). �

The following consequence can actually be proved directly.

Proposition 3.38. Let (T,Dom(T )) be a closed operator on H. T is a Fredholm operator when
dim ker(T ) < +∞, dim ker(T ∗) < +∞, and ran (T ) is closed. The index of T is

indT = dim ker(T )− dim ker(T ∗) .

A remarkable property is the following.

Proposition 3.39. Let T ∈ Fred(E,F ) with index 0. Then, T is injective if and only if T is
surjective.
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3.3.4. Spectrum and Fredholm operators.

Definition 3.40. We define
i. essential spectrum: λ ∈ spess(T ) if T − λ is not Fredholm with index 0 from Dom (T ) into
H,

ii. discrete spectrum: λ ∈ spdis(T ) if λ is isolated in the spectrum of T , with finite algebraic
multiplicity and such that ran (T − λ) is closed.

Note that spess(T ) ⊂ sp(T ). We will illustrate these general definitions in the next sections,
especially in the case of self-adjoint operators when these sets are complementary.

4. COMPACT OPERATORS

4.1. Reminders. The proofs of the following reminded results can be found in [LB03, Chapitre
3] or in [Bre83, Chapter VI].

Definition 4.1. Let E and F be two Banach spaces. A linear map T is said to be compact when
T (BE(0, 1)) is relatively compact (or, equivalently, precompact) in F .

Proposition 4.2. The following assertions are equivalent.
i. T ∈ K(E,F ) is compact.

ii. For all B ⊂ E with B bounded, T (B) is relatively compact in F .
iii. For all bounded sequence (un) ∈ EN, (Tun) has a convergent subsequence.

Proposition 4.3. K(E,F ) is a closed subspace of L(E,F ).

Proposition 4.4. K(E,F ) is a left and right ideal of L(E,F ).

Proposition 4.5. If T ∈ L(E,F ) has finite rank, it is compact.

Proposition 4.6. If T ∈ K(E,F ) is compact, it transforms weakly convergent sequences into
convergent sequences. The converse is true when E is reflexive.

Proposition 4.7. T ∈ L(E,F ) is a compact operator if and only if T ′ ∈ L(F ′, E ′) is a compact
operator.

Proposition 4.8. Let T ∈ K(E) be a compact operator. Then IdE +K is Fredholm.

Proof. By the Riesz theorem, we have that dim ker(IdE + K) < +∞. By Proposition 4.7, we
have T ′ ∈ K(E ′) and thus dim ker(IdE′ + K ′) < +∞. Then, let us show that ran (IdE + K)
is closed. Let us consider a sequence (un) such that (un + Tun) converges to f . We let

dn = dist(un, ker(IdE +K)) ,

and we notice that there exists vn such that dn = ‖un − vn‖. Let us show that (dn) is bounded.
If it were not the case, up to a subsequence extraction, we could assume that (dn) tends to +∞.
We write

un + Tun = un − vn + T (un − vn) .

Letting

wn =
un − vn
dn

,

we would get (wn + Twn) converges to 0. By compactness of T , we can assume that (wn)
converges to some w ∈ ker(IdE +K). But, we have

dist(wn, ker(IdE +K)) = 1 ,

and we get a contradiction. Thus, (dn) is bounded and we can assume that (un−vn) converges,
and the closedness of the range follows.

We conclude with Proposition 3.37. �
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4.2. A compactness criterion. In order to prove that an operator is compact, the following
criterion of relative compactness in Lp(Ω) will be useful. The proof of this criterion is based on
the Ascoli theorem (see [Bre83, Section IV.5]).

Theorem 4.9 (Riesz-Fréchet-Kolmogorov). Let Ω ⊂ RN be an open set and F a bounded
subset of Lp(Ω), with p ∈ [1,+∞). We assume that

∀ε > 0, ∃ω ⊂⊂ Ω, ∀f ∈ F , ‖f‖Lp(Ω\ω) ≤ ε

and that

∀ε > 0,∀ω ⊂⊂ Ω, ∃δ > 0, δ < dist(ω, {Ω), ∀|h| ≤ δ, ∀f ∈ F , ‖τhf‖Lp(ω) ≤ ε ,

where τhf(x) = f(x+ h)− f(x). Then, F is relatively compact in Lp(Ω).

How to get the control of the translations in practice? By using a density argument and the
Taylor formula, we can get the following proposition (see [Bre83, Proposition IX.3]).

Proposition 4.10. Let p ∈ (1,+∞] and u ∈ Lp(Ω). Then u ∈ W1,p(Ω) if and only if there
exists C > 0 such that, for all ω ⊂⊂ Ω and h ∈ (0, dist(ω, {Ω)), we have

‖τhu‖Lp(ω) ≤ C|h| .
In this case, we can take C = ‖∇u‖Lp(Ω). If p = 1 and u ∈ W1,1(Ω), we still have

‖τhu‖L1(ω) ≤ ‖∇u‖L1(Ω)|h| .

Working slightly more, we can prove the following important theorem [Bre83, Theorem
IX.16].

Theorem 4.11. Let Ω be a bounded open subset of Rd with C 1 boundary. Let p ∈ [1,+∞].
The injection W1,p(Ω) in Lp(Ω) is compact.

Exercise 4.12. Consider the operator L = −∆ with domain H2(Rd) and take λ ∈ R−.
i. Show that λ ∈ ρ(L ).

ii. Consider then a function V ∈ C∞(Rd,C) such that∇V is bounded and lim|x|→+∞ V (x) =
0. Prove that V (L − λ)−1 : L2(Rd)→ L2(Rd) is compact.

Exercise 4.13. Consider

B1(R) = {ψ ∈ H1(R) : xψ ∈ L2(R)} ⊂ L2(R) .

Prove that the injection of B1(R) in L2(R) is a compact operator.

Actually, there is a direct proof that the injection of H1
0(Ω) in L2(Ω) is compact (for any Ω).

Lemma 4.14. Let Ω be an open set in Rd. For all u ∈ H1
0(Ω), consider its extension by zero

outside Ω, denoted by u. Then u ∈ H1
0(Rd) and ‖u‖H1(Rd) = ‖u‖H1(Ω).

Proof. Clearly, u ∈ L2(Rd) and ‖u‖L2(Rd) = ‖u‖L2(Ω). We know that, by definition, C∞0 (Ω) is
dense in H1

0(Ω). Consider a sequence (un)n∈N ⊂ C∞0 (Ω) converging to u in H1-norm. For all
n ∈ N, we have un ∈ C∞0 (Rd). For all n, p ∈ N, we have

‖un − up‖H1(Ω) = ‖un − up‖H1(Rd) .

Thus, (un) is a Cauchy sequence in H1(Rd). We deduce that (un) converges in H1(Rd) to some
v ∈ H1(Rd). We have v = u and the equality of the norms. �

Theorem 4.15 (Kato-Rellich). Let Ω be an open set in Rd. The injection of H1
0(Ω) in L2(Ω) is

compact.
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Proof. Let us prove that, if (un)n∈N weakly converges to u in H1
0(Ω), it strongly converges to u

in L2(Ω). The sequence (un)n∈N is bounded in H1
0(Ω). Let ε > 0.

For all n ∈ N, we let fn = ûn and we define f = û. By the Parseval formula, it is sufficient
to show that fn converges to f in L2(Rd).

We notice that, for all ξ ∈ Rd,

fn(ξ) =

∫
Ω

un(x)e−ix·ξ dx ,

so that
|fn(ξ)| ≤ |Ω|

1
2‖un‖L2(Ω) ≤ C .

We recall that (un)n∈N weakly converges to u in H1
0(Ω) and, in particular, for all ϕ ∈ L2(Ω),∫

Ω

unϕ dx→
∫

Ω

uϕ dx .

We choose ϕ(x) = eix·ξ and thus, for all ξ ∈ Rd, fn(ξ)→ f(ξ).
Moreover, we have

‖un‖2
H1(Ω) = ‖un‖2

H1(Rd) =

∫
Rd
〈ξ〉2|fn(ξ)|2 dξ .

In particular, there exists R > 0 such that, for all n ∈ N,∫
|ξ|>R

|fn(ξ)|2 dξ ≤ ε .

Up to changing R, we also have ∫
|ξ|>R

|f(ξ)|2 dξ ≤ ε .

Let us now write

‖fn − f‖2
L2(Rd) =

∫
|x|≤R

|fn(ξ)− f(ξ)|2 dξ +

∫
|x|>R

|fn(ξ)− f(ξ)|2 dξ .

We deal with the first integral by using the dominated convergence theorem (the sequence (fn)
is uniformly bounded). �

4.3. Operators with compact resolvent. In practice, we meet unbounded and closed opera-
tors. To describe the spectrum of such operators, we can consider their resolvents (which are
bounded) and prove, in good situations, that they are compact. The next propositions explain
that it is sufficient to prove that the injection of the domain in the ambiant Hilbert space is
compact.

Proposition 4.16. Let (T,Dom (T )) be a closed operator and z0 ∈ ρ(T ). If (T − z0)−1 is
compact, then, for all z ∈ ρ(T ), (T − z)−1 is compact.

Proof. It follows from the resolvent formula (Proposition 3.16) and from the fact that the alge-
bra of compact operators is an ideal of L(H). �

Let us provide a useful criterion for the compactness of a resolvent.

Proposition 4.17. A closed operator (T,Dom (T )) has compact resolvent if and only if the
injection (Dom (T ), ‖ · ‖T ) ↪→ H is compact.
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Proof. Assume that the injection is compact. Thanks to the closed graph theorem, for z /∈
sp(T ), (T − z)−1 : (H, ‖ · ‖H) → (Dom (T ), ‖ · ‖T ) is bounded. The conclusion follows since
the compact operators form an ideal in the algebra of bounded operators.

Conversely, assume that the resolvent is compact. Take z0 ∈ ρ(T ) and consider

{u ∈ Dom (T ) : ‖u‖+ ‖Tu‖ ≤ 1} ⊂ {u ∈ Dom (T ) : ‖u‖+ ‖(T − z0)u‖ ≤ 1 + |z0|} ,
and then

{u ∈ Dom (T ) : ‖u‖+ ‖(T − z0)u‖ ≤ 1 + |z0|} ⊂ (T − z0)−1(B(0, 1 + |z0|)) .
�

Proposition 4.18. Consider two Hilbert spaces V and H such that V ⊂ H with continuous
injection and with V dense in H. Assume that Q is a continuous, coercive and Hermitian
sesquilinear form on V and let T be the self-adjoint operator associated with Q. Let us denote
by ‖ · ‖Q the norm induced by Q, i.e., ‖u‖Q =

√
Q(u, u), and by ‖ · ‖T the graph norm on

Dom (T ).
If (Dom (Q), ‖ · ‖Q) ↪→ H is compact then T has compact resolvent.

Proof. It is sufficient to notice that, by the Cauchy-Schwarz inequality, (Dom (T ), ‖ · ‖T ) →
(Dom (Q), ‖ · ‖Q) is bounded. �

Remark 4.19. The converse is true. See Exercise 6.5.

Exercise 4.20. Let Ω ⊂ Rd be a bounded open set. Prove that the Dirichlet Laplacian on Ω has
compact resolvent.

Exercise 4.21. Prove that the harmonic oscillator defined in Section 2.5.3 has compact resol-
vent.

5. FREDHOLM THEORY

In this section, we follow [Zwo12, Appendix D].

5.1. Grushin formalism. In this section, we consider two Banach spaces X1 and X2.

Lemma 5.1. Let T ∈ L(X1, X2) be a Fredholm operator. We write X1 = ker(T ) ⊕ X̃1 (with
X̃1 a closed subspace) and X2 = ran (T )⊕ X̃2.

We let n+ = dim ker(T ) and n− = codim ran (T ) = dim X̃2. We introduce (kj)1≤j≤n+ a
basis of ker(T ) and (k′j)1≤j≤n− a basis of X̃2. We let

M =

(
T R−
R+ 0

)
,

where R− : Cn− → X2 is defined by R−α =
∑n−

j=1 αjk
′
j and R+ : X1 → Cn+ is defined

by R+(u) = (k∗j (u))1≤j≤n+ . Then, M : X1 × Cn− → X2 × Cn+ is bijective (with bounded
inverse) and the range of T is closed.

Proof. Let us consider (f, d) ∈ X2×Cn+ and look for (e, c) ∈ X1×Cn− such thatM
(
e
c

)
=(

f
d

)
. This is equivalent to

Te = f −R−c , R+e = d ,

f can be uniquely written as f = g + f0 with g ∈ ranT and f0 ∈ X̃2. Thus, we must
choose for c the coordinates of f0 in the basis (k′j)1≤j≤n− . Now, we can write e = k + e0 with
k ∈ kerT and e0 ∈ X̃1. The constraint R+e = d means that the coordinates of k in the basis
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(kj)1≤j≤n+ are d. Then, we are reduced to solve Te0 = f − R−c, but T induces a bijection
from X̃1 → ranT . Therefore, e0 is uniquely determined.

To see that the range of T is closed, we write ran (T ) = TX̃1 =
(
T R−

)(X̃1

0

)
.

�

Lemma 5.2. Let T ∈ L(X1, X2) and consider the operator matrix(
T R−
R+ 0

)
,

with R− : Cn− → X2 and R+ : X1 → Cn+ bounded. Assume thatM is bijective. We denote
by E its (bounded) inverse:

E =

(
E E+

E− E0

)
.

Then, T is a Fredholm operator and we have indT = ind (E0) = n+ − n− and T is bijective
if and only if E0 is bijective.

Proof. We write that E is the inverse on the right:

TE +R−E− = Id

R+E+ = Id

TE+ +R−E0 = 0

R+E = 0

and on the left:

ET + E+R+ = Id

E−R− = Id

E−T + E0R+ = 0

ER− = 0 .

From this, we get that R+ and E− are surjective and that R− and E+ are injective. By elemen-
tary considerations, we see that if T is bijective, E0 must be so. Conversely, suppose that E0 is
bijective. Then, consider

(5.1) E − E+E
−1
0 E− ,

and check that it is the inverse of T .
Let us finally discuss the result about the Fredholm property and the index. We can check

that the injective application E+ sends kerE0 into ker(T ) and that E+ : kerE0 → ker(T )
is a bijection. Let us consider a subspace H such that Cn− = ranE0 ⊕ H . We recall that
E− :→ Cn− is surjective and notice that E− : ran (T ) → ranE0. Then, consider the induced
map, denoted by E], X̃2 3 x 7→ ΠHE−(x) ∈ H . E] is surjective. E] is injective. Indeed, if
ΠHE−v = 0 with v ∈ X̃2, we have E−v ∈ ranE0 so that we can write E−v = E0w and we
deduce that v ∈ ran (T ) and thus v = 0.

We deduce that T is Fredholm and that

indT = indE0 = n+ − n− .

�
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5.2. On the spectrum of compact operators. In the following theorem, we recall some fun-
damental facts about compact operators. In particular, we will notice that the non-zero spectrum
of a compact operator is discrete.

Theorem 5.3 (Fredholm alternative). Let T ∈ L(E) be a compact operator. Then, we have

(i) If E is of infinite dimension, then 0 ∈ sp(T ).
(ii) For all z ∈ U = C \ {0}, T − z is a Fredholm operator of index 0.

(iii) ker(T − Id) = {0} if and only if range(T − Id) = E.
(iv) The elements of sp(T ) \ {0} are isolated with finite algebraic multiplicity and the only

possible accumulation point of the spectrum is 0.
(v) The non-zero spectrum of T is discrete.

Proof. The point (i) is a consequence of the fact that the set of compact operators forms a ideal
of bounded operators and from the Riesz theorem. Let us consider the point (ii). By Proposition
4.8, T − z is a Fredholm operator.

Then, by Lemma 5.2 applied to the operator T + P (with P = (z1 − z)Id and T = T − z1,
z1 ∈ U ), the application U 3 z 7→ ind (T − zId) is locally constant and thus constant since U
is connected. For z large enough, we know that T − zId is bijective and thus of index 0. From
this, we deduce the point (iii). Let us now prove the point (iv). Let us introduce

V := {z ∈ U : ∃r > 0 : D(z, r) ⊂ sp(T )} .

V is open by definition. Let us prove that is closed in U . Let us consider a sequence V 3
zn → z∞ ∈ U . We apply again Lemma 5.2 (with P = (z − z∞)Id and T = T − z∞). In
a neighborhood of z∞, T − z is not bijective if and only if detE0(z) = 0. But detE0 is
holomorphic in a neighborhood of z∞. Therefore, its zeros are isolated unless detE0 = 0. By
definition z∞, we must have detE0 = 0 in a neighborhood of z∞. Thus z∞ ∈ V . We deduce
that V = U or V = ∅ and we get that V = ∅. Now let us consider z1 ∈ sp(T ) \ {0}. Then, in
a neighborhood of z1, T − z is not bijective if and only if detE0(z) = 0. Since V = ∅, detE0

is not zero near z1 and thus (by holomorphy), its zeros are isolated. Finally, we recall (5.1) and
thus we have, near each point of the spectrum in U ,

(T − z)−1 = E(z)− E+(z)E−1
0 (z)E−(z) ,

and we deduce that the resolvent is meromorphic in U . The operator coefficients of the poles
are finite rank operators and we deduce the result about the multiplicity by using the Riesz
projections. �

Remark 5.4. The Reader is invited to compare our presentation to the one in [Bre83, Section
VI.3].

Proposition 5.5. Let (Dom (T ), T ) be a closed operator. Assume that the resolvent set is not
empty and that the resolvent is compact. Then, the spectrum of T is discrete.

Remark 5.6. Even if a closed operator has compact resolvent (with a non empty resolvent set),
the discrete spectrum might be finite (and even empty!).

5.3. On the index of Fredholm operators.

Proposition 5.7. Let T ∈ L(E,F ) be Fredholm, then so is T ′ ∈ L(F ′, E ′) and indT ′ =
−indT .

Proof. It is sufficient to use Lemmas 5.1 and 5.2. �
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Proposition 5.8. Let T ∈ L(E,F ). Then T is Fredholm if and only if there exist S ∈ L(F,E),
K1 ∈ K(E), and K2 ∈ K(F ) such that

ST = IdE +K1 , TS = IdF +K2 .

In this case, such an S is Fredholm.

Proof. If T is Fredholm, by using Lemma 5.1 and the proof of Lemma 5.2, we get the operators
S, K1 and K2 as required.

Conversely, we use Proposition 4.8 to see that dim kerT < +∞ and Propositions 5.7 and
4.7 to get dim kerT ′ < +∞. �

Corollary 5.9. Let T ∈ L(X1, X2) and U ∈ L(X2, X3) and be Fredholm operators. Then UT
is a Fredholm operator and

ind (UT ) = indU + indT .

Proof. The fact that UT is Fredholm comes from Proposition 5.8. For t ∈
[
0, π

2

]
, consider the

operator from X2 ×X1 to X3 ×X2,

Lt =

(
U 0
0 IdX2

)(
cos t IdX2 − sin t IdX2

sin t IdX2 cos t IdX2

)(
IdX2 0

0 T

)
.

This is a product of three Fredholm operators. Thus (Lt)t∈[0,π2 ] is a family of Fredholm oper-

ators. We have indL0 = indU + indT and indLπ
2

= ind (UT ). Since
[
0, π

2

]
3 t 7→ Lt is

continuous and the index locally constant, the conclusion follows.
�

Exercise 5.10. With the notations of Exercise 4.12, prove that λ /∈ spess(L + V ).

Corollary 5.11. Let T ∈ L(X1, X2) a Fredholm operator and K ∈ K(X1, X2). Then T + K
is Fredholm and ind (T +K) = indT .

Proof. It follows from Proposition 5.8 and Corollary 5.9. �

5.4. Toeplitz operators on the circle. The following presentation is inspired by a course given
by G. Lebeau at the École Polytechnique.

In this section, we consider H = L2(S1,C). If u ∈ H, we denote by (un)n∈Z the family of
the Fourier coefficients of u:

∀n ∈ Z , un =
1

2π

∫ 2π

0

u(θ)e−inθ dθ .

We define P : H→ H by, for all u ∈ H, (Pu)n = un if n ∈ N and (Pu)n = 0 if n < 0.
The range of P is called the Hardy space and denoted byH2.

Definition 5.12. Let a ∈ C 0(S1,C). We let T (a) = PMaP : H2 → H2, where Ma : H → H
is the multiplication by a. T (a) is the Toeplitz operator of symbol a.

Lemma 5.13. Let a ∈ C 0(S1,C). We have T (a) ∈ L(H2) and ‖T‖ ≤ ‖a‖∞.

Lemma 5.14. Let n ∈ Z. Then, [T (en), P ] is a finite rank operator (and thus it is compact).

Proposition 5.15. Let a ∈ C 0(S1,C). Then, [Ma, P ] is a compact operator.

Proof. By the Fejér theorem, a can be approximated by trigonometric polynomials in ‖ · ‖∞-
norm. �

Proposition 5.16. Let a, b ∈ C 0(S1,C). Then, there exists K ∈ K(H2) such that

T (a)T (b) = T (ab) +K .
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Proof. It is sufficient to use Proposition 5.15. �

Proposition 5.17. Let a ∈ C 0(S1,C). Assume that a does not vanish. Then, T (a) is a Fredholm
operator.

Proof. It is a consequence of Proposition 5.16 with b = a−1. �

Lemma 5.18. Let a ∈ C 0(S1,C). Assume that a vanishes on a non-empty open set. Then,
T (a) is not a Fredholm operator.

Proof. Let us consider a closed bounded interval [γ1, γ2] ⊂ [0, 2π] with γ1 < γ2 and on which
a is zero. If α ∈ R and if ρα is the translation by α defined by ραu(θ) = u(θ − α), we have
[ρα, P ] = 0. We choose α = γ2 − γ1. Then, there exists n ∈ N such that (ραMa)

n = 0.
By using commutators (see Proposition 5.15), we see that (ραT (a))n is compact. If T (a)

were Fredholm so would be (ραT (a))n (see Proposition 5.9) and there would exist S ∈ L(H2)
and K ∈ K(H2) (see Proposition 5.8) such that

S(ραT (a))n = IdH2 +K ,

and thus IdH2 would be compact. This would be a contradiction. Therefore T (a) is not Fred-
holm.

�

Proposition 5.19. Let a ∈ C 0(S1,C). Assume that there exists θ0 ∈ S1 such that a(θ0) = 0.
Then, T (a) is not a Fredholm operator.

Proof. For all ε > 0, there exists ã ∈ C 0(S1,C) such that ‖a − ã‖∞ ≤ ε and ã vanishes in a
neighborhood of θ0. If a were Fredholm, so would be ã by Lemma 5.2. With Lemma 5.18, this
would be a contradiction. �

Proposition 5.20. Let a ∈ C 1(S1,C). Assume that a does not vanish. We can write a(θ) =
r(θ)eiα(θ), with r > 0, α of class C 1. Then

indT (a) = indT (eiα) = k :=
α(2π)− α(0)

2π
=

1

2iπ

∫ 2π

0

a′

a
dθ .

Proof. Let us consider the following continuous family (at)t∈[0,1]:

at(θ) = ((1− t)r(θ) + t)eiα(θ) .

For all t ∈ [0, 1], the function at does not vanish. We see that (T (at))t∈[0,1] is a continuous
family of Fredholm operators. The index being preserved by perturbation, we get the first
equality. For the second one, we consider

ft(θ) = e(1−t)iα(θ)+iktθ = eiα(θ)+it
∫ θ
0 (k−α′(u)) du .

It defines a continuous 2π-periodic function. We get

indT (eiα) = indT (eik·) = k .

�

6. SPECTRUM OF SELF-ADJOINT OPERATORS

6.1. Compact normal operators.

Lemma 6.1. Let T ∈ T (H) be a normal operator.
i. If V ⊂ H is a subspace such that T (V ) ⊂ V , then T ∗(V ⊥) ⊂ V ⊥.

ii. We have ker(T ) = ker(T ∗).
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Proof. Assume that V is a subspace such that T (V ) ⊂ V and take u ∈ V ⊥ and v ∈ V . We
have

〈T ∗u, v〉 = 〈u, Tv〉 = 0 .

For the second point, note that, for all x ∈ H,

‖Tx‖2 = 〈T ∗Tx, x〉 = 〈TT ∗x, x〉 = ‖T ∗x‖2 .

�

Theorem 6.2. Assume that H is infinite dimensional. Let us consider T ∈ L(H) be a compact
normal operator. Then, its non zero spectrum is discrete and 0 belongs to the spectrum. Let
us consider the sequence of the distinct non zero eigenvalues (λj)1≤j≤k (with k being possibly
+∞) and let λ0 = 0. Then, we have the Hilbertian decompostion

H =
k⊕
j=0

ker(T − λj) ,

and

T =
k∑
j=0

λjPj ,

where Pj is the orthogonal projection on ker(T − λj).

Proof. If λ, µ ∈ sp(T ) \ {0}, then the corresponding eigenspaces are orthogonal. Indeed, if
u ∈ ker(T − λ) and v ∈ ker(T − µ), then, with Lemma 6.1,

0 = 〈(T − λ)u, v〉 = 〈u, (T ∗ − λ)v〉 = (µ− λ)〈u, v〉 .

We consider the Hilbertian sum

V =
k⊕
j=1

ker(T − λj) .

V is stable under T so that, V ⊥ is stable under T ∗. Thus, we can consider T ∗|V ⊥ ∈ L(V ⊥). It
is a compact normal operator on V ⊥. Its non zero spectrum does not exist. Therefore T ∗|V ⊥ ∈
L(V ⊥) is a normal operator with zero spectrum and T ∗|V ⊥ = 0. Thus V ⊥ ⊂ kerT ∗ = ker(T )

and then V ⊥ = kerT .
Let us deal with the case k = +∞. For u ∈ H, we write

u =
+∞∑
j=0

uj ,

so that, for all N ≥ 0 and u ∈ H,∥∥∥∥∥(T −
N∑
j=0

λjPj)u

∥∥∥∥∥
2

=
+∞∑

j=N+1

λ2
j‖Pju‖2 ≤ λ2

N+1‖u‖2 .

�

Proposition 6.3 (Self-adjoint operators with compact resolvent). Assume that H is infinite di-
mensional. Let us consider a self-adjoint operator T with compact resolvent. Then, its spec-
trum is real, discrete and can be written as a sequence tending to +∞ in absolute value.

35



Proof. We notice that the resolvent set is not empty (it contains i) since T is self-adjoint. More-
over, the spectrum is real. We can use Proposition 5.5 to see that the spectrum of T is discrete.
The question is to know if the sequence of the eigenvalues of T tends to +∞, or, equivalently,
if 0 is an accumulation point in the spectrum of the normal operator (T + i)−1. If it is not the
case, by using the Hilbert space decomposition, we see that the resolvent has finite rank and
thus Dom (T ) is finite dimensional and then Dom (T ) = H. This is not possible if H is infinite
dimensional. �

Exercise 6.4. Let Ω ⊂ Rd be a bounded open set.
i. Prove that the spectrum of the Dirichlet (resp. Neumann) Laplacian on Ω is real, discrete

and can be written as a sequence tending to +∞.
ii. If d = 1 and Ω = (0, 1), exhibit a Hilbertian basis of L2(Ω) made of functions in H1

0(Ω).

Exercise 6.5. Prove the statement in Remark 4.19.

6.2. About the harmonic oscillator. Let us discuss the properties of a very important opera-
tor.

6.2.1. Definition of the harmonic oscillator and domain considerations. Let us consider the
operator

H0 = (C∞0 (R),−∂2
x + x2) .

This operator is essentially self-adjoint as we have seen in Example 2.61. Let us denote by H
its closure.

We have

Dom (H) = Dom (H∗0) = {ψ ∈ L2(R) : (−∂2
x + x2)ψ ∈ L2(R)} .

By using the results of Section 2.5.3, we also see that H is the operator associated with the
sesquilinear form defined by

∀ϕ, ψ ∈ B1(R) , Q(ϕ, ψ) =

∫
R

(
ϕ′ψ′ + x2ϕψ

)
dx .

We can prove the following separation property.

Proposition 6.6. We have

Dom (H) = {ψ ∈ H2(R) : x2ψ ∈ L2(R)} .

Proof. The proof is an illustration of the difference quotient method (see [Bre83, Section
IX.6]).

Let ψ ∈ Dom (H). It is sufficient to prove that ψ′′ ∈ L2(R). There exists f ∈ L2(R) such
that

∀ϕ ∈ C∞0 (R), 〈∂xψ, ∂xϕ〉+ 〈xψ, xϕ〉 = 〈f, ϕ〉 ,
where the bracket is now the L2-bracket. Since ψ ∈ B1(R) and C∞0 (R) is dense in B1(R), we
can extend this equality and get

∀ϕ ∈ B1(R), 〈∂xψ, ∂xϕ〉+ 〈xψ, xϕ〉 = 〈f, ϕ〉 .
Let us define the difference quotient

Qhϕ(x) =
ϕ(x+ h)− ϕ(x)

h
, x ∈ R, h 6= 0 .

If ϕ ∈ B1(R), then Qhϕ ∈ B1(R). We get

∀ϕ ∈ B1(R), 〈∂xψ, ∂xQhϕ〉+ 〈xψ, xQhϕ〉 = 〈f,Qhϕ〉 .
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It follows that
〈∂xψ, ∂xQhϕ〉 = −〈∂xQ−hψ, ∂xϕ〉

and
〈xψ, xQhϕ〉 = −〈xQ−hψ, xϕ〉 − 〈ψ(x− h), xϕ〉 − 〈xψ, ϕ(x+ h)〉 .

We find, for all ϕ ∈ B1(R) and h 6= 0,

〈∂xQ−hψ, ∂xϕ〉+ 〈xQ−hψ, xϕ〉 = −〈f,Qhϕ〉 − 〈ψ(x− h), xϕ〉 − 〈xψ, ϕ(x+ h)〉 .

Applying this equality to ϕ = Q−hψ, we get

〈∂xQ−hψ, ∂xQ−hψ〉+ 〈xQ−hψ, xQ−hψ〉
= −〈f,QhQ−hψ〉 − 〈ψ(x− h), xQ−hψ〉 − 〈xψ,Q−hψ(x+ h)〉.

Then we notice that

|〈f,QhQ−hψ〉| ≤ ‖f‖L2(R)‖QhQ−hψ‖L2(R)

≤ ‖f‖L2(R)‖∂xQ−hψ‖L2(R)

≤ 1

2

(
‖f‖2

L2(R) + ‖∂xQ−hψ‖2
L2(R)

)
,

where we have used Proposition 4.10. We can deal with the other terms in the same way and
thus get

‖∂xQ−hψ‖2
L2(R) + ‖xQ−hψ‖2

L2(R)

≤ 1

2

(
‖f‖2

L2(R) + ‖∂xQ−hψ‖2
L2(R) + ‖ψ‖2

L2(R) + ‖xQ−hψ‖2
L2(R) + ‖ψ‖2

B1(R) + |h|‖ψ‖2
H1(R)

)
.

We deduce that

‖Q−h∂xψ‖2
L2(R) + ‖xQ−hψ‖2

L2(R) ≤ ‖f‖2
L2(R) + ‖ψ‖2

L2(R) + ‖ψ‖2
B1(R) + |h|‖ψ‖2

H1(R) .

We may again use Proposition 4.10 and we conclude that ∂xψ ∈ H1(R) and xψ ∈ H1(R).
�

6.2.2. Spectrum of the harmonic oscillator. We have seen in Exercise 4.21 thatH has compact
resolvent. Actually, one could also directly use Propositions 6.6 and 4.17.

Thus, the spectrum is real, discrete and it is a non-decreasing sequence (λn)n≥1 tending to
+∞ (we repeat the eigenvalue according to its multiplicity). We would like to compute these
eigenvalues.

Let us consider the following differential operators (acting on S (R))

a =
1√
2

(∂x + x) , c =
1√
2

(−∂x + x) .

We have
2ca = −∂2

x + x2 − 1 , [a, c] = 1 .

Lemma 6.7. For all ϕ, ψ ∈ S (R), we have

〈aϕ, ψ〉L2(R) = 〈ϕ, cψ〉L2(R) .

Lemma 6.8. For all n ∈ N \ {0},

acn = ncn−1 + cna .

Proposition 6.9. For all n ≥ 1, we have λn = 2n−1. In particular, the eigenvalues are simple.
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Proof. We let g0(x) = e−x
2/2. We check that ag = 0. In particular, we have 1 ∈ sp(H).

For n ∈ N, we let gn = cng0. By induction, we see that gn = Hng0 whereHn is a polynomial
of degree n. In particular, the functions gn are in the domain of the harmonic oscillator.

Let us notice that
cacn = ncn + cn+1a .

We get that
Hgn = (2n+ 1)gn .

In particular, {2n+ 1 , n ∈ N} ⊂ sp(H).
Let us check that (gn)n∈N is an orthogonal family. Let n,m ∈ N with n < m. Let us consider

〈gn, gm〉L2(R) = 〈cng0, c
mg0〉L2(R) = 〈amcng0, g0〉L2(R) = 0 ,

where we used Lemmas 6.7 and 6.8, ag0 = 0, and an induction procedure.
Let us check that the family is total.Take f ∈ L2(R) such that, for all n ∈ N, 〈f, gn〉L2(R) = 0.

It follows that, for all n ∈ N, ∫
R
xnf(x)e−x

2/2 dx = 0 .

For all ξ ∈ R, we let

F (ξ) =

∫
R
e−ixξf(x)e−x

2/2 dx .

The function F is well defined. Now, we notice that

F (ξ) =

∫
R

+∞∑
k=0

f(x)
(−ixξ)k

k!
e−x

2/2 dx .

We can apply the Fubini theorem to get

F (ξ) =
+∞∑
k=0

ξk
∫
R
f(x)

(−ix)k

k!
e−x

2/2 dx = 0 .

Therefore, the Fourier transform of fe−x2/2 is 0 and f = 0
If we denote by (fn)n∈N the L2-normalization of the family (gn)n∈N, (fn)n∈N is a Hilbertian

basis of L2(R) such thatHfn = (2n+ 1)fn.
Since the spectrum ofH is discrete, we only have to care about the eigenvalues. Let us solve
Hψ = λψ with λ ∈ R and ψ ∈ Dom (H). We write the following decomposition, converging
in L2(R),

ψ =
∑
n∈N

〈ψ, fn〉L2(R)fn .

For all ϕ ∈ S (R), we have
〈ψ, (H− λ)ϕ〉L2(R) = 0 .

Thus, by convergence in L2(R), for all ϕ ∈ S (R),∑
n∈N

〈ψ, fn〉L2(R)〈fn, (H− λ)ϕ〉L2(R) = 0 .

We choose ϕ = fk to see that∑
n∈N

〈ψ, fn〉L2(R)〈fn, ((2k + 1)− λ)fk〉L2(R) = 〈ψ, fk〉L2(R)((2k + 1)− λ) = 0 .

If, for all k ∈ N, 〈ψ, fk〉L2(R) = 0, then ψ = 0. Therefore, there exists k ∈ N such that
(2k + 1)− λ = 0.

We have proved that
sp(H) = {2n− 1 , n ∈ N \ {0}} .
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Let us now prove the statement about the multiplicity. Consider a solution ψ ∈ Dom (H) of
Hψ = (2n+ 1)ψ. For all k ∈ N, we get

〈ψ, fk〉L2(R)((2k + 1)− (2n+ 1)) = 0 .

Thus, for k 6= n, 〈ψ, fk〉L2(R) = 0. Thus, ψ is proportional to fn. �

6.3. Characterization of the different spectra.

6.3.1. Properties.

Lemma 6.10. If T is self-adjoint, we have the equivalence: λ ∈ sp(T ) if and only if there exists
a sequence (un) ∈ Dom (T ) such that ‖un‖H = 1, and (T − λ)un −→

n−→+∞
0 in H.

Proof. Let us notice that if there exists a sequence (un) ∈ Dom (T ) such that ‖un‖H = 1, (un)
and (T − λ)un →

n→+∞
0 then λ ∈ sp(T ) (see Lemma 3.12).

If λ /∈ R, then since T is self-adjoint, T − λ is invertible (with bounded inverse because T
is closed). Now, for λ ∈ R, if there is no sequence (un) ⊂ Dom (T ) such that ‖un‖H = 1, (un)
and (T − λ)un −→

n→+∞
0, then we can find c > 0 such that

‖(T − λ)u‖ ≥ c‖u‖, ∀u ∈ Dom (T ) .

Therefore T −λ is injective with closed range. But, since T −λ = (T −λ)∗, the range of T −λ
is dense in H and so T − λ is surjective.

�

Lemma 6.11 (Weyl criterion). If T is self-adjoint, then λ ∈ spess(T ) if and only if there exists
a sequence (un) ⊂ Dom (T ) such that ‖un‖H = 1, (un) has no subsequence converging in H,
and (T − λ)un →

n−→+∞
0 in H.

Proof. If λ ∈ sp(T ) \ spess(T ), the operator T − λ is Fredholm. Let (un) ⊂ Dom (T ) such that
‖un‖H = 1 and limn→+∞(T − λ)un = 0.

The operator T − λ : ker(T − λ)⊥ → ran (T − λ) is injective with closed range. Therefore,
there exists c > 0 such that, for all w ∈ ker(T − λ)⊥, ‖(T − λ)w‖ ≥ c‖w‖. We write
un = vn + wn, with vn ∈ ker(T − λ) and wn ∈ ker(T − λ)⊥. We have

‖(T − λ)un‖2 = ‖(T − λ)vn‖2 + ‖(T − λ)wn‖2 ,

and we deduce that wn → 0. Moreover, (vn) is bounded in a finite dimensional space, thus
there exists a converging subsequence of (un).

Conversely, let us assume that λ ∈ sp(T ) and that any sequence (un) ⊂ Dom (T ) such that
‖un‖H = 1 and limn→+∞(T − λ)un = 0 has a converging subsequence.

The kernel ker(T − λ) is finite dimensional. Indeed, if it were of infinite dimension, one
could construct a infinite orthonormal family (un) in ker(T −λ) and in particular we would get
un ⇀ 0, which is a contradiction. Let us now check that

∃c > 0 ,∀u ∈ ker(T − λ)⊥ , ‖(T − λ)u‖ ≥ c‖u‖ .
If not, there exists a normalized sequence (un) in ker(T − λ)⊥ such that ‖(T − λ)un‖ → 0.
By assumption, we may assume that (un) converges towards some u∞ that necessarily belongs
to ker(T − λ)⊥. But since T − λ is closed (it is self-adjoint), we have (T − λ)u∞ = 0 so that
u∞ = 0, and this is a contradiction.

We deduce that the range of T − λ is closed. �

The following lemma is a slight improvement of Lemma 6.11.
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Lemma 6.12. Assume that T is self-adjoint. Then λ ∈ spess(T ) if and only if there exists a
sequence (un) ⊂ Dom (T ) such that ‖un‖H = 1, (un) converges weakly to 0, and

lim
n→+∞

(T − λ)un = 0 , in H .

Proof. Let λ ∈ spess(T ). If dim ker(T − λ Id) = +∞, then (by considering a Hilbertian basis
of the kernel) we can easily construct a orthonormal sequence (vn) weakly converging to 0 such
that (T − λ)vn = 0.

Therefore, we consider the case when dim ker(T − λ) < +∞. By Lemma 6.11, there exists
a sequence (un) ⊂ Dom (T ) such that ‖un‖H = 1 with no converging subsequence such that
we have limn→+∞(T − λ)un = 0 in H.

We can write

un = ũn + kn , with ũn ∈ ker(T − λ)⊥ , kn ∈ ker(T − λ) .

We have (T − λ)ũn →
n→+∞

0 and we may assume (up to a subsequence extraction) that (kn)

converges to k. Since (un) has no converging subsequence, (ũn) does not converge, and so it
does not go to 0. Therefore, up to another extraction, we may assume that

∃ε0 > 0 ,∀n ∈ N , ‖ũn‖ ≥ ε0 .

Now set ûn = ũn
‖ũn‖ ; then (T − λ)ûn →

n−→+∞
0. Up to another extraction, we may assume that

(ûn) converges weakly to some û ∈ ker(T − λ)⊥. We have

∀v ∈ Dom (T ) , 〈û, (T − λ)v〉H = 0 .

We deduce that û ∈ Dom (T ∗) = Dom (T ) and that (T − λ)û = 0. Thus û = 0.
In any case, we have found a sequence with the required property. For the converse, it is just

an application of Lemma 6.11. �

Definition 6.13. We call Fredholm spectrum of T the complement of the essential spectrum of
T in the spectrum of T .

Lemma 6.14. Let T be self-adjoint. We have the following properties.
i. If λ ∈ sp(T ) is not isolated, then λ ∈ spess(T ).

ii. The Fredholm spectrum is formed by isolated eigenvalues of finite multiplicity.
iii. If λ ∈ sp(T ) is isolated, then it is an eigenvalue.
iv. All isolated eigenvalues of finite multiplicity belong to the Fredholm spectrum.

In particular, the discrete spectrum coincides with the Fredholm spectrum.

Proof. Let us prove (i) and (ii). Let λ ∈ sp(T ) \ spess(T ).
There exists a Weyl sequence (un) of unit vectors such that (T −λ)un → 0. We may assume

that (un) converges to some u (of norm 1) and we get (T − λ)u = 0. The eigenvalue λ has
finite multiplicity. Let us prove that it is isolated. If this were not the case, then one could
consider a non-constant sequence λn tending to λ. Moreover, one could find a sequence (un)
of unit vectors such that

‖(T − λn)un‖ ≤
|λ− λn|

n
.

We may assume that (un) converges to some u ∈ Dom (T ) and thus one would get (T −λ)u =
0, and so

〈(T − λn)u, un〉 = (λ− λn)〈u, un〉 .
By the Cauchy-Schwarz inequality, 〈un, u〉 → 0 and we get u = 0, which is a contradiction.

40



Let us now prove (iii). Consider an isolated point λ ∈ sp(T ). By definition, this means that
there exists ε0 > 0 such that, for all µ 6= λ such that |µ− λ| ≤ ε0, we have µ /∈ sp(T ). For all
ε ∈ (0, ε0), we introduce

Pε =
1

2iπ

∫
Γε

(ζ − T )−1 dζ = P ,

where Γε is the circle of radius ε centered at λ.
Since T is closed (and using Riemannian sums), Pλ is valued in Dom (T ) and

(T − λ)P =
1

2iπ

∫
Γε

(T − λ)(ζ − T )−1 dζ =
1

2iπ

∫
Γε

(ζ − λ)(ζ − T )−1 dζ .

Now, we use the resolvent bound to get (as soon as ε0 is chosen small enough):

‖(T − ζ)−1‖ ≤ 1

|λ− ζ|
.

Thus, we infer that ‖(T − λ)P‖ ≤ ε for all ε ∈ (0, ε0). Therefore, P is valued in ker(T − λ).
It remains to apply Lemma 3.30.

Let us now consider (iv). Since λ is isolated, (iii) shows that it cannot belong to the spectrum
of the restriction T| ker(T−λ)⊥ . Thus, there exists c > 0 such that

∀u ∈ ker(T − λ)⊥ , ‖(T − λ)u‖ ≥ c‖u‖ .

We deduce that the range of T − λ is closed and that T − λ is Fredholm, since we have
dim ker(T − λ) < +∞. �

Finally, let us prove another useful property.

Lemma 6.15. Let T be self-adjoint. Consider λ ∈ spess(T ). Then, for all N ∈ N∗ and ε > 0,
there exists an orthonormal family (uεn)1≤n≤N such that, for all n ∈ {1, . . . , N},

‖(T − λ)uεn‖ ≤ ε .

Proof. If λ is isolated, then it is an eigenvalue of infinite multiplicity (see Lemma 6.14) and
the conclusion follows. Let ε ∈ (0, 1). If λ is not isolated, we may consider a sequence of
distinct numbers of the spectrum (λn)n∈N tending to λ and such that, for all j, k ∈ N, we
have |λj − λk| ≤ ε

2
. If N = 1, by the Weyl criterion, we get the existence of uε1 such that

‖(T − λ1)uε1‖ ≤ ε
2
. The conclusion follows for N = 1 since |λ − λ1| ≤ ε

2
. Let us now only

treat the case when N = 2. By the Weyl criterion, we can find uε1 and ũε2 of norm 1 such that

‖(T − λ1)uε1‖ ≤
ε

2
|λ1 − λ2| , ‖(T − λ2)ũε2‖ ≤

ε

2
|λ1 − λ2| .

Since T is self-adjoint and by computing 〈(T − λ1)uε1, ũ
ε
2〉, we find |〈uε1, ũε2〉| ≤ ε. Setting

uε2 = ũε2 − 〈ũε2, uε1〉uε1 ,

we have

‖(T − λ2)uε2‖ ≤
ε

2
|λ1 − λ2|+ ε

(
|λ1 − λ2|+

ε

2
|λ1 − λ2|

)
.

Moreover, ‖uε2‖ ≥
√

1− ε2. Up to changing ε, the conclusion follows for N = 2. We leave
the case N ≥ 3 to the reader. �
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6.3.2. Determining the essential spectrum: an example. As in Exercises 4.12 and 5.10, we
consider a function V ∈ C∞(Rd,R) such that ∇V is bounded and lim|x|→+∞ V (x) = 0.
We are interested in the essential spectrum of the operator L + V with domain H2(R). This
operator is self-adjoint. Therefore its spectrum is real. Moreover, with Exercise 5.10, we have
spess(L + V ) ⊂ [0,+∞).

Let us prove that spess(L + V ) = [0,+∞). Let us start by showing that 0 ∈ spess(L + V ).
For that purpose, we use Lemma 6.12. Let us consider χ ∈ C∞0 (Rd) such that ‖χ‖L2(Rd) = 1.
For n ∈ N, we consider χn(x) = n−

d
2χ(n−1x−ne1). The sequence (χn) is L2-normalized and

converges to 0 weakly. For n large enough, we have

‖(L + V )χn‖ = ‖L χn‖ = O(n−2) .

Let us now consider k ∈ R and the sequence χn,k = eik·χn. We have

‖(L + V − k2)χn,k‖ = ‖eik·(L + V − k2)χn + [L , eik·]χn‖ .

But,
e−ik·[L , eik·] = k2 − 2ik∇ ,

and we deduce that k2 ∈ spess(L + V ), for all k ∈ R.

6.4. Min-max principle.

6.4.1. Statement and proof. We now give a standard method to estimate the discrete spectrum
and the bottom of the essential spectrum of a self-adjoint operator T on an Hilbert space H. We
recall first the definition of the Rayleigh quotients of a self-adjoint operator T .

Definition 6.16. The Rayleigh quotients associated with the self-adjoint operator (semi-bounded
from below) T on H with domain Dom (T ) are defined for all positive natural number n by

µn(T ) = sup
ψ1,...,ψn−1

inf
u∈span (ψ1,...,ψn−1)⊥

u∈Dom (T ),u6=0

〈Tu, u〉H
〈u, u〉H

.

Remark 6.17. Note that, if T comes from a quadratic form Q via a representation theorem à
la Lax-Milgram, we can replace u ∈ Dom (T ) by u ∈ Dom (Q) and 〈Tu, u〉 by Q(u).

Lemma 6.18. If T is self-adjoint with non negative spectrum, then µ1(T ) ≥ 0.

Proof. Let us assume that µ1(T ) < 0. We define the sesquilinear form

Q(u, v) = 〈(T − µ1(T ))−1u, v〉

on H; Q is non-negative. Thus, the Cauchy-Schwarz inequality provides, for u, v ∈ H,

|〈(T − µ1(T ))−1u, v〉| ≤ 〈(T − µ1(T ))−1u, u〉
1
2 〈(T − µ1(T ))−1v, v〉

1
2 .

We take v = (T − µ1(T ))−1u and deduce for all u ∈ H,

‖(T − µ1(T ))−1u‖ ≤ ‖(T − µ1(T ))−1‖
1
2 〈(T − µ1(T ))−1u, u〉

1
2 ,

and thus, for all v ∈ Dom (T ),

‖v‖ ≤ ‖(T − µ1(T ))−1‖
1
2 〈v, (T − µ1(T ))v〉

1
2 .

By the definition of µ1(T ), there is a sequence (vn), ‖vn‖ = 1, such that 〈Tvn, vn〉 → µ1(T )
and we get a contradiction. �

The following statement gives the relation between Rayleigh quotients and eigenvalues.
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Theorem 6.19. Let T be a self-adjoint operator with domain Dom (T ). We assume that T
is semi-bounded from below. Then the Rayleigh quotients µn of T form a non-decreasing
sequence and one of the following holds

i. µn(T ) is the n-th eigenvalue counted with mutliplicity of T and T has only discrete spec-
trum in (−∞, µn(T )].

ii. µn(T ) is the bottom of the essential spectrum and, for all j ≥ n, µj(T ) = µn(T ).

Proof. Let us provide an elementary proof which does not use the spectral projections. First it
is easy to see that the sequence (µn) is non-decreasing. Then, we notice that

(6.1) a < µn =⇒ (−∞, a) ∩ spess(T ) = ∅ .
Indeed, if λ ∈ (−∞, a) were in the essential spectrum, by Lemma 6.15, for all N ≥ 1 and
ε > 0, we could find an orthonormal family (uj)j∈{1,...,N} such that ‖(T − λ)uj‖ ≤ ε√

N
. Then,

given n ≥ 1 and taking N ≥ n, for all (ψ1, . . . , ψn−1) ∈ H, there exists a non-zero u in the
intersection span (u1, . . . , uN) ∩ span (ψ1, . . . , ψn−1)⊥. We write u =

∑N
j=1 αjuj and notice

that

〈Tu, u〉H
〈u, u〉H

≤ λ+
‖(T − λ)u‖
‖u‖

≤ λ+

(
N∑
j=1

‖(T − λ)uj‖2

) 1
2

≤ λ+ ε ,

and thus µn ≤ λ + ε. For ε small enough, we get µn ≤ a, which is a contradiction. If γ is the
infimum of the essential spectrum (suppose that it is not empty), we have µn ≤ γ. Note also
that if µn = +∞ for some n, then the essential spectrum is empty. This implies the second
assertion.

It remains to prove the first assertion. Thus, we assume that µn < γ. By the same consid-
erations as above, if a < µn, the number of eigenvalues (with multiplicity) lying in (−∞, a)
is less than n − 1. Let us finally show that, if a ∈ (µn, γ), then the number of eigenvalues in
(−∞, a) is at least n. If not, the direct sum of eigenspaces associated with eigenvalues below
a would be spanned by ψ1, . . . , ψn−1 and

µn ≥ inf
u∈span (ψ1,...,ψn−1)⊥

u∈Dom (T ),u6=0

〈Tu, u〉H
〈u, u〉H

≥ a ,

where we have used Lemma 6.18 and the fact that sp(T|F ) ⊂ [a,+∞), with

F = span (ψ1, . . . , ψn−1)⊥ .

�

An often used consequence of this theorem (or of its proof) is the following proposition.

Proposition 6.20. Suppose that there exists a ∈ R with a < inf spess(T ) and an n-dimensional
space V ⊂ DomT such that

〈Tψ, ψ〉H ≤ a‖ψ‖2 , ∀ψ ∈ V ,

Then, the n-th eigenvalue exists and satisfies

λn(T ) ≤ a .

Exercise 6.21. Let Ω ⊂ Rd be an open bounded set. Prove that there exists c(Ω) > 0 such that,
for all ψ ∈ H1

0(Ω), ∫
Ω

|∇ψ|2 dx ≥ c(Ω)‖ψ‖2 .

What is the optimal c(Ω)? We will consider the Dirichlet Laplacian on Ω.
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Exercise 6.22. Consider the self-adjoint operator L associated with the quadratic form

∀ψ ∈ H1(R) , Q(ψ) =

∫
R
|ψ′|2 + V (x)|ψ|2 dx ,

where V ∈ C∞0 (R,R).

i. What is the essential spectrum?
ii. We assume that

∫
R V (x) dx < 0. Prove that the discrete spectrum is not empty.

7. EXAMPLES

7.1. Sturm-Liouville’s oscillation theorem. We consider the operator L = −∂2
x + V (x),

with V ∈ C∞([0, 1]), on [0, 1] and domain

Dom (L ) =
{
ψ ∈ H1

0((0, 1)) : (−∂2
x + V (x))ψ ∈ L2((0, 1))

}
.

L is a self-adjoint operator with compact resolvent. Therefore, we may consider the non-
decreasing sequence of its eigenvalues (λn)n≥1.

Lemma 7.1. The eigenvalues of L are simple.

Proof. It follows from the Cauchy-Lipschitz theorem. �

For all n ≥ 1, let us consider an L2-normalized eigenfunction un associated with λn. Notice
that 〈un, um〉 = 0 if n 6= m and that the zeros of un are simple and thus isolated.

Theorem 7.2. For all n ≥ 1, the function un admits exactly n− 1 zeros in (0, 1).

Proof. Let us denote by Zn the number of zeros of un in (0, 1).
Let us prove that Zn ≤ n−1. If the eigenfunction un admits at least n zeros in (0, 1), denoted

by z1, . . . , zn. We let z0 = 0 and zn+1 = 1. We define (un,j)j=0,...,n by un,j(x) = un(x) for
x ∈ [zj, zj+1] and un,j(x) = 0 elsewhere. It is clear that these functions belong to the form
domain of L and that they form an orthogonal family. By integrating by parts, we get

∀v ∈ span
j∈{0,...,n}

un,j, Q(v, v) ≤ λn‖v‖2
L2((0,1)) .

By the min-max principle, we get λn+1 ≤ λn and this contradicts the simplicity of the eigen-
values.

Let us now prove that Zn ≥ Zn−1 + 1. It is sufficient to show that if un−1 is zero in z0

and z1 (two consecutive zeros, for example un−1 is positive on (z0, z1)), then un vanishes in
(z0, z1). Indeed, this would imply that un vanishes at least Zn−1 + 1 times. For that purpose we
introduce W (f1, f2) = f ′1f2 − f1f

′
2 and compute

W (un−1, un)′ = (λn − λn−1)un−1un .

Assume that un does not vanish on (z0, z1). For instance un > 0 on (z0, z1). Then, we get
W (un−1, un)′ > 0. We have W (un−1, un)(z0) ≥ 0 and W (un−1, un)(z1) ≤ 0, and thus we get
a contradiction.

The conclusion follows easily. �

7.2. Weyl’s law in one dimension.
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7.2.1. Two examples.

Definition 7.3. If (L,Dom (L)) is a self-adjoint operator and E ∈ R, N (L, E) denotes the
number of eigenvalues of L below E.

LetHDir
h = h2D2

x be the Dirichlet Laplacian on (0, 1). Its domain is given by

Dom (HDir
h ) = H2(0, 1) ∩ H1

0(0, 1) ,

andHDir
h has compact resolvent. We can easily compute the eigenvalues:

λn
(
HDir
h

)
= h2n2π2 , n ∈ N \ {0} ,

so that, for E > 0,

N
(
HDir
h , E

)
∼
h→0

√
E

πh
=

1

2πh

∫
{(x,ξ)∈(0,1)×R: ξ2≤E}

dx dξ .

In the same way, we can explicitly compute the eigenvalues whenHh = h2D2
x + x2. We have

λn (Hh) = (2n− 1)h , n ∈ N \ {0} ,

so that, for E > 0,

N (Hh, E) ∼
h→0

E

2h
=

1

2πh

∫
{(x,ξ)∈R2: ξ2+x2≤E}

dx dξ .

From these examples, one could guess the more general formula

N (Hh, E) ∼
h→0

1

2πh

∫
{(x,ξ)∈R2: ξ2+V (x)≤E}

dx dξ =
1

πh

∫
R

√
(E − V )+ dx .

7.2.2. Statement in one dimension. We propose to prove the following version of the Weyl law
in dimension one. It generalizes the previous two asymptotic formulas. For a more general
presentation, one can read [RS, Vol. IV, Section XIII.15].

Proposition 7.4. Let V : R → R be a piecewise Lipschitzian function with a finite number of
discontinuities and which satisfies:

i. V → `±∞ when x→ ±∞ with `+∞ ≤ `−∞;
ii.
√

(`+∞ − V )+ belongs to L1(R).

Consider the operatorHh = h2D2
x + V (x) and assume that the function (0, 1) 3 h 7→ E(h) ∈

(−∞, `+∞) satisfies

i. for any h ∈ (0, 1), {x ∈ R : V (x) ≤ E(h)} = [xmin(E(h)), xmax(E(h))];
ii. h1/3(xmax(E(h))− xmin(E(h))) →

h→0
0;

iii. E(h) →
h→0

E0 ≤ `+∞.

Then

N(Hh, E(h)) ∼
h→0

1

πh

∫
R

√
(E0 − V )+ dx .
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7.2.3. Proof. The following lemma is a consequence of the definition of the Rayleigh quo-
tients.

Lemma 7.5 (Dirichlet-Neumann bracketing). Let (sj)j∈Z be a subdivision of R and consider
the operators (with Dirichlet or Neumann conditions on the points of the subdivision)

HDir/Neu
h =

⊕
j∈Z

HDir/Neu
h,j ,

where HDir/Neu
h,j is the Dir/Neu realization of h2D2

x + V (x) on (sj, sj+1). We have, in terms of
the domains of the quadratic forms,

Dom (QDir
h ) ⊂ Dom (Qh) ⊂ Dom (QNeu

h ) ,

and the Rayleigh quotients satisfy, for all n ≥ 1,

µn(HNeu
h ) ≤ µn(Hh) ≤ µn(HDir

h ) .

We can now start the proof of Proposition 7.4.
We consider a subdivision of the real axis (sj(h

α))j∈Z, which contains the discontinuities
of V , for which there exist c > 0, C > 0 such that, for all j ∈ Z and h > 0, chα ≤
sj+1(hα)− sj(hα) ≤ Chα, where α > 0 is to be determined. Denote

Jmin(hα) = min{j ∈ Z : sj(h
α) ≥ xmin(E(h))} ,

Jmax(hα) = max{j ∈ Z : sj(h
α) ≤ xmax(E(h))} .

For j ∈ Z we introduce the Dirichlet (resp. Neumann) realization on (sj(h
α), sj+1(hα)) of

h2D2
x + V (x) denoted byHDir

h,j (resp. HNeu
h,j ). The Dirichlet-Neumann bracketing implies that

Jmax(hα)∑
j=Jmin(hα)

N(HDir
h,j , E(h)) ≤ N(Hh, E(h)) ≤

Jmax(hα)+1∑
j=Jmin(hα)−1

N(HNeu
h,j , E(h)) .

Let us estimate N(HDir
h,j , E(h)). If QDir

h,j denotes the quadratic form ofHDir
h,j , we have

QDir
h,j (ψ) ≤

∫ sj+1(hα)

sj(hα)

h2|ψ′(x)|2 + Vj,sup,h|ψ(x)|2 dx, ∀ψ ∈ C∞0 ((sj(h
α), sj+1(hα))) ,

where
Vj,sup,h = sup

x∈(sj(hα),sj+1(hα))

V (x) .

We infer that

N(HDir
h,j , E(h)) ≥ #

{
n ≥ 1 : n ≤ 1

πh
(sj+1(hα)− sj(hα))

√
(E(h)− Vj,sup,h)+

}
,

so that

N(HDir
h,j , E(h)) ≥ 1

πh
(sj+1(hα)− sj(hα))

√
(E(h)− Vj,sup,h)+ − 1 ,

and thus
Jmax(hα)∑
j=Jmin(hα)

N(HDir
h,j , E(h)) ≥

1

πh

Jmax(hα)∑
j=Jmin(hα)

(sj+1(hα)− sj(hα))
√

(E(h)− Vj,sup,h)+ − (Jmax(hα)− Jmin(hα) + 1) .
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Let us consider the function
fh(x) =

√
(E(h)− V (x))+

and analyze∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

(sj+1(hα)− sj(hα))
√

(E(h)− Vj,sup,h)+ −
∫
R
fh(x) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣
+

∫ xmax(E(h))

sJmax (hα)

fh(x) dx+

∫ sJmin(hα)

xmin(E(h))

fh(x) dx

≤

∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣+ C̃hα .

Using the trivial inequality |√a+ −
√
b+| ≤

√
|a− b|, we get∣∣∣fh(x)−

√
(E(h)− Vj,sup,h)+

∣∣∣ ≤√|V (x)− Vj,sup,h| .

Since V is Lipschitzian on (sj(h
α), sj+1(hα)), we get:∣∣∣∣∣∣

Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣ ≤ (Jmax(hα)−Jmin(hα)+1)C̃hαhα/2 .

This leads to the optimal choice α = 2
3

and we obtain the lower bound

Jmax(h2/3)∑
j=Jmin(h2/3)

N(HDir
h,j , E(h)) ≥ 1

πh

(∫
R
fh(x) dx− C̃h(Jmax(h2/3)− Jmin(h2/3) + 1)

)
.

It follows that

N(Hh, E(h)) ≥ 1

πh

(∫
R
fh(x) dx− C̃h1/3(xmax(E(h))− xmin(E(h))− C̃h

)
.

Note that fh(x) ≤
√

(`+∞ − V (x))+, so that we can apply the dominated convergence theo-
rem. We can deal with the Neumann realizations in the same way.
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8. HILLE-YOSIDA’S THEOREM

For this section, the Reader might want to consult [Yos95, Chapter IX] or [Bre83, Chapter
VII].

8.1. Semi-groups.

Definition 8.1. Let E be a Banach space. A C 0-semigroup is family (Tt)t≥0 of bounded oper-
ators on E such that

i. for all s, t ≥ 0, TtTs = Tt+s,
ii. T0 = Id,

iii. for all x ∈ E, R+ 3 x 7→ Ttx is continuous.

Lemma 8.2. Let (Tt)t≥0 be a C 0-semigroup. Then, there exist M ≥ 0 and c ≥ 0 such that

∀t ≥ 0 , ‖Tt‖ ≤Mect .

Proof. For all t ≥ 0, we have

‖Tt‖ ≤ ‖T1‖btc sup
s∈[0,1]

‖Ts‖ .

Now, for all x ∈ E, the family (‖Tsx‖)s∈[0,1] is bounded (by continuity of the semi-group on
the compact [0, 1]). Since E is a Banach space, we can use the Banach-Steinhaus theorem to
deduce that (Ts)s∈[0,1] is bounded.

The conclusion follows with c = ln ‖T1‖ and M = sups∈[0,1] ‖Ts‖. �

Definition 8.3. Let (Tt)t≥0 be a C 0-semigroup. We let

Dom (A) =

{
x ∈ E : lim

t→0+
t−1(Tt − Id)x exists

}
,

and, for all x ∈ Dom (A), we let Ax = limt→0+ t
−1(Tt − Id)x. The operator A is called the

infinitesimal generator of the semigroup. Let us discuss some properties of A. In the following
the integrals can be understood in the Riemannian sense.

Proposition 8.4. Let (Tt)t≥0 be a C 0-semigroup and A its generator. Then,

(i) for all x ∈ E and t ≥ 0, lim
ε→0

1

ε

∫ t+ε

t

Tsx ds = Ttx,

(ii) for all x ∈ E and t ≥ 0,
∫ t

0
Tsx ds ∈ Dom (A) and A

∫ t
0
Tsx ds = (Tt − Id)x,

(iii) for all x ∈ Dom (A) and t ≥ 0, Ttx ∈ Dom (A) and t 7→ Ttx is of class C 1 and
d(Ttx)

dt
= ATtx = TtAx ,

(iv) for all x ∈ Dom (A), for all s, t ≥ 0, (Tt − Ts)x =
∫ t
s
ATτx dτ .

Proof. The point (i) follows from the continuity. From the point (ii), we write, for all ε > 0,

ε−1(Tε − Id)

∫ t

0

Tsx ds = ε−1

∫ t

0

Ts+εx ds− ε−1

∫ t

0

Tsx ds

and thus

ε−1(Tε − Id)

∫ t

0

Tsx ds =
1

ε

∫ t+ε

t

Tux du− 1

ε

∫ ε

0

Tux du .

Thus, we can take the limit ε → 0 and the equality follows. Let us consider (iii). Let ε > 0,
x ∈ Dom (A), and t ≥ 0. We have

1

ε
(Tε − Id)Ttx = Tt

(
1

ε
(Tε − Id)x

)
.
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The right-hand-side has a limit, when ε→ 0+, Tt(Ax) by definition of Dom (A) and continuity
of Tt. Thus, by definition of Dom (A), we get Ttx ∈ Dom (A) and ATtx = TtAx. We have to
check the derivability on the left at t > 0. We write

ε−1(Ttx− Tt−εx) = Tt−ε(ε
−1(Tεx− x)) = Tt−ε(Ax) + Tt−ε(ε

−1(Tεx− x)− Ax) .

Since t 7→ ‖Tt‖ is locally bounded (by Lemma 8.2), the conclusion follows. The point (iv)
follows from the point (iii). �

Proposition 8.5. Let (Tt)t≥0 be a C 0-semigroup and A its generator. Then, Dom (A) is dense
and A is closed.

Proof. For ε > 0, we let Rε = ε−1
∫ ε

0
Tsx ds. Let x ∈ E. We have Rεx ∈ Dom (A) and

limε→0Rεx = x. Thus, Dom (A) is dense.
Then, we consider (xn) ∈ Dom (A)N such that xn → x and Axn → y. For all t ≥ 0, we

have

(Tt − Id)xn =

∫ t

0

TsAxn ds ,

and thus, since s 7→ ‖Ts‖ is locally bounded,

(Tt − Id)x =

∫ t

0

Tsy ds .

Dividing by t and taking the limit t→ 0+ we find that x ∈ Dom (A) and y = Ax. �

8.2. Hille-Yosida’s theorem.

Definition 8.6. A contraction on E is a linear map such that ‖T‖ ≤ 1.

Theorem 8.7 (Hille-Yosida’s theorem). An operator A is the infinitesimal generator of a con-
traction semigroup (Tt)t≥0 if and only if

i. A is closed and Dom (A) is dense,
ii. (0,+∞) ⊂ ρ(A) and, for all λ > 0, ‖(A− λ)−1‖ ≤ λ−1.

8.2.1. Necessary condition. If A is the infinitesimal generator of a contraction semigroup
(Tt)t≥0, we have already seen that A is closed and Dom (A) is dense.

Then, for λ > 0 and x ∈ E, we define

Rλx =

∫ +∞

0

e−λtTtx dt .

It is indeed well defined since ‖e−λtTtx‖ ≤ e−λt‖x‖. Note that

‖Rλx‖ ≤ λ−1‖x‖ .
Let us check that Rλx ∈ Dom (A). For all ε > 0, we write, by continuity,

ε−1(Tε − Id)Rλx = ε−1

∫ +∞

0

e−λt(Tt+εx− Ttx) dt .

Thus,

ε−1(Tε − Id)Rλx = ε−1eελ
∫ +∞

ε

e−λtTtx dt− ε−1

∫ +∞

0

e−λtTtx dt ,

so that

ε−1(Tε − Id)Rλx = ε−1(eελ − 1)

∫ +∞

0

e−λtTtx dt− ε−1

∫ ε

0

e−λtTtx dt .

This proves that Rλx ∈ Dom (A) and ARλx = λRλx − x. Thus, (λ − A)Rλ = Id. We can
also check that Rλ(λ− A) = IdDom (A).
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8.2.2. Sufficient condition. Let us now assume that A is closed and Dom (A) is dense and that
(0,+∞) ⊂ ρ(A) and, for all λ > 0, ‖(A− λ)−1‖ ≤ λ−1.

The idea is to approximate A by a bounded operator and use the exponential. For λ > 0, we
let Sλ = λ(λ− A)−1 and Aλ = ASλ.

For x ∈ Dom (A), we have

λ(λ− A)−1x− (λ− A)(λ− A)−1x = (λ− A)−1Ax ,

so that
lim

λ→+∞
Sλx = x .

Note that ‖Sλ‖ ≤ 1 and Dom (A) is dense. Thus, for all x ∈ E,

lim
λ→+∞

Sλx = x .

Since SλA = ASλ on Dom (A), we deduce that

∀x ∈ Dom (A) , lim
λ→+∞

Aλx = Ax .

Note that Aλ is a bounded operator. We have, for all t ≥ 0 and λ > 0,

etAλ = e−tλ+tλ2Rλ ,

so that
‖etAλ‖ ≤ 1.

Then, we write

etAλx− etAµx =

∫ 1

0

d

ds
etsAλet(1−s)Aµx ds ,

so that, for all t ≥ 0, λ > 0 and x ∈ E,

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖ .

Therefore, for all x ∈ Dom (A), limλ→+∞ e
tAλx exists locally uniformly in t. By density of

Dom (A) and ‖etAλ‖ ≤ 1, this limit exists for all x ∈ E and we let

Ttx = lim
λ→+∞

etAλx .

We can check that (Tt)t≥0 is a contraction C 0-semigroup. Let us consider B its generator. Let
x ∈ Dom (A) and ε > 0. We have

ε−1(Tε − Id)x = lim
λ→+∞

ε−1(eεAλ − Id)x = lim
λ→+∞

ε−1

∫ ε

0

esAλAλx ds = ε−1

∫ ε

0

TsAx ds .

We deduce that x ∈ Dom (B) and Bx = Ax. Thus A ⊂ B.
Since 1 ∈ ρ(A), we have (1−A)Dom (A) = E. But, 1 ∈ ρ(B) so that (1−B)Dom (B) = E.

It follows that Dom (B) ⊂ Dom (A).

8.3. Stone’s theorem.

Theorem 8.8 (Stone’s theorem). Let H be a self-adjoint operator. There exists a unique C 0-
unitary group (Ut)t∈R such that

(i) Ut : Dom (H)→ Dom (H),
(ii) for all u ∈ Dom (H), Utu ∈ C 1(R,H) ∩ C 0(R,Dom (H)),

(iii) for all u ∈ Dom (H), d
dt
Utu = iHUtu = iUtHu,

(iv) U0 = Id.
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We let Ut = eitH for all t ∈ R.
Conversely, if (Ut)t∈R is a C 0-unitary group, then, there exists a unique self-adjoint operator

H such that, for all t ∈ R, Ut = eitH . The domain is

Dom (H) =

{
u ∈ H : sup

0<t≤1
t−1‖Utu− u‖ < +∞

}
.

8.3.1. Necessary condition. Let H be a self-adjoint operator. H is closed with dense domain.
For all λ > 0, we have already seen that ±iH − λ is bijective and that ‖(±iH − λ)−1‖ ≤
λ−1. Therefore the operators ±iH are the generators of C 0-semigroups (U±t )t≥0. We have
d
dt
U−t U

+
t u = −iHU−t U+

t u+ U−t iHU
+
t u = 0. We get that, for all t ≥ 0, U−t U

+
t u = u. We let

Ut = U+
t for t ≥ 0 and Ut = U−−t for t < 0. (Ut)t∈R is a C 0-group. We have, for all t ∈ R,

U ′t = iHUt. For all u ∈ Dom (H), we have

d

dt
‖Utu‖2 = 〈iHUtu, Utu〉+ 〈Utu, iHUtu〉 = 0 .

Thus, (Ut)t∈R is unitary.

8.3.2. Sufficient condition. Let (Ut)t∈R is be a C 0-unitary group. Let us write the generator of
(Ut)t≥0 as iH . H is closed and has a dense domain. Moreover ran (H+i) = H. Differentiating
UtU−t = Id, we get that −iH is the generator of (U−t)t≥0. In particular ran (H − i) = H.
Differentiating ‖Utu‖2 = ‖u‖2, we get that H is symmetric. We deduce that H is self-adjoint.

We have

Dom (H) ⊂
{
u ∈ H : sup

0<t≤1
t−1‖Utu− u‖ < +∞

}
.

Then, take u ∈ H such that

sup
0<t≤1

t−1‖Utu− u‖ < +∞ ,

and consider v ∈ Dom (H). We have

|〈u,Hv〉| = lim
t→0+
|〈u, Utv − v〉| = lim

t→0+
|〈U−tu− u, v〉| ≤ C‖v‖ .

This shows that u ∈ Dom (H∗) = Dom (H).

9. ABOUT THE SPECTRAL MEASURE

9.1. A functional calculus based on the Fourier transform. The aim of this section is to
introduce the Reader to the notion of spectral measure associated with a self-adjoint operator.
One can consult [RS, Vol. I, Chapter VII] for an alternative presentation or the older references
[Sto90, Hal98].

If H is a self-adjoint operator we would like to define functions of H such that
(i) f(H) : Dom (H)→ Dom (H),

(ii) [f(H), H] = 0, on Dom (H),
(iii) f(H) + g(H) = (f + g)(H), on Dom (f(H)) ∩ Dom (g(H)),
(iv) f(H)g(H) = (fg)(H), on {u ∈ Dom (g(H)) : g(H)u ∈ Dom (f(H))},
(v) f(H)∗ = f(H).

We will construct such a functional calculus by using the inverse Fourier transform. We will
denote by F the Fourier transform, defined on S (R) by

Fψ(ξ) =

∫
R
ψ(x)e−ixξ dx .

51



Definition 9.1. Let H be a self-adjoint operator. For all f ∈ S (R) and u ∈ H, we let

f(H)u =
1

2π

∫
R

Ff(t)eitHu dt .

Note that f(H) ∈ L(H).

Proposition 9.2. For all f, g ∈ S (R), we have (i)–(v).

Proof. We leave this proof to the reader. It uses the fact that the Fourier transform of a convo-
lution of two functions is the product of their Fourier transforms. �

We introduceA = S (R)⊕C and we extend our functional calculus (we add the constants!)
by letting, for all f ∈ A,

f(H) = f0(H) + λ0Id ∈ L(H) ,

where (f0, λ0) ∈ S (R)× C is defined by f = f0 + λ0.

Proposition 9.3. We have, for all f, g ∈ A, (i)–(v).

Lemma 9.4. Let f ∈ A with f ≥ 0. Then, we have, for all u ∈ H,

〈f(H)u, u〉 ≥ 0 .

Proof. Let ε > 0. The function (ε+ f)
1
2 belongs to A. We have

(ε+ f)
1
2 (H)(ε+ f)

1
2 (H) = (ε+ f)(H) .

Thus, since (ε+ f)
1
2 (H) is symmetric, for all u ∈ H,

〈u, (ε+ f)(H)u〉 = ‖(ε+ f)
1
2 (H)‖2 ≥ 0 .

Then, we take the limit ε→ 0. �

Lemma 9.5. For all f ∈ A, we have ‖f(H)‖ ≤ ‖f‖∞.

Proof. Let us consider g = ‖f‖2
∞ − |f |2 ∈ A. We get, for all u ∈ H,

〈g(H)u, u〉 ≥ 0 ,

so that
0 ≤ 〈|f |2(H)u, u〉 ≤ ‖f‖2

∞‖u‖2 .

But, we have

〈|f |2(H)u, u〉 = 〈(ff)(H)u, u〉 = 〈f(H)f(H)u, u〉 = 〈f(H)∗f(H)u, u〉 = ‖f(H)u‖2 .

�

Lemma 9.6. Consider χ ∈ C∞0 (R,R) such that 0 ≤ χ ≤ 1 equal to 1 in a neighborhood of 0.
For R > 0, we let χR(·) = χ(R−1·). Then, for all u ∈ H,

lim
R→+∞

χR(H)u = u .

Proof. By definition, we have

2πχR(H)u =

∫
R

FχR(t)eitHu dt =

∫
R
R(Fχ)(Rt)eitHu dt =

∫
R
(Fχ)(t)eitH/Ru dt .

We have, by continuity of the group, for all t ∈ R,

lim
R→+∞

eitH/Ru = u .

Moreover,
‖(Fχ)(t)eitH/Ru‖ ≤ |(Fχ)(t)|‖u‖ .

52



Therefore, we can use the dominated convergence theorem in the context of the Riemann inte-
gration (or notice directly that the convergence is uniform on the compacts) and we get

lim
R→+∞

χR(H)u =
1

2π

∫
R

Fχ(t)u dt = χ(0)u = u .

�

9.2. Where the spectral measure comes into play.

9.2.1. Extending a map.

Definition 9.7. For all f ∈ S (R) and u, v ∈ H, we let

ωu,v(f) = (f(H)u, v) .

Lemma 9.8. The following holds.
i. For all f ∈ S (R), ω·,·(f) is a continuous sesquilinear form on H and

‖ω·,·(f)‖ ≤ ‖f‖∞ .
ii. For all u ∈ H, the linear form ωu,u : S (R) 3 f 7→ ωu,u(f) ∈ C is non-negative and

continuous for the topology of ‖ · ‖∞.
iii. If S(H× H,C) denotes the set of the continuous sesquilinear form on H, the map

(S (R), ‖ · ‖∞) 3 f 7→ ω·,·(f) ∈ (S(H× H,C), ‖ · ‖)
is linear and continuous. It can be uniquely extended as a continuous linear map on
(C 0
→0(R), ‖ · ‖∞). Keeping the same notation ω·,·(f) for the extended map, we have

∀f ∈ C 0
→0(R) , ‖ω·,·(f)‖ ≤ ‖f‖∞ ,

and, for all f ∈ C 0
→0(R), with f ≥ 0, we have ω·,·(f) ≥ 0.

By the Riesz representation theorem, we can extend the functional calculus to continuous
functions tending to zero at infinity.

Proposition 9.9. Let f ∈ C 0
→0(R). There exists a unique bounded operator, denoted by f(H),

such that, for all u, v ∈ H,
〈f(H)u, v〉 = ωu,v(f) .

We have (i)–(v). Moreover, we have

‖f(H)‖ ≤ ‖f‖∞ .

9.2.2. About the Riesz-Markov theorem and definition of the spectral measure. Let us now
recall a classical representation theorem (see [Rud80, Théorème 2.14]).

Theorem 9.10. Let X be a separated and locally compact topological space. Let ω be a non-
negative form on C 0

0 (X).
Then, there exists a σ-algebra M containing the Borelian sets of X and a unique non-

negative measure µ onM such that

∀f ∈ C 0
0 (R) , ω(f) =

∫
X

f dµ .

Moreover, this measure µ is regular.

We apply this theorem to ωu,u and we get a measure µu,u (the spectral measure associated
with u) and a σ-algebraMu,u. Now, we let

M = ∩u∈HMu,u .

It is still a σ-algebra containing the Borelian sets.
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Lemma 9.11. For all u ∈ H, the measure µu,u is finite, and µu(R) = ‖u‖2.

Proof. We recall Lemma 9.6. Let u ∈ H. We use the function χR. We have, for all R > 0,

ωu,u(χR) ≤ ‖u‖2 ,

and
lim

R→+∞
ωu,u(χR) = ‖u‖2 .

Moreover, we have

ωu,u(χR) =

∫
R
χR(λ) dµu,u(λ) .

With the Fatou Lemma, we get

µu,u(R) ≤ lim inf
R→+∞

∫
R
χR(λ) dµu,u(λ) ≤ ‖u‖2 < +∞ .

Thus, the measure µu,u is finite. It remains to use the dominated convergence theorem to see
that

‖u‖2 = lim
R→+∞

ωu,u(χR) = µu,u(R) .

�

Definition 9.12. For Ω is a Borelian set, we consider the application q : H→ R+ defined by

H 3 u 7→
∫
R
1Ω dµu,u = µu,u(Ω) .

Lemma 9.13. qΩ is a continuous quadratic form.

Proof. Note that 0 ≤ µu,u(Ω) ≤ ‖u‖2. In particular, once we will have proved that qΩ is a
quadratic form, it will be a continuous quadratic form (by using the polarization formula).

Since, for all u ∈ H, µu,u is a measure, we only have to prove the result when Ω is an open
set and even when Ω is an interval in the form [a, b]. In this case, we introduce the sequence
of continuous and piecewise affine functions (fn) such that fn(x) = 1 on [a, b], fn(x) = 0 for
x ≤ a− 1

n
and x ≥ b+ 1

n
. By dominated convergence, we have

lim
n→+∞

〈fn(H)u, u〉 = lim
n→+∞

∫
R
fn dµu,u = µu,u(Ω) ,

and the conclusion follows from the polarization formula. �

Proposition 9.14. Let f : R → C be a bounded Borelian function. Then there exists a unique
continuous sesquilinear form ω̃·,·(f) on H such that

∀u ∈ H , ω̃u,u(f) =

∫
R
f dµu,u .

Proof. With Lemma 9.13, this result is known for f = 1Ω, for all Borelian set Ω. From
the measure theory, one knows that all bounded Borelian function is a uniform limit of step
functions. This implies that u 7→

∫
R f dµu,u is a quadratic form. It is continuous since∣∣∫

R f dµu,u
∣∣ ≤ ‖f‖∞‖u‖2. �

From this proposition, we can define f(H) via the Riesz representation theorem.

Proposition 9.15. Let f : R → C be a bounded Borelian function. There exists a unique
bounded operator, denoted by f(H), such that, for all u ∈ H,

〈f(H)u, u〉 =

∫
R
f dµu,u .
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When f ∈ C 0
→0 or f ∈ A, we recover the same f(H).

Proposition 9.16. Let t ∈ R and consider f(·) = eit·. We have f(H) = eitH . In particular,

(9.1) ∀u ∈ H ,∀t ∈ R , 〈eitHu, u〉 =

∫
R
eitλ dµu,u(λ) .

Proof. Let us consider ρ ∈ C∞0 (R) such that 0 ≤ ρ ≤ 1, supp(ρ) ⊂ [−1, 1] and
∫
R ρ(x) dx =

2π. We introduce χ ∈ S (R) such that Fχ = ρ. For all n ∈ N∗, we let

ρn(·) = nρ(n·) = F (χ(n−1·)) .
Note that

χ(n−1x) = (2π)−1

∫
R
ρn(x)eixξ dξ = (2π)−1

∫
R
ρ(x)eiξ

x
n dξ .

Thus, limn→+∞ χ(n−1x) = 1 and ‖χ(n−1·)‖∞ ≤ 1.
Let us consider fn(·) = χ(n−1·)eit· ∈ S (R). For all u ∈ H, we have

〈fn(H)u, u〉 =

∫
R
fn dµu,u .

By the dominated convergence theorem, we have

lim
n→+∞

∫
R
fn dµu,u =

∫
R
eitλ dµu,u(λ) .

But, we also have

fn(H)u = (2π)−1

∫
R

Ffn(λ)eiλHu dλ = (2π)−1

∫
R
ρn(λ− t)eiλHu dλ ,

and then

fn(H)u = (2π)−1eitH
∫
R
ρ(λ)ein

−1λHu dλ ,

so that
lim

n→+∞
fn(H)u = eitHu .

Therefore, we have, for all u ∈ H,

〈eitHu, u〉 =

∫
R
eitλ dµu,u(λ) .

�

9.3. Spectral projections.

9.3.1. Properties.

Definition 9.17. Let Ω be a Borelian set. We let EΩ = 1Ω(H).

Proposition 9.18. There holds:
(i) E∅ = 0 and ER = Id.

(ii) For all Borelian set Ω, EΩ is an orthogonal projection.
(iii) For all Borelian sets Ω1 and Ω2, EΩ1EΩ2 = EΩ1∩Ω2 .
(iv) Let Ω =

⋃
j∈N Ωj be a Borelian partition. Then, for all u ∈ H,

lim
N→+∞

N∑
j=0

EΩju = EΩu .
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Proof. For the first point, we use Lemma 9.11. The proof of the other points uses the proof of
the Riesz-Markov theorem (see [Rud80, p. 51]). Let V ⊂ R be an open set. We have

µu,u(V ) = sup{〈f(H)u, u〉 , f ∈ C 0
0 (R) , 0 ≤ f ≤ 1V } .

By using an exhaustion by compact sets of V and Urysohn’s lemma (see [Rud80, Lemme
2.12]), we can construct a non decreasing sequence (fn) ⊂ C 0

0 (R) such that fnfm = fn for all
m ≥ n and limn→+∞ fn = 1V . For all u ∈ H, we have

〈fn(H)u, u〉 =

∫
R
|fn|2 dµu,u ,

and thus, by Beppo Levi’s theorem,

lim
n→+∞

〈fn(H)u, u〉 = 〈1V (H)u, u〉 .

This implies that, for all u, v ∈ H,

lim
n→+∞

〈fn(H)u, v〉 = 〈1V (H)u, v〉 .

We have, for all m ≥ n,

〈fm(H)u, fn(H)∗u〉 = 〈(fnfm)(H)u, u〉 = 〈fn(H)u, u〉 .
Taking the limit m→ +∞, we get

〈fn(H)1V (H)u, u〉 = 〈1V (H)u, fn(H)∗u〉 = 〈1V (H)u, u〉 ,
so that, for all u ∈ H,

〈1V (H)2u, u〉 = 〈1V (H)u, u〉 .
Thus 1V (H)2 = 1V (H) and it is clear that the operator 1V (H) is self-adjoint (by using that
fn = fn). If V1 and V2 are two open sets, we easily get, by considering associated sequences of
functions,

1V1(H)1V2(H) = 1V1∩V2(H) .

Easy manipulations allow to extend this to Borelian sets.
Let us prove (iv). Take u ∈ H. For all n ≥ p, we have∥∥∥∥∥
n∑
j=p

1Ωj(H)u

∥∥∥∥∥
2

=

〈
n∑
j=p

1Ωj(H)u,
n∑
j=p

1Ωj(H)u

〉
= 〈

n∑
j=p

1Ωj(H)u, u〉 =

∫
R

n∑
j=p

1Ωj dµu,u ,

we get the desired convergence by the Cauchy criterion. �

Corollary 9.19. For all bounded step function f : R→ C, we have (iii)–(v), and

‖f(H)‖ ≤ ‖f‖∞ .

Proof. The last inequality comes from the fact that, for all u ∈ H,

‖f(H)u‖2 = 〈f(H)∗f(H)u, u〉 = 〈f(H)f(H)u, u〉 = 〈(ff)(H)u, u〉 =

∫
R
|f |2 dµu,u .

�

All bounded Borelian function can be uniformly approximated by a sequence of step func-
tions.

Proposition 9.20. For all bounded Borelian functions, we have (i)–(v), and

‖f(H)‖ ≤ ‖f‖∞ .
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Proof. Points (iii)-(v) are obtained by considering uniform limits of step functions.
We have just to check (i) and (ii). Let u ∈ Dom (H) and ε > 0. Then, we have, with the

multiplication property (iv) and Proposition 9.16,

eiεH − Id

ε
f(H)u = f(H)

eiεH − Id

ε
u .

The conclusion follows by taking the limit ε→ 0. �

Proposition 9.21. Let Ω be a bounded Borelian set. Then, for all u ∈ H, we have 1Ω(H)u ∈
Dom (H).

Proof. For all ε > 0 and u ∈ H, we have, by Propositions 9.16 and 9.20,∥∥∥∥eiεH − Id

ε
1Ω(H)u

∥∥∥∥2

=

∫
Ω

∣∣∣∣eiελ − 1

ε

∣∣∣∣2 dµu,u ≤
∫

Ω

|λ|2 dµu,u < +∞ .

�

9.3.2. Extension to unbounded functions.

Definition 9.22. Let f : R→ C be a Borelian function. We let

Dom (f(H)) = {u ∈ H :

∫
R
|f |2 dµu,u < +∞} .

For all u ∈ Dom (H), we let
f(H)u = lim

n→+∞
fn(H)u ,

with fn(λ) = f(λ)1|f |≤n(λ).

Note that this definition is consistent since, for all u ∈ Dom (H), and all m ≥ n,

‖(fn(H)− fm(H))u‖2 =

∫
R
|fn − fm|2 dµu,u =

∫
{|f |>n}

|f |2 dµu,u .

Lemma 9.23. Let f : R→ C be a Borelian function. Then Dom (f(H)) is dense.

Proof. For all ϕ ∈ H, we let ϕn = 1|f |≤n(H)ϕ. The sequence (ϕn)n∈N converges to ϕ.
For all k ∈ N, we have

‖fk(H)ϕn‖2 =

∫
R
|fk|2 dµϕn,ϕn =

∫
R
|fk|21|f |≤n dµϕ,ϕ =

∫
R
|f |21|f |≤k1|f |≤n dµϕ,ϕ .

Thus, for k ≥ n, we have ∫
R
|fk|2 dµϕn,ϕn ≤ n2‖ϕ‖2 .

By the Fatou lemma, it follows∫
R
|f |2 dµϕn,ϕn ≤ n2‖ϕ‖2 < +∞ .

The density follows.
Let us explain why f(H)ϕn = fn(H)ϕ. We have fk(H)ϕn = (f1|f |≤k1|f |≤n)(H)ϕ =

fn(H)ϕk. We can take the limit k → +∞ and we find f(H)ϕn = fn(H)ϕ. �

Proposition 9.24. Let us consider f = IdR. We have f(H) = H .
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Proof. We must check that

Dom (H) = {u ∈ H :

∫
R
|λ|2 dµu,u < +∞} .

Thanks to Proposition 9.16, we have, for all u ∈ H,∥∥∥∥eiεH − Id

ε
u

∥∥∥∥2

=

∫
R

∣∣∣∣eiελ − 1

ε

∣∣∣∣2 dµu,u .

If u ∈ Dom (H), we have limε→0
eiεH−Id

ε
u = Hu. Thus, by the Fatou lemma, it follows that

‖Hu‖2 ≥
∫
R
|λ|2 dµu,u .

Conversely, if
∫
R |λ|

2 dµu,u < +∞, and noticing that∣∣∣∣eiελ − 1

ε

∣∣∣∣2 ≤ |λ|2 ,
we get that

∥∥∥ eiεH−Id
ε

u
∥∥∥2

is bounded for ε ∈ (0, 1]. Thus, u ∈ Dom (H). Note that this implies
that

‖Hu‖2 =

∫
R
|λ|2 dµu,u .

Then, we consider fn(λ) = λ1|λ|≤n(λ) and we write, for all u ∈ H,

〈fn(H)u, u〉 =

∫
R
λ1|λ|≤n(λ) dµu,u .

By the Cauchy-Schwarz inequality, we have∫
R
|λ| dµu,u ≤

(∫
R
|λ|2 dµu,u

) 1
2

‖u‖ ,

and thus, we can use the dominated convergence theorem to get, for all u ∈ Dom (H),

〈f(H)u, u〉 =

∫
R
λ dµu,u = 〈Hu, u〉 ,

where we used the derivative of (9.1) for the last equality. The conclusion follows. �

Proposition 9.25. If Ω is a bounded Borelian, we have, for all u ∈ Dom (H),

‖1Ω(H)Hu‖ ≤ sup
λ∈Ω
|λ|‖u‖ .

In particular, 1Ω(H)H can be extended as a bounded operator on H.

Proof. For all n ∈ N∗, we let fn(λ) = λχ(n−1λ). For all u ∈ Dom (H), we have, for all
m ≥ n,

‖(fn(H)− fm(H))u‖2 =

∫
R
|fn(λ)− fm(λ)|2 dµu,u ≤ 4

∫
n≤|λ|≤m

|λ|2 dµu,u .

Thus, (fn(H)u)n∈N∗ is a Cauchy sequence and its converges. By considering 〈fn(H)u, u〉, we
deduce that

∀u ∈ Dom (H) , lim
n→+∞

fn(H)u = Hu .

Now, for all n ∈ N∗ and u ∈ H,

‖1Ω(H)fn(H)u‖ ≤ sup
λ∈Ω
|λ|‖u‖ .
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Taking the limit for u ∈ Dom (H), we get the result. �

Proposition 9.26. In the class of Borelian functions, we have (iii)–(v). f(T ) is closed with
dense domain.

Proof. The density of the domain comes from Lemma 9.23. For all u, v ∈ Dom (f(H)) =
Dom (f(H)), we have

〈f(H)u, v〉 = lim
n→+∞

〈fn(H)u, v〉 = lim
n→+∞

〈u, fn(H)v〉 = 〈u, f(H)v〉 .

This shows that f(H) ⊂ f(H)∗. Let us now take v ∈ Dom (f(H)∗). We have, for all u ∈
Dom (f(H)),

〈f(H)u, v〉 = 〈u, f(H)∗v〉 ,
so that

|〈f(H)u, v〉| ≤ ‖f(H)∗v‖‖u‖ .
For all n ∈ N, we take u = un = 1|f |≤nϕ with ϕ ∈ H (see the proof of Lemma 9.23). We get,
for all n ∈ N and ϕ ∈ H,

|〈fn(H)ϕ, v〉| ≤ ‖f(H)∗v‖‖ϕ‖ ,
and thus

|〈ϕ, fn(H)v〉| ≤ ‖f(H)∗v‖‖ϕ‖ .
We deduce that, for all n ∈ N,∫

R
|fn|2 dµv,v = ‖fn(H)v‖2 ≤ ‖f(H)∗v‖2 .

By the Fatou lemma, we get that v ∈ Dom (f(H)). This proves that f(H)∗ = f(H). In
particular, this establishes that f(H) is closed as the adjoint of f(H).

It remains to prove (iv). We have, for all u ∈ H,

fm(H)gn(H)u = (fmgn)(H)u .

Then,

‖fm(H)gn(H)u‖2 =

∫
R
|fm|2|gn|2 dµu,u ,

so that, for all u ∈ {v ∈ Dom (g(H)) : g(H)v ∈ Dom (f(H))},

lim inf
m→+∞

lim inf
n→+∞

∫
R
|fm|2|gn|2 dµu,u ≤ ‖f(H)g(H)u‖2 .

By the Fatou lemma, it follows that u ∈ Dom ((fg)(H)). We have

fm(H)gn(H)u = (fmgn)(H)u ,

and it remains to take the limits. �

9.3.3. Characterization of the spectra.

Proposition 9.27. λ ∈ sp(H) if and only if, for all ε > 0, 1(λ−ε,λ+ε)(H) 6= 0. In particular, for
all u ∈ H, the support of µu,u is contained in sp(H).

Proof. Assume that, for all ε > 0, 1(λ−ε,λ+ε)(H) 6= 0. We can consider uε ∈ H such that
‖uε‖ = 1 and

1(λ−ε,λ+ε)(H)uε = uε ∈ Dom (H) .

We write
‖(H − λ)uε‖2 = ‖1(λ−ε,λ+ε)(H)(H − λ)uε‖2 ≤ ε2 .

Thus, λ ∈ sp(H).
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Conversely, assume that there exists ε0 > 0 such that 1(λ−ε0,λ+ε0)(H) = 0. Let us consider
the bounded operator Rλ defined via

∀u ∈ H , 〈Rλu, u〉 =

∫
|µ−λ|≥ε0

(µ− λ)−1 dµu,u .

By considering, for all t ∈ (0, 1] and all u ∈ H,∥∥∥∥eitH − Id

t
Rλu

∥∥∥∥2

=

∫
|µ−λ|≥ε0

(µ−λ)−2

∣∣∣∣eitλ − 1

t

∣∣∣∣2 dµu,u ≤
∫
|µ−λ|≥ε0

λ2(µ−λ)−2 dµu,u < +∞ ,

we get that Rλu ∈ Dom (H). With Proposition 9.26, we write, for all u ∈ H,

〈(H − λ)Rλu, u〉 =

∫
|µ−λ|≥ε0

dµu,u = ‖u‖2 .

This shows that (H − λ)Rλ = Id. In the same way, we get that Rλ(H − λ) = IdDom (H). Thus,
λ ∈ ρ(H). �

Exercise 9.28. For z /∈ sp(H), we introduce the Borelian function fz(x) = (x − z)−1. Show
that fz(H) = (H − z)−1.

Let us give a useful example of application of the functional calculus.

Proposition 9.29 (Stone’s formula). Consider a, b ∈ R such that a < b. We have, for all u ∈ H,

lim
ε→0+

1

2iπ

∫
[a,b]

(
(H − (λ+ iε))−1 − ((H − (λ− iε))−1

)
u dλ =

1

2

(
1[a,b](H) + 1(a,b)(H)

)
u .

Proof. For ε > 0, we introduce, for all x ∈ [a, b],

fε(x) =
1

2iπ

∫
[a,b]

(
(x− (λ+ iε))−1 − ((x− (λ− iε))−1

)
dλ ,

and we notice that, for all x ∈ [a, b],

fε(x) =
1

π

(
arctan

(
b− x
ε

)
− arctan

(
a− x
ε

))
,

so that

lim
ε→0+

fε(x) =
1

2

(
1[a,b](x) + 1(a,b)(x)

)
= g(x) ,

and |fε(x)| ≤ 1. Since, for all u ∈ H,

‖(fε(H)− g(H))u‖2 =

∫
R
|fε(λ)− g(x)|2 dµu,u ,

we get, by dominated convergence,

lim
ε→0+

fε(H)u =
1

2

(
1[a,b](H) + 1(a,b)(H)

)
u .

By using Riemannian sums and Exercise 9.28, we get, for all ε > 0,

fε(H) =
1

2iπ

∫
[a,b]

(
(H − (λ+ iε))−1 − ((H − (λ− iε))−1

)
dλ ,

and the conclusion follows. �

Lemma 9.30. Let f be a Borelian function. If u ∈ Dom (H) satisfies Hu = λu, then f(H)u =
f(λ)u.
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Proof. We have, for all t ∈ R, eitHu = eitλu. Thus, for all f ∈ S (R), by the inverse Fourier
transform, we have f(H)u = f(λ)u. This can be extended to f ∈ C 0

→0(R) by density and then
to all Borelian function. �

Proposition 9.31. λ belongs to the point spectrum if and only if 1{λ}(H) 6= 0. Moreover,
1{λ}(H) is the orthogonal projection on ker(H − λ).

Proof. If there exists u ∈ Dom (H) with u 6= 0 such that Hu = λu, then 1{λ}(H)u = u 6= 0.
Conversely, assume that 1{λ}(H) 6= 0. Then, take u 6= 0 such that 1{λ}(H)u = u. We get

H1{λ}(H)u = Hu and thus λu = Hu. �

Proposition 9.32. λ ∈ spess(H) if and only if, for all ε > 0, dim ran1(λ−ε,λ+ε)(H) = +∞.

Proof. If λ /∈ spess(H), it is isolated with finite multiplicity. Then, for some ε > 0, we have
1(λ−ε,λ+ε)(H) = 1{λ}(H). We have ran1{λ}(H) = ker(H − λ).

Conversely, if λ is not isolated with finite multiplicity, dim ran1(λ−ε,λ+ε)(H) = +∞ (we
have an infinite orthonormal family in the range of the projector).

�
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