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General Introduction

“L’idée de la logique pratique, logique en soi, sans réflexion consciente ni con-
trôle logique, est une contradiction dans les termes, qui défie la logique logique.”

– Pierre Bourdieu, Le sens pratique, 1980

For a very long time, logic was not formalized and the various patterns of reasonings
studied were expressed in natural language. The formalization of logic began in the nine-
teenth century as mathematicians attempted to clarify the foundations of mathematics.
Around that time, the formal languages of propositional logic and first-order logic were
developed by Boole and then Frege. Frege’s primary concern was to construct a logical
system, formulated in an idealized language called Begriffsschrift, which was adequate
for mathematical reasoning (Frege, 1879). The connective ϕ → ψ, usually called ma-
terial implication, played an essential role in his Begriffsschrift and Frege defined this
connective formally. It was taken up enthusiastically by Russell, Wittgenstein and the
logical positivists, and it is now found in every logic textbook. Later on, and in order
to capture even more faithfully the actual reasoning performed by mathematicians, spe-
cific proof systems were developed by Gentzen (1935): the so-called sequent calculi for
natural deduction.

Frege’s material implication ϕ→ ψ is true if, and only if, ϕ is false or ψ is true. The
truth-functional feature of propositional and predicate logics was essential to Frege’s
approach. If we want the conditional “if ϕ, then ψ” to be truth-functional, this is the
right truth function to assign to it: of the sixteen possible truth-functions of ϕ and
ψ, it is the only serious candidate. It is sometimes told in a first course in logic that
conditionals may be represented as the material implication→. However, there are some
obvious objections to this claim. According to the definition of material implication, if
ψ is true then ϕ→ ψ is also true, and if ϕ is false then ϕ→ ψ is true. So, in that case,
the following statements would be true, although they definitely appear to be dubious:

If Rennes is in the Netherlands then 2+2=4.
If Rennes is in France then World War II ended in 1945.
If World War II ended in 1941 then gold is an acid.

For the purpose of doing mathematics, Frege’s proposal to interpret conditionals as
material implications was probably correct. The main defects of material implication
do not show up in mathematics: mathematical inference is such that it never depends
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2 Contents

on unlikely or doubtful premises. There are obviously some peculiarities, but as long
as we are aware of them, they can be lived with. And arguably, the gain in simplicity
and clarity more than offsets the oddities. They are harder to tolerate when we consider
conditional statements about matters dealing with everyday life. The difference is that
in reasoning about the world, we often accept and reject propositions with degrees of
confidence less than certainty. The kind of statement “I think, but am not sure, that ϕ”
plays no central role in mathematical thinking. In everyday life, we often use conditionals
whose antecedent we think is likely to be false. Still, we are nevertheless able to make
sound and plausible inferences based on these uncertain premises. In fact, in everyday
life the way we update and infer information is quite different from the actual reasoning
of mathematicians.

This observation has lead philosophers and researchers in artificial intelligence and
computer science from the 1960s on to develop logical theories that study and formalize
the so-called “commonsense reasoning”. The rationale underlying the development of
such theories was that it would ultimately help us understand our everyday life reasoning
and the way we update our beliefs. For computer scientists, the resulting work could
subsequently lead to the development of tools that could be used for example by artificial
agents in order to act autonomously in an uncertain and changing world like internet or
the real world. A number of theories have been proposed to capture different kinds of
updates and the reasoning styles that they induce, using different formalisms and under
various assumptions: dynamic epistemic logic (van Benthem, 2011; van Ditmarsch et al.,
2007), default and non-monotonic logics (Makinson, 2005; Gabbay et al., 1998), belief
revision theory (Gärdenfors, 1988), conditional logic (Nute and Cross, 2001), etc.

These lecture notes are an introduction to logic and commonsense reasoning. The
notes are divided into three parts: A Logic Compendium (Part I), Reasoning about
Uncertainty (Part II) and Commonsense Reasoning (Part III). We outline below the
content and objectives of each part.

Part I: Logic. This part will introduce the basic concepts and methods of logic. The
objective is to provide the logical background that will be necessary to deal with
the rest of the content: most of the formalisms introduced will indeed be logical or
logic-based. This means, in particular, that they will all have a similar structure
based on a syntax and a semantics and that the problems that we will address and
formalize will often be expressed as standard decision problems in these logics.
This part contains two chapters: Chapter 1, titled “Logic: Basic Concepts” and
Chapter 2, titled “Decidability, Complexity and Expressiveness”.

Part II: Representing and reasoning about uncertainty. This part will present the main
logical formalisms that have been developed for specifying and reasoning about
MAS and for representing and reasoning about uncertainty. Reasoning about
uncertainty can sometimes be subtle and it requires a careful and rigorous analysis,
especially if this reasoning is used to take decisions. Reasoning about uncertainty
is complex in a multi-agent setting, since we have to take into account not only

Université de Rennes 1 UFR Philosophie



General Introduction 3

the uncertainty and beliefs that the agents have about the surrounding world, but
also their uncertainty and beliefs about the other agents’ uncertainty and beliefs.
This is even more complex when we introduce events and communication between
agents, since we have to deal with the way the agents update and sometimes revise
their beliefs when they get new pieces of information, which possibly contradicts
their previous beliefs. Thus, this part will propose formal accounts and logic-
based formalizations of communication, belief revision and update, incomplete
information, information dynamics, etc.
This part contains two chapters: Chapter 3, titled Reasoning Alone about Uncer-
tainty and Chapter 4, titled Reasoning with Others about Uncertainty.

Part III: Commonsense reasoning. This part will present some of the most familiar con-
ditional logics for conditionals and counterfactuals introduced by the philosophers
Stalnaker and Lewis, as well as a generic logical framework based on plausibil-
ity measures for dealing with non-monotonic and default reasoning introduced by
the computer scientists Friedman and Halpern. Conditionals and non-monotonic
reasoning are tricky topics and have been the subject of numerous debates in the
history of logic. Even if these two topics cannot be taken in isolation, conditionals
have traditionally been studied by philosophers whereas non-monotonic and de-
fault reasoning is rather a topic on the research agenda of computer scientists and
more specifically researchers in artificial intelligence. Finally, we will present the
basics of belief revision theory and its connection with non-monotonic reasoning,
formalized via the Ramsey test.
This part contains three chapters: Chapter 5, titled Conditionals, Chapter 6, titled
Default Reasoning and Chapter 7, titled Belief Revision.

The material of these lecture notes sometimes stems from neighboring fields, in par-
ticular computer science and artificial intelligence. This can be explained by the fact
that commonsense reasoning and the representation of uncertainty are also the subject
of investigations in these other fields, even if the overall approach and the objectives are
sometimes different. For computer science and artificial intelligence, the rationale for
studying these issues is that it can lead to the development of rational or software agents
that can act autonomously in an uncertain and changing world like internet or even the
real world. In that respect, computer scientists are more concerned with computational
and decidability (implementability) issues than philosophers. This said, the boundary
between philosophy and artificial intelligence is sometimes very fuzzy.

The material of these lecture notes is quite introductory and we will often only scratch
the surface of a field which is in fact much more advanced and developed than what we
present. For this reason, a number of pointers for further reading is provided at the end
of each chapter. The main references for the lectures notes are the books of Halpern
(2003), Goble (2001), Priest (2011) and van Benthem (2010).

Université de Rennes 1 UFR Philosophie



4 General Introduction

Notes:

• These lecture notes are self-contained, no other material or book is needed to
understand and study them. In particular, the usual notions and notations of set
theory are recalled in the Appendix (Chapter A).

• Some parts of these lectures notes are largely based on or copied verbatim from
publications of other authors. When this is the case, these parts are mentioned at
the end of each chapter in the section “Further reading”. For this reason, please
do not circulate these lecture notes. Some parts of the begining of this general
introduction stem from (Edgington, 2014).

• These lecture notes are supported by a website where all the homework (DM),
exercise labs (TD) and the slides of presentations of articles made in class can be
found. This website is accessible via moodle (https://foad.univ-rennes1.fr/
login/index.php).

Université de Rennes 1 UFR Philosophie
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Introduction to Part I

“Tous les chats sont mortels, Socrates est mortel, donc Socrates est un chat.”
– Eugène Ionesco, Rhinocéros, 1959

The Sophists were the first lawyers in the world and they sought to devise an objective
system of inference rules that could be applied in a dispute in order to confound their
adversary. In reaction to the development of fallacies by the Sophists, Aristotle developed
the syllogisms (Aubenque, 2012). From that moment on and for a very long time, logic
dealt with the issue of determining the valid forms of reasoning, that is, determining
whether a reasoning is ‘valid’ or ‘good’ independently of the specific content of this
reasoning. For example, the reasoning “all X are Y , all Y are Z, therefore all X are Z”
is a valid reasoning, independently of what X, Y and Z stand for. This means that if
we assume that the premises “all X are Y ” and “all Y are Z” are true, then we must
necessarily infer that the conclusion “all X are Z” is also true. The symbols X, Y and
Z are abstract symbols which stand for any kind of objects. In particular, this reasoning
holds if we replace X with “women”, Y with “humans” and Z with “mortal”. Generally
speaking, a reasoning is represented by a set of rules of inference, like the following one:

Premise: All X are Y
Premise: All Y are Z
Conclusion: All X are Z

A rule of inference represents a ‘pattern’ of reasoning and a specific set of rules of
inference will define a specific kind of reasoning.

For a very long time, logic was considered as a normative discipline whose goal was
to set the standards of ‘correct’ reasoning and to identify the valid rules of inference:
“Cette science des lois nécessaires de l’entendement et de la raison en général ou, ce
qui est la même chose, de la simple forme de la pensée en général, nous la nommons:
Logique” (Kant, 1800, p. 12–13). Nowadays, no logician would agree with this definition
of logic. Hintikka and Sandu tell us that “[i]t is far from clear what is meant by logic or
what should be meant by it. It is nevertheless reasonable to identify logic as the study of
inferences and inferential relations” (Hintikka and Sandu, 2007, p. 13). In fact, the object
of study of logic remains the reasoning, but the normative definition of logic is replaced
by a descriptive one: the objective is now to characterize different kinds of reasoning
occurring in different contexts and situations. Numerous logics have been developed

7
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over the years, each of them modeling a specific kind of reasoning: the reasoning about
time, about knowledge, about programs, etc. (see the list of logics in Section 1.5).
Nevertheless, the concepts of rule of inference, truth, validity, logical consequence, etc.
remain common to all the logics, because these concepts are characteristic of any form
of reasoning. Logic is a unified and unifying discipline. On the one hand, the unity of
logic is guaranteed by its common interest in reasoning. On the other hand, its unifying
power is based on the fact that reasoning permeates a wide range of activities.

In computer science, the formal descriptive language of modern logic serves as a
working tool. Logic is used as a means to represent and reason about problems and
specific applications. For a specific application domain, a logic can be devised to address
the problems that must be solved (see again Section 1.5). This is sometimes called “logic
engineering”. Once the logic is defined, the problems at stake can be formulated in logical
terms and this reformulation often permits to reuse results or algorithms that have been
obtained for other logics. This transfer of results is facilitated by the unified aspect of
logic and its common methodology: as we said, all logics have the same format and deal
with the same notions of Truth, validity, logical consequence, etc.

Once a logic is defined, we can study its properties. In particular, we can study
whether it is more expressive than another logic, that is, whether it can express more
things about a given model than another logic (this is called expressiveness). We can
also study whether it is possible to find an algorithm that will solve a specific problem
formulated in this logic (this is called decidability) and how complex and hard it will be
to solve this problem with such an algorithm (this is called computational complexity).

The elementary concepts of logic will be dealt with in Chapter 1 and the notions
of decidability, expressiveness and computational complexity that are used to study the
properties of a given logic will be addressed in Chapter 2.

Université de Rennes 1 UFR Philosophie



Chapter 1

Logic: Basic Concepts

“‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be; and if it were
so, it would be; but as it isn’t, it ain’t. That’s logic.’ ”

– Lewis Caroll, Through the Looking-Glass, 1871

1.1 Introduction

There are three possible equivalent approaches for formally introducing and defining a
logic equipped with a proof system. We present them below. The different concepts that
are highlighted will be given a precise and rigorous meaning in the rest of the chapter.
In the first two approaches, we start by defining a logical language which consists of a
set of well-formed formulas (often defined by a grammar). Then, there are two different
alternatives: a semantically-driven alternative and a syntactically-driven alternative.

1. In the semantically-driven alternative, we start by providing a semantics to the
well-formed formulas by means of a class of models and a satisfaction relation. This
semantics gives meaning to well-formed formulas and defines at the same time a
set of validities: the well-formed formulas which are satisfied in every model. To
capture the set of validities, we define a proof system, which is a (finite) set of
axiom schemata and inference rules from which we can derive specific well-formed
formulas called theorems.

2. In the syntactically-driven alternative, we start by providing a proof system that
defines a set of theorems. This set of theorems is another means to characterize
and define the logic. Then, we define a semantics for this logic which defines in
turn a set of validities.

The coincidence between the set of validities and the set of theorems is captured by
the notions of soundness and completeness (one notion for each inclusion). In that case,
we say that the proof system axiomatizes the logical language for the semantics that we
have defined.

9



10 1. Logic: Basic Concepts

3. In the third approach, we proceed the other way around. We first define a se-
mantics consisting of a specific class of models and then a logical language with
a satisfaction relation to ‘talk about’ these models. This defines in turn a set of
validities that we can axiomatize with a proof system, as in the first approach.

In all cases, the three approaches lead to the same outcome: a logical language
equipped with a syntax and semantics, together with a proof system axiomatizing the
set of validities of the logic (i.e., a proof system such that its set of theorems is the set
of validities of the logic).

The chapter is organized as follows. Our presentation will follow a semantically-
driven approach. After a short history of logic (Section 1.2), we introduce the syntax
and semantics of propositional logic (PL), modal logic (ML) and first-order logic (FO)
(Section 1.3). Then, we recall some basic notions of proof theory by introducing the
key concepts of axiom, inference rule, proof, soundness and completeness (Section 1.4).
We end the chapter with a panorama of well known logics which have been introduced
in the literature (Section 1.5). They can all be seen as variants or combinations of
propositional, modal or first-order logic. Finally, we give pointers for further readings
(Section 1.6).

1.2 A Short History of Logic
We split up the history of logic into three distinct ages as follows. Section 1.2.1: the
origins of logic (antiquity); Section 1.2.2: mathematical logic (late 19th to 20th century);
and Section 1.2.3: logic in computer science (mid 20th century to now).

1.2.1 The Origins of Logic

The study of logic was begun by the ancient Greeks whose educational system stressed
competence in reasoning and in the use of language. Along with rhetoric and grammar,
logic formed part of the trivium, the first subjects taught to young people. Logic was
inaugurated by Aristotle with his Organon where he introduced the so-called syllogisms.
A syllogism is a kind of argument in which one statement (the conclusion) is inferred
from two or more others (the premises) of a specific form. Here is an example of one
form of syllogism:

Major Premise: All men are mortal.
Minor Premise: Socrates is a man.
Conclusion: Socrates is mortal.

Originally, syllogisms were developed by the Sophists for practical reasons. The
Sophists were the first lawyers in the world and they sought to devise an objective
system of inference rules (the syllogisms) that could be applied in a dispute in order
to confound their adversary (Aubenque, 2012). Logic was devised for the purpose to
determine beyond any doubt who had won an argument.
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1.2. A Short History of Logic 11

For a long time, that is from around 300 BC right until the end of 19th century,
the systems of reasonings formulated by Aristotle and the Stoic philosophers were the
only forms of reasoning studied. They were expressed in natural language. Independent
traditions arose around 300 BC also in China and India, which produced famous figures
like the Buddhist logician Dignaga, or Gangesa, and this long tradition lives on in some
philosophical schools today. Through translations of Aristotle, logic also reached the
Islamic world. The work of the Persian logician Avicenna around 1000 AD was still
taught in madrassa’s by 1900.

1.2.2 Second Age: Mathematical Logic (late 19th to mid 20th Century)

The formalization of logic began in the nineteenth century as mathematicians attempted
to clarify the foundations of mathematics. Around that time, the formal languages of
propositional logic and first-order logic were developed by Boole and then Frege. One
trigger was the discovery of non-Euclidean geometries: replacing Euclid’s parallel axiom
with another axiom resulted in a different theory of geometry that was just as consistent
as that of Euclid. Proof systems – axioms and rules of inference – were developed with
the understanding that different sets of axioms would lead to different theorems. The
questions investigated included:

• Consistency: a proof system is consistent if it is impossible to prove both a formula
and its negation.

• Independence: The axioms of a proof system are independent if no axiom can be
proved from the others.

• Soundness: All theorems that can be proved in the proof system are true.

• Completeness: All true statements can be proved in the proof system.

Clearly, these questions will only make sense once we have formally defined the
central concepts of truth and proof. During the first half of the twentieth century, logic
became a full-fledge topic of modern mathematics. The framework for research into
the foundations of mathematics was called Hilbert’s program (named after the great
mathematician David Hilbert). His central goal was to prove that mathematics, starting
with arithmetic, could be axiomatized in a system that was both consistent and complete.
This program was shattered by a number of significative results:

• Gödel’s First Incompleteness Theorem showed in 1931 that this goal cannot be
achieved: any consistent axiomatic system for arithmetic is incomplete since it
contains true statements that cannot be proved within the system.

• Gödel’s Second Incompleteness Theorem proved that a proof system powerful
enough to form statements of about arithmetics cannot prove its own consistency.
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12 1. Logic: Basic Concepts

• Church and Turing showed that there are some problems that no algorithm could
ever solve. If such problems exist, then there could be no hope of finding a single
algorithm to produce all mathematical truths.

In parallel, proof systems were also developed, notably by Gentzen, in order to cap-
ture the actual mathematical reasoning performed by mathematicians: the so-called
sequent calculi for natural deduction (Gentzen, 1935). However, in everyday life, the
way we update and revise information is quite different from the actual reasoning of
mathematicians. This has lead researchers in artificial intelligence and computer science
from the 1980s on to develop logical theories that study and formalize belief change and
the so-called “common sense reasoning”. The rationale underlying the development of
such theories was that it would ultimately help us understand our everyday life reason-
ing and the way we update our beliefs, and that the resulting work could subsequently
lead to the development of tools that could be used for example by artificial agents in
order to act autonomously in an uncertain and changing world. A number of theories
have been proposed to capture different kinds of updates and the reasoning styles that
they induce, using different formalisms and under various assumptions: dynamic epis-
temic logic (van Benthem, 2011; van Ditmarsch et al., 2007), default and non-monotonic
logics (Makinson, 2005; Gabbay et al., 1998), belief revision theory (Gärdenfors, 1988),
conditional logic (Nute and Cross, 2001), etc.

1.2.3 Third Age: Logic in Computer Science (mid 20th Century to
Now)

Modal notions of necessity, possibility, and contingency that were standard fare in tra-
ditional logic up to the 19th century went out the door in the work of the founding
fathers of modern logic, like Boole and Frege. They reappeared on the logical agenda
of philosophical logicians like Prior, Kripke, Hintikka, Lewis or Stalnaker in the 1950s.
This is the period where labels like “modal logic”, “epistemic logic”, “deontic logic”,
“temporal logic”,. . . were coined. In the 1970s, this philosophical phase was consolidated
into a beautiful mathematical theory by authors like Blok, Fine, Gabbay, Segerberg and
Thomason. But simultaneously, modal logic crossed over to linguistics, when “Montague
semantics” gave the study of intensional expressions in natural language pride of place,
using mixes of modal logic with type theory and other tools from mathematical logic
(ter Meulen and van Benthem, 2010). In the same decade, and especially through the
1980s, modal notions found their way into computer science in the study of programs
(Pratt, 1976), and into economics in the study of knowledge of players in games (Au-
mann, 1976). The formal descriptive language of modern logic served as a working tool
for computer science.

In fact, many computer scientists claim that logic is “the calculus of computer sci-
ence” (Manna and Waldinger, 1985; Halpern et al., 2001). The significance and impor-
tance of logic for computer science, the science of computing, is indeed overwhelming
(Abramsky et al., 1992; Gabbay and Robinson, 1998; Ben-Ari, 2012). As a matter of fact,
in the 1980’s, as recalled by Dov Gabbay, “[computer science and artificial intelligence]
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14 1. Logic: Basic Concepts

were under increasing commercial pressure to provide devices which help and/or replace
the human in his daily activity. This pressure required the use of logic in the modeling
of human activity and organization on the one hand and to provide the theoretical ba-
sis for the computer program constructs on the other” (Gabbay and Guenthner, 2001,
p. vii). The result was that the research in (philosophical) logic has been applied to the
needs of these active communities (and has been at the same time pushed forward).We
illustrate it below with some of its contributions (see also (Gabbay and Guenthner,
2001, p. x-xiii),(Halpern et al., 2001; Vardi, 2009)). The three first ones are rather
theoretically-driven contributions, while the remaining three ones are application-driven
contributions.

Program verification and semantics: In 1969, the use of logic was propounded by Hoare
as a means to prove the correctness of computer programs (Hoare, 1969). The use
of logic transformed programming from arts and crafts to a science and helped
to develop a theory of programming. Nowadays, temporal and dynamic logics
are widely used in the industry in combination with model-checking techniques in
order to verify sequential and concurrent programs (Baier and Katoen, 2008).

Complexity theory: Logic triggered the invention of the Turing machine. The Turing
machine is now the standard model of algorithms and computation. This led in
turn to the development of computational complexity theory which aims at deter-
mining how hard it is to solve a problem in terms of computations (Papadimitriou,
2003). As a twist of history, logic is now coming back to this theory with a research
field called descriptive complexity theory (Immerman, 1999), where the different
classes of complexity and their relationships are expressed in logical terms.

Type systems for programming language: Although type theory and Gentzen’s logical
calculus of natural deduction were for a long time considered as highly theoreti-
cal fields of research in philosophical and mathematical logic, they were used in
the 1980s as a unifying conceptual framework for the design, analysis, and imple-
mentation of programming languages. This convergence was made possible by the
Curry-Howard isomorphisms (Leeuwen, 1990, Chap. 8).

Databases: First-order logic was used for relational databases and it improved tremen-
dously the efficiency of querying data from a database (Abiteboul et al., 1995).
Nowadays, first-order logic lies at the core of modern database systems, and the
standard query languages such as Structured Query Language (SQL) and Query-
By-Example (QBE) are syntactic variants of first-order logic.

Logic programming: Logic also gave rise to its own programming language, PROLOG.
Logic programming stems from an adaptation of a logical calculus for first-order
logic called SDL-resolution (Gabbay and Robinson, 1998, Vol. 5). While initially
aimed at natural language processing, the language has since then stretched far
into other areas like theorem proving, expert systems, games, automated answering
systems, ontologies.
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1.3. Propositional, Modal and First-Order Logic 15

Computer circuits: Propositional (Boolean) logic is used to design computer circuits.
A logic gate is an idealized or physical device implementing a Boolean function.
Logic gates are primarily implemented using diodes or transistors. They can be
cascaded in the same way that Boolean functions can be composed, allowing the
construction of a physical model of the algorithms that can be described with
Boolean logic.

1.3 Propositional, Modal and First-Order Logic

A logic can be represented as a triple (language, class of models, satisfaction relation).
The three logics will be presented by following this tri-partite representation: (1) lan-
guage, (2) class of models, (3) satisfaction relation. The semantics of a logic is usually
defined by the combination of (2) and (3) and its syntax by (1). The syntax defines the
logical language which is a set of well-formed formulas of the logic.

1.3.1 Propositional Logic (PL)

In the sequel, PROP is a countable set of atoms (propositional letters) denoted p, q, r, . . .
and T and F are two symbols called truth values standing for T rue and False.

Definition 1.3.1 (Propositional language LPL). The language LPL is the smallest
set that contains PROP and that is closed under negation and conjunction. That is,

• if ϕ ∈ LPL, then ¬ϕ ∈ LPL;

• if ϕ,ψ ∈ LPL, then (ϕ ∧ ψ) ∈ LPL.

In other words, the language LPL is defined by the following grammar in Backus-Naur
Form (BNF):

LPL : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ)

where p ∈ PROP . We introduce the following abbreviations: ⊥ := p ∧ ¬p for a chosen
p ∈ PROP , > := ¬⊥, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ,ϕ ↔ ψ := (ϕ →
ψ) ∧ (ψ → ϕ). To save parenthesis, we use the following ranking of binding strength:
¬,∧,∨,→,↔ (i.e., ¬ binds stronger than ∧, etc.). For example, ¬p ∧ q → r ∨ s means
((¬p) ∧ q)→ (r ∨ s). �

If we wanted to consider non-classical logics, such as intuitionistic logic, relevant
logic, many-valued logics, conditional logics,. . . then the connectives introduced as ab-
breviations should be introduced as primitives in the language.

Definition 1.3.2 (Interpretation). An interpretation is a total function I : PROP 7→
{T, F} that assigns one of the truth values T or F to every atom in PROP . The set of
interpretations is denoted CPL. �
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16 1. Logic: Basic Concepts

Definition 1.3.3 (Satisfaction relation |=PL). The satisfaction relation |=PL⊆ CPL×
LPL is defined inductively as follows (we omit the subscript PL subsequently). Let
I ∈ CPL and ϕ,ψ ∈ LPL.

I |= p iff I(p) = T
I |= ¬ϕ iff it is not the case that I |= ϕ
I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ

�

The inductive clauses defining a satisfaction relation are often called the truth con-
ditions.

Example 1.3.1. Let PROP := {p, q, r}. We define the total function I : PROP →
{T, F} as follows: I(p) = I(q) := T and I(r) := F . Then, we have for example that
I |= p ∧ q ∧ ¬r, I |= ¬p→ r, I |= p ∨ r, I |= p ∨ q and I |= r → (q → r) hold. �

1.3.2 Modal Logic (ML)
In the sequel, AGTS := {1, . . . , n} is a set of indices.

Definition 1.3.4 (Modal language LML). The multi-modal language LML is defined
inductively by the following grammar in BNF:

LML : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2iϕ

where p ∈ PROP and i ∈ AGTS. The formula 3iϕ is an abbreviation for ¬2i¬ϕ. We
use the same abbreviations as in Definition 1.3.1. The formulas that go in the making
of ϕ are called subformulas of ϕ and its set is denoted Sub(ϕ). �

Example 1.3.2. Here are some examples of modal formulas:

• 2i⊥, 3i>, 2i3i>.

• p ∧3i¬p, 2ip ∨2i¬p, p→ 2ip.

Then, Sub(p ∧3i¬p) = {p,3i¬p,¬p} and Sub(2ip ∨2i¬p) = {2ip,2i¬p, p,¬p}. �

Now, we present the so-called possible world semantics.

Definition 1.3.5 (Kripke model and frame). A Kripke model M is a tupleM :=
(W,R1, . . . , Rn, V ) where

• W is a non-empty set whose elements are called possible worlds;

• R1, . . . , Rn are binary relations over W called accessibility relations;

• V : PROP ×W → {T, F} is a function called the valuation function.

If w ∈ W and j ∈ AGTS, we write wRjv or Rjwv for (w, v) ∈ Rj , and Rj(w) denotes
{v ∈W : wRjv}. We abusively write w ∈ M for w ∈ W . The pair (M, w) is called a
pointed Kripke model. A Kripke frame, generally denoted F , is a Kripke model without
valuation function. The class of all pointed Kripke models is denoted CML. �
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1.3. Propositional, Modal and First-Order Logic 17

Definition 1.3.6 (Satisfaction relation |=ML). We define the satisfaction relation
|=ML⊆ CML × LML inductively as follows (we omit the subscript ML subsequently). Let
(M, w) ∈ CML and let ϕ ∈ LML.

M, w |= p iff V (p, w) = T
M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= 2iϕ iff for all v ∈W such that Riwv,M, v |= ϕ

We write F |= ϕ when (F, V ), w |= ϕ for all valuations V and all worlds w ∈ F . �

From these definitions, we can derive the following truth condition for the possibility
modality 3i:

M, w |= 3iϕ iff there is v ∈W such that Riwv andM, v |= ϕ

Example 1.3.3. Let us consider the Kripke modelsN := (W,R, V ) andN ′ := (W ′, R′, V ′)
defined as follows (here, PROP := {p}):

W := {w, v} W ′ :=
{
w′, v′, u′, t′

}
R := {(w,w), (w, v)} R′ :=

{
(w′, t′), (t′, u′), (u′, w′), (w′, v′)

}
V (p, w) := T V ′(p, w′) = V ′(p, u′) := T
V (p, v) := F V ′(p, v′) = V ′(p, t′) := F

Here, we have a single accessibility relation R (unlike in the general Definition 1.3.5
where we have n accessibility relations). We represent graphically these Kripke models
N and N ′ by the following figures:

v

w : p

v′

w′ : p u′ : p

t′

N : N ′:

Possible worlds are represented by Latin letters, the accessibility relation R is represented
by arrows between pairs of possible worlds and the propositional letter p holds in a
possible world when this possible world is labelled with p, and does not hold otherwise.
Then, we have for example that the following hold:
• N , w |= 3p ∧3¬p:

Indeed, N , w |= 3p ∧3¬p
because N , w |= 3p and N , w |= 3¬p
because Rww and N , w |= p, and Rwv and N , v |= ¬p
because V (p, w) = T and V (p, v) = F .

• N , v |= 2⊥ because there is no u ∈ W such that Rvu (in other words, R(w) =
{u : Rwu} = ∅): we recall that a universal quantification on an empty set is always
true. �
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18 1. Logic: Basic Concepts

1.3.2.1 ‘Game’ Semantics

For the game semantics, we consider two players: V and F. The goal of player V is to
show that the formula is true in the model and the goal of player F is to show that the
formula is false in the model.

Definition 1.3.7 (Evaluation game). Let M be a Kripke model, let w ∈ WM and
ϕ a ML formula. The evaluation game denoted game(M, w, ϕ) starts at the world w.
Each move is determined by the main operator of ϕ and we move to its subformulas:

atom p : test p at w: if true, then V wins, if false, then F wins,
ϕ ∨ ψ : V chooses which disjunct to play
ϕ ∧ ψ : F chooses which conjunct to play
¬ϕ : role switch between the two players, play continues w.r.t. ϕ
3iϕ : V picks an Ri–successor v of the current world, play continues w.r.t. ϕ at v
2iϕ : F picks an R–successor v of the current world, play continues w.r.t. ϕ at v.

A player also loses when (s)he must pick a successor, but cannot do. �

Theorem 1.3.1. For all Kripke model M, all w ∈ WM, M, w |= ϕ if, and only if, V
has a winning strategy for game(M, w, ϕ).

Example 1.3.4.

M :

1 : p 2 : p

3 4

M, 1 |= 323p

So, V has a winning strategy for game(M, 1,323p). The circle nodes indicate the
winning positions for Verifier :

3,F

1,V

4,V

4,F

2,V

4, p 2, p 1, p
�

There exist other alternative semantics for ML than the Kripke semantics: the al-
gebraic semantics, the neighborhood semantics and the topological semantics (van Ben-
them and Blackburn, 2007).
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Applications. The modality 2i can have different intuitive interpretations depending
on what we want to represent and reason about. For instance, in epistemic logic, 2iϕ
reads as “agent i knows that ϕ holds”. In dynamic logic, 2iϕ reads as “after every
successful completion of action i, ϕ holds”. Likewise for the accessibility relation.

1.3.3 First-order Logic (FO)

In the sequel, V AR is a set of variables, CONS := {c1, . . . , cm} is a finite set of constants
and PRED := {R1, . . . , Rn} is a set of predicate symbols of arity k1, . . . , kn respectively,
whose one of them is the identity predicate = of arity 2. We do not consider function
symbols.

Definition 1.3.8 (First-order language LFO). The language LFO of First-Order Logic
is defined inductively by the following grammars in BNF.

T : t ::= c | x
LFO : ϕ ::= R(t1, . . . , tk) | ¬ϕ | (ϕ ∧ ϕ) | ∀xϕ

where c ∈ CONS, x ∈ V AR, R ∈ PRED and t, t′, t1, . . . , tk ∈ T . Elements of LFO are
called formulas and elements of T are called terms. Formulas of the form R(t1, . . . , tk)
are called atomic formulas. The formula t = t′ is an abbreviation for = (t, t′) and ∃ϕ
is an abbreviation for ¬∀¬ϕ. Let ϕ ∈ LFO. An occurrence of a variable x in ϕ is a
free variable of ϕ if, and only if, x is not within the scope of a quantified variable x. A
variable which is not free is bound. We say that a formula of LFO is a sentence, or is
closed, when it contains no free variable. �

Example 1.3.5. No variable of ϕ below is free, they are all bound:

ϕ := ∀x∀y(x < y → ∃z(x < z ∧ z < y))

However, in formula ψ, y is a free variable, but x is bound:

ψ := ∀x(¬(x = 0)→ x > y) �

We present two kinds of semantics: the classical ‘Tarskian’ one and the game-
theoretical one proposed first by Hintikka.

1.3.3.1 Tarskian Semantics

Definition 1.3.9 (Structure and assignment). A structure is a tupleM := (WM, RM1 ,
. . . , RMn , cM1 , . . . , cMm ) where:

• WM is a non-empty set called the domain;

• RM1 , . . . , RMn are relations overWM with the same arity as R1, . . . , Rn respectively;

• cM1 , . . . , cMm ∈WM are distinguished elements.
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20 1. Logic: Basic Concepts

An assignment is a function σ : V AR → WM. The function σ[x := w] is the same
assignment as σ except that x is mapped to w. The set of pairs of structures and
assignments is denoted CFO. �

Example 1.3.6. (Q, <Q, 0), (R, <R, 1), (labeled) graphs,. . . are structures. Note that a
Kripke frame can also be seen as a structure. �

Definition 1.3.10 (Satisfaction relation |=FO). The satisfaction relation |=FO⊆
CFO × LFO is defined inductively as follows (we omit the subscript FO subsequently).
Let ϕ ∈ LFO and (M, σ) ∈ CFO.

M, σ |= Ri(x1, . . . , xni) iff (w1, . . . , wni) ∈ RMi

where for all k, wk :=
{
cMl if for some l, xk = cl;
σ(xk) otherwise.

M, σ |= ¬ϕ iff it is not the case thatM, σ |= ϕ
M, σ |= ϕ ∧ ψ iff M, σ |= ϕ andM, σ |= ψ

M, σ |= ∀xϕ iff M, σ[x := w] |= ϕ for all w ∈WM

We say that the formula ϕ is true in M under σ or that M is a model of ϕ under σ
when M, σ |= ϕ. If ϕ ∈ LFO and x is free in ϕ, then M |= ϕ[x/w] means that we are
evaluating w.r.t. an assignment that assigns w to x. �

From this definition, we derive thatM, σ |= ∃xϕ if, and only if, M, σ[x := w] |= ϕ
for some w ∈WM.

1.3.3.2 ‘Game’ Semantics

Suppose two parties disagree about a sentence ϕ in some situationM under discussion:
Verifier V claims that ϕ is true inM, and Falsifier F claims that it is false.

Definition 1.3.11 (Evaluation game). Let M be a structure and let ϕ ∈ LFO.
The evaluation game denoted game(M, ϕ) is defined by induction on the structure of
the formula ϕ by means of moves of defense and attack – with the following schedule
depending on the formula under consideration:

R(t1, . . . , tk) : test to determine who wins
¬ϕ : role switch between the two players, play continues w.r.t. ϕ
ϕ ∧ ψ : F chooses which conjunct to play
∀xϕ(x) : F picks an element w, play continues w.r.t. ϕ(w)

�

The problem of the role switch for negation can be circumvented by pushing negations
inside to the atoms.

Example 1.3.7.
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1. Consider the following structureM and sentence ϕ:

M : a1 a2 ϕ := ∀x∃y¬(x = y)

The evaluation game in extensive form on the structureM for the formula ϕ:

F wins

V

V wins

F

V wins

V

F wins

x := a1 x := a2

y := a1 y := a2 y := a1 y := a2

Falsifier starts, Verifier must respond. There are 4 possible plays, with 2 wins for
each player. Verifier is the only one who has a winning strategy.

2. Communication network:

1 2

3 4

∀x∀y(Rxy ∨ ∃z(Rxz ∧Rzy))

Here is a possible run of the corresponding evaluation game:

Player move next formula
F picks 2 ∀y(R2y ∨ ∃z(R2z ∧Rzy))
F picks 4 R24 ∨ ∃z(R2z ∧Rz4)
V chooses ∃z(R2z ∧Rz4)
V picks 1 R21 ∧R14
F chooses R14
test V wins

Question: does V have a winning strategy? �

Proposition 1.3.1. For all structures M, all sentence ϕ, M |= ϕ iff verifier V has a
winning strategy for the evaluation game for ϕ played inM.

Proof. The proof is by induction on formulas. One shows simultaneously that if a formula
ϕ is true inM, V has a winning strategy; if a formula ϕ is false inM, F has a winning
strategy.

Université de Rennes 1 UFR Philosophie



22 1. Logic: Basic Concepts

1.3.4 Truth, Logical Consequence, Validity, Satisfiability

Definition 1.3.12. We define propositional logic PL as the triple PL := (LPL, CPL, |=PL),
modal logic as the triple ML := (LML, CML, |=ML), and first-order logic as the triple
FO := (LFO, CFO, |=FO). �

The realm of logics is vast and PL,ML and FO are only but a few of them. We will
introduce many others in these lecture notes (in Sections 3.3, 4.2.1, 5.8 for instance).
However, all the logics have in common to deal with the same notions of truth, logical
consequence, validity and satisfiability.

Definition 1.3.13. Let L = (L, C, |=) ∈ {PL,ML,FO} and let Γ ⊆ L, ϕ ∈ L andM∈ C.
We writeM |= Γ when for all ψ ∈ Γ, we haveM |= ψ. Then, we say that

• ϕ is true (satisfied) atM orM is a model of ϕ whenM |= ϕ;

• ϕ is a logical consequence of Γ, written Γ |=L ϕ, when for all M ∈ C, if M |= Γ
thenM |= ϕ;

• ϕ is valid, written |=L ϕ, when for all modelsM∈ C, we haveM |= ϕ;

• ϕ is satisfiable when ¬ϕ is not valid in C, i.e. when there is a modelM ∈ C such
thatM |= ϕ. �

1.4 Axioms, Inference Rules and Completeness
Validity of a formula ϕ is defined abstractly and non-constructively as truth of ϕ in
each model (be it interpretation, Kripke model or structure). How can we describe the
form of these validities more concretely and constructively? One concrete method is to
provide a proof system (or deductive calculus) that will axiomatize these validities.

1.4.1 Deductive Calculus

In the sequel, a logic L is an element of {PL,ML,FO} and we consider the language
L := LL.

Definition 1.4.1 (Proof system). A proof system H for L is a set of formulas of L
called axioms and a set of inference rules. Let Γ ⊆ L and let ϕ ∈ L. We say that ϕ is
provable (from Γ) in H or a theorem of H, written `H ϕ (resp. Γ `H ϕ), when there is
a proof of ϕ (from Γ) in H, that is, a finite sequence of formulas ending in ϕ such that
each of these formulas is:

1. either an instance of an axiom of H (or a formula of Γ);

2. or the result of applying a rule of inference to preceding formulas. �

A proof system should produce only valid principles (this property is called sound-
ness) and hopefully all of them (this property is called completeness).
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Definition 1.4.2 (Soundness and completeness). Let H be a proof system for L.
Then,

• H is sound for L w.r.t. C when for all ϕ ∈ L, if `H ϕ, then |=L ϕ.

• H is (strongly) complete for L w.r.t. C when for all ϕ ∈ L (and all Γ ⊆ L), if |=L ϕ,
then `H ϕ (resp. if Γ |=L ϕ, then Γ `H ϕ)

A (modal) logic can also be sound and complete w.r.t. a class of frames. �

Note that there might be several proof systems which are sound and complete w.r.t.
the same class of models. In any case, by the very definition of a proof, if a logic is sound
and strongly complete, then it should also be compact:

Definition 1.4.3 (Compactness). A logic L is compact when for all Γ ⊆ L and all
ϕ ∈ L, the following equivalent statements hold:

• If Γ |= ϕ, then for some finite Γ0 ⊆ Γ we have Γ0 |= ϕ;

• If every finite subset Γ0 of Γ is satisfiable, then Γ is satisfiable. �

There are two main kinds of proof systems, namely sequent calculi (Gentzen calculi
and natural deduction) and Hilbert system. In these lecture notes, we only consider
Hilbert systems.

1.4.2 Axiomatizing the Validities of PL, ML and FO

Definition 1.4.4 (Proof systems HPL,HML and HFO). The proof systems HPL,HML
and HFO for the languages LPL,LML and LFO are defined in Figures 1.1, 1.2 and 1.3
respectively. The system HML is often denoted K in the literature. �

Example 1.4.1 (Distribution axiom and rule).

(i) The following formulas are all provable in HPL, i.e. they are all theorems of HPL:

((p→ q) ∧ (p→ r))→ (p→ (q ∧ r)) (PL1)
p→ (q → (p ∧ q)) (PL2)
(p ∧ q)→ p (PL3)
(p ∧ q)→ q (PL4)
(p→ (q → r))→ ((p ∧ q)→ r) (PL5)

We use these theorems to prove that 2(p ∧ q) → (2p ∧ 2q) is provable in HML
(formally, `HML 2(p ∧ q)→ (2p ∧2q)):
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ϕ→ (ψ → ϕ) (Axiom 1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (Axiom 2)
(¬ψ → ¬ϕ)→ (ϕ→ ψ) (Axiom 3)
ϕ→ ψ ϕ

ψ
(Modus Ponens)

Figure 1.1: Proof system HPL for LPL

The axioms and the rule of inference of HPL (HPL)
2i(ϕ→ ψ)→ (2iϕ→ 2iψ) (Modal Distributivity)
ϕ

2iϕ
(Necessitation)

Figure 1.2: Proof system HML for LML

The axioms and the rule of inference of HPL (HPL)
∀x(ϕ(x)→ ψ(x))→ (∀xϕ(x)→ ∀xψ(x)) (Distributivity)
∀xϕ(x)→ ϕ(x)[x/t], where t is substitutable for x in ϕ (Universal Instantiation)
ϕ→ ∀xϕ, where x does not occur free in ϕ (Vacuous Universal Generalization)
ϕ

∀xϕ (Generalization)

Figure 1.3: Proof system HFO for LFO (without equality)
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1 (p ∧ q)→ p by (PL3)
2 2 ((p ∧ q)→ p) Necessitation rule on 1
3 2 ((p ∧ q)→ p)→ (2(p ∧ q)→ 2p) Modal Distributivity
4 2(p ∧ q)→ 2p Modus Ponens on 2, 3
5 (p ∧ q)→ q by (PL4)
6 2 ((p ∧ q)→ q) Necessitation rule on 5
7 2 ((p ∧ q)→ q)→ (2(p ∧ q)→ 2q) Modal Distributivity
8 2(p ∧ q)→ 2q Modus Ponens on 6, 7
9 (2(p ∧ q)→ 2p)→

(
(2(p ∧ q)→ 2q)→(

(2(p ∧ q)→ 2p) ∧ (2(p ∧ q)→ 2q)
))

by (PL2)
10 (2(p ∧ q)→ 2q)→(

(2(p ∧ q)→ 2p) ∧ (2(p ∧ q)→ 2p)
)

Modus Ponens on 4, 9
11 (2(p ∧ q)→ 2p) ∧ (2(p ∧ q)→ 2q) Modus Ponens on 8, 10
12 (2(p ∧ q)→ 2p) ∧ (2(p ∧ q)→ 2q)→

(2(p ∧ q)→ (2p ∧2q)) by (PL1)
13 2(p ∧ q)→ (2p ∧2q) by Modus Ponens 11, 12

(ii) If ϕ→ ψ is provable in HML, then so is 2ϕ→ 2ψ:
1 ϕ→ ψ provable by assumption
2 2(ϕ→ ψ) Necessitation rule on 1
3 2(ϕ→ ψ)→ (2ϕ→ 2ψ) Modal Distributivity
4 2ϕ→ 2ψ Modus Ponens on 2, 3

�

Theorem 1.4.1 (Soundness and completeness). The proof system HPL (HML and
HFO) is sound and strongly complete for LPL (resp. LML and LFO) w.r.t. CPL (resp. CML
and CFO).

Corollary 1.4.1 (Compactness of PL,ML and FO). The logics PL,ML and FO are
compact.

1.4.3 Increasing the Deductive Power of Modal Logics

We can increase the deductive strength of modal logic ML, by means of further axioms
on top of our minimal proof system K := HML.

Definition 1.4.5 (Proof systems T, S4, and S5). The proof system T adds the
axiom schema 2iϕ → ϕ to K, or equivalently, ϕ → 3iϕ. Next, S4 adds the 4 axiom
2iϕ→ 2i2iϕ to T, or equivalently 3i3iϕ→ 3iϕ. Finally, S5 adds the following axiom
to S4: 3iϕ→ 2i3iϕ, or equivalently, ¬2iϕ→ 2i¬2iϕ. �

These axioms correspond to first-order frame properties:

Proposition 1.4.1. Let F be a frame. We have
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• F |= 2ip → 2i2ip if, and only if, the relation Ri is transitive: i.e., ∀xyz(Rixy ∧
Riyz → Rixz);

• F |= 2ip→ p if, and only if, the relation Ri is reflexive: i.e., ∀xRixx;

• F |= ¬2ip→ 2i¬2ip if, and only if, the relation Ri is euclidean: i.e., ∀xyz(Rixy∧
Rixz → Riyz).

The notion of correspondence is dealt with in modal correspondence theory (van
Benthem, 2001). Among other questions, it addresses the following ones (See (Blackburn
et al., 2001) for more details):

1. When does a given modal axiom have a first-order frame correspondent ?

2. When does a first-order frame property have a modal definition ?

Note that modal formulas may also sometimes have second-order correspondent (e.g.
Löb’s axiom 2i(2iϕ→ ϕ)→ 2iϕ corresponds to the property of transitivity and reverse
well-foundedness of accessibility relations).

Our formulas T, 4 and 5 are Sahlqvist formulas. These formulas are such that their
first-order frame correspondent can be computed algorithmically and such that we have:

Theorem 1.4.2. Let Γ be a set of Sahlqvist axioms. The proof system KΓ is sound and
strongly complete w.r.t. the first-order class of frames defined by Γ.

Corollary 1.4.2. The proof system T (resp. S4, S5) is sound and complete for LML w.r.t.
the class of frames with reflexive (resp. reflexive and transitive, equivalent) accessibility
relations.

1.5 List of Logics

We list below some well-known logics. This list is obviously non exhaustive. For more
information about these logics, the interested reader can consult the following references
as introductory texts and for further pointers: (Goble, 2001; Priest, 2011; van Benthem,
2010; Gabbay and Guenthner, 2001; Restall, 2000).

• Variants and weakenings of PL:

1. Intuitionistic logics: the excluded middle ϕ ∨ ¬ϕ is not valid anymore.
2. Linear logics: the contraction and weakening rules of Gentzen sequent calcu-

lus are not valid anymore. (In computer science, it is used for systems where
ressources cannot be used infinitely often.)

3. Relevant logics: the weakening rules of Gentzen sequent calculus are not valid
anymore. Hence, ϕ → (ψ → ϕ) is not valid (informally, ψ is not relevant to
the derivation of ϕ here).
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4. Non-monotonic logics: monotonicity, i.e. from Γ |= ϕ infer Γ ∪ {ψ} |= ϕ, is
no longer valid;

5. Conditional logics: the definition of material implication as ϕ→ ψ := ¬ϕ∨ψ
does not hold anymore. (It attempts to model more faithfully our intuitive
understanding of conditionals and counterfactuals ‘if ϕ then ψ’.)

6. Many-valued logics: logics with more truth values than just T and F . Fuzzy
logic is a many-valued logic.

7. Paraconsistent logics: the principle of explosion (or ex contradictione sequitur
quodlibet) ψ ∧ ¬ψ → ϕ is not valid anymore. (It attempts to deal with
contradictions while avoiding trivial theories.)

8. Quantum logic: the distributive law p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) is not
valid anymore. (It attempts to respect the postulates of quantum mechanics
in physics.)

Many of the above logics are substructural logics (Restall, 2000).

• Variants, weakenings and extensions of FO:

1. Free logics: allow for terms that do not denote any object and for models that
have an empty domain.

2. Independence-friendly logic: it allows one to express independence relations
between quantified variables as in the formula ∀a∀b∃c/b∃d/aϕ(a, b, c, d) (x/y
should be read as “x is independent of y”). It has a ‘game’ semantics based
on imperfect information games.

3. Higher-order logics: second-order logic (quantification over predicates), third-
order logic (quantification over predicates of predicates),. . .

• Variants of ML:

1. Epistemic logics, preference and deontic logics, temporal logics: to reason
about knowledge, obligations and permissions, time respectively. (Temporal
logics LTL, CTL,. . . are used in computer science for formal verification.)

2. Dynamic logics (e.g. PDL): to reason about programs, and also about actions
and events in artificial intelligence.

3. Provability logics: to reason about proofs.
4. Description logics: to reason about the concepts of an application domain

and their relations. It is also a fragment of FO.

• Other logics and combinations of logics:

1. First-order modal logic: a combination of ML with FO (possible worlds of
models are identified with first-order structures).
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2. Probabilistic logics, possibilistic logics: to reason about probability and un-
certainty.

3. Hoare logics: to reason about programs and in particular programs that ma-
nipulate pointer data structures (Separation logic).

4. Spatial logics: to reason about spatial notions.

1.6 Further Reading

Section 1.2 is based on (van Benthem et al., 2013; van Benthem, 2010; Ben-Ari, 2012)
and some lecture notes of Moshe Vardi (in this section, some parts are directly copy-
pasted from them). See these references for a general introduction to formal logic. For
more details about modal logic, see the books of Blackburn et al. (2001) or van Benthem
(2010) and for more advanced readers the handbook of modal logic (van Benthem et al.,
2007). For a mathematical presentation of propositional logic and first-order logic, see
(Smullyan, 1968; Kleene et al., 1971; Enderton, 1972), and for a more ‘computer science’
oriented perspective, see (Huth and Ryan, 2004; Ben-Ari, 2012). Note that the book
of Huth and Ryan (2004) gives a presentation of logic where all the proof systems are
not Hilbert systems like here but natural deduction systems. Finally, questions such as
‘what is logic ?’ that we raised in the introduction of this part are addressed in the
philosophy of logic (Jacquette, 2007; Read, 1995).
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Chapter 2

Decidability, Complexity and Expressiveness

“What can be said at all can be said clearly, and what we cannot talk about we
must pass over in silence.”

– Ludwig Wittgenstein, Tractatus Logico-Philosophicus , 1922

2.1 Introduction

Once a logic is defined, we can study its properties. In particular, we can study whether it
is more expressive than another logic, that is, whether it can express more things about
a given model than another logic (this is called expressiveness). We can also study
whether it is possible to find an algorithm that will solve a specific problem formulated
in this logic (this is called decidability) and how complex and hard it will be to solve this
problem with such an algorithm (this is called computational complexity). These three
problems will be the topic of this chapter and the chapter is organized accordingly.

Section 2.2 deals with decidability and introduces two standard techniques to prove
decidability of a logic: the tableau method and the finite model property. Section 2.3
deals with expressiveness and introduces a number of games that can be used to prove
that a logic is more expressive than another. Section 2.4 deals with computational
complexity and introduces the main decision problems defined for logics, as well as the
main complexity classes.

2.2 Decidability

Hilbert proof systems provide a means to (finitely) characterize and recursively enumer-
ate the set of validities of a given logic. But they do not provide a way to decide or test
whether a given formula is a validity of the logic.

Generally speaking, a decision problem in logic is a problem that takes some logical
objects as input (formula, models) and yields as output a decision, “yes” or “no”, de-
pending on the nature of the problem. A decision procedure for a decision problem is
an algorithm, a ‘mechanical’ method that terminates and gives an answer to any given
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30 2. Decidability, Complexity and Expressiveness

Algorithm 2.2.1.

Input: A formula ϕ ∈ LPL ∪ LML ∪ LFO.

Output: A tableau T for ϕ.

1. Initially, T is a tree consisting of a single root node labeled with ϕ, if ϕ ∈
LPL ∪ LFO (or with (` ϕ), if ϕ ∈ LML).

2. Repeat the following steps as long as possible:

(a) Choose a branch which is neither closed nor open and choose a formula ψ
to decompose (resp. a labeled formula (` ψ) or a pair of labeled formula
(` ψ) and relation term (R ` `′)) not selected before on this branch.

(b) Apply the appropriate tableau rule of Figures 2.2, 2.3 and 2.4 to ψ (or
the pair (` ψ), (R ` `′)):
• if the rule is a β-rule, add two successor nodes to the branch labeled
with the instantiation of the denominator(s) of that rule,
• otherwise, add a unique successor node labeled with the instantiation
of the denominator(s) of that rule.

(c) i. Label by × (closed) the (new) branches which contain a formula and
its negation.

ii. Label by � (open) the (new) branches where there are no more for-
mulas to decompose.

Figure 2.1: Construction of a tableau

instance of this problem. When such a decision procedure exists, the decision problem
is decidable, and undecidable otherwise.

2.2.1 Tableau Method: a Decision Procedure

Tableaux are decisions procedure that provide an answer to the validity decision problem
for PL and ML, but not for FO. Another well-known decision procedure is resolution
which is the theoretical basis of logic programming (Gabbay and Robinson, 1998).

Definition 2.2.1 (Label, labeled formula and relation term). Let S be an infinite
set whose elements are called labels. A labeled formula is an expression of the form (` ϕ)
where ` is a label and ϕ is a formula (typically of LML). A relation term is an expression
of the form (R ` `′) where `, `′ ∈ S. �

Definition 2.2.2 (Tableau rules). A (prefixed) tableau is a finite tree whose nodes
are labeled with formulas (resp. prefixed formulas). The tableau tree for a formula is
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constructed as shown in Algorithm 2.2.1 of Figure 2.1. The tableau rules of PL are
represented in Figure 2.2. The tableau rules of FO are obtained by adding the rules
of Figure 2.3 to those of PL. The tableau rules for ML are obtained by prefixing the
formulas of the rules of PL and by adding the rules of Figure 2.4.

In the tableau rules, the formulas above the horizontal lines are called numerators
and those below are called denominators. If these are separated by vertical line(s), the
tableau rule is called a β-rule. �

Theorem 2.2.1 (Soundness and completeness). Let ϕ ∈ LPL ∪ LML ∪ LFO. Then,
ϕ is satisfiable if, and only if, the tableau for ϕ is open.

Example 2.2.1. The tableau of Figure 2.5 shows that the formula p→ (q → (p∧ q)) is
valid in PL. The tableau of Figure 2.6 shows that the formula 2(p → q) → (2p → 2q)
is valid in ML. �

Theorem 2.2.2 (Termination). The construction of a tableau for any formula of LPL
or LML terminates, but not necessarily for formulas of LFO.

Corollary 2.2.1 (Decidability of PL and ML). The validity problems of PL and ML
are decidable.

Proof. It follows easily from Theorems 2.2.1 and 2.2.2.

Theorem 2.2.3 (Undecidability of FO). The validity problem of FO (sometimes
called the Hilbert’s Entscheidungs problem) is undecidable.

Many fragments of FO are decidable, such as monadic first-order logic (only unary
predicates), the two-variable fragment of FO, the guarded fragment, and many more
(Börger et al., 2001).

2.2.2 Finite Model Property

A problem is decidable if both the problem and its complement are recursively enumer-
able. We already know that the validity problem is recursively enumerable, because the
set of validities is axiomatizable. To prove that the complement of the validity problem,
i.e. the satisfiability problem, is recursively enumerable, it suffices to show that the logic
has the finite model property: any satisfiable formula is satisfiable in a finite model. In-
deed, if a logic has the finite model property, we can enumerate the set of finite models:
if the formula is satisfiable it will eventually be satisfied by a finite model.

Proving that a given logic has the effective finite model property is another means
to prove that its validity/satisfiability problem is decidable. In that case, we must find
a computable bound on the size of the model that satisfies the formula. A general
approach that works for a number of modal logics is based on the filtration method.

Definition 2.2.3 (Filtration of a model). Let M = (W,R, V ) be a Kripke model
and let ϕ ∈ LML. The (smallest) filtration of modelM by ϕ is the Kripke model denoted
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ϕ1 ∧ ϕ2

ϕ1
ϕ2

∧ ¬¬ϕ
ϕ ¬¬

¬(ϕ1 ∧ ϕ2)
¬ϕ1 ¬ϕ2

¬∧

¬(ϕ1 ∨ ϕ2)
¬ϕ1
¬ϕ2

¬∨
¬(ϕ1 → ϕ2)

ϕ1
¬ϕ2

¬ → ϕ1 ∨ ϕ2

ϕ1 ϕ2
∨

ϕ1 → ϕ2

¬ϕ1 ϕ2
→

Figure 2.2: Tableau rules for PL (first raw) and derived rules (second raw)

∀xϕ
ϕ[x/t] ∀ where t is a variable-free term

¬∀xϕ
¬ϕ[x/c] ¬∀ where c is a new constant

¬∃xϕ
¬ϕ[x/t] ¬∃ where t is a variable-free term

∃xϕ
ϕ[x/c] ∃ where c is a new constant

Figure 2.3: Specific tableau rules for FO (first raw) and derived rules (second raw)

(` 2ϕ) (R ` `′)
(`′ ϕ)

2
(` ¬2ϕ)
(R ` `′)
(`′ ¬ϕ)

¬2

(` ¬3ϕ) (R ` `′)
(`′ ¬ϕ)

¬3
(` 3ϕ)
(R ` `′)
(`′ ϕ)

3

Figure 2.4: Specific tableau rules for ML (first raw) and derived rules (second raw)
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¬(p→ (q → (p ∧ q)))

p,¬(q → (p ∧ q))

q,¬(p ∧ q)

¬p
×

¬q
×

Figure 2.5: Tableau for the formula ¬(p→ (q → (p ∧ q)))

(` ¬(2(p→ q)→ (2p→ 2q))

(` 2(p→ q))
(` ¬(2p→ 2q))

(` 2p)
(` ¬2q)

(R ` `′)
(`′ ¬q)

(`′ p→ q)

(`′ p)

(`′ ¬p)
×

(`′ q)
×

Figure 2.6: Tableau for the formula ¬(2(p→ q)→ (2p→ 2q))

Université de Rennes 1 UFR Philosophie
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M∼ϕ = (W∼ϕ , R∼ϕ , V ∼ϕ) and defined as follows. First, we define the equivalence rela-
tion ∼ϕ between possible worlds by ∼ϕ:= {(w, v) : M, w |= ψ iffM, v |= ψ for all ψ ∈
Sub(ϕ)}. Equivalence classes of ∼ϕ are denoted w∼ϕ , v∼ϕ , . . . Then,
• W∼ϕ := {w∼ϕ : w ∈W};

• R∼ϕ := {(w∼ϕ , v∼ϕ) ∈W∼ϕ×W∼ϕ : there are s ∈ w∼ϕ and t ∈ v∼ϕ such that (s, t) ∈
R};

• V ∼ϕ(p, w∼ϕ) = T iff V (p, w) = T if p ∈ Sub(ϕ). �

The definition of R∼ϕ can vary, giving rise to other definitions of filtrations. This
one is the smallest filtration.
Fact 2.2.1. For all Kripke modelsM, all w ∈M and all ψ ∈ Sub(ϕ), we haveM, w |=
ψ if, and only if,M∼ϕ , w∼ϕ |= ψ. Moreover,M∼ϕ contains at most 2|Sub(ϕ)| worlds.
Theorem 2.2.4 (Effective finite model property of ML). Every satisfiable modal
formula ϕ ∈ LML is satisfiable on a finite Kripke model containing at most 2|Sub(ϕ)|

worlds.

Corollary 2.2.2. The validity problem of ML is decidable.
Proof. Consider ϕ ∈ LML. Enumerate all the Kripke models of size 2|Sub(ϕ)| (their
number is finite) and check for each of them whether they make ϕ true. If one does, ϕ
is satisfiable, otherwise ϕ is unsatisfiable.

Theorem 2.2.5. FO does not have the finite model property.
Proof. Let ϕ be the formula that says that < is an irreflexive transitive order where every
point has a successor. The natural numbers with the relation < is a model. However, ϕ
has only infinite models: any finite transitive model in which each point has a successor
must have loops, which are forbidden by the irreflexivity.

However, FO satisfies the following property:
Theorem 2.2.6 (Löwenheim-Skolem). If a countable set of formulas is satisfiable
then it is satisfiable in a countable domain.

Uncountable sets such as the real numbers can be described by countably many
axioms (formulas). Thus formulas that describe real numbers also have a countable
model in addition to the standard uncountable model ! Such models are called non-
standard models. The Löwenheim-Skolem and the Compactness properties are often
used to show undefinability of mathematical properties in FO: a standard example is
finiteness of the domain. They are also characteristic of FO:
Theorem 2.2.7 (Lindström). FO is the ‘strongest logic’ having both the Compactness
and Löwenheim-Skolem properties.

A recent characerization result also holds for ML: an ‘abstract modal logic’ L ex-
tending the modal logic ML equals ML if, and only if, L satisfies (a) Invariance for
Bisimulation and (b) Compactness (see (van Benthem, 2010, Th. 73) for more details).
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2.3 Expressive Power and Invariance

Independently from any language, structures have mathematical relations (isomorphism,
bisimulations,. . . ). A fundamental measure of the expressive power of a language is its
‘power of distinction’ between different structures, that is, to what extent the language
can distinguish two different structures. A semantic relation of invariance between
structures can be matched to a particular logic: e.g. bisimulation with ML, isomorphism
with FO.

2.3.1 First-order Logic: Ehrenfeucht-Fraïssé games

Definition 2.3.1 (Isomorphism and partial isomorphism). Two structuresM and
N are isomorphic if there is a bijection F from WM to WN such that for all predicate
R, all w1, . . . , wk ∈W , all c ∈ CONS

F (cM) = cN

(w1, . . . , wk) ∈ R iff (F (w1), . . . , F (wk)) ∈ RN

A partial isomorphism is an injective partial function (often finite) between subsets of
the domains of two structures, which is an isomorphism if it is restricted to its domain
and range. �

Proposition 2.3.1. For all structuresM and N , condition (1) implies condition (2):

1. M and N are isomorphic

2. M and N are elementary equivalent, i.e. they both make true the same sentences.

If the structuresM and N are finite, then conditions (1) and (2) are in fact equivalent.

The proposition does not hold with infinite structures: finiteness of domains is not
expressible in FO (due to the compactness of FO).

Example 2.3.1. The following pairs of structures are not isomorphic, but

• (Q, <Q) and (R, <R) satisfy the same formulas of FO with <;

• (N, <N) and (N+ Z, <N+Z) satisfy the same formulas of FO with <. �

FO can distinguish Q from R with a richer vocabulary if one adds the multiplication
function:

√
2 ∈ R−Q is expressible by ∃x : x · x = 2.

Definition 2.3.2 (Ehrenfeucht-Fraïssé games). Consider two structuresM and N
and two players called Duplicator D and Spoiler S. Fix k ∈ N representing the number
of rounds. At each round:

1. S chooses one of the structures (sayM) and picks an element d in its domain;
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2. D chooses an element e in the other structure, and the pair (d, e) is added to the
current list of matched elements.

At the end of the k rounds, if the list of matched elements is a partial isomorphism,
D wins; otherwise, S has won the game. �

Example 2.3.2. Wins for S are correlated with specific first-order formulas ϕ that bring
out a difference between the two structures. The number of rounds of the game is also
correlated with the quantifier depth of ϕ, written qd(ϕ), defined as follows: qd(ϕ) := 0 for
atomic formulas ϕ, qd(¬ϕ) := qd(ϕ), qd(ϕ ∧ ψ) := max{qd(ϕ), qd(ψ)}, and qd(∀xϕ) :=
qd(ϕ) + 1.

1. A simple example:

M : a1 a2 N : b1

Round 1: S chooses a1 inM D chooses b1 in N
Round 2: S chooses a2 inM D chooses again b1 in N

If we stopped after round 1, D would trivially win. After round 2, S has won, as
the map is not a partial isomorphism: the cardinalities do not match. In extensive
form game:

M : a1 a2 N : b1

Red: a (the) play induced by a winning strategy for Spoiler S.
Difference formula:

ϕ := ∃x∃y¬(x = y) qd(ϕ) = 2

2. Cycles:

M : 1 2

3

N : i j

l k
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Round 1: S chooses 1 inM D chooses i in N
Round 2: S chooses 2 inM D chooses again j in N
Round 3: S chooses 3 inM D chooses again k in N

Difference formula:

ϕ := ∃x∃y∃z(Rxy ∧Ryz ∧Rxz) qd(ϕ) = 3

S has won, because this match is not a partial isomorphism. But S can do better:
Round 1: S chooses i in N D chooses 1 in N
Round 2: S chooses k inM D chooses any element, and loses

Difference formula:

ψ := ∃x∃y(¬Rxy ∧ ¬Ryx ∧ ¬(x = y)) qd(ψ) = 2

3. Integers versus rational: (Z, <Z) and (Q, <Q) are two linear orders with different
properties: the latter is dense and the former is discrete.

Z . . . −1 0 1 . . .

Q . . . 0 1
5

1
3

. . .

D has a winning strategy for the EF-game over 2 rounds. But S has a winning
strategy for the EF-game in 3 rounds:
Round 1: S chooses 0 in Z D chooses 0 in Q
Round 2: S chooses 1 in Z D chooses 1

3 in Q

Round 3: S chooses 1
5 in Q D chooses any element, and loses

The following difference formula characterizes the property of density:

ϕ := ∀x∀y(x < y → ∃z(x < z ∧ z < y)) qd(ϕ) = 3 �

Definition 2.3.3 (Winning strategy). A winning strategy for the Duplicator D in a
k-round EF -game onM and N is a sequence I0, I1, . . . , Ir of non-empty sets of partial
isomorphisms fromM to N such that for all i < r,
Forth for all f ∈ Ii, all w ∈WM, there is v ∈WN and g ∈ Ii+1 such that f ∪{(w, v)} ⊆

g;

Back for all f ∈ Ii, all v ∈WN , there is w ∈WM and g ∈ Ii+1 such that f∪{(w, v)} ⊆ g.
Theorem 2.3.1 (Adequacy theorem). For all structures M,N , for all k ∈ N, the
following are equivalent:

1. Duplicator D has a winning strategy against Spoiler S in the k-round EF -game on
the structuresM and N ;

2. M and N make true the same sentences up to quantifier depth k.
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2.3.2 Modal Logic: Bisimulation Games

Definition 2.3.4 (Bisimulation). A bisimulation between two structures M,N is a
binary relation Z ⊆WM ×WN such that, whenever wZv:

Atom: w and v make true the same propositional letters;

Forth: for all w′ ∈ WM such that wRMw′, there is v′ ∈ WN such that vRN v′ and
w′Zv′;

Back: for all v′ ∈WN such that vRN v′, there is w′ ∈WM such that wRw′ and w′Zv′.

Proposition 2.3.2 (Invariance). Let M and N be two Kripke models. If Z is a
bisimulation between M and N and wZv, then w and v make true the same modal
formulas.

Example 2.3.3. M and N are bisimilar: Z is in green. N and N ′ are also bisimilar: Z
is in blue. (N , w) and (N ′, w′) are not bisimilar: N , w |= 332⊥ but N ′, w′ |= ¬332⊥.

•

p p

•

•

w : p

•

v : p p

•

M: N : N ′:

Proposition 2.3.3. LetM and N be finite (or image finite) Kripke models. If w ∈M
and v ∈ N make the same modal formulas true, then there is a bisimulation Z between
M and N with wZv.

Definition 2.3.5 (Bisimulation game). Consider two Kripke modelsM and N and
a pair (w, v) ∈ WM ×WN . Fix k ∈ N representing the number of rounds. At each
round:

1. S chooses one of the models (sayM) and picks an element w′ in its domain such
that wRiw′;

2. D then responds with an element v′ ∈WN of the other model (here N ) such that
vRiv

′.

If at any round, w and v are different in their atomic properties or if D cannot find
a successor, S wins. �

Unlike EF-games, bisimulation games restrict the selection of elements to successors
of those previously matched. Bisimulation games are a modification of EF-games.

Theorem 2.3.2 (Adequacy theorem). For all Kripke models M,N , all w ∈ M,
v ∈ N , k ∈ N, the following are equivalent:

Université de Rennes 1 UFR Philosophie



2.3. Expressive Power and Invariance 39

1. D has a winning strategy in a k-round (infinite round) bisimulation game on
(M, w) and (N , v);

2. (M, w) and (N , v) make true the same modal formulas up to modal depth k (resp.
any modal depth).

Example 2.3.4. (N , w) and (N ′, w′) can be distinguished in a bisimulation game of 3
rounds. Why? Because N , w |= 332⊥ but N ′, w′ 2 332⊥.

•

w : p

•

w′ : p p

•

N : N ′:

Other model comparison games: p-Pebble games, counting games, bijection
games. . . By varying the rules of EF -games, one can investigate and characterize the
expressive power of a wide variety of logical languages. For example, the p-Pebble games
characterize the fact that two structures make true the same first-order sentences up to
quantifier depth k which use at most the variables x1, . . . , xm (free or bound).

2.3.3 Using Model Comparison Games: Definability and Expressive-
ness

2.3.3.1 Definability

When we want to choose a logical language to specify and reason about a specific class of
structures (representing some problems), it is important to know which logical language
defines such a class.

Definition 2.3.6 (Definability). A class of structures C is first-order definable (modally
definable) on a class of structures C′ if, and only if, there is a sentence ϕ (resp. a formula
ϕ ∈ LML) such that C = {M :M∈ C′ andM |= ϕ}. �

None of the following properties are definable on the class of finite graph: transitive
closure, connectivity, acyclicity, planarity, Eulerian, k-colorability (for each k ≥ 2),
Hamiltonicity. . . The following corollary of Theorems 2.3.1 and 2.3.2 enables to show in
particular that a class C of structures is not first-order or modally definable on another
class C′.

Corollary 2.3.1. Let C, C′ be two classes of finite structures. The following are equiv-
alent:

• C is first-order definable (modally definable) on C′;

• there exists k ∈ N such that for allM,N ∈ C′, ifM∈ C and N /∈ C, then S wins
the EF-game (resp. bisimulation game) betweenM,N in k rounds.
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Example 2.3.5. Proper succession, that is the class of structures satisfying the FO
property ∃y(Rxy∧¬Ryx∧P (y)) is modally undefinable: it is not invariant under bisim-
ulation. �

Other invariances: ultraproducts. There are also other structural characteriza-
tions of FO and ML, mathematically deeper than the game analysis. Keisler’s theorem
(Hodges, 1997, Th. 8.5.10) says that a class of structures of FO is definable in FO if it
is closed under the formation of ultraproducts and potential isomorphisms. Likewise for
ML: a class of Kripke models C of ML is definable in ML if, and only if, both the class C
and its complement C are closed under bisimulations and ultraproducts (Blackburn et al.,
2001, Th. 2.76). For ML, at the level of frames, we also have the Goldblatt-Thomason
theorem (Blackburn et al., 2001).

2.3.3.2 Expressiveness

Definition 2.3.7 (Expressiveness). Let two logics L1 = (L1, C, |=1) and L2 = (L2, C, |=2
) be given (interpreted in the same class of models C). L1 is at least as expressive as L2,
written L1 ≥ L2, when for all ϕ2 ∈ L2, there is ϕ1 ∈ L1 such that {M ∈ C :M |= ϕ1} =
{M ∈ C :M |= ϕ2}. L1 is more expressive than L2 when L1 ≥ L2 but not L2 ≥ L1. �

In this section, we consider a FO language over Kripke modelsM = (W,R, V ) with
one binary predicate letter R for the accessibility relation, and unary predicate letters
P,Q, . . . matching propositional letters p, q, . . . Let variables x, y, z, . . . range over worlds.

Definition 2.3.8 (Standard translation). Let ϕ ∈ LML. The standard translation
ST (ϕ) of ϕ is a first-order formula with one free variable x defined inductively as follows:

ST (p) = P (x)
ST (¬ϕ) = ¬ST (ϕ)

ST (ϕ ∧ ψ) = ST (ϕ) ∧ ST (ψ)
ST (2ϕ) = ∀y(xRy → ST (ϕ)[y/x]) where y is a new variable

�

Example 2.3.6.

• ST (3ϕ) = ∃y(xRy ∧ ST (y)),

• ST (23(p ∨ q)) = ∀(xRy → ∃z(yRz ∧ (P (z) ∨Q(z))). �

Proposition 2.3.4. For all Kripke modelM and all w ∈M, for all ϕ ∈ LML, it holds
that

M, w |= ϕ iff M |= ST (ϕ)[x/w]

Corollary 2.3.2. First-order logic is more expressive than modal logic.

Proof. It follows from Proposition 2.3.4 and Example 2.3.5.

From Proposition 2.3.4, we inherit a number of results for ML from FO: compactness,
countable model and interpolation (although this later needs some fine-tuning for ML).
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Theorem 2.3.3 (Craig’s interpolation). Let ϕ,ψ be two formulas of ML (or FO). If
ϕ |= ψ, then there exists an “interpolant” α of ML (resp. FO) with ϕ |= α and α |= ψ
such that every non-logical symbol in α occurs in both ϕ and ψ.

The following theorem tells that the modal language may be viewed in a natural
manner as the bisimulation-invariant fragment of first-order logic.

Theorem 2.3.4 (van Benthem). Let ϕ(x) ∈ LFO be a formula containing unary pred-
icates P (x) and binary predicates R(x, y). The two following statements are equivalent:

• There exists a formula ψ ∈ LML such that |=FO ϕ↔ ST (ψ);

• For all models M,N , all w ∈ M, v ∈ N such that there exists a bisimulation
Z between M and N such that wZv, we have M |= ϕ(x)[x/w] if, and only if,
N |= ϕ(x)[x/v].

2.4 Computation and Complexity

Even if the validity problem is decidable for propositional and modal logic, the resources
needed to answer the problem might be quite different and it may be wildly infeasible
in practice. To address such worries and answer many other questions about actual
performance of algorithms, computer scientists developed Complexity Theory. One can
measure the complexity of a task in terms of time (number of steps taken) and space (size
of the memory employed). Measures for time and space involve some task-dependent
variable: often the length of the input formula, or the size of some given finite model.
What we are actually measuring are rates of growth rather than specific numbers. In
Figure 2.7, we recall the main complexity classes. They are ordered according to the
computational effort needed to solve problems of each class.

Definition 2.4.1 (Standard decision problems in logic). The three main decision
problems in logic are:

Satisfiability: Determining validity, or equivalently, testing for satisfiability of given for-
mulas, is answering the question: “Given a formula ϕ, determine whether ϕ has a
model”.

Model checking: Model checking, or testing for truth of formulas in given models, is an-
swering the question: “Given a formula ϕ and a finite modelM, w, check whether
M, w |= ϕ”.

Model equivalence: Model comparison, or testing for equivalence of given models, is an-
swering the question: “Given two finite modelsM, w and N , v, check if they satisfy
the same formulas”. �

Usually, the theorem provers for ML are not in the above axiomatic style, but they
use a variety of other methods: (1) translation into FO plus “resolution” methods; (2)
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P NP PSPACE EXPTIME . . . Undecidable

2SAT 3SAT QBF Sat of CTL Sat of FO
Shortest path Traveling Game of Pebble Games Halting problem

Salesman Geography

tractable (feasible) untractable (unfeasible)

Figure 2.7: Main complexity classes

Decision Problems: Model Checking Satisfiability Model Comparison

Propositional Logic: linear time (P) NP linear time (P)

Modal Logic: P PSPACE P

First-order Logic: PSPACE undecidable NP

Figure 2.8: Complexity profile of the logics PL,ML and FO

the “tableau methods” of the next section; (3) specially optimized modal calculi. (see
http://www.aiml.net for more details)

Here is an important rule of logic. Modal logic is known for its good balance between
expressiveness and computational complexity.

Golden Rule: the balance between expressive power and compu-
tational effort. “The more expressive a logic is, the more complex its
associated decision problems are, and vice versa.”

For undecidable logics, there is also a kind of balance between expressive power
and axiomatizability: second-order logic is more expressive than first-order logic, but
second-order logic loses axiomatizability.

2.5 Further Reading

My presentation of the tableau method is based on (Bibel and Eder, 1993) and (Fitting,
1993). The rest of this chapter is based on a combination and adaptation of presen-
tations from (van Benthem, 2010; Blackburn et al., 2001) (specially for modal logic),
(Enderton, 1972; Ben-Ari, 2012) (for first-order logic). More information about the the-
ory of computation and complexity theory can be found for instance in (Sipser, 2006;
Papadimitriou, 2003) and about model theory in (Hodges, 1997).

Université de Rennes 1 UFR Philosophie

http://www.aiml.net


Part II

Representing and Reasoning about Uncertainty
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Introduction to Part II

“An investment in knowledge pays the best interest.”
– Benjamin Franklin, Poor Richard’s Almanac, c. 1750

This part is about logical models for knowledge representation and belief change. We
propose logical systems which are intended to represent how agents perceive a situation
and reason about it, and how they update their beliefs about this situation when events
occur. These agents can be machines, robots, human beings. . . but they are assumed to
be somehow autonomous.

The way a fixed situation is perceived by agents can be represented by statements
about the agents’ beliefs: for example ‘agent A believes that the door of the room is
open’ or ‘agent A believes that her colleague is busy this afternoon’. ‘Logical systems’
means that agents can reason about the situation and their beliefs about it: if agent A
believes that her colleague is busy this afternoon then agent A infers that he will not
visit her this afternoon. We moreover often assume that our situations involve multiple
agents which interact with each other. So these agents have beliefs about the situation
(such as ‘the door is open’) but also about the other agents’ beliefs: for example, agent
A might believe that agent B believes that the door is open. These kinds of beliefs are
called higher-order beliefs. Epistemic logic (Hintikka, 1962; Fagin et al., 1995; Meyer and
van der Hoek, 1995), the logic of belief and knowledge, can capture all these phenomena
and will be our main starting point to model such fixed (‘static’) situations.

Uncertainty can of course be expressed by beliefs and knowledge: for example agent
A being uncertain whether her colleague is busy this afternoon can be expressed by
‘agent A does not know whether her colleague is busy this afternoon’. But we sometimes
need to enrich and refine the representation of uncertainty: for example, even if agent
A does not know whether her colleague is busy this afternoon, she might consider it
more probable that he is actually busy. So other logics have been developed to deal
more adequately with the representation of uncertainty, such as probabilistic logic, belief
functions, possibilistic logic, etc. and we will refer to some of them in this part. Things
become more complex when we introduce events and changes in the picture. Issues arise
even if we assume that there is a single agent. Indeed, there are situations where the
agent might also have some uncertainty about the incoming information: for example,
agent A might be uncertain due to some noise whether her colleague told her that
he would visit her on Tuesday or on Thursday. In this part we also investigate such
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phenomena.
Things are even more complex in a multi-agent setting because the way agents update

their beliefs depends not only on their beliefs about the event itself but also on their
beliefs about the way the other agents perceived the event (and so about the other
agents’ beliefs about the event). For example, during a private announcement of a piece
of information to agent A, the beliefs of the other agents actually do not change because
they believe nothing is actually happening; but during a public announcement all the
agents’ beliefs might change because they all believe that an announcement has been
made. Such kind of subtleties have been dealt with in a field called dynamic epistemic
logic (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem, 2011). The idea is to
represent by an event model how the event is perceived by the agents and then to define
a formal update mechanism that specifies how the agents update their beliefs according
to this event model and their previous representation of the situation.

So this part is more generally about information and information change. However,
we will not deal with problems of how to store information in machines or how to
actually communicate information. Such problems have been dealt with in information
theory (Cover and Thomas, 1991) and Kolmogorov complexity theory (Li and Vitányi,
1993). We will just assume that such mechanisms are already available and start our
investigations from there.

This part is divided into two chapters. In Chapter 3, we will introduce the main
logical formalisms for reasoning about uncertainty in a context where there is a single
agent. In Chapter 4, we will introduce the current most prominent logical formalisms for
reasoning about uncertainty in a context where there are multi-agent systems, namely
Dynamic Epistemic Logic (DEL).

Applicative perspective. Studying and proposing logical models for reasoning about
uncertainty has applications in three areas. First, in artificial intelligence, where ma-
chines or robots need to have a formal representation of the surrounding world (which
might involve other agents) and formal mechanisms to update this representation when
they receive incoming information. Such formalisms are crucial if we want to design
agents, able to act autonomously in the real world or in a virtual world (such as on the
internet). Indeed, the representation of the surrounding world is essential for a robot to
reason about the world, plan actions in order to achieve goals, etc. It must also be able
to update and revise its representation of the world itself, in order to cope autonomously
with unexpected events. Second, in game theory (and consequently in economics), where
we need to model games involving several agents (players) having beliefs about the game
and about the other agents’ beliefs (such as agent A believes that agent B has the ace of
spade, or agent A believes that agent B believes that agent A has the ace of hearts. . . ),
and how they update their representation of the game when events (such as showing
a card privately or putting a card on the table) occur. Third, in cognitive psychology,
where we need to model as accurately as possible the epistemic state of human agents
and the dynamics of belief and knowledge, in order to explain and describe cognitive
processes.
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Chapter 3

Reasoning Alone about Uncertainty

“Do not expect to arrive at certainty in every subject which you pursue. There
are a hundred things wherein we mortals. . .must be content with probability,
where our best light and reasoning will reach no farther”

– Isaac Watts (1674 – 1748)

3.1 Introduction
As we shall see in this chapter, reasoning about uncertainty can be subtle and varied.
This richness may be explained by the fact that uncertainty is present in almost every
human activity. For example, a player may have no clue whether the dice of a backgam-
mon are loaded or not, but this should not prevent him from making inferences and
strategies about which moves to play. Likewise, an engineer may have difficulties assign-
ing numbers corresponding to probabilities of occurrence of faulty events of a system
that he is supposed to manage, and he may then prefer instead to compare the relative
likelihood of these events. In general, depending on the access that the modeler has
about the epistemic state of the agent or about the situation at stake, the representation
of uncertainty will be different. In fact, the variety of representations of uncertainty
reflects the variety of situations in everyday life in which uncertainty has to be repre-
sented by some means. This explains why so many formalisms have been introduced to
account for the representation and reasoning about uncertainty. In this chapter, we will
present some of these most well-known formalisms and we will see that they are in fact
all instances of a very abstract framework based on the notion of plausibility measure
introduced by Friedman and Halpern (2001).

The chapter is organized as follows. We will first focus in Section 3.2 on the repre-
sentation of uncertainty by studying several formalisms introduced for different reasons.
Then, we will introduce in Section 3.3 various logics for reasoning about the uncertainty
represented in these formalisms. Finally, in Section 3.4, we will show how the represen-
tation of uncertainty can be updated as events occur and how these events change our
representation of the world and our uncertainty about it. (However, we will not define
logics for reasoning about these dynamic phenomena.)
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48 3. Reasoning Alone about Uncertainty

3.2 Representing Uncertainty

In this section, we introduce various formalisms for representing uncertainty: probability
spaces, lower/upper probabilities, inner/outer measures (Section 3.2.1), belief functions
(Section 3.2.2), possibility measures (Section 3.2.3) and ranking function (Section 3.2.4).
Each of them is suitable for representing uncertainty in a certain kind of situation and
under specific modeling assumptions. Choosing the right formalism suitable for modeling
a given situation will be the topic of Section 3.2.7.

In this chapter, W is a finite set of possible worlds. However, all the results of
this chapter can be extended to a setting where W is an infinite set of possible worlds
(modulo some slight changes, see (Halpern, 2003)).

3.2.1 Probability Measures

This section deals with the problem of representing uncertainty with probability. We will
start by formally defining probability spaces. If we follow a perfect external approach,
representing the uncertainty of the agent by means of a single probability measure (space)
is often sufficient. Justifying where the probability numbers come from in that case is
the topic of Section 3.2.6. On the other hand, if we follow an imperfect external approach
(see Section 4.1 for more details on the different modeling approaches), then we need
to represent the uncertainty of the agent by means of a set of probability measures.
This second case will be dealt with by means of lower/upper probabilities or inner/outer
measures in Section 3.2.1.1.

If a probability can be assigned to both sets U and V , then it is useful to be able
to assume that a probability can also be assigned to U ∪ V and to U . This leads us to
define the notion of algebra.

Definition 3.2.1 (Algebra). An algebra over W is a set F of subsets of W that
contains W and is closed under union and complementation, so that if U and V are in
F , then so are U ∪ V and U . �

For example, F := 2W is an algebra over W . Note that an algebra is also closed
under intersection, since U ∩ V = U ∪ V .

Definition 3.2.2 (Probability space). A probability space is a tuple (W,F , µ), where
F is an algebra over W and µ : F → [0; 1] satisfies the following two properties:

µ(W ) = 1 (P1)
µ(U ∪ V ) = µ(U) + µ(V ) if U and V are disjoint elements of F . (P2)

Although (P2) applies only to pairs of sets, an easy induction argument shows that
if U1, . . . , Uk are pairwise disjoint elements of F , then

µ(U1 ∪ . . . ∪ Uk) = µ(U1) + . . .+ µ(Uk) (Finite Additivity)
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3.2.1.1 Lower and Upper Probabilities, Inner and Outer Measures

Example 3.2.1. Suppose that a bag contains 100 marbles; 30 are known to be red, and
the remainder are known to be either blue or violet, although the exact proportion of
blue and violet is not known. What is the likelihood that a marble taken out of the bag
is violet ?

This example can be modeled with three possible worlds: w1 (for the red outcome),
w2 (for the blue outcome) and w3 (for the violet outcome). It seems reasonable to assign
probability 0.3 to w1 and probability 0.7 to {w2, w3}:

µ({w1}) := 0.3 µ({w2, w3}) := 0.7.

But what probability should be assigned to {w2} and {w3} ? If we apply the principle
of indifference, then w2 and w3 should both be assigned the probability 0.35 = 0.7

2 . This
suggests that betting that a blue or a violet marble will be withdrawn is more likely than
betting for a red marble. This is obviously counter-intuitive. �

To summarize the problem of the above example, we have an algebra F := {∅, {w1}, {
w2, w3}, {w1, w2, w3}} and a probability measure µ defined on this algebra. We want to
extend this probability measure to the algebra F ′ := 2{w1,w2,w3}.

We formalize the problem raised by the example. Let µ be a probability measure
on F . We want to extend this probability measure to an algebra F ′ such that F ⊆ F ′.
We define two approximations of such an extension (from above and from below) in two
different ways.

Definition 3.2.3 (Lower/upper probability; Inner/outer measure). Let F ,F ′
be two algebras such that F ⊆ F ′. Let µ be a probability measure on F .

1. We define the lower probability and the upper probability induced by µ on F ′ as
follows. For that, we consider the set of all extensions of µ to F ′ defined by
Pµ := {µ′ : µ′ is a probability measure on F ′ and µ′(U) = µ(U) for all U ∈ F}.
Then, for all U ∈ F ′, we define

(Pµ)∗(U) := inf {µ(U) : µ ∈ P} (Lower probability)
(Pµ)∗(U) := sup {µ(U) : µ ∈ P} . (Upper probability)

2. We define the inner measure and the outer measure induced by µ on F ′ as follows:
for all U ∈ F ′,

µ∗(U) := sup{µ(V ) : V ⊆ U, V ∈ F} (Inner measure)
µ∗(U) := inf{µ(V ) : V ⊇ U, V ∈ F}. (Outer measure)

�
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50 3. Reasoning Alone about Uncertainty

These two ways to define upper and lower bounds that approximate extensions are
in fact equivalent:

Theorem 3.2.1. Let µ be a probability measure on an algebra F and let Pµ consist of all
extensions of µ to an algebra F ′ ⊃ F . Then, µ∗(U) = (Pµ)∗(U) and µ∗(U) = (Pµ)∗(U)
for all U ∈ F ′.

Example 3.2.2. We have that (Pµ)∗({w2}) = µ∗({w2}) = 0 and (Pµ)∗({w2}) =
µ∗({w2}) = 0.7. Likewise for {w3}. This tells us that the probability to withdraw a
blue marble (or a violet marble) is between 0 and 0.7. Also, we have that (Pµ)∗({w1}) =
µ∗({w1}) = (Pµ)∗({w1}) = µ∗({w1}) = 0.3: the probability to withdraw a red marble is
equal to 0.3. �

Sets of probabilities can be characterized by an argument similar to the Dutch book
argument of the previous section. In that case, the postulate (RAT3) no longer holds.
Note that µ∗ and µ∗ are not necessarily probability measures. They satisfy some weaker
properties:

Proposition 3.2.1. For all inner measure µ∗ and outer measure µ∗ induced by µ on
F ′, for all U, V ∈ F ′, we have

µ∗(U ∪ V ) ≥ µ∗(U) + µ∗(V ) (Super-additivity)
µ∗(U ∪ V ) ≤ µ∗(U) + µ∗(V ) (Sub-additivity)

µ∗(U) = 1− µ∗(U) (Dual)

Lower and upper probabilities satisfy also (Super-additivity), (Sub-additivity) and (Dual).

3.2.2 Dempster-Shafer Belief Functions

Just like an inner measure, Bel(U) can be viewed as providing a lower bound on the
likelihood of U .

Definition 3.2.4 (Belief function and plausibility function). A belief function
Bel : 2W → [0; 1] is a function satisfying the following three properties:

Bel(∅) = 0 (B1)
Bel(W ) = 1 (B2)

Bel

(
n⋃
i=1

Ui

)
≥

n∑
i=1

∑
I⊆{1,...,n}:|I|=i

(−1)i+1Bel

⋂
j∈I

Uj

 for all n ∈ N. (B3)

The plausibility function associated to Bel is defined by, for all U ∈ 2W ,

Plaus(U) := 1−Bel
(
U
)

(Dual)
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We recall that
n⋃
i=1

Ui := U1∪ . . .∪Un, that
n⋂
i=1

Ui := U1∩ . . .∩Un (see Chapter A) and

that for any finite set of real numbers {x1, . . . , xn} ⊆ [0; 1] we have
n∑
i=1

xi := x1 +. . .+xn.

Note that every probability measure and every inner measure is a belief function.
But not every belief function is the inner measure of a probability measure.

Proposition 3.2.2. Let Bel be a belief function and Plaus its associated plausibility
function. Then, for all U ∈ 2W , we have

Bel(U) ≤ Plaus(U)

Plaus

(
n⋂
i=1

Ui

)
≥

n∑
i=1

∑
{I⊆{1,...,n}:|I|=i}

(−1)i+1Bel

⋃
j∈I
Uj

 for all n ∈ N. (3.1)

In fact, plausibility measures are characterized by the properties Plaus(∅) = 0, P laus(W ) =
1 and (3.1).

For any event U , the interval [Bel(U);Plaus(U)] can be viewed as describing the
range of possible values of the likelihood of U . The connection between belief functions,
inner measures and lower probabilities is made more precise by the following theorem:

Theorem 3.2.2. Given a belief function Bel defined on a space W , let PBel := {µ : µ is
a probability measure on 2W and µ(U) ≥ Bel(U) for all U ⊆W}. Then, Bel = (PBel)∗
and Plaus = (PBel)∗.

Belief functions are part of a theory of evidence. Intuitively, evidence supports events
to varying degrees. In general, evidence provides some degree of support (possibly 0) for
each subset of W . The total amount of support is 1.

Definition 3.2.5 (Mass function). A mass function (sometimes called a basic proba-
bility assignment) on W is a function m : 2W → [0; 1] satisfying the following properties:

m(∅) = 0 (M1)∑
U⊆W

m(U) = 1. (M2)

Example 3.2.3. The information that there are exactly 30 red marbles provides support
in degree 0.3 for w1; the information that there are 70 violet and blue marbles does not
provide any positive support for either {w2} or {w3}, but does provide support 0.7 for
{w2, w3}. So, we have m({w1}) = 0.3, m({w2}) = m({w3}) = m({w1, w2, w3}) = 0, and
m({w2, w3}) = 0.7. �

The belief that U holds, Bel(U), is then the sum of all of the support on subsets of
U . Intuitively, Belm(U) is the sum of the probabilities of the evidence or observations
that guarantee that the actual world is in U .
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52 3. Reasoning Alone about Uncertainty

Definition 3.2.6 (Belief function based on a mass function). Given a mass func-
tion m, define the belief function based on m, Belm, by taking:

Belm(U) =
∑

{U ′:U ′⊆U}
m(U ′)

The corresponding plausibility function Plausm is defined as:

Plausm(U) =
∑

{U ′:U ′∩U 6=∅}
m(U ′) �

There is a one-to-one correspondence between belief functions and mass functions:

Theorem 3.2.3. Given a mass function m on W , the function Belm is a belief function
and Plausm is the corresponding plausibility function. Moreover, given a belief function
Bel on W , there is a unique mass function m on W such that Bel = Belm.

Hence, there are three equivalent kinds of representation of uncertainty: mass func-
tions m, associated belief/plausibility functions (Belm, P lausm) and sets of probabil-
ities PBelm . Note that if the set of probabilities PBel = {µ} is a singleton, then
Belm = Plausm = µ.

3.2.3 Possibility Measures

Possibility measures are yet another approach to assigning numbers to sets. They are
based on ideas of fuzzy logic.

Definition 3.2.7 (Possibility measure). A possibility measure Poss : 2W → [0; 1] is
a function satisfying the following three properties:

Poss(∅) = 0 (Poss1)
Poss(W ) = 1 (Poss2)
Poss(U ∪ V ) = max{Poss(U), Poss(V )} if U and V are disjoint. (Poss3)

Unlike (P2), (Poss3) holds even if U and V are not disjoint. Like probability, if W
is finite, then a possibility measure can be defined by its behavior on singleton sets:
Poss(U) = max

u∈U
({u}).

Proposition 3.2.3. A possibility measure is a plausibility function (it satisfies (3.1)).
The dual of possibility, called necessity, is defined as follows:

Nec(U) := 1− Poss(U) (Dual)

Since Poss is a plausibility function, Nec is a belief function and Nec(U) ≤ Poss(U)
for all U ∈ 2W .

Since possibility measures are specific kind of plausibility measures, we could wonder
to which kind of mass function it corresponds.
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Definition 3.2.8 (Consonant mass function). A mass functionm is consonant when
for all U,U ′ ∈ 2W , m(U) > 0 and m(U ′) > 0 implies that either U ⊆ U ′ or U ′ ⊆ U . �

The following theorem shows that possibility measures are the plausibility functions
that correspond to consonant mass functions:

Theorem 3.2.4. If m is a consonant mass function on a finite space W , then Plausm,
the plausibility function corresponding to m, is a possibility measure. Conversely, given
a possibility measure Poss on W , there is a consonant mass function m such that Poss
is the plausibility function corresponding to m.

3.2.4 Ranking Function

Ranking functions are similar in spirit to possibility measures.

Definition 3.2.9 ((Ordinal) Ranking function). A ranking function κ : 2W → N∗,
where N∗ := N ∪ {∞}, is a function satifying the following three properties:

κ(∅) =∞ (Rk1)
κ(W ) = 0 (Rk2)
κ(U ∪ V ) = min{κ(U), κ(V )} if U and V are disjoint (Rk3)

The numbers can be though as denoting degrees of surprise; that is, κ(U) is the degree
of surprise the agent would feel if the actual world were in U . 0 denotes “unsurprising”,
1 denotes “somewhat surprising”, 2 denotes “quite surprising”, and so on;∞ denotes “so
surprising as to be impossible”. For example, the uncertainty corresponding to tossing a
coin with bias 1

3 can be captured by a ranking function such as κ(heads) = κ(tails) = 0
and κ(edge) = 3, where edge is the event that the coin lands edge.

Like possibility measures, the third property (Rk3) holds even if U and V are not
disjoint. As with probability and possibility, a ranking function is characterized by its
behavior on singletons in finite spaces: κ(U) = min

u∈U
κ(u). To ensure that (Rk2) holds, it

must be the case that min
w∈W

κ(w) = 0.
Ranking functions can be viewed as possibility measures in a straightforward way.

Given a ranking function κ, define the possibility measure Possκ as follows: for all
U ∈ 2W ,

Possκ(U) =


1

1 + κ(U) if κ(U) 6=∞

0 if κ(U) =∞
(3.2)

Proposition 3.2.4. Let κ be a ranking function. The function Possκ as defined by
expression (3.2) is a possibility measure.
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3.2.5 Preferential Structures

Sometimes, we do not want or cannot assign numbers concerning the likelihood of
events/facts. In that case, we want or can only compare the relative likelihood of differ-
ent events/facts. For that purpose, preferential structures are adequate formalisms for
representing uncertainty.

Definition 3.2.10 (Preferential structure). A preferential structure is a tuple (W,O)
where

• W is a non-empty set;

• O is a function assigning to each w ∈W a pair (Ww,�w) where Ww ⊆W and �w
is a partial preorder on Ww (i.e. a reflexive and transitive relation on Ww). �

Intuitively, we have u �w v when, from the point of view of w, u is at least as likely
as v. Given this interpretation, the fact that �w is assumed to be a partial preorder
is easy to justify. Transitivity just says that if u is at least as likely as v, and v is at
least as likely as w, then u is at least as likely as w; reflexivity just says that world w
is at least as likely as itself. The fact that �w is partial allows for agents who are not
able to compare two worlds in likelihood. We extend the definition of �w to sets in two
different ways as follows:

U �sw V iff for all v ∈ V − U, there is u ∈ U such that u � v
and it is not the case that x � u for any x ∈ U

U �ew V iff for all v ∈ V, there is some u ∈ U such that u �w v

Finally, if � is any partial order, we write u � v as a shorthand for u � v and v � u.

3.2.6 Justifying Probability Numbers

If belief is represented in terms of probabilities, then it is important to explain what the
numbers represent, where they come from, and why the property of Finite Additivity is
appropriate.

Objective interpretation: Principle of Indifference and relative-frequency.
The classical approach to applying probability, which goes back to the 17th century and
18th centuries, is to reduce a situation to a number of elementary outcomes. Then, we
apply the following principle:

Principle of Indifference: all elementary outcomes are equally likely.

Applying the principle of indifference, if there are n elementary outcomes, the prob-
ability of each one is 1

n
. Clearly, this definition satisfies P1 and P2. However, How do

we determine the elementary outcomes ? If a coin is biased, what are the equally likely
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outcomes ? Another interpretation of the probability numbers is that they represent
relative frequencies. The probability that a coin has bias 0.6 (where the bias of a coin
is the probability that it lands heads) is that it lands heads roughly 60 % of the time
when it is tossed sufficiently often. In that case, probability is an objective property of
a situation.

Subjective interpretation: Dutch book. Another interpretation suggests that the
numbers reflect subjective assessments of likelihood: this is the subjective viewpoint.
Consider the following bet:

(U,α) :=
{
if U happens then the agent wins 100(1− α) euros,
if U happens then the agent loses 100α euros.

The bet (U, 1− α) is called the complementary bet to (U,α):

(U,α) :=
{
if U happens then the agent wins 100α euros,
if U happens then the agent loses 100(1− α) euros.

Whether the bet (U,α) is at least as good as the bet (U, 1 − α), written (U,α) �
(U, 1−α), clearly depends on α. Assume that the agent has a preference order � between
sets of bets of the form {(U1, α1), . . . , (Uk, αk)} and {(U1, 1−α1), . . . , (Uk, 1−αk)}. Let
us consider the following rationality postulates:

If B1 is guaranteed to give at least as much money as B2, then B1 � B2,
if B1 is guaranteed to give more money than B2, then B1 � B2

(RAT1)

If B1 � B2 and B2 � B3, then B1 � B3 (RAT2)
Either (U,α) � (U, 1− α) or (U, 1− α) � (U,α) (RAT3)
If (Ui, αi) � (Vi, βi) for all i = 1, . . . , k,
then {(U1, α1), . . . , (Uk, αk)} � {(V1, β1), . . . , (Vk, βk)}.

(RAT4)

In (RAT1), “guaranteed to give at least as much money” means that no matter what
happens, the agent does at least as well with B1 as with B2. For example, if B1 = (U,α)
and B2 = (V, β), then this means that α ≤ β.

Theorem 3.2.5. If an agent satisfies (RAT1)–(RAT4), then for each subset U of W ,
a number αU exists such that (U,α) � (U, 1−α) for all α < αU and (U, 1−α) � (U,α)
for all α > αU . Moreover, the function defined by µ(U) = αU is a probability measure.

So, if the agent is certain that U is not the case, then αU should be 0, and if the
agent is certain that U is the case, then αU should be 1. That is, if the agent is certain
that U , then for any α > 0, it should be the case that (U,α) � (U, 1−α), since she feels
that with (U,α) she is guaranteed to win 100(1− α) euros, while with (U, 1− α) she is
guaranteed to lose the same amount.

Université de Rennes 1 UFR Philosophie



56 3. Reasoning Alone about Uncertainty

Theorem 3.2.5 entails that if U1 and U2 are disjoint subsets of W and we have that
αU1∪U2 6= αU1 + αU2 , then there is a set B1 of bets such that the agent prefers B1
to the complementary set B2, yet the agent is guaranteed to lose money with B1 and
guaranteed to win money with B2 (thus contradicting (RAT1)). Such a collection of
bets B1 is called in the literature a Dutch book (in the sense of “bookmaker”).

3.2.7 Choosing a Representation

Choosing the right formalism to represent uncertainty depends on the real-world situa-
tion we model and on the modeling assumptions that we follow (see Section 4.1 for more
details on the various modeling assumptions).

• Probability has the advantage of being well understood. It is a powerful tool; many
technical results have been proved that facilitate its use, and a number of arguments
suggest that, under certain assumptions, probability is the only “rational” way to
represent uncertainty. Choosing a single probability space for modeling situations
is more suitable when the modeler follows a perfect external approach.

• Belief functions and sets of probability measures have many of the advantages of
probability but may be more appropriate in a setting where there is uncertainty
about the likelihood. Choosing a set of probability measures or belief functions
for modeling situations is more suitable when the modeler follows an imperfect
external approach.

• Partial preorders on possible worlds may be also more appropriate in setting where
no quantitative information is available.

3.3 Reasoning about Uncertainty

All the representations of uncertainty that we have considered in the previous section are
defined by classes of models. They can also be viewed as the semantics of specific logics
(to be defined). So, on top of these classes of models, we can define logical language in
order to reason about the uncertainty that these model represent. This overall procedure
corresponds to the third approach for defining a logic that we have identified in Section
1.1 and we are going to follow this approach in this section in order to define logics for
reasoning about uncertainty.

3.3.1 Plausibility Measures: an Abstract Framework

First, we define more precisely the classes of models/structures that will constitute the
semantics of various logics for reasoning about uncertainty that we are going to define.
We are going to show that they are all in fact specific instances of the general framework
based on plausibility measures introduced by Friedman and Halpern (2001).
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Definition 3.3.1 (Probability, lower probability, belief, ranking, possibility,
preferential structures). A pointed probability (resp. lower probability, belief, ranking,
possibility, preferential) structure is a tuple S = (W,X , π, w) where

• W is a non-empty set and w ∈W ;

• X (w) := (Ww,Fw, µw) for each w ∈W is a tuple such that

– Ww ⊆W is a non-empty set;
– Fw is an algebra over Ww;
– µw is a probability measure (resp. a lower probability measure, a belief func-

tion, a ranking function, a possibility measure, a partial preorder) on Fw;

• π : W → CPL is a function called the valuation function.

A pointed probability (resp. lower probability, belief, ranking, possibility, preferential)
structure is measurable when for all w ∈W , Fw = 2Ww . We denote by Sprob (resp. Sbel,
S low, Srank, Sposs and Spref ) the class of all pointed measurable probability (resp. lower
probability, belief, ranking, possibility, preferential) structures. �

Plausibility measures. The basic idea under plausibility measure is straightforward.
A probability measure maps sets in an algebra F over a set W of worlds to [0; 1]. A
plausibility measure is more general: it maps sets in F to some arbitrary partially ordered
set.

In the rest of the lecture notes, D is a non-empty set partially ordered by a relation
≤ (so that ≤ is reflexive, transitive and anti-symmetric). We further assume that D
contains two special elements > and ⊥ such that for all d ∈ D, ⊥ ≤ d ≤ >. As usual,
we define the ordering < by taking d1 < d2 if and only if d1 ≤ d2 and d1 6= d2.

Definition 3.3.2 (Plausibility measure and structure). A (qualitative) plausibility
measure is a function Pl : F → D satisfying (Pl1)–(Pl3) (resp. (Pl1)–(Pl5)):

Pl(∅) = ⊥ (Pl1)
Pl(W ) = > (Pl2)
If U ⊆ V , then Pl(U) ≤ Pl(V ) (Pl3)
If A,B and C are pairwise disjoint sets,
Pl(A ∪B) > Pl(C) and Pl(A ∪ C) > Pl(B) imply Pl(A) > Pl(B ∪ C)

(Pl4)

If Pl(A) = Pl(B) = ⊥, then Pl(A ∪B) = ⊥. (Pl5)

A pointed qualitative plausibility structure is a tuple S = (W,X , π, w) where

• W is a non-empty set and w ∈W ;

• X (w) := (Ww,Fw, P lw) for each w ∈W is a tuple such that

– Ww ⊆W is a non-empty set;
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– Fw is an algebra over Ww;

– Plw is a qualitative plausibility measure on Fw;

• π : W → CPL is a function called the valuation function.

A pointed qualitative plausibility structure is measurable when for all w ∈ W , Fw =
2Ww . We denote by Squal the class of all pointed measurable qualitative plausibility
structures. A simple qualitative plausibility structure is a tuple S = (W,P l, π) where Pl
is a qualitative plausibility measure on the algebra 2W over W . �

Proposition 3.3.1 below shows that plausibility measures are abstract enough to
embed the various formalisms for representing uncertainty that we have encountered in
these lecture notes.

Proposition 3.3.1. Probability measures, lower probability measures, belief functions,
possibility measures, ranking functions and preferential relations are qualitative plausi-
bility measures.

Proof. For all except ranking functions, D = [0; 1], ⊥ = 0, > = 1, and ≤D is the
standard ordering on the reals. For ranking functions, D = N∗, ⊥ =∞, > = 0, and the
ordering ≤N∗ is the opposite of the standard ordering on N∗.

3.3.2 Logics for Quantitative Reasoning

We consider a generic logical language for reasoning quantitatively about uncertainty.
It contains likelihood terms of the form `(ϕ) > b which reads as ‘the agents assigns a
likelihood greater than b to ϕ’ or of the form 2`(ϕ) + `(ψ) > 0.5 which reads as ‘the sum
of twice the likelihood of ϕ with the likelihood of ψ is greater than 0.5’.

Definition 3.3.3 (Quantitative language LQuant). The language LQuant is defined
inductively by the following grammar in BNF:

LQuant : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (a1`(ϕ) + . . .+ ak`(ϕ) > b)

where p ∈ PROP and a1, . . . , ak, b ∈ R. We use the following abbreviations:

`(ϕ)− `(ψ) > b := `(ϕ) + (−1)`(ψ) > b `(ϕ) > `(ψ) := `(ϕ)− `(ψ) > 0
`(ϕ) < `(ψ) := `(ψ)− `(ϕ) > 0 `(ϕ) ≤ b := ¬(`(ϕ) > b)

`(ϕ) ≥ b := −`(ϕ) ≤ −b `(ϕ) = b := (`(ϕ ≥ b) ∧ (`(ϕ) ≤ b) �

This language LQuant is very generic and can be given various semantics, depending
on the class of (quantitative) models that we consider: probabilistic, sets of probabilities,
possibilistic, belief functions, etc.
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Definition 3.3.4 (Satisfaction relations of LQuant for Sprob, S low, Sbel and Sposs).
The satisfaction relation |=⊆ Sprob×LQuant is defined inductively as follows. Let (S,w) ∈
Sprob and ϕ,ϕ1, . . . , ϕk ∈ LQuant.

S,w |= p iff π(w)(p) = T
S,w |= ¬ϕ iff it is not the case that S,w |= ϕ
S,w |= ϕ ∧ ψ iff S,w |= ϕ and S,w |= ψ
S,w |= a1`(ϕ1) + . . .+ ak`(ϕl) > b iff a1µw(Jϕ1K) + . . .+ akµw(JϕkK) > b

where JϕK := {w ∈Ww : S,w |= ϕ}. The satisfaction relations for S low, Srank, Sposs and
Sbel are defined identically. �

The set of validities of the logics (LQuant,Sprob, |=), (LQuant,S low, |=), (LQuant,Srank, |=
), (LQuant,Sposs, |=) and (LQuant,Sbel, |=) can be axiomatized and the respective proof
systems are given in (Halpern, 2003, Chap 7). These axiomatizations can then be used
to reason about uncertainty in quantitative terms.

3.3.3 Logics for Qualitative Reasoning

For qualitative reasoning, we cannot resort to numbers anymore. Hence, we define a
qualitative logical language LQual which allows for the expression of properties about the
relative likelihood of statements (expressed via formulas of this logical language).
Definition 3.3.5 (Qualitative language LQual). The language LQual is defined induc-
tively by the following grammar in BNF:

LQual : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (`(ϕ) ≥ `(ϕ))
We use the same abbreviations as in Definition 3.3.3 (when they exist). �

This language LQual is very generic and can be given various semantics, depending
on the class of models that we consider: preferential, ranking, plausibility, possibility,
etc.
Definition 3.3.6 (Satisfaction relation of LQual for Spref , Squal, Srank and Sposs).
The satisfaction relation |=⊆ Spref ×LQual is defined inductively as follows. Let (S,w) ∈
Spref and ϕ,ψ ∈ LQual.

S,w |= p iff π(w)(p) = T
S,w |= ¬ϕ iff it is not the case that S,w |= ϕ
S,w |= ϕ ∧ ψ iff S,w |= ϕ and S,w |= ψ
S,w |= `(ϕ) ≥ `(ψ) iff JϕK �ew JψK

where JϕK := {w ∈Ww : S,w |= ϕ}. The last truth condition for (S,w) ∈ Squal, (S,w) ∈
Srank and (S,w) ∈ Sposs is defined respectively as follows:

S,w |= `(ϕ) ≥ `(ψ) iff Plw(JϕK) ≥ Plw(JψK)
S,w |= `(ϕ) ≥ `(ψ) iff κw(JϕK) ≤ κw(JψK)
S,w |= `(ϕ) ≥ `(ψ) iff Possw(JϕK) ≥ Possw(JψK)

The other Boolean truth conditions are the same as for Spref . �
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Another semantics can be given if we use �sw instead of �ew in the truth condition
for `(ϕ) ≥ `(ψ). Like for logics for quantitative reasoning of the previous section, the
set of validities of the logics (LQual,Spref , |=), (LQual,Squal, |=), (LQual,Srank, |=) and
(LQual,Sposs, |=) can be axiomatized (Halpern, 2003, Chap 7). These axiomatizations
can then be used to reason about uncertainty in qualitative terms.

3.4 Updating Uncertainty

In this section, we adopt the following assumptions. Assumption 1 will be removed in
Chapter 6 when we deal with belief revision.

Assumption 1 What the agent is told is true and it initially considers the actual world
possible.

Assumption 2 The way an agent obtains the new information does not itself give the
agent information.

3.4.1 Conditioning Probabilities

From unconditional to conditional probability. How should a probability mea-
sure µ be updated to a new probability µ|U that takes the new information that the
actual world is in U into account ?

First, if the agent believes that U is true, then it seems reasonable to require that
all the worlds in U are impossible:

µ|U (U) = 0 (3.3)

Second, if all that the agent has learned is U , then the relative likelihood of worlds
in U should remain unchanged (because of assumption 3). That is, if V1, V2 ⊆ U with
µ(V2) > 0, then

µ(V1)
µ(V2) =

µ|U (V1)
µ|U (V2) . (3.4)

Equations (3.3) and (3.4) completely determine µ|U if µ(U) > 0:

Proposition 3.4.1. If µ(U) > 0 and µ|U is a probability measure on W satisfying (3.3)
and (3.4), then

µ|U (V ) = µ(V ∩ U)
µ(U) (3.5)

We often write µ(V | U) rather than µ|U (V ). The function µ|U is called a conditional
probability (measure) and µ(V | U) is read “the probability of V given (or conditional
on) U .” Sometimes, µ(U) is called the unconditional probability of U .
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From conditional to unconditional probability. Conditional probability is defined
only if µ(U) 6= 0. Worlds of probability 0 are somehow problematic from a conceptual
point of view. Are they really impossible ? How unlikely does a world have to be before
it is assigned probability 0 ? Should a world ever be assigned probability 0 ? If there
are worlds with probability 0 that are not truly impossible, then what does it mean to
condition on sets with probability 0 ?

This leads us to define the notion of conditional probability. It is more primitive and
basic than unconditional probability and it will allow us to conditionalize on sets U of
probability 0.

Definition 3.4.1 (Popper algebra). A Popper algebra over W is a set F × F ′ of
subsets of W ×W such that:

1. F is an algebra over W ;

2. F ′ is a non-empty subset of F ;

3. F ′ is closed under supersets in F , i.e. if V ∈ F ′, V ⊆ V ′, and V ′ ∈ F , then
V ′ ∈ F ′. �

Note that in the definition of a Popper algebra, F ′ need not be an algebra.

Definition 3.4.2 (Conditional probability space). A conditional probability space is
a tuple (W,F ,F ′, µ) such that F×F ′ is a Popper algebra overW and µ : F×F ′ → [0; 1]
satisfies the following conditions:

µ(U | U) = 1 if U ∈ F ′ (CP1)
µ(V1 ∪ V2 | U) = µ(V1 | U) + µ(V2 | U) if V1 ∩ V2 = ∅, V1, V2 ∈ F , U ∈ F ′ (CP2)
µ(V | U) = µ(V ∩ U | U) if U ∈ F ′, V ∈ F (CP3)
µ(U1 | U3) = µ(U1 | U2)× µ(U2 | U3) if U1 ⊆ U2 ⊆ U3, U2, U3 ∈ F ′, U1 ∈ F (CP4)

From a conditional probability measure, we obtain an unconditional probability mea-
sure by conditioning on W . Conversely, given an unconditional probability measure µ,
we can define naturally a conditional probability measure by considering Equation (3.5).1
This conditional probability will satisfy Conditions (CP1) – (CP4).

However, conditional probability measures are more primitive because there are con-
ditional probability measures that are extensions of unconditional probability measures µ
such that F ′ includes some sets U for which µ(U) = 0 (for example, see the non-standard
probability measures of (Halpern, 2003, p. 76)).

1If an unconditional probability measure is identified with a conditional probability measure defined
on F × {W}, then the conditional probabilities defined by Equation (3.5) are extensions of µ to F ×F ′
in the sense of “extensions” as they are defined in Section 3.2.1.1.
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Justifying probabilistic conditioning. Probabilistic conditioning can be justified
in much the same way that probability is justified.

Objective interpretation: Principle of Indifference and relative-frequency. If it seems
reasonable to apply the principle of indifference to W and then U is observed or learned,
it seems equally reasonable to apply the principle of indifference again to W ∩ U . This
results in taking all the elements of W ∩U to be equally likely and assigning all the ele-
ments inW ∩ U probability 0, which is exactly what (3.5) says. In the relative-frequency
interpretation, µ(V | U) can be viewed as the fraction of times that V occurs of the times
that U occurs. Again, Equation (3.5) holds.

Subjective interpretation: Dutch book. Let (V | U,α) denote the following bet:

If U happens and if V also happens, then I win 100(1− α) euros, while if V
happens, then I lose 100α euros. If U does not happen, then the bet is called
off (I do not win or lose anything).

As before, suppose that the agent has to choose between bets of the form (V | U,α) and
(V | U, 1− α). For worlds in U , both bets are called off, so they are equivalent. Then,

Theorem 3.4.1. If an agent satisfies (RAT1)–(RAT4), then for all U, V ⊆W such that
αU > 0, there is a number αV |U such that (V | U,α) � (V | U, 1 − α) for all α < αV |U

and (V | U, 1− α) � (V | U,α) for all α > αV |U . Moreover, αV |U = αV ∩U
αU

.

We assume implicitly that conditioning by U amounts to consider not just the agent’s
current beliefs regarding V if U were to occur, but also how the agent would change his
beliefs regarding V if U actually did occur.

Bayes’ Rule. One of the most important results in probability theory is Bayes’ Rule,
even if its proof is straightfoward. It relates µ(V | U) and µ(U | V ).

Proposition 3.4.2 (Bayes’ Rule). If µ(U), µ(V ) > 0, then

µ(V | U) = µ(U | V )µ(V )
µ(U) . (Bayes’ Rule)

Proof. The proof just consists of simple algebraic manipulation. Observe that

µ(U | V )µ(V )
µ(U) = µ(V ∩ U)µ(V )

µ(U)µ(V ) = µ(V ∩ U)
µ(U) = µ(V | U).

3.4.2 Conditioning Sets of Probabilities, Inner and Outer Measures

Suppose an agent’s uncertainty is defined in terms of a set P of probability measures. If
the agent observes U , the obvious thing to do is to condition each member of P on U .
We have, however, to remove the probability measures µ ∈ P for which µ(U) = 0.
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Definition 3.4.3 (Conditional sets of probabilities). Let P be a set of probability
measures and let U ⊆W . We define the conditional set of P by U as follows:

P | U :=
{
µ|U | µ ∈ P, µ(U) > 0

}
. �

Given the connection between lower/upper probability measures and inner/outer
measures shown of 3.2.1, we define the conditional inner/outer measures as follows:

Definition 3.4.4 (Conditional inner and outer measures). Let µ be a proba-
bility measure on F ′ and let Pµ consist of all the extensions of µ to F : Pµ := {µ′ |
µ′ is a probability measure on F and µ′(U) = µ(U) for all U ∈ F ′}. We define the con-
ditional inner and outer measures as follows: for all U, V ∈ F such that µ∗(U) > 0,

µ∗(V | U) := (Pµ | U)∗ (V )

µ∗(V | U) := (Pµ | U)∗ (V ) �

The following theorem provides a more constructive definition of conditional inner
and outer measures.

Theorem 3.4.2. Let µ be a probability measure. Suppose that µ∗(U) > 0. Then,

µ∗(V | U) =


µ∗(V ∩ U)

µ∗(V ∩ U) + µ∗(V ∩ U)
if µ∗(V ∩ U) > 0

1 if µ∗(V ∩ U) = 0

µ∗(V | U) =


µ∗(V ∩ U)

µ∗(V ∩ U) + µ∗(V ∩ U)
if µ∗(V ∩ U) > 0

0 if µ∗(V ∩ U) = 0

Example 3.4.1 (Three prisoners puzzle). The three-prisoners puzzle is as follows:

Of three prisoners, a, b and c, two are to be executed, but a does not know
which. He therefore says to the jailer, “Since either b or c is certainly going
to be executed, you will give me no information about my own chances if
you give me he name of one man, either b or c, who is going to be executed”.
Accepting this argument, the jailer truthfully replies, “b will be executed”.
After this annoucement, what is the probability that a will live ? Should it
be 1

2, or
1
3 as before ?

We represent the problem as follows. A possible situation is a pair (x, y) where x, y ∈
{a, b, c}. Intuitively, a pair (x, y) represents a situation where x is pardoned and the
jailer says that y will be executed in response to a’s question. This yields the set of
possible worlds W := {(a, b), (a, c), (b, c), c, b)}. Then, we define the following events:
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• saysb := {(a, b), (c, b)} corresponds to the event where the jailer says that b will
be executed;

• livea := {(a, b), (a, c)} corresponds to the event where a is pardoned and lives;

• liveb := {(b, c)} corresponds to the event where b lives;

• livec := {(c, b)} corresponds to the event where c lives.

According to the principle of indifference, each prisoner is equally likely to be pardoned:

µ(livesa) = µ(livesb) = µ(livesc) = 1
3 .

Let F ′ consist of all the sets that can be formed by taking unions of livesa, livesb, livesc:
F ′ := {∅, {(b, c)}, {(c, b)}, {(b, c), (c, b)}, {(a, b), (a, c)}, {(a, b), (a, c), (b, c)}, {(a, b), (a, c),
(c, b)},W}. Note that saysb = {(a, b), (c, b)} /∈ F ′. Likewise, the set {(a, b)} correspond-
ing to the event where a lives and the jailer says that b will be executed does not belong
to F ′. What could be the probability of {(a, b)} ?

• Case 1 : a assumes that the jailer applies the principle of indifference in choosing
between b and c if a is pardoned. In that case, we have

µ({(a, b)}) = µ({(a, c)} = µ({(a, b), (a, c)})
2 = 1

6 .

With this assumption,

µ(livesa | saysb) = µ(livesa ∩ saysb)
µ(saysb)

=
1
6
1
2

= 1
3

The intuitive answer – that the jailer’s answer gives a no information – is correct
if the jailer applies the principle of indifference.

• Case 2 : a assumes that the jailer does not apply the principle of indifference. In
other words, a does not know what strategy the jailer is using to answer (and is
not willing to place a probability on these strategies).
We consider the set of probability measures PJ := {µα | α ∈ [0; 1]}, where

µα(livesa) = µα(livesb) = µα(livesc) = 1
3 µα(saysb | livesa) = α

So, for example, if α = 0, then if a is pardoned, the jailer will definitely say c.
Thus, if the jailer actually says b, then a knows that he is definitely not pardoned,
that is, µ0(livesa | saysb) = 0. Similarly, if α = 1, then a knows that if either he
or c is pardoned, then the jailer will say b, while if b is pardoned, the jailer will say
c. Given that the jailer says b, from a’s point of view, the one pardoned is equally
likely to be him or c; thus, µ1(livesa | saysb) = 1

2.
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Also, we consider the probability measure µJ on F ′ that agrees with each of the
measure in PJ . Then, we have that

(µJ)∗ (livesa ∩ saysb) = (µJ)∗ ({(a, b)}) = (PJ)∗ ({(a, b)}) = 0

(µJ)∗ (livesa ∩ saysb) = (µJ)∗ ({(a, b)}) = (PJ)∗ ({(a, b)}) = 1
3

(µJ)∗ (livesa ∩ saysb) = (µJ)∗ ({(c, b)}) = (µJ)∗ ({(c, b)})

= (PJ)∗ ({(c, b)}) = (PJ)∗ ({(c, b)}) = 1
3

Thanks to these results and the expressions of Theorem 3.4.2, we obtain

(µJ)∗ (livesa | saysb) = (µJ)∗ (livesa ∩ saysb)
(µJ)∗ (livesa ∩ saysb) + (µJ)∗ (livesa ∩ saysb)

= 0

(µJ)∗ (livesa | saysb) = (µJ)∗ (livesa ∩ saysb)
(µJ)∗ (livesa ∩ saysb) + (µJ)∗ (livesa ∩ saysb)

= 1
2 .

So, when prisoner a does not know the strategy of the jailer concerning the an-
nouncement, his prior point probability of 1

3 “diffuses” to an interval
[
0; 1

2

]
. �

3.4.3 Conditioning Belief Functions

Recall from Theorem 3.2.2 that given a belief function Bel, the set PBel = {µ | µ(U) ≥
Bel(U) for all U ⊆W} of probability measures is such that Bel = (PBel)∗ and Plaus =
(PBel)∗. The association of Bel with PBel can be used to define a notion of conditional
belief in terms of conditioning on sets of probability measures.

Definition 3.4.5 (Conditional belief function). Given a belief function Bel defined
on W and a set U such that Plaus(U) > 0, define functions Bel|U : 2W → [0; 1] and
Plaus|U : 2W → [0; 1] as follows:

Bel|U (V ) := (PBel | U)∗ (V )

Plaus|U (V ) := (PBel | U)∗ (V ) �

Given the close relationship between beliefs and inner measures, the following ana-
logue of Theorem 3.4.2 should not come as a surprise. This theorem provides an alter-
native and more constructive definition of conditional belief functions.
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Theorem 3.4.3. Let Bel be a belief function and Plaus its associated plausibility func-
tion. Suppose that Plaus(U) > 0. Then,

Bel(V | U) =


Bel(V ∩ U)

Bel(V ∩ U) + Plaus(V ∩ U)
if Plaus(V ∩ U) > 0

1 if Plaus(V ∩ U) = 0

Plaus(V | U) =


Plaus(V ∩ U)

Plaus(V ∩ U) +Bel(V ∩ U)
if Plaus(V ∩ U) > 0

0 if Plaus(V ∩ U) = 0

Moreover, Bel|U is a belief function and Plaus|U is its corresponding plausibility
function.

3.4.4 Conditioning Possibility Measures and Ranking Functions

In this section, we simply give the definitions of conditional possibility measures and
conditional ranking functions. Just as the definition of a conditional probability mea-
sure is motivated by the postulates (CP1)–(CP4) of Definition 3.4.2, the definition of a
conditional possibility measure and of a conditional ranking function given in Equations
(3.6) and (3.7) respectively can be motivated by postulates similar to the postulates of
(CP1)–(CP4) of Definition 3.4.2 (see (Halpern, 2003, p. 95–97) for more details).

Definition 3.4.6 (Conditional possibility measure). Let Poss be a possibility mea-
sure. The conditional possibility measure Poss|U is defined by: for all U ⊆W such that
Poss(U) > 0,

Poss|U (V ) =
{
Poss(V ∩ U) if Poss(V ∩ U) < Poss(U),
1 if Poss(V ∩ U) = Poss(U).

(3.6)

Definition 3.4.7 (Conditional ranking function). Let κ be a ranking function. The
conditional ranking function κ|U is defined by: for all U ⊆W such that κ(U) 6=∞,

κ(V | U) = κ(V ∩ U)− κ(U) (3.7)

3.4.5 Jeffrey’s Rule

Jeffrey’s Rule applies to situations where the agent might have some uncertainty about
the incoming information.

Example 3.4.2. Suppose that an object is either red, blue, green or violet. An agent
initially ascribes probability 1

5 to each of red, blue, and green, and probability 2
5 to violet.

Then the agent gets a quick glimpse of the object in a dimly lit room. As a result of
this glimpse, he believes that the object is probably a darker color, although he is not
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sure. He thus ascribes probability 0.7 to it being green or blue and probability 0.3 to it
being red or violet. How should he update his initial probability measure based on this
observation ?

We represent the agent’s observation as follows:

0.7{blue, green}; 0.3{red, violet}

The example suggest that an appropriate way of updating the agent’s initial proba-
bility measure µ is to consider the linear combination:

µ′ := 0.7µ|{blue,green} + 0.3µ|{red,violet}.

As expected, µ({blue, green}) = 0.7 and µ′({red, violet}) = 0.3. Moreover, µ′(red) =
0.1, µ′(violet) = 0.2 and µ′(blue) = µ′(green) = 0.35. Thus, µ′ gives the two sets
about which the agent information – {blue, green} and {red, violet} – the expected
probabilities. Within each of these sets, the relative probability of the outcomes remains
the same as before conditioning. �

More generally, suppose that U1, . . . , Un is a partition of W (see Section A.4 of the
Appendix for the definition of a partition). An observation over W is an expression
of the form α1U1; . . . ;αnUn, where α1 + . . . + αn = 1. This is to be interpreted as an
observation that leads the agent to believe Uj with probability αj , for j = 1, . . . , n. This
suggests that µ|α1U1;...;αnUn

, the probability measure resulting from the update, should
have the following property for j = 1, . . . , n:

µ|α1U1;...;αnUn
(V ) = αj

µ(V )
µ(Uj)

if V ⊆ Uj and µ(Uj) > 0. (J)

An observation is consistent with a probability measure µ if it does not give positive
probability to a set that was initially thought to have probability 0: formally, if αj > 0,
then µ(Uj) > 0.

Proposition 3.4.3 (Jeffrey’s Rule). Let µ be a probability measure and let α1U1; . . . ;αnUn
be an observation on W which is consistent with µ. If µ|α1U1;...;αnUn

is a probability mea-
sure satisfying Condition (J), then

µ|α1U1;...;αnUn
= α1µ(V | U1) + . . .+ αnµ(V | Un). (Jeffrey’s Rule)

Note that the usual notion of probabilistic conditioning is just a special case of
Jeffrey’s rule: µ|U = µ|1U ;0U . However, unlike Jeffrey’s rule, probabilistic conditioning
is commutative: if µ(U1 ∩ U2) 6= ∅, then(

µ|U1

)
|U2

=
(
µ|U2

)
|U1

= µ|U1∩U2

This does not hold for Jeffrey’s Rule: observing o1 = 0.7{blue, green}; 0.3{red, violet}
and then observing o2 = 0.3{blue, green}; 0.7{red, violet} does not yield the same result
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as observing first o2 and then o1:
(
µ|o1

)
|o2
6=
(
µ|o2

)
|o1

. The last observation has always
priority over the previous observations for Jeffrey’s Rule.

There are straightforward analogues of Jeffrey’s Rule for sets of probabilities, belief
functions, possibility measures and ranking functions.

• Belief function:

Bel|α1U1;...;αnUn
= α1Bel|U1 + . . .+ αnBel|Un

• Possibility Measures: note that + and × of probabilities become max and min.

Poss|α1U1;...;αnUn
(V )

= max {min{α1, Poss(V | U1)}, . . . ,min{αn, Poss(V | Un)}} .

• Ranking functions: note that + becomes min and the role of 1 is played by 0.

κ|α1U1;...;αnUn
(V ) = min{α1 + κ(V | U1), . . . , αn + κ(V | Un)}.

3.5 Further Reading

This Chapter is based on Chapters 2 and 3 of (Halpern, 2003). The representation and
management of uncertainty is a vast area of research. We mention for example the series
of handbooks (Gabbay and Smets, 1998).
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Chapter 4

Reasoning with Others about Uncertainty

“Chuangtse and Hueitse had strolled onto the bridge over the Hao, when the
former observed, “See how the small fish are darting about ! That is the hap-
piness of the fish.” “You are not a fish yourself,” said Hueitse. “How can you
know the happiness of the fish?” “And you not being I,” retorted Chuangtse,
“how can you know that I do not know ?””

– Chuangtse, c. 300 B.C.

4.1 Introduction
Modeling a situation involving multiple agents depends very much on the modeling
point of view. Indeed, the models built to represent the situation will be quite different
depending on whether the modeler is an agent involved in the situation or not. To
illustrate this point, let us consider the following example. Assume that the agents
Yann and Alice are in a room and that there is a coin in a box that both cannot see
because the box is closed. Now, assume that Alice cheats, opens the box and looks at
the coin. Moreover, assume that Yann does not suspect anything about it and that
Alice knows it (Yann might be inattentive or out of the room for a while). How can
we represent this resulting situation? On the one hand, if the modeler is an external
observer (different from Yann and Alice) knowing everything that has happened, then
in the model that this external observer builds Alice knows whether the coin is heads or
tails up. On the other hand, if the modeler is Yann then in the model that Yann builds
Alice does not know whether the coin is heads or tails up. As we see in this example, the
intuitive interpretation of a model really makes sense only when one knows the modeling
point of view.

The importance of specifying a modeling point of view is also stressed at a great
extent in Newtonian mechanics in physics where physicists must always specify which
frame of reference they consider when they want to study a natural phenomenon. And
just as for epistemic situations, the representation of this phenomenon depends very
much on this frame of reference. For example, assume somebody drops a ball from the
top of the high mast of a ship sailing nearby a harbor. Then, viewed from the frame of
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reference of the ship, the trajectory of the ball will be a straight line. But viewed from
the frame of reference of the harbor, the trajectory will be a parabola (the more rapidly
the ship sails and the higher the mast is, the more curved the parabola will be).

Given an epistemic situation, assume that we want to model the beliefs of the agents
AGTS = {1, . . . , n} and possibly the actual state of the world. What kinds of modeling
points of view are there? For a start, we can distinguish whether or not the modeler is
one of these agents AGTS under scrutiny.

1. First, consider the case where the modeler is one of the agents AGTS. In what
follows, we call this modeler-agent agent Y (like Y ou). The models she builds
could be seen as models she has ‘in her mind’. They represent the way she perceives
the surrounding world. In that case, agent Y is involved in the situation, she is
considered on a par by the other agents and interacts with them. So she should be
represented in the formalism and her models should deal not only with the other
agents’ beliefs but also with the other agents’ beliefs about her own beliefs. This is
an internal and subjective point of view, the situation is modeled from the inside.
Therefore, for this very reason her beliefs might be erroneous. Hence the models
she builds might also be erroneous. We call this agent point of view the internal
point of view.

2. Second, consider the case where the modeler is not one of the agents AGTS. The
modeler is thus an observer external to the situation. She is not involved in the
situation and she does not exist for the agents, or at least she is not taken into
consideration in their representation of the world. So she should not be represented
in the formalism and particularly the agents’ beliefs about her own beliefs should
also not be represented. The models that this modeler builds are supposed to
represent the situation ‘from above’, from an external and objective point of view.
There are then two other sub-possibilities depending on whether or not the modeler
has a perfect knowledge of the situation.

(a) In case the modeler has a perfect knowledge of the situation, then everything
that is true in the model that she builds is true in reality and vice versa,
everything that is true in reality is also true in the model. This thesis was
already introduced by Baltag and Moss (2004). Basically, the models built
by the modeler are perfectly correct. The modeler has access to the minds of
the agents and knows perfectly not only what they believe but also what the
actual state of the world is. This is a kind of ‘divine’ point of view and we
call it the perfect external point of view.

(b) In case the modeler does not have a perfect knowledge of the situation then,
like the internal point of view but unlike the perfect external point of view, the
models built might be erroneous. The models could also be correct but then,
typically, the modeler would be uncertain about which is the actual world
(in that sense, she would not have a perfect knowledge of the situation).

Université de Rennes 1 UFR Philosophie



4.1. Introduction 71

the modeler is uncertain the modeler is
about the situation one of the agents

internal approach • •
imperfect external approach •
perfect external approach

Figure 4.1: Essential differences between the internal and external approaches

What the modeler knows can be obtained for example by observing what the
agents say and do, by asking them questions. . .We call this point of view the
imperfect external point of view.

Because we proceeded by successive dichotomies, we claim that the internal, the
perfect external and the imperfect external points of view are the only three logically
possible points of view when we want to model epistemic situations. From now on we
will call these modeling approaches the internal, the external and the imperfect external
approaches; their differences are summarized in Figure 4.1.1 The fields of application
of these three approaches are different. The internal and imperfect external approaches
have rather applications in artificial intelligence where agents/robots acting in the world
need to have a formal representation of the surrounding world and to cope with uncer-
tain information. The internal approach has also applications in cognitive psychology
where the aim is to model the cognition of one agent (possibly in a multi-agent setting).
The perfect external approach has rather applications in game theory (Battigalli and
Bonanno, 1999), social psychology (distributed cognition) or distributed systems (Fagin
et al., 1995) for example. Indeed, in these fields we need to model situations accurately
from an external point of view in order to explain and predict what happens in these
situations.

The modeling point of view is definitely not the only important factor to specify
when one wants to model epistemic situations: the second important factor is obviously
our object of study, i.e. what we actually model. Typically, it is the actual state of the
world and the beliefs of the agents AGTS about each other. But this could also per-
fectly be their beliefs about other agents j1, . . . , jm or the beliefs of only some of these
agents AGTS (about all the agents AGTS) for instance. Therefore, to proceed method-
ically and properly (and similarly as in physics), when one wants to model epistemic
situations one should ideally specify from the start a combination of these two factors.
Indeed, each combination gives rise to a particular kind of formalism. However some

1In (Nagel, 1986), the internal and external points of view are studied from a broader philosophical
perspective and not just for their need in representing agents’ beliefs. Nagel mainly deals there with
the issues of how these views can be combined and if they can possibly be integrated. He does so by
tracing the manifestations of these issues in a number of philosophical topics: the metaphysics of mind,
the theory of knowledge, free will, and ethics. He argues that giving a complete account of reality (as
in philosophy of mind) or of all reasons for actions (as in ethics) in objective terms only is not always
possible.
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combinations might turn out to be equivalent to others: for example, if the object of
study is the epistemic state of a single agent Y (in a single or a multi-agent setting),
then the perfect external approach for this object of study amounts to the internal ap-
proach where the modeler-agent is Y herself and the object of study is the actual state
of the world (and possibly the other agents’ beliefs about each other in a multi-agent
setting). This example suggests that the internal approach is somehow reducible to the
perfect external approach if we specify appropriate objects of study. But because the
corresponding object of study in the external approach of a given object of study in the
internal approach might be quite convoluted in some cases we prefer to keep the natural
and intuitive distinction between the internal and the perfect external approaches.

All this said, in the rest of the chapter, we will only follow and consider the perfect
external approach. The logical framework we will study to deal with uncertainty in a
multi-agent setting is Dynamic Epistemic Logic (DEL). It is built on top of epistemic
logic to which it adds dynamics and events. Epistemic logic will be the topic of Section
4.2. Then, in Section 4.3, actions and events will enter into the picture and we will
introduce the logical framework of DEL.2

4.2 Representing and Reasoning about Uncertainty: Epis-
temic Logic

Epistemic logic is a modal logic that is concerned with the logical study of the notions
of knowledge and belief. It is thereby concerned with understanding the process of
reasoning about knowledge and belief: which principles relating the notions of knowledge
and belief are intuitively plausible ? As epistemology, it stems from the Greek word
επιστηµη or ‘episteme’ meaning knowledge. But epistemology is more concerned with
analyzing the very nature of knowledge (addressing questions such as “What is the
definition of knowledge?” or “How is knowledge acquired?”). In fact, epistemic logic
grew out of epistemology in the middle ages thanks to the efforts of Burley and Ockham
(Boh, 1993). But the formal work, based on modal logic, that inaugurated contemporary
research into epistemic logic dates back only to 1962 and is due to Hintikka (Hintikka,
1962). It then sparked in the 1960’s discussions about the principles of knowledge and
belief and many axioms for these notions were proposed and discussed (Lenzen, 1978).
For example, the interaction axioms Kϕ→ Bϕ and Bϕ→ KBϕ are often considered to
be intuitive principles: if agent a knows ϕ then (s)he also believes ϕ, or if agent a believes
ϕ, then (s)he knows that (s)he believes ϕ. More recently, these kinds of philosophical
theories were taken up by researchers in economics (Battigalli and Bonanno, 1999),
artificial intelligence and theoretical computer science (Fagin et al., 1995; Meyer and
van der Hoek, 1995) where reasoning about knowledge is a central topic. Due to the
new setting in which epistemic logic was used, new perspectives and new features such

2A distinction is sometimes made between events and actions, an action being a specific type of event
performed by an agent. In the sequel, we will not make this distinction and we will use alternatively the
term action or event.
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as computability issues were then added to the agenda of epistemic logic.

4.2.1 Syntax and Semantics

Syntax. The epistemic language is an extension of the basic modal language of Defini-
tion 1.3.4 with a common knowledge operator CA and a distributed knowledge operator
DA. These new operators are discussed after the following definition.

Definition 4.2.1 (Epistemic language LEL). The epistemic language LEL is defined
inductively as follows:

LEL : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kjϕ | CAϕ | DAϕ

where p ∈ PROP , j ∈ AGTS and A ⊆ AGTS. The formula 〈Kj〉ϕ is an abbreviation for
¬2j¬ϕ, EAϕ is an abbreviation for

∧
j∈A

Kjϕ and Cϕ an abbreviation for CAGTSϕ. �

For example, if A = {1, 2, 3}, then
∧
j∈A

Kj(p∧ q) = K1(p∧ q)∧K2(p∧ q)∧K3(p∧ q).

Group notions: general, common and distributed knowledge. In a multi-agent
setting there are three important epistemic concepts: general belief (or knowledge),
distributed belief (or knowledge) and common belief (or knowledge). The notion of
common belief (or knowledge) was first studied by Lewis in the context of conventions
(Lewis, 1969). It was then applied to distributed systems (Fagin et al., 1995) and to
game theory (Aumann, 1976), where it allows to express that the rationality of the
players, the rules of the game and the set of players are commonly known.

General knowledge. General belief of ϕ means that everybody in the group of agents
AGTS believes that ϕ. Formally this corresponds to the following formula:

Eϕ :=
∧

j∈AGTS
Kjϕ. (4.1)

Common knowledge. Common belief of ϕ means that everybody believes ϕ but also
that everybody believes that everybody believes ϕ, that everybody believes that
everybody believes that everybody believes ϕ, and so on ad infinitum. Formally,
this corresponds to the following formula

Cϕ := Eϕ ∧ EEϕ ∧ EEEϕ ∧ . . . (4.2)

As we do not allow infinite conjunction the notion of common knowledge will have
to be introduced as a primitive in our language.
Before defining the language with this new operator, we are going to give an
example introduced by Lewis (1969) that illustrates the difference between these
two notions (here we exceptionally use the notion of knowledge instead of belief to
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74 4. Reasoning with Others about Uncertainty

make things clearer). Lewis wanted to know what kind of knowledge is needed so
that the statement p: “every driver must drive on the right” be a convention among
a group of agents. In other words he wanted to know what kind of knowledge is
needed so that everybody feels safe to drive on the right. Suppose there are only
two agents i and j. Then everybody knowing p (formally Ep) is not enough.
Indeed, it might still be possible that the agent i considers possible that the agent
j does not know p (formally ¬KiKjp). In that case the agent i will not feel safe to
drive on the right because he might consider that the agent j, not knowing p, could
drive on the left. To avoid this problem, we could then assume that everybody
knows that everybody knows that p (formally EEp). This is again not enough to
ensure that everybody feels safe to drive on the right. Indeed, it might still be
possible that agent i considers possible that agent j considers possible that agent i
does not know p (formally ¬KiKjKip). In that case and from i’s point of view, j
considers possible that i, not knowing p, will drive on the left. So from i’s point of
view, j might drive on the left as well (by the same argument as above). So i will
not feel safe to drive on the right. Reasoning by induction, Lewis showed that for
any k ∈ N, Ep ∧E1p ∧ . . . ∧Ekp is not enough for the drivers to feel safe to drive
on the right. In fact what we need is an infinite conjunction. In other words, we
need common knowledge of p: Cp.

Distributed knowledge. Distributed knowledge of ϕ means that if the agents pulled their
knowledge altogether, they would know that ϕ holds. In other words, the knowl-
edge of ϕ is distributed among the agents. The formula DAϕ reads as ‘it is dis-
tributed knowledge among the set of agents A that ϕ holds’.

Semantics. Epistemic logic is a modal logic. So, what we call an epistemic model
M = (W,R1, . . . , Rn, V ) is just a Kripke model as used in modal logic. The possible
worldsW are the relevant worlds needed to define such a representation and the valuation
V specifies which propositional facts (such as ‘it is raining’) are true in these worlds.
Finally the accessibility relations Rj can model either the notion of knowledge or the
notion of belief. We set w′ ∈ Rj(w) in case the world w′ is compatible with agent
j’s belief (respectively knowledge) in world w. Intuitively, a pointed epistemic model
(M, wa), where wa ∈ M, represents from an external point of view how the actual
world wa is perceived by the agents AGTS.

Definition 4.2.2 (Satisfaction relation). For every epistemic modelM, w ∈M and
ϕ ∈ LEL, define

M, w |= CAϕ iff for all v ∈

⋃
j∈A

Rj

+

(w),M, v |= ϕ

M, w |= DAϕ iff for all v ∈
⋂
j∈A

Rj(w),M, v |= ϕ
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A: “Ann has the red card”

C: “Claire has the blue card”

B: “Bob has the green card”

M, w |= (A ∧ 2AA) ∧ (C ∧ 2CC) ∧
(B ∧2BB)

M, w |= 2A(B ∨B) ∧2A(C ∨ C)

M, w |= E(A∨A∨A)∧C(A∨A∨A).

Figure 4.2: Card Example

where

⋃
j∈A

Rj

+

is the transitive closure of
⋃
j∈A

Rj : we have that v ∈

⋃
j∈A

Rj

+

(w) if,

and only if, there are w0, . . . , wn ∈M and j1, . . . , jn ∈ A such that w0 = w,wn = v and
for all i ∈ {1, . . . , n}, wi−1Rjiwi. �

Despite the fact that the notion of common belief has to be introduced as a primitive
in the language, we can notice in this definition that epistemic models do not have to
be modified in order to give truth value to the common knowledge and distributed
knowledge operators.

Example 4.2.1 (Card example). Ann (A), Bob (B) and Claire (C) play a card game
with three cards: a green one, a red one and a blue one. Each of them has a single card
but they do not know the cards of the other players. This example is depicted in Figure
4.2. �

The notion of knowledge might comply to some constraints (or axioms) such as
Kjϕ → KjKjϕ: if agent j knows something, she knows that she knows it. These
constraints might affect the nature of the accessibility relations Rj which may then
comply to some extra properties. So, we are now going to define some particular classes
of epistemic models that all add some extra constraints on the accessibility relations Rj .
These constraints are matched by particular axioms for the knowledge operator Kj .

Definition 4.2.3 (Properties of accessibility relations). We give in Figure 4.3 a list
of properties of the accessibility relations. We also give, below each property, the axiom
which defines the class of epistemic frames that fulfill this property. We choose, without
any particular reason, to use the knowledge modality to write these conditions. �
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serial: R(w) 6= ∅

D: Kϕ→ 〈K〉ϕ

transitive: If w′ ∈ R(w) and w′′ ∈ R(w′), then w′′ ∈ R(w)

4: Kϕ→ KKϕ

Euclidean: If w′ ∈ R(w) and w′′ ∈ R(w), then w′ ∈ R(w′′)

5: ¬Kϕ→ K¬Kϕ

reflexive: w ∈ R(w)

T: Kϕ→ ϕ

symetric: If w′ ∈ R(w), then w ∈ R(w′)

B: ϕ→ K¬K¬ϕ

confluent: If w′ ∈ R(w) and w′′ ∈ R(w),
then there is v such that v ∈ R(w′) and v ∈ R(w′′)

.2: 〈K〉Kϕ→ K〈K〉ϕ

weakly connected: If w′ ∈ R(w) and w′′ ∈ R(w),
then w′ = w′′ or w′ ∈ R(w′′) or w′′ ∈ R(w′)

.3: 〈K〉ϕ ∧ 〈K〉ψ → 〈K〉(ϕ ∧ ψ) ∨ 〈K〉(ψ ∧ 〈K〉ϕ) ∨ 〈K〉(ϕ ∧ 〈K〉ψ)

semi-Euclidean: If w′′ ∈ R(w) and w /∈ R(w′′) and w′ ∈ R(w),
then w′′ ∈ R(w′)

.3.2: (〈K〉ϕ ∧ 〈K〉Kψ)→ K(〈K〉ϕ ∨ ψ)

R1 : If w′′ ∈ R(w) and w 6= w′′ and w′ ∈ R(w),
then w′′ ∈ R(w′)

.4: (ϕ ∧ 〈K〉Kϕ)→ Kϕ

Figure 4.3: List of properties of accessibility relations and corresponding axioms
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Knowledge versus Belief In this chapter we use the same notationK for both knowl-
edge and belief. Hence, depending on the context, Kϕ will either read ‘the agent Knows
that ϕ holds’ or ‘the agent Believes that ϕ holds’. A crucial difference is that, unlike
knowledge, beliefs can be wrong: the Truth axiom Kϕ → ϕ holds only for knowledge,
but not necessarily for belief. In the next section, we are going to examine other axioms,
some of them pertain more to the notion of knowledge whereas some others pertain more
to the notion of belief.

4.2.2 Axiomatization

The axioms of an epistemic logic obviously display the way the agents reason. For
example the axiom K together with the rule of inference MP entail that if I know ϕ
(Kϕ) and I know that ϕ implies ψ (K(ϕ → ψ)) then I know that ψ (Kψ). Stronger
constraints can be added. The following proof systems are often used in the literature.

Definition 4.2.4 (Proof Systems for LEL). We define the following proof systems
for LEL:

KD45 = K + D + 4 + 5 S4.3 = S4 + .3 S5 = S4 + 5.
S4 = K + T + 4 S4.3.2 = S4 + .3.2

S4.2 = S4 + .2 S4.4 = S4 + .4

We denote by LEL the set of proof systems LEL := {K,KD45, S4,S4.2, S4.3, S4.3.2,S4.4,S5}.
Moreover, for all H ∈ LEL, we define the proof system HC by adding the following

axiom schemes and rules of inference to those of H. For all A ⊆ AGTS,

Dis Kjϕ→ DAϕ

E EAϕ↔
∧
j∈A

Kjϕ

Mix CAϕ→ EA(ϕ ∧ CAϕ)
Ind if ϕ→ EA(ψ ∧ ϕ) then ϕ→ CAψ (Induction Rule)

�

The relative strength of the proof systems for knowledge is as follows:

S4 ⊂ S4.2 ⊂ S4.3 ⊂ S4.3.2 ⊂ S4.4 ⊂ S5. (4.3)

So, all the theorems of S4.2 are also theorems of S4.3,S4.3.2,S4.4 and S5. Many
philosophers claim that in the most general cases, the logic of knowledge is S4.2 or S4.3
(Lenzen, 1978; Stalnaker, 2006). Typically, in computer science, the logic of belief (dox-
astic logic) is taken to be KD45 and the logic of knowledge (epistemic logic) is taken to
be S5, even if the logic S5 is only suitable for situations where the agents do not have
mistaken beliefs.

We discuss the most important axioms of Figure 4.3. Axioms T and 4 state that if
the agent knows a proposition, then this proposition is true (axiom T for Truth), and if
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78 4. Reasoning with Others about Uncertainty

the agent knows a proposition, then she knows that she knows it (axiom 4, also known
as the “KK-principle”or “KK-thesis”). Axiom T is often considered to be the hallmark
of knowledge and has not been subjected to any serious attack. In epistemology, axiom
4 tends to be accepted by internalists, but not by externalists (Hemp, 2006) (also see
(Lenzen, 1978, Chap. 4)). Axiom 4 is nevertheless widely accepted by computer scientists
(but also by many philosphers, including Plato, Aristotle, Saint Augustine, Spinoza and
Shopenhauer, as Hintikka recalls (1962)). A more controversial axiom for the logic of
knowledge is axiom 5: This axiom states that if the agent does not know a proposition,
then she knows that she does not know it. This addition of 5 to S4 yields the logic
S5. Most philosophers (including Hintikka) have attacked this axiom, since numerous
examples from everyday life seem to invalidate it.3 In general, axiom 5 is invalidated
when the agent has mistaken beliefs which can be due for example to misperceptions,
lies or other forms of deception. Axiom D states that the agent’s beliefs are consistent.
In combination with axiom K (where the knowledge operator is replaced by a belief
operator), axiom D is in fact equivalent to a simpler axiom D’ which conveys, maybe
more explicitly, the fact that the agent’s beliefs cannot be inconsistent (B⊥): ¬B⊥.
The other intricate axioms .2, .3, .3.2 and .4 have been introduced by epistemic logicians
such as Lenzen and Kutchera in the 1970s and presented for some of them as key axioms
of epistemic logic. They can be characterized in terms of intuitive interaction axioms
relating knowledge and beliefs (Aucher, 2015).

In all the theories of rational agency developed in artificial intelligence, the logic of
belief is KD45. Note that all these agent theories follow the perfect external approach.
This is at odds with their intention to implement their theories in machines. In that
respect, an internal approach seems to be more appropriate since, in this context, the
agent needs to reason from its own internal point of view. For the internal approach,
the logic of belief is S5, as proved by Arlo-Costa (1999) (for the notion of full belief ) and
Aucher (2010).4

Definition 4.2.5 (Classes of Epistemic Models). For all H ∈ LEL, the class CH
or CHC of H–models or HC–models is the class of epistemic models whose accessibility
relations satisfy the properties listed in Figure 4.3 defined by the axioms of H or HC. �

Theorem 4.2.1 (Soundness and Completeness). For all H ∈ LEL, H is sound and
strongly complete for LEL w.r.t. the class of H–models, and HC is sound and strongly
complete for LC

EL w.r.t. the class of HC–models.
3For example, assume that a university professor believes (is certain) that one of her colleague’s

seminars is on Thursday (formally Bp). She is actually wrong because it is on Tuesday (¬p). Therefore,
she does not know that her colleague’s seminar is on Tuesday (¬Kp). If we assume that axiom 5 is
valid then we should conclude that she knows that she does not know that her colleague’s seminar is on
Tuesday (K¬Kp) (and therefore she also believes that she does not know it: B¬Kp). This is obviously
counterintuitive.

4In both philosophy and computer science, there is formalization of the internal point of view. Perhaps
one of the dominant formalisms for this is Moore’s auto-epistemic logic (R.C.Moore, 1984, 1995). In
philosophy, there are models of full belief like the one offered by Levi (1997), which is also related to
ideas in auto-epistemic logic. In Aucher (2010), I provide more details on the internal approach and its
connection to the other modeling approaches, namely the imperfect and the perfect external approaches.
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n = 1 n ≥ 2 with common knowledge

K, S4 PSPACE PSPACE EXPTIME

KD45 NP PSPACE EXPTIME

S5 NP PSPACE EXPTIME

Figure 4.4: Computational complexity of the satisfiability problem

4.2.3 Decidability

All the logics introduced are decidable. We list in Figure 4.4 the complexity of the
satisfiability problem for each of them. All these results are due to Halpern and Moses
(1992). Note that if the satisfiability problem for these logics becomes linear time if there
are only finitely many propositional letters in the language. For n ≥ 2, if we restrict
to finite nesting, then the satisfiability problem is NP-complete for all the modal logics
considered, but S4. If we then further restrict the language to having only finitely many
primitive propositions, the complexity goes down to linear time in all cases (Halpern,
1995). The computational complexity of the model checking problem is in P in all cases.

4.3 Updating Uncertainty: Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a formalism trying to model epistemic situations
involving several agents, and changes that can occur to these situations after incoming
information or more generally incoming action. The methodology of DEL is such that
it splits the task of representing the agents’ beliefs and knowledge into three parts:

1. One represents their beliefs about an initial situation thanks to an epistemic model;

2. One represents their beliefs about an event taking place in this situation thanks
to an event model;

3. One represents the way the agents update their beliefs about the situation after
(or during) the occurrence of the event thanks to a product update.

Typically, an informative event can be a public announcement to all the agents of
a formula ψ: this public announcement and correlative update constitute the dynamic
part. Note that epistemic events can be much more complex than simple public an-
nouncement, including hiding information for some of the agents cheating, etc. This
complexity is dealt with in Section 4.3.2 introducing the notion of event model. In Sec-
tion 4.3.1, we will first focus on public announcements to get an intuition of the main
underlying ideas that occur in DEL.
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4.3.1 Public Events: Public Annoucement Logic

We start by giving a concrete example where DEL can be used, to better understand
what is going on. Then, we will present a sketchy formalization of the phenomenon
called Public Announcement Logic (PAL)

Example 4.3.1 (Muddy children). We have two children, A and B, both dirty. A
can see B but not himself, and B can see A but not herself. Let p be the proposition
stating that A is dirty, and q be the proposition stating that B is not dirty.

1. We represent the initial situation by the pointed epistemic model (N , s) represented
in Figure 4.5, where relations are equivalence relations. States s, t, u, v intuitively
represent possible worlds, a proposition (for example p) satisfiable at one of these
states intuitively means that in the possible world corresponding to this state, the
intuitive interpretation of p (p is dirty) is true. The links between states labelled
by agents (A or B) intuitively express a notion of indistinguishability for the agent
at stake between two possible worlds. For example, the link between s and t
labelled by A intuitively means that A can not distinguish the possible world s
from t and vice versa. Indeed, A can not see himself, so he cannot distinguish
between a world where he is dirty and one where he is not dirty. However, he can
distinguish between worlds where B is dirty or not because he can see B. With
this intuitive interpretation we are brought to assume that our relations between
states are equivalence relations.

s : p, q A

B

t : ¬p, q

B

u : p,¬q
A

v : ¬p,¬q

Figure 4.5: Initial pointed epistemic model (N , s)

2. Now, suppose that their father comes and announces that at least one is dirty. Then
we update the model and this yields the epistemic model of Figure 4.6. What we
actually do is suppressing the worlds where the content of the announcement is not
fulfilled. In our case this is the world where ¬p and ¬q are true. This suppression
is what we call the update. We then get the model depicted. As a result of the
announcement, both A and B do know that at least one of them is dirty. We can
read this from the model.

3. Now suppose there is a second (and final) announcement that says that neither
knows they are dirty (an announcement can express facts about the situation as
well as epistemic facts about the knowledge held by the agents). We then update
similarly the model by suppressing the worlds which do not satisfy the content
of the announcement, or equivalently by keeping the worlds which do satisfy the
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s : p, q A

B

t : ¬p, q

u : p,¬q

Figure 4.6: Updated epistemic model after the first announcement p ∨ q

s : p, q

Figure 4.7: Updated epistemic model after the second announcement (¬KAp∧¬KA¬p)∧
(¬KBq ∧ ¬KB¬q)

announcement. This update process thus yields the pointed epistemic model rep-
resented below. By interpreting this model, we get that A and B both know that
they are dirty, which seems to contradict the content of the announcement. How-
ever, if we assume that A and B are both perfect reasoners and that this is common
knowledge among them, then this inference makes perfect sense. �

Public Announcement Logic (PAL) We present the syntax and semantic of Public
Announcement Logic (PAL), which combines features of epistemic logic and proposi-
tional dynamic logic (Harel et al., 2000).

Definition 4.3.1 (Language LPAL). We define the language LPAL inductively as
follows:

LPAL : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2jϕ | [ϕ!]ϕ

where j ∈ AGTS. The formula 〈Kj〉α is an abbreviation for ¬2j¬α and 〈ψ!〉ϕ is an
abbreviation for ¬[ψ!]¬ϕ. The epistemic language is interpreted as in Definition 1.3.6,
while the semantic clause for the new dynamic action modality is “forward looking”
among models as follows:

M, w |= [ψ!]ϕ iff ifM, w |= ψ thenMψ, w |= ϕ

where Mψ := (Wψ, Rψ1 , . . . , R
ψ
n , V

ψ) with Wψ := {w ∈ W : M, w |= ψ}, Rψj :=
Rj ∩Wψ ×Wψ for all j ∈ {1, . . . , n} and V ψ(p) := V (p) ∩Wψ. �

The formula [ψ!]ϕ intuitively means that after a truthful announcement of ψ, ϕ holds.
The formula 〈ψ!〉ϕ intuitively means that the announcement ψ is possible and after this
announcement ϕ holds. A public announcement of a proposition ψ changes the current
epistemic model like in Figure 4.8.
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¬ψ ψ

Figure 4.8: Eliminate all worlds which currently do not satisfy ψ

Theorem 4.3.1 (Soundness and Completeness). The proof system HPAL defined
below is sound and strongly complete for LPAL w.r.t. CML

The Axioms and the rule of inference of HML (HML)
[ψ!]p↔ ψ → p, for atomic facts p (Red1)
[ψ!]¬ϕ↔ ψ → ¬[ψ!]ϕ (Red2)
[ψ!](ϕ ∨ χ)↔ [ψ!]ϕ ∧ [ψ!]χ (Red3)
[ψ!]Kiϕ↔ (ψ → Ki(ψ → [ψ!]ϕ)) (Red4)

Here is a typical calculation using the reduction axioms that shows that [q!]Kq is a
theorem of HPAL:

[q!]Kq ↔ (q → K(q → [q!]q) (Red4)
↔ (q → K(q → (q → q))) (Red1)
↔ (q → K>) (HML)
↔ > (HML)

This states that after a public annoucement of q, the agent knows that q holds.

Example 4.3.2 (Muddy children). Here are some of the statements that hold in the
muddy children puzzle formalized in PAL.

N , s |= p ∧ q

‘In the initial situation, A is dirty and B is dirty’.

N , s |= (¬KAp ∧ ¬KA¬p) ∧ (¬KBq ∧ ¬KB¬q)

‘In the initial situation, A does not know whether he is dirty and B neither’.

N , s |= [p ∨ q!](KA(p ∨ q) ∧KB(p ∨ q))

‘After the public announcement that at least one of the children A and B is dirty,
both of then know that at least one of them is dirty’. However:

N , s |= [p ∨ q!]((¬KAp ∧ ¬KA¬p) ∧ (¬KBq ∧ ¬KB¬q))
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‘After the public announcement that at least one of the children A and B is dirty,
they still do not know that they are dirty’. Moreover:

N , s |= [p ∨ q!][(¬KAp ∧ ¬KA¬p) ∧ (¬KBq ∧ ¬KB¬q)!](KAp ∧KBq)

’After the successive public announcements that at least one of the children A and
B is dirty and that they still do not know whether they are dirty, A and B then both
know that they are dirty’.

In this last statement, we see at work an interesting feature of the update process: a
formula is not necessarily true after being announced. That is what we technically call
“self-persistence” and this problem arises for epistemic formulas (unlike propositional
formulas). One must not confuse the announcement and the update induced by this
announcement, which might cancel some of the information encoded in the announce-
ment. �

PAL is decidable, its model checking problem is solvable in polynomial time and its
satisfiability problem is PSPACE-complete (Lutz, 2006; Aucher and Schwarzentruber,
2013).

4.3.2 Arbitrary Events: Event Model and Product Update

In this section, we focus on items 2 and 3 of page 79, namely on how to represent events
and on how to update an epistemic model with such a representation of events by means
of a product update.

Representation of Events The language Lα was introduced in (Baltag et al., 1999).
The propositional letters pψ describing events are called atomic events and range over
PROPα = {pψ : ψ ranges over LEL}. The reading of pψ is “an event of precondition ψ
is occurring”.

Definition 4.3.2 (Event Language Lα). We define the language Lα inductively as
follows:

Lα : α ::= pψ | ¬α | (α ∧ α) | Kjα

where ψ ∈ LEL and j ∈ AGTS. The formula 〈Kj〉α is an abbreviation for ¬Kj¬α. �

A pointed event model (E , e) represents how the actual event represented by e is
perceived by the agents. Intuitively, f ∈ Rj(e) means that while the possible event rep-
resented by e is occurring, agent j considers possible that the possible event represented
by f is actually occurring.

Definition 4.3.3 (Event Model). An event model is a tuple E = (Wα, R1, . . . , Rm, I)
where:

• Wα is a non-empty set of possible events,
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e : A ∧B
C

yy

C

%%

A,B

��

f : A

A,B,C

WW C
// g : Aoo

A,B,C

WW

Figure 4.9: Players A and B show their cards to each other in front of player C

• Rj ⊆Wα ×Wα is an accessibility relation on Wα, for each j ∈ AGTS,

• I : Wα → LEL is a function assigning to each possible event a formula of LEL. The
function I is called the precondition function.

We write e ∈ E for e ∈ Wα, and (E , e) is called a pointed event model (e often
represents the actual event). We denote by Cα the set of pointed event models. Rj(e)
denotes the set {f ∈Wα : Rjef}. �

The truth conditions of the language Lα are identical to the truth conditions of the
language LEL:

Definition 4.3.4 (Satisfaction Relation). Let E be an event model, e ∈ E and
α ∈ Lα. The satisfaction relation E , e |= α is defined inductively as follows:

E , e |= pψ iff I(e) = ψ
E , e |= ¬α iff it is not the case that E , e |= α
E , e |= α ∧ β iff E , e |= α and E , e |= β
E , e |= Kjα iff for all f ∈ Rj(e), E , f |= α

�

Example 4.3.3 (Card Example). Let us resume Example 4.2.1 and assume that
players A and B show their card to each other. As it turns out, C noticed that A
showed her card to B but did not notice that B did so to A. Players A and B know this.
This event is represented in the event model (E , e) of Figure 4.9. The boxed possible
event e corresponds to the actual event ‘players A and B show their red and green cards
respectively to each other’ (with precondition A ∧ B), f stands for the event ‘player A
shows her green card’ (with precondition A) and g stands for the atomic event ‘player A
shows her red card’ (with precondition A). The following statement holds in the example
of Figure 4.9:

E , e |= pA∧B ∧ (〈KA〉pA∧B ∧KApA∧B) ∧ (〈KB〉pA∧B ∧KBpA∧B)
∧ (〈KC〉pA ∧ 〈KC〉pA ∧KC (pA ∨ pA)) (4.4)

It states that players A and B show their cards to each other, players A and B ‘know’
this and consider it possible, while player C considers possible that player A shows her
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e′ : A

A,B,C

��

Figure 4.10: Pointed event model (E ′, e′)

green card and also considers possible that player A shows her red card, since he does
not know her card. In fact, that is all that player C considers possible since he believes
that either player A shows her red card or her green card. Another example of event
model is given in Figure 4.10. This second example corresponds to the event whereby
Players A shows her card publicly to everybody. The following statement holds in the
example of Figure 4.10:

E ′, e′ |= pA ∧KApA ∧KBpA ∧KCpA ∧KAKApA ∧KAKBpA ∧KAKCpA ∧KBKApA

∧KBKBpA ∧KBKCpA ∧KCKApA ∧KCKBpA ∧KCKCpA ∧ . . .

It states that player A shows her red card and that players A, B and C ‘know’ it,
that players A, B and C ‘know’ that each of them ‘know’ it, etc. In other words, there
is common knowledge among players A, B and C that player A shows her red card.

E ′, e′ |= pA ∧ CpA. �

Update of the Initial Situation by the Event: Product Update The DEL
product update of (Baltag et al., 1998) is defined as follows. This update yields a new
LEL-model (M, w) ⊗ (E , e) representing how the new situation which was previously
represented by (M, w) is perceived by the agents after the occurrence of the event
represented by (E , e).

Definition 4.3.5 (Product update). LetM = (W,R1, . . . , Rm, I, w) be an epistemic
model and let E = (Wα, R1, . . . , Rm, I, e) be an event model. The product update of M
and E is the epistemic modelM⊗E = (W⊗, R⊗1 , . . . , R⊗m, I⊗) defined as follows: for all
v ∈W and all f ∈Wα,

• W⊗ = {(v, f) ∈W ×Wα :M, v |= I(f)},

• R⊗j (v, f) = {(u, g) ∈W⊗ : u ∈ Rj(v) and g ∈ Rj(f)},

• I⊗(v, f) = I(v). �

Example 4.3.4. As a result of the event of Figure 4.9, the agents update their beliefs.
We get the situation represented in the epistemic model (M, w)⊗ (E , e) of Figure 4.11.
In this LEL–model, we have for example the following statement:

(M, w)⊗ (E , e) |= (B ∧KAB) ∧KC¬KAB.

It states that player A ‘knows’ that player B has the green card but player C believes
that it is not the case. �
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(w, e) : A,C,B
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Figure 4.11: Pointed epistemic model (M, w)⊗ (E , e)

(w, e) : A,C,B
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Figure 4.12: Pointed epistemic model (M, w)⊗ (E ′, e′)

Example 4.3.5. The result of the event of Figure 4.10 whereby Ann shows her card
publicly is represented in Figure 4.12. In this pointed epistemic model, the following
statement holds:

(M, w)⊗ (F , e) |= C{B,C}(A ∧B ∧ C) ∧ ¬KA(B ∧ C).

It states that there is common knowledge among B and C that they know the true state
of the world (namely A has the red card, B has the green card and C has the blue card),
but A does not know it. �

4.3.3 A General Language

Because of their limited perception of the surrounding world, human and artificial agents
often need to reason on partial and incomplete descriptions of events and situations. For
any agent, the behavior of other agents is often partially or completely unknown to them:
the other agents may simply be out of sight for instance. For example, how can we be
sure that an intruder does not know a certain piece of information after observing an
exchange of messages in a group of agents if what we only know about him is that he
was only able to read the messages limited to a certain vocabulary, or that he could only
intercept and read the messages sent or received by a subgroup of agents? In general,
we would be interested in expressing the following kind of formula: [α]ϕ, whose intuitive
reading would be “ϕ holds after the occurrence of an event such that what we only
know about it is that it satisfies α”. This formula α typically describes partially and
incompletely the event occurring, although it could provide a full description of it as
well.
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Definition 4.3.6 (Language LF ). The language LF is defined inductively as follows:

LF : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kjϕ | [α]ϕ

where p ranges over PROP , α ranges over Lα and j over AGTS. The formula 〈α〉ϕ is
an abbreviation of the formula ¬[α]¬ϕ.

Let (M, w) be a pointed epistemic model. The truth conditions for the language LF
are defined as in Definition 1.3.6, except for the operator [α]ϕ:

M, w |= [α]ϕ iff for all pointed event model (E , e) such that E , e |= α,
ifM, w |= Pre(e) then (M, w)⊗ (E , e) |= ϕ

�

A sound and complete proof system for LF can be found in (Aucher, 2012). The fol-
lowing proposition shows that the logic of public anouncement logic LPAL := (LPAL, CML, |=
) is at least as expressive as our general logic LF := (LF , CML, |=), i.e. LF ≥ LPAL (see
Definition 2.3.7).

Proposition 4.3.1. Let ψ ∈ LEL. Then, for all pointed epistemic models (M, w),

M, w |= [ψ!]ϕ iffM, w |= [pψ ∧ Cpψ]ϕ

4.4 Further Reading
We only mention the main textbooks related to the content of this chapter. For epis-
temic logic, (Fagin et al., 1995) and (Meyer and van der Hoek, 1995) are the standard
textbooks in computer science. See the survey of Gochet and Gribomont (2006) for
a more interdisciplinary approach. Also, have a look at the seminal book of Hintikka
(1962), the founder of epistemic logic. As for DEL, the reader is invited to consult the
textbooks of van Ditmarsch et al. (2007) and especially van Benthem (2011). The scope
of the book of van Benthem (2011) is very wide and interdisciplinary.

Finally, we stress that DEL is not the only framework dealing with communication
among agents in MAS. Based on Searle’s and Austin’s speech acts theory stemming
from analytic philosophy, the FIPA (Foundation for Intelligent Physical Agents) agent
communication language was developed and further used in the Java Agent Development
Environment (JADE, Bellifemine et al. (2007)).
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Part III

Commonsense Reasoning
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Introduction to Part III

“Il faut reconnaître à la pratique une logique qui n’est pas celle de la logique pour
éviter de lui demander plus de logique qu’elle n’en peut donner et de se con-
damner soit à lui extorquer des incohérences, soit à lui imposer une cohérence
forcée.”

– Pierre Bourdieu, Le sens pratique, 1980

In everyday life, the way we represent and reason about the surrounding world and
the way we revise and update our representation of the world plays an important role
in our decision making process. As it turns out, the everyday life reasoning can be
subtle and it requires a careful formal analysis. This has led researchers in artificial
intelligence and computer science to develop logic-based theories that study and formal-
ize belief change and the so-called “common sense reasoning”. The rationale underlying
the development of such theories is that it would ultimately help us understand our
everyday life reasoning and the way we update our beliefs, and that the resulting work
could subsequently lead to the development of tools that could be used, for example,
by artificial agents to act autonomously in an uncertain and changing world. A number
of theories have been proposed to capture different kinds of updates and the reasoning
styles that they induce, using different formalisms and under various assumptions: de-
fault and non-monotonic logics (Makinson, 2005; Gabbay et al., 1998), belief revision
theory (Gärdenfors, 1988), conditional logic (Nute and Cross, 2001).

In everyday life, two types of reasoning arise frequently: default reasoning and coun-
terfactual reasoning. On the one hand, default reasoning involves leaping to conclusions
and deals with the most ‘normal’ or ‘typical’ situations. In default reasoning, ϕ ⊃ ψ is
interpreted as ‘typically or normally, if ϕ holds then ψ holds as well’. For example, if an
agent sees a bird, she may conclude that it flies. However, not all birds fly: penguins and
ostriches do not fly, nor do newborn birds, dead birds, or birds made of clay. Neverthe-
less, birds typically fly, and by default, in everyday life, we often reason with such abusive
simplifications that are revised only after we receive more information. This explains
informally why default reasoning is non-monotonic: adding new information may with-
draw and invalidate some of our previous inferences. On the other hand, counterfactual
reasoning involves reaching conclusions with assumptions that may be counter to fact.
In legal cases it is often important to assign blame. A lawyer might well want to argue
as follows: “I admit that my client was drunk and that it was raining. Nevertheless, if
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the car’s brakes had functioned properly, the car would not have hit Mr. Dupont. The
car’s manufacturer is at fault at least as much as my client”.

In everyday life, other kinds of reasoning often occurs, specially in a changing en-
vironment. If we receive an incoming information which is coherent with our beliefs
then we can just add it to them. But if the incoming information contradicts our beliefs
then we have somehow to revise our beliefs, and as it turns out there is no obvious way
to decide what should be our resulting beliefs. Solving this problem is the goal of the
logic-based belief revision theory developed by Alchourrón, Gärdenfors and Makinson
(to which we will refer by the term AGM) (Alchourrón et al., 1985; Gärdenfors, 1988;
Gärdenfors and Rott, 1995). Their idea is to introduce ‘rationality postulates’ that spec-
ify which belief revision operations can be considered as being ‘rational’ or reasonable,
and then to propose specific revision operations that fulfill these postulates. So, belief
revision deals with the representation of mechanisms for revising our beliefs.

As we said, default reasoning, sometimes identified with non-monotonic reasoning,
involves making default assumptions and reasoning with the most typical or “normal”
situations. Even if the phenomena that are studied by default reasoning and belief
revision seem to be rather different, we will see in Section 7.4 that they are in fact “two
sides of the same coin”, and they can be related via the so-called “Ramsey test”.

In this part, we will provide a brief but concise overview of some of these logical
frameworks for dealing with commonsense reasoning. Chapter 5 will deal with condi-
tionals and counterfactuals as they have been mostly studied in philosophy. Chapter 6
will deal with default reasoning as it has been mostly studied in artificial intelligence.
Chapter 7 will deal with belief revision. Default reasoning and belief revision will be
related formally to each other by means of the so-called “Ramsey test” in Chapter 7.
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Chapter 5

Conditionals

“If I were a swan, I’d be gone.
If I were a train, I’d be late.
And if I were a good man, I’d talk with you more often than I do.
If I were to sleep, I could dream.
If I were afraid, I could hide.
If I go insane, please don’t put your wires in my brain.
If I were the moon, I’d be cool.
If I were a rule, I would bend.
If I were a good man, I’d understand the spaces between friends.
If I were alone, I would cry.
And if I were with you, I’d be home and dry.
And if I go insane, will you still let me join in with the game?
If I were a swan, I’d be gone.
If I were a train, I’d be late again.
If I were a good man, I’d talk to you more often than I do.”

– Pink Floyd, If, 1970

5.1 Introduction
How to understand conditionals is an old issue in the history of logic. Disputes about it
can be found in the Stoics and in the Middle Ages (Sanford, 2003). Generally speaking,
conditionals relate some proposition (the consequent) to some other proposition (the
antecedent) on which, in some sense, it depends. They are expressed in English by ‘if’
or cognate constructions. The grammar of conditionals imposes certain requirements
on the tense (past, present, future) and mood (indicative, subjunctive) of the sentence
expressing the antecedent and the consequent within it. However, not all sentences using
‘if’ are conditionals. Consider, for example, ‘if I may say so, you have a nice ear-ring’,
‘(Even) if he was plump, he could still run fast’, or ‘if you want a banana, there is one
in the kitchen’. A rough and ready test for ‘if ϕ, ψ’ to be a conditional is that it can be
rewritten equivalently as ‘that ϕ implies that ψ’.
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94 5. Conditionals

The connective→ of propositional logic is usually called the material implication (or
material conditional). The formula ϕ→ ψ is logically equivalent to ¬ϕ∨ψ and it is true
if, and only if, ϕ is false or ψ is true. Thus, we have ψ |= ϕ→ ψ and ¬ϕ |= ϕ→ ψ. It is
often told in a first course in logic that conditionals may be represented as the material
implication →. There are some obvious objections to this claim. Indeed, in that case,
the following statements would be true, although they definitely appear to be false:

If Rennes is in the Netherlands then 2+2=4.
If Rennes is in France then World War II ended in 1945.
If World War II ended in 1941 then gold is an acid.

Some people argue nevertheless that these inferences are correct, because of some prag-
matic rules of utterance introduced by Grice (1991) which state that we should always
assert the strongest statement: in these three statements, the strongest statement is
either the consequent or the negation of the antecedent (or both). Even if we accept the
above argument in favor of material implication as a formalization of conditional, there
are still some other arguments against it. Indeed, in the conditionals below, although
the truth values of the antecedents and consequents of these conditional are the same,
the intuitive truth values of the Conditional (1) is true whereas the truth value of the
Conditional (2) is false.

If Shakespeare didn’t write Hamlet, someone else did. (1)
If Shakespeare hadn’t written Hamlet, someone else would have. (2)

Clearly, subjunctive conditionals, like statement (2), cannot be material because
statement (2) is false although its antecedent is false. In response to this kind of exam-
ple, philosophers distinguish between two kinds of conditionals: subjunctive conditionals
or counterfactuals where the consequent is expressed using the word ‘would’ in the sub-
junctive form, and others called indicative conditionals. This said, sometimes when the
consequent of the conditional is in the indicative future tense, it belongs to the category
of counterfactuals.

5.2 The Problem

Formally, the syntax of conditional logics extends the syntax of propositional logic by
the addition of the conditional connective ϕ ⊃ ψ standing for “If ϕ, ψ”:

Definition 5.2.1 (Conditional language LCL). The language LCL is defined by the
following grammar in Backus-Naur Form (BNF):

LCL : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ⊃ ϕ)

where p ∈ PROP . We use the same abbreviations as in Definition 1.3.1. To save
parenthesis, we use the following ranking of binding strength: ¬,∧,∨,⊃,→,↔. �
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5.3. Truth-functional Semantics: Material Implication 95

The research problem and the challenge for conditional logics is to provide an ap-
propriate semantics for the language LCL as well as a meaningful truth condition for the
connective ⊃. We are going to study different proposals for semantics of conditionals.

In Section 5.3, we will examine whether a truth-functional/extensional semantics
can be given to conditionals. We will focus on the material implication. Then, since
it turns out to be problematic, we will wonder in Section 5.4 whether it is possible to
provide an intensional semantics directly based on the possible world semantics. We will
first consider the notion of strict conditional. Then, since it is also problematic, we will
introduce in Sections 5.5 and 5.6 other possible world semantics for conditionals based
on the notions of selection functions and system of spheres. These two semantics have
been proposed by Stalnaker (1968) and Lewis (1973) and are the most well-known and
accepted semantics for conditional. Stalnaker claims that his definitions are both suited
for indicative and subjunctive conditionals, whereas Lewis claims that his semntics is
rather suited for subjunctive conditionals (counterfactuals). Finally, in Section 5.9, we
will introduce six familiar conditional logics and in Section 5.10 we will provide proof
systems for them (either a Tableau method or a Hilbert proof system).

5.3 Truth-functional Semantics: Material Implication

In logic and linguistic, the most common approach to specifying the meaning of a complex
sentence is to specify the truth conditions of the complex sentence, in terms of the truth
conditions of its parts. For example, if ϕ and ψ are two sentences such as “Adèle is
in Rennes” and “Benoit is in Rennes”. Our question will be: are the truth conditions
of “If ϕ, ψ” of the simple, extensional, truth-functional kind, like those of “ϕ and ψ”,
“ϕ or ψ” and “It is not the case that ϕ” ? That is, do the truth values of ϕ and of
ψ determine the truth value of “If ϕ, ψ”? Or are they non-truth-functional, like those
of “ϕ because ψ”, “ϕ before ψ”, “the agent believes ϕ”? That is, are they such that
the truth values of ϕ and ψ may, in some cases, leave open the truth value of “If ϕ,
ψ” ? This kind of semantics is called truth–functional and is based on a compositional
definition of well-formed formulas.

The truth-functional theory of the conditional was essential to Frege’s new logic. It
was taken up enthusiastically by Russell (who called it “material implication”), Wittgen-
stein in the Tractatus, and the logical positivists, and it is now found in every logic text.
If “if” is truth-functional, this is the right truth function to assign to it: of the six-
teen possible truth-functions of ϕ and ψ, it is the only serious candidate. Indeed, it is
uncontroversial that when ϕ is true and ψ is false, “If ϕ, ψ” is false. Moreover, it is
uncontroversial that “If ϕ, ψ” is sometimes true when ϕ and ψ are respectively (true,
true), or (false, true), or (false, false). For example, “If it’s a square, it has four sides”,
said of an unseen geometric figure, is true, whether the figure is a square, a rectangle
or a triangle. Non-truth-functional accounts agree that “If ϕ, ψ” is false when ϕ is true
and ψ is false; and they agree that the conditional is sometimes true for the other three
combinations of truth-values for the components; but they deny that the conditional is
always true in each of these three cases. Some agree with the truth-functionalist that
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ϕ ψ ϕ→ ψ ¬ϕ→ ψ ϕ→ ¬ψ

T T T T F
T F F T T
F T T T T
F F T F T

Figure 5.1: Truth-Functional Interpretation

ϕ ψ ϕ ⊃ ψ ¬ϕ ⊃ ψ ϕ ⊃ ¬ψ

T T T T/F F
T F F T/F T
F T T/F T T/F
F F T/F F T/F

Figure 5.2: Non-Truth-Functional Interpretation

when ϕ and ψ are both true, “If ϕ, ψ” must be true. Some do not, demanding a further
relation between the facts that ϕ and that ψ (see Read (1995)). In any case, all the non-
truth-functionalists agree that when ϕ is false, “If ϕ, ψ” may be either true or false. For
instance, if I say “If you touch that wire, you will get an electric shock” and you don’t
touch it, then was my remark true or false ? According to the non-truth-functionalist,
it depends on whether the wire is live or dead, on whether you are insulated, etc. The
best-known objection to the truth-functional account, one of the “paradoxes of material
implication”, is that the falsity of ϕ is sufficient for the truth of “If ϕ, ψ”. In every
possible situation in which ϕ is false, “ϕ → ψ” is true. Can it be right that the falsity
of “Rennes is in the Netherlands” entails the truth of “2+2=4”?

But even if we come to the conclusion that → does not match perfectly our natural-
language “if”, it comes close, and it has the virtues of simplicity and clarity. Natural
language is sometimes vague and imprecise, and we cannot expect our theories to achieve
better than approximate fit. Perhaps, in the interests of precision and clarity, in serious
reasoning we should replace the elusive “if” with its neat, close relative, →. This was
no doubt Frege’s attitude. Frege’s primary concern was to construct a system of logic,
formulated in an idealized language, which was adequate for mathematical reasoning. If
“ϕ→ ψ” doesn’t translate perfectly our natural-language “If ϕ, ψ”, but plays its intended
role, so much the worse for natural language. For the purpose of doing mathematics,
Frege’s judgement was probably correct. The main defects of → don’t show up in
mathematics. There are some peculiarities, but as long as we are aware of them, they
can be lived with. And arguably, the gain in simplicity and clarity more than offsets the
oddities.

The oddities are harder to tolerate when we consider conditional statements about
matters dealing with everyday life. The difference is this: in everyday life, we often
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accept and reject propositions with degrees of confidence less than certainty. The kind
of statement “I think, but am not sure, that ϕ” plays no central role in mathematical
thinking. In everyday life, we often use conditionals whose antecedent we think is likely
to be false. We use them often, accepting some, rejecting others: “I think I won’t need
to get in touch, but if I do, I shall need a phone number”. In fact, the way we update
and infer information is quite different from the actual reasoning of mathematicians.

The definition of material implication has the unhappy consequence that all condi-
tionals with unlikely antecedents are likely to be true. To think it likely that ¬ϕ is to
think it likely that a sufficient condition for the truth of ϕ→ ψ obtains. Take someone
who thinks that the left wing will not win the election (¬L), and who rejects the thought
that if they do win, they will double income tax (T ). According to the definition of ma-
terial implication this person has grossly inconsistent opinions. Indeed, to reject L→ T
is to accept L ∧ ¬T ; for this is the only case in which L→ T is false. How can someone
accept L∧¬T yet reject L ? We would be intellectually disabled if we used mathematical
reasoning in this kind of situation: we would not have the power to discriminate between
believable and unbelievable conditionals whose antecedent we think is likely to be false.

5.4 Modal Semantics: Strict Conditional

Given our discussion in Section 5.3, a truth-functional/extensional semantics cannot be
provided for conditionals. “We have seen that the truth value of a conditional is not
always determined by the actual truth values of its antecedent and consequent, but
perhaps it is determined by the truth values that its antecedent and consequent take in
some other possible worlds. So, maybe we should look not only at the truth values of
the antecedent and the consequent in the actual world, but also at their truth values in
all possible worlds which have the same laws as does our own. When two worlds obey
the same physical laws, we can say that each is a physical alternative of the other. The
proposal, then, is that ϕ ⊃ ψ is true if ψ is true at every physical alternative to the
actual world at which ϕ is true. Suppose we say a proposition is physically necessary if
and only if it is true at every physical alternative to the actual world, and suppose we
express the claim that a proposition ϕ is physically necessary by 2ϕ. Then, the proposal
we are considering is that the following equivalence always holds:

|=S5 (ϕ ⊃ ψ)↔ 2(ϕ→ ψ) (5.1)

Another way of arriving at (5.1) is the following. English subjunctive conditionals
are not truth-functional because they say more than that the antecedent is false or
the consequent is true. The additional content is a claim that there is some sort of
connection between the antecedent and the consequent. The kind of connection which
seems to occur to people more readily in this context is a physical or causal connection.
How can we represent this additional content in our formalization of English subjunctive
conditionals ? One way is to interpret ϕ ⊃ ψ as involving the claim that it is physically
impossible that ϕ be true and ψ false. Once again, we come up with (5.1).” (Nute and
Cross, 2001, p. 6–7)
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Some More Problematic Inferences. It is easy enough to check that the following
are all valid in classical logic and for strict conditionals:

{ϕ ⊃ ψ,ψ ⊃ χ} |= ϕ ⊃ χ (Hypothetical Syllogism)
ϕ ⊃ ψ |= ¬ψ ⊃ ¬ϕ (Contraposition)
ϕ ⊃ ψ |= (ϕ ∧ χ) ⊃ ψ (Monotonicity)

But now consider the three following arguments of the same respective forms:

Hypothetical Syllogism: If the other candidates pull out, John will get the job. If John
gets the job, the other candidates will be disappointed. Hence, if the other candi-
dates pull out, they will be disappointed.

Contraposition: If we take the car then it will not break down en route. Hence, if the
car does break down en route, we did not take it.

Monotonicity: If it does not rain tomorrow we will go to the cricket. Hence, if it does
not rain tomorrow and I am killed in a car accident tonight then we will go to the
cricket.

If the conditional was material, then these inferences would be valid, which they
certainly do not appear to be, since they may have true premises and a false conclusion.
Hence, we have a new set of objections against the conditional being material. (And
since the conditionals are indicative, they tell just as much against one who claims only
that indicative conditionals are material.)

5.5 Selection Functions

We introduce the selection function semantics introduced by Stalnaker (1968). It can
be defined as a specific instantiation of the possible world semantics. Intuitively, wRϕv
means that ϕ is true at world v, which is, ceteris paribus, the same as world w. Ceteris
paribus is Latin and means ‘other things being equal’: the possible world v is different
from the possible world w with respect to ϕ, all ‘other things being equal’.

Definition 5.5.1 (Selection function model). A selection function model M is a
tupleM := (W, {Rϕ : ϕ ∈ LCL} , V ) where

• W is a non-empty set whose elements are called possible worlds;

• Rϕ are binary relations over W ;

• V : PROP ×W → {T, F} is a function called a valuation.

If w ∈ W and ϕ ∈ LCL, we write wRϕv or Rϕwv for (w, v) ∈ Rϕ, and fϕ(w) denotes
{v : v ∈W and wRϕv} and it is called a selection function. We abusively write w ∈ M
for w ∈ W . The pair (M, w) is called a pointed selection function model. The class of
all pointed selection function models is denoted SCL. �
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The intuitive interpretation of fϕ(w) is that it is the world most like w in which ϕ
is true or the set of worlds most like w or sufficiently like w in which ϕ is true.

Stalnaker (1968) suggested that we posit an absurd world λ at which every propo-
sition is true. Alternatively, a selection function which picks a unique closest world is
equivalent to a function which picks a set of worlds with at most one member. Then the
empty set plays the same role as the absurd world.

Definition 5.5.2 (Satisfaction relation |=CL). The satisfaction relation |=CL⊆ S ×
LCL is defined inductively as follows (we omit the subscript CL subsequently). Let
(M, w) ∈ SCL and ϕ,ψ ∈ LCL. The truth conditions for the propositional letters and
the connectives ¬ and ∧ are the same as in Definition 1.3.3. As for the connective ⊃,
we have:

M, w |= ϕ ⊃ ψ iff for all v ∈ fϕ(w),M, v |= ψ (5.2)

Hence, the triple CL := (LCL,SCL, |=CL) is a logic called the basic conditional logic. �

So, a conditional ϕ ⊃ ψ is true in a world w just in case ψ is true in every world
in fϕ(w), i.e., if ψ is true in the ϕ–world(s) most like or sufficiently like w. In other
words, truth condition (5.2) is equivalent to the following truth condition, where for all
ϕ ∈ LCL, JϕKM := {w ∈W :M, w |= ϕ}:

w ∈ Jϕ ⊃ ψKM iff fϕ(w) ⊆ JψKM

5.6 Systems of Spheres

The founders of conditional logic (Stalnaker and Lewis) suggested that the worlds ac-
cessible to w via fϕ – that is, the worlds essentially the same as w, except that ϕ is true
there – should be thought of as the worlds most similar to w at which ϕ is true. How to
understand similarity in this context is a difficult question. It is clear, though, at least
that similarity is something that comes by degrees.

A way of making the notion precise formally is as follows. We suppose that each
world, w, comes with a system of ‘spheres’. All the worlds in a sphere are more similar to
w than any world outside that sphere. We may depict the idea as in Figure 5.3. All the
worlds in Sw0 are more similar to w than the worlds in Sw1 that are not in Sw0 (Sw1 −Sw0 ).
all the worlds in Sw1 are more similar than the worlds in Sw2 − Sw1 , etc. Technically, for
any world w there is a set of subsets of W , $w := {Sw0 , Sw1 , . . . , Swn } (for some n), such
that w ∈ Sw0 ⊆ Sw1 ⊆ . . . ⊆ Swn = W .

Definition 5.6.1 (System of spheres). A system of spheres model M is a tuple
M := (W, $, V ) where

• W is a non-empty set whose elements are called possible worlds.

• $ is a function $ : W → 22W called a system of spheres that assigns to each possible
world w a nested set $(w), denoted $w, of sets of worlds closed under unions and
finite intersections (i.e. if S, S′ ∈ $w then S ∩ S′ ∈ $w and S ∪ S′ ∈ $w).
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ẇSw0Sw1Sw2Sw3

Figure 5.3: System of Spheres $w

• V : PROP ×W → {T, F} is a function called a valuation.

The pair (M, w) is called a pointed system of spheres model. The class of all pointed
system of spheres models is denoted V. �

Definition 5.6.2 (Satisfaction relation |=V). The satisfaction relation |=V⊆ V×LCL
is defined inductively as follows (we omit the subscript V subsequently). Let (M, w) ∈ V
and ϕ,ψ ∈ LCL. The truth conditions for the propositional letters and the connectives
¬ and ∧ are the same as in Definition 1.3.3. As for the connective ⊃, we have:

M, w |= ϕ ⊃ ψ iff
⋃

$w ∩ JϕKM = ∅ or there is S ∈ $w such that
S ∩ JϕKM 6= ∅ and S ⊆ Jϕ→ ψKM.

where JϕKM = {w ∈W :M, w |= ϕ}. Hence, the triple V := (LCL,V, |=V) is a logic. �

5.7 From Systems of Spheres to Selection Functions

Given a system of sphere $, we can define a selection function f$ associated to $. The
formal definition below is illustrated in Figure 5.4.

Definition 5.7.1. Let M = (W, $, V ) be a system of spheres model. The selection
function model M$ = (W $, {R$

ϕ : ϕ ∈ LCL}, V $) associated toM is defined as follows:

• W $ := W and V $ := V ;

• f$
ϕ(w) :=

JϕKM ∩min
⊆
{S : S ∈ $w and S ∩ JϕKM 6= ∅} if JϕKM 6= ∅

∅ otherwise.
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¬ϕ
ϕ

Sw0Sw1Sw2Sw3
w

fϕ(w)

Figure 5.4: From System of Spheres $w to Selection Function f$
ϕ(w)

We recall that we have (w, v) ∈ R$
ϕ if, and only if, v ∈ f$

ϕ(w). �

The sphere min
⊆
{S : S ∈ $w and S ∩ JϕKM 6= ∅} corresponds to the sphere Sw2 in Fig-

ure 5.4. This sphere can be thought of as containing exactly those worlds at which the
ceteris paribus clause (‘all other things than ϕ being equal’) is true.

Proposition 5.7.1. Let (M, w) be a pointed system of spheres model and let (M$, w)
be its associated pointed selection function model. Then, for all ϕ ∈ LCL,

M, w |= ϕ iff M$, w |= ϕ.

5.8 Other Semantics

Adams (1975) offers a probabilistic alternative to possible worlds semantics for condition-
als. Adams assumes that conditionals have probabilities but do not have truth values.
The formal language is restricted so the conditional operator ⊃ does not occur within
the scope of another conditional operator or within the scope of any truth-functional
operator. The probabilistic semantics, then, only applies to first-degree conditionals.
The probability of a conditional ϕ ⊃ ψ is just the corresponding standard conditional
probability:

µ(ϕ ⊃ ψ) := µ(ϕ ∧ ψ)
µ(ϕ)
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where µ(ϕ) 6= 0. Adam’s proposal is based on a notion of probabilistic entailement. A
set of sentences and conditionals Γ probabilistically entails a conclusion ϕ if, and only
if, for any real number ε > 0 there is a real number δ > 0 such that if µ(ψ) > 1− δ for
each ψ ∈ Γ, then µ(ϕ) > 1 − ε. An argument is probabilistically sound if its premises
probabilistically entail its conclusion. Adams (1975) shows that probabilistic soundness
is equivalent to validity in the first-degree fragment of VC.

5.9 Some Familiar Conditional Logics

In this section, we are going to present six familiar conditional logics: CL+, V, VW and
VC (Lewis, 1973), SS (Pollock, 1976) and C2 (Stalnaker, 1968).

5.9.1 Selection Functions Semantics

Since no constraint is imposed on the relations fϕ (i.e. Rϕ), Stalnaker’s conditional logic
CL is the analogue for conditional logics of the basic modal logic ML. The following
familiar constraints are often imposed. Below, (M, w) is any pointed selection function
model, ϕ,ψ ∈ LCL and JϕKM := {w ∈W :M, w |= ϕ}:

fϕ(w) ⊆ JϕKM (ID)
If w ∈ JϕKM, then w ∈ fϕ(w) (MP)
If w ∈ JϕKM, then fϕ(w) = {w} (CS)
If fϕ(w) = ∅, then fψ(w) ∩ JϕKM = ∅ (MOD)
fϕ∨ψ(w) ⊆ fϕ(w) ∪ fψ(w) (CA)
If fϕ(w) ∩ JψKM 6= ∅, then fϕ∧ψ(w) ⊆ fϕ(w) (CV)
If fϕ(w) ⊆ JψKM and fψ(w) ⊆ JϕKM, then fϕ(w) = fψ(w) (CSO)
fϕ(w) is a singleton. (CEM)

Then, we define the five conditional logics V, VW, VC, SS and C2. For all L ∈{
CL,CL+,V,VW,VC, SS,C2

}
, we define the logic L as the triple (LCL,SL, |=CL), where

SL denotes the classes of pointed conditional models as they are defined in Figure 5.5.

5.9.2 Systems of Spheres Semantics

The following familiar constraints are often imposed on systems of spheres. Below,
(M, w) is a pointed system of sphere models, ϕ,ψ ∈ LCL and JϕK = {w ∈W :M, w |= ϕ}:

If S ∈ $w, then w ∈ S (Weak Centering)
{w} ∈ $w (Strong Centering)
If
⋃

$w ∩ JϕK 6= ∅, then there is a singleton S ∈ $w such that S ⊆ JϕK (CEM’)
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Sub classes of SCL Semantic conditions

SCL None
SCL+ (ID), (MP)
SV (ID), (MOD), (CSO), (CV)
SVW (ID), (MP), (MOD), (CSO), (CV)
SVC (ID), (MP), (MOD), (CSO), (CV), (CS)
SSS (ID), (MP), (MOD), (CSO), (CA), (CS)
SC2 (ID), (MP), (MOD), (CSO), (CV), (CEM)

Figure 5.5: Semantic Conditions for Selection Function Models

Sub classes of V Semantic conditions

VV′ None
VVW′ (Weak Centering)
VVC′ (Strong Centering)
VC2′ (CEM’)

Figure 5.6: Semantic Conditions for System of Spheres Models

Then, we define the five conditional logics V’, VW’, VC’ and C2’. For all L′ ∈{
V′,VW′,VC′,C2′

}
, we define the logic L′ as the triple (LCL,VL′ , |=CL), where VL′ de-

notes the classes of pointed conditional models defined in Figure 5.6. Note that, since
Condition (CV) is validated by every system of spheres and (CV) is not a theorem of
SS, there is no class of system of spheres that characterizes SS.

Proposition 5.9.1. L ∈ {V,VW,VC,C2}. Then, L and L′ define the same set of validi-
ties. That is, {ϕ ∈ LCL :|=L ϕ} = {ϕ ∈ LCL :|=L′ ϕ}.

5.10 Proof Systems for Conditionals

We consider two types of proof systems for our conditional logics. We provide sound
and complete tableau methods for CL and CL+ and sound and complete Hilbert proof
systems for the logics {V,VW,VC,SS,C2}. We will discuss the intuitive interpretation
of the axioms and inference rules of the Hilbert systems.

5.10.1 Tableaux Methods

Definition 5.10.1 (Tableau rules of CL and CL+). The tableau rules of CL are those
of propositional logic of Figure 2.2 as well as ⊃ and ¬ ⊃ below. The tableau rules of
CL+ are those of propositional logic of Figure 2.2 as well as the rules ⊃, MP and ¬ ⊃+
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below. For rule MP , ` is a prefix occurring on the branch and ϕ is the antecedent of a
conditional or negated conditional at a node on the branch.

(` ϕ ⊃ ψ) (Rϕ ` `′)
(`′ ψ)

⊃
(` ¬(ϕ ⊃ ψ))

(Rϕ ` `′)
(`′ ¬ψ)

¬ ⊃

(` ¬ϕ) (` ϕ)
(Rϕ ` `)

MP

(` ¬(ϕ ⊃ ψ))
(Rϕ ` `′)

(`′ ϕ)
(`′ ¬ψ)

¬ ⊃+

We recall that the tableau tree for a formula is constructed as shown in Algorithm 2.2.1
of Figure 2.1. �

Theorem 5.10.1 (Soundness and completeness). Let ϕ ∈ LCL. Then, ϕ is satisfi-
able if, and only if, the tableau for ϕ is open.

Example 5.10.1. Here is an example tableau proving `CL (p ⊃ q)→ (p ⊃ (q ∨ r)).

(` ¬((p ⊃ q)→ (p ⊃ (q ∨ r)))

(` (p ⊃ q))
(` ¬(p ⊃ (q ∨ r)))

(`′ ¬(q ∨ r))
(Rp ` `′)

(`′ ¬q)
(`′ ¬r)

(`′ q)
×

�

Université de Rennes 1 UFR Philosophie



5.10. Proof Systems for Conditionals 105

5.10.2 Hilbert Systems

In order to axiomatize the validities of the logics {V,VW,VC, SS,C2}, we introduce the
following axioms and inference rules:

From ϕ↔ ψ infer (χ ⊃ ϕ)↔ (χ ⊃ ψ) (RCEC)
From (ϕ1 ∧ . . . ∧ ϕn) ⊃ ψ infer [(χ ⊃ ϕ1) ∧ . . . ∧ (χ ⊃ ϕn)]→ (χ ⊃ ψ), n ≥ 0 (RCK)

ϕ ⊃ ϕ (ID)
(ϕ ⊃ ψ)→ (ϕ→ ψ) (MP)
(¬ϕ ⊃ ϕ)→ (ψ ⊃ ϕ) (MOD)
[(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)]→ [(ϕ ⊃ χ)↔ (χ ⊃ ϕ)] (CSO)
[(ϕ ⊃ ψ)→ ¬(ϕ ⊃ ¬χ)]→ [(ϕ ∧ χ) ⊃ ψ] (CV)
(ϕ ∧ ψ)→ (ϕ ⊃ ψ) (CS)
[(ϕ ⊃ ψ) ∧ (χ ⊃ ψ)]→ [(ϕ ∨ χ) ⊃ ψ] (CA)
(ϕ ⊃ ψ) ∨ (ϕ ⊃ ¬ψ) (CEM)

Intuitive interpretation of the axioms and inference rules. (RCEC) says that
we can substitute one of two provably equivalent sentences with the other in the con-
sequent of a conditional. (MP) is so named because it supports a detachment rule for
conditionals as a derived inference rule that is simlar to Modus Ponens: from ϕ and
ϕ ⊃ ψ, infer ψ. (RCK) also supports a similar kind of detachment. A modal sen-
tence ⊃ ϕ, which is read as ‘ϕ is necessarily true’, is often defined by the equivalence
2ϕ ↔ (¬ϕ ⊃ ϕ). Using this defined modal operator, (MOD) becomes 2ϕ → (ψ ⊃ ϕ).
It reads as ‘if ϕ is necessary, then ϕ would be true no matter what ψ might be’. It
weakens the theorem of propositional logic ϕ→ (ψ → ϕ). (CSO) insures that condition-
ally (counterfactually) equivalent sentences have the same (counterfactual) consequents.
(CEM) is an acronym for ‘Conditional Excluded Middle’ and its interpretation is clear.

Definition 5.10.2 (Proof systems). For each L ∈
{

CL,CL+,V,VW,VC, SS,C2
}
, we

define the proof system HL by adding to the inference rules (RCEC) and (RCK) the
corresponding axioms of the semantic conditions given in Figure 5.5. �

Theorem 5.10.2 (Soundness and completeness). Let L ∈ {CL,CL+,V,VW,VC,SS,
C2}. Then, the proof system HL is sound and complete for LCL w.r.t. the class SL (and
the class VL′ if L ∈ {V,VW,VC,C2}).

The proof system C2 is the strongest of the five proof systems since every theorem
of V, VW, VC, or SS is a theorem of C2. The axiom (CEM) is not a theorem of any of
these weaker systems. VC is the next stronger system, containing all all theorems of VW
and SS. (CS) is not a theorem of VW and (CV) is not a theorem of SS; thus neither VW
nor SS is stronger than the other. V is weaker than VW. (MP) is generally considered a
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necessary feature of any logic of commonsense conditionals, which means that V is too
weak for this purpose. Lewis proposes V as a possible logic for conditional obligation.
Reading ϕ ⊃ ψ as ‘If ϕ were the case, ψ ought to be the case’, we would not want to
adopt (MP) since what ought to be the case, too often is not.

Two derived inference rules valid for all five systems are of interest.

From ϕ↔ ψ, infer (ϕ ⊃ χ)↔ (ψ ⊃ χ) (RCEA)
From ϕ→ ψ, infer ϕ ⊃ ψ (RCE)

The next three important theses are theorems of none of these five systems. They cor-
respond to the inferences (Hypothetical Syllogism), (Contraposition) and (Monotonicity)
studied in Section 5.4.

[(ϕ ⊃ ψ) ∧ (ψ ⊃ χ)]→ (ϕ ⊃ χ) (HS)
(ϕ ⊃ ψ)→ (¬ψ ⊃ ¬ϕ) (Contra)
(ϕ ⊃ ψ)→ [(ϕ ∧ χ) ⊃ ψ] (Mon)

These three theses do not appear to be related to each other at all closely. However,
from the point of view of our five conditional logics they are equivalent: if any one of the
three is added to V, VW, VC, SS or C2 as an axiom, then the other two are derivable as
theorems. Counterexamples to these three theses can be found in Section 5.4.

5.11 Further Reading

This chapter is based on (Nute and Cross, 2001), (Priest, 2011, Chap. 5) and (Edgington,
2014) (note that (Edgington, 2014) is a revised chapter of (Goble, 2001)). Nute and Cross
(2001) give a good survey of conditional logics. Stalnaker (1992) provides as well a short
and readable survey of the philosophical issues involved in conditionals. Section 5.8 is
from Nute (1994). The interface between probabilities and conditionals is still nowadays
an active area of research.
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Chapter 6

Default Reasoning

“If that were so, and it seems most probable, only a man who had lost his wits
would have run from the house instead of towards it. If the gipsy’s evidence
may be taken as true, he ran with cries for help in the direction where help was
least likely to be.”

– Sir Arthur Conan Doyle, The hound of the Baskerville, 1902.

6.1 Introduction

Default reasoning deals with the kind of reasoning that we perform in everyday life when
we have incomplete information about a situation. In that case, we reason assuming
that we deal with the most ‘normal’ or most ‘typical’ situation. Hence, we often make
inferences that are defeasible or nonmonotonic, in the sense that they can be defeated
or blocked when we come to know or believe more information about the situation at
stake. For example, below, Inference (6.2) defeats (6.1), and Inference (6.5) defeats (6.4)
which itself defeats (6.3).

bird ⊃ fly (6.1)
bird ∧ penguin ⊃ ¬fly (6.2)

student ⊃ ¬taxPayer (6.3)
student ∧ employed ⊃ taxPayer (6.4)
student ∧ employed ∧ parent ⊃ ¬taxPayer (6.5)

As Moore tells us:

“By default reasoning, we mean drawing plausible inferences from less than
conclusive evidence in the absence of any information to the contrary. The
examples about birds being able to fly are of this type. [. . . ] Default reason-
ing is nonmonotonic because, to use a term from philosophy, it is defeasible.
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108 6. Default Reasoning

Its conclusions are tentative, so, given better information, they may be with-
drawn.” (Moore, 1983, p. 273–274)

Generally speaking, in default and non-monotonic reasoning, the rule of monotonicity
of propositional logic, i.e. from Γ |= ϕ infer Γ ∪ {ψ} |= ϕ, is no longer valid. Default
inferences can be considered as specific kinds of conditionals. As it turns out, the general
framework of plausibility measures introduced Section 3.3.1 will also allow us to recover
the definition of Lewis’ counterfactuals.

6.2 Logics for Defaults
We introduce a logic for reasoning about default statements. As usual in logic, it is
defined in three parts: (1) the language, (2) the class of models and (3) the satisfaction
relation.

Definition 6.2.1 (Language for defaults LDEF). The language for defaults LDEF is
defined by LDEF := {ϕ ⊃ ψ : ϕ,ψ ∈ LPL}. �

The formula ϕ ⊃ ψ can be read as “if ϕ (is the case) then typically ψ (is the case)”,
“if ϕ, then normally ψ”, “if ϕ, then by default ψ”, and “if ϕ, then ψ is very likely”. Thus,
the default statement “birds typically fly” is represented as bird ⊃ fly. As we shall see
in Section 6.5, LDEF can also be used for counterfactual reasoning, in which case ϕ ⊃ ψ
is interpreted as “if ϕ were true, then ψ would be true”.

Example 6.2.1. Consider the following set of formulas:

Γ := {bird ⊃ fly, penguin ⊃ ¬fly, penguin ⊃ bird}

If ⊃ is interpreted in Γ as the material implication→ of propositional logic, then we can
also derive that penguin ⊃ fly from Γ, which is obviously counterintuitive. �

Numerous semantics have been proposed for default statements, such as preferential
structures (Kraus et al., 1990), ε-semantics (Adams, 1975), and the possibilistic struc-
tures (Dubois and Prade, 1991) and κ-ranking (Spohn, 1988b,a) of Sections 3.2.3 and
3.2.4. All these semantics are in fact special instances of the general framework based on
plausibility measures introduced by Friedman and Halpern (2001) and defined in Section
3.3.1. Theorem 6.3.1 will show that these alternative semantics define in fact the same
set of validities.

Definition 6.2.2 (Simple structures). A simple qualitative plausibility (resp. con-
ditional probability, probability, ranking, possibility, preferential) structure is a tuple
S = (W,P l, π) where

• W is a non-empty set;

• Pl is a qualitative plausibility measure on 2W (resp. a conditional probability
measure on 2W × (2W − ∅), a probability measure on 2W , a ranking function on
2W , a possibility measure on 2W , a partial preorder on 2W );
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• π : W → CPL is a function called the valuation function. �

In other words, a simple probability structure (resp. ranking structure, possibility
structure, preferential structure) is a probability structure (resp. ranking structure, pos-
sibility structure, preferential structure) as defined in Definition 3.3.1 such that for all
w ∈W , Ww = W and Fw = 2W .

Definition 6.2.3 (Satisfaction relation of LDEF for simple structures). Let S be
a simple structure of Definition 6.2.2. Let ϕ,ψ ∈ LPL. We define S |= ϕ ⊃ ψ as follows:

• if S = (W,P l, π) is a simple qualitative plausibility structure, then

S |= ϕ ⊃ ψ iff either Pl(JψK) = ⊥ or Pl(Jϕ ∧ ψK) > Pl(Jϕ ∧ ¬ψK)

• if S = (W,µ, π) is a simple conditional probability structure, then

S |= ϕ ⊃ ψ iff µ (JψK : JϕK) = 1

• if S = (W,Poss, π) is a simple possibility structure, then

S |= ϕ ⊃ ψ iff either Poss(JϕK) = 0 or Poss(Jϕ ∧ ψK) > Poss(Jϕ ∧ ¬ψK)

• if S = (W,κ, π) is a simple ranking structure, then

S |= ϕ ⊃ ψ iff either κ(JϕK) =∞ or κ(Jϕ ∧ ψK) < κ(Jϕ ∧ ¬ψK)

• if S = (W,�, π) is a simple preferential structure, then

S |= ϕ ⊃ ψ iff either JϕK = ∅ or Jϕ ∧ ψK �s Jϕ ∧ ¬ψK

where JϕK = {w ∈W : π(w) |= ϕ}. If Γ is a set of formulas of LDEF (possibly infinite),
we write S |= Γ when S |= ϕ for all ϕ ∈ Γ. If moreover ϕ ∈ LDEF, we write Γ |=Cqual ϕ
(resp. Γ |=Ccond ϕ, Γ |=Cposs ϕ, Γ |=Crank ϕ, Γ |=Cpref ϕ) when for all simple qualitative
plausibility (resp. conditional probability, possibility, ranking, preferential) structures S,
if S |= Γ, then S |= ϕ. �

6.3 Proof System P

In this section, we consider an axiomatic characterization of default reasoning. There
has in fact been some disagreement in the literature as to what properties ⊃ should have.
However, there seems to be some consensus on the following set of six core properties,
which make up the axiom system P.

Université de Rennes 1 UFR Philosophie
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Definition 6.3.1 (System P). The proof system P for LDEF is defined by the following
axiom and inference rules.

If `PL ϕ↔ ϕ′, then from ϕ ⊃ ψ infer ϕ′ ⊃ ψ (Left Logical Equivalence, LLE)
If `PL ψ → ψ′, then from ϕ ⊃ ψ infer ϕ ⊃ ψ′ (Right Weakening, RW)
ϕ ⊃ ϕ (Reflexivity, REF)
From ϕ ⊃ ψ1 and ϕ ⊃ ψ2 infer ϕ ⊃ ψ1 ∧ ψ2 (AND)
From ϕ1 ⊃ ψ and ϕ2 ⊃ ψ infer ϕ1 ∨ ϕ2 ⊃ ψ (OR)
From ϕ ⊃ ψ1 and ϕ ⊃ ψ2 infer ϕ ∧ ψ2 ⊃ ψ1. (Cautious Monotony, CM)

If Γ ⊆ LDEF and γ ∈ LDEF, then we write Γ `P γ when there is a proof of γ from Γ in P
(see Definition 1.4.1 for more details). �

The first three properties (Left Logical Equivalence, LLE), (Right Weakening, RW)
and (Reflexivity, REF) of P seem noncontroversial. If ϕ and ϕ′ are logically equivalent,
then surely if ψ follows by default from ϕ, then it should also follow by default from
ϕ′. Similarly, if ψ follows from ϕ by default, and ψ logically implies ψ′, then surely ψ′
should follow from ϕ by default as well. Finally, reflexivity just says that ϕ follows from
itself.

The latter three properties get more into the heart of default reasoning. The (AND)
rule says that defaults are closed under conjunction. For example, if an agent sees a
bird, she may want to conclude that it flies. She may also want to conclude that it has
wings. The (AND) rule allows her to put these conclusions together and conclude that,
by default, birds both fly and have wings.

The (OR) rule corresponds to reasoning by cases. If red birds typically fly ((red ∧
bird) ⊃ fly) and nonred birds typically fly ((¬red ∧ bird) ⊃ fly), then birds typically
fly, no matter what color they are (bird ⊃ fly). Note that the (OR) rule actually
gives only (red ∧ bird) ∨ (¬red ∧ bird)) ⊃ fly here. The conclusion bird ⊃ fly requires
(Left Logical Equivalence, LLE), using the fact that bird↔ ((red∧bird)∨(¬red∧bird)).

To understand (Cautious Monotony, CM), note that one of the most important prop-
erties of the material conditional is that it is monotonic. Getting extra information
never results in conclusions being withdrawn. For example, if ϕ → ψ is true under
some interpretation, then so is ϕ ∧ ϕ′ → ψ, no matter what ϕ′ is. On the other hand,
default reasoning is not always monotonic. From bird ⊃ fly it does not follow that
bird ∧ penguin ⊃ fly. Discovering that a bird is a penguin should cause the retraction
of the conclusion that it flies. (Cautious Monotony, CM) captures one instance when
monotonicity seems reasonable. If both ψ1 and ψ2 follow from ϕ by default, then dis-
covering ψ2 should not cause the retraction of ψ1. For example, if birds typically fly and
birds typically have wings, then it seems reasonable to conclude that birds that have
wings typically fly.

All the propertis of P hold if ⊃ is interpreted as the material implication. However,
this interpretation leads to unwarranted conclusions, as Example 6.2.1 shows.
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Theorem 6.3.1 (Soundness and completeness). The proof system P is sound and
complete for LDEF w.r.t. Cqual, Ccond, Cposs, Crank and Cpref . That is, if Γ is a finite set
of formulas in LDEF and ϕ ⊃ ψ ∈ LDEF, then

Γ `P ϕ ⊃ ψ iff Γ |=Cqual ϕ ⊃ ψ
iff Γ |=Ccond ϕ ⊃ ψ
iff Γ |=Cposs ϕ ⊃ ψ
iff Γ |=Crank ϕ ⊃ ψ
iff Γ |=Cpref ϕ ⊃ ψ

Theorem 6.3.1 tells us that the conditional probabilistic, possibilistic, ranking and
preferential semantics all have in common that they define the same set of validities
axiomatized by the same proof system P (originally introduced by Kraus et al. (1990)).
This remarkable fact is explained by Friedman and Halpern (2001); Halpern (2003). The
proof system P is sound as long as the semantics satisfies (Pl4) and (Pl5). The proof
system P is complete as long as the semantics is rich, i.e. for all ϕ1, . . . , ϕk with k > 1 of
pairwise mutually exclusive and satisfiable propositional formulas, there is a structure
of the semantics such that

Pl(Jϕ1K) > Pl(Jϕ2K) > . . . > P l(JϕkK) = ⊥ (Rich)

6.4 From Defaults to Conditionals
LDEF is a rather weak language. For example, although it can express the fact that a
certain default holds, it cannot express the fact that a certain default does not hold,
since LDEF does not allow negated default. There is no great difficulty extending the
language to allow negated and nested default. This yields the language LCL of Definition
5.2.1. Its semantics is defined on the class of preferential structures as follows.

Definition 6.4.1 (Satisfaction relation of LCL for Spref , Squal, Srank and Sposs).
The satisfaction relation |=⊆ Spref ×LCL is defined inductively as follows. Let (S,w) ∈
Spref and ϕ,ψ ∈ LCL.

S,w |= p iff π(w)(p) = T
S,w |= ¬ϕ iff it is not the case that S,w |= ϕ
S,w |= ϕ ∧ ψ iff S,w |= ϕ and S,w |= ψ
S,w |= ϕ ⊃ ψ iff either JϕK = ∅ or Jϕ ∧ ψK �sw Jϕ ∧ ¬ψK

where JϕK := {w ∈Ww : S,w |= ϕ}. Similar definitions can be provided for Squal, Srank
and Sposs: it suffices to index Pl, κ and Poss by w in the clauses for the truth conditions
of ϕ ⊃ ψ of Definition 6.2.2. �

It should be clear from the definitions that formulas in LCL can be expressed in LQual
of Section 3.3.3. In fact the corresponding logics are equally expressive:

Proposition 6.4.1. For all X ∈ {qual, pref, rank, poss}, the logics (LCL,SX , |=) and
(LQual,SX , |=) are equally expressive.
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Proof. The result follows from Propositions 8.6.1 and 8.6.2 of Halpern (2003).

Definition 6.4.2 (System Cond). The Hilbert proof system Cond for LCL is defined
by the following axiom and inference rules.

All axioms and inference rules of HPL (Prop)
ϕ ⊃ ϕ (C1)
((ϕ ⊃ ψ1) ∧ (ϕ ⊃ ψ2))→ (ϕ ⊃ (ψ1 ∧ ψ2)) (C2)
((ϕ1 ⊃ ψ) ∧ (ϕ2 ⊃ ψ))→ ((ϕ1 ∨ ϕ2) ⊃ ψ) (C3)
((ϕ ⊃ ψ1) ∧ (ϕ ⊃ ψ2))→ ((ϕ ∧ ψ2) ⊃ ψ1) (C4)
From ϕ↔ ϕ′ infer (ϕ ⊃ ψ)→ (ϕ′ ⊃ ψ) (RC1)
From ψ → ψ′ infer (ϕ ⊃ ψ)→ (ϕ ⊃ ψ′) (RC2)

�

The proof system Cond can be viewed as a generalization of system P. For exam-
ple, the richer language allows the (AND) to be replaced by the axiom (C2). Simi-
larly, (C1), (C3), (C4), (RC1) and (RC2) are the analogues of (Reflexivity, REF), (OR),
(Cautious Monotony, CM), (Left Logical Equivalence, LLE) and (Right Weakening, RW)
respectively.

Theorem 6.4.1 (Soundness and completeness). The proof system Cond is sound
and complete for LCL w.r.t. Squal and Spref .

6.5 From Conditionals to Counterfactuals
The language LCL can be used to reason about conditionals and counterfactuals as well as
defaults. In Chapter 5, it was employed to reason about conditionals and counterfactuals
whereas in this chapter it was used for default reasoning. The general framework based
on plausibility measures is more general than the selection functions and systems of
spheres of the previous Chapter 5. So, it is natural to wonder which constraints need
to be added to this framework to recover at least the logic for counterfactuals based on
the sphere semantics or the selection functions. That is what we will investigate in this
section.

Definition 6.5.1. A pointed counterfactual preferential (resp. ranking, plausibility)
structure is a pointed preferential (resp. ranking, plausibility) structure S = (W,X , π, w)
(as defined in Definition 3.3.1) that satisfies the following condition:

w ∈Ww and w �w v for all v ∈Ww such that v 6= w (Counterfact�)
w ∈Ww and κw(w) < κw(Ww − {w}) (Counterfactκ)
w ∈Ww and Plw(w) > Plw(Ww − {w}) (CounterfactPl)

where u �w v is an abbreviation for u �w v and v �w u. �
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“Note that in a counterfactual preferential structure, Ww is not the set of worlds the
agent considers possible. Ww in general includes worlds that the agent knows perfectly
well to be impossible. For example, suppose that in the actual world w the lawyer’s
client was drunk and it was raining. The lawyer wants to make the case that, even if his
client hadn’t been drunk and it had been sunny, the car would have hit the cow. [. . . ]
Thus, to evaluate the lawyer’s claim, the worlds w ∈ Ww that are closest to w where it
is sunny and the client is sober and driving his car must be considered. But these are
worlds that are currently known to be impossible. This means that the interpretation
of Ww in preferential structures depends on whether the structure is used for default
reasoning or counterfactual reasoning.” (Halpern, 2003, p. 316)

In a pointed counterfactual preferential structure, the preorder �w represents a no-
tion of similarity between possible worlds. We state w1 �w w2 when w1 is at least as
close to w as w2 (or at least as similar to w as w2). With this interpretation in mind, w
should be at least as close to itself than any other world: that is the intuitive interpreta-
tion of conditions (Counterfact�), (Counterfactκ) and (CounterfactPl). The additional
property that corresponds to these conditions is:

ϕ→ (ψ ↔ (ϕ ⊃ ψ)) (Counterfact)

Axiom (Counterfact) reads as ‘if ϕ is already true in the actual world, then the coun-
terfactual ϕ ⊃ ψ is true if, and only if, ψ is also true in the actual world’.
Theorem 6.5.1 (Soundness and completeness). The proof system CFL := Cond +
{Counterfact} is sound and complete for the language LCL w.r.t. the class of pointed
counterfactual preferential (as well as ranking and plausibility) structures.

The truth conditions for ϕ ⊃ ψ in the preferential, ranking and plausibility semantics
roughly tells us that ϕ ∧ ψ is more likely than ϕ ∧ ¬ψ. However, this does not seem
to accord very much with the truth conditions for conditionals that we saw in Chapter
5, based on selection functions or systems of spheres. We are going to show now that
an equivalent formulation can be found for the preferential semantics which is in fact
very close to the semantics for counterfactuals based on selection functions proposed by
Stalnaker (1968). If (S,w) is a pointed counterfactual preference structure, we define:

fϕ(w) := {v ∈ JϕK : for all u ∈ JϕK− {v}, u �w v} (6.6)

where JϕK := {w ∈Ww : S,w |= ϕ}.
The notation fϕ(w) has to be interpreted as ‘the worlds in JϕK the most similar

to w’. Under a ‘default’ reading, it should be read as ‘the most normal/typical worlds
in JϕK’. The notation fϕ(w) reminds very much the selection function introduced by
Stalnaker for providing a semantics to counterfactuals. In fact, this choice of notation
is meaningful from an intuitive point of view, since we have the following result:
Proposition 6.5.1. Let (S,w) be a pointed preferential structure and let ϕ,ψ ∈ LCL.
Then,

S,w |= ϕ ⊃ ψ iff fϕ(w) ⊆ JψKS (6.7)

where JψKS := {w ∈ S : S,w |= ψ}.

Université de Rennes 1 UFR Philosophie



114 6. Default Reasoning

Hence, we can also provide a semantics for counterfactuals based on preferential,
ranking and plausibility structures. It remains to investigate which specific conditions
of Figure 5.5 the selection function of Expression (6.6) verifies in order to determine
exactly to which conditional/counterfactual logic of the previous chapter corresponds
CFL.

6.6 Further reading

This chapter is based on Chapter 8 of (Halpern, 2003). I also recommend the book of
Priest (2011) for an overview on non-classical logics (the proof systems considered in this
book are all tableau systems), and the book edited by Goble (2001) which introduces in a
concise way various sub-areas of philosophical logic. In artificial intelligence, other very
different kinds of formalisms have been introduced to deal with default and nonmonotonic
reasoning, such as circumscription and Reiter’s default logic. We refer the reader for
example to Goble (2001) or Gabbay et al. (1998) for more information.
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Chapter 7

Belief Revision

“To attain knowledge, add things every day, To attain wisdom, remove things
every day.”

– Lao Tzu, Tao-te Ching, ch. 48

7.1 Introduction

Originally, belief revision theory was developed by Alchouron, Gärdenfors and Makinson
(AGM) with a strong syntactic stance. In AGM belief revision theory, the beliefs of
the agent are represented by a belief set K, i.e. a set of propositional formulas that
is closed under logical consequence. These propositional formulas represent the beliefs
of the agent. AGM distinguishes three types of belief change: expansion, revision and
contraction. The expansion of K with a propositional formula ϕ, written K+ϕ, consists
of adding ϕ to K and taking all the logical consequences. Note that this might yield
inconsistency. The revision of K with ϕ, written K∗ϕ, consists of adding ϕ to K, but in
order that the resulting set be consistent, some formulas are removed from K. Finally,
the contraction of K with ϕ, written here K $ ϕ, consists in removing ϕ from K, but
in order that the resulting set be consistent, some other formulas are also removed.
Of course there are some connections between these operations. From a contraction
operation, one can define a revision operation thanks to the Levi identity:

K ∗ ϕ := (K $ ¬ϕ) + ϕ.

And from a revision operation, one can define a contraction operation thanks to the
Harper identity:

K $ ϕ := K ∩ (K ∗ ¬ϕ).

In this chapter, we will focus on the revision and the expansion operation. Assump-
tion 1 stated at the beginning of Section 3.4 is therefore no longer valid.
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116 7. Belief Revision

K + ϕ is a belief set (K+1)
ϕ ∈ K + ϕ (K+2)
K ⊆ K + ϕ (K+3)
If ϕ ∈ K then K = K + ϕ (K+4)
K + ϕ is the smallest set satisfying (K+1)–(K+4). (K+5)

Figure 7.1: AGM belief expansion postulates

7.2 Expansion
In this section, we assume that the set of propositional letters PROP is finite, and in
this paragraph, all the formulas belong to the propositional language LPL defined over
PROP . Let Cn(.) be the classical consequence operation, i.e. for a set of propositional
formulas Γ, Cn(Γ) := {ϕ : Γ `PL ϕ}. We can now define formally a belief set.

Definition 7.2.1 (Belief set). A belief set K is a set of propositional formulas of LPL
such that Cn(K) = K. We denote by K⊥ the unique inconsistent belief set consisting of
all propositional formulas. �

Classically, in AGM theory, we start by proposing rationality postulates that belief
change operations must fulfill. These postulates make precise our intuitions about these
operations and what we mean by rational change. The rationality postulates for the
expansion operation + proposed by Gärdenfors (1988) are given in Figure 7.1.

(K+1) tells us that the expansion operation + is a function from pairs of belief set
and formula to belief sets. This entails that we can iterate the expansion operation.
(K+2) tells us that when the agent expands her belief set by ϕ then as a result ϕ is one
of her beliefs. All the other postulates refer to some kind of minimal change. (K+3)
tells us that when the agent expands by ϕ she does not throw away any of her former
beliefs. (K+4) tells us that if the agent already believes ϕ then expanding by ϕ should
not change her beliefs: the change made to add ϕ to the belief set is minimal.

The following (representation) theorem tells us that these postulates actually deter-
mine a unique expansion operation on belief sets.

Theorem 7.2.1. A function + satisfies (K+1)–(K+5) if, and only if, for each belief set
K and formula ϕ ∈ LPL, K + ϕ = Cn(K ∪ {ϕ}).

So from now on, we define the expansion operation + by K + ϕ = Cn(K ∪ {ϕ}).
So far our approach to expansion was syntactically driven. Now we are going to give a
semantical approach to expansion and set some links between these two approaches.

We use the possible world semantics. First we consider the set W consisting of all
the (logically) possible worlds. A possible world w can be viewed as an interpretation,
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¬ϕ ϕ

Figure 7.2: AGM expansion by ϕ

i.e. a function from PROP to {>,⊥} which specifies which propositional letters (such
as ‘it is raining’) are true in this world w (see Definition 1.3.2). For a propositional
formula ϕ, we write w |= ϕ when ϕ is true at w in the usual sense (See Definition 1.3.3)
Then a formula ϕ is true in a set W of possible worlds, written W |= ϕ, if, and only if,
for all w ∈ W , w |= ϕ. Besides, because PROP is finite, W is also finite. We can then
represent the agent’s epistemic state by a subset W of W (which is consequently finite
as well). Intuitively, W is the smallest set of possible worlds in which the agent believes
that the actual world is located.

There is actually a very close correspondence between belief sets and sets of possible
worlds.

Definition 7.2.2 (Belief set associated to a set of possible worlds). Let W
be a finite set of possible worlds. We define the belief set KW associated to W by
KW = {ϕ ∈ LPL : W |= ϕ}. Let K be a belief set. We define the set of possible worlds
WK associated to K by WK = {w ∈W : w |= ϕ for all ϕ ∈ K}. Then,

W |= ϕ iff ϕ ∈ KW ϕ ∈ K iff WK |= ϕ. �

We define the semantic counterpart of the expansion operation defined previously.

Definition 7.2.3 (Expansion). Let W be a finite set of possible worlds and ϕ ∈ LPL.
The expansion of W by ϕ, written W + ϕ, is defined as follows.

W + ϕ = {w ∈W : w |= ϕ}. �

This semantic counterpart of the expansion is described graphically in Figure 7.2.
The initial model W is on the left of the arrow and the expanded model W +ϕ is on the
right of the arrow. The dots represent possible worlds and the straight line separates
the worlds satisfying ϕ from the worlds satisfying ¬ϕ.

Finally, we show that these two definitions of expansion, syntactic and semantic, are
in fact equivalent.

Theorem 7.2.2. For all belief sets K and all finite sets of possible worlds W ,

ψ ∈ K + ϕ iff WK + ϕ |= ψ W + ϕ |= ψ iff ψ ∈ KW + ϕ.
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K ∗ ϕ is a belief set (K ∗ 1)
ϕ ∈ K ∗ ϕ (K ∗ 2)
K ∗ ϕ ⊆ K + ϕ (K ∗ 3)
If ¬ϕ /∈ K then K + ϕ ⊆ K ∗ ϕ (K ∗ 4)
K ∗ ϕ = K⊥ iff ϕ is unsatisfiable (K ∗ 5)
If `PL ϕ↔ ϕ′ then K ∗ ϕ = K ∗ ϕ′ (K ∗ 6)
K ∗ (ϕ ∧ ϕ′) ⊆ (K ∗ ϕ) + ϕ′ (K ∗ 7)
If ¬ϕ′ /∈ K ∗ ϕ then (K ∗ ϕ) + ϕ′ ⊆ K ∗ (ϕ ∧ ϕ′) (K ∗ 8)

Figure 7.3: AGM belief revision postulates

7.3 Revision

In this section, all formulas are propositional formulas. Just as for expansion, Gärden-
fors and his colleagues proposed rationality postulates for revision operations. These
postulates make precise what we mean by rational change, and more precisely ratio-
nal revision. They are given in Figure 7.3. We will not provide intuitive motivations
for these postulates (even if some of them have been criticized), see (Gärdenfors, 1988)
for details. However, note that these postulates do not characterize a unique revision
operation, unlike the postulates for expansion.

Before going on, let us reconsider how we represent the agent’s epistemic state. So far
we have proposed two equivalent formalisms: belief set and (finite) set of possible worlds.
As we said, a belief set is an infinite set of formulas closed under logical consequence.
However, this cannot be handled easily by computers because of its infinitude. We would
like to have a more compact and finite representation of the agent’s epistemic state. For
that, we follow the approach of Katsuno and Mendelzon (1992).

As argued by Katsuno and Mendelzon, because PROP is finite, a belief set K can be
equivalently represented by a mere propositional formula ψ. This formula is also called
a belief base. Then ϕ ∈ K if and only if ϕ ∈ Cn(ψ). Besides, one can easily show that
χ ∈ K+ϕ if and only if χ ∈ Cn(ψ ∧ϕ). So in this approach, the expansion of the belief
base ψ by ϕ is the belief base ψ ∧ ϕ, which is possibly an inconsistent formula. Now,
given a belief base ψ and a formula ϕ, ψ ◦ ϕ denotes the revision of ψ by ϕ. But in this
case, ψ ◦ ϕ is supposed to be consistent if ϕ is. Given a revision operation ∗ on belief
sets, one can define a corresponding operation ◦ on belief bases as follows: `PL ψ◦ϕ→ χ
if, and only if, χ ∈ Cn(ψ) ∗ ϕ. Thanks to this correspondence, Katsuno and Mendelzon
set some rationality postulates for this revision operation ◦ on belief bases which are
equivalent to the AGM rationality postulates for the revision operation ∗ on belief sets.

Lemma 7.3.1. Let * be a revision operation on belief sets and ◦ its corresponding
operation on belief bases. Then * satisfies the 8 AGM postulates (K ∗ 1)–(K ∗ 8) if, and
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only if, ◦ satisfies the postulates (R1)–(R6) below:

`PL ψ ◦ ϕ→ ϕ (R1)
if ψ ∧ ϕ is satisfiable, then `PL ψ ◦ ϕ↔ ψ ∧ ϕ (R2)
If ϕ is satisfiable, then ψ ◦ ϕ is also satisfiable (R3)
If `PL ψ ↔ ψ′ and `PL ϕ↔ ϕ′, then `PL ψ ◦ ϕ↔ ψ′ ◦ ϕ′ (R4)
`PL (ψ ◦ ϕ) ∧ ϕ′ → ψ ◦ (ϕ ∧ ϕ′) (R5)
If (ψ ◦ ϕ) ∧ ϕ′ is satisfiable, then `PL ψ ◦ (ϕ ∧ ϕ′)→ (ψ ◦ ϕ) ∧ ϕ′ (R6)

So far our approach to revision was syntactically driven. Now we are going to give a
semantical approach to revision and then set some links between the two approaches.
Notation 7.3.1. JψK denotes the set of all logically possible worlds (also called models in
that case) that make ψ true, i.e. JψK = {w ∈ W : w |= ψ}.
Definition 7.3.1 (Faithful assignment). A pre-order ≤ over W is a reflexive and
transitive relation on W. A preorder is total if for every w,w′ ∈ W, either w ≤ w′ or
w′ ≤ w. Consider a function that assigns to each propositional formula ψ a preorder ≤ψ
over W. We say this assignment is faithful if the following three conditions hold:

1. If w,w′ ∈ JψK, then w <ψ w
′ does not hold;

2. If w ∈ JψK and w′ /∈ JψK, then w <ψ w
′ holds;

3. If `PL ψ ↔ ψ′, then ≤ψ=≤ψ′ . �

Intuitively, w ≤ψ w′ means that the possible world w is closer to ψ than w′.
Definition 7.3.2. LetM be a subset of W. A possible world w is minimal inM with
respect to ≤ψ if w ∈M and there is no w′ ∈M such that w′ <ψ w. Let

min(M,≤ψ) = {w : w is minimal inM with respect to ≤ψ} �

The following representation theorem sets some connections between the semantic
approach and the syntactic one.
Theorem 7.3.1. Revision operation ◦ satisfies postulates (R1)–(R6) iff there exists a
faithful assignment that maps each belief base ψ to a total preorder ≤ψ such that

Jψ ◦ ϕK = min(JϕK,≤ψ).
This semantic revision process is described in Figure 7.4. In this figure, the dots

represent possible worlds and the diagonal line separates the worlds satisfying ϕ from
the worlds satisfying ¬ϕ. The worlds in the inner circle are the worlds that satisfy ψ
and thus correspond to JψK. The other circles represent the ordering ≤ψ: if w <ψ w′

then w is within a smaller circle than w′ and if w =ψ w
′ then w and w′ are in between

the same successive circles. So the further a world is from the inner circle, the further it
is from ψ. The worlds in the hatched part are then the worlds that satisfy ϕ and which
are the closest to ψ. Therefore they represent Jψ ◦ ϕK = min(JϕK,≤ψ).

Grove (1988) proposed another semantic approach based on a system of spheres. But
one can show that his framework can be recast in the one just described.
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¬ϕ
ϕ

ψ ψ

Figure 7.4: AGM belief revision by ϕ

7.4 “Two Sides of the Same Coin”

A well-known result connects closely non-monotonic reasoning (default reasoning) with
belief revision. This lead Gardenförs and Makinson to claim that they are “two sides
of the same coin” (Gärdenfors, 1991; Makinson and Gärdenfors, 1989). But in fact,
this connection goes back to a footnote of Ramsey (1929) who introduced the so-called
“Ramsey test” for providing semantics to conditionals.1

Theorem 7.4.1.

• Suppose that a revision operation ◦ satisfies (K ∗ 1) - (K ∗ 8). Fix a belief set K, and
define a relation ⊃ on propositional formulas by taking ϕ ⊃ ψ to hold iff ψ ∈ K∗ϕ.
Then, ⊃ satisfies all the properties of P as well as Rational Monotonicity:

if ϕ ⊃ ψ1 and not ϕ ⊃ ¬ψ2, then ϕ ∧ ψ2 ⊃ ψ1 (Rational Monotonicity)

Moreover, ϕ ⊃ ⊥ if, and only if, ϕ is not satisfiable.
1Here is Ramsey’s footnote: “If two people are arguing ‘If p, then q?’ and are both in doubt as to

p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q; so
that in a sense ‘If p, q’ and ‘If p, ¬q’ are contradictories. We can say that they are fixing their degree of
belief in q given p. If p turns out false, these degrees of belief are rendered void. If either party believes
not p for certain, the question ceases to mean anything to him except as a question about what follows
from certain laws or hypotheses.”(Ramsey, 1929, 154–155)
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• Conversely, suppose that ⊃ is a relation on formulas that satisfies the properties
of P and Rational Monotonicity, and ϕ ⊃ ⊥ if, and only if, ϕ is not satisfiable.
Let K = {ψ ∈ LPL : > ⊃ ψ}. Then, K is a belief set. Moreover, if ∗ is defined by
taking K ∗ ϕ = {ψ : ϕ ⊃ ψ}, then (K ∗ 1)–(K ∗ 8) hold for K and ∗.

7.5 Further Reading

This Chapter is based on the book of Gärdenfors (1988). The Chapter of Gärdenfors
and Rott (1995) is still fine for an introductory entry. Also, see the survey article of
Fermé and Hansson (2011) for an overview of the work in belief revision theory in the
last 25 years and for pointers to the literature.
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Chapter A

Set Theory: Basic Notions and Notations

In this appendix, we recall some basic notions and notations of set theory that are
used throughout the lecture notes. Set theory was developed by mathematicians to be
able to talk about collections of objects. It has turned out to be an invaluable tool for
defining some of the more complicated mathematical structures. As such, we use in
these lecture notes some very basic set theory, mostly as a convenient notation for some
of our constructions. This appendix is a series of definitions and examples, with some
informal explanations.

A.1 Sets and Elements

A set is just a collection of mathematical objects. These objects can be numbers, letters,
tuples or even other sets. For example, R is the set of all real numbers, N is the set of
all natural number 0, 1, 2,. . . and Z is the set of all integers (both positive and negative)
. . . , -2, -1, 0, 1, 2,. . .

The objects in these collections are called elements. Given a set A and an object x,
we use the notation x ∈ A to denote that x is an element of A, and x /∈ A to denote
that x is not an element of A. When x ∈ A, we say that x is an element of A or that
A contains x. For example, 0, 33 ∈ R but 0, 33 /∈ N.

A.2 Defining Sets

We have three basic ways of writing down a set. We can list all of the elements, write
down some defining property for its elements, or write its elements as the values taken
by some expression. When we define a set, we often use the notation := instead of =.

A.2.1 Lists of Elements

The most basic way to define a set is as a list of its elements placed between curly braces.
So {1, 2, 3} is the set whose only elements are 1, 2, and 3. The set {1, 2, 3, . . . , 100} has
elements consisting of all integers from 1 to 100, and {1, 2, 3, . . .} has elements consisting
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of all of the positive integers. One particular set of interest, is the empty set. This is
the set with no elements and it is denoted {} or ∅.

A.2.2 Elements Satisfying a Condition

To express more complicated sets, we can take the set of all elements of some other set
B satisfying some property P , written as A := {x ∈ B : P (x)}. This is the set of all
elements x ∈ B so that the property P (x) holds. The above set A would contain exactly
the elements y so that y ∈ B and P (y) holds. For example,

{x ∈ R : x > 1}

is the set of all real numbers bigger than 1.
Intervals are specific sets of real numbers which can easily be defined by a property.

If a, b ∈ R with a ≤ b, then we define:

[a; b] := {x ∈ R : a ≤ x ≤ b}
[a; b[ := {x ∈ R : a ≤ x < b}
]a; b] := {x ∈ R : a < x ≤ b}
]a; b[ := {x ∈ R : a < x < b}

A.2.3 Elements of a Given Form

Suppose that we want to express the set of all even numbers. That is the set of all
integers n so that n is equal to 2m for some other integer m. We could of course write
this as

{n ∈ Z : there exists m ∈ Z so that n = 2m}.

On the other hand, this notation is somewhat cumbersome. It is often useful to have a
way to write the set of all objects that can be produced in some way. Thus, for the set
of even integers we use the alternative notation:

{2m : m ∈ Z}.

In general we use the notation

{f(x, y, z) : x ∈ A, y ∈ B, z ∈ C}

to denote the set of all things that can be written as f(x, y, z) for some elements x, y, z
of the sets A, B, C, respectively. So for example,

{n2 +m2 : n,m ∈ Z}

is the set of all numbers that can be written as the sum of the squares of two integers,
and

{{n, x} : n ∈ Z, x ∈ R}

is the set of sets that contain as elements one integer and one real number.
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A.3 Equality and Subsets
Two sets are considered to be equal if they contain exactly the same elements. In other
words two sets, A and B, are equal if and only if the elements of one are exactly the
same as the elements of the other. So A equals B if for all x, x ∈ A if, and only if,
x ∈ B. This definition has some important consequences. In particular, it means that
the sets {1, 2, 3}, {3, 1, 2}, and {1, 1, 2, 2, 2, 3} each contain only the elements 1, 2, and
3 and are thus all the same set: {1, 2, 3} = {3, 1, 2} = {1, 1, 2, 2, 2, 3}.

If one cares about the order and multiplicity of elements, one will often consider
tuples instead of sets. A tuple is a sequence of elements for which both the order and
the multiplicities matter. A tuple is written as a list of elements between parentheses.
For example (1, 2, 3), which is distinct from (3, 1, 2).

Another useful concept is that of subsets. We say that A is a subset of B, denoted
A ⊆ B, if every element of A is also an element of B. So, for example, {1, 3} is a subset
of {1, 2, 3} (formally, {1, 3} ⊆ {1, 2, 3}), but {1, 2, 5} is not because 5 /∈ {1, 2, 3}. If W
is a set, we denote by 2W or P(W ) the set of all subsets of W .

A.4 Operations: Union, Intersection, Difference
Another important way to create sets is to define them in terms of simpler sets. Here
are a few simple operations that can be used to do this.

• Given two sets A and B the union, denoted A∪B is the set of all elements contained
in either set. Namely,

A ∪B := {x : x ∈ A or x ∈ B}.

• Given two sets A and B the intersection, denoted A ∩B is the set of all elements
contained in both sets. Namely,

A ∩B := {x : x ∈ A and x ∈ B}.

• Given two sets A and B the difference of A and B, denoted A\B is the set of
elements that are in A but not B. Namely

A\B := {x : x ∈ A and x /∈ B}.

If W is a given set, the complementation of A (in W ), denoted A, is W\A.
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Intersection and union are commutative and associative: for all sets A,B,C,

A ∩B = B ∩A A ∪B = B ∪A
A ∩ (B ∩ C) = (A ∩B) ∩ C A ∪ (B ∪ C) = (A ∪B) ∪ C

Intersection and union are distributive unto each other: for all sets A,B,C,

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Complementation is idempotent and obeys to the De Morgan laws: for all sets A,B,

A = A

A ∩B = A ∪B A ∪B = A ∩B

If A1, . . . , An are n sets (with n ≥ 2) then
n⋃
i=1

Ai := A1 ∪ . . . ∪ An and
n⋂
i=1

Ai :=

A1 ∩ . . . ∩An.
A partition of A is a set of subsets {A1, . . . , An} of A such that:

1.
n⋃
i=1

Ai = A;

2. Ai ∩Aj = ∅ for all i, j ∈ {1, . . . , n} such that i 6= j.

For example, {{1, 2} , {3, 4, 5} , {6}} is a partition of {1, 2, 3, 4, 5, 6}.

A.5 Functions

A function (sometimes also called a mapping) is a rule for assigning to each element x in
a set A, another element f(x) in some other set B. This f would be a function taking or
‘mapping’ elements of A to elements of B denoted f : A → B. In this case, A is called
the domain of f and B is called the codomain. When not all elements of A are mapped
to elements of B, f is called a partial function; otherwise, f is (sometimes) called a total
function.

• The function f is surjective or onto if every element of the codomain can be written
as some value of f . Or, in other words, if for every y ∈ B there exists an x ∈ A so
that f(x) = y.

• The function f is injective or one-to-one if distinct elements of the domain get
mapped to distinct elements of the codomain. In other words, f is injective when
f(x) = f(y) only when x = y.

• If f is both injective and surjective, it is bijective. This means that for each element
of B that there is one and only one element of A that f maps to it. In other words,
f is bijective if for every y ∈ B there is a unique x ∈ A so that f(x) = y.
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A.6 Relations and Cartesian Product
If A and B are two sets, the cartesian product of A and B, denoted A×B, is the set of
all tuples (a, b) where a and b range over A and B respectively. Formally:

A×B := {(a, b) : a ∈ A, b ∈ B} .

For example, {1, 2, 3} × {a, b} := {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}. A binary re-
lation R over a set A is a subset of the cartesian product A × A. For example, if
A := {w, v, u}, then R := {(w,w), (w, v), (v, u)} is a binary relation over A. If R is a
binary relation over a set A, we write wRv or Rwv for (w, v) ∈ R, and R(w) denotes
{v ∈ A : wRv}.

We can extend these notions to an arbitrary arity. If A1, . . . , An are n sets (with
n ≥ 2), then the cartesian product of A1, . . . , An, denoted A1× . . .×An, is the set of all
tuples (a1, . . . , an) where a1, . . . , an range over A1, . . . , An respectively. Formally:

A1 × . . .×An := {(a1, . . . , an) : a1, . . . an ∈ A} .

A n-ary relation R over a set A is a subset of the cartesian product A× . . .×A︸ ︷︷ ︸
n times

. The

Cartesian product A× . . .×A︸ ︷︷ ︸
n times

is also denoted An. For example, R2 = R× R.

A.7 Further Reading
Almost every mathematical textbook recalls the basics of set theory and its usual nota-
tions. We refer the reader to textbooks on discrete mathematics, such as (Conradie and
Goranko, 2015; Rosen, 2012), which usually contain more informal explanations than
the others on this topic.
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Logique et Raisonnement de Sens Commun

Guillaume Aucher

Pendant longtemps, la logique s’est intéressée au raisonnement mathématique ainsi
qu’à la formalisation et aux fondements des mathématiques. C’est ce qui a motivé
le développement de la logique dite mathématique dans la première moitié du 20ième
siècle. Dans la seconde moitié du 20ième siècle, de par l’émergence de l’informatique et
de l’intelligence artificielle, de nombreuses logiques et formalismes ont été développés
avec pour objectif de modéliser des types de raisonnements plus proches de ceux que
nous utilisons dans la vie courante, notamment en présence d’incertitude, et qui sont
parfois assez éloignés du raisonnement de type mathématique.

Ces notes de cours sont une introduction aux logiques et formalismes qui étudient
le raisonnement dit de sens commun, c’est à dire le raisonnement humain de “la vie
courante”. En particulier, elles abordent le raisonnement que nous effectuons dans des
situations pour lesquelles nous avons une certaine incertitude quant à l’occurrence ou
l’existence de certains événements ou faits. Ainsi, nous présentons les logiques non-
monotones, les logiques pour conditionnels, la théorie de révision des croyances (pour
le raisonnement de sens commun) ainsi que la logique épistémique (dynamique), les
logiques probabilistes, possibilistes, les plausibilités, etc. (pour la représentation et le
raisonnement en présence d’incertitude).

Ces notes de cours sont illustrées par de nombreux exemples intuitifs qui permettent
de mieux appréhender et comprendre les différents concepts (formels) introduits. Elles
ne nécessitent pas de recourir à d’autres ouvrages pour pouvoir être comprises et étudiées
et incluent en particulier un rappel des rudiments de logique et de théorie des ensembles.
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