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Preface

This text is the support for the course of Continuum Mechanics - Solids, of the Master
of Mechanics of the University Paris-Saclay - Curriculum MMM: Mathematical Methods
for Mechanics, held at Versailles.

The course is an introduction, for graduate students, to the classical mechanics of con-
tinuum solids, with an emphasis on beam theories (Saint-Venant problem and rod theo-
ries).

The first part is a short, essential introduction to the continuum mechanics of bodies in
the framework of the small strain assumption: the strain and stress analysis are briefly
introduced, especially with regards to their use in the following of the course. Then, the
fundamental elements of classical elasticity are briefly recalled, namely for the case of
isotropic hyper elastic bodies.

The second part of the course concerns beams: a classical presentation of the Saint-Venant
theory for beams is given, with also the approximate theories of Bredt and Jourawski for
torsion and shear. The last part of the text is devoted to the classical rod theories of
Euler-Bernoulli and Timoshenko.

The manuscript is accompanied by 90 exercises; some of them are rather emblematic and
complete the theoretical part.

It is self evident that this course is far from being exhaustive: it just constitutes a hopefully
effective introduction in the matter, that is completed in other courses of the same MMM.

Versailles, August 24, 2015
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Chapter 1

Strain analysis

1.1 Introduction

We are concerned here with deformable bodies, i.e. with continuum® bodies that can be
strained: the relative positions of the material points are altered by some agents (forces,
temperature etc.).

We will call deformation a change of position of the material points when this change is
accompanied also by a mutual change of the relative positions. The description of the
deformation (strain analysis) is based upon the introduction of some geometric quantities
and algebraic operators, able to account for some properties of the deformation. All these
points need to be specified mathematically.

1.2 Deformation gradient

We consider a solid continuum body which occupy the region €2 of the Euclidean space €
(in short, we identify the body with ). Some agents strain {2 and deform it to the final
configuration €2;. We use capital letters for denoting any quantity in €2 and small letters
for €;. The general situation is that sketched in Fig. 1.1.

Any point P € () is transformed by the deformation into a unique point p € €);:

p=f(P); (1.1)

p is hence a function of point in €2. Function f is said to be a deformation whenever it is
a continuous and bijective function on Q2. Bijectivity is essential to state a fundamental
property of classical continuum mechanics: mass conservation.

IThe notion of continuum body is primary here and it is left to the basic idea of a body whose
fundamental property is that of occupying some space, i.e. a region 2 C &, the ordinary FEuclidean space.
We will denote by V the vector space associated with &, called the space of translations u, and by Lin(V)
the linear space of second rank tensors over V, i.e. of all the linear transformations L : V — V.

2f is continuous in P € Q if, V sequence {P, € Q,n € N} that converges to P, the sequence
{pn = f(Py),n € N} converges to f(P); f is continuous on  if it is continuous VP € (.



Figure 1.1: General sketch for the strain analysis

Q) is said to be the reference configuration and €2; the actual configuration. The vector

w(P)=p—P=f(P)— P (1.2)
is the displacement vector, a vector field on 2; R = P — o0 and r = p — o0 are the position

vectors respectively of P and p with respect to a fixed Cartesian frame.

The purpose of strain analysis is not only to study the displacement field u, but, mainly,
to analyse how matter deforms everywhere in 2. For this, we try to study what happens
in a material set close to any point P € ) and in particular how elementary geometric
quantities defined on this set evolve during deformation.

To this purpose, let us introduce the concept of fiber: a fiber dX in the vicinity of P € Q
is a vector composed by material points such that

dX =ce, le|=1, a =0, a € R, (1.3)

A fiber
dX=Q—-P (1.4)

is hence a small material vector from P € € to Q € ), with @ close to P. We are
concerned with the following question: in which fiber dz is transformed by f the fiber

dX? It is

dr =q—p=Q+u(Q)—(P+u(P)) = Q- P+u(Q)—u(P) = dX +u(Q)—u(P), (1.5)

but
u(Q) = u(P) + Vu(P)(Q — P) +0(Q — P)*, (1.6)
because () is close to P. So, neglecting higher order terms, we get
u(Q) = u(P) + Vu(P)dX (1.7)
and finally
dx = [I+ Vu(P)]dX. (1.8)

2



Vu(P) is the displacement gradient; as a linear operator, Vu is a second-rank tensor®:

Vu= 'Lbl"j e; (024 ej. (19)

We pose
F=1+ Vu, (1.10)

the deformation gradient. We thus obtain the formula

with d;; the Kronecker’s symbol.

Generally speaking F # F T, so, though completely describing the deformation, F has not
a good algebraic structure.

1.3 Geometric changes

We are interested in knowing how basic geometric quantities in the neighborhood of any
point P € () change during the deformation. This will allow to introduce other tensors
that, though not able to completely describe the deformation, nonetheless have a better
algebraic structure than F.

1.3.1 Change in length

First, we investigate the changes of length of any fiber dX in P during the deformation:
knowing |dX |, how long is |dx|? Putting

dX =|dX|e, |el=1, (1.12)

we have

dz| = VF dX -F dX = |dX|Ve -F'F e. (1.13)

The change in length §¢(e) of a fiber in P parallel to e is defined as

— |dX
dl(e) == % =Ve -F'Fe-—1; (1.14)

the stretch A(e) of the same fiber is

Ae) := % =1+dlle)=Ve-FTF e. (1.15)

3The dyad a ® b of two vectors a and b is the tensor such that Vv € V,(a®@b)v =b - v a. Given a
orthonormal basis e = {e1, €3, e3}, any second-rank tensor L can be decomposed as a sum of nine dyads:
L = L;je; ® e;, where the Cartesian components are given by L;; = e; - Le;.

3



1.3.2 Change in angle

Be O the angle formed by two fibers dX; = |[dX;|e;, |e;] = 1, i = 1,2, in P; we are
interested in knowing the angular change from 6 to 6, the angle formed by the deformed
fibers dx; and dxs.

We define the change in angle 0(e;, es) between the directions e; and e the difference

50(61,82) =6 — 9, (]_]_6)
remembering that
Xm . dX2 d.l’l . dlEQ F Xm -F dX2
cos@ = ———— =e; - €, cosl = = , 1.17
dX)||dX,| |dzy||dzs| — M |dX1 [ Ao]dXo] (1.17)
we finally get
-F'F
d0(e1, ez) = arccos(e; - e3) — arccos(u (1.18)

A1 Ao

1.3.3 Change in volume

To study the volume changes around a point P € €2, we consider the volume of the prism
determined by three non coplanar fibers dX; = |dX;|e;, |e;] =1, i = 1,2,3, in P. The
volume of the prism in € is

dV =dX; - dXy x dX3, (1.19)
while in €, it is?
dv = dxy - drg X dxs = FdX; - FdX; x FdX5 =detF dX; - dX, x dXj, (1.20)
le.
dv =detF dV. (1.21)

We define change in volume in P the quantity

dv —dV
v i=—————=detF —1. 1.22
! av ¢ (122)
To remark that because J
v
detF = — 1.23
© av (1.23)

is a ratio of intrinsically positive quantities, it is necessarily

det F > 0. (1.24)

We also remark that a deformation is locally isochoric <= detF = 1.

4 Tt can be proved that Yu,v,w € V and VL € Lin(V), Lu-Lv x Lw = detL (u-v x w). Because
u-v X w is the volume of the prism determined by u, v and w, if det L = 0 then L annihilates the volume
of the deformed prism, i.e. the original prism is changed into a flat figure.

4



1.3.4 Deformations

We can now precise mathematically the definition of deformation: a function f(P) : Q —
& 1s a deformation if it is a continuous and bijective function of P on €2 and if det F > 0
everywhere in Q.

The inequality is strict: det F = 0 is not admissible because this should mean to transform
a finite volume into a flat figure, with vanishing volume. Such a fact should not preserve
bijectivity and conservation of the matter.

1.4 Pure deformations and rigid body motions

A deformation can be seen as a superposition of a pure deformation and of a rigid body
motion, and these two parts can be split easily.

To this end, we use a classical decomposition of any second-rank tensor, splitting Vu in
its symmetric and skew parts:

Vu=¢+ w, (1.25)
with - -
gyutVu Vu-Vu (1.26)
2 2
being evidently
e=¢', w=-w'. (1.27)
Then,
F=I+e+w (1.28)
and
dr=(I+e+w)dX =dX +edX +w dX. (1.29)

So, any deformed fiber dx is equal to the originally undeformed one, d.X, plus two modi-
fying vectors; let us analyse them, starting with w:

w=-w' =3v,eV: wdX =v, x dX, (1.30)

v,, being the axial vector of w. By the same definition of curl of a vector,

2w dX = (Vu—V'u) dX = (curl u) x dX, (1.31)
which gives also the relation
1
vV, = §cur1 u. (1.32)

Let us now consider a particularly important case, that of small displacements; generally
speaking, a rigid rotation is characterized by an amplitude, say ¢, and by an axis of
rotation, say w, |w| = 1. A general result, is that any rigid rotation can be represented
by a tensor R which in terms of ¢ and w is given by

R =1+ sinpW + (1 — cos o) W?, (1.33)

>



with W = =W the axial tensor of w®.

For small displacements, ¢ — 0 so that
R~I+pW,; (1.34)

so, comparing this result with eq. (1.29), we see that the term w dX represents a rigid
motion in the assumption of small displacements. Hence, the term e represents a pure
deformation. For small displacement transformations, pure deformations are hence de-
scribed by a symmetric tensor.

1.5 Small strain deformations

We now develop A, d¢,060 and dv for the case of small strain: a deformation is said to be
a small strain deformation if and only if

| < 1Vi, 5 =1,2,3. (1.35)

We remark hence that the small displacement hypothesis concerns the smallness of vector
u, while the assumption of small strain that of Vu. Nevertheless, whenever the above
condition is satisfied, then all the components of w are small too, so also in this assumption
@ — 0, i.e. the small strain assumption is sufficient for interpreting the part w as a rigid
motion.

Let us start developing A(e):

Me)=Ve-FTFe=\/e I+e+w)(I+e+we
= e (I+2+e?—we+ew—we.

(1.36)

Terms like e - ewe are of second order with respect to 2e - €e to within the assumption of
small strain:

2e-ee = 252']'61'6]' = (Uid' + Uj7i)€i€j, (137)
while

€ EWe = W ;6,65 = —(U@k + uk,i)(uk,j - uj,k)eiej' (138)

4

As a consequence, for small strain deformations the terms ew,we,e? and w? can be
discarded in front of €.

5To any w = (w1, ws,w3) € V can be associated its azial tensor W = —W T defined as
0 —WwWs3 w2o
W = w3 0 —w |,
— W2 w1 0

such that w x v = Wv Vv € V. It is easily checked that the only eigenvector of W is w, relative to the
unique real eigenvalue, 0. For this reason, W is called the axial tensor of w and reciprocally, w is said
to be the azial vector or axis of W.



So, still thanks to the smallness of Vu, we get:

Ae)~+/e-(I+2e)e=+v1+2e-ce

(1.39)
~/1+2e-ce+(e-ce)2=+/(1+e-ee)?
and finally
Ae)=1+e-ce. (1.40)
It follows immediately that
dl(e) =Ae)—1=e-ce. (1.41)
Let us now consider the change in angle in the assumption of small strain:
e F'Fey=e; - (I+2+¢&”—we+ew+we, ~e; - (I+2¢)ey, (1.42)
SO
(I+2
d0(e1, e2) = arccos(e; - €y) — arccos e (L+2e)e,
A1
(1.43)
= @ — arccos e e F2e - ee
A1 A2
Finally, the change in volume:
w=detF —1=det(I+e+w)—1; (1.44)
we use now the following general result of tensor algebra®:
tr’L — trL?
VL € Lin(V), det(I+L)=1+trL + % + det L. (1.45)
Applying this result to the sum I + € + w, gives:
t 2 —t 2
v =tr(e + w) + Hletw) —trle fw) + det(e + w), (1.46)

2

and in the small strain assumption, one easily recognizes that the second and third term
on the right hand side are negligible compared to the first one; hence

v ~ tr(e + w) = tre + trw, (1.47)
and because w = —w', trw = 0, so finally
dv = tre. (1.48)

We remark hence that the change in volume is a linear function of the ¢;; and that

-
dv = tre = trw = trVu = divu, (1.49)

5The proof of this result is rather long and tedious, but not difficult: it is sufficient to develop by
components the terms on the left and right side of eq. (1.45) and remark, at the end, that they give the
same global quantity



so a deformation is isochoric if and only if the displacement field is solenoidal.

In the end, we can notice that in the assumption of small strain, the rigid body part of
the deformation, w, does not take any part. € is called the infinitesimal strain tensor or
tensor of small strains; unlike F, € = €' and, though it does not completely describe the
deformation, it is sufficient to give us the relevant information about it in the assumption
of small strain.

In the following of this text, we will assume always small perturbations, i.e. both the
hypotheses of small displacements and small strain. Besides the possibility of completely
describing the strain by tensor €, so discarding the part due to w, this assumption let
us consider as coincident the two configurations 2 and €;, the reference and the actual
one, because separated by a small displacement, in the sense that |[u(P)| < dqo VP € Q,
where dg is a characteristic dimension of 2. Hence, p = f(P) ~ P VP € Q, so p can
be approximated by P; this is the reason why in the following we will no more make
the distinction between them and use always lower case letters for indicating points in

Q.

The possibility of approximating the actual configuration with the reference one has ex-
tremely important consequences in mechanics. In fact, in doing so, we tacitly postulate
that the forces acting on 2 do not change their point of application and that the equilib-
rium equations are written in the reference configuration, which is known, and not in the
actual, unknown one. This is false in principale, but in doing so, we eliminate one of the
principal sources of nonlinearity: the dependence of the equilibrium equations from the
unknown equilibrium configuration.

Of course, this can have some dramatical consequences, as it has. In particular, if on one
side, along with the assumption of a linear behavior of the material, see Chapt. 3, this
gives the nice property of linearity to the equilibrium problem of deformable bodies, on
the other side it makes disappear some important phenomena of nonlinear equilibrium,
like buckling and stability.

Nonetheless, several cases of practical interest are not affected by such phenomena and
they satisfy with a high degree of approximation the small perturbations assumption; that
is why we will use it in the following of this text for analyzing some important problems
of the linear mechanics of deformable bodies.

1.6 Geometrical meaning of the ¢;;

We can now examine the geometrical meaning of the components ¢;; of €: let e; and e;
be two vectors of a base for V:

e; - ej = 57Lj7 Z,] = 1, 2, 3. (150)

Then (no summation over ¢ in the following equation):

ol(e;) =e;-ee; = e; -cpie, D e)e;
(e:) ws(en ® ) (1.51)
= 0;1€; - Enken = OinOikEnk = Eii-

8



So, the diagonal terms g;; represent the change in length of the fibers aligned with the
axis e;; moreover (no summation over i and j in the following equation)

T 2e; - €€; . 2e;
d0(e;, e;) = = — arccos . = arcsin J
2

)\i)\j (14—61’1’)(1"‘5]‘]‘)’

(1.52)

and because |g;;| < 1 Vi, j, then
5‘9(61‘, ej) ~ 282‘3‘ . (153)

the components of € with distinct indices are half the shear deformation of the axes with
corresponding indices.

1.7 Principal strains

An important consequence of the symmetry of € is the existence of the principal strains,
ensured by the spectral theorem”: there is a basis v = {vy, v5, v3} composed of eigenvec-
tors of L, called the principal directions of strain, where

&1 0 0
E=€&V;QV;, — €= 0 e 0 . (154)
0 0 3

The terms on the diagonal are the principal strains and they coincide with the eigenvalues
of €. Considering the results of the previous Section, it is then seen that in the basis of
the principal directions the fibers aligned with the axes are simply stretched, not sheared:
the principal directions of strain preserve their directions in the deformation and hence
their mutual angles do not change.

We remark also that the change in volume is just the sum of the three eigenvectors of e:

OV = €1 + &9 + £3. (155)

1.8 Spherical and deviatoric parts of €

An important decomposition of &, as of any other second-rank tensor, is into its spherical,
€s, and deviatoric, €4, parts:
€ =¢€5+ €y, (1.56)
with )
€g 1= gtre I, eg:=¢—¢,. (1.57)

"Spectral theorem: if a tensor L is symmetric, then it exists a basis of VV composed by eigenvectors of L
(for a demonstration, see the classical book of Halmos: Finite-Dimensional Vector Spaces, Springer 1987,
p. 155). A consequence of this theorem is that L is diagonal in such a basis: in fact, be v = {v1,va,v3}
a basis of eigenvectors of L, v;-v; = 0;; Vi, j, and A the eigenvalue corresponding to the eigenvector vy;
then, Lij =V;:" LVj = )\jvi "V = 5ij)‘j =L=\v;®vV,.

9



By the same definition, we obtain immediately that
1
tre, = gtre trl = tre, treg =0, (1.58)

i.e. all the change in volume are concentrated in the spherical part €,, while €4 describes an
isochoric deformation giving hence only changes of shape that preserve the volume.

This decomposition is of some importance in different problems, namely for introducing
one of the most used yielding criterion for isotropic elastic materials, see Sect. 4.12.

1.9 Compatibility equations

Once a displacement field u known, it is always possible, differentiating it, to get the
strain field e: a displacement field always defines uniquely a strain field (the field u is
here assumed to be at least of class C').

The converse is not true: given a field e, it is not always possible to find a displacement
field u(p) to which it corresponds through

Vu+V'u
e=—

_ (1.59)

In fact, we have 3 unknown scalar fields u;(p) and 6 equations: the problem is over-
determined. The question is hence: given the ;;(p), which are the conditions that they
must fulfill for being possible to find a compatible displacement field u(p), i.e. satisfying
to the above equation?

To this purpose, we apply the definition of strain components and operate some differen-
tiations; for instance:

€11 = U1,1, €22 = U292, 2610 = U2 + Usg 1, (160)
that differentiated twice as
€112 = U1,122, €22,11 = U2211, 2€12,12 = U212 + U2 112 (1-61)
and summed up give the condition
€11,22 + €22.11 = 2€12,12. (1.62)
In a similar way, we get also

€11,33 + €33,11 = 2€13,13, (1.63)

€92.33 + €3320 = 2€2323.
Again,
€11 = U1,1, 2612 = Upp + Uy, 2613 = U3+ U3, 2E23 = U3+ U3, (1.64)

10



differentiated twice as

€11,23 = U1,123, 2512,13 = U1,213 T U2,113,

(1.65)
2e13,12 = U1 312 + Uz 112, 2€2311 = Uz 311 + U3 211,
and summed up give
€12,13 T €13,12 = €23,11 T €11,23, (1.66)
and similarly, permutating the indices,
€12,23 T €23,12 = €13,22 + €22.13, (1.67)

€13,23 + €2313 = €12,33 + €33,12.

The 6 equations (1.62), (1.63), (1.66) and (1.67) are the Saint Venant-Beltrami compati-
bility equations; they must be satisfied by any strain field € for it is a real strain field, in
the sense of deriving by a displacement field through eq. (1.59).

The Saint Venant-Beltrami equations can be written in a compact form:

Eijkl T Eklij — Eikgl — Ejtik = 05 (1.68)

these are 81 equations, but only the 6 Saint Venant-Beltrami equations are not identities,
as it can be checked with some work but without difficulty.

1.10

Exercises

1. Study the following simple (i.e. such that Vu = V'u) deformations:

a) extension of amount « in the direction e, |e| = 1:

u(p) =a (e®e)(p —po);

b) shear of amount  with respect to the orthogonal directions ey, ey, |e;| = |es| =

u(p) =fler®es +e;®@eq)(p —po);

¢) dilatation of amount ~:

u(p) = v(p — po),

with a, 8,7 € R, |al, |, |y] < 1. For each case:

1.
il.
iii.
iv.
V.

V1.

write €;

determine dv;

determine the change of volume of a cube with the sides parallel to the axes;
determine 0¢ and A for the sides of such a cube;

determine 060 for each couple of sides of the same cube;

calculate the principal strains;

11



vii.

calculate the principal directions of strain.

2. Show that it is always possible to decompose € into a dilatation and an isochoric
combination of 3 extensions plus 3 shears (such a decomposition has important
applications in the theory of strength of isotropic elastic materials).

3. For

1.
ii.
iii.

1v.

the displacement field

u(p) = a(Xs + X3)er + a(X; + Xs)es + 5(X1 + Xo)es, a,f € R,

determine the conditions on «, 3 for this field describe an infinitesimal strain;
find €;
find the change in length and angle of the 3 vectors of the base;

decompose the deformation into a dilatation plus 3 extensions and 3 shears.

4. The deformation described in cylindrical coordinates by

r=R, 0=0+aZ, z2=7, a € R,

is called a torsion;

1.

ii.
1ii.
1v.

V.

Vi.

vii.

viil.

5. For

ii.

iii.

justify why it is called so, studying the displacement field of a circular cylinder
of axis Z;

calculate F and Vu;
show that the transformation is isochoric;

determine the condition to be satisfied by « for the deformation to be infinites-
imal;

find e;
calculate the displacement field in the case of small strain;
calculate the change in length and angle of the vectors of the cylindrical base;

calculate the displacement field u in Cartesian coordinates and deduce from it
Vu and €.

the deformation described in spherical coordinates by
r=R(1-al¢* —79l),

o =0, a € R,
6 =6,

represent graphically a sphere after deformation, for both the cases of a < 0
and o > 0;

find the displacement field u;

calculate Vu and F;

12



iv. determine the conditions on « for the transformation be really a deformation;

v. determine the conditions on « for the transformation be an infinitesimal defor-
mation;

vi. determine €;
vii. calculate the change in length and angle for the vectors of the spherical base;

viii. calculate the change in length and angle for a point on the polar axis and on
the equatorial plane;

ix. calculate the global change of volume for a sphere of radius p for both the cases
of finite and infinitesimal strain.

6. Show that, just for any other second-rank symmetric tensor, among the eigenvalues
of € there are the highest value, the lowest one and a value which is a stationary
point, with respect to the direction, of the change in length of a fiber.

7. Show that
1.
le]? + Jw|* = [Vul%;
ii.
le]* — |w|* = Vu- V' u.

8. Be u of class at least C? and assume that u = o on 0. Then, show the Korn’s
1mequality:
/\Vu]de < 2/ le|*dw.
Q Q

9. A plane strain is a situation where

u = (v, 12)e;, i =1,2;

i. write € for such a case;

ii. show that the six equations of Saint Venant-Beltrami reduce to only one and
write it.

10. Consider the change in length of a fiber x = e, |e| =1,

1
o = —x-€x,
o
and the quadratic form
x-ex = +k* keR.

This defines a quadric, the strain quadric of Cauchy. Then,

2
(%:j:k—

)
042
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so the change in length of any fiber is inversely proportional to its square norm, i.e.
to the square of the distance of the origin of the fiber from the quadric itself. Find
the strain quadric for the cases of extension, shear and dilatation studied in exercise
1, and for a plane strain as defined in the previous exercise.

14



Chapter 2

Stress analysis

2.1 Forces

We are now concerned with forces as possible, though not unique, agents of deformation.
About forces, we admit they are intuitively understood (we do not care here of their real,
ultimate physical nature, of no importance for our context; it is sufficient for us to know
that forces produce displacements and hence deformations) and that they are represented
by vectors. There are different types of forces and it is important to understand that the
interior parts of a body 2 exchange forces between them.

The general situation that we examine is that of a body €2 of which we consider a material
part 8 C €, with frontier 95 and outward unit normal n, see Fig. 2.1. A material part is
a subset of 2 composed by a set of material points, i.e., during deformation, the points
remain exactly the same and their quantity is preserved.

Generally speaking, some forces act upon [ and they can be of two types:

1.

11.

volume or body forces: these forces are directly applied to the material points in
for the simple reason that they exist. They are remote forces, result of the presence
of one or more force fields: gravitational, electrostatic, magnetic etc. As such, these
forces normally depend upon the position and they admit a density:

e a volume density b=b(p), or
e a mass density r=r(p) — b=pr,

with p the volume mass (density of the matter). These forces are extensive quantities,
so the total remote force acting upon £ is

ng/bdvz/prdv; (2.1)
B B

surface forces: these are the forces that 2 exchange with the environment, by contact
through its boundary 02, like pressure or thrusts exerted by some devices or other
bodies, or the forces that S exchange with the rest of Q2 still by contact through its
frontier 0, called also interior forces; these last are the direct consequence of the
same idea of continuum.
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Figure 2.1: Material part.

The surface forces too admit a density, in this case of course a surface density, t:

fg :/ t ds. (2.2)
oB

The density of surface forces t is called traction or stress vector. About t, we admit
the Cauchy’s postulate: t is a function of the actual position and of the outward
normal to 05:

t =t(p,n). (2.3)

The above statements deserve some remarks:

e there exist also attractive body forces that interior parts of a same body mutually
exchange; such forces are neglected in the classical theory, but can be of course of
an extreme importance in other fields, like astronomy and geophysics;

e the volume forces and the surface forces acting upon the boundary 02 are external
forces; they are considered to be known;

e the interior forces are unknown and to determine these last once the external forces
known is the major problem of continuum mechanics;

e the Cauchy’s postulate is a strong assumption: two different surfaces 938, and 95,
sharing in p the same normal n, share also the same traction t; in particular, t does
not depend upon the curvature of the surfaces in p;

e considering that through any point p € 9 the matter exchanges only interior forces
and not also interior couples is an implicit assumption that defines a class of materi-
als, the so-called classical continuum bodies a la Cauchy; several classical materials
can be well represented by this model, e.g. metallic alloys, wood, concrete etc, but
not other ones, called polar bodies, like some polymers, for which the introduction of
surface couples exchanged by interior parts of the body is necessary for a satisfac-

tory description of its behavior; in this text, we will refer only to classical Cauchy
bodies.

2.2 The Cauchy’s theorem

The Cauchy’s postulate does not specify in which way t is a function of n. This is done
by the

16



Theorem (Cauchy’s theorem on stress). Traction t is a linear function of n, i.e. it exists
a second-rank tensor o, the Cauchy’s stress tensor, such that

t =on. (2.4)

Proof. Let us see the classical proof based on the use of the so-called tetrahedron of
Cauchy. We consider at a point p € 2 a tetrahedron like in Fig. 2.2, where p is the
axes origin and the fourth face, whose normal is n, is inclined with respect to the three
faces passing by the axes. Be ¢ the distance of p from the inclined face. For ¢ sufficiently

X

Figure 2.2: The tetrahedron of Cauchy.

small, all the tetrahedron is in 2; be dA the area of the inclined face, with outward unit
normal n, while dA; is the area of the face orthogonal to axis x;, of outward unit normal
n;, = —e;. Be t = (t,ty,t3) the traction on the inclined surface and b the body force.

About the area of the surfaces of the tetrahedron, we know that!

dA;=dAn-e; Vi=1,23, (2.5)

!The result in eq. (2.5) is known as theorem of the cosine for the surfaces. To prove it, we name c;
the length of the side of the tetrahedron along the axis x;; then

1
dA’L' = §Cjcka i7jak = 172a3a 7’3&] 7& k?

and

1 1
dA = §|(—c1,62,0) X (—c1,0,¢3)] = 5\/0%03 + ¢35 + cief.

The normal n to dA is given by

(—c1,¢2,0) X (—c1,0,c¢3) 1
T (St 2,0) X (—c1,0,¢3)] VA + 32+ c3c? (eats, cacs, e16)
so we get
dA;
e =
ie. eq. (2.5).
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while the volume of the tetrahedron is

dez%édA. (2.6)

We write now the balance of the forces acting upon the tetrahedron, using the Euler’s
axiom: when a body € is in equilibrium, then all of its material parts § are in equilibrium.
Then, imaging the tetrahedron as a separated part of €2, it will be in equilibrium under
the action of the body forces and of the surface (contact) forces that it exchanges with
the rest of €2 through its four surfaces. This gives the balance equation:

t dA + t;dA; + b dV = o, (2.7)

and, for the above formulae for the areas and volume we get, after dividing by dA,

1
Hence, when 6 — 0, the point p tends to the surface dA whose normal is n and the body
forces vanish; because n; = —e;, we obtain
t = _tz n-e;, = _(tz (%9 ei)n = (tz (%9 ni)n. (29)

We put

the Cauchy’s stress tensor in p, and finally

t=o n. (2.11)
[l

From eq. (2.9) we have also
oij =€ - (ty @ng)e; =t - e; n; - e; = (tg)i(ny);. (2.12)

Of course, if we take n = e;, then t = t;, as it must be. Just as for any other second rank
tensor, given a base e = {e1, ey, €3}, we can write

O =045 €; X €;, (213)

with
Oy = €;,-0 €. (214)

It is important to remark that o is a function of the place and time, not of n:
o =o(p,t). (2.15)

As already done, the dependence upon time, always existing, is left tacitly understood in
the equations.
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Figure 2.3: The components o0;;.
2.3 Stress components

Let us apply the Cauchy’s theorem to surface elements whose normal is parallel to one of
the axes, n = ey:
t(k) = O'Z‘j(ei & ej)ek = Uij 5jk €, = Ok €;, (216)

SO
t®) = o4 €; = (01k, Ok, O31); (2.17)

this result shows that the k-th column of the matrix representing o in the base ¢ =
{e1, e, e3} is composed by the Cartesian components of the traction acting upon the
surface whose normal is e,. Graphically, the situation is depicted in Fig. 2.3. We remark
the position of the indexes: the first one gives the direction of the component of the
traction acting upon a surface whose normal is the axis indicated by the second index
(e.g. o013 is the component along x; of the traction acting upon a surface whose normal
is 63).

To remark that the above nomenclature comes directly from the mere application of the
equations; some authors chose to swap the indexes: in 0y, ¢ is the direction of the normal
to the surface upon which the traction acts, while j is the direction of the component o;;
of the traction. This is not so important, because o = o', as we will see below.

Looking at Fig. 2.3, it is clear why:

e the components with equal indexes oy are called normal stresses: they give the
component of the traction upon a surface that is normal, i.e. perpendicular, to the
same surface; because in eq. (2.4) n is the outward unit normal, a normal stress
04 is positive if it is a tension, negative if a compression; normal stresses form the
diagonal of the matrix representing o;

e the components with different indexes o;;,7 # j are called shear stresses: they give a
component of the traction upon a surface orthogonal to an axis that is tangential to
the same surface; they are the out-of-diagonal components of the matrix representing
o.

More generally, for each element of surface of unit normal n, the traction t = o n can be
decomposed into two mutually orthogonal vectors, see Fig. 2.4:
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Figure 2.4: Normal, v, and tangential, 7, stresses.

e the normal stress v:

vr=(t-nn=(n®n)t=(n®n)o n; (2.18)

e the tangential stress T:

T=t—-v=(I-n®n)t=(I-n®n)o n (2.19)

2.4 Balance equations

We can now write the balance equations for any part £ of (2. The Euler’s axioms stipulate
that V3 C €, the force resultant and the moment resultant are null. Let us start examining
first the force resultant:

/bdv—l—/tds:/pﬁdv VE C Q. (2.20)
B op B
Applying the Cauchy’s theorem we get
/b—pp'dv—i—/ands:o V5 C QQ, (2.21)
B oB

and for the tensor form of the Gauss theorem

/(b —p i+ dive) dv =0 VB C Q. (2.22)
B

The only possibility for this integral to be null V3 C € is the integrand to be identically
null:

b+dive=pp Vpel (2.23)

These are the Cauchy-Poisson equations of motion for classical continuum bodies. They
generalize to each point of a deformable body the second principle of dynamics of Newton.
In case of equilibrium, p = o and we obtain the equilibrium equations

b+dive =0 VpeQ. (2.24)
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In terms of components, the above equations read like

bi+0ij,j :pp“ Za] = 15273'
Let us now turn the attention on the moment resultant on £:

/(p—o)xbdv—l—/ (p—o)xtds:/p(p—o)xjjdv Vg C Q.
B oB B

Still using the Cauchy’s theorem we get

/(p—o)x(b—pp') dv+/ (p—o0)x (on)ds=0 VB3 CQ
B oB

and introducing, first, the axial tensor W of (p — o)

/W(b—pp')dv—l- W(on) ds =0 V5 C ),
B oB

then the motion equation and the Gauss theorem, we obtain
/div(Wa') — Wdive dv =0 VY[ C (,
B

that, for being true V3 C 2, gives the condition
div(Weo) = Wdive Vp € Q.
We now develop:

le(WO’) = (WO’)ijJ' e, — (Wzk Ukj),j €;
= ikj Okj € + VVZ]C Okjj € = Wik,j Okj ©; + W diVO’7

and injecting this result into eq. (2.30) gives
Wik,jakj =0Vi= 1, 2, 3.

For a generic point p = (p1, p2, p3) € €,

0 —P3 D2
W = D3 0 —P1 |,
—p2  P1 0

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

so that Wia3 = —1,Wi35 = 1 etc. Injecting these results into eq. (2.32) for i = 1,2,3

gives

1=1 — 0923 = 032,
1=2 — 013 =03, = O'ZO'T.

1 =3 — 012 = 091,

(2.34)

So, for classical continuum bodies, the balance of the couples corresponds to the symmetry

of o.
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Figure 2.5: Reciprocity of the shear stresses.

There are at least two other ways to prove the reciprocity of the shear stresses, i.e. the
symmetry of o, both of them more mechanical then the previous one. In the first one,
we consider a parallelepiped with the faces parallel to the axes, like in Fig. 2.5. If, e.g.,
we focus on the balance of the torque around axis w3, body forces and tractions on the
horizontal faces give higher order contributions and can be discarded, so we have

dxy)dxidredrs = (012 + 0712
T 81’2

0o
(0’21 + a

dl‘g)dl’ldfﬂgdﬂfg, (235)

and neglecting higher order terms we get 019 = 091; in a similar way we obtain also
013 — 031 and 093 — 033.

The other method to prove the symmetry of o is based upon the use of the classical
Principle of Virtual Displacements®: for each possible infinitesimal rigid displacement
field w, the balance equations are satisfied if and only if

/t-wds—{—/(b—pp')-wdv:O. (2.36)
oB B

In fact, using the Cauchy’s and Gauss’s theorems we have

/t-wds:/an-wds:/aTw-nds
8 oB oB

(2.37)
= /div(aTw)dv = /(W ~dive + o - Vw)dv.
B B
Using the equation of mouvement (2.23) for expressing diver, we have
/t-wds+/(b—pjj)-wdv:/0'-Vde V3 C Q. (2.38)
oB B B

The left-hand member is null for a body at equilibrium, for the Principle of Virtual
Displacements; so, because the above equation must be satisfied V5 C €2, we obtain the
condition

o-Vw=0 Vpe, (2.39)

2The Principle of Virtual Displacements as used here is just the principle as known, usually, for
rigid bodies mechanics; the key point for the principle in this form is the virtual displacement field to
be infinitesimal and rigid; in such a circumstance, as used here, the principle is exactly the same used
in classical rigid mechanics. A more general form of the Principle of Virtual Displacements exists for
deformable bodies, it is presented in Section 2.7.
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Figure 2.6: Scheme of the boundary conditions.

to be satisfied Vw rigid and infinitesimal = Vw = —V'w 2, so that o is necessarily

symmetric?.

2.5 Boundary conditions

The balance equations (2.23) must be completed by adequate boundary conditions. To
this purpose, we consider the general situation depicted in Fig. (2.6):

e the whole boundary 0€) is composed of two complementary parts, 02, and €,
such that
00 =00, U, 0Q,NoY =0; (2.40)

e on 0, the displacement vector is known:
u = u, (2.41)
typically uy = o; these are the kinematical boundary conditions;

e on 0f); the traction vector is known:

t=o0n=tg (2.42)

3For any rigid displacement, e = O, which implies Vw = —V "w.
4This is a consequence of the following
Theorem. A tensor L is orthogonal to any skew tensor W <= L =LT.

Proof. We prove first that if L is symmetric and W skew, then they are necessarily orthogonal:
W.L=tr(W'L) = ~tr(WL) = —tr(LW) = —tr(L' W)= -L - W= -W.L < W.L=0.

To complete the proof, we must prove that if L- W =0VYW : W = —-W ', then L = LT; to this end,
let us suppose that L # L' and decompose L in its symmetric and skew parts:

L+LT L-LT
L=Ti+Ly, Li==——, Li=L/, Ly= 5

, Lo =—Lj.
So,
L-W=L -W+L, W=0;

the first term on the right-hand side is null, as we have just proved, because Ly is symmetric and W is
skew; so, it must be Ly - W = 0 YW = —W T. Because Ly is skew, we can chose W = Ly; then, for the
same definition of scalar product, we get Ly - Ly =0 <= Ly = O, which proves the theorem. O
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these are the natural boundary conditions.

2.6 Principal stresses

The symmetry of o, just as for €, brings, through the spectral theorem, the existence of
three real eigenvalues, say o1 > 0o > 03: the principal stresses. The eigenvectors of o
form a base, say v = {vy, va, v3}, the base of the principal directions of stress; in the base
v, o is diagonal:

01 0 0
o =0; V; QV,, 1= 1,2,37 — O = 0 o9 O . (243)
0 0 03

It is then clear, using the Cauchy’s theorem, that the traction on surfaces orthogonal to
the principal directions of stress v; is composed uniquely by a normal stress: the principal
directions are normal to surfaces where the shear stress is null.

The envelop, throughout €2, of the principal directions of the stress form a family of lines
called the isostatic lines, that have the following property: along an isostatic line, the
matter is simply subjected to tension or compression, not to shear too. The isostatic lines
are hence the lines of best use of the matter: an effective structure is a structure where
the matter follows as much as possible the isostatic lines. In Nature, the selection has
produced a great amount of exemples where the matter tends to be distributed along the
isostatic lines, e.g. in the bones, trees etc.

For the property of maximality of the eigenvalues, see Exercise 6, Chapter 1, oy is the
highest value of the normal stress, o3 the minimal value and o, an intermediate value (a
local extremal).

2.7 The Principle of Virtual Displacements

We give here a form of the Principle of Virtual Displacements more general than that
used for rigid bodies mechanics: the only requirement of the virtual displacement is to be
compatible, not necessarily rigid, which is just a particular case.

A virtual displacement field du on €2 is said to be compatible if:
i. du is an infinitesimal, regular, time independent field of displacement;
ii. it satisfies to the boundary conditions on 0%, : dulsq, = o;

iii. it satisfies to the geometric relations with € : du defines a virtual strain field de as

B Véu+ V'su

5
€ 2

(2.44)
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We further assume that the body is in equilibrium, which implies that the equilibrium

equation is satisfied everywhere in (2 :
dive + b = o.

Then, the work done by the surface tractions t applied to 2 on 0€); for
displacement du is, for the theorem of Cauchy,

/ t~(5uds:/ on-ou ds;
o0 o0

so, using successively the theorem of Gauss, the identity
div(S'v) =S -Vv+v-divS Vv €V andVS € Lin(V),

the equilibrium equation (2.45) and the fact that®

o-e=o0-Vu,

we get
/ t-5uds:/ Jn-5uds:/ o'du-nds
o9 o9 o9
= / div(e " du)dw = /(0' -Vou + du - dive)dw
Q Q
:/J-Véudw—/b-éudw
) Q
:/0'-(58 dw—/b-éudw,
Q Q
and finally

/a~5sdw:/b~6udw+/ t-duds V compatible du.
Q Q 0

(2.45)

the virtual

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

The theorem so proved is the Principle of Virtual Displacements (PVD), valid for any kind
of deformable body®; as the same proof of the theorem shows, it is completely equivalent
to the equilibrium equations. For its importance, and for a matter of tradition, this

theorem is often called a principle, like we do.

The PVD states that, at the equilibrium, the virtual work of the internal forces, the left-
hand side term, equals the virtual work of the external forces, the right-hand side term,

5
T 1 1

because o = o | ; but, generally speaking, for any two tensors A and B, A-B = AT .BT so that

1
o-~e:§(0'-Vu+0'~Vu):a-Vu.

6In fact, the PVD is completely general because no constitutive law has been used for proving it; in

particular, its use is not exclusively reserved to elastic bodies, see Chapter 3.
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not only for the real displacement field, but more generally for any compatible virtual
displacement field, i.e. for any infinitesimal displacement field that satisfies the kinematical
boundary conditions and that is linked to the virtual strain field by eq. (2.44).

The PVD is hence the principle of equilibrium and it has several and remarkable appli-
cations, like in the resolution of hyperstatic structures, see Chapter 5, or in the proof of
the elasticity theorems, Section 3.10.

We can write the PVD as
0Uq = oWy + W4, (2.51)

with
5UQ:/0'-55 dv,
Q
Wy, = / b - du dv, (2.52)
Q

5Wt = / t-ou dS,
o0

respectively the virtual work done by the internal actions for the deformation de, the
virtual work of the body forces on ) and that of the surface tractions on 0€2;. If in the
PVD we take, as virtual displacement field, the real one, which is obviously compatible,
then W, and 6W,; are real works and 0U, represents the true work done by the internal
actions. This last can be interpreted also as the variation of the energy stored in 2,
as consequence of the deformation of the body, for the variation of deformation de. Its
volume density is

U =0 -de =0-Vou. (2.53)

2.8 Exercises

1. Consider the plane stress state

ol o2 0
o= | 012 02 0|;

0O 0 O

i. find the normal, v, and tangential, 7, stress on a surface of normal n =
(cosf,sin b, 0);

ii. show that, in the plane v — 7, the points representing the stress state belong to
a circle (the Mohr’s circle);

iii. which is the physical meaning of the centre, radius and intersection with the
axes of the Mohr’s circle?

iv. generalize the Mohr’s circle to 3D stress states.

2. Show that o is uniquely determined by the system of applied forces.
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3. Assume that t = o on 9€2; show that Vp € 0f) the traction t on each plane orthogonal
to 0f2 is tangent to 0f).

4. Study the following cases of elementary stress states:

a) hydrostatic stress: it is that of a fluid at rest, that can exert only a compressive
normal stress;

b) pure extension: o =oce®e, le|=1, o€R;
c) pure shear: o =7T(mMm@n+n®m), m|=|nf=1, m-n=0, 7 €R.
For each one of these cases:
i. describe the stress state;
ii. find analytically the principal stresses and the principal directions of the stress;
iii. trace and study the Mohr’s circle.
5. Be 01 > 09 > 03 the eigenvalues of o (principal stresses);
i. show that oy >n-o n> o3 Vn,|n|=1;

ii. bem-n =0, |m|=1; then show that
1
max(m - o n) = 5(01 —03),

and that it is attained for
1 1
m = E(eg —e;), n= ﬁ(el +e3),
with e; the principal directions of the stress;
iii. interpret all this with the Mohr’s circle.

6. Consider a vector x = p — o = ¢n, |n| = 1 and the value v of the normal stress on
a surface orthogonal to n in o:

v=n-on — vll=x-0x;

the quadric "
X 0 X= j:g—2
is called the stress quadric.
i. write the stress quadric in the principal base of the stress;
ii. which is the utility of the stress quadric?
iii. examine the cases:
a) o1 > g9 > 03 > 0,
b) o1 > 09 > 0> o3,

c) o1 >0> 09> 03,
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10.

11.

12.

13.

14.

considering for the three cases the two possible situations 4k?/¢?;
iv. find the stress quadric for the three elementary stress states of Ex. 4.

Find the principal shearing stress, i.e. the stationary values, with respect to the
direction n, of the tangential stress 7 on an element of normal n. Express then the
same result with o given in the principal base of the stress and represent the results
with the circles of Mohr.

. Find 7,4, the octahedral shearing stress, i.e. the value of the shearing stress on a

surface element orthogonal to the trisectrix of the first octant of the principal stress
directions frame.

. The decomposition of € introduced in Sect. 1.8 in spherical and deviatoric parts

is, of course, possible for o too. Write this decomposition and give a physical
interpretation of the scalar that appears in the expression of the spherical part.
Find then this decomposition for the elementary cases of stress state of Ex. 4.

Define the principal invariants of o, as well as of any other 2" —rank tensor, like

1
I, =tro, 1I,= 5('61“0'2 —tr’o), Iz = deto;

then, show that:
2
I = 3(712+722 +73),

3 5

.o d _
. 7§ = §Toct,

where Z¢ is the second principal invariant of o4, the deviatoric part of o, while the
7; are the principal shearing stresses.

Show that o and o¢ share the same principal directions but not necessarily the
same principal values.

A stress state is defined by
ou 0 o t x?+ a3

g — 0 09292 0 s with 033 — (1—|— —)
oi3 0 o33 T

- a, 7T €R,
o

t being the time. Find the principal stresses and the principal directions of stress
everywhere and Vt. Give the Mohr’s representation of the stress state for t = 0,21 =
T3 = 1.

Show that the vector (I —n®n)o n, |n| =1 takes its minimum norm, zero, if and
only if n is a principal direction for o.

Beo=0e®e+o(l-e®e), |e] =1and o € [01,09]. Show that Vn, |n| = 1,
such that n- o n = ¢, the norm of the vector of Ex. 13 has constant value

T = \/(a —01)(og — o).
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Chapter 3

Classical elasticity

3.1 Constitutive equations

Let us consider the most general problem of the equilibrium of deformable bodies (refer
to Fig. 2.6): a deformable body ( is

e acted upon by body forces b on €2;
e subjected to tractions ty on 0€);
e constraint to the displacement ug on 0f2,,.
The problem is to find:
e the deformed configuration €, i.e. the vector field of the displacement u = u(p);
e the tensor field of infinitesimal strain € = e(p);
e the tensor field of stress o = o (p).

The fundamental assumption is that strain and displacement are infinitesimal, so that
Q; ~ €, so that the equilibrium equations can be written on the reference configuration
Q2. The unknown of the problem are 15 scalar fields:

e the 3 components of u: w; = u;(p), i =1,2,3;

e the 6 distinct components of € : ¢;; = €;;(p), 1,7 =1,2,3, € = €ji;

e the 6 distinct components of o : 0;; = 0;(p), i,5 =1,2,3, 045 = 0ji.
The equations at our disposal are 9:

e the 6 relations displacement-strain:

Vu+V'u Ui+ Uj
E=—- = 7

5 — €ij = 5 s Z,j = ]., 2,3, €ij = Ejis (31)
e the 3 equilibrium equations:
divo +b =0 — O'Z'j7j+bi =0, 1, = 1,2,3. (32)
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These are the only general, i.e. valid for any solid, that can be written. There is hence a
lack of 6 equations. This fact shows that the description of the equilibrium problem by
uniquely geometry and mechanical balance is not sufficient: 6 other equations are needed
for the problem closure.

These 6 equations must introduce what is still absent in the general equations: the be-
havior of the material. Such equations are called constitutive equations, and they give the
link between o and €. Generally speaking,

oij = 0i;(0, 6, W, €4,€ p, W4, Wy). (3.3)

Nonetheless, some requirements must be fulfilled by the constitutive equations:

e the mechanical behavior of a body must be independent from the place and orienta-
tion; as a consequence, any dependence from rigid translations and rotations must
vanish = o cannot be a function of u nor of w;

e as a consequence, we are left with

o=0(e,e4,€y); (3.4)

e materials whose constitutive equations depend only upon € ;:
o=o0(ey) (3.5)
are viscous fluids, like the Newtonian fluids:
o = —pl + 2ué + Mrél, (3.6)

with p the pressure, u and A the coefficients of viscosity;

e materials whose constitutive equations depend on both € and € ,, are polar materials,
like some polymers; for them, non-local effects are possible;

e materials whose constitutive equations are of the type
o=o(e) (3.7)

are classical solids, like metals, wood, concrete etc.; in this case, internal stresses
o0;; are only functions of the changes in length and in angle of fibers, described by
the Eij-

3.2 Classical elasticity

A natural state for a solid is a state for which in the body € = O when applied forces and
imposed displacements are null.

Then, classical elasticity is a theory concerned with

i. bodies with a natural state;
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ii. infinitesimal strain;
1ii. bodies for which o is a linear function of €.

These assumptions give the following type of constitutive law:
o = Ce; (3.8)

this is the generalized Hooke’s law that, actually, generalizes to 3D elastic bodies the
celebrated Hooke’s law, 1660: wut tensio sic vis'. The Hooke’s law concerned, at the
origin, the behavior of springs (Hooke tested clock’s springs), or, as he said, of any springy
body, i.e. of any body whose behavior is similar to that of a spring: elastic bodies. The

generalization of the Hooke’s law to 3D elastic bodies is due to Cauchy, 1821.

C is the elastic (stiffness) tensor; it describes, by the value of its components, the behavior
of the material; relating two second-rank tensors, it is a fourth-rank tensor?:

C:Cijkl ei®ej®ek®elv iajakal:LZvBa (39)
which gives, for the components of o,
044 :Cijkl Ekl Vi,j,k‘,l = 1,2,3. (310)

A material whose constitutive equation is of this type is called a material of Cauchy. This
law implies that for € = O, i.e. in the absence of applied forces, & = O and, of course,
the converse: for any null stress state, € = O: the body takes its original undeformed
configuration when it is not stressed, i.e. when it is not acted upon. This is the most
peculiar characteristic of elastic bodies.

The elastic moduli C;;i; are 81; their value must be determined experimentally. This is of
course very cumbersome, because 81 independent experimental measures should be done.
Nevertheless, we will see that in the end, for the cases interesting for us and very common
in practice, only two elastic coefficients are to be determined by laboratory tests.

To this purpose, we introduce two concepts:

i. homogeneous elastic bodies; in this case, C is independent from the position: the C;;;
are constant all over (2;

ii. usotropic elastic bodies; in this case, C is insensitive to any rotation: the C,j;; do not
depend upon the direction.

A homogeneous, isotropic, elastic body is hence a body whose response is elastic, inde-
pendent from the position and from the direction. Many important materials, like metal
alloys, are of this type. The study of this type of materials is the domain of classical elas-
ticity. The following of this text is concerned with problems of classical elasticity.

'Hooke discovered this law, empirically, in 1660, but he revealed it, under the form of an anagram,
cettinosssttuu, only in 1676 and finally under the final form only in 1678 in his book De Potentia Resti-
tutiva.

2V A,Band L € Lin(V), A®B is the fourth-rank tensor defined by the operation (A®@B)L := (B-L)A.
Applying this rule to the dyads of a basis, we get a fundamental result: [(e; ® €;) ® (er ® €;)] (e, ®eq) =
(ex ®er) - (ep ®eg)(e; @ e;) = brplig(e; ® €;).
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3.3 Reduction of the number of elastic moduli

Let us see now how from 81 moduli we arrive to only 2. The first reduction is due to the
symmetry of o and e:

0ij =0j5i — Ciyn e = Cjim e = Cijrg = Cjap,

(3.11)
e =cik — Ciymen =Chuk e = Cijr = Clun.
Hence, we have the following 45 conditions, called minor symmetries®,
Cijii = Cjiri = Cijie = Cjug, (3.12)

that reduce the number of independent elastic moduli from 81 to 36.

A further reduction is obtained postulating that the material is a material of Green (1839).
To introduce this concept, let us consider again the volume density of the work of internal
actions, see Sect. 2.7:

oU =0 -0 = O'ij(sgij- (313)

This work can be interpreted as the variation of the deformation energy, stored in a unit
volume of the body, produced by a small variation of the strain state.

Let us consider a transformation of an elastic body from a state A to a state B. Then,
we say that the body is made of a material of Green if the variation dU in passing from
A to B is independent from the transformation itself, but it depends uniquely upon the
initial and final states: 5

5UA_>B:/ U =Up — Ujy. (3.14)

A

The consequence of this assumption is that 6U must be the exact differential of the
function U, i.e.

5U =dU =0 -de = Oij d&fz‘j, (315)
which gives the Green’s formula:
ou
S = ) 3.16
Tij 3%‘ ( )

The function U is called the (density of) strain energy or elastic potential. So, in the end,
a material is an elastic material of Green if it admits an elastic potential U, i.e., if it is
possible to define a scalar function U that relates the components of stress to those of
strain through the Green’s formula.

In this case, through the Hooke’s law, the Green’s formula and the Schwarz theorem, we
get

80ij 82U
Cijkl:a€kl:8€kla€zj’ e G Coni Vi i k] —1.9.3 (3.17)
8Ukl aQU igkl — “cklij yJ, Ryt =1, 4,0. .
Cruij = =

aeij 8gij85kl’

3The word symmetry is used here to signify the invariance of an elastic modulus with respect to a
permutation of the indexes. The same word, symmetry, is used in elasticity for indicating a transformation
that preserves the elastic behavior. The reader should be aware of this somewhat ambiguous double
meaning of the same word in the same context, that of elasticity.
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These 15 relations are called the major symmetries; they reduce the number of distinct
elastic moduli from 36 to 21. This reduction is hence given by the existence of an elastic
potential.

No further reduction can be obtained in the most general case, i.e. without introducing
special properties (namely, elastic symmetries) of a given elastic material.

To remark that a material of Cauchy is not necessarily a material of Green, and vice-versa.
In fact, a material of Cauchy is also of Green if it admits an elastic potential, U; this fact
has always been verified experimentally for all the elastic materials. A material of Green
is also of Cauchy if o is a linear function of €; this is not always the case.

The most important class of elastic materials is that of hyperelastic materials, i.e. of
materials that are at the same time of Cauchy and of Green. In such a case, o is a linear
function of €, the material admits an elastic potential U and the Green’s formula is valid
(the above proof of the existence of the major symmetries, eq. (3.17), has been done with
the implicit assumption of hyperelastic behavior).

An important consequence for hyperelastic materials is that

1
U= §Cijkl €ij €kl (318)
i.e. U is necessarily a quadratic function of the €;;. In fact, only in this way we get,

through the Green’s formula,

Uij

ou 0 (1
= e = D (ﬁ(cmnpq Emn 5pq) = (Cz‘qu Epq — O = (C€, (319)
1] 1)

i.e. we satisfy at the same time to the fundamental relations of Green and Cauchy
materials. In this case, it is also

1 1 1
U= éCijkl €ij €kl = 56’ -Ce = 50’ - E. (320)

We will see further that C is a positive definite tensor, which implies that it is inversible,
ie.

IS: e=Soe = S=C. (3.21)

So,
ij = Sijk1Oki, (3.22)

which injected in the general expression (3.18) of U gives

1
U= éSijklaijakl, (323)

so that, deriving with respect to o;;, we get

ou
007;]' ’

5ij = Sz‘jklakl = (324)

which is the dual, for the strains, of the Green’s formula.
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In the most general case, the behavior of hyperelastic materials depends upon 21 distinct
moduli: this is the case of completely anisotropic or triclinic materials. The behavior of
an anisotropic material depends upon the direction, hence the moduli C;j; are frame-
dependent quantities.

This cannot be the case of isotropic materials, whose elastic response is insensitive to a
change of frame: the elastic moduli of an isotropic material cannot be frame-dependent.
This means that for an isotropic material, U cannot depend upon the ¢;;, that are frame-
dependent quantities, but rather on the invariants of €*. As a consequence, being U a
quadratic fonction of the ¢;;, the general expression of U must be of the type

1
U= 501]12 + 02]2, (325)
with®
trie — tre” i €jj — €ij Eji
Il = tre = Eiis IQ = re B e = Sii i B %4 & . (326)

The third order invariant of €, i.e. det e, cannot enter in the expression of U, because it is
a cubic function of the €;;, while U must be a quadratic function of the £;;. Then,

1
U= B [(c1 + ca)eii €55 — 2 €5 €5l (3.27)
so that®
O = g = (01 + 02)6“' — Co 8@,
a"Ul (3.28)
Uij = 85ij = —Cy 5ji = —C9 61‘]‘.
For instance:
oU
o1 =— = (c1 + c2)(e11 + €22 + €33) — €2 €11,
%5(1]1 (3.29)
019 = —— = —C9 €12 etc.
Oerz

We see hence that in the case of isotropic materials, only two constants are sufficient
to characterize the elastic behavior. This fundamental result comes directly from the
assumption that the material admits an elastic potential, i.e. from the definition of
elastic material as material of Green. Hence, such an approach, basically an energetic
approach, eventually implies that two independent parameters are needed to describe the
elastic behavior of an isotropic material. The Green’s approach allowed, during the XIXth

4The elastic energy U is, as any other quantity derived by a scalar product, an invariant, i.e. it is not
frame-dependent. Hence, because C for an isotropic material is frame independent, the expression of U
cannot depend upon frame-dependent quantities, the €;;, but only upon frame-independent functions of
the €;;: the invariants of €.

5¢? = ge = €ij€; Q €j Epken K e = €;j Enk €; -eh(ei X ek) = €ij Ehk 5jh(ei ® ek) — tre? =
€ij Ehk thtr(ei ®ek) = €ij €hk 5jh6ik = Eij Eji-

SFollowing a common practice, when an index is underlined, it is not a dummy index: no summation
over it.
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century, to establish this important result on the basis of simple, general arguments and
to solve the long lasting diatribe between the so-called rari-constant theory, affirming that
just one parameter was sufficient to describe the elastic behavior of isotropic materials,
and the multi-constant one, stating the necessity of two elastic parameters: experimental
evidence has always confirmed the validity of the multi-constant theory.

3.4 Equations of Lamé

Classically, we pose

1+ = A, —%:,u = ¢ = A+ 2pu, (3.30)
and we get, in compact form,
oij =2 €ij + X €k g, (3.31)
or, in tensor form,
o=2ue+ Atre L. (3.32)

These are the equations of Lamé (1852), the constitutive equations for isotropic hypere-
lastic materials. They provide the 6 scalar equations (there are 6 distinct components for
o and €) for the closure of the elastic problem. A and p are the coefficients of Lamé: they
are the two moduli to be specified for determining the elastic behavior of a material.

The inverse of the equations of Lamé can be easily obtained:

t
tro = (2u + 3\)tre — tre = ﬁ, (3.33)
that replaced in eq. (3.32) gives, after simple passages,
1 A
= — ———tro 1. 3.34
€ 2;1(‘I 2ut3x ) (3:34)

Coefficients ¢; and ¢y are never used in the calculations, A and p are preferred. The
components of C can be expressed as functions of the Lamé’s coefficients (no summation
over i and j):

Cisii = c1 = A+ 2p,
Cijj =1 +ca= A,
Co Ciiii — (Ciijj

i,j=123, (3.35)

the other components are null.

It is often preferred to express the Lamé’s equations as functions of two other parameters,
the so-called technical or engineering constants, having a direct physical meaning and
easy to be determined experimentally by a unique traction test. We consider a bar, with
a cross section of area A, whose axis coincides with the xi-axis of a reference frame,
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submitted to a tensile force f at its ends. We assume that (see the next Chapter on the
Saint Venant problem)

011 — £ (336)

and it is easy to check that the stress tensor

o =01 € ®e (337)

satisfies to the equilibrium equations. So, by the Lamé’s equations we get

1
E_ﬂ 011 91®e1—m011 e Ve (338)
011
= —— 2\t per®e — ey ®ex +e3®es).
2#(2M+3>\)[( [)e; 1 (€2 2+ €3 @ e3)]
Now, we introduce
e the Young’s modulus £
=21, (3.39)
€11
e the Poisson’s coefficient v
po= 2 58 (3.40)
€11 €11

Of course, thanks to isotropy, nothing changes if we change the labels of the axes. It is
self-evident that FE measures the stiffness to extension, i.e. it gives a direct measure of the
stiffness of the material. v, on its side, gives a measure of the so-called Poisson’s effect:
a tension in a direction normally produces a contraction in the transversal directions (an
expansion if tension is turned into compression).

We remark that, according to the multi-constant theory, the existence of two independent
elastic parameters means that there are two distinct mechanical phenomena for stressed
isotropic materials: they are the extension stiffness and the Poisson’s effect.

The above formulae give us the expression of F and v as functions of the Lamé’s coeffi-

cients: 5 = \
E = ML, V= ———; (3.41)
4 A 2(n+AN)

the converse relations are easy to be found:

v E E
A= = om 3.42
(14+v)(1—2v)’ a 21 +v)’ (3.42)
while the relations of the technical constants with the Cartesian components are:
Chn=F 1—v ’ E— (Cii11 — Cia92)(Cryny + 2@1122)’
(1+v)(1-2v) Ci111 + Ciia
- (3.43)
Ciizp = B L Cum
(1 + V)(l — 2]/) Cllll + (21122 .
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Technical constants can be used in place of A and p for writing the Lamé’s equations;
using the above equations, it is easy to find that the equations of Lamé can be written
also in the following form:

E v
= 1 44
g 1+V{€+1—2utr€}’ (344)
1+v v
€= 50~ Etra I (3.45)

Two other technical moduli are sometimes introduced, related to two other possible me-
chanical situations. For a pure shear stress state, e.g.

0'20'12<61®62+62®81), (346)
then
012
g = Z(el X ey + ey ® el). (347)

We define shear modulus G the quantity

012

== 3.48
2oy (3.48)

so that g
G=n=5050) (349)

Of course, nothing changes if the axes labels are changed. G, like E, measures a stiffness,
in this case that to shearing actions.

Now, we consider a spherical stress state:

oc=pl, peR, (3.50)
so that »
= I 3.51
€ 20+ 3\ ( )
The change in volume is
3p
vee 20+ 3\ (3:52)
then, we introduce the bulk modulus k as
P 2u+ 3\
===\ 3.53
T e 3 (3:53)

r measures the volume stiffness, i.e. the stiffness to volume changes; it is immediate to

find that .
v 54
"R w) (3:54)

To end this part, we remark that the relation (no summation over )
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shows clearly the linear dependence of stress from strain, as prescribed by the Hooke’s
law. This is why classical elasticity is also called linear elasticity. FExperimentally, this is
well shown by the results of a common tension test on a steel bar: the typical diagram
o — ¢ of such a test is represented in Fig. 3.1: the elastic behavior is just the initial, linear
phase; the subsequent phase is plasticity, separated from the elastic range by the yielding
point; the final phase, with a nonlinear dependence of ¢ upon ¢, is the strain hardening.
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Figure 3.1: Typical o — ¢ diagram.

3.5 Elastic energy of an isotropic body

The elastic energy is readily written for an isotropic body, introducing eq. (3.32) or (3.44)
into eq. (3.18):

1
U= 5(2,u tre? + A tr’e) (3.56)

or equivalently

14

_ E 2 v 2
U—2(1+V> (tre +t 15 tr e). (3.57)

3.6 Bounds on the elastic constants

The elastic moduli cannot take any possible value. In fact, when a body is acted upon
by forces, the elastic energy increases necessarily: it stores energy under the form of
elastic energy. Physically, this means that external forces do a positive mechanical work
to deform an elastic body. Hence, it must be

1
U:§€~(C€>O Ve # 0. (3.58)

Mathematically, this is equivalent to impose that C be a positive definite tensor. Of course,
this implies that the C,j;; must satisfy some conditions, in other words, they are bounded.
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However, to use this approach to find these bounds is rather cumbersome, because this
needs the search of the eigenvalues of C, i.e. the resolution of its characteristic equation.
Of course, this is true for every elastic material, not only for the isotropic ones.

A mechanical approach is preferable: because it must be U > 0 Ve # O, one can chose
specially simple strain states. Let us see how to proceed for isotropic materials: we first
consider a spherical strain state:

e=al, a€eR; (3.59)
then

1 1 3
U= 50 €= 5(2u e+ Atrel)-e = %(Z,u tre 4+ 3\ tre) = §a2(2u +3\);  (3.60)

this value of U is positive <=
243X > 0. (3.61)

Now, we consider a shearing strain state:
e=v(e®ej+e; e, i #j, 7ER; (3.62)

then, being tre = 0, we get

1 1
U=-0c-e=—-(2 AreI)-e = .
59 € 2(us+ rel)-e=pe-¢ (3.63)
=Yule;®ej+e;Re) (e;0e +e 0e) =29,
that can be positive <=
> 0. (3.64)

The first case corresponds to a change of volume but not of shape, the second to a change
of shape but not of volume. Egs. (3.61) and (3.64) are the only two bounds that concern
the Lamé’s constants. Because of egs. (3.49), (3.35), (3.53) and (3.54), these bounds

correspond to pose

G>0, k>0, (3.65)
Ciinn +2Ch122 > 0, Cyp1n — G > 0, (3.66)

and 1
E>0 —-1<v< 3 (3.67)

Rather surprisingly, the bounds on E and v are three in place of two.

To remark that materials with v < 0 are theoretically possible: to a tension corresponds
a transversal dilatation and to a compression, a contraction. It can be shown that these
are the only necessary conditions for U being a positive definite quadratic form for the
case of an isotropic body.

The upper bound v = 1/2 has a special interest: in fact,

E
li = lim —— = o0; .
ul—% K VLII% 30— 20) o0; (3.68)
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So, such materials have an infinite volume stiffness, i.e. they oppose an infinite stiffness
to change their volume: they are incompressible materials. In fact, for a spherical stress
state we have seen that

§v = tre = g = lim v = 0. (3.69)

KR—00

This is actually true for any stress state, not only for the spherical ones; to prove this, we
put ¥ = 1/2 in the inverse Lamé’s equations:

1 3 1
- = s—ﬁa—ﬁtral = v =tre =0. (3.70)

3.7 The equations of Navier

The equilibrium equations
divoe +b =0 (3.71)

can be written as functions of u, using the Lamé’s equations and the expression of € =
e(u), eq. (1.26)":

dive = div(2u € + A tre I) = 2u dive + A div(tre I) = 2u dive + AV(tre).  (3.72)

Now, € must be written as function of u,

-
c_YutVu (3.73)
2
and considering that
divVv = Av,
) T ) Vv eV, (3.74)
div(V'v) = Vdivv,
and that
tre = divu (3.75)
we obtain
dive = pAu + (A + p)Vdivu. (3.76)
Finally, the equilibrium equations become
pAu+ (A + p)Vdiva+ b = o, (3.77)
or by components
i i+ (A + p)ug g +b; =0, i=1,2,3. (3.78)

These are the Nawvier’s equations, expressing equilibrium as function of the displacement
u.

"The following general result is used: div(¢ S) = ¢ divS + SVy Ve € R and VS € Lin(V).
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3.8 The equations of Beltrami-Maichell

It is possible, and useful, to write the compatibility equations of Saint Venant-Beltrami,
eq. (1.68),
€ij il + Eklij — Eikjl — Ejlik = 0 (3.79)

in terms of stresses and forces, using the inverse Lamé’s equations:

1
5ij = %Uz‘j — %5ij@a (380)

where

O = tro. (3.81)

Injecting eq.(3.80) into eq.(3.79) we have
v

T V(éij@,kl -+ 5kl@,ij — 6ik@,jl — (53'[@7%). (382)

Oijkl + Oklij — Oikjl — Ojlik =

Let us pose [ = k in eq.(3.82); then, we get

Oijkk + Okk,ij — Oik,jk — Ojk,ik = H%(éij@,kk + 01k0.ij — 0O ik — k0O k), (3.83)
or, better,
AGi; + O 45 — Gikjk — Ok = HLV((SUA@ +30,, — 20.). (3.84)
By the equilibrium equation we get
Opgg+bp=0 — 0pggr = —bp,, (3.85)
and hence ) ,
Aoj; + H—V@Jj - H—V@]A@ = —(b;; + bj,). (3.86)

This is a set of 9 equations, but only 6 are independent, for the symmetries of ¢ and j, so
this linear combination of the 6 original equations is equivalent to these last.

We need now to express © in terms of the b; ;. To this end, we pose k =7 and [ = j in
eq.(3.82) and sum up with respect to the repeated indexes, to get

v

201545 = Gigs — Ogii = 7, (200,55 — 0035 — 05;0.1); (3.87)
because
Oii — Jjj = @, 61’]'@,1']’ = (")7“‘ = A@, 5ii@,jj = 5]']'@7“' = 3A@, (388)
we obtain .
—v
Oijij = H——I/A@ (389)
But
0ijij = —bj; = —divb, (3.90)
SO
1
AO = — " divb, (3.91)
—v
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and finally we get

1 v )
1—{——V®7ij = ——5ijd1Vb — (bi,j + bjﬂ'). (392)

Aoy + 1—-v

These are the Beltrami-Michell equations (1900); they are the necessary conditions of
compatibility written in terms of stresses and forces.

Let us now consider the special case of constant body forces:
b =const. — divb=0, b;=b;;, =0 Vi,j, (3.93)

so that eq.(3.92) becomes

1
AO’Z‘j + H——V@’ij = O, (394)

known as equations of Beltrami (1892). For eq. (3.91) we have also

AO =0, (3.95)
i.e., © is a harmonic function; because
tre = ! tro (3.96)
e 2+ 3\ 7 ‘
it is also
Altre) =0, (3.97)

i.e., also the trace of € is a harmonic function. Finally, from the equations of Beltrami,
we get also
Aoy =0 Vi, j, (3.98)

and because € is a linear function of o,
A26ij =0 Vi,j, (399)

in other words, the components of o and € are biharmonic functions.

3.9 Superposition of the effects

In classical elasticity, all the sources of nonlinearity vanish: the relation between stress and
strain, the Lamé’s equations for isotropic bodies, or more generally the Hooke’s law, are
linear; the nonlinearity due to the effects of the displacements on the forces, that produce
the displacements, does not exist, because of the assumption of small perturbations. The
equilibrium equations, for instance in the form of the Navier’s equations, are linear in the
u;. Hence, as for any other linear problem, if f, i = 1,...,n are n systems of forces acting
upon the same elastic body 2, with the same boundary conditions on 99, and {u’, €', o'}
are the corresponding elastic solutions, then the solution to the new system of forces f°
obtained as a linear combination of the previous forces,

£ = f', i=1,...n, (3.100)
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is the linear combination of the previous solutions with the same coefficients «;:

{u’ e ") = a;{u’, e, o'} i=1,..,n. (3.101)
This is the Principle of Superposition of the Effects, that has several applications in the
analysis of elastic structures.

It has to be remarked, however, that this principle cannot be applied to the quantities
that are not linear, which is the case of the elastic energy. Just as an example, consider
the case of n = 2; then

U= ("o +aPa®) - (a’e? + aPeP)

N[N —

[(OéA>20'A . EA + (QB)QUB . €B + aAaB(UA . gB + O'B . gA)] (3102)

1
— aA)ZUA + (aB)QUB + §OzAO_/B(O'A X EB +O,B X EA) 7& O./AUA +OéBUB.

—~

3.10 Elasticity theorems

The theorems in this Section have a great importance, for their theoretical value as well
as for their numerous applications.

3.10.1 The Theorem of Clapeyron

If we apply the PVD, Sect. 2.7, not to a generic displacement field but to the real one, the
one produced, at the equilibrium, by the applied forces which is, of course, compatible,
i.e. if du = u and de = €, then we have

/a-sdw:/b-udw+/ t-uds. (3.103)
Q Q o0

The left-hand side is twice the elastic energy stored by 2, while the right-hand side is
the actual work of external forces for the displacement field that they produce at the
equilibrium. This proves the Clapeyron’s theorem (1833): at the equilibrium, the work
done by the external forces for their final displacements is twice the elastic energy stored
i the body during deformation.

To remark that, unlike the PVD, this theorem is valid only for linearly elastic materials
(but not necessarily isotropic nor homogeneous), because we interpret the term o - € as
the double of the elastic energy, which is correct only for linear elasticity.

3.10.2 The Theorem of Betti

Let us suppose that the same body € is subjected first to a system of forces t4, b4 that at
the equilibrium give the displacement and strain fields u” and €. Then, Q is submitted
to another equilibrated system of forces, t?, b?, that produce the fields u? and €”. All
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these displacement and strain fields, being real, are also virtual and compatible. So, we
are free to combine the forces of the first system with the displacements-strains of the
second one and vice-versa. For the major symmetries of C it is

A_B __ A_B __ A_B __ B_A
(Cijklgijgkl - Cklijgijgkl = Cklijgklgij = (Cijklgijgkl, (3104)

in other words
et . CeP =P . Ce?, (3.105)

so that applying the PVD we get

/bA-quw+/ tA-qus:/aA-eBdw:/sB-(CsAdw:
Q a0 Q Q

/EA-(CeBdw:/UB-sAdw:/bB-uAdw—l—/ t? . u? ds.
Q 9) Q 0

This is the Betti’s reciprocal theorem (1879): the external work done on an elastic body
by the forces of the first system for the displacements of the second one equals that done
by the forces of the second system for the displacements of the first one, when both the
systems are equilibrated. This theorem has several applications, namely in the theory of
the lines of influence.

(3.106)

3.10.3 The Theorem of Kirchhoff

A further result concerns the general solution of the elastic problem: we know that the
elastic problem is described by 15 unknowns and ruled by 15 equations. But, actually,
does this problem have at least one solution? And if yes, is this solution the unique
possible one? We leave apart the first question, because in general too complicate (in
our problems, for each case we will give a constructive response) and let us consider the
question of the uniqueness of the solution.

We proceed assuming that there are two possible solutions to the same elastic problem,
which means same body €, boundary conditions and applied forces: u?,e4, o4 and

u?, eP oP. Then, we consider the difference of the two solutions:

u=ut-u? e=¢'"-¢€f o=0""-0" (3.107)

Of course, these fields correspond to the following body forces and boundary conditions:
b = o0 over €2, t =0 on 0, u =0 on 0€2,. So, by the PVD,

/b~udw—|—/ t«uds:O:/afdw:/s'(Csdw. (3.108)
Q 20 Q Q

Because C is positive definite, this can happen <= e = O = &4 = £8; moreover,

e = 0 = 0 = Ce = O too, which implies 4 = o?. Finally, if e* = €?, then

u? = u” + w, with w an infinitesimal rigid displacement, absolutely inessential.

This result is the uniqueness theorem of Kirchhoff (1859): the elastic solution is unique.
The very importance of this theorem is that it gives a constructive way for finding a
solution to an elastic problem; if a solution is found in some way, then it is the solution,
because of the Kirchhoff’s theorem.
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3.10.4 The Theorem of Castigliano

Let us consider an elastic body (), with given constraint conditions on 02, and acted
upon by some forces; among these forces, we consider a concentrated force f, applied in
p € Q. We imagine to give a small increment 6f, to f,. Correspondingly, the elastic energy
of the body changes, for the contribution of :

e the work done by the other external forces;
e the work done by of,.

The second contribution is negligible with respect to the first one, because it is of the
order o(6f,)?%; the first contribution, for the Betti’s theorem, is equal to the work done by
0f, during the application of the remaining forces.

So, if u, is the displacement that p has in the direction of f, when €2 is deformed by the
whole system of applied forces, the increase of the elastic energy due to the increment of,
will be

oU = 6f, - u, = I fpu,, (3.109)
and the same variation of U can be written as
oU
oU =—=4f,, 3.110
afp p ( )
which implies
oU
Uy = —. 3.111
P afp ( )

This is the Theorem of Castigliano (1875): the displacement of the point of application of
a concentrated force in the direction of the same force is equal to the partial derivative of
the elastic energy with respect to the same force.

This theorem has also a dual form, that can be proved in a similar way:

v

fo = o, (3.112)

the component of a force in the direction of the displacement of its point of application
18 equal to the partial derivative of the elastic energy with respect to the same displace-
ment.

The theorem of Castigliano is used for the calculation of elastic displacements and in a
method for the resolution of hyperstatic structures.

3.10.5 The Theorem of Minimum Total Potential Energy

We define as kinematically admissible any state {u*,e*, o*} for which

_ Vu +V'u
-

*

, W =uond, o =Ce". (3.113)
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To remark that such a state is not necessarily equilibrated, because we do not require that
o satisfy to the equilibrium equations with the applied forces, but only that it is related
to the strain field by the Hooke’s law.

Then, the total potential energy £ of an elastic body (2, subjected to body forces b and
tractions t on 0€); is defined on the set of kinematically admissible states as

1
5*:_/0*-e*dw—/b-u*dw—/ t-u ds. (3.114)
2 0 Q 0

&* is the difference between the elastic energy of 2 and the work of the external forces.

Be now {u,e,o} the real, hence equilibrated, solution of the equilibrium problem; in
such a case, we denote £* by £ and put

U=u"—u g=¢"—e¢. (3.115)

So, because the starred system is compatible and {u,e, o} is the solution,

€ u = o on 09,. (3.116)

2 )
C is symmetric, i.e. it has the major symmetries, which implies

e"-Ce*=(e+€)-Cle+e)=€e-Ce+e-Ce+e-Ce+z-Ce
=¢e-Ce+e-Ce+ 2 - Ce.

1 1 1
—/0'*-6*dw——/a-edw:—/E-Edw+/a-§d¢u, (3.118)
2 Jo 2 Ja 2 Ja Q

*

(3.117)

where of course * = Ce*, o = Ce, o = Ce.

Because {u,e, o} is a solution, then by the PVD and because @ = o on 0f,, we have

/J-Edw:/b~ﬁdw+/ t-u ds. (3.119)
Q Q 09

So, for the last two equations, we have
1 [_ _ 1 [_
5*—82—/a'edw:—/s-(Csdw, (3.120)
2 Ja 2 Ja

where £ is the total potential energy of the starred, only kinematically admissible, state,
while £ is the total potential energy corresponding to the real, also equilibrated, solution (a
solution is of course kinematically admissible). Because C is positive definite, €-Cg > 0 Ve,
and it is null <= € = O, i.e. when €* = ¢, so finally we get

£<E (3.121)

with the equality that holds only when u* = u+w,e* =€,0" = o, i.e. when the starred
system coincide, left apart an inessential infinitesimal rigid displacement w, with the real
solution.
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This is the Principle of Minimum Total Potential Energy: among all the possible values
that the total potential energy £ can take in correspondence of given kinematically ad-
missible states, the minimum value is assumed for the real, hence also equilibrated, state.
This theoretical result is important also for practical purposes, because it offers a way for
the search of the solution: the (unique) solution to a problem of linear elasticity is that
corresponding to the kinematically admissible state that minimizes the total potential
energy; then, that kinematically state, and only that one, will be also equilibrated.

3.10.6 The Theorem of Minimum Complementary Energy

We define as statically admissible any stress field o that satisfies the equilibrium and
boundary conditions:

dive’ +b =0 in€), o’n=ty on 0. (3.122)

Then, the complementary energy defined on the set of statically admissible stress fields is

1
C°=— / o’ €’ dw —/ o’n - u ds, (3.123)
2 Jo o

with
e® = So®. (3.124)

C° is the difference between the elastic energy of {2 and the work of the forces on the
boundary uniquely. If the stress field is the real one, ° = o, which of course is statically
admissible, we denote C° by C and in such a case we have

1
5+Cz—/o‘~sdw—/b-udw—/ to-uds
2 Jo Q 8
1
+—/0'-edw—/ t-ugy ds (3.125)
2 Jo 80

:/a-sdw—/b~udw—/ t-uds=0,
Q Q o0

for the theorem of Clapeyron. This motivates the name of complementary energy.

Now, be {u,e,0} the real solution to the equilibrium problem for €2, with of course
o = Ce; this solution is equilibrated and kinematically admissible. Let us introduce the
difference of the states

o

e=¢e’—¢g, 0=0°—0 = dive =0 (), on = o on 9. (3.126)

Then, if now we apply to the form o° - Se the same procedure exposed in eq. (3.117),
we obtain

1 1 1
—/a"-a"dw——/a~sd¢u:—/8~Edw—|—/3'-sdw. (3.127)
2 Ja 2 Ja 2 Jo 0
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Because of eq. (3.126), we get®
/6’-6dw:/E'-Vudw:/(5~Vu+div6'-u)dw
0 Q Q

= / div(6 " u)dw = / G'u-nds= / on-uds (3.128)
Q o0 o0

:/ on - u dS:/ on - ug ds—/ on - u ds,
aQ/(L aQ'“‘ aQTL

Injecting this result into eq. (3.127) gives

1 1
ca—cz-/a-adw:-/a-sadw, (3.129)
2 Ja 2 Ja
with .
CO——/ao-eo dw—/ o’n-ug ds (3.130)
2 Ja a0,

the complementary energy corresponding to the statically admissible stress field (to which
is not asked the kinematical admissibility of the displacement and strain fields), while

1
C:—/a-sdw—/ on-ug ds (3.131)
2 Jo a0

is the complementary energy of the real state, which is at the same time statically and
kinematically admissible.

The argument now is exactly the same used for proving the principle of minimum total
potential energy: because S is positive definite’ then & - S > 0 V& # o and it is null
<= 00 =o0= 0°=0, so finally we obtain

C<cC, (3.132)

which proves the Principle of Minimum Complementary Energy: among all the possible
values that the complementary energy C can take for given statically admissible stress
fields, the minimum value is assumed for the real, hence also kinematically admissible,
solution.

3.11 Exercises

1. Show that for linear, isotropic, elastic materials, o and € are coazxial, i.e. they share
the same eigenvectors. What does this means, mechanically speaking? Is this true
also for anisotropic materials?

8We have used both the identity
An-v=/divA-vdw—|—/A~Vv dw,
a0 Q Q
which derives from the Gauss theorem for tensors, and the result of Note 5 of Chapter 2.

9The positive definiteness of S comes from the fact that S = C~! or, mechanically, repeating verbatim
the argument used to prove that C is positive definite, but now starting from the expression (3.23) of U.
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2.

10.

Consider the decomposition into spherical and deviatoric parts of € and o:

E=€E;+€&1, O=0s;+0g

1. show that it is
. 1 1
U:U3+Ud, with US:§O'S'ES, Udziad-ed;

what does this mean, mechanically?

ii. show that, for an isotropic material,
O'SZ(CES, O'd:(CEd,

and interpret it mechanically;

iii. show that Uy depends only upon x and Uy only upon G; why, in some sense,
this was to be expected?

iv. show that bounding the value of Uy is equivalent to bound the value of 7., see
Ex. 8, Chapt. 2.

. Express F, v,k and G as functions of ¢; and ¢y and vice-versa.

Write the equations of Lamé with x and G as unique elastic parameters.

. Be u such that curl u = o; use the Navier’s equations to show that

divu = + const. (3.133)

A+ 2p

. Using the Navier’s equations show that

Adivu = Y ! divb = _1+y=2)

ivb 134
o 1= divb, (3.134)

which is called the dilatation equation.

An elastic cube whose constants are E and v is compressed by uniform tractions
of value ¢ on two opposite faces, while volume forces are negligible. Determine the
volume change and the variation of the length of the cube sides.

. Do the same exercice, but this time the cube is surrounded by an infinitely rigid

material on the lateral sides.

. A square plate is submitted to a uniform tension f on the four sides, and its elastic

contants are £/ and v. Find the surface variation and the displacement field u.

A square plate whose elastic constants are A and p and with the sides parallel to
the axes x1 and x5, is submitted to some tractions on its sides and null body forces.
The resulting displacement field is

u(zy,zp) =7 1261, 7ER;
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11.

12.

13.

14.

15.

i. give a graphical interpretation of u;
ii. determine € and o;
iii. find the surface variation;
iv. determine the tractions on the boundary;
v. which type of deformation is this one?

A circular cylinder of radius R and height L is clamped at the lower base while
the upper one is turned through an angle 3. The body forces and tractions on the
lateral surface are null.

i. make a conjecture on the displacement field and then calculate € and o;

ii. determine the actions to be applied to the upper base; what are the actions on
the clamped base?

iii. calculate the volume variation;
iv. determine the stress on any cross section of the cylinder;
v. which type of deformation is this one?

An isotropic body subjected to a change of temperature 6 changes its volume. We
assume that this volume change is isotropic and proportional to 6 through a coeffi-
cient a and that it adds to the mechanical deformation, due to the applied forces.

Generalize the Lamé’s equations to take into account for the deformation due to
(this is the constitutive law for linear isotropic thermo-elasticity, or Hooke-Duhamel
law). Which is the physical meaning of a?

Using the Hooke-Duhamel law, find the stress in a cube, whose thermo-elastic con-
stants are F,v and a, when it undergo a change of temperature #; the cube is
completely immersed in an infinitely rigid medium.

A rectangular plate, isotropic and with constants A and p, is attached on a horizontal
side of length b (the other side is h) and can slip along it. It is subjected only to its
own weight ~, per unit of area.

i. Determine the boundary conditions;
ii. calculate the stress field;
iii. determine the final surface of the plate.

The circle
Xi+X3=1

is subjected to the deformation defined by

a,b € R — {0}. (3.135)

$1:aX1+bX2
$2:—bX1+&X2

1. for which values of @ and b the deformation can be considered as infinitesimal?
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16.

17.

18.

ii. in such a case, find the final shape of the circle;

iii. if the circle is composed by an elastic material whose constants are A\ and p,
determine, in the absence of body forces, which are the tractions to be applied
to the circle to obtain the given deformation.

A cylinder of radius R and height > R is composed by a thermo-elastic material
whose constants are \, u,a > 0. It is surrounded by an infinitely rigid medium,
and heated to a temperature . Knowing that the friction coefficient for the contact
cylinder-medium is v, find the torque to be applied per unit length of the axis in
order to make the cylinder turn.

In an ancient manuscript of Leonardo da Vinci, a figure has been recently discovered
which suggests that the famous Italian genius had probably realized the mechanics
of bent beams.

Inspired by this discovery, let us try to trace the possible track from the intuition of
Leonardo to modern mechanics: we consider a beam with rectangular cross-section;
b is the width and h the height of the section, while the beam’s length is /. We
chose a frame with the axis x; horizontal, x5 vertical, both in the plane of the cross-
section, and x3 is the axis passing through the centre of all the sections (the beam
axis). Interpreting the figure of Leonardo, we assume that the displacement field is

u= w ToX3 €3, ¢ € R. (3136)

The material is assumed to be isotropic of constants £ and v and the displacements
and strains infinitesimal.

i. determine the strain field €;
ii. find the volume change;
iii. determine the stress field o;

iv. determine the formula of Navier, relating o33 to its resultant moment on the
cross section and to the geometrical data of the section.

Consider the case of conservative body forces: b = Vi, with ¢ the force potential.
Write the Beltrami-Michell equations for such a case and show that if ¢ is harmonic,
then A© = A(tre) = 0 and A%0;; = A%, =0V, 5.
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Chapter 4

The Saint-Venant Problem

4.1 Problem definition

One of the most important applications of the theory of elasticity is the study of elastic
beams. This problem, important per se and for applications, is rather complicate. It can
be approached by different ways; in this Chapter, we look at a beam as it is in its reality
of a three-dimensional body, while in the next one we will consider a beam as an ideal
one-dimensional object.

The study of the beams needs some precision: a standard problem must be considered
in order to define and solve a specific case, sufficiently representative of interesting appli-
cations. This standard problem is known in the literature as the Saint- Venant Problem
after the name of the French scientist that defined and solved it (1855).

The Problem of Saint-Venant is defined as follows:

e the body 2 object of the study, the beam, is a cylinder (the Saint- Venant cylinder) of
finite length ¢; hence, the cross section S, of any possible form, but simply connected,
is constant;

e the material is linear elastic, homogeneous and isotropic;

e the cylinder is charged by tractions only at its ends; the system of applied forces is
equilibrated; tractions on the lateral surface and body forces are absent;

e the dimensions of the beam are such that ¢ > d, with d = sup{chords of S}; the
reason for this assumption will be clear further;

e the objective is always the same: find u, e, o everywhere in 2.

With these assumptions, the system to be studied is of the type in Fig. 4.1; the cross
section represented on the left is seen from the positive direction of x3. We chose once
and for all a standard frame R = {o;x1, z2, x3} with o the centroid of one of the end
sections, z3 the axis connecting the centroids of all the sections of the beam and the two
axes 1 and xo, that belong to the end section x5 = 0, coincide with two principal axes of
inertia of the section, see Fig. 4.1. To be remarked that, classically, the frame used in the
Saint-Venant Problem is negatively oriented. We denote by S; the base at 3 = 0, with
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Figure 4.1: The cylinder of Saint-Venant.

S that at x3 = ¢ and with S, the lateral surface; on these three surfaces, the outward
normal unit vectors are respectively ny = (0,0, —1), n; = (0,0,1) and n, = (n1,n2,0). It
is apparent then that 09, = Sy U S; U S, 09, = 0. We will denote by S(z3) the cross
section at the position z3 along the cylinder.

The forces on the two bases form an equilibrated system. Then, the problem to be solved
is: determine u, e, o such that:

dive = o,
i Q o=2ue+ \tre 1,
Vu+ V'u
E=—"-—"—"7;
2 )

on Sy o ng=tg;
on Sl g n; = tl; (41)

onS, on,=0;

/ tods—i—/ t, ds = o,
5'0 51

/(p—o)xtods~|—/(p—o)><t1 ds = o.
So

S1

with

4.2 The Principle of Saint-Venant

The Saint-Venant Problem, as defined hereon, is too hard to be solved in its generality,
especially for the fulfillment of the boundary conditions. Nevertheless, practically, the
exact distribution of tractions on the ends of the beam is rarely known and often of a
scarce importance. More meaningful, are the resultants of forces and moments, that are
normally known quantities.

For this reason, Saint-Venant introduces at this point a famous postulate, known as
the Principle of Saint-Venant: if a distribution of forces acting on a portion of 0L is
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replaced by a statically equivalent distribution, then the effects of the two distributions are
essentially the same on the parts of Q) sufficiently far from the loaded portion of 0€2;.

This is just an empirical principle that has a strong effect in view of the resolution of the
Saint-Venant Problem. In fact, because ¢ > d, replacing the actual distributions of t,
and t; on Sy and S has an appreciable effect only close to the ends, while in the rest of
the beam the static regime, i.e. the distribution of u, e, o is not appreciably affected by
such a change.

Experimentally, it has been seen that the length where the static regime is modified if the
distribution of the forces on the ends is changed is of the order of d.

The Principle of Saint-Venant constitutes one of the key points for the resolution of the
Saint-Venant Problem: the solution to be found will be, near the ends, either exact,
i.e. the tractions on the ends are applied in the way specified by the solution, either
an approximation of the real solution, satisfying the only requirement to be statically
equivalent to the real one.

Finally, because ¢ > d, only a small part of the beam will be concerned with a solution
different from the theoretical one, the one found applying the Principle of Saint-Venant
after introducing an appropriate distribution of tractions on the ends, statically equivalent
to the real ones.

To within a distance of the order of d from the ends, such a theoretical solution is not
appropriate, the difference with the real one becoming too important; in such zones, the
correct distribution of strain and stress should be looked for by other ways, for instance
by a complete three-dimensional analysis.

4.3 The fundamental assumption

Saint-Venant has made a general assumption for the problem at hand:

0'1120'2220'12:0 VPGQ (42)

This assumption is motivated by the same nature of the actions applied on the ends, that
are likely to produce only elongation and shearing of the fibers parallel to x3, but not
compression or tension in the directions z; and x, nor shear of the cross section, like it
could happen if body forces or loads applied to S, were present.

With this assumption, the more general form of tensor o for the Saint-Venant Problem
is

g = 0'13(81 ®e3+e3® el) + 0'23(82 Xes+e3® 62> + 0333 ® es, (43)
or in matrix form
0 0 013
g — 0 0 093 . (44)

013 023 033

This assumption has important consequences, that will be analyzed in depth in Sect.
4.7.
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4.4 Internal actions

For any cross section S at the position 0 < x5 < £, the traction t that QF, the part of
cylinder between S and S;, apply to 7, that between Sy and S is, by the theorem of
Cauchy,

t(z1, o, x3) = o (21, T2, T3)N0; (4.5)

because n = (0,0, 1) Va3 €]0,¢] and for eq. (4.2), we get
t(21, 29, 73) = (013(71, T2), 093(T1, T2), 033(T1, T2, T3)). (4.6)

Integrating t over S gives the resultant force F(z3) that QT applies to Q~ through S:

F(z3) = /t(ml,xg,xg) ds, (4.7)
s
whose components are usually denoted as

e component along x;:

Ti(x3) = /8013 ds; (4.8)

e component along xs:

Ty(x3) = /5023 ds; (4.9)

e component along x3:

N(z3) = /5033 ds: (4.10)

Ti(z3) and Ty(z3) are shear forces while N(x3) is the azial force.

We can repeat the same procedure for finding the resultant moment M(xz3) that QF
applies to Q= through S: if p = (x1, 29, x3) is a point of S, then the traction’s resultant
moment, with respect to the centroid C' = (0,0, x3) of S, is given by

M(l’?,) = /S(p — O) X t(ZL‘hZEQ,CL’g) ds = /S([L’hl’g,(D X (0'13,0'23,0'33) dS7 (411)

whose components are

e component along x;:

M (z3) = /5033 xo ds; (4.12)

e component along s:
My(z3) = —/5033 x1 ds; (4.13)

e component along x3:
Ms(z3) = /S(O'gg xr1 — 013 T3) ds. (4.14)
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Figure 4.2: Positive signs of the internal actions.
M (z3) and My(x3) are bending moments while M3(x3) is the twisting or torsion moment.

The actions Ty (x3), To(x3), N(x3), Mi(x3), Ma(x3) and Ms(x3) are the six internal actions
of the beam on the cross section S at the position z3 along the longitudinal axis. Their
same definition fixes, automatically, their positive sign, which is schematically indicated
in Fig. 4.2 for the actions on the beam’s ends. If we put T3 = Ti(x3 = 0), Ty = To(x3 =
O),N = N(ZL‘g = O),Ml = M1(173 = 0),M2 = MQ(ZL‘g = 0) and M3($3 = 0)7 then the
resultant and moment resultant of the forces applied to the end Sy, denoted by Fy and
M, respectively, are Fo = (=T, —T»,—N),My = (—M;, —M,, —M3), because on this
section n = (0,0, —1).

4.5 Global balances

Remembering that the only actions on the beam are applied on the ends, we can easily
write the global equilibrium equations for the the part of beam between Sy and S, Q~:

Fo+ F(z3) = o, (4.15)
My + (C —0) x Fo + M(x3) = o,
with Fy = F(z3 = 0) and My = M(x3 = 0), so that we obtain the components
N(z3) = N,
T\ (z3) = 11,
Tz(ﬂﬂa) =Ty,
M1($3) = —[—M161 — Msey — Mzes + x3e3 X (T1e1 + T2€2)] "€ (4.16)
= M, + T3 z3,
My(z3) = —[—Mie; — Maey — Mses + xze3 X (Tie; + Thes)] - €3
= M, =Ty z3,
M;(z3) = Ms.

Unlike the shear and normal forces or the twisting moment, all of them constant through-
out the beam, the bending moments are linearly variable and it can be noticed that shear
is always accompanied by bending.
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Applying eq. (4.15) to the end S;, x5 = ¢, gives immediately

F(QTg = f) = —Fo,

M(z3 =1¢) = —[My + (C — 0) x Fy, (4.17)

so it is sufficient to know the external action on only one of the two ends.

4.6 The four fundamental cases

Thanks to the Saint-Venant Principle, we are concerned only with the knowledge of the
resultants Fy and My on the end Sy, both applied in correspondence of the centroid of
the section, point o.

If we consider that the resultant F in any section S can be decomposed into two parts
e the axial component - N = N e;3,
e the shear component — T =717 e; +7T5 ey,
and that the same can be done for the resultant moment M,
e the axial component (twisting moment or torque) — M; = M3 e,
e the flexural component (bending moment) — My = M;(x3) e1 + Ms(z3) e,

we can immediately see that, using the Principle of Superposition of the Effects and the
Saint-Venant Principle, the general problem of the equilibrium of a Saint-Venant cylinder
can then be split into the following four cases, to be solved separately:

i. extension: on 5, the cylinder is subjected to only an axial force, i.e. only N # o;
ii. bending: on Sy, the cylinder is acted upon only by bending couples, i.e. only M, # o;
iii. torsion: on Sy, the cylinder is submitted to only a twisting couple, i.e. only M, # o;

iv. shear: on Sy, the cylinder is loaded only by shear forces, i.e. only T and M, =
—(C —0) x Fy are # o.

In the following, we will tackle each one of these four cases separately; of course, any
combination of the above cases can be analyzed summing up the effects of the elementary
cases.

4.7 The semi-inverse method

Though reduced to four elementary cases, the Saint-Venant Problem remains hard to
be solved, so Saint-Venant proposed and used also a general approach, the famous semi
1mwverse method of solution: for each one of the above four cases, some plausible assump-
tions are made about the distribution of u, € or o, leaving anyway enough freedom for
satisfying the conditions of equilibrium and compatibility. Then, once all the equations
satisfied, the uniqueness theorem of Kirchhoff guarantees that what has been conjectured
is actually the only possible solution for the case in object.
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According to the semi inverse method, for each one of the four cases above we will intro-
duce special assumptions, specially adapted to the case to be studied, besides the already
introduced general assumption (4.2). This assumption, though plausible, is anyway rather
heavy, because now we have still 15 equations but only 12 unknowns: the problem can
be overdetermined. So, for each one of the four cases, care must be taken to make the
conjecture to be the solution.

A general consequence of eq. (4.2) concerns equilibrium equations, that become

o133 = 0,
dive =0 — 0233 = 0, (418)

013,1 + 0232 + 0333 = 0.

Hence,
013 = 013($1,l‘2), 0923 = 023($1,CU2)’ (4~19)

so that, differentiating with respect to x5 the last equation gives
03333 = 0, (4.20)

i.e., 033 is a linear function of z3. In addition, for the (4.2), tro = o33 and by the Beltrami
equations we know that for b = const (b = o in our case),

A(tra) =0 — A0'33 = 0, (421)
so, for eq. (4.20) we get the equation

033,11 + 03322 = 0. (4.22)

We can say more than that; in fact, for b = const. the Beltrami equations of this case
give, for eqs. (4.2), (4.19) and (4.20),

( 033,11 = 0,
03312 = 0,
1 033,200 = 0,
AGi; + ——0335 =0 — ’ (4.23
2 (1+v)(o1311 + 013,22) + 03313 = 0, )
(1+v)(o2311 + 023,22) + 03323 = 0,
[ 03333 = 0.

As a consequence, o33 is a function which is at most linear in x1,z9, r3 and it cannot
depend upon the product z;zs:

033 = Cg + C1X1 + CoT9 + C3T3 + C4T1 T3 + C5T2X3; (424)

this is the most general expression for o3s.

About the boundary conditions, on Sy it is
ony =0, ng = (nl, No, 0) = 013N + 093Ny = 0. (425)
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If we call
T = 013€1 + 023€9 (426)

the tangential stress vector, which is the resultant of the shear stresses in a point, then
the last equation can be written as

7 -n,=0 on S;: (4.27)

the tangential stress is tangent to the cross section contour. This is a general fundamental
result of the Saint-Venant Problem.

We can now pass to examine the four fundamental cases.

4.8 Extension

The only resultant on Sy different from zero is IV; according to the semi-inverse method,
we make the following conjecture on the distribution of the stresses:

o13 =093 =0, o033 =c, ceR — O':C(eg®63). (428)

With such a stress field, constant throughout €2, the equilibrium, (4.18), and compatibility
equations, (4.23), are obviously satisfied; & is readily found:

1
€ = EVJ_%traI — 6:%[63®93—V<81®61+e2®e2)]7 (4_29)

or in matrix form

000 o | Y 0 0
co=|100 0|, €=+ 0 —v 0]. (4.30)
00 ¢ 0 0 1
Now, the displacement field can be calculated:
v c
Uyl = U2 = _Eca Uz 3 = ok Uro + U1 = Uz + Uz = Uz 3z + uzz =0, (4.31)

which gives (for the integration constants, we assume that the end Sy and the axis x3 are

fixed)

v v c
Ul = ——=C Ty, Uy = ——C Ty, U3= — 3. (4.32)

E E E

Finally, one has to check the boundary conditions:

e on Sy, ny; = (ny1,n2,0) so

o ny = c(eg ®ez)(nie; + noes) = o; (4.33)

e on Sy, ng = (0,0,—1) so

O Iy — —C(eg X 63)93 = —C e3; (434)
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e on Sy, n; =(0,0,1) so
o n; =cles®ez)es = c es; (4.35)
The last two results mean that the tractions are uniformly distributed over the end cross

sections; this is a direct consequence of the assumed conjecture and of the Saint-Venant
Principle. Passing to the resultant we can determine the last unknown, ¢: on Sy, N(z3 =

¢) = N. Then
N
/Uggds:/cds:N = ¢c=—, (4.36)
Sl Sl A
where A is the area of the cross section. Finally,
N
g = Zeg X €s, (437)
—N[® (e1 ®e; + e ®ey)) (4.38)
€—EA €3 €3 viep (S31 €9 e, .
N
u= ﬂ(—y Ty, —V T, T3). (4.39)

The quantity FA is called extension stiffness. Because all the equations are satisfied, for
the Kirchhoff theorem eqs. (4.37), (4.38) and (4.39) are the solution of the Saint-Venant
Problem for the extension case.

4.9 Bending

In pure bending, the actions applied to the end Sy have a resultant moment equal to

MO == _Ml e; — MQ €9, (440)

while 77 =T, = N = M3 = 0. Using the superposition principle, we consider separately
the two components of My and we study first the effects of the component along e;. To
remark that by global equilibrium, eq. (4.17), on the end S; it is M(z3 = ¢) = —Mj
because Fy = (=11, -1, —N) = 0.

4.9.1 Conjecture on the stress field

The beam is acted upon by tractions on the ends that have as unique global effect a
moment around the axis z;. We tentatively assume, following the semi-inverse method,
that o is defined by

(713:(723:0, 0'33:b$2, beR — U:bl’g(eg@eg), (441)
or in matrix form

0
0o |, (4.42)
X



i.e. we assume a linear distribution of o33 with x5, the axis orthogonal to x1, which is the
axis of M;. Unlike the extension case, the stress state is no more homogeneous.

The equilibrium equations reduce to the only
o333 = 0, (4.43)

which is obviously satisfied by the assumed stress field, while all the Beltrami compatibility
equations (4.23) are identically null, because 013 = 093 = 0 and o33 is linear.

About the boundary conditions:
e on Sy, n; = (ny1,n2,0) so
o Ny = b 5(72(63 & 63)(n181 + n2e2) = O] (444)
e on Sy, ng = (0,0,—1) so
g g = —b 132(93 ® 83)83 =-b To €3, (445)
e on S, n; =(0,0,1) so

o n; = b 1'2(63 (%9 83)83 =b TI9 €3. (446)
The datum on the ends is the knowledge of M, so, considering e.g. S;, one has
/ (p—C) xony ds = Me; —
S1
b/ (l’lel -+ 33'262) X Toes ds = M1e1 — (447)
S1

b/ (—x179€9 + 25€1) ds = Me.
S1

Remembering that x; and x5 are central principal axes of inertia, the first term under
integral is null (it is a product of inertia, always null when done with respect to a couple
of principal axes) while

/ x5 ds = Ji, (4.48)
the moment of inertia of the cross sec:ilon around z;. Finally we get
bJiee=Me — b= %, (4.49)
which gives the formula of Navier
O35 = M}le’ (4.50)

relating the stress o33 to the mechanical action, the geometrical characteristics of the cross
section, condensed in J;, and the position, namely the distance x5 from the centroid. The
formula of Navier shows that o33 takes its extreme values on the points of the cross
section whose distance from the the axis z; is the highest, while on the points of the axis
x1, o33 = 0: the axis x; is the neutral axis, see Fig. 4.3.

Because all the conditions are fulfilled, for the Kirchhoff theorem the field o so found is
the solution.
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Figure 4.3: Variation of o33 on a cross section.

4.9.2 The strain field

We can now determine €:

1 M
€= ;Va—%tral — = EIJTZ[e3®e3—y(e1®e1+e2®e2)],
or in matrix form
— 0 0
:Ml 2 OV —v 0
Eh o o0 1

The quantity E.J; is called bending stiffness (relative to the axis x1).

4.9.3 Displacements

We can now pass to calculate u:

M, M,
U1 = U222 = —V—=7T2, U33 =
EJ;

’ EJ,
Upg + Uy = U3+ U3 = U3 + Uz = 0.

X2,

The displacements are hence quadratic functions; integrating us 3 we get

M
Uz — —1I2I3 -+ UJ(QEI, Ig),

EJ
with w(zy, x9) an unknown function. Then, from eqs. (4.53;56), we have

M,
U3 = W1, U3 = — 757 T3 — Wpo,

EJ

SO

1 M, 9 n ( )
2EJ1:E3 T3Wo — V(T1,T2),

with u(zq, x9) and v(xq, x2) two unknown functions.

U = —T3W1 + U(zl,ﬂfg), Uo =
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From eqs. (4.53;2) we obtain

M, . M,y
—X9 —T3W 22 Vo= V=772
EJ 7

EJ

—T3W 11 + U = —v
and because these two equations must be true Vzg, it is necessarily
W11 = W = 0,

i.e. w(wy,x2) is harmonic, so we get

U= —VE—Jllazlxg + fi(zg), v= —§E—J1x2 + fa(xy),
with fi(x2) and fo(z1) two unknown functions. So:
M
Uy = —T3W;1 — VE—JIIQJL’@ + fi(xa),
1M v M
Uo = —§E—J1133'§ — T3W2 — §E—J1133§ + f2<£L‘1),

which inserted into eq. (4.534) gives

M,
T3W 12 VEJ1 X1+ f1,2 + f271

Because the last three terms are independent from x3, necessarily
W12 = 0,
so finally w(xy, z2) must be linear in z; and xs:
w = Bx; + T2+ ¢

and from what remains of the last equation we get

f1,2 = —qQ, f2,1 - V_lxl = «Q,
EJ;
SO \
v iy
Ji=—azs + i, f2=§E—L$?+a$1+Cz,
with «, 5,7, co, ¢1, co six arbitrary constants.
Finally, the displacement field is of the type
M, Bus +
Uy = —V——T1T9 — Qg — B3 + Cq,
1 o A 2 3+
M
Uy = F}l(yﬁ — vay — 13) + ary — T3 + c,
My azs + By +yza +
U3 = —— Tk x o + Co.
3 EJ, 223 1T Y2 0
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The integration arbitrary constants are determined by the boundary conditions on the
beam ends; if we fix the end Sy so that

Up = Uz = U3 = U1 3 = U3 = U1 = 0, (467)
then we get
a=F=y=c=c=c=0 (4.68)
and finally the displacement field u is defined by the components
M,y
U = —V—0r=X1T
1 EJl 142,
M,y
Uy = Yonl (va] — vas — x3), (4.69)
M,y
U3 = ——Tok
o

Looking at ug or also at eq. (4.51), we can see that fibers on the opposite sides of axis x;
suffer deformations of the opposite sign: elongation on one side, contraction on the other
one, while the fibers on axis x; remain unchanged. This confirms the name neutral azis
given to x;.

Another important result is given by eq. (4.663): because ug is a linear function of s,
any cross section does not warp in the beam’s deformation, i.e., the cross sections remain
plane in pure bending. In addition, from eq. (4.662) we get

M,
= T e A — — 4.70
U233 EJ, xr3 — 7 Uus,2, ( )

hence the cross sections are still orthogonal to the axis deformed by bending, see also
Sect. 4.9.5.

4.9.4 The Euler-Bernoulli law

Let us now consider a point of the central axis, i.e. the centroid C' = (0,0, z3) of a generic
cross section S at the position 0 < z3 < ¢; the displacement of such a point is

M
uc = (0, ——1x§,o> , (4.71)

61207
M,
o 472
52 2EJ1x37 ( 7)
§3 = w3.

The deformed axis of the beam is hence a parabola. The plane that contains the deformed
axis is called the plane of bending. In this case, it is the same plane containing the couple
M.
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The curvature x of the axis is given by the general formula for the curvature of a planar
curve:

K:——éﬁ—T (4.73)
1+ (2,3)%)2

When, as in our case, strains are small, then
[SEIR @ (4.74)
so it can be neglected in front of 1, which gives the approximation for the curvature

R =~ 52’33. (475)
From this last and from eq. (4.725) we get hence
k=L (4.76)

which is the celebrated Euler-Bernoulli law for bending*. It relates the cause, the bending
moment M, to the effect, the curvature x, through the mechanical and geometrical
characteristics of the beam, condensed in the bending stiffness £.J;2.

!This result can be obtained also through a more direct, geometrical approach: we assume that any
cross section remains plane and orthogonal to the deformed axis; this assumption, which is the constitutive
assumption of the Fuler-Bernoulli beam theory was a result in the rigorous demonstration done before.
Then, the length of a fiber on the central axis x3 subtended by a small angle df is

dso = R db,

where R is the radius of curvature of the deformed central axis; such a fiber is not stretched. For the
Euler-Bernoulli assumption, the length of a (stretched) fiber subtended by the same angle df but at a
distance xo from the central axis is

ds = (R + x2) db,

so that the extension e33 is given by

ds—dso _ (R+m2)d)—Rdf 1z

R R df R

We now assume that such an extension is produced by a longitudinal stress o33, which is given by the
Lamé’s equations as
T2

033 — E€33 = EE

Remembering that the axes x; and x5 are principal central axes of inertia, when integrating upon the
cross section the stress o33 and its moments about the three axes, the only non vanishing term is the
moment about the axis x; and we obtain easily

E EJl 1 Ml
M = — < d = —— 2 d = —— = = = ——
1 /30'331'2 S R /8332 S R — K R B,

The sign — is due to the convention on the positive value for M;.

2There is a contradiction between the results in eqs. (4.72) and (4.76). In fact, the curvature & is a
constant, but the deformed axis is a parabola, whose curvature is not constant. This is actually due to the
approximation (4.75) which is valid for small displacements and deformations. In such a circonstance,
a parabola is locally well approximated by its osculating circle, i.e. the above inconsistency, though
existing, concerns quantities that are very close together.
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4.9.5 Deformation of the cross section

Equation (4.72) gives the tangent t to the deformed central line:

M1£L’3
t=0C%=(0,— 1 4.77
b= 057 (4.77)
or, introducing the radius of curvature
1 EJ
R=_—="—"+, 4.78
‘/ﬁ?‘ Ml ( )
I3
t=(0,——4,1). 4.79
0.-2,1) (479)

Equation (4.693) shows that all the points of a cross section remain in a plane: any cross
section is transformed into another planar section, turned with respect to the original one.
In addition, because the cross section remains planar, we can neglect, for the while, the
displacement in the plane of the cross section and consider only its rigid rotation about

the neutral axis. So,
2
u= (o, —;%, xﬁ‘”’) (4.80)

and any point p = (x1, x9, x3) of such a section is transformed into

x2 ToT3

R T TR

pP=pt+u= (11,79 — ). (4.81)
So C" = (0, —22/2R, x3) and any vector p’ —C”, lying in the plane of the deformed section,

is of the type
L2T3

R

P —C' = (11, 9, ) (4.82)

so that finally
t-(p=C")=0, (4.83)

i.e., Vs, the tangent to the deformed central line is orthogonal to any vector of the
deformed cross section passing by x3. This means that any cross section remains not only
planar, but also perpendicular to the axis also after deformation.

This result is a characteristic of pure bending of beams in the framework of the Saint-
Venant Problem, and it proceeds, if it is not taken as a basic hypothesis, see Note 1, from
the initial assumption of linear distribution for o33. To be remarked that this result is
correct only for pure bending, i.e. for bending produced by end couples, while strictly
speaking it is not correct for bending accompanying the shear, see Sect. 4.11.

To study how a cross section at 3 = ( is deformed in its plane, we consider a rectangular
section of width 2b and height 2h. The two vertical sides z; = b will go into

I/Ml
=4b(1 . 4.84
m ( + o -’E2) (4.84)

The two vertical sides go hence into two inclined straight lines, whose inclination does
not depend upon the position of the section along the beam axis.
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The upper and lower sides x5 = +h will go into

_ M, 2 2 2
ne = +h+ BT (vay —vh® — (7). (4.85)

The two horizontal sides deform hence into a parabola and the cross section becomes like
in Fig. 4.4

Figure 4.4: Deformation of a rectangular cross-section for pure bending.

4.9.6 Biaxial bending

The case of M, is evidently analogous and the computations lead to

M:
033 = — jjla (4.86)

with Js the moment of inertia of the cross action about the axis .

The case of biaxial bending, i.e. of the contemporary presence of both M; and My, is
simply obtained summing up the contributions of M; and Mo:

M1$2 le'l
= — ) 4.87
8=~ 7 (4.87)
The equation of the neutral axis is hence
Ml.flfg MQ-Tl
=0 — = 4.88
033 i J ) ( )
that can be transformed into
1 P1 ?
= L 4.89
2 tan ) (,02) 1, ( )
where v
1
= arctan — 4.90
1) = arctan YA ( )
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while
Pi =1 — (4.91)

is the radius of gyration of the cross section with respect to axis z;, i = 1, 2.

By consequence, the inclination 6 of the neutral axis on x; is

1 2 2
tanf = “2 = (&) — tanftaniy = (ﬂ) . (4.92)
1 tan®y \ pa P2
The general situation is that depicted in Fig. 4.5. Let us consider the angle
Figure 4.5: Biaxial bending.
T ™
9_(__ >:9 _ I 4.93
5~V +Y -3 (4.93)
it is equal to /2, i.e. M and the neutral axis are orthogonal, <=
T T
9+¢—§:§—>9+¢:7r < tan(f +v¢) =0. (4.94)
But
1 P1 2
fan(0 + ) = no TNy Td (&) +tanv 0
n = = =
1 —tanftany 1 N\
e (4.95)
2
= tan’1) = — <&) ,
P2

which is impossible: M and the neutral axis cannot be orthogonal in the case of biaxial
bending. This means that whenever M is not aligned with one of the two principal central
axes of inertia, then M is not orthogonal to the neutral axis.
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4.9.7 Bending and extension

If an axial force N is added to the bending moments M; and M, because all of these
internal actions produce exclusively o33 as stress components, their effect can be added
directly and we get

o=yt 5, A

N Mz Msx 1 Mix Msx
NV 122 201 (N+ 122 22 1)‘ (4.96)
P1 3

It is immediately recognized that the neutral axis does not pass by the centroid of the
cross section and in general it can be completely exterior to it. In such a case, the stress
033 does not change of sign on the section.

4.10 Torsion

For the case of torsion, the cylinder is acted upon on the end Sy by tractions whose
resultant is null and whose resultant moment is, for any cross section,

M’ = M e;. (4.97)

The study of torsion is, mathematically speaking, much more complicate than that of
extension or bending. That is why, following also a historical order, we examine first the
simplest case of circular cross section, then we will pass to consider the problem of torsion
for a generally shaped cross section and finally we will consider an elegant approximate
solution for thin hollow sections.

4.10.1 The circular section

We consider a circular section of radius R and we make the following conjecture about
the displacement vector u (Coulomb, 1770): each point p moves rigidly on a circular are,
remaining on its own section S, turning of an angle which is proportional to the distance
of S from the end Sy, assumed as clamped. With such an assumption, see Fig. 4.6,

uy =r cos(a+6) —r cosb,
Vp = (21, x2,23) € 5, uy =71 sin(a+6) —r sinb, (4.98)

U3:0,

with 7 = |p — o| and « is the angle by which the cross action is rigidly rotated. For a
small rotation,

u; = r(cosa cosf —sina sinf — cosf) ~ r(cosf — asinf — cos )
= —r asinf = —a x,,

us = r(sina cos@ + cosa sinf —sinf) ~ r(acosf 4 sinf — sin ) (4.99)
=r acosf =« xq,

U3:0.
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Figure 4.6: Torsion of a circular section.

About the dependence of u from x3, for the assumption that «(x3) is proportional to the

distance from Sy we have
a(xs) = a x3, (4.100)

with the constant « that is called the torsion or twist angle; o measures the relative
rotation of two cross sections at unit distance.

Finally, the assumed displacement field is

Uy = —« TaT3,
Uy = v T1T3, (4.101)
Uz = 0.

Coulomb gave the first this kinematics of the torsion, but wrongly he assumed it valid for
any cross section, which is false.

The strain field is hence

Vu+Viu «a
E=——%H =3 [—za(e1 ®es +ez®er) +11(es ®es +e3®ey), (4.102)
or in matrix form
o O 0 —XT2
€= — 0 0 = : (4.103)
2
—X2 X1 0

because tre = 0, the deformation is isochoric. By the Lamé’s equations we get the stress
field:

o =2ue+ Mrel = pa[—ri(e1®es+e3®e) +a1(es ®e; +e3® ey, (4.104)
or in matrix form
0 0 —XT9
oc=pax| 0 0 x |. (4.105)
—T2 X1 0

It is immediate to check that such a stress field satisfies the equilibrium and the Beltrami-
Michell’s compatibility equations. For what concerns the boundary conditions,
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X1 T2

E, E,O) SO

e on Sy, ny = (

ony = pux|—r(e1 ®ez+e3Re)

T T 4.106
+x1(e; ®es +e3® ey)] (—181 + —262) = 0; ( )
R R
e on Sy, ng = (0,0,—1) so
o ny=—pa[—ry(e; e +e;®eq) (4.107)
+r1(ex ® e3 + e3 ® ey)] e3 = pa(ry, —x1,0); '
e on Sy, n; =(0,0,1) so
on; = pa[—ry(e; Re;+e;®e) (4.108)

+x1(e2 ® e3 + e3 @ ey)] e3 = pa(—xg,71,0).
We know that the resultant moment of the stress on each basis equals the torque:

Ms; eq :/ (x1,22,0) X g a(—x9,21,0) ds
S1

(4.109)
:ua/ (22 4+ 23) ds es = pu o Jy es,
S1
with Jy the polar moment of inertia of the section; for the circle,
R4
Jo= 1 (4.110)
2
hence i
M; = %u a (4.111)
and
‘ . _\
/
Yl
| R
Figure 4.7: Stress in a twisted circular section.
M.
o= (4.112)
© Jo
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The torsion angle is hence proportional to the torque; the quantity u Jy is called torsional
stiffness. Finally, we get

M3 ) M3 T
Y g = J
o 2T
formulae algebraically similar to that of Navier, eq. (4.50): the material is mostly stressed
near the boundary and of course, for the central symmetry of the circular section, these
values are those of the stress on any couple of orthogonal diameters, see Fig. 4.7. Hence,

more generally, we can wrote that on any diameter the tangential stress 7 varies with the
distance r from the center like

M3 r 2M37” _ 2M3
= Tmaz = .
Jo T R4 T R3

(4.113)

013 = —

(4.114)

T =

4.10.2 Sections of any shape

Let us consider now a cross section of any shape, different from the circular one. The
displacement field u cannot be of the type used for the circle, because the boundary
conditions on Sy should not be satisfied. In fact, for a general section we have, see Fig.

4.8,
dzs d
n, = -2z ¢ (4.115)
dy  dy
so with the solution valid for the circular section we should obtain

%X;;_

Figure 4.8: Outward normal n, in a generally shaped section.

d d
ony =« 0,0,:101£+:162ﬂ =0 — xidr) + T9dry =0, (4.116)
dry dy
which is the differential equation of a family of circles: the circular section is the only one
compatible with the state of stress (4.105).

We then pose

U = —a Tom,
Uy = a T3, (4.117)

ug = a p(x1, x2),
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with ¢(x1,z9) the warping function, so called because it describes the warping, i.e. the
antiplane deformation, of the cross section. Then

_Vu+V'u «

€ 9 5[(_$2+¢’1)(el Deste;@e) (4.118)
+(x1 +pa)(ea®es+e3®ey)|,
or in matrix form
a 0 0 —X2 + 3071
€= 5 0 0 1+ @2 : (4.119)
—Iy + Y1 1 + @2 0

because it is again tre = 0, the deformation is still isochoric. The Lamé’s equations give
the stress:

o =2pue+ Mrel=pal(—z2+¢1)(e1 ®es+e;e)

+ (1 + 90,2)(62 ®es3+e3® ey, (4.120)
or in matrix form
0 0 —To+ @1
o = 0 0 T1it+es |- (4.121)
T+ Y1 T1t+@o 0
The equilibrium equations are
o133 =0, 0233=0, 0131+ 0232+ 0333=0; (4.122)
the first two equations are identically satisfied, while the last one gives
prutenr=0 — Ap=0; (4.123)
hence, ¢(x1, z2) must be a harmonic function.
On the boundary Sy, n, = (n1,n9,0) and we have
ony=pu a(0,0,013n1 + o93n2) = 0, (4.124)
which gives the equation
o13n1 + 093ng =0 — Q1N + P ane = Tang — T1Ne. (4.125)

The quantity at the first member is the derivative of ¢ along n,, while that at the second
member is a known quantity Vp € 0S5, see Fig. 4.9:

n, X (p—C) = (ny,n2,0) X (x1,22,0) = (0,0,&), (4.126)

with
§(z1, 2) = 291 — T1M9. (4.127)
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So, finding (1, x2) corresponds to solve the following Neumann problem:

Ap(z1,22) =0 in S,

4.128
d_go = §(w1,72) on I8, ( )
dng

with £(z1,x2) a known function Vp € 95 and depending on the shape of S. The solution
depends hence on the shape of the cross section S.

The existence of a solution to this problem is guaranteed if

]{ LN (4.129)
o)

s dny

which is the case here:

d
% 14 —dy = f (xony — xyng) dy = —% (x1dxy 4+ xo9drs) =0 (4.130)
as dng a8 a8

because the integrand is the exact differential of (2% + x3)/2+const.

Figure 4.9: Torsion of a generally shaped section.

The resultants of the stresses o3 and 093 on each section are still null, as it must be; in
fact, because ¢(x1, z2) is harmonic, for the Gauss theorem and for the boundary condition

on 05, we get
/013 dszua/—x2+<p,1 ds
S s

—na [lrlos =zl + lnpa + o)la ds (4.131)
S

d
=l a% T <—¢—$2n1+]}1n2> dy = 0.
as dny

A similar proof can be given for oy3. For the resultant moment, we get

M3 = /(p — C) X (0'13,0'23,0) ds = 12 Oé/(i[f% + x% -+ T1P2 — JZ'QQOJ) ds. (4132)
S S

We put
Ji
EO = /(SC% + 25+ 3100 — Top,) ds (4.133)
S
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where

Jo

1= Jo+ [s(w102 — 2291) ds (4.134)
is the torsion factor. Finally, we get
Ms=p a% (4.135)
and hence o M
a= J;”. (4.136)

The quantity p Jo/q is the torsional stiffness of the section. So, what has changed with
respect to the circular case is the calculation of the torsional stiffness, now affected by
the torsion factor. It can be proved that ¢ is always greater than 1, and, as it can be
easily recognized, it is equal to 1 only for the circular section. This means that the torsion
angle « is smaller for a circular section than for any other section sharing the same polar
moment of inertia and made of the same material: the circular section is the stiffest one
for torsion.

All the problem is reduced to find, for a given section, the warping function ¢(zq,xs).
This is not possible, in general: only some few solutions are known. Numerical approaches
and approximated solutions are hence to be used.

4.10.3 The Bredt’s approximate solution

The most famous approximate solution is that of Bredt (1896) for thin-walled hollow
sections, see Fig. 4.10. We know that on the boundary of the section, 0., the traction is
null and that the tangential stress vector 7, defined in eq. (4.26), is parallel to 95.

Figure 4.10: General scheme for the Bredt’s solution.

The first hypothesis of Bredt is that 7 is parallel to the midline I" V7, see Fig. 4.10 (7 is
a curvilinear abscissa chosen arbitrarily along the midline I'). Then, because the section
is thin-walled, the thickness h() is much smaller than a characteristic dimension d of the
cross section, e.g. d = inf{chords}, we can assume that 7 is practically constant over the
thickness h(+y) Vv: this is the second hypothesis of Bredt.
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The consequence of these hypotheses is that
T h = const. V7. (4.137)

In fact, isolating a slice of wall of the cross section, Fig. 4.11, for the equilibrium it must

be
T hy dos = 19 he dxg = T h = const. (4138)

This is analogous to what happens in hydrodynamics: the flux is constant for permanent

Lok

Figure 4.11: Scheme of the tangential stress for the Bredt’s solution.

flows. We can now calculate 7, the norm of 7:

Mgeg—j{(p—C’)XThdy—Thj{(p—C’)xed% (4.139)
r r

because of eq. (4.137); e is the unit vector tangent to the midline I'. Hence, the term
(p — C) x e is the area of the parallelogram defined, Vp, by the vectors (p — C') and e.
Hence,

J(I{(p —C) x e dy=2Ar e, (4.140)
with Ar the area of the surface Fsurrounded by I'; then
Mse; = 27 h Ar e (4.141)
so finally we obtain the first formula of Bredt:

T oA B

(4.142)
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This simple, approximate solution fulfills in the mean, Vh along the line I', only the
equilibrium equations, not the compatibility ones; it is based upon merely static consid-
erations, i.e. on equilibrium, and also the constitutive law is not used for it, which is
hence valid also for non-elastic materials. Nevertheless, it gives good results for small A
and shows that, just like the speed of water increases when the section decreases, so the
tangential stress 7 increases when the wall thickness h decreases.

Through the PVD it is also possible to compute the rotation # of a cross section: for the
situation in Fig. 4.12 it is:

AR\
0 MS C )
o = P s ;, - 4&;‘. &* 7 ‘,:.

Figure 4.12: Scheme for the calculation of the twist angle with the Bredt’s solution.

e virtual work of the external actions: M50,
e virtual work of the internal actions: fQ o - de dw.

We take as virtual displacements and strains the actual ones: 66 = 6,, where 6, = 0(z3 =
), and 0e = e. So, for the inverse Lamé’s equations we get

1
M3 (9( = 2/(0’13 €13 + 093 823) dw = — /(0%3 + 0'33) dU. (4143)
Q K Jo
But
Ols + 055 = T° (4.144)
and 7 does not depend upon x3; hence,
0 0 ¢ M\ [1
Mgggz—/T2dS:—%7'2hd’7:—<—3) f—d% (4.145)
wJs wJr w\2Ar/) Jrh
so finally
Ms/ 1
0y = — dr. 4.146
£ 4pAz jé n (4:146)
The quantity
1 1
— P — d. 4.147
o [ (4.147)
is purely geometric and it is often put in the form
1 1 q
—dy = — 4.148
e (4.148)
with ¢ the torsion factor and Jy the polar moment of inertia. Finally,
q M;
0, = , 4.149
C= T ( )
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so that for the torsion angle oo = 6,/¢ we obtain again eq. (4.136).

As a final remark, we notice that all the results concerning torsion apply only to compact
shapes. Thin-walled open sections, in particular, cannot be treated in this way. This topic
is beyond the scope of this text and the reader is addressed to the classical literature on
beam theories for a deeper insight in the matter.

4.11 Shear

We come now to examine the last case, that of shear. We must immediately specify that
pure shear is not possible: shear is always joint to bending, because, for the equilibrium,
the presence of a shear force at an end of the beam produces always a bending moment
(that is why the case of bending examined in sect. 4.9, where the bending of the beam is
produced uniquely by couples applied at the ends of the beam, is sometimes called pure
bending).

In this case, the beam is loaded on the end Sy by the shear

TO = T1 e + T2 (SHB (4150)

Like in the case of bending, we examine separately the two shears T} and T, and after we
will use the Principle of Superposition of the Effects. Let then us start with 75, see Fig.
4.13.

GH\ | | A Ul CS I RS
'? { /] %a 0 ‘/~3' ’ (_;[ ‘

Figure 4.13: Scheme for the analysis of the shear.

For the equilibrium of the part of beam between Sy and S(x3) we have that
TQ(Ig) = Tg, Ml(Ig) == T2 xIs3. (4151)

Hence, M;(x3) is not constant along the axis of the beam and, as anticipated, it is not
possible the existence of shear without bending. Nevertheless, still using the superposition
of the effects, we ignore the presence of M;(z3) and examine only the effects of T5.

The rigorous analysis of shear is very cumbersome, and beyond the scope of this text.
Fortunately, an approximate solution, satisfying, like the Bredt’s solution, only to equi-
librium, is rather easy to be found. We can roughly justify the use of an approximate
solution by the following consideration: for beams with ¢ > d, like in the Saint-Venant
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problem, bending largely dominates over shear, in terms of stresses and deformations. Let
us show this by a rough computation: for a beam of rectangular section, b x h, subjected
to shear, in correspondence to the most solicited section, x3 = ¢, bending produces the
highest stress
pmas _ Mires gier _ 675 f'
J1 b h?

(4.152)

For the shear stress o3, let us assume the rude approximation of uniform stress on the
cross section (inadmissible, because it violates the result that stress must be tangential
to the border of the section), which gives

T
. 4.153
0923 b h7 ( )
so that mez gy
033
—_ = — 4.154
P ( )

and because ¢ > h, then 033" > 0,3. This fact shows why, in the Saint-Venant problem,
it is sufficient an approximate evaluation of the shear effects, because they are always
much smaller than those of bending.

The approximate solution for shear is due to Jourawski (1856); the first assumption is
that the cross section is symmetric with respect to the shear axis (in this case, the axis
xg). The second assumption concerns the distribution of o93: Jourawski assumes that it
is constant on each horizontal chord, i.e. that 0,3 is independent from x;:

093 = 093(T2, T3). (4.155)

This assumption violates the fundamental result of the Saint-Venant problem: tractions
are tangential to the border of the cross section. Then, a third hypothesis is made: on
the border of the section we assume that

013 = 0923 tan ¢, (4156)

with ¢ the angle between 093 and the tangent to the border, see Fig. 4.14 a). In this way,
the equilibrium on the border is satisfied.

We need a fourth hypothesis, about the variation of o3 along a horizontal chord: we
admit a linear variation between the two ends of a chord, see Fig. 4.14 b):

013 — 023 tan¢ ﬂ, (4157)
Ui

with n(z3) the length of half a chord.

The stress components must be equilibrated, in particular they must satisfy the third
equilibrium equation of Cauchy:

013,1 + 0232 + 0333 = 0. (4.158)

The Naviers’s formula gives us

Mixy  Thxezs
— — 4.159
033 i I ( )
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Figure 4.14: The shear stresses in the Jourawski solution.

so injecting it, along with eq. (4.157), into eq. (4.158) we obtain

T
(023 tan gbﬂ) + 0932 + ( szxg) =0. (4.160)
n 1 Jl 3

But o093 does not depend upon x;, while
dn(2)

t = 4.161
so we have
T: d T
0'23——+0'2372+ 202 :0 0'23_77‘{“7']& = — 202
d 2 Jl d 2 dIL‘Q Jl (4 162)
d(’f]O'Qg) _ TQIQ _ d( o ) _ T2x2d1‘ '
s n 7, No23 n i 2

We integrate now between x,”, upper limit of the cross section, and the position x5 of the
actual chord, upon which we want to determine os3, to obtain:

2 Thr 1T, [
No23 = —/ =2 dry — g3 = ——— 2n x9 dxs. (4.163)
,J;;w J1 277 J1 x;m

The last integral in the equation above is just the opposite of the static moment S, with
respect to the axis x1, of the portion of the cross section above the chord at x5. So finally,
calling b = 27 the length of the chord we get the Jourawski’s formula:
T, S
bJ,

(4.164)

0923 =

Generally speaking, this solution does not satisfy the Beltrami-Michell compatibility equa-
tions. Nevertheless, it can be checked that for the case of rectangular sections, the
Beltrami-Michell equations are satisfied. So, for the Kirchhoff theorem, the Jourawski’s
solution is the correct one, for rectangular sections.
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4.12 Yielding

Thanks to the results of the Saint-Venant Problem, we can calculate the state of stress at
any point of a beam. Generalizing these results to more general cases (presence of body
forces, variable section, forces on S, etc.) is customary and supported by the results of
experience.

The knowledge of o allows for verifying the safety of the beam. This can be done if a
yielding criterion is specified. A yielding criterion defines a limit condition, usually stating
the transition from a reversible, elastic state to an irreversible one. Such a criterion is
needed to transform the set of the o;; to a unique equivalent stress, according to the
criterion, to be compared to the admissible strength, measured by, normally, tensile tests
on the material composing the structure.

The very question is hence the choice of the yielding criterion. To give a detailed account
of the different yielding criteria existing in the literature is far beyond the scope of this
text, so we restrict ourselves to the most popular among the criteria for isotropic elastic
materials: the Huber-Hencky-Von Mises criterion (in short HHVM).

According to this criterion, yielding is attained when the deviatoric elastic energy (see

Ex. 2, Chapt. 3):

1
Ud = Qa'd &4 (4165)

reaches a critical value. Generally speaking, it is easy to show that

1 1 1 1 1
Uj=—0g-09=— (0' — gtra' I) . (0' — gtra I) = —(3tro? — tr’o)

A A 124 (4.166)
= @[0’%1 + 0'32 + O'§3 — 011099 — 011033 — 092033 + 3(0'%2 + 0'%3 + 0'33)].
With the principal stresses, one gets
Ud = 6—[0'% —+ U% -+ O’g — 0109 — 0103 — 020'3]
v . (4.167)
= —[(o1=p)* + (02— p)* + (05 —p)*], p= ;tro.
4n 3
The limit condition is hence
Ua < ko, (4.168)

with kg an experimentally determined value.

For the case of a unidirectional state of stress, the one that is realized in the usual
laboratory tests used for characterizing the strength of isotropic materials, say

g = a(e3 & eg), (4169)

it is
2 1
+ 502} = —o (4.170)



So, at the limit state, when o reaches the value of the yielding stress, oy, we have
L,

k’o == @JO' (4171)

The limit condition of the HHVM criterion is hence

_ )2 2 2 2 2 2
Oeq = \/011 + 05y + 033 — 011092 — 011033 — 022033 + 3(01y + 075 + 033) < 09, (4.172)

or with the principal stresses

Oeqg = \/0%+0§+U§—U102—0103—0203 < 0o. (4.173)

For the case of the Saint-Venant Problem, 011 = 099 = 012 = 0 everywhere in the beam,
so the criterion reduces to

Geg = \J 2+ 3(0% + 02) < o0 (4.174)

and remembering that the norm 7 of the tangential stress 7, eq. (4.26), is

T =4/0% + 03 (4.175)

we finally obtain the well known formula

Oeqg = \/ 035 + 372 < 0y, (4.176)

which is normally used for checking the safety of metallic beams. The term o, is often
called the Von Mises (equivalent) stress.

4.13 Exercises

1. Use the representation theorem for rotations
R=TI+sina W+ (1 — cosa)W?,

with W the axial tensor of the rotation axis and « the amplitude of the rotation,
to show that the displacement field of the torsion for a circular section is the one
given in eq. (4.101).

2. Prove that the solution for the torsion of circular bars is valid also for a circular
pipe; what does it change in the formula for the tangential stress 77

3. Prove that the choice of the origin of the axes, o, is immaterial for the case of torsion.

4. Show that the exact solution for the torsion of an elliptical section of equation
T
a?  b?
is given by the warping function
a’? — b?
a? + b?

and develop the expression for the tangential stress 7 and for the torsion factor q.

Y= T1X2
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10.

11.

. A bar is stretched by an axial force F'. If the cross section area is A which is the

highest shear and on which elements of surface does it act upon?

. A beam of cross section area A is stretched by a force F' and its lateral contraction

is blocked. Show that the effective Young’s modulus is
1—v
(1-2v)(1+v)

and determine the highest shear and the surface element where it acts upon.

E =

Show that the strain energy stored in a beam stretched by a load p uniformly
distributed over the end sections is, for unit volume,

p? p?

U:U5+U th US:_7 U:—

@ W 18 % 6u

and express the ratio U;/Us. What happens to this ratio when the Poisson’s coeffi-
cient varies from —1 to 1/27 Finally, calculate U as a function of N = pA, E and

V.

Show that for a cylindrical shaft acted upon by a torque Mj it is

7_2

Us=0, Uj=—
d 2
and calculate the whole energy stored in a beam of length ¢, as a function of Ms,
using the theorem of Clapeyron.
Show that for a beam bent by end couples M; it is

1 M3 1 Mia3
T8k JE '

T 6 J2

Then, express U as a function of £ and determine the whole strain energy stored
in a beam of length ¢. Find this same last result using the theorem of Clapeyron.

For a beam acted upon by a shear force 15 on Sy show that, for the only stress field
associated to Ty and not to the related bending, it is

1 (Th8\° 4tan® o x?
=0, U= () (1+ 521
Us=0, Uy 2 (b J1> ( + B

Calculate then the whole energy stored in a beam of length ¢ and show that it can
be put in the form

T2

2GA’

where x is a numerical coefficient called the shear factor, depending upon the cross
section shape, to be specified.

Ur' = x

Still for the case of the previous exercise, show that the whole energy stored in the
beam for the bending associated to the shear force is

T2¢3
Utot — 2 )
M T 6E T,
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Considering the results of the last two exercices, express the ratio

tot

_ UT
~ 7Ttot
UM

v

as function of the slenderness of the beam

!/
Ap = —
P
where

_ N
P=\ 72

is the radius of gyration of the cross section of the beam. What consequences can
be drawn?

Examine the case of a rectangular cross section submitted to the shear Ts; find the
distribution of o13 and 093 over the section, the maximum value of the tangential
stress and the shear factor.

Using the results of the last two exercices, express the ratio v for a beam with
rectangular section.

Study the stress state on a circular section submitted to a pure shear.

Determine the tangential stress 7 at any point of a square hollow section submitted
to a shear T" and a torque M.

Determine the stress variation on a I-shaped section submitted to a shear along the
vertical flange.

A I-shaped section is submitted to a moment M; and a shear force T5. Calculate
the Von Mises equivalent stress in the critical points of the section.

A rectangular section is submitted to an axial force N and a bending moment M.
Determine the variation of o33 on the section and the position of the neutral axis.
Then, examine the same problem reducing the actions to a unique axial force applied
with an eccentricity e to be determined. For which values of e the stress o33 over
the section does not change of sign?

Imagine that in the case of the previous exercise the material cannot withstand
tensile stresses, like in a simple contact problem. Consider the case of a compressive
axial force N and study what happens in the section for any possible value of the
eccentricity e.

Consider a section of the form in the figure; it is submitted to a shear 75 applied
along the axis xo. Determine the shear stress at any point of the cross section and
prove that T, can produce a torsion on the section unless it is applied at a point
Cg, the shear center, that will be determined.
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22.

23.

24.

T

A section of steel with section I as in the figure is submitted to a shear force T,
and a bending moment M;. Knowing the yielding stress oy, determine if the section
can withstand the applied actions using the HHVM criterion. Data: h = 400 mm,
t =12 mm, e = 8 mm, b = 200 mm, 75 = 2000 KN, M; = 50 KNm, oy = 160 MPa.

] - | ) T
l 3 B
x —
T
% l % e : l
L | £
l s___.;,T,.
g | ; ] :
! T l - i
— b —1 I ———

Calculate the stress state for the beam in the figure, having a hollows square section.
Then, check the safety of the structure using the HHVM criterion, knowing that
the limit stress is 0¢. Data: T'=4 KN, b = 200 mm, t = 6 mm, £ = 4 m, oo = 160
MPa.

Check the safety of the structure in the figure with the HHVM criterion. Data:
{=6m,d=2m, N=2KN, T =3KN, M =8KN, h =200 mm, b = 80 mm,
t =8 mm, e =4 mm, og = 160 MPa.

»y e = | —=
] e
L !
b 7
T
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Chapter 5

Straight rods

5.1 Introduction

The results of the Saint-Venant Problem greatly simplify the study of beams. In fact,
the whole stress state at any point of the beam can be found if the internal actions,
N, Ty, T, My, My and M5 are known.

The problem of the study of structures composed by beams is hence reduced to the study
of the internal actions. These ones depend only upon the position along the beam axis,
say the axis z. So the equations concerning N, 7T} etc. can be only ordinary differential
equations (ODEs), not partial differential equations (PDEs), which simplifies considerably
the problem and motivates for the study of beams reduced, ideally, to their axis.

Such theories, idealizing a beam as a one-dimensional element, are called rod theories (a
rod is considered here to be a beam reduced to its only axis). The objective of the rod
theories is hence to provide balance, compatibility and constitutive equations for rods,
i.e. for this special type of continuum.

In many practical cases, rods belong to a plane that contains one of their principal axes
of inertia of the cross section and are acted upon by loads that belong to such a plane.
This is the case of plane rods: the rods belong, also after the deformation, to their original
plane, where the loads act.

The case of plane rods is much simpler than the general one, because the only possible
internal actions reduce to only N, Ty and M; (that we will indicate, in the following, simply
by N,T and M, because there is no possibility of ambiguity in the plane case).

In the remainder of this Chapter, we will focus on a particularly important case of plane
rods, that of straight rods; nevertheless, it is not difficult to generalize the results to the
more general cases of plane or also of three-dimensional rods, following the same approach
illustrated below.

The objective is to write the balance, compatibility and constitutive equations for straight
rods, to arrive to a mechanical model for such elements. We will, namely, introduce two
classical models of rods, the more general Timoshenko’s one and the very classical Euler-
Bernoulli rod model.
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5.2 Balance equations

Let us begin the study of straight rods with the balance equations. The general situation
is sketched in Fig. 5.1; loads p(z) and ¢(z) are the data of the problem. The balance
equations can be obtained applying the principle of the sections of Euler to a piece of
road between the positions z and z 4+ dz. The assumed positive internal actions are those
depicted in the figure. The equilibrium of the rod implies that of the segment under
scrutiny, submitted to the external loads and to the internal actions transmitted to the
segment by the rest of the rod through the end sections. The balance gives hence:

e f e e M e e

B — ()

v l vy l vy mp(z)

T(z+dz)

Figure 5.1: General sketch for the rod’s balance equations.

e equilibrium to axial force:

N(z+dz) — N(z) +r(z)dz = 0; (5.1)

e equilibrium to shear force:

T(z+4dz) —T(z) + p(z)dz = 0; (5.2)

e cquilibrium to bending moment (e. g. around the point of abscissa z):

d 2
M(z+dz)— M(z) —T(z + dz)dz — p(z)% —m(z)dz = 0. (5.3)
Developing the above expressions gives

dN

N(z)+ %dz — N(z)+r(z)dz =0,
z

ar
7(2) + Tt 1) + s =, (5.4)

dM ar dz?
M(z)+ %d:z —M(z)—T(z)dz — %d > —p(2) ; m(z)dz =0,



and neglecting the terms of order greater than the first we finally obtain the balance
equations for straight rods:

v _
dz

dT

- 5.5
dM

— =T .

e +m

In the special and very common case of m = 0, we remark that 7T is the derivative of M.
From the two last relations, we get also, by differentiation,
d*M dm
=—p+ —, 5.6
dz? Pz (56)
a second-order differential equilibrium equation relating directly the bending moment to
the loads.

5.3 Compatibility equations

Let us now turn the attention on geometric considerations. In fact, we need a link,
the compatibility equations of the rods, between the displacements of the rod and some
internal kinematical quantities defining the deformation of the rod. The general situation
is that sketched in Fig. 5.2, where w is the axial displacement, v the deflexion, i.e. the
displacement along y, (3 is the local rotation of the axis z and ¢ that of the normal to the
undeformed axis z.

p

0 --- ---

Figure 5.2: General scheme of the kinematics of a rod.

We introduce first the extension €, the internal kinematical descriptor of the stretching of

the axis z:
dw

= —. 5.7
e=— (5.7)
Then, we define the curvature x of the rod
dy
=——; 5.8
%, 59
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the sign — is due to the fact that in the Saint-Venant Problem the positive bending
moments are opposite to the positive concavity, see below.

Finally, we introduce the angular sliding or shear v of the rod axis, describing how a
segment initially parallel to the rod axis changes in the deformation:

y=p—¢. (5.9)

From fig. 5.2 we see that

w=g+¢—ﬁ—>7=ﬁ—s@=g—w: (5.10)

~ measures the variation of the angle existing between the axis and a segment orthogonal
to it, from its initial value of 7 /2 to the final one of ¢. For small perturbations,

dv
t = — 11
so we have p
)
= — — . 12
Y= (5.12)

We remark that there is a substantial difference between a rod and a classical continuum:
in the rod theories, derivatives of angular quantities appear: a rod is a polar continuum,
i.e., unlike classical continuum bodies, it can transmit couples.

5.4 Constitutive equations

We have for the while only six equations, the balance, eq. (5.5), and the compatibility
ones, eqs. (5.7), (5.8) and (5.12), for a set of 9 unknowns on the whole: N, T, M, v, w, p,&, Kk
and 7. We need hence three constitutive equations for the rods; they can be derived using
the results of the Saint-Venant Problem. The approach is energetic: we write first the
strain energy for a beam, U,, between the two sections 1 and 2:

1
Uy = /a edv=— /033 p (013 + 033) dv

N My 1 TS\? 4tan® o 22
— — 14— 5.13
//( )E (le)(+ B ds dz (5.13)
N2 2 2
LN e
2 1 EA wA  EJ

Now, thinking at the beam as a rod, we write the energy U,
1 /2
v, = / (Ne + Ty + Mr) dz. (5.14)
1
This result can be obtained applying the Clapeyron’s theorem at the segment dx of the
rod, considered as charged uniquely by the internal actions. Of course, the solid being
the same, it must be

U,=U, VN,T,M, (5.15)
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which gives the conditions

N? T2 M?
Ne=—, Ty="—, Mrk=— 1
and finally the three constitutive equations for the rods:

N = FAe,
A

=12, (5.17)
X

M = EJk.

We remark that, because of the linearity of the problem, the internal actions are propor-
tional to their corresponding kinematical parameter. We dispose now of all the equations
for the rod theories.

5.5 The Timoshenko’s rod

The compatibility equations can be injected into the constitutive equations to get (from
now on, for the sake of shortness, we denote by a prime the derivative with respect to z):

N = EAW,

A
7= =), (5.18)
M=—EJJ.

If now we inject these equations into the balance equations, we get

(BAW'") = —r,
[%( - gp)}/ . (5.19)

A
(—EJY)Y =T +m= %(v’ — ) +m.

Injecting eq. (5.19), into the differentiated eq. (5.19)3 gives an equation for ¢ only:
(EJ¢)" =p—m (5.20)

The above equations are the elastic equilibrium equations of a straight rod; in fact, they
include in the equilibrium equations the constitutive law and the compatibility equations,
so they describe the equilibrium of an elastically deformable rod.

Equations (5.18) and (5.19) define the so-called Timoshenko’s rod model. In this model,
any straight segment originally orthogonal to the rod axis remains straight after the
deformation, but not necessarily orthogonal to the tangent of the deformed axis, because
~v # 0, generally speaking, which implies that v' ~ 3 # ¢.
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N and w are uncoupled from 7', M, v and ¢, but these last are coupled, which complicates
the resolution. Anyway, from eq. (5.18)y one gets

/ XT / " xT '
— — — | 2= 21
ki = @ =v (uA) ; (5.21)

that inserted into eq. (5.18)3 gives

M YT’
no__ _ AT
v = 7 + <,UA) . (5.22)

In the particular, and very frequent, case of a homogeneous rod of uniform section, £.J
and pA/x are independent from z; then, from eq. (5.19)y we get

/ n, XP
- A 5.23
A=t (5.23)
that inserted into eq. (5.18)3 gives
M X
"= _—— — Zp. 5.24
! EJ ,uAp (5:24)

The above expressions of v” can be used to find the deflection of the rod, v, whenever the
functions M(z) and T'(z) are known, namely from equilibrium equations, e.g. integrating
eq. (5.6). In this procedure, we need two geometric boundary conditions, fixing the
value of v or of ¢ at the rod’s ends, plus two natural boundary conditions, i.e. on M
or T, if the equilibrium problem is solved integrating eq. (5.6). The rotation ¢ can be
obtained from eq. (5.21) or directly upon integration of eq. (5.18)3, which needs just one
boundary condition, specifying the value of ¢ at a point of the rod (not necessarily at the
edges).

If, on the contrary, the functions M(z) and 7T'(z) cannot be determined upon simple
equilibrium considerations, then integrating three times eq. (5.20) gives an expression for
©, to be injected into eq. (5.19)3 to obtain an equation for v':

X

V=9 - A (EJ&) +m), (5.25)

that integrated gives the deflection v. Because we have integrated four times, four bound-
ary conditions are needed to determine the four integration constants. These can be of
two types: geometric, fixing the value of v or ¢ at the rod’s ends, or natural, imposing a
value for M or T at the boundaries. The natural boundary conditions concern ¢ or ¢';
in fact, if at a boundary z = z, it is M(z;,) = M,, then from eq. (5.20) we get

, M
o (z) =~ 55 (5.26)

while if it is T'(z;) = T} then eq. (5.19)3 gives the condition

(BJE") |, = =Ty — m(z). (5.27)
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5.6 The Euler-Bernoulli rod

Since the XVIII*" century a simplified model has been proposed by L. Euler and Jacob
Bernoulli for the bending case: the basic assumption of the Euler-Bernoulli rod theory is
that

B=¢p = 7=0. (5.28)

Geometrically, this corresponds to the vanishing of the angular sliding, i.e., finally, of the
shear deformation: unlike in the Timoshenko’s model, a segment originally orthogonal
to the axis remains orthogonal to the deformed axis. This is the so-called hypothesis of
conservation of the normals.

For small perturbations, this assumption gives
p=F=v - k=—¢ =" (5.29)

The equations for N and ¢ are not affected by this assumption, while for M and v we get

M= —EJuv", (5.30)
(EJUII)II — p _ m/. :
These are the celebrated equations of the Fuler-Bernoulli rod model. The problems for
N, T and M are uncoupled and the bending problem is reduced to a fourth-order differ-
ential equation for v. For what concerns T', the constitutive equation cannot be used,
because this should give T" = 0 identically, which would imply M = constant, which is
false!. The shear distribution can however be get through the equilibrium equation (5.5)3
and using eq. (5.30);:

T=M—-—m=(—EJW) —m. (5.31)

The above equations are valid for straight rods of any cross section, also variable with z.
For the very common case of constant cross section and material, they simplify to

M = —FEJv",
T=—EJv" —m, (5.32)
EJvW =p—m/.

Also in this case, if the function M can be obtained by equilibrium considerations, then
the deflection v is obtained by eq. (5.30),

V= — (5.33)

IThe assumption (5.29) renders egs. (5.18)3 and (5.19)2 impossible to be satisfied, and hence mean-
ingless, unless T' = 0 and p = 0 everywhere. Hence, in principle the Euler-Bernoulli model is correct
only for rods submitted to a pure bending state. However, the model is used also when T # 0; in such a
case, T can be retrieved only through equilibrium, once M determined, eq. (5.31). Practically, the use
of the Euler-Bernoulli rod model should be restricted to cases where the shear deformation is negligible
with respect to the bending one: this happens for slender rods, i.e. for rods where the slenderness ratio
p/t — 0, with p = \/J/A the radius of gyration of the rod’s cross-section, see Ex. 8.
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otherwise eq. (5.30)2 must be integrated four times. The geometric or natural boundary
conditions now concern always v and its derivatives. In fact, the geometric conditions fix
the value of v or of v at one rod’s end, while the natural boundary conditions on M and
T, through eq. (5.30)2 and (5.31), fix the value of v” or of v" respectively.

The solution of egs. (5.30) or (5.32), or in the general case of the Timoshenko’s model,
provides the displacement of the rod, determining hence its deformed shape, the so-called
elastica.

5.7 Reduction of the Timoshenko’s problem

It is possible to reduce eq. (5.20) of the Timoshenko’s rod theory to an equation of the
fourth order similar to that of the Euler-Bernoulli model, eq. (5.30)2. This can be done
introducing the auziliary function n(z) such that

p=1, (5.34)
which inserted into eq. (5.20) gives immediately
(EJn"Y" =p—m/, (5.35)

formally identical to eq. (5.30)s, provided that v is replaced by n. If eq. (5.34) is injected
into eq. (5.18)3, then we get
M= —EJy’, (5.36)

analogous to eq. (5.30);. Moreover, if eq. (5.34) is inserted into eq. (5.25) we obtain the

link between v and 7:

/ / X 11\/
=0 - 2 ((E . .
v = = (B ) (537)

Putting this expression of v’ into eq. (5.18)y gives
T=(-EJN")Y —=m=M —m, (5.38)

i.e. the equilibrium equation (5.5); is automatically satisfied.

For the very common case of a rod of constant stiffness, i.e. such that FJ and pA/x
are constant Vz, and without distributed couples, m = 0, the above equation gives (the
integration constant is inessential, as it can be easily recognized considering that the link
imposed by equation (5.37) concerns v')

(5.39)

Along with egs. (5.34), (5.36) and (5.38), this gives the boundary conditions to be satisfied
at the rod’s ends:

e clamped edge:

=0, ' =0; (5.40)



e simply supported edge:

v=0, M=0 — n"=0, n=0; (5.41)

e slide edge:
('0 —= O7 T = O —) TII = O’ ’]””/ g O’ (542)

o free edge:
M=0, T=0 — n"=0, n"=0. (5.43)

5.8 Isostatic and hyperstatic rods

The general problem for a rod is: knowing the applied actions p, ¢, m and the boundary
conditions, determine N, T, M, v, w and ¢. Three cases are possible: the rod is hypostatic,
1sostatic or hyperstatic.

Generally speaking, a structure is said to be isostatic if the equilibrium equations can
be solved uniquely, i.e. if they are sufficient to determine the distribution of the internal
actions and of the reaction forces. In the case of a rod, the equilibrium equations are

N' = —r,
. , (5.44)
M"=—p+m'.
T can be obtained through eq. (5.5)s:
T=M—m, (5.45)

once solved the bending equation. Such equations concern internal forces and need, on
the whole, three boundary conditions, one for eq. (5.44); and two for eq. (5.44)s. These
conditions are necessarily of the natural type, i.e. they concern the value taken by N,T
or M at the rod’s ends. So, a rod will be isostatic if and only if it is possible to specify the
right number of natural boundary conditions for eqs. (5.44), in particular if it is possible
to write:

e one and only one boundary condition specifying the value of N at one of the rod’s
ends;

e two and no more than two boundary conditions specifying the value of M or T at
the rod’s ends, but at least one of them must concern M.

In fact, only in such a case it is possible to determine a unique solution to the equilibrium
equations and hence to determine uniquely the distribution of the internal actions N, T
and M everywhere in the rod.

If the number of natural boundary conditions that can be written is greater than three,
then eqgs. (5.44) cannot satisfy all of them, generally speaking. Equilibrium is impossi-
ble and the rod is said to be hypostatic: the constraint conditions are not sufficient to
guarantee equilibrium for every possible external loading.
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If, on the contrary, the number of natural boundary conditions that can be written is less
than three, then the number of independent constraint conditions is too high to allow
writing natural boundary conditions. The rod is said to be hyperstatic, in the sense that
it is statically undetermined: the equations of statics, that is, the equilibrium equations,
are not sufficient to determine the distribution of the internal actions and of the reaction
forces.

In such a case, the compatibility equations and the constitutive law must enter the prob-
lem, i.e., the elastic equilibrium equations (5.19) or (5.30)5 should be used. In particu-
lar:

e for extension, eq. (5.19); is to be used, which needs two boundary conditions, of
the geometric or natural type, specifying respectively the value of w or of w’ at the
rod’s ends; at least one of the two boundary conditions must be concern w i.e. it
must be of the geometric type;

e for bending, eqs. (5.20) and (5.25) are to be used for the Timoshenko’s rod, while
eq. (5.30)s for the Euler-Bernoulli one. In both the cases, four boundary conditions
must be specified; they can be of the natural or geometric type, they have been
discussed in Sects. 5.5 and 5.6, but at least one of them must concern v, i.e. it must
be of the geometric type.

For isostatic rods, once the distribution of M determined, the deflection can be calculated
through eq. (5.33) for the Euler-Bernoulli rod, or through eq. (5.22) for the Timoshenko’s
one; in this case, the rotation ¢ is then determined through eq. (5.21), see Sect. 5.5.

We remark that an imposed displacement of a rod’s edge stresses an hyperstatic rod,
but not an isostatic one. In fact, an imposed displacement corresponds to a geometric
boundary condition, that concerns only hyperstatic rods. In the case of an isostatic one,
only natural boundary conditions, i.e. concerning N,T" or M, are needed to determine
the distribution of the internal actions; as a consequence, these last are insensitive to any
imposed displacement of rod’s edge.

For ending this Section, we remark that the difference in the resolution of isostatic or
hyperstatic rods is in the number and types of boundary conditions to be specified, besides
the differential equations, of the first or second order in the first case, of the second or
fourth order for the second one.

It is important to notice that, because equilibrium equations are sufficient to determine
the distribution of the internal actions for isostatic rods, such distributions are not af-
fected by the stiffness characteristics of the rod, i.e. N,T and M are independent from
the distributions FA, uA/x and EJ, also in the case where these last are not constant
throughout the rod. This is not the case for hyperstatic rods (and in general for hyper-
static structures): the distribution of the internal actions, and hence the reaction forces,
depend upon the distribution of the stiffnesses. However, for the Euler-Bernoulli model,
if the rod has constant properties, M and T are still independent from the stiffnesses, as
it can be easily checked; this is true also for the extension behavior.
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5.9 The torsion equations

The results found for straight rods can be easily generalized to include an out-of-plane
effect, that of torsion Mp. The general scheme is sketched in Fig. 5.3:

o

MT@Q (
I |

dz >
z Z+dz

Figure 5.3: Scheme for the torsion of a rod.

e balance of the torsion:

Mr(z +dz) — Mr(z) + m(z)dz =0 —

dM

Mr(z) + T(Z>dz — Mp(2) +my(2)dz =0 — (5.46)
dMrp o
dz - ty

e compatibility equations: the kinematical descriptor of torsion is the twist angle 0,
it is linked to the internal descriptor «, giving the relative rotation of two sections
separated by a distance dz by the relation

do
o= (5.47)

e constitutive law: the strain energy of torsion for a beam is (see Ex. 8 Chapt. 4)

1 2 q M2
Uy== T 5.48
. / e (5.48)
and as a rod
1 /2
U, = 5/ Mp a dz, (5.49)
1
so we get
J
My =22 (5.50)
q

a result already known from the Sant-Venant theory.
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Finally we have

Mr

J !/
(Mq 09,> S

These equations for torsion are formally identical to those for extension, egs. (5.18); and
(5.19);.

J
ILL 09/’

5.10 The Mohr’s theorems

Let us now consider the case of a bent rod of constant stiffness £'J and without distributed
couples; then, in the framework of the Euler-Bernoulli model,
M=T, T'=—-p — M'=—p v”:—% (5.52)
9 ) EJ' *
These two differential equations are formally identical; so, the elastica of a rod coincides
with the diagram of the bending moment M* generated by a fictitious load
M
=gz 20 (5.53)
This is the Theorem of Mohr (1868); to remark that p* is the curvature. Deriving eq.
(5.53)2 gives
o= (M) =T, (5.54)

i.e. the inclination ¢ of the elastica is given by the fictitious shear T* (5 ~ tan § = v’ for
small perturbations). This is the corollary of Mohr.

The fictitious load p* is to be applied to a fictitious rod, having the same dimensions of
the real rod but whose boundary conditions must in general be changed:

e for a simply supported rod, the elastica has v = 0 and v' # 0 at the edges; the
corresponding edges of the fictitious rod can be found considering that in the corre-
spondence it must be M* = 0 and T* # 0; hence the fictitious rod must be simply
supported, like the real rod;

e for a cantilever: at the clamped edge, v = 0 and v' = 0: the corresponding edge in
the fictitious rod must be a free edge, because in such a way M* = 0 and 7™ = 0;
at the free edge of the cantilever, v # 0 and v’ # 0: in the corresponding edge of
the fictitious rod it must be M* # 0 and T™ # 0, so this edge must be clamped: a
cantilever rod is transformed into a fictitious cantilever where the edges are swapped.

Other situations can be studied in a similar way. The use of the Mohr’s theorem, and
corollary, is normally bounded to isostatic rods. In fact, in such a case the use of the
Mohr’s technique allows for finding deflections and rotations using exclusively equilibrium
considerations, so without the need of solving differential equations.

In the case of hyperstatic rods, as we have seen above, the solution of the static problem
passes through the determination of the displacements and rotations, so in this case the
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Mohr’s theorem and corollary become useless in this context. Nevertheless, the corollary
of Mohr can be used in some methods for the static resolution of hyperstatic systems of
rods.

5.11 Hyperstatic systems of rods

The equations of rods allow, in principle, for studying any problem of rod structures,
regardless of the degree of hyperstaticity. However, in practice they can be used only
in simple cases, e.g. for single rods, because very quickly their use becomes too much
complicate.

Actually, this approach is complete: it provides any type of information (v,w, M etc.)
everywhere in a rod. So, the question is to know whether or not it can exist an approach
which, paying the price of a lower information, can be nevertheless used effectively for
more complicated rod structures.

The answer is yes, and the approach is based upon the Principle of Virtual Displacements
(PVD); such a method is sometimes called the force method for solving hyperstatic rod
structures, because the unknown of the method are generalized forces (forces or couples).
We introduce it in the following Section, specifying since now that the method, though
based upon the PVD, valid for any type of material behavior, is valid only for a linear
structural behavior. This assumption implies actually two distinct and equally important
hypotheses: the material is linearly elastic, on one hand, and the perturbations are small,
on the other hand.

5.11.1 The Principle of Virtual Displacements for rods
The PVD can be adapted to rods; first of all, we define a state of virtual displacements-
deformations for a rod a state for which v, w, ¢ are
i. regular (continuous and with piecewise continuous derivatives);
ii. infinitesimal,;
iii. independent from time.

Be N, T, M,p,r a field of equilibrated actions, i. e.

o
dz

ar_ ., ibe (5.55)
dz

dM

“Y 7

dz ’

We can then prove the following
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Theorem. (Principle of Virtual Displacements for rods): be {v*,w*, ©*} a field of virtual
displacements for a rod of length € in equilibrium under the action of external and internal
actions; then

¢ ¢
/ (Ne* + Ty + Mk™) dz = / (pv*+1rw) dz. (5.56)
0 0

Proof. We remark first that the the left-hand side of the above equation is the internal
virtual work, produced by the internal actions for the deformations corresponding to the
considered virtual displacements field, while to the right-hand side we have the external
virtual work, i.e. that produced by the external applied loads. Hence, once more, the
PVD states the equality of the internal and external virtual works.

Because, by hypothesis, v*, w* and ¢* are sufficiently regular, we can calculate the internal
virtual deformations for the rod
_dw? dv* dy*

* — * — B R e 5.57
5 o V=T K h (5.57)

Then, the internal virtual work becomes

¢
dw* dv* dy*
N T —p" | —-M d 5.58
/0{ @ (dz S0) dz] = (5.58)

and integrating by parts we get

dM dN dr
)—w* * 1 dz. (5.59)

l
N w* T o — M *14 22 wey o
[N w'+T v <p]0—|—/0 {(p <dz d: ' dz

The boundary term, the first one in the above equation, vanishes because at the edges it
is either an internal action either its dual kinematical descriptor to vanish. Because the
actions are equilibrated, eqs. (5.55) are satisfied, so that the term in brackets under the
sign of integral vanishes and finally we get

¢ ¢
/ (Ne*+Tv"+ Mkr") dz = / (pv* +7rw") dz. (5.60)

0 0
[

We remark that constitutive equations have not been used in the proof of the PVD, so it
is valid for any type of material behavior, not only for the elastic rods.

5.11.2 The Miiller-Breslau equations

We introduce the method through an example, shown in Fig. 5.4; the structure in object
is twice hyperstatic and, thanks to the assumption of linear behavior, using the principle
of superposition of the effects, we can think to the structure as the sum of three isostatic
structures. This is a key point of the method: the original hyperstatic structures is
transformed into the sum of isostatic structures, that can be solved separately using nothing
but equilibrium conditions. In particular, the original structure is decomposed into:
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T, e

= |No, Too Mo | + | N1, T1, M1 | + |No, To, M2

] EE BN x4 X2
Real Principal 18t Auxiliary 2nd Auxiliary
structure structure structure structure

Figure 5.4: Scheme for the analysis of hyperstatic rod structures.

e a principal structure: the hyperstatic constraints have been removed (their choice is
not unique and anyway arbitrary) and the isostatic structure so obtained is acted
upon only by the given, known loads;

e a number of auziliary structures equal to the number of hyperstatic constraints
removed (in the example, two); each one of the auxiliary structures is like the
principal one, hence isostatic, but it is loaded uniquely by an unknown generalized
force, a reaction, statically dual of the corresponding removed hyperstatic constraint.

Hence, there is an unknown generalized force for each degree of hyerstaticity, and each one
of them is applied to an auxiliary structure; in our example, we have hence two unknowns,
x1 and xy, indicated in Fig. 5.4. These unknowns are determined imposing the geometrical
condition that their corresponding displacement is equal to the one prescribed in the real
structure (usually, it is null). We remark hence that in this method the unknowns are
forces and the equations, compatibility conditions on the displacements.

Because each one of the structures decomposing the original hyperstatic one is isostatic, it
is possible to determine everywhere the internal actions merely using balance equations.
We indicate with

e Ny, Ty, My the internal actions in the principal structure;
o N;,T;, M; those in the i* auxiliary structure loaded with x; = 1.

Thanks to the assumption of linearity, the actual internal actions in the real, hyperstatic
structure, are given by the superposition of the effects:

N = N() + zn:l'zN“

=1

T=To+Y a7, (5.61)

=1

M = M() + il’le,

i=1

with n the degree of hyperstaticity.
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To determine the unknowns x; we use the PVD; to this purpose, we consider as virtual
displacements those of the real structure, that are of course surely admissible. As forces,
we consider those in each one of the auxiliary structures; because these structures are
isostatic, the internal actions, calculated using balance equations, are surely equilibrated
with the external loads. As a consequence, we are authorized to use the PVD with
such a system of forces and field of virtual (actually, in this case real) displacements.
We apply the PVD as much times as the auxiliary structures, i.e. as the degree of
hyperstaticity:

o 1% auxiliary structure:

— virtual work of the external forces (x; = 1): if, in the real structure, the point
of application of x; undergoes an imposed displacement d;, then such virtual
work will be equal to

51 =€eq - (5, (562)
where e; is the unit vector oriented like x1; usually, d = o, so §; = 0;

— virtual work of the internal forces (we indicate with 2 the whole structure and
with ¢ a generic curvilinear abscissa along the rods composing the structure):

Q

the first equation is hence

/(N1€ + Tl")/ + Mllf,) dl = 51, (564)
Q

o 2" auxiliary structure: proceeding in the same way we obtain

/ (Noe + Tyy + Mar) dl = 6. (5.65)
Q

In the above equations, the internal kinematical descriptors €, and k are those in the
real structure. So, using the constitutive equations of elastic rods and the superposition
of the effects we get

N B No + 21 N1 + 22N>

E =

EA EA ’

. T . TO +I1T1 +J}2T2
V=X =X A : (5.66)

o — % . M0+$1M1+$2M2

EJ EJ '
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Replacing the relations above in the two PVD equations, after regrouping the terms we

get
N2 T2 A2 NN»  TT, MM,
STt Wt W de
II/Q<EA+XMA+EJ +x2/ﬂ FA TXa TR

NiNy TT, MM,
dl =
+/Q(EA+XMA+EJ) 81,

NN,  T\Ty, MM, N Ty M3
xl/Q<EA +X[LA+ EJ>d€+$2/§Z(EA+XMA+EJ al

NQNO TQTO MQMO .
+/Q(EA X TRy ) dl = 6.

(5.67)

These equations have the form of a symmetric system of linear algebraic equations; in
the general case of n degrees of hyperstaticity, we have a system of n equations with n
unknowns z; that can be synthetically written in the form

i = Mio + 0i, (5.68)

with

NN, TT, MM,
= d,

NN,  TTy, MM,
= dr.
1o /Q(EA +XMA+EJ>

(5.69)

The terms on the diagonal, 7;; are necessarily positive, as it is apparent from the above
equations. Equations (5.68) are the Miiller-Breslau equations (1886), with the coefficients
of the unknowns given by eq. (5.69). They provide the classical method for the resolution
of hyperstatic systems of elastic rods. In the very frequent case of slender rods, the
extension and shear deformations are much smaller than the bending one, so they can be
neglected and the calculation of the coefficients is greatly simplified, as it is reduced to
the only bending terms.

It is worth notice that imposed displacements to a constrained point, like those produced
by ground settlements in a bridge or a building foundation structure, stress an hyperstatic
structure. This is not the case for an isostatic one, because in that case the distribution
of the internal actions is uniquely determined by the equilibrium equations. As imposed
displacements are kinematical conditions, they do not enter the equilibrium equations
and, by consequence, do not stress an isostatic structure.

As a last point we remark that once determined the unknowns z;, the real distribution of
the internal actions in the structure can be easily calculated using eq. (5.61).

5.11.3 The dummy load method

The method of the forces does not allow to retrieve all the information about the rod,
e.g. it does not give the displacements. Anyway, we can calculate the displacement v
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in a point still using the PVD, by the so-called dummy load method. To this purpose,
we apply the PVD using as displacement field the real one and as forces those in any
equilibrated isostatic system acted upon uniquely by a unit force, the dummy load, dual
of the displacement v to be found.

The virtual work of the external forces is hence equal to v, while that of the internal forces

1S
N Ny TTqy M M,
4 .
/Q<EA +XMA+EJ) : (5.70)

where N, T, M are the real internal actions; they are already known by a previous calcu-
lation, for instance a merely static one if the structure is isostatic or having solved the
Miiller-Breslau equations if it is hyperstatic. Ny, Ty, M, are the internal actions produced
on the isostatic structure by the dummy load; being the structure isostatic, they can be
calculated by simple static conditions, hence they are equilibrated.

Finally, the PVD gives

NN, TT, MM
v:/( 4 4 d) de. (5.71)
Q

EA XA T TET

5.12 Effects of a temperature change

A final question concerns the effects of the temperature changes. We still use the Hooke-
Duhamel model (see Ex. 12, Chapt. 3):

€ =€, + &, (5.72)

where g,, is the mechanical deformation, given by the Lamé’s inverse equations (3.45),
while the thermal deformation e; is given by

e = At ol, (5.73)

where At is the temperature variation with respect to a state where, conventionally,
g; = 0, and « is the coefficient of thermal expansion.

For what concerns At, the usual assumption in the rod theory is that it has a linear
variation through the thickness of the rod, see Fig. 5.5, which is rigorously true in a
stationary heat flow; if A is the thickness of the section,

ot ottt

ty) =to+ 4y, fo=—F—, dt=t"—t" (5.74)

The global temperature change is hence decomposed into a uniform, ¢y, and an anti-
symmetric one, 6t. Now, we need to link &; to the descriptors e, v, k; of the thermal
deformation. To this end, we consider a length of rod between the sections 1 and 2 and
we write the strain energy of the beam and of the rod, that must be equal. Because for
a Saint-Venant beam it is 017 = 099 = 012 = 0, we have

1

2 1 2
5 / (0'33833t + 20’13813t + 20'23823t) dv = 5 / (N&Tt + T’Yt + M/it) dz. (575)
1 1

104



But &35, = €93, = 0, because of eq. (5.73); then, using the Saint-Venant Problem results
and the linear variation of ¢ through the rod thickness we get, for the left-hand term,

2 AT T == N ty+ M— _
Lo (B2 (e 2) ] e L [ (5t e o

the other terms are null because the frame axes have their origin in the centroid of the
cross section S. So, because this equation must be true for all the possible choices of the
sections 1 and 2, the two integrands must be equal, which gives

Et:ato,
% =0, (5.77)
ol
t—O{h.

Shear deformation is not affected by temperature changes; extension is influenced only
by uniform and bending only by antisymmetric changes of temperature. According to eq.
(5.72), the deformations of the rod are hence given by

€ = &m + &4,
K= Ky + K,

where the subscript m indicates the mechanical part of the deformation, linked to the
internal actions by the constitutive equations (5.17):

A
N=FEAe,, T=My  M=EJk, (5.79)

while the total deformation is still linked to the displacement components by the compat-
ibility equations (5.7), (5.8) and (5.12)

/

e=—w, y=v -9, Kk=-—¢. (5.80)
From the previous equations we get hence

N = EA(e — &) = EA(W' — aty),

pAa
= 7(“ — @), (5.81)

ot
M=FEJ(k—K)=—-FEJ (30/4—04%) ;

B

Figure 5.5: Decomposition of a linear temperature change on a rod.
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that inserted into the equilibrium equations (5.5) give finally the thermo-elastic equilib-
rium equations for the Thimoshenko’s rod model:

(EA(W — aty)) = —r,
A, !
(%( _‘p)> - (5.82)

(oot} = (s ) o

For the Euler-Bernoulli rod, the first equation above does not change, the second one is,
as usual, meaningless, while eq. (5.81)3 becomes (¢ = v'),

t
M=FEJ(k—rk)=—-EJ (v" - a%) : (5.83)

that inserted into the equilibrium equation (5.6) finally gives

(EJ ('U” + a%)) =p—m' (5.84)

In the Miiller-Breslau equations, the presence of a temperature field can be accounted for
inserting eqs. (5.77) and (5.78) in the expressions of € and « in egs. (5.66):

€:€m+€t:ﬂ+at0: NO_’_xlgA—i_xQNQ
B T To+aTy + a1
V—Vm—XM—A—X LA )

M 0t M0+33'1M1 +$2M2 ot

K=Kpt+kKk=—+a— = +a—

EJ h EJ h'

Oét(),

(5.85)

Once these expressions inserted into the PVD equations, e.g. eqs. (5.64) and (5.65), we
get the final form of the Miiller-Breslau equations for the thermo-elastic case:

MijT5 = Nio + Nit + 04, (5.86)
where
ot
Q

To end this Section, we recall that for an isostatic equation the distribution of the inter-
nal actions N,T and M is uniquely determined by the equilibrium equations (5.5); and
(5.6), see Sect. 5.8. Because in such equations the effects of temperature changes, that
are deformation effects, do not enter, temperature changes do not produce any internal
action in isostatic structures, but only deformations. This is not the case of hyperstatic
structures, like egs. (5.81) to (5.84) clearly show. Hence, unlike isostatic rods, hyperstatic
rods are stressed by temperature changes.
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5.13 Exercises

Nota bene: wunless otherwise specified, the exercices below are to be solved using the
Fuler-Bernoulli rod model.

1.

10.

11

Determine the elastica of a cantilever beam with EJ = const., loaded:
i. by a uniform load p;
ii. by a concentrated force F' at the free edge (this is the Galileo’s problem);

iii. by a couple M at the free edge.

. Determine the function J(z) that a homogeneous uniformly loaded cantilever must

have to bend along a circular arch of radius R.

. Determine the axial force N and displacement w of a vertical rod with £A = const.

clamped at its ends and submitted to its own weight.

Determine the variation h(z) of the height of a rectangular cross section of a can-
tilever loaded by a concentrated force at its free edge in order to have everywhere
the same highest stress o33 (Galileo’s problem of the rod of uniform strength).

. What does it change in the previous problem if it is the highest Von Mises equivalent

stress to be constant throughout the rod length?

. Determine the displacement v of the center of a clamped-clamped rod loaded at

mid-span by a concentrated force F.

Study the structure in the figure and determine the maximum deflection.

LLLTLRLELTI TP
‘ EJ=const. &

| ¢ ]

Study the same problem but now using the Timoshenko’s rod model. Show that in
this case the solution tends to that of the Euler-Bernoulli model when the slenderness
ratio p/¢ — 0; how to interpret this result?

. Find the displacement of the free edge of the rod in the figure using the results of

the previous exercices.

LDV T T

I EJ=const. A
b

L a

Find the deflexion and rotation of the beam of exercise 1 using the Mohr’s theorem
and corollary.

A rod clamped at the ends is thermally loaded by:

i. a uniform temperature to;
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12.

13.

14.

15.

16.

17.

18.

19.

20.

ii. a through the thickness linear variation of the type t~ = —t, ¢t = +t.

Study the structure in both the cases, finding the reactions, internal actions and
displacements.

Consider again the two cases of the previous exercice, but now the rod is simply
supported; what changes for the rod?

Study the structure in the figure, finding also the rotation of the central point.

M
I EJ=const. > I

| {2 J {42 A

Study the structure in the figure.

LT TR

Il L
EJ=const. B i

¢ J
Make the same, loading now the rod uniquely by a thermal load of the type ¢t~ =
—t, T = +t.

Determine the support reactions and internal actions of an elastic simply supported
rod of length ¢ and constant bending stiffness £J when a point at the abscissa z = a
is submitted to an imposed deflection 4. Why the problem cannot be solved using
uniquely equilibrium equations, i.e., why contrarily to what seems at a first sight,
this problem is not isostatic?

An infinitely long pipe, whose weight per unit length is p and whose constant bending
stiffness is E/J, lays on a horizontal plane, that can be considered as infinitely rigid.
The pipe must be lifted at a certain point, by a crane, of a height equal to h. Which
is the lifting force that the crane must produce?

A rod whose length is ¢, weight per unit length p and constant bending stiffness E.J,
lays on a horizontal plane, that can be considered as infinitely rigid. At the left end,
the rod is acted upon by a vertical force F'. For what conditions the equilibrium is
ensured? How much the left end of the rod will be lifted up by F?

A rod whose length is ¢, weight per unit length p, thickness h and constant bending
stiffness FJ, lays on a horizontal plane, that can be considered as infinitely rigid.
The rod is heated on its upper surface to a temperature ¢, while the lower part is
at the temperature —¢. Determine the vertical displacement of the mid point of the
rod. Which is the minimum value of ¢ to lift up the rod?

Study the case of an elastic rod of length ¢ — oo that is submitted to a concentrated
load F' and that lays on an elastic substrate whose elastic constant is k (this is the
case of a rod on a Winkler’s soil).

108



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Study now the case of a rod on an elastic soil, with finite length ¢ and submitted to
a uniform load p. Can you predict the result?

Study the case of a pile of length ¢ driven into an elastic soil of elastic constant k
and submitted, at its top, to an horizontal force F'.

Solve exercise 8 using the Miiller-Breslau equations.

Solve exercise 9 using the dummy load method.

Solve exercise 11 using the Miiller-Breslau equations.

Solve exercice 13 using the Miiller-Breslau equations and the dummy load method
Solve exercice 14 using the Miiller-Breslau equations.

Solve the structure in the figure using the Miiller-Breslau equations.

,,,,,,

Make the same, loading now the rod uniquely by a thermal load of the type t~ =
—t, tt =+t

Solve the structure in the following figure using the Miiller-Breslau equations (ne-
glect the axial and shear deformations). What happens when A — 0o?

e WL DV TEL TP

>

EJ EJ

| ¢ |

Calculate the total displacement of the loaded point for the structure in the figure
using the dummy load method.
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32.

33.

h EJ=const.

lF

A

Data: £ =210 GPa, h=4m, { =2m, F =100 KN, A = 50 cm2, J = 30000 cm?,
v =0.3, x = 6/5.

Using the Theorem of Castigliano, calculate the displacement of the free edge of a
cantilever of length ¢ and constant stiffness E'J loaded by a concentrated force P at
the free edge.

The system in the figure is composed by five identical rods; calculate the displace-
ment of the loaded point using the Theorem of Castigliano.

EA=const.

110



Suggested texts

1. A. E. H. Love: A treatise on the mathematical theory of elasticity. Fourth edition.
Dover, 1944.

. 1. S. Sokolnikoff: Mathematical theory of elasticity. McGraw-Hill, 1946.

w N

. S. Timoshenko, J. N. Goodier: Theory of elasticity. Second edition. McGraw-Hill,
1951.

4. P. Germain, P. Muller: Introduction a la mécanique des milieux continus. Masson,
1980.

. M. E. Gurtin: An introduction to continuum mechanics. Academic Press, 1981.

. F. Hartmann: The mathematical foundation of structural mechanics. Springer, 1985.
. J. R. Barber: FElasticity. Kluwer Academic Publishers, 1992.

. P. Podio-Guidugli: A primer in elasticity. Journal of Elasticity, v. 58: 1-104, 2000.

© oo N O Ot

. W. S. Slaughter: The linearized theory of elasticity. Birkhauser, 2002.

10. P. M. Mariano, L. Galano: Fundamentals of the Mechanics of Solids, Birkhauser,
2016.

111



	Preface
	Strain analysis
	Introduction
	Deformation gradient
	Geometric changes
	Change in length
	Change in angle
	Change in volume
	Deformations

	Pure deformations and rigid body motions
	Small strain deformations
	Geometrical meaning of the ij
	Principal strains
	Spherical and deviatoric parts of bold0mu mumu units
	Compatibility equations
	Exercises

	Stress analysis
	Forces
	The Cauchy's theorem
	Stress components
	Balance equations
	Boundary conditions
	Principal stresses
	The Principle of Virtual Displacements
	Exercises

	Classical elasticity
	Constitutive equations
	Classical elasticity
	Reduction of the number of elastic moduli
	Equations of Lamé
	Elastic energy of an isotropic body
	Bounds on the elastic constants
	The equations of Navier
	The equations of Beltrami-Michell
	Superposition of the effects
	Elasticity theorems
	The Theorem of Clapeyron
	The Theorem of Betti
	The Theorem of Kirchhoff
	The Theorem of Castigliano
	The Theorem of Minimum Total Potential Energy
	The Theorem of Minimum Complementary Energy

	Exercises

	The Saint-Venant Problem
	Problem definition
	The Principle of Saint-Venant
	The fundamental assumption
	Internal actions
	Global balances
	The four fundamental cases
	The semi-inverse method
	Extension
	Bending
	Conjecture on the stress field
	The strain field
	Displacements
	The Euler-Bernoulli law
	Deformation of the cross section
	Biaxial bending
	Bending and extension

	Torsion
	The circular section
	Sections of any shape
	The Bredt's approximate solution

	Shear
	Yielding
	Exercises

	Straight rods
	Introduction
	Balance equations
	Compatibility equations
	Constitutive equations
	The Timoshenko's rod
	The Euler-Bernoulli rod
	Reduction of the Timoshenko's problem
	Isostatic and hyperstatic rods
	The torsion equations
	The Mohr's theorems
	Hyperstatic systems of rods
	The Principle of Virtual Displacements for rods
	The Müller-Breslau equations
	The dummy load method

	Effects of a temperature change
	Exercises

	Suggested texts

