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Foreword

This text is the support for the course of Continuum Mechanics - Solids, of the
Master of Mechanics of the University Paris-Saclay - Curriculum MMM: Mathe-
matical Methods for Mechanics, held at Versailles.

The course is an introduction, for graduate students, to the classical mechanics of
continuum solids, with an emphasis on beam theories (Saint-Venant problem and
rod theories).

The first part is a short, essential introduction to the continuum mechanics of
bodies in the framework of the small strain assumption: the strain and stress
analysis are briefly introduced, especially with regards to their use in the following
of the course. Then, the fundamental elements of classical elasticity are briefly
recalled, namely for the case of isotropic hyper elastic bodies.

The second part of the course concerns beams: a classical presentation of the Saint-
Venant theory for beams is given, with also the approximate theories of Bredt and
Jourawski for torsion and shear. The last part of the text is devoted to the classical
rod theories of Euler-Bernoulli and Timoshenko.

The manuscript is accompanied by 90 exercises; some of them are rather emblem-
atic and complete the theoretical part.

It is self evident that this course is far from being exhaustive: it just constitutes a
hopefully effective introduction in the matter, that is completed in other courses
of the same MMM.

Versailles, August 24, 2015
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Chapter 1

Strain analysis

1.1 Introduction

We are concerned here with deformable bodies, i.e. with continuum1 bodies that
can be strained: the relative positions of the material points are altered by some
agents (forces, temperature etc.).

We will call deformation a change of position of the material points when this
change is accompanied also by a mutual change of the relative positions. The
description of the deformation (strain analysis) is based upon the introduction
of some geometric quantities and algebraic operators, able to account for some
properties of the deformation. All these points need to be specified mathemati-
cally.

1.2 Deformation gradient

We consider a solid continuum body which occupy the region Ω of the Euclidean
space E (in short, we identify the body with Ω). Some agents strain Ω and deform
it to the final configuration Ωt. We use capital letters for denoting any quantity in
Ω and small letters for Ωt. The general situation is that sketched in Fig. 1.1.

1The notion of continuum body is primary here and it is left to the basic idea of a body
whose fundamental property is that of occupying some space, i.e. a region Ω ⊂ E , the ordinary
Euclidean space. We will denote by V the vector space associated with E , called the space of
translations u, and by Lin(V) the linear space of second rank tensors over V, i.e. of all the linear
transformations L : V → V.
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Figure 1.1: General sketch for the strain analysis

Any point P ∈ Ω is transformed by the deformation into a unique point p ∈ Ωt:

p = f(P ); (1.1)

p is hence a function of point in Ω. Function f is said to be a deformation whenever
it is a continuous and bijective function on Ω2. Bijectivity is essential to state a
fundamental property of classical continuum mechanics: mass conservation.

Ω is said to be the reference configuration and Ωt the actual configuration. The
vector

u(P ) = p− P = f(P )− P (1.2)

is the displacement vector, a vector field on Ω; R = P − o and r = p − o are
the position vectors respectively of P and p with respect to a fixed Cartesian
frame.

The purpose of strain analysis is not only to study the displacement field u, but,
mainly, to analyse how matter deforms everywhere in Ω. For this, we try to study
what happens in a material set close to any point P ∈ Ω and in particular how ele-
mentary geometric quantities defined on this set evolve during deformation.

To this purpose, let us introduce the concept of fiber: a fiber dX in the vicinity of
P ∈ Ω is a vector composed by material points such that

dX = αe, |e| = 1, α→ 0, α ∈ R+. (1.3)

2f is continuous in P ∈ Ω if, ∀ sequence {Pn ∈ Ω, n ∈ N} that converges to P , the sequence
{pn = f(Pn), n ∈ N} converges to f(P ); f is continuous on Ω if it is continuous ∀P ∈ Ω.

2



A fiber
dX = Q− P (1.4)

is hence a small material vector from P ∈ Ω to Q ∈ Ω, with Q close to P . We are
concerned with the following question: in which fiber dx is transformed by f the
fiber dX? It is

dx = q−p = Q+u(Q)− (P +u(P )) = Q−P +u(Q)−u(P ) = dX+u(Q)−u(P ),
(1.5)

but
u(Q) = u(P ) +∇u(P )(Q− P ) + o(Q− P )2, (1.6)

because Q is close to P . So, neglecting higher order terms, we get

u(Q) = u(P ) +∇u(P )dX (1.7)

and finally
dx = [I +∇u(P )]dX. (1.8)

∇u(P ) is the displacement gradient; as a linear operator, ∇u is a second-rank
tensor3:

∇u = ui,j ei ⊗ ej. (1.9)

We pose
F = I +∇u, (1.10)

the deformation gradient. We thus obtain the formula

dx = FdX → Fij = δij + ui,j =
dxi
dXj

, (1.11)

with δij the Kronecker’s symbol.

Generally speaking F 6= F>, so, though completely describing the deformation, F
has not a good algebraic structure.

1.3 Geometric changes

We are interested in knowing how basic geometric quantities in the neighborhood of
any point P ∈ Ω change during the deformation. This will allow to introduce other
tensors that, though not able to completely describe the deformation, nonetheless
have a better algebraic structure than F.

3The dyad a ⊗ b of two vectors a and b is the tensor such that ∀v ∈ V, (a ⊗ b)v = b · v a.
Given a orthonormal basis e = {e1, e2, e3}, any second-rank tensor L can be decomposed as a
sum of nine dyads: L = Lijei⊗ ej , where the Cartesian components are given by Lij = ei ·Lej .

3



1.3.1 Change in length

First, we investigate the changes of length of any fiber dX in P during the defor-
mation: knowing |dX|, how long is |dx|? Putting

dX = |dX| e, |e| = 1, (1.12)

we have

|dx| =
√

F dX · F dX = |dX|
√

e · F>F e. (1.13)

The change in length δ`(e) of a fiber in P parallel to e is defined as

δ`(e) :=
|dx| − |dX|
|dX|

=
√

e · F>F e− 1; (1.14)

the stretch λ(e) of the same fiber is

λ(e) :=
|dx|
|dX|

= 1 + δ`(e) =
√

e · F>F e. (1.15)

1.3.2 Change in angle

Be Θ the angle formed by two fibers dXi = |dXi|ei, |ei| = 1, i = 1, 2, in P ; we
are interested in knowing the angular change from Θ to θ, the angle formed by
the deformed fibers dx1 and dx2.

We define the change in angle δθ(e1, e2) between the directions e1 and e2 the
difference

δθ(e1, e2) := Θ − θ; (1.16)

remembering that

cos Θ =
dX1 · dX2

|dX1||dX2|
= e1 · e2, cos θ =

dx1 · dx2

|dx1||dx2|
=

F dX1 · F dX2

λ1|dX1|λ2|dX2|
, (1.17)

we finally get

δθ(e1, e2) = arccos(e1 · e2)− arccos(
e1 · F>F e2

λ1λ2

). (1.18)

4



1.3.3 Change in volume

To study the volume changes around a point P ∈ Ω, we consider the volume of the
prism determined by three non coplanar fibers dXi = |dXi|ei, |ei| = 1, i = 1, 2, 3,
in P . The volume of the prism in Ω is

dV = dX1 · dX2 × dX3, (1.19)

while in Ωt it is4

dv = dx1 · dx2 × dx3 = FdX1 · FdX2 × FdX3 = det F dX1 · dX2 × dX3, (1.20)

i.e.

dv = det F dV. (1.21)

We define change in volume in P the quantity

δv :=
dv − dV
dV

= det F− 1. (1.22)

To remark that because

det F =
dv

dV
(1.23)

is a ratio of intrinsically positive quantities, it is necessarily

det F > 0. (1.24)

We also remark that a deformation is locally isochoric ⇐⇒ det F = 1.

1.3.4 Deformations

We can now precise mathematically the definition of deformation: a function
f(P ) : Ω → E is a deformation if it is a continuous and bijective function of
P on Ω and if det F > 0 everywhere in Ω.

The inequality is strict: det F = 0 is not admissible because this should mean to
transform a finite volume into a flat figure, with vanishing volume. Such a fact
should not preserve bijectivity and conservation of the matter.

4 It can be proved that ∀u,v,w ∈ V and ∀L ∈ Lin(V), Lu · Lv × Lw = detL (u · v ×w).
Because u · v × w is the volume of the prism determined by u,v and w, if detL = 0 then L
annihilates the volume of the deformed prism, i.e. the original prism is changed into a flat figure.

5



1.4 Pure deformations and rigid body motions

A deformation can be seen as a superposition of a pure deformation and of a rigid
body motion, and these two parts can be split easily.

To this end, we use a classical decomposition of any second-rank tensor, splitting
∇u in its symmetric and skew parts:

∇u = ε+ ω, (1.25)

with

ε =
∇u +∇>u

2
, ω =

∇u−∇>u

2
, (1.26)

being evidently
ε = ε>, ω = −ω>. (1.27)

Then,
F = I + ε+ ω (1.28)

and
dx = (I + ε+ ω) dX = dX + ε dX + ω dX. (1.29)

So, any deformed fiber dx is equal to the originally undeformed one, dX, plus two
modifying vectors; let us analyse them, starting with ω:

ω = −ω> ⇒ ∃ vω ∈ V : ω dX = vω × dX, (1.30)

vω being the axial vector of ω. By the same definition of curl of a vector,

2ω dX = (∇u−∇>u) dX = (curl u)× dX, (1.31)

which gives also the relation

vω =
1

2
curl u. (1.32)

Let us now consider a particularly important case, that of small displacements;
generally speaking, a rigid rotation is characterized by an amplitude, say ϕ, and
by an axis of rotation, say w, |w| = 1. A general result, is that any rigid rotation
can be represented by a tensor R which in terms of ϕ and w is given by

R = I + sinϕW + (1− cosϕ)W2, (1.33)

with W = −W> the axial tensor of w5.

5To any w = (w1, w2, w3) ∈ V can be associated its axial tensor W = −W> defined as

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ,
6



For small displacements, ϕ→ 0 so that

R ' I + ϕW; (1.34)

so, comparing this result with eq. (1.29), we see that the term ω dX repre-
sents a rigid motion in the assumption of small displacements. Hence, the term
ε represents a pure deformation. For small displacement transformations, pure
deformations are hence described by a symmetric tensor.

1.5 Small strain deformations

We now develop λ, δ`, δθ and δv for the case of small strain: a deformation is said
to be a small strain deformation if and only if

|ui,j| � 1 ∀i, j = 1, 2, 3. (1.35)

We remark hence that the small displacement hypothesis concerns the smallness of
vector u, while the assumption of small strain that of ∇u. Nevertheless, whenever
the above condition is satisfied, then all the components of ω are small too, so
also in this assumption ϕ → 0, i.e. the small strain assumption is sufficient for
interpreting the part ω as a rigid motion.

Let us start developing λ(e):

λ(e) =
√

e · F>Fe =
√

e · (I + ε+ ω)>(I + ε+ ω)e

=
√

e · (I + 2ε+ ε2 − ωε+ εω − ω2)e.
(1.36)

Terms like e·εωe are of second order with respect to 2e·εe to within the assumption
of small strain:

2e · εe = 2εijeiej = (ui,j + uj,i)eiej, (1.37)

while

e · εωe = εikωkjeiej =
1

4
(ui,k + uk,i)(uk,j − uj,k)eiej. (1.38)

As a consequence, for small strain deformations the terms εω,ωε, ε2 and ω2 can
be discarded in front of ε.

such that w × v = Wv ∀v ∈ V. It is easily checked that the only eigenvector of W is w,
relative to the unique real eigenvalue, 0. For this reason, W is called the axial tensor of w and
reciprocally, w is said to be the axial vector or axis of W.

7



So, still thanks to the smallness of ∇u, we get:

λ(e) '
√

e · (I + 2ε)e =
√

1 + 2e · εe
'
√

1 + 2e · εe + (e · εe)2 =
√

(1 + e · εe)2,
(1.39)

and finally
λ(e) = 1 + e · εe. (1.40)

It follows immediately that

δ`(e) = λ(e)− 1 = e · εe. (1.41)

Let us now consider the change in angle in the assumption of small strain:

e1 · F>Fe2 = e1 · (I + 2ε+ ε2 − ωε+ εω + ω2)e2 ' e1 · (I + 2ε)e2, (1.42)

so

δθ(e1, e2) = arccos(e1 · e2)− arccos
e1 · (I + 2ε)e2

λ1λ2

= Θ − arccos
e1 · e2 + 2e1 · εe2

λ1λ2

.

(1.43)

Finally, the change in volume:

δv = det F− 1 = det(I + ε+ ω)− 1; (1.44)

we use now the following general result of tensor algebra6:

∀L ∈ Lin(V), det(I + L) = 1 + trL +
tr2L− trL2

2
+ det L. (1.45)

Applying this result to the sum I + ε+ ω, gives:

δv = tr(ε+ ω) +
tr2(ε+ ω)− tr(ε+ ω)2

2
+ det(ε+ ω), (1.46)

and in the small strain assumption, one easily recognizes that the second and third
term on the right hand side are negligible compared to the first one; hence

δv ' tr(ε+ ω) = trε+ trω, (1.47)

6The proof of this result is rather long and tedious, but not difficult: it is sufficient to develop
by components the terms on the left and right side of eq. (1.45) and remark, at the end, that
they give the same global quantity

8



and because ω = −ω>, trω = 0, so finally

δv = trε. (1.48)

We remark hence that the change in volume is a linear function of the εij and that

δv = trε = tr
∇u +∇>u

2
= tr∇u = divu, (1.49)

so a deformation is isochoric if and only if the displacement field is solenoidal.

In the end, we can notice that in the assumption of small strain, the rigid body
part of the deformation, ω, does not take any part. ε is called the infinitesimal
strain tensor or tensor of small strains; unlike F, ε = ε> and, though it does
not completely describe the deformation, it is sufficient to give us the relevant
information about it in the assumption of small strain.

In the following of this text, we will assume always small perturbations, i.e. both
the hypotheses of small displacements and small strain. Besides the possibility
of completely describing the strain by tensor ε, so discarding the part due to ω,
this assumption let us consider as coincident the two configurations Ω and Ωt, the
reference and the actual one, because separated by a small displacement, in the
sense that |u(P )| � dΩ ∀P ∈ Ω, where dΩ is a characteristic dimension of Ω.
Hence, p = f(P ) ' P ∀P ∈ Ω, so p can be approximated by P ; this is the reason
why in the following we will no more make the distinction between them and use
always lower case letters for indicating points in Ω.

The possibility of approximating the actual configuration with the reference one
has extremely important consequences in mechanics. In fact, in doing so, we tacitly
postulate that the forces acting on Ω do not change their point of application and
that the equilibrium equations are written in the reference configuration, which
is known, and not in the actual, unknown one. This is false in principale, but in
doing so, we eliminate one of the principal sources of nonlinearity: the dependence
of the equilibrium equations from the unknown equilibrium configuration.

Of course, this can have some dramatical consequences, as it has. In particular,
if on one side, along with the assumption of a linear behavior of the material, see
Chapt. 3, this gives the nice property of linearity to the equilibrium problem of de-
formable bodies, on the other side it makes disappear some important phenomena
of nonlinear equilibrium, like buckling and stability.

Nonetheless, several cases of practical interest are not affected by such phenomena
and they satisfy with a high degree of approximation the small perturbations
assumption; that is why we will use it in the following of this text for analyzing
some important problems of the linear mechanics of deformable bodies.
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1.6 Geometrical meaning of the εij

We can now examine the geometrical meaning of the components εij of ε: let ei
and ej be two vectors of a base for V :

ei · ej = δij, i, j = 1, 2, 3. (1.50)

Then (no summation over i in the following equation):

δ`(ei) = ei · εei = ei · εhk(eh ⊗ ek)ei

= δikei · εhkeh = δihδikεhk = εii.
(1.51)

So, the diagonal terms εii represent the change in length of the fibers aligned with
the axis ei; moreover (no summation over i and j in the following equation)

δθ(ei, ej) =
π

2
− arccos

2ei · εej
λiλj

= arcsin
2εij

(1 + εii)(1 + εjj)
, (1.52)

and because |εij| � 1 ∀i, j, then

δθ(ei, ej) ' 2εij : (1.53)

the components of ε with distinct indices are half the shear deformation of the
axes with corresponding indices.

1.7 Principal strains

An important consequence of the symmetry of ε is the existence of the principal
strains, ensured by the spectral theorem7: there is a basis v = {v1,v2,v3} com-
posed of eigenvectors of L, called the principal directions of strain, where

ε = εivi ⊗ vi → ε =

 ε1 0 0
0 ε2 0
0 0 ε3

 . (1.54)

7Spectral theorem: if a tensor L is symmetric, then it exists a basis of V composed by
eigenvectors of L (for a demonstration, see the classical book of Halmos: Finite-Dimensional
Vector Spaces, Springer 1987, p. 155). A consequence of this theorem is that L is diagonal in
such a basis: in fact, be v = {v1,v2,v3} a basis of eigenvectors of L, vi · vj = δij ∀i, j, and λk
the eigenvalue corresponding to the eigenvector vk; then, Lij = vi · Lvj = λjvi · vj = δijλj ⇒
L = λivi ⊗ vi.
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The terms on the diagonal are the principal strains and they coincide with the
eigenvalues of ε. Considering the results of the previous Section, it is then seen
that in the basis of the principal directions the fibers aligned with the axes are
simply stretched, not sheared: the principal directions of strain preserve their
directions in the deformation and hence their mutual angles do not change.

We remark also that the change in volume is just the sum of the three eigenvectors
of ε:

δv = ε1 + ε2 + ε3. (1.55)

1.8 Spherical and deviatoric parts of ε

An important decomposition of ε, as of any other second-rank tensor, is into its
spherical, εs, and deviatoric, εd, parts:

ε = εs + εd, (1.56)

with

εs :=
1

3
trε I, εd := ε− εs. (1.57)

By the same definition, we obtain immediately that

trεs =
1

3
trε trI = trε, trεd = 0, (1.58)

i.e. all the change in volume are concentrated in the spherical part εs, while εd
describes an isochoric deformation giving hence only changes of shape that preserve
the volume.

This decomposition is of some importance in different problems, namely for intro-
ducing one of the most used yielding criterion for isotropic elastic materials, see
Sect. 4.11.

1.9 Compatibility equations

Once a displacement field u known, it is always possible, differentiating it, to get
the strain field ε: a displacement field always defines uniquely a strain field (the
field u is here assumed to be at least of class C1).
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The converse is not true: given a field ε, it is not always possible to find a dis-
placement field u(p) to which it corresponds through

ε =
∇u +∇>u

2
. (1.59)

In fact, we have 3 unknown scalar fields ui(p) and 6 equations: the problem is
over-determined. The question is hence: given the εij(p), which are the conditions
that they must fulfill for being possible to find a compatible displacement field
u(p), i.e. satisfying to the above equation?

To this purpose, we apply the definition of strain components and operate some
differentiations; for instance:

ε11 = u1,1, ε22 = u2,2, 2ε12 = u1,2 + u2,1, (1.60)

that differentiated twice as

ε11,22 = u1,122, ε22,11 = u2,211, 2ε12,12 = u1,212 + u2,112 (1.61)

and summed up give the condition

ε11,22 + ε22,11 = 2ε12,12. (1.62)

In a similar way, we get also

ε11,33 + ε33,11 = 2ε13,13,

ε22,33 + ε33,22 = 2ε23,23.
(1.63)

Again,

ε11 = u1,1, 2ε12 = u1,2 + u2,1, 2ε13 = u1,3 + u3,1, 2ε23 = u2,3 + u3,2, (1.64)

differentiated twice as

ε11,23 = u1,123, 2ε12,13 = u1,213 + u2,113,

2ε13,12 = u1,312 + u3,112, 2ε23,11 = u2,311 + u3,211,
(1.65)

and summed up give
ε12,13 + ε13,12 = ε23,11 + ε11,23, (1.66)

and similarly, permutating the indices,

ε12,23 + ε23,12 = ε13,22 + ε22,13,

ε13,23 + ε23,13 = ε12,33 + ε33,12.
(1.67)
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The 6 equations (1.62), (1.63), (1.66) and (1.67) are the Saint Venant-Beltrami
compatibility equations; they must be satisfied by any strain field ε for it is a real
strain field, in the sense of deriving by a displacement field through eq. (1.59).

The Saint Venant-Beltrami equations can be written in a compact form:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0; (1.68)

these are 81 equations, but only the 6 Saint Venant-Beltrami equations are not
identities, as it can be checked with some work but without difficulty.

1.10 Exercises

1. Study the following simple (i.e. such that ∇u = ∇>u) deformations:

a) extension of amount α in the direction e, |e| = 1:

u(p) = α (e⊗ e)(p− p0);

b) shear of amount β with respect to the orthogonal directions e1, e2, |e1| =
|e2| = 1:

u(p) = β(e1 ⊗ e2 + e2 ⊗ e1)(p− p0);

c) dilatation of amount γ:

u(p) = γ(p− p0),

with α, β, γ ∈ R, |α|, |β|, |γ| � 1. For each case:

i. write ε;

ii. determine δv;

iii. determine the change of volume of a cube with the sides parallel to the
axes;

iv. determine δ` and λ for the sides of such a cube;

v. determine δθ for each couple of sides of the same cube;

vi. calculate the principal strains;

vii. calculate the principal directions of strain.
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2. Show that it is always possible to decompose ε into a dilatation and an iso-
choric combination of 3 extensions plus 3 shears (such a decomposition has
important applications in the theory of strength of isotropic elastic materi-
als).

3. For the displacement field

u(p) = α(X2 +X3)e1 + α(X1 +X3)e2 + β(X1 +X2)e3, α, β ∈ R,

i. determine the conditions on α, β for this field describe an infinitesimal
strain;

ii. find ε;

iii. find the change in length and angle of the 3 vectors of the base;

iv. decompose the deformation into a dilatation plus 3 extensions and 3
shears.

4. The deformation described in cylindrical coordinates by

r = R, θ = Θ + αZ, z = Z, α ∈ R,

is called a torsion;

i. justify why it is called so, studying the displacement field of a circular
cylinder of axis Z;

ii. calculate F and ∇u;

iii. show that the transformation is isochoric;

iv. determine the condition to be satisfied by α for the deformation to be
infinitesimal;

v. find ε;

vi. calculate the displacement field in the case of small strain;

vii. calculate the change in length and angle of the vectors of the cylindrical
base;

viii. calculate the displacement field u in Cartesian coordinates and deduce
from it ∇u and ε.
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5. For the deformation described in spherical coordinates by

r = R(1− α|φ2 − πφ|),
ϕ = φ,

θ = Θ ,

α ∈ R,

i. represent graphically a sphere after deformation, for both the cases of
α < 0 and α > 0;

ii. find the displacement field u;

iii. calculate ∇u and F;

iv. determine the conditions on α for the transformation be really a defor-
mation;

v. determine the conditions on α for the transformation be an infinitesimal
deformation;

vi. determine ε;

vii. calculate the change in length and angle for the vectors of the spherical
base;

viii. calculate the change in length and angle for a point on the polar axis
and on the equatorial plane;

ix. calculate the global change of volume for a sphere of radius ρ for both
the cases of finite and infinitesimal strain.

6. Show that, just for any other second-rank symmetric tensor, among the
eigenvalues of ε there are the highest value, the lowest one and a value
which is a stationary point, with respect to the direction, of the change in
length of a fiber.

7. Show that

i.
|ε|2 + |ω|2 = |∇u|2;

ii.
|ε|2 − |ω|2 = ∇u · ∇>u.

8. Be u of class at least C2 and assume that u = o on ∂Ω. Then, show the
Korn’s inequality: ∫

Ω

|∇u|2dω ≤ 2

∫
Ω

|ε|2dω.
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9. A plane strain is a situation where

u = ui(x1, x2)ei, i = 1, 2;

i. write ε for such a case;

ii. show that the six equations of Saint Venant-Beltrami reduce to only one
and write it.

10. Consider the change in length of a fiber x = αe, |e| = 1,

δ` =
1

α2
x · εx,

and the quadratic form

x · εx = ±k2, k ∈ R.

This defines a quadric, the strain quadric of Cauchy. Then,

δ` = ±k
2

α2
,

so the change in length of any fiber is inversely proportional to its square
norm, i.e. to the square of the distance of the origin of the fiber from the
quadric itself. Find the strain quadric for the cases of extension, shear and
dilatation studied in exercise 1, and for a plane strain as defined in the
previous exercise.
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Chapter 2

Stress analysis

2.1 Forces

We are now concerned with forces as possible, though not unique, agents of defor-
mation. About forces, we admit they are intuitively understood (we do not care
here of their real, ultimate physical nature, of no importance for our context; it
is sufficient for us to know that forces produce displacements and hence deforma-
tions) and that they are represented by vectors. There are different types of forces
and it is important to understand that the interior parts of a body Ω exchange
forces between them.

The general situation that we examine is that of a body Ω of which we consider
a material part β ⊂ Ω, with frontier ∂β and outward unit normal n, see Fig.
2.1. A material part is a subset of Ω composed by a set of material points, i.e.,
during deformation, the points remain exactly the same and their quantity is
preserved.

Generally speaking, some forces act upon β and they can be of two types:

i. volume or body forces: these forces are directly applied to the material points
in β for the simple reason that they exist. They are remote forces, result of
the presence of one or more force fields: gravitational, electrostatic, magnetic
etc. As such, these forces normally depend upon the position and they admit
a density:

• a volume density b=b(p), or

• a mass density r=r(p) → b=ρ r,
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Figure 2.1: Material part.

with ρ the volume mass (density of the matter). These forces are extensive
quantities, so the total remote force acting upon β is

Fβ =

∫
β

b dv =

∫
β

ρ r dv; (2.1)

ii. surface forces: these are the forces that Ω exchange with the environment,
by contact through its boundary ∂Ω, like pressure or thrusts exerted by some
devices or other bodies, or the forces that β exchange with the rest of Ω still
by contact through its frontier ∂β, called also interior forces; these last are
the direct consequence of the same idea of continuum.

The surface forces too admit a density, in this case of course a surface density,
t:

fβ =

∫
∂β

t ds. (2.2)

The density of surface forces t is called traction or stress vector. About t, we
admit the Cauchy’s postulate: t is a function of the actual position and of the
outward normal to ∂β:

t = t(p,n). (2.3)

The above statements deserve some remarks:

• there exist also attractive body forces that interior parts of a same body
mutually exchange; such forces are neglected in the classical theory, but can
be of course of an extreme importance in other fields, like astronomy and
geophysics;

• the volume forces and the surface forces acting upon the boundary ∂Ω are
external forces; they are considered to be known;

• the interior forces are unknown and to determine these last once the external
forces known is the major problem of continuum mechanics;

18



• the Cauchy’s postulate is a strong assumption: two different surfaces ∂β1

and ∂β2 sharing in p the same normal n, share also the same traction t; in
particular, t does not depend upon the curvature of the surfaces in p;

• considering that through any point p ∈ ∂β the matter exchanges only interior
forces and not also interior couples is an implicit assumption that defines
a class of materials, the so-called classical continuum bodies à la Cauchy;
several classical materials can be well represented by this model, e.g. metallic
alloys, wood, concrete etc, but not other ones, called polar bodies, like some
polymers, for which the introduction of surface couples exchanged by interior
parts of the body is necessary for a satisfactory description of its behavior;
in this text, we will refer only to classical Cauchy bodies.

2.2 The Cauchy’s theorem

The Cauchy’s postulate does not specify in which way t is a function of n. This
is done by the
Theorem (Cauchy’s theorem on stress). Traction t is a linear function of n, i.e.
it exists a second-rank tensor σ, the Cauchy’s stress tensor, such that

t = σn. (2.4)

Proof. Let us see the classical proof based on the use of the so-called tetrahedron
of Cauchy. We consider at a point p ∈ Ω a tetrahedron like in Fig. 2.2, where p is
the axes origin and the fourth face, whose normal is n, is inclined with respect to
the three faces passing by the axes. Be δ the distance of p from the inclined face.
For δ sufficiently small, all the tetrahedron is in Ω; be dA the area of the inclined
face, with outward unit normal n, while dAi is the area of the face orthogonal to
axis xi, of outward unit normal ni = −ei. Be t = (t1, t2, t3) the traction on the
inclined surface and b the body force.

About the area of the surfaces of the tetrahedron, we know that1

dAi = dA n · ei ∀i = 1, 2, 3, (2.5)

1The result in eq. (2.5) is known as theorem of the cosine for the surfaces. To prove it, we
name ci the length of the side of the tetrahedron along the axis xi; then

dAi =
1

2
cjck, i, j, k = 1, 2, 3, i 6= j 6= k,

and

dA =
1

2
|(−c1, c2, 0)× (−c1, 0, c3)| = 1

2

√
c21c

2
2 + c22c

2
3 + c23c

2
1.
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Figure 2.2: The tetrahedron of Cauchy.

while the volume of the tetrahedron is

dV =
1

3
δ dA. (2.6)

We write now the balance of the forces acting upon the tetrahedron, using the
Euler’s axiom: when a body Ω is in equilibrium, then all of its material parts β
are in equilibrium. Then, imaging the tetrahedron as a separated part of Ω, it will
be in equilibrium under the action of the body forces and of the surface (contact)
forces that it exchanges with the rest of Ω through its four surfaces. This gives
the balance equation:

t dA+ tidAi + b dV = o, (2.7)

and, for the above formulae for the areas and volume we get, after dividing by dA,

t + ti n · ei +
1

3
b δ = o. (2.8)

The normal n to dA is given by

n =
(−c1, c2, 0)× (−c1, 0, c3)

|(−c1, c2, 0)× (−c1, 0, c3)|
=

1√
c21c

2
2 + c22c

2
3 + c23c

2
1

(c2c3, c1c3, c1c2)

so we get

n · ei =
dAi

dA
,

i.e. eq. (2.5).
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Hence, when δ → 0, the point p tends to the surface dA whose normal is n and
the body forces vanish; because ni = −ei, we obtain

t = −ti n · ei = −(ti ⊗ ei)n = (ti ⊗ ni)n. (2.9)

We put
σ = ti ⊗ ni, (2.10)

the Cauchy’s stress tensor in p, and finally

t = σ n. (2.11)

From eq. (2.9) we have also

σij = ei · (tk ⊗ nk)ej = tk · ei nk · ej = (tk)i(nk)j. (2.12)

Of course, if we take n = ei, then t = ti, as it must be. Just as for any other
second rank tensor, given a base e = {e1, e2, e3}, we can write

σ = σij ei ⊗ ej, (2.13)

with
σij = ei · σ ej. (2.14)

It is important to remark that σ is a function of the place and time, not of n:

σ = σ(p, t). (2.15)

As already done, the dependence upon time, always existing, is left tacitly under-
stood in the equations.

2.3 Stress components

Let us apply the Cauchy’s theorem to surface elements whose normal is parallel
to one of the axes, n = ek:

t(k) = σij(ei ⊗ ej)ek = σij δjk ei = σik ei, (2.16)

so
t(k) = σik ei = (σ1k, σ2k, σ3k); (2.17)
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Figure 2.3: The components σij.

this result shows that the k-th column of the matrix representing σ in the base
e = {e1, e2, e3} is composed by the Cartesian components of the traction acting
upon the surface whose normal is ek. Graphically, the situation is depicted in
Fig. 2.3. We remark the position of the indexes: the first one gives the direction
of the component of the traction acting upon a surface whose normal is the axis
indicated by the second index (e.g. σ13 is the component along x1 of the traction
acting upon a surface whose normal is e3).

To remark that the above nomenclature comes directly from the mere application
of the equations; some authors chose to swap the indexes: in σij, i is the direction
of the normal to the surface upon which the traction acts, while j is the direction
of the component σij of the traction. This is not so important, because σ = σ>,
as we will see below.

Looking at Fig. 2.3, it is clear why:

• the components with equal indexes σii are called normal stresses: they give
the component of the traction upon a surface that is normal, i.e. perpendic-
ular, to the same surface; because in eq. (2.4) n is the outward unit normal,
a normal stress σii is positive if it is a tension, negative if a compression;
normal stresses form the diagonal of the matrix representing σ;

• the components with different indexes σij, i 6= j are called shear stresses: they
give a component of the traction upon a surface orthogonal to an axis that
is tangential to the same surface; they are the out-of-diagonal components
of the matrix representing σ.

More generally, for each element of surface of unit normal n, the traction t = σ n
can be decomposed into two mutually orthogonal vectors, see Fig. 2.4:
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Figure 2.4: Normal, ν, and tangential, τ , stresses.

• the normal stress ν:

ν = (t · n)n = (n⊗ n)t = (n⊗ n)σ n; (2.18)

• the tangential stress τ :

τ = t− ν = (I− n⊗ n)t = (I− n⊗ n)σ n. (2.19)

2.4 Balance equations

We can now write the balance equations for any part β of Ω. The Euler’s axioms
stipulate that ∀β ⊂ Ω, the force resultant and the moment resultant are null. Let
us start examining first the force resultant:∫

β

b dv +

∫
∂β

t ds =

∫
β

ρ p̈ dv ∀β ⊂ Ω. (2.20)

Applying the Cauchy’s theorem we get∫
β

b− ρ p̈ dv +

∫
∂β

σ n ds = o ∀β ⊂ Ω, (2.21)

and for the tensor form of the Gauss theorem∫
β

(b− ρ p̈+ divσ) dv = o ∀β ⊂ Ω. (2.22)

The only possibility for this integral to be null ∀β ⊂ Ω is the integrand to be
identically null:

b + divσ = ρ p̈ ∀p ∈ Ω. (2.23)
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These are the Cauchy-Poisson equations of motion for classical continuum bodies.
They generalize to each point of a deformable body the second principle of dy-
namics of Newton. In case of equilibrium, p̈ = o and we obtain the equilibrium
equations

b + divσ = o ∀p ∈ Ω. (2.24)

In terms of components, the above equations read like

bi + σij,j = ρ p̈i, i, j = 1, 2, 3. (2.25)

Let us now turn the attention on the moment resultant on β:∫
β

(p− o)× b dv +

∫
∂β

(p− o)× t ds =

∫
β

ρ(p− o)× p̈ dv ∀β ⊂ Ω. (2.26)

Still using the Cauchy’s theorem we get∫
β

(p− o)× (b− ρ p̈) dv +

∫
∂β

(p− o)× (σn) ds = o ∀β ⊂ Ω (2.27)

and introducing, first, the axial tensor W of (p− o)∫
β

W(b− ρ p̈) dv +

∫
∂β

W(σn) ds = o ∀β ⊂ Ω, (2.28)

then the motion equation and the Gauss theorem, we obtain∫
β

div(Wσ)−Wdivσ dv = o ∀β ⊂ Ω, (2.29)

that, for being true ∀β ⊂ Ω, gives the condition

div(Wσ) = Wdivσ ∀p ∈ Ω. (2.30)

We now develop:

div(Wσ) = (Wσ)ij,j ei = (Wik σkj),j ei

= Wik,j σkj ei +Wik σkj,j ei = Wik,j σkj ei + W divσ,
(2.31)

and injecting this result into eq. (2.30) gives

Wik,jσkj = 0 ∀i = 1, 2, 3. (2.32)

For a generic point p = (p1, p2, p3) ∈ Ω,

W =

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 , (2.33)

24



JL

llll t

STÊA I/V
ll+Ê.09/Vr À/4

I

Figure 2.5: Reciprocity of the shear stresses.

so that W12,3 = −1,W13,2 = 1 etc. Injecting these results into eq. (2.32) for
i = 1, 2, 3 gives

i = 1 → σ23 = σ32,

i = 2 → σ13 = σ31,

i = 3 → σ12 = σ21,

⇒ σ = σ>. (2.34)

So, for classical continuum bodies, the balance of the couples corresponds to the
symmetry of σ.

There are at least two other ways to prove the reciprocity of the shear stresses, i.e.
the symmetry of σ, both of them more mechanical then the previous one. In the
first one, we consider a parallelepiped with the faces parallel to the axes, like in
Fig. 2.5. If, e.g., we focus on the balance of the torque around axis x3, body forces
and tractions on the horizontal faces give higher order contributions and can be
discarded, so we have

(σ21 +
∂σ21

∂x1

dx1)dx1dx2dx3 = (σ12 +
∂σ12

∂x2

dx2)dx1dx2dx3, (2.35)

and neglecting higher order terms we get σ12 = σ21; in a similar way we obtain
also σ13 = σ31 and σ23 = σ32.

The other method to prove the symmetry of σ is based upon the use of the Prin-
ciple of Virtual Displacements: for each possible infinitesimal rigid displacement
field w, the balance equations are satisfied if and only if∫

∂β

t ·w ds+

∫
β

(b− ρ p̈) ·w dv = 0. (2.36)
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In fact, using the Cauchy’s and Gauss’s theorems we have∫
∂β

t ·w ds =

∫
∂β

σ n ·w ds =

∫
∂β

σ>w · n ds

=

∫
β

div(σ>w)dv =

∫
β

(w · divσ + σ · ∇w)dv.

(2.37)

Using the equation of mouvement (2.23) for expressing divσ, we have∫
∂β

t ·w ds+

∫
β

(b− ρ p̈) ·w dv =

∫
β

σ · ∇w dv ∀β ⊂ Ω. (2.38)

The left-hand member is null for a body at equilibrium, for the Principle of Virtual
Displacements; so, because the above equation must be satisfied ∀β ⊂ Ω, we obtain
the condition

σ · ∇w = 0 ∀p ∈ Ω, (2.39)

to be satisfied ∀w rigid and infinitesimal ⇒ ∇w = −∇>w 2, so that σ is neces-
sarily symmetric3.

2.5 Boundary conditions

The balance equations (2.23) must be completed by adequate boundary conditions.
To this purpose, we consider the general situation depicted in Fig. (2.6):

2For any rigid displacement, ε = O, which implies ∇w = −∇>w.
3This is a consequence of the following

Theorem. A tensor L is orthogonal to any skew tensor W ⇐⇒ L = L>.

Proof. We prove first that if L is symmetric and W skew, then they are necessarily orthogonal:

W ·L = tr(W>L) = −tr(WL) = −tr(LW) = −tr(L>W) = −L ·W = −W ·L ⇐⇒ W ·L = 0.

To complete the proof, we must prove that if L ·W = 0 ∀W : W = −W>, then L = L>; to
this end, let us suppose that L 6= L> and decompose L in its symmetric and skew parts:

L = L1 + L2, L1 =
L + L>

2
, L1 = L>1 , L2 =

L− L>

2
, L2 = −L>2 .

So,
L ·W = L1 ·W + L2 ·W = 0;

the first term on the right-hand side is null, as we have just proved, because L1 is symmetric and
W is skew; so, it must be L2 ·W = 0 ∀W = −W>. Because L2 is skew, we can chose W = L2;
then, for the same definition of scalar product, we get L2 · L2 = 0 ⇐⇒ L2 = O, which proves
the theorem.
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Figure 2.6: Scheme of the boundary conditions.

• the whole boundary ∂Ω is composed of two complementary parts, ∂Ωu and
∂Ωt, such that

∂Ω = ∂Ωu ∪ ∂Ωt, ∂Ωu ∩ ∂Ωt = ∅; (2.40)

• on ∂Ωu the displacement vector is known:

u = u0, (2.41)

typically u0 = o; these are the kinematical boundary conditions;

• on ∂Ωt the traction vector is known:

t = σ n = t0; (2.42)

these are the natural boundary conditions.

2.6 Principal stresses

The symmetry of σ, just as for ε, brings, through the spectral theorem, the ex-
istence of three real eigenvalues, say σ1 ≥ σ2 ≥ σ3: the principal stresses. The
eigenvectors of σ form a base, say v = {v1,v2,v3}, the base of the principal
directions of stress; in the base v,σ is diagonal:

σ = σi vi ⊗ vi, i = 1, 2, 3, → σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (2.43)

It is then clear, using the Cauchy’s theorem, that the traction on surfaces orthogo-
nal to the principal directions of stress vi is composed uniquely by a normal stress:
the principal directions are normal to surfaces where the shear stress is null.
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The envelop, throughout Ω, of the principal directions of the stress form a family
of lines called the isostatic lines, that have the following property: along an iso-
static line, the matter is simply subjected to tension or compression, not to shear
too. The isostatic lines are hence the lines of best use of the matter: an effective
structure is a structure where the matter follows as much as possible the isostatic
lines. In Nature, the selection has produced a great amount of exemples where the
matter tends to be distributed along the isostatic lines, e.g. in the bones, trees
etc.

For the property of maximality of the eigenvalues, see Exercise 6, Chapt. 1, σ1 is
the highest value of the normal stress, σ3 the minimal value and σ2 an intermediate
value (a local extremal).

2.7 Energy balance

Let us consider a small virtual displacement δu of Ω. The virtual work done by
the forces acting upon any part β ⊂ Ω at the equilibrium is, through the Cauchy
and Gauss theorems,

δW =

∫
∂β

t · δu ds =

∫
∂β

σ n · δu ds =

∫
∂β

σ>δu · n ds

=

∫
β

div(σ>δu) dv =

∫
β

(δu · divσ + σ · ∇δu)dv,

(2.44)

and using the equilibrium equations and the symmetry of σ we get

δW =

∫
β

(
−b · δu + σ · ∇δu +∇>δu

2
+ σ · ∇δu−∇

>δu

2

)
dv. (2.45)

The last term in the integrand is null because it is the scalar product of a symmetric
and a skew tensor; the term

δV =

∫
β

−b · δu dv (2.46)

is the variation of the potential energy of the remote forces, i.e. the variation of
the opposite of their work, due to the variation δu. The term

δε =
∇δu +∇>δu

2
(2.47)
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is the variation of strain caused by the variation δu, so that the term

δUΩ =

∫
β

σ · δε dv (2.48)

is the variation of the elastic energy, i.e. the energy stored in the body associated
with the deformation of Ω. Finally, we have the balance

δW = δV + δUΩ. (2.49)

The volume density of the variation of the elastic energy is4

δU = σ · δε = σ · ∇δu. (2.50)

2.8 Exercises

1. Consider the plane stress state

σ =

 σ11 σ12 0
σ12 σ22 0
0 0 0

 ;

i. find the normal, ν, and tangential, τ , stress on a surface of normal
n = (cos θ, sin θ, 0);

ii. show that, in the plane ν − τ , the points representing the stress state
belong to a circle (the Mohr’s circle);

iii. which is the physical meaning of the centre, radius and intersection with
the axes of the Mohr’s circle?

iv. generalize the Mohr’s circle to 3D stress states.

2. Show that σ is uniquely determined by the system of applied forces.

4

σ · ε = σ · ∇u +∇>u
2

=
1

2
(σ · ∇u + σ · ∇>u) =

1

2
(σ · ∇u + σ> · ∇>u)

because σ = σ>; but, generally speaking, for any two tensors A and B, A ·B = A> ·B> so that

σ · ε =
1

2
(σ · ∇u + σ · ∇u) = σ · ∇u.
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3. Assume that t = o on ∂Ω; show that ∀p ∈ ∂Ω the traction t on each plane
orthogonal to ∂Ω is tangent to ∂Ω.

4. Study the following cases of elementary stress states:

a) hydrostatic stress: it is that of a fluid at rest, that can exert only a
compressive normal stress;

b) pure extension: σ = σ e⊗ e, |e| = 1, σ ∈ R;

c) pure shear: σ = τ(m⊗ n + n⊗m), |m| = |n| = 1, m · n = 0, τ ∈ R.

For each one of these cases:

i. describe the stress state;

ii. find analytically the principal stresses and the principal directions of the
stress;

iii. trace and study the Mohr’s circle.

5. Be σ1 > σ2 > σ3 the eigenvalues of σ (principal stresses);

i. show that σ1 > n · σ n > σ3 ∀n, |n| = 1;

ii. be m · n = 0, |m| = 1; then show that

max(m · σ n) =
1

2
(σ1 − σ3),

and that it is attained for

m =
1√
2

(e3 − e1), n =
1√
2

(e1 + e3),

with ei the principal directions of the stress;

iii. interpret all this with the Mohr’s circle.

6. Consider a vector x = p − o = `n, |n| = 1 and the value ν of the normal
stress on a surface orthogonal to n in o:

ν = n · σ n → ν`2 = x · σ x;

the quadric

x · σ x = ±k
2

`2

is called the stress quadric.

i. write the stress quadric in the principal base of the stress;

30



ii. which is the utility of the stress quadric?

iii. examine the cases:

a) σ1 > σ2 > σ3 > 0,

b) σ1 > σ2 > 0 > σ3,

c) σ1 > 0 > σ2 > σ3,

considering for the three cases the two possible situations ±k2/`2;

iv. find the stress quadric for the three elementary stress states of Ex. 4.

7. Find the principal shearing stress, i.e. the stationary values, with respect
to the direction n, of the tangential stress τ on an element of normal n.
Express then the same result with σ given in the principal base of the stress
and represent the results with the circles of Mohr.

8. Find τoct, the octahedral shearing stress, i.e. the value of the shearing stress
on a surface element orthogonal to the trisectrix of the first octant of the
principal stress directions frame.

9. The decomposition of ε introduced in Sect. 1.8 in spherical and deviatoric
parts is, of course, possible for σ too. Write this decomposition and give
a physical interpretation of the scalar that appears in the expression of the
spherical part. Find then this decomposition for the elementary cases of
stress state of Ex. 4.

10. Define the principal invariants of σ, as well as of any other 2nd−rank tensor,
like

I1 = trσ, I2 =
1

2
(trσ2 − tr2σ), I3 = detσ;

then, show that:

i. Id2 =
2

3
(τ 2

1 + τ 2
2 + τ 2

3 ),

ii. Id2 =
3

2
τ 2
oct,

where Id2 is the second principal invariant of σd, the deviatoric part of σ,
while the τi are the principal shearing stresses.

11. Show that σ and σd share the same principal directions but not necessarily
the same principal values.

31



12. A stress state is defined by

σ =

 σ11 0 σ13

0 σ22 0
σ13 0 σ33

 , with σ33 = (1 +
t

τ
)
x2

1 + x2
3

α2
, α, τ ∈ R,

t being the time. Find the principal stresses and the principal directions of
stress everywhere and ∀t. Give the Mohr’s representation of the stress state
for t = 0, x1 = x3 = 1.

13. Show that the vector (I−n⊗n)σ n, |n| = 1 takes its minimum norm, zero,
if and only if n is a principal direction for σ.

14. Be σ = σ1e⊗e+σ2(I−e⊗e), |e| = 1 and σ ∈ [σ1, σ2]. Show that ∀n, |n| = 1,
such that n · σ n = σ, the norm of the vector of Ex. 13 has constant value

τ =
√

(σ − σ1)(σ2 − σ).
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Chapter 3

Classical elasticity

3.1 Constitutive equations

Let us consider the most general problem of the equilibrium of deformable bodies
(refer to Fig. 2.6): a deformable body Ω is

• acted upon by body forces b on Ω;

• subjected to tractions t0 on ∂Ωt;

• constraint to the displacement u0 on ∂Ωu.

The problem is to find:

• the deformed configuration Ωt, i.e. the vector field of the displacement u =
u(p);

• the tensor field of infinitesimal strain ε = ε(p);

• the tensor field of stress σ = σ(p).

The fundamental assumption is that strain and displacement are infinitesimal, so
that Ωt ' Ω, so that the equilibrium equations can be written on the reference
configuration Ω. The unknown of the problem are 15 scalar fields:

• the 3 components of u : ui = ui(p), i = 1, 2, 3;

• the 6 distinct components of ε : εij = εij(p), i, j = 1, 2, 3, εij = εji;

• the 6 distinct components of σ : σij = σij(p), i, j = 1, 2, 3, σij = σji.

The equations at our disposal are 9:
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• the 6 relations displacement-strain:

ε =
∇u +∇>u

2
→ εij =

ui,j + uj,i
2

, i, j = 1, 2, 3, εij = εji; (3.1)

• the 3 equilibrium equations:

divσ + b = o → σij,j + bi = 0, i, j = 1, 2, 3. (3.2)

These are the only general, i.e. valid for any solid, that can be written. There is
hence a lack of 6 equations. This fact shows that the description of the equilibrium
problem by uniquely geometry and mechanical balance is not sufficient: 6 other
equations are needed for the problem closure.

These 6 equations must introduce what is still absent in the general equations:
the behavior of the material. Such equations are called constitutive equations, and
they give the link between σ and ε. Generally speaking,

σij = σij(u, ε,ω, ε,t, ε,p,ω,t,ω,p). (3.3)

Nonetheless, some requirements must be fulfilled by the constitutive equations:

• the mechanical behavior of a body must be independent from the place and
orientation; as a consequence, any dependence from rigid translations and
rotations must vanish ⇒ σ cannot be a function of u nor of ω;

• as a consequence, we are left with

σ = σ(ε, ε,t, ε,p); (3.4)

• materials whose constitutive equations depend only upon ε,t:

σ = σ(ε,t) (3.5)

are viscous fluids, like the Newtonian fluids:

σ = −pI + 2µε̇+ λtrε̇I, (3.6)

with p the pressure, µ and λ the coefficients of viscosity;

• materials whose constitutive equations depend on both ε and ε,p are polar
materials, like some polymers; for them, non-local effects are possible;

• materials whose constitutive equations are of the type

σ = σ(ε) (3.7)

are classical solids, like metals, wood, concrete etc.; in this case, internal
stresses σij are only functions of the changes in length and in angle of fibers,
described by the εij.
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3.2 Classical elasticity

A natural state for a solid is a state for which in the body ε = O when applied
forces and imposed displacements are null.

Then, classical elasticity is a theory concerned with

i. bodies with a natural state;

ii. infinitesimal strain;

iii. bodies for which σ is a linear function of ε.

These assumptions give the following type of constitutive law:

σ = Cε; (3.8)

this is the generalized Hooke’s law that, actually, generalizes to 3D elastic bodies
the celebrated Hooke’s law, 1660: ut tensio sic vis1. The Hooke’s law concerned,
at the origin, the behavior of springs (Hooke tested clock’s springs), or, as he said,
of any springy body, i.e. of any body whose behavior is similar to that of a spring:
elastic bodies. The generalization of the Hooke’s law to 3D elastic bodies is due
to Cauchy, 1821.

C is the elastic (stiffness) tensor; it describes, by the value of its components,
the behavior of the material; relating two second-rank tensors, it is a fourth-rank
tensor2:

C = Cijkl ei ⊗ ej ⊗ ek ⊗ el, i, j, k, l = 1, 2, 3, (3.9)

which gives, for the components of σ,

σij = Cijkl εkl ∀ i, j, k, l = 1, 2, 3. (3.10)

A material whose constitutive equation is of this type is called a material of
Cauchy. This law implies that for ε = O, i.e. in the absence of applied forces,
σ = O and, of course, the converse: for any null stress state, ε = O: the body
takes its original undeformed configuration when it is not stressed, i.e. when it is
not acted upon. This is the most peculiar characteristic of elastic bodies.

1Hooke discovered this law, empirically, in 1660, but he revealed it, under the form of an
anagram, ceiiinosssttuu, only in 1676 and finally under the final form only in 1678 in his book
De Potentia Restitutiva.

2∀ A, B and L ∈ Lin(V), A ⊗ B is the fourth-rank tensor defined by the operation (A ⊗
B)L := (B · L)A. Applying this rule to the dyads of a basis, we get a fundamental result:
[(ei ⊗ ej)⊗ (ek ⊗ el)] (ep ⊗ eq) = (ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej).
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The elastic moduli Cijkl are 81; their value must be determined experimentally.
This is of course very cumbersome, because 81 independent experimental mea-
sures should be done. Nevertheless, we will see that in the end, for the cases
interesting for us and very common in practice, only two elastic coefficients are to
be determined by laboratory tests.

To this purpose, we introduce two concepts:

i. homogeneous elastic bodies; in this case, C is independent from the position:
the Cijkl are constant all over Ω;

ii. isotropic elastic bodies; in this case, C is insensitive to any rotation: the Cijkl

do not depend upon the direction.

A homogeneous, isotropic, elastic body is hence a body whose response is elastic,
independent from the position and from the direction. Many important materials,
like metal alloys, are of this type. The study of this type of materials is the domain
of classical elasticity. The following of this text is concerned with problems of
classical elasticity.

3.3 Reduction of the number of elastic moduli

Let us see now how from 81 moduli we arrive to only 2. The first reduction is due
to the symmetry of σ and ε:

σij = σji → Cijkl εkl = Cjikl εkl ⇒ Cijkl = Cjikl,

εkl = εlk → Cijkl εkl = Cjilk εlk ⇒ Cijkl = Cjilk.
(3.11)

Hence, we have the following 45 conditions, called minor symmetries3,

Cijkl = Cjikl = Cijlk = Cjilk, (3.12)

that reduce the number of independent elastic moduli from 81 to 36.

A further reduction is obtained postulating that the material is a material of Green
(1839). The volume density of the variation of the elastic energy, see Sect. 2.7, is

δU = σ · δε = σijδεij; (3.13)

3The word symmetry is used here to signify the invariance of an elastic modulus with respect
to a permutation of the indexes. The same word, symmetry, is used in elasticity for indicating a
transformation that preserves the elastic behavior. The reader should be aware of this somewhat
ambiguous double meaning of the same word in the same context, that of elasticity.
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it represents the variation of the elastic energy, per unit volume, produced by a
small variation of the strain state. Let us consider a transformation of an elastic
body from a state A to a state B. Then, the body is made of a material of Green
if the variation of the elastic energy passing from A to B is independent from the
transformation itself, but depends uniquely upon the initial and final states:

δUfin =

∫ B

A

δU = UB − UA. (3.14)

The consequence of this assumption is that δU must be the exact differential of
the elastic energy density U , i.e.

dU = σ · dε = σij dεij, (3.15)

which gives the Green’s formula:

σij =
∂U

∂εij
. (3.16)

Then, by the Hooke’s law, the Green’s formula and the Schwarz theorem, we get

Cijkl =
∂σij
∂εkl

=
∂2U

∂εkl∂εij
,

Cklij =
∂σkl
∂εij

=
∂2U

∂εij∂εkl
,

⇒ Cijkl = Cklij ∀ i, j, k, l = 1, 2, 3. (3.17)

These 15 relations are called the major symmetries; they reduce the number of
distinct elastic moduli from 36 to 21.

No further reduction can be obtained in the most general case, i.e. without in-
troducing special properties (namely, elastic symmetries) of a given elastic mate-
rial.

To remark that a material of Cauchy is not necessarily a material of Green, and
vice-versa. In fact, a material of Cauchy is also of Green if it admits an elastic
potential, U ; this fact has always been verified experimentally for all the elastic
materials. A material of Green is also of Cauchy if σ is a linear function of ε; this
is not always the case.

The most important class of elastic materials is that of hyperelastic materials, i.e.
of materials that are at the same time of Cauchy and of Green. In such a case, σ is
a linear function of ε, the material admits an elastic potential U and the Green’s
formula is valid. Then it must be

U =
1

2
σ · ε =

1

2
ε · Cε =

1

2
Cijkl εij εkl, (3.18)
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i.e. U is necessarily a quadratic function of the εij. In fact, only in this way we
get, through the Green’s formula,

σij =
∂U

∂εij
=

∂

∂εij

(
1

2
Cmnpq εmn εpq

)
= Cijpq εpq, (3.19)

i.e. we satisfy at the same time to the fundamental relations of Green and Cauchy
materials.

We will see further that C is a positive definite tensor, which implies that it is
inversible, i.e.

∃S : ε = Sσ ⇒ S = C−1. (3.20)

So,

εij = Sijklσkl, (3.21)

which injected in the general expression (3.18) of U gives

U =
1

2
Sijklσijσkl, (3.22)

so that, deriving with respect to σij, we get

εij = Sijklσkl =
∂U

∂σij
, (3.23)

which is the dual, for the strains, of the Green’s formula.

In the most general case, the behavior of hyper elastic materials depends upon 21
distinct moduli: this is the case of completely anisotropic or triclinic materials.
The behavior of an anisotropic material depends upon the direction, hence the
moduli Cijkl are frame-dependent quantities.

This cannot be the case of isotropic materials, whose elastic response is insensitive
to a change of frame: the elastic moduli of an isotropic material cannot be frame-
dependent. This means that for an isotropic material, U cannot depend upon the
εij, that are frame-dependent quantities, but rather on the invariants of ε4. As a
consequence, being U a quadratic fonction of the εij, the general expression of U
must be of the type

U =
1

2
c1I

2
1 + c2I2, (3.24)

4The elastic energy U is, as any other quantity derived by a scalar product, an invariant,
i.e. it is not frame-dependent. Hence, because C for an isotropic material is frame independent,
the expression of U cannot depend upon frame-dependent quantities, the εij , but only upon
frame-independent functions of the εij : the invariants of ε.
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with5

I1 = trε = εii, I2 =
tr2ε− trε2

2
=
εii εii − εij εji

2
. (3.25)

The third order invariant of ε, i.e. det ε, cannot enter in the expression of U ,
because it is a cubic function of the εij, while U must be a quadratic function of
the εij. Then,

U =
1

2
[(c1 + c2)εii εii − c2 εij εji] , (3.26)

so that6

σii =
∂U

∂εii
= (c1 + c2)εii − c2 εii,

σij =
∂U

∂εij
= −c2 εji = −c2 εij.

(3.27)

For instance:

σ11 =
∂U

∂ε11

= (c1 + c2)(ε11 + ε22 + ε33)− c2 ε11,

σ12 =
∂U

∂ε12

= −c2 ε12 etc.

(3.28)

We see hence that in the case of isotropic materials, only two constants are suffi-
cient to characterize the elastic behavior.

3.4 Equations of Lamé

Classically, we pose

c1 + c2 = λ, −c2

2
= µ ⇒ c1 = λ+ 2µ, (3.29)

and we get, in compact form,

σij = 2µ εij + λ εkk δij, (3.30)

or, in tensor form,
σ = 2µ ε+ λ trε I. (3.31)

5ε2 = εε = εijei ⊗ ej εhkeh ⊗ ek = εij εhk ej · eh(ei ⊗ ek) = εij εhk δjh(ei ⊗ ek) → trε2 =
εij εhk δjhtr(ei ⊗ ek) = εij εhk δjhδik = εij εji.

6Following a common practice, when an index is underlined, it is not a dummy index: no
summation over it.
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These are the equations of Lamé (1852), the constitutive equations for isotropic
hyperelastic materials. They provide the 6 scalar equations (there are 6 distinct
components for σ and ε) for the closure of the elastic problem. λ and µ are the
coefficients of Lamé: they are the two moduli to be specified for determining the
elastic behavior of a material.

The inverse of the equations of Lamé can be easily obtained:

trσ = (2µ+ 3λ)trε → trε =
trσ

2µ+ 3λ
, (3.32)

that replaced in eq. (3.31) gives, after simple passages,

ε =
1

2µ

(
σ − λ

2µ+ 3λ
trσ I

)
. (3.33)

Coefficients c1 and c2 are never used in the calculations, λ and µ are preferred.
The components of C can be expressed as functions of the Lamé’s coefficients (no
summation over i and j):

Ciiii = c1 = λ+ 2µ,

Ciijj = c1 + c2 = λ,

Cijij = −c2

2
= µ =

Ciiii − Ciijj

2
,

i, j = 1, 2, 3, (3.34)

the other components are null.

It is often preferred to express the Lamé’s equations as functions of two other pa-
rameters, the so-called technical or engineering constants, having a direct physical
meaning and easy to be determined experimentally by a unique traction test. We
consider a bar, with a cross section of area A, whose axis coincides with the x1-axis
of a reference frame, submitted to a tensile force f at its ends. We assume that
(see the next Chapter on the Saint Venant problem)

σ11 =
f

A
(3.35)

and it is easy to check that the stress tensor

σ = σ11 e1 ⊗ e1 (3.36)

satisfies to the equilibrium equations. So, by the Lamé’s equations we get

ε =
1

2µ

[
σ11 e1 ⊗ e1 −

λ

2µ+ 3λ
σ11 ei ⊗ ei

]
=

σ11

2µ(2µ+ 3λ)
[2(λ+ µ)e1 ⊗ e1 − λ(e2 ⊗ e2 + e3 ⊗ e3)] .

(3.37)
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Now, we introduce

• the Young’s modulus E

E :=
σ11

ε11

; (3.38)

• the Poisson’s coefficient ν

ν := −ε22

ε11

= −ε33

ε11

. (3.39)

Of course, thanks to isotropy, nothing changes if we change the labels of the
axes. It is self-evident that E measures the stiffness to extension, i.e. it gives
a direct measure of the stiffness of the material. ν, on its side, gives a measure
of the so-called Poisson’s effect: a tension in a direction normally produces a
contraction in the transversal directions (an expansion if tension is turned into
compression).

We remark that the existence of only two independent elastic parameters means
that there are two distinct mechanical phenomena for stressed isotropic materials:
they are the extension stiffness and the Poisson’s effect.

The above formulae give us the expression of E and ν as functions of the Lamé’s
coefficients:

E = µ
2µ+ 3λ

µ+ λ
, ν =

λ

2(µ+ λ)
; (3.40)

the converse relations are easy to be found:

λ =
ν E

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (3.41)

while the relations of the technical constants with the Cartesian components are:

C1111 = E
1− ν

(1 + ν)(1− 2ν)
,

C1122 = E
ν

(1 + ν)(1− 2ν)
,
→

E =
(C1111 − C1122)(C1111 + 2C1122)

C1111 + C1122

,

ν =
C1122

C1111 + C1122

.

(3.42)

Technical constants can be used in place of λ and µ for writing the Lamé’s equa-
tions; using the above equations, it is easy to find that the equations of Lamé can
be written also in the following form:

σ =
E

1 + ν

[
ε+

ν

1− 2ν
trε I

]
, (3.43)
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ε =
1 + ν

E
σ − ν

E
trσ I. (3.44)

Two other technical moduli are sometimes introduced, relating to two other pos-
sible mechanical situations. For a pure shear stress state, e.g.

σ = σ12(e1 ⊗ e2 + e2 ⊗ e1), (3.45)

then
ε =

σ12

2µ
(e1 ⊗ e2 + e2 ⊗ e1). (3.46)

We define shear modulus G the quantity

G :=
σ12

2ε12

, (3.47)

so that

G = µ =
E

2(1 + ν)
. (3.48)

Of course, nothing changes if the axes labels are changed. G, like E, measures a
stiffness, in this case that to shearing actions.

Now, we consider a spherical stress state:

σ = p I, p ∈ R, (3.49)

so that
ε =

p

2µ+ 3λ
I. (3.50)

The change in volume is

δv = trε =
3p

2µ+ 3λ
; (3.51)

then, we introduce the bulk modulus κ as

κ :=
p

δv
=

2µ+ 3λ

3
. (3.52)

κmeasures the volume stiffness, i.e. the stiffness to volume changes; it is immediate
to find that

κ =
E

3(1− 2ν)
. (3.53)

To end this part, we remark that the relation (no summation over i)

σii = E εii (3.54)
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shows clearly the linear dependence of stress from strain, as prescribed by the
Hooke’s law. This is why classical elasticity is also called linear elasticity. Exper-
imentally, this is well shown by the results of a common tension test on a steel
bar: the typical diagram σ− ε of such a test is represented in Fig. 3.1: the elastic
behavior is just the initial, linear phase; the subsequent phase is plasticity, sepa-
rated from the elastic range by the yielding point; the final phase, with a nonlinear
dependence of σ upon ε, is the strain hardening.

JL

llll t

STÊA I/V
ll+Ê.09/Vr À/4

I

Figure 3.1: Typical σ − ε diagram.

3.5 Elastic energy of an isotropic body

The elastic energy is readily written for an isotropic body, introducing eq. (3.31)
or (3.43) into eq. (3.18):

U =
1

2
(2µ trε2 + λ tr2ε) (3.55)

or equivalently

U =
E

2(1 + ν)

(
trε2 +

ν

1− 2ν
tr2ε

)
. (3.56)

3.6 Bounds on the elastic constants

The elastic moduli cannot take any possible value. In fact, when a body is acted
upon by forces, the elastic energy increases necessarily: it stores energy under the
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form of elastic energy. Physically, this means that external forces do a positive
mechanical work to deform an elastic body. Hence, it must be

U =
1

2
ε · C ε > 0 ∀ε 6= O. (3.57)

Mathematically, this is equivalent to impose that C be a positive definite tensor.
Of course, this implies that the Cijkl must satisfy some conditions, in other words,
they are bounded. However, to use this approach to find these bounds is rather
cumbersome, because this needs the search of the eigenvalues of C, i.e. the resolu-
tion of its characteristic equation. Of course, this is true for every elastic material,
not only for the isotropic ones.

A mechanical approach is preferable: because it must be U > 0 ∀ε 6= O, one
can chose specially simple strain states. Let us see how to proceed for isotropic
materials: we first consider a spherical strain state:

ε = αI, α ∈ R; (3.58)

then

U =
1

2
σ · ε =

1

2
(2µ ε+ λ trε I) · ε =

α

2
(2µ trε+ 3λ trε) =

3

2
α2(2µ+ 3λ); (3.59)

this value of U is positive ⇐⇒

2µ+ 3λ > 0. (3.60)

Now, we consider a shearing strain state:

ε = γ(ei ⊗ ej + ej ⊗ ei), i 6= j, γ ∈ R; (3.61)

then, being trε = 0, we get

U =
1

2
σ · ε =

1

2
(2µ ε+ λ trε I) · ε = µ ε · ε

= γ2µ(ei ⊗ ej + ej ⊗ ei) · (ei ⊗ ej + ej ⊗ ei) = 2γ2µ,
(3.62)

that can be positive ⇐⇒
µ > 0. (3.63)

The first case corresponds to a change of volume but not of shape, the second to
a change of shape but not of volume. Eqs. (3.60) and (3.63) are the only two
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bounds that concern the Lamé’s constants. Because of eqs. (3.48), (3.34), (3.52)
and (3.53), these bounds correspond to pose

G > 0, κ > 0, (3.64)

C1111 + 2C1122 > 0, C1111 − C1122 > 0, (3.65)

and

E > 0, −1 < ν <
1

2
. (3.66)

Rather surprisingly, the bounds on E and ν are three in place of two.

To remark that materials with ν < 0 are theoretically possible: to a tension
corresponds a transversal dilatation and to a compression, a contraction. It can
be shown that these are the only necessary conditions for U being a positive definite
quadratic form for the case of an isotropic body.

The upper bound ν = 1/2 has a special interest: in fact,

lim
ν→ 1

2

κ = lim
ν→ 1

2

E

3(1− 2ν)
=∞; (3.67)

So, such materials have an infinite volume stiffness, i.e. they oppose an infinite
stiffness to change their volume: they are incompressible materials. In fact, for a
spherical stress state we have seen that

δv = trε =
p

κ
⇒ lim

κ→∞
δv = 0. (3.68)

This is actually true for any stress state, not only for the spherical ones; to prove
this, we put ν = 1/2 in the inverse Lamé’s equations:

ν =
1

2
→ ε =

3

2E
σ − 1

2E
trσ I ⇒ δv = trε = 0. (3.69)

3.7 The equations of Navier

The equilibrium equations
divσ + b = o (3.70)

can be written as functions of u, using the Lamé’s equations and the expression
of ε = ε(u), eq. (1.26)7:

divσ = div(2µ ε+ λtrε I) = 2µ divε+ λdiv(trε I) = 2µ divε+ λ∇(trε). (3.71)

7The following general result is used: div(ϕ S) = ϕ divS + S∇ϕ ∀ϕ ∈ R and ∀S ∈ Lin(V).
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Now, ε must be written as function of u,

ε =
∇u +∇>u

2
(3.72)

and considering that

div∇v = ∆v,

div(∇>v) = ∇divv,
∀v ∈ V , (3.73)

and that
trε = divu (3.74)

we obtain
divσ = µ∆u + (λ+ µ)∇divu. (3.75)

Finally, the equilibrium equations become

µ∆u + (λ+ µ)∇divu + b = o, (3.76)

or by components

µ ui,jj + (λ+ µ)uk,ki + bi = 0, i = 1, 2, 3. (3.77)

These are the Navier’s equations, expressing equilibrium as function of the dis-
placement u.

3.8 The equations of Beltrami-Michell

It is possible, and useful, to write the compatibility equations of Saint Venant-
Beltrami, eq. (1.68),

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (3.78)

in terms of stresses and forces, using the inverse Lamé’s equations:

εij =
1 + ν

E
σij −

ν

E
δijΘ, (3.79)

where
Θ := trσ. (3.80)

Injecting eq.(3.79) into eq.(3.78) we have

σij,kl + σkl,ij − σik,jl − σjl,ik =
ν

1 + ν
(δijΘ,kl + δklΘ,ij − δikΘ,jl − δjlΘ,ik). (3.81)
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Let us pose l = k in eq.(3.81); then, we get

σij,kk + σkk,ij − σik,jk − σjk,ik =
ν

1 + ν
(δijΘ,kk + δkkΘ,ij − δikΘ,jk − δjkΘ,ik), (3.82)

or, better,

∆σij + Θ,ij − σik,jk − σjk,ik =
ν

1 + ν
(δij∆Θ + 3Θ,ij − 2Θ,ij). (3.83)

By the equilibrium equation we get

σpq,q + bp = 0 → σpq,qr = −bp,r, (3.84)

and hence

∆σij +
1

1 + ν
Θ,ij −

ν

1 + ν
δij∆Θ = −(bi,j + bj,i). (3.85)

This is a set of 9 equations, but only 6 are independent, for the symmetries of i
and j, so this linear combination of the 6 original equations is equivalent to these
last.

We need now to express Θ in terms of the bi,j. To this end, we pose k = i and
l = j in eq.(3.81) and sum up with respect to the repeated indexes, to get

2σij,ij − σii,jj − σjj,ii =
ν

1 + ν
(2δijΘ,ij − δiiΘ,jj − δjjΘ,ii); (3.86)

because

σii = σjj = Θ, δijΘ,ij = Θ,ii = ∆Θ, δiiΘ,jj = δjjΘ,ii = 3∆Θ, (3.87)

we obtain

σij,ij =
1− ν
1 + ν

∆Θ. (3.88)

But
σij,ij = −bj,j = −divb, (3.89)

so

∆Θ = −1 + ν

1− ν
divb, (3.90)

and finally we get

∆σij +
1

1 + ν
Θ,ij = − ν

1− ν
δijdivb− (bi,j + bj,i). (3.91)

These are the Beltrami-Michell equations (1900); they are the necessary conditions
of compatibility written in terms of stresses and forces.
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Let us now consider the special case of constant body forces:

b = const. → divb = 0, bi,j = bj,i = 0 ∀i, j, (3.92)

so that eq.(3.91) becomes

∆σij +
1

1 + ν
Θ,ij = 0, (3.93)

known as equations of Beltrami (1892). For eq. (3.90) we have also

∆Θ = 0, (3.94)

i.e., Θ is a harmonic function; because

trε =
1

2µ+ 3λ
trσ, (3.95)

it is also
∆(trε) = 0, (3.96)

i.e., also the trace of ε is a harmonic function. Finally, from the equations of
Beltrami, we get also

∆2σij = 0 ∀i, j, (3.97)

and because ε is a linear function of σ,

∆2εij = 0 ∀i, j, (3.98)

in other words, the components of σ and ε are biharmonic functions.

3.9 Superposition of the effects

In classical elasticity, all the sources of nonlinearity vanish: the relation between
stress and strain, the Lamé’s equations for isotropic bodies, or more generally the
Hooke’s law, are linear; the nonlinearity due to the effects of the displacements on
the forces, that produce the displacements, does not exist, because of the assump-
tion of small perturbations. The equilibrium equations, for instance in the form
of the Navier’s equations, are linear in the ui. Hence, as for any other linear prob-
lem, if f i, i = 1, ..., n are n systems of forces acting upon the same elastic body Ω,
with the same boundary conditions on ∂Ωu and {ui, εi,σi} are the corresponding
elastic solutions, then the solution to the new system of forces f0 obtained as a
linear combination of the previous forces,

f0 = αi f i, i = 1, ..., n, (3.99)
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is the linear combination of the previous solutions with the same coefficients αi:

{u0, ε0,σ0} = αi{ui, εi,σi} i = 1, ..., n. (3.100)

This is the Principle of Superposition of the Effects, that has several applications
in the analysis of elastic structures.

It has to be remarked, however, that this principle cannot be applied to the quanti-
ties that are not linear, which is the case of the elastic energy. Just as an example,
consider the case of n = 2; then

U =
1

2
(α1σ1 + α2σ2) · (α1ε1 + α2ε2)

=
1

2
[(α1)2σ1 · ε1 + (α2)2σ2 · ε2 + α1α2(σ1 · ε2 + σ2 · ε1)]

= (α1)2U1 + (α2)2U2 + α1α2(σ1 · ε2 + σ2 · ε1) 6= α1U1 + α2U2.

(3.101)

3.10 The Principle of Virtual Displacements

Be δu a compatible virtual displacement field on Ω; this means that

i. δu is an infinitesimal, regular, time independent field of displacement;

ii. it satisfies to the boundary conditions on ∂Ωu : δu|∂Ωu = o;

iii. it satisfies to the geometric relations with ε : δu defines a virtual strain field
δε as

δε =
∇δu +∇>δu

2
. (3.102)

We further assume that the forces are equilibrated with the stresses, i.e. that the
body is in equilibrium:

divσ + b = o. (3.103)

Then, the work done by the surface tractions t applied to Ω on ∂Ωt for the virtual
displacement δu is, for the theorem of Cauchy,∫

∂Ω

t · δu ds =

∫
∂Ω

σn · δu ds; (3.104)

so, using successively the theorem of Gauss, the identity

div(S>v) = S · ∇v + v · divS ∀v ∈ V and ∀S ∈ Lin(V), (3.105)
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the equilibrium equation (3.103) and the fact that, see Note 4 of Chapter 2,

σ · ε = σ · ∇u, (3.106)

we get∫
∂Ω

t · δu ds =

∫
∂Ω

σn · δu ds =

∫
∂Ω

σ>δu · n ds

=

∫
Ω

div(σ>δu)dω =

∫
Ω

(σ · ∇δu + δu · divσ)dω

=

∫
Ω

σ · ∇δu dω −
∫

Ω

b · δu dω

=

∫
Ω

σ · δε dω −
∫

Ω

b · δu dω,

(3.107)

and finally∫
Ω

σ · δε dω =

∫
Ω

b · δu dω +

∫
∂Ω

t · δu ds ∀ compatible δu. (3.108)

This is the Principle of Virtual Displacements (PVD) for deformable bodies, not
exclusively the elastic ones, because we have not introduced any constitutive law,
so its validity is quite general. As the same proof of the theorem shows, it is
completely equivalent to the equilibrium equations; for these reasons, this theorem
is often called a principle, like we do.

The PVD states that, at the equilibrium, the virtual work of the internal forces,
the left-hand side term, equals the virtual work of the external forces, the right-
hand side term not only for the real displacement field, but more generally for
any compatible virtual displacement field, i.e. for any infinitesimal displacement
field that satisfies to the kinematical boundary conditions and that is linked to the
virtual strain field by eq. (3.102).

The PVD is hence the principle of equilibrium and it has several and remarkable
applications, like for the resolution of hyperstatic structures, see Chapter 5, or in
the proof of the theorems of the next Section.

3.11 Elasticity theorems

The theorems in this Section have a great importance, as well as from the theo-
retical point of view and for their numerous applications.
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3.11.1 The Theorem of Clapeyron

If we apply the PVD not to a generic displacement field but to the real one,
that produced, at the equilibrium, by the applied forces and that is, of course,
compatible, i.e. if δu = u and δε = ε, then we have∫

Ω

σ · ε dω =

∫
Ω

b · u dω +

∫
∂Ω

t · u ds. (3.109)

The left-hand side is twice the elastic energy stored by Ω, while the right-hand side
is the actual work of external forces for the displacement field that they produce at
the equilibrium. This proves the Clapeyron’s theorem (1833): at the equilibrium,
the work done by the external forces for their final displacements is twice the elastic
energy stored in the body during deformation.

To remark that, unlike the PVD, this theorem is valid only for linearly elastic
materials (but not necessarily isotropic nor homogeneous), because we interpret
the term σ · ε as the double of the elastic energy, which is correct only for linear
elasticity.

3.11.2 The Theorem of Betti

Let us suppose that the same body Ω is subjected first to a system of forces t1, b1

that at the equilibrium give the displacement and strain fields u1 and ε1. Then,
Ω is submitted to another equilibrated system of forces, t2, b2, that produce the
fields u2 and ε2. All these displacement and strain fields, being real, are also
virtual and compatible. So, we are free to combine the forces of the first system
with the displacements-strains of the second one and vice-versa. For the major
symmetries of C it is

Cijklε
1
ijε

2
kl = Cklijε

1
ijε

2
kl = Cklijε

1
klε

2
ij = Cijklε

2
ijε

1
kl, (3.110)

in other words
ε1 · Cε2 = ε2 · Cε1, (3.111)

so that applying the PVD we get∫
Ω

b1 · u2 dω +

∫
∂Ω

t1 · u2 ds =

∫
Ω

σ1 · ε2 dω =

∫
Ω

ε2 · Cε1 dω =∫
Ω

ε1 · Cε2 dω =

∫
Ω

σ2 · ε1 dω =

∫
Ω

b2 · u1 dω +

∫
∂Ω

t2 · u1 ds.

(3.112)

This is the Betti’s reciprocal theorem (1879): the external work done on an elastic
body by the forces of the first system for the displacements of the second one equals
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that done by the forces of the second system for the displacements of the first one,
when both the systems are equilibrated. This theorem has several applications,
namely in the theory of the lines of influence.

3.11.3 The Theorem of Kirchhoff

A further result concerns the general solution of the elastic problem: we know that
the elastic problem is described by 15 unknowns and ruled by 15 equations. But,
actually, does this problem have at least one solution? And if yes, is this solution
the unique possible one? We leave apart the first question, because in general too
complicate (in our problems, for each case we will give a constructive response)
and let us consider the question of the uniqueness of the solution.

We proceed assuming that there are two possible solutions to the same elastic
problem, which means same body Ω, boundary conditions and applied forces:
u1, ε1,σ1 and u2, ε2,σ2. Then, we consider the difference of the two solutions:

u = u1 − u2, ε = ε1 − ε2, σ = σ1 − σ2. (3.113)

Of course, these fields correspond to the following body forces and boundary con-
ditions: b = o over Ω, t = o on ∂Ωt, u = o on ∂Ωu. So, by the PVD,∫

Ω

b · u dω +

∫
∂Ω

t · u ds = 0 =

∫
Ω

σ · ε dω =

∫
Ω

ε · Cε dω. (3.114)

Because C is positive definite, this can happen ⇐⇒ ε = O⇒ ε1 = ε2; moreover,
ε = O⇒ σ = Cε = O too, which implies σ1 = σ2. Finally, if ε1 = ε2, then u1 =
u2 + w, with w an infinitesimal rigid displacement, absolutely inessential.

This result is the uniqueness theorem of Kirchhoff (1859): the elastic solution is
unique. The very importance of this theorem is that it gives a constructive way for
finding a solution to an elastic problem; if a solution is found in some way, then it
is the solution, because of the Kirchhoff’s theorem.

3.11.4 The Theorem of Castigliano

Let us consider an elastic body Ω, with given constraint conditions on ∂Ωu and
acted upon by some forces; among these forces, we consider a concentrated force fp
applied in p ∈ Ω. We imagine to give a small increment δfp to fp. Correspondingly,
the elastic energy of the body changes, for the contribution of :
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• the work done by the other external forces;

• the work done by δfp.

The second contribution is negligible with respect to the first one, because it is
of the order o(δfp)

2; the first contribution, for the Betti’s theorem, is equal to the
work done by δfp during the application of the remaining forces.

So, if up is the displacement that p has in the direction of fp when Ω is deformed
by the whole system of applied forces, the increment of the elastic energy due to
the increment δfp will be

δfp · up = δfpup, (3.115)

and the same increment can be written as

∂U

∂fp
δfp, (3.116)

which implies

up =
∂U

∂fp
. (3.117)

This is the Theorem of Castigliano (1875): the displacement of the point of ap-
plication of a concentrated force in the direction of the same force is equal to the
partial derivative of the elastic energy with respect to the same force.

This theorem has also a dual form, that can be proved in a similar way:

fp =
∂U

∂up
: (3.118)

the component of a force in the direction of the displacement of its point of ap-
plication is equal to the partial derivative of the elastic energy with respect to the
same displacement.

The theorem of Castigliano is used for the calculation of elastic displacements and
in a method for the resolution of hyperstatic structures.

3.11.5 The Theorem of Minimum Total Potential Energy

We define as kinematically admissible any state {u∗, ε∗,σ∗} for which

ε∗ =
∇u∗ +∇>u∗

2
, u∗ = u on ∂Ωu, σ

∗ = Cε∗. (3.119)
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To remark that such a state is not necessarily equilibrated, because we do not
require that σ∗ satisfy to the equilibrium equations with the applied forces, but
only that it is related to the strain field by the Hooke’s law.

Then, the total potential energy E of an elastic body Ω, subjected to body forces
b and tractions t on ∂Ωt is defined on the set of kinematically admissible states
as

E =
1

2

∫
Ω

σ∗ · ε∗ dω −
∫

Ω

b · u∗ dω −
∫
∂Ω

t · u∗ ds. (3.120)

E is the difference between the elastic energy of Ω and the work of the external
forces.

Be now {u′, ε′,σ′} the real, hence equilibrated, solution of the equilibrium prob-
lem, and put

u = u∗ − u′, ε = ε∗ − ε′. (3.121)

So, because the starred system is compatible and {u′, ε′,σ′} is the solution,

ε =
∇u +∇>u

2
, u = o on ∂Ωu. (3.122)

C is symmetric, i.e. it has the major symmetries, which implies

ε∗ · Cε∗ = (ε′ + ε) · C(ε′ + ε) = ε′ · Cε′ + ε · Cε+ ε′ · Cε+ ε · Cε′

= ε′ · Cε′ + ε · Cε+ 2ε · Cε′.
(3.123)

So,

1

2

∫
Ω

σ∗ · ε∗ dω − 1

2

∫
Ω

σ′ · ε′ dω =
1

2

∫
Ω

σ · ε dω +

∫
Ω

σ′ · ε dω, (3.124)

where of course σ∗ = Cε∗,σ = Cε,σ′ = Cε′.

Because {u′, ε′,σ′} is a solution, then by the PVD and for u = o on ∂Ωu, we have∫
Ω

σ′ · ε dω =

∫
Ω

b · u dω +

∫
∂Ω

t · u ds. (3.125)

So, for the last two equations, we have

E∗ − E ′ = 1

2

∫
Ω

σ · ε dω =
1

2

∫
Ω

ε · Cε dω, (3.126)

where E∗ is the total potential energy of the starred, only kinematically admis-
sible, state, while E ′ is the total potential energy corresponding to the real, also
equilibrated, solution (a solution is of course kinematically admissible). Because
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C is positive definite, ε ·Cε ≥ 0 ∀ε, and it is null ⇐⇒ ε = O, i.e. when ε∗ = ε′,
so finally we get

E ′ ≤ E∗, (3.127)

with the equality that holds only when u∗ = u′+w, ε∗ = ε′,σ∗ = σ′, i.e. when the
starred system coincide, left apart an inessential infinitesimal rigid displacement
w, with the real solution.

This is the Principle of Minimum Total Potential Energy: among all the possible
values that the total potential energy E can take in correspondence of given kine-
matically admissible states, the minimum value is assumed for the real, hence also
equilibrated, state. This theoretical result is important also for practical purposes,
because it offers a way for the search of the solution: the (unique) solution to a
problem of linear elasticity is that corresponding to the kinematically admissible
state that minimizes E ; then, that kinematically state, and only that one, will be
also equilibrated.

3.11.6 The Theorem of Minimum Complementary Energy

We define as statically admissible any stress field σo that satisfies the equilibrium
and boundary conditions:

divσo + b = o in Ω, σon = t0 on ∂Ωt. (3.128)

Then, the complementary energy defined on the set of statically admissible stress
fields is

C =
1

2

∫
Ω

σo · εo dω −
∫
∂Ωu

σon · u0 ds, (3.129)

with
εo = Sσo. (3.130)

C is the difference between the elastic energy of Ω and the work of the forces on
the boundary uniquely.

Then,

E + C =
1

2

∫
Ω

σ · ε dω −
∫

Ω

b · u dω −
∫
∂Ωt

t0 · u ds

+
1

2

∫
Ω

σ · ε dω −
∫
∂Ωu

t · u0 ds

=

∫
Ω

σ · ε dω −
∫

Ω

b · u dω −
∫
∂Ω

t · u ds = 0,

(3.131)
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for the theorem of Clapeyron. This motivates the name of complementary en-
ergy.

Now, be {ũ, ε̃, σ̃} the real solution to the equilibrium problem for Ω, with of
course σ̃ = Cε̃; this solution is equilibrated and kinematically admissible. Let us
introduce the difference of the stress states

σ = σo − σ̃ ⇒ divσ = o Ω, σn = o on ∂Ωt. (3.132)

Then, using the same procedure exposed in eq. (3.123), we obtain

1

2

∫
Ω

σo · εo dω − 1

2

∫
Ω

σ̃ · ε̃ dω =
1

2

∫
Ω

σ · ε dω +

∫
Ω

σ · ε̃ dω. (3.133)

Because of eq. (3.132), we get8∫
Ω

σ · ε̃ dω =

∫
∂Ωu

σn · u0 ds =

∫
∂Ωu

σon · u0 ds−
∫
∂Ωu

σ̃n · u0 ds, (3.134)

Injecting this result into eq. (3.133) gives

Co − C̃ =
1

2

∫
Ω

σ · ε dω =
1

2

∫
Ω

σ · Sσ dω, (3.135)

with

Co =
1

2

∫
Ω

σo · εo dω −
∫
∂Ωu

σon · u0 ds (3.136)

the complementary energy corresponding to the statically admissible stress field
(to which is not asked the kinematical admissibility of the displacement and strain
fields), while

C̃ =
1

2

∫
Ω

σ̃ · ε̃ dω −
∫
∂Ωu

σ̃n · u0 ds (3.137)

is the complementary energy of the real state, which is at the same time statically
and kinematically admissible.

The argument now is exactly the same used for proving the principle of minimum
total potential energy: because S is positive definite9 then σ · Sσ > 0 ∀σ 6= o and

8This result is readily obtained thanks to the identity∫
∂Ω

An · v =

∫
Ω

divA · v dω +

∫
Ω

A · ∇v dω,

which derives from the Gauss theorem for tensors, and using the result of Note 4 of Chapter 2.
9The positive definiteness of S comes from the fact that S = C−1 or, mechanically, repeating

verbatim the argument used for proving that C is positive definite, but now starting from the
expression (3.22) of U .
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it is nulle ⇐⇒ σ = o⇒ σo = σ̃, so finally we obtain

C̃ ≤ Co, (3.138)

which proves the Principle of Minimum Complementary Energy: among all the
possible values that the complementary energy C can take for given statically ad-
missible stress fields, the minimum value is assumed for the real, hence also kine-
matically admissible, solution.

3.12 Exercises

1. Show that for linear, isotropic, elastic materials, σ and ε are coaxial, i.e. they
share the same eigenvectors. What does this means, mechanically speaking?
Is this true also for anisotropic materials?

2. Consider the decomposition into spherical and deviatoric parts of ε and σ:

ε = εs + εd, σ = σs + σd;

i. show that it is

U = Us + Ud, with Us =
1

2
σs · εs, Ud =

1

2
σd · εd;

what does this mean, mechanically?

ii. show that, for an isotropic material,

σs = Cεs, σd = Cεd,

and interpret it mechanically;

iii. show that Us depends only upon κ and Ud only upon G; why, in some
sense, this was to be expected?

iv. show that bounding the value of Ud is equivalent to bound the value of
τoct, see Ex. 8, Chapt. 2.

3. Express E, ν, κ and G as functions of c1 and c2 and vice-versa.

4. Write the equations of Lamé with κ and G as unique elastic parameters.
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5. Be u such that curl u = o; use the Navier’s equations to show that

divu =
β

λ+ 2µ
+ const. (3.139)

6. Using the Navier’s equations show that

∆divu = − 1

λ+ 2µ
divb = −(1 + ν)(1− 2ν)

(1− ν)E
divb, (3.140)

which is called the dilatation equation.

7. An elastic cube whose constants are E and ν is compressed by uniform
tractions of value q on two opposite faces, while volume forces are negligible.
Determine the volume change and the variation of the length of the cube
sides.

8. Do the same exercice, but this time the cube is surrounded by an infinitely
rigid material on the lateral sides.

9. A square plate is submitted to a uniform tension f on the four sides, and its
elastic contants are E and ν. Find the surface variation and the displacement
field u.

10. A square plate whose elastic constants are λ and µ and with the sides parallel
to the axes x1 and x2, is submitted to some tractions on its sides and null
body forces. The resulting displacement field is

u(x1, x2) = γ x2 e1, γ ∈ R;

i. give a graphical interpretation of u;

ii. determine ε and σ;

iii. find the surface variation;

iv. determine the tractions on the boundary;

v. which type of deformation is this one?

11. A circular cylinder of radius R and height L is clamped at the lower base
while the upper one is turned through an angle β. The body forces and
tractions on the lateral surface are null.

i. make a conjecture on the displacement field and then calculate ε and σ;

ii. determine the actions to be applied to the upper base; what are the
actions on the clamped base?
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iii. calculate the volume variation;

iv. determine the stress on any cross section of the cylinder;

v. which type of deformation is this one?

12. An isotropic body subjected to a change of temperature θ changes its volume.
We assume that this volume change is isotropic and proportional to θ through
a coefficient α and that it adds to the mechanical deformation, due to the
applied forces.

Generalize the Lamé’s equations to take into account for the deformation
due to θ (this is the constitutive law for linear isotropic thermo-elasticity, or
Hooke-Duhamel law). Which is the physical meaning of α?

13. Using the Hooke-Duhamel law, find the stress in a cube, whose thermo-elastic
constants are E, ν and α, when it undergo a change of temperature θ; the
cube is completely immersed in an infinitely rigid medium.

14. A rectangular plate, isotropic and with constants λ and µ, is attached on a
horizontal side of length b (the other side is h) and can slip along it. It is
subjected only to its own weight γ, per unit of area.

i. Determine the boundary conditions;

ii. calculate the stress field;

iii. determine the final surface of the plate.

15. The circle

X2
1 +X2

2 = 1

is subjected to the deformation defined by{
x1 = a X1 + b X2

x2 = −b X1 + a X2
a, b ∈ R− {0}. (3.141)

i. for which values of a and b the deformation can be considered as in-
finitesimal?

ii. in such a case, find the final shape of the circle;

iii. if the circle is composed by an elastic material whose constants are λ
and µ, determine, in the absence of body forces, which are the tractions
to be applied to the circle to obtain the given deformation.
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16. A cylinder of radius R and height � R is composed by a thermo-elastic
material whose constants are λ, µ, α > 0. It is surrounded by an infinitely
rigid medium, and heated to a temperature θ. Knowing that the friction
coefficient for the contact cylinder-medium is ν, find the torque to be applied
per unit length of the axis in order to make the cylinder turn.

17. In an ancient manuscript of Leonardo da Vinci, a figure has been recently dis-
covered which suggests that the famous Italian genius had probably realized
the mechanics of bent beams.

Inspired by this discovery, let us try to trace the possible track from the intu-
ition of Leonardo to modern mechanics: we consider a beam with rectangular
cross-section; b is the width and h the height of the section, while the beam’s
length is `. We chose a frame with the axis x1 horizontal, x2 vertical, both in
the plane of the cross-section, and x3 is the axis passing through the centre
of all the sections (the beam axis). Interpreting the figure of Leonardo, we
assume that the displacement field is

u = ψ x2x3 e3, ψ ∈ R. (3.142)

The material is assumed to be isotropic of constants E and ν and the dis-
placements and strains infinitesimal.

i. determine the strain field ε;

ii. find the volume change;

iii. determine the stress field σ;

iv. determine the formula of Navier, relating σ33 to its resultant moment
on the cross section and to the geometrical data of the section.

18. Consider the case of conservative body forces: b = ∇ϕ, with ϕ the force
potential. Write the Beltrami-Michell equations for such a case and show
that if ϕ is harmonic, then ∆Θ = ∆(trε) = 0 and ∆2σij = ∆2εij = 0 ∀i, j.
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Chapter 4

The Saint-Venant Problem

4.1 Problem definition

One of the most important applications of the theory of elasticity is the study
of elastic beams. This problem, important per se and for applications, is rather
complicate. It can be approached by different ways; in this Chapter, we look at a
beam as it is in its reality of a three-dimensional body, while in the next one we
will consider a beam as an ideal one-dimensional object.

The study of the beams needs some precision: a standard problem must be con-
sidered in order to define and solve a specific case, sufficiently representative of
interesting applications. This standard problem is known in the literature as the
Saint-Venant Problem after the name of the French scientist that defined and
solved it (1855).

The Problem of Saint-Venant is defined as follows:

• the body Ω object of the study, the beam, is a cylinder (the Saint-Venant
cylinder) of finite length `; hence, the cross section S, of any possible form,
but simply connected, is constant;

• the material is linear elastic, homogeneous and isotropic;

• the cylinder is charged by tractions only at its ends; the system of applied
forces is equilibrated; tractions on the lateral surface and body forces are
absent;

• the dimensions of the beam are such that `� d, with d = sup{chords of S};
the reason for this assumption will be clear further;
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• the objective is always the same: find u, ε,σ everywhere in Ω.

With these assumptions, the system to be studied is of the type in Fig. 4.1;
the cross section represented on the left is seen from the positive direction of
x3. We chose once and for all a standard frame R = {o;x1, x2, x3} with o the
centroid of one of the end sections, x3 the axis connecting the centroids of all the
sections of the beam and the two axes x1 and x2, that belong to the end section
x3 = 0, coincide with two principal axes of inertia of the section, see Fig. 4.1.
To be remarked that, classically, the frame used in the Saint-Venant Problem is
negatively oriented. We denote by S0 the base at x3 = 0, with S1 that at x3 = `

JL

llll t

STÊA I/V
ll+Ê.09/Vr À/4

I

Figure 4.1: The cylinder of Saint-Venant.

and with Sl the lateral surface; on these three surfaces, the outward unit normal
is respectively n0 = (0, 0,−1), n1 = (0, 0, 1) and nl = (n1, n2, 0). It is apparent
then that ∂Ωt = S0 ∪ S1 ∪ Sl, ∂Ωu = ∅.

The forces on the two bases form an equilibrated system: R = o, Mo = o.

Then, the problem to be solved is: determine u, ε,σ such that:

in Ω


divσ = o,

σ = 2µ ε+ λ trε I,

ε =
∇u +∇>u

2
;

on S0 σ n0 = t0;

on S1 σ n1 = t1;

on Sl σ nl = 0;

with


∫
S0

t0 ds+

∫
S1

t1 ds = o,∫
S0

(p− o)× t0 ds+

∫
S1

(p− o)× t1 ds = o.

(4.1)
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4.2 The Principle of Saint-Venant

The Saint-Venant Problem, as defined hereon, is too hard to be solved in its
generality, especially for the fulfillment of the boundary conditions. Nevertheless,
practically, the exact distribution of tractions on the ends of the beam is rarely
known and often of a scarce importance. More meaningful, are the resultants of
forces and moments, that are normally known quantities.

For this reason, Saint-Venant introduces at this point a famous postulate, known
as the Principle of Saint-Venant: if a distribution of forces acting on a portion of
∂Ωt is replaced by a statically equivalent distribution, then the effects of the two
distributions are essentially the same on the parts of Ω sufficiently far from the
loaded portion of ∂Ωt.

This is just an empirical principle that has a strong effect in view of the resolution
of the Saint-Venant Problem. In fact, because ` � d, replacing the actual distri-
butions of t0 and t1 on S0 and S1 has an appreciable effect only close to the ends,
while in the rest of the beam the static regime, i.e. the distribution of u, ε,σ is
not appreciably affected by such a change.

Experimentally, it has been seen that the length where the static regime is modified
if the distribution of the forces on the ends is changed is of the order of d.

The Principle of Saint-Venant constitutes one of the key points for the resolution of
the Saint-Venant Problem: the solution to be found will be, near the ends, either
exact, i.e. the tractions on the ends are applied in the way specified by the solution,
either an approximation of the real solution, satisfying the only requirement to be
statically equivalent to the real one.

Finally, because ` � d, only a small part of the beam will be concerned with a
solution different from the theoretical one, the one found applying the Principle
of Saint-Venant after introducing an appropriate distribution of tractions on the
ends, statically equivalent to the real ones.

To within a distance of the order of d from the ends, such a theoretical solution is
not appropriate, the difference with the real one becoming too important; in such
zones, the correct distribution of strain and stress should be looked for by other
ways, for instance by a complete three-dimensional analysis.
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4.3 The four fundamental cases

Thanks to the Saint-Venant Principle, we are concerned only with the knowledge
of F, the resultant of tractions, and M, the resultant moment of the tractions, on
the ends, both applied in correspondence of the centroid of the section.

Actually, it is only needed the knowledge of F and M on S0, because for the
equilibrium

F` = −F0, M` = −[M0 + (C` − o)× F0], (4.2)

where the subscript 0 indicates a quantity of the end x3 = 0 while the subscript `
of the end x3 = ` and C` is the centroid of this last.

F can be decomposed into two parts (in the following, we classically denote the
components of F = (T1, T2, N)):

• the axial component → N = N e3;

• the shear component → T = T1 e1 + T2 e2.

The same can be done for M:

• the axial component (twisting moment or torque) → MT = M3 e3;

• the flexural component (bending moment) → M = M1 e1 +M2 e2.

Using the principle of superposition of the effects and the Saint-Venant Principle,
our problem can then be split into the following four cases, to be solved sepa-
rately:

i. extension: on S0, the cylinder is subjected only to N;

ii. bending: on S0, the cylinder is acted upon only by M;

iii. torsion: on S0, the cylinder is submitted only to MT ;

iv. shear: on S0, the cylinder is loaded only by T.

In the following, we will tackle each one of these four cases separately; of course,
any combination of the above cases can be analyzed summing up the effects of the
elementary cases.

4.4 The semi-inverse method

Though reduced to four elementary cases, the Saint-Venant Problem remains hard
to be solved, so Saint-Venant has proposed and used also a general approach, the
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famous semi inverse method of solution: for each one of the above four cases, some,
plausible, assumptions are made about the distribution of u, ε or σ, leaving any-
way enough freedom for satisfying the conditions of equilibrium and compatibility.
Then, once all the equations satisfied, the uniqueness theorem of Kirchhoff guar-
antees that what has been conjectured is actually the only possible solution for
the case in object.

4.5 The fundamental assumption

According to the semi inverse method, for each one of the four cases above we
will introduce special assumptions, specially adapted to the case to be studied. In
addition, we make a general assumption, valid for all the cases:

σ11 = σ22 = σ12 = 0 ∀p ∈ Ω. (4.3)

This assumption is motivated by the same nature of the actions applied on the
ends, that are likely to produce only elongation and shearing of the fibers parallel
to x3, but not of compression or tension in the directions x1 and x2 nor shear of
the cross section.

This assumption, though plausible, is anyway rather heavy, because now we have
still 15 equations but only 12 unknowns: the problem can be overdetermined. So,
for each one of the four cases, care must be taken to make the conjecture to be
the solution.

A general consequence concerns equilibrium equations, that for the assumption
(4.3) become

divσ = o →


σ13,3 = 0,

σ23,3 = 0,

σ13,1 + σ23,2 + σ33,3 = 0.

(4.4)

Hence,
σ13 = σ13(x1, x2), σ23 = σ23(x1, x2), (4.5)

so that, differentiating with respect to x3 the last equation gives

σ33,33 = 0, (4.6)

i.e., σ33 is a linear function of x3. In addition, for the (4.3), trσ = σ33 and by the
Beltrami equations we know that for b = const (b = o in our case),

∆(trσ) = 0 → ∆σ33 = 0, (4.7)
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so, for eq. (4.6) we get the equation

σ33,11 + σ33,22 = 0. (4.8)

We can say more than that; in fact, for b = const. the Beltrami equations of this
case give, for eqs. (4.3), (4.5) and (4.6),

∆σij +
1

1 + ν
σ33,ij = 0 →



σ33,11 = 0,

σ33,12 = 0,

σ33,22 = 0,

(1 + ν)(σ13,11 + σ13,22) + σ33,13 = 0,

(1 + ν)(σ23,11 + σ23,22) + σ33,23 = 0,

σ33,33 = 0.

(4.9)

As a consequence, σ33 is a function which is at most linear in x1, x2, x3 and it
cannot depend upon the product x1x2:

σ33 = c0 + c1x1 + c2x2 + c3x3 + c4x1x3 + c5x2x3; (4.10)

this is the most general expression for σ33.

About the boundary conditions, on Sl it is

σnl = o, nl = (n1, n2, 0) ⇒ σ13n1 + σ23n2 = 0. (4.11)

If we call
τ = σ13e1 + σ23e2 (4.12)

the tangential stress vector, which is the resultant of the shear stresses in a point,
then the last equation can be written as

τ · nl = 0 on Sl : (4.13)

the tangential stress is tangent to the cross section contour. This is a general
fundamental result of the Saint-Venant Problem.

4.6 Global balances

We define now the internal actions, that are the six forces and moments, with re-
spect to the centroid, resultant of the stress distribution in a cross section S:
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1. axial force:

N(x3) =

∫
S

σ33 ds; (4.14)

2. shear force along x1:

T1(x3) =

∫
S

σ13 ds; (4.15)

3. shear force along x2:

T2(x3) =

∫
S

σ23 ds; (4.16)

4. bending moment around x1:

M1(x3) =

∫
S

σ33 x2 ds; (4.17)

5. bending moment around x2:

M2(x3) = −
∫
S

σ33 x1 ds; (4.18)

6. twisting moment (around x3):

M3(x3) =

∫
S

(σ23 x1 − σ13 x2) ds. (4.19)

All the above internal actions are here intended, conventionally, to be the resultant
of the stress that the part of the beam from x3 to ` apply to the part from 0 to
x3 across the section S at x3; of course, the part from 0 to x3 apply to that from
x3 to ` exactly the opposite actions. We can now write the balance of forces and

",(iN._d^14{-
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Figure 4.2: Conventions for the signs of the internal actions.
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moments from 0 to x3: remembering that the only actions are applied to the ends,
and using the convention for the positive signs of the internal actions shown in Fig.
4.2, which means that on S0 it is F0 = (−T1,−T2,−N),M0 = (−M1,−M2,−M3),
the expressions of the internal actions at the abscissa x3 are

N(x3) = −F0 · e3 = N,

T1(x3) = −F0 · e1 = T1,

T2(x3) = −F0 · e2 = T2,

M1(x3) = −[M0 + (C − o)× F0] · e1

= −[−M1e1 −M2e2 −M3e3 + x3e3 × (T1e1 + T2e2)] · e1

= M1 + T2 x3,

M2(x3) = −[M0 + (C − o)× F0] · e2

= −[−M1e1 −M2e2 −M3e3 + x3e3 × (T1e1 + T2e2)] · e2

= M2 − T1 x3,

MT (x3) = −M0 · e3 = M3.

(4.20)

We can now pass to examine the four fundamental cases introduced in Sect.
4.3.

4.7 Extension

The only resultant on S0 different from zero is N ; according to the semi-inverse
method, we make the following conjecture on the distribution of the stresses:

σ13 = σ23 = 0, σ33 = c, c ∈ R → σ = c (e3 ⊗ e3). (4.21)

With such a stress field, constant throughout Ω, the equilibrium and compatibility
equations are obviously satisfied; ε is readily found:

ε =
1 + ν

E
σ − ν

E
trσ I → ε =

c

E
[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.22)

or in matrix form

σ =

 0 0 0
0 0 0
0 0 c

 , ε =
c

E

 −ν 0 0
0 −ν 0
0 0 1

 . (4.23)

Now, the displacement field can be calculated:

u1,1 = u2,2 = − ν
E
c, u3,3 =

c

E
, u1,2 + u2,1 = u1,3 + u3,1 = u2,3 + u3,2 = 0, (4.24)
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which gives (for the integration constants, we assume that the end S0 and the axis
x3 are fixed)

u1 = − ν
E
c x1, u2 = − ν

E
c x2, u3 =

c

E
x3. (4.25)

Finally, one has to check the boundary conditions:

• on Sl, nl = (n1, n2, 0) so

σ nl = c(e3 ⊗ e3)(n1e1 + n2e2) = o; (4.26)

• on S0, n0 = (0, 0,−1) so

σ n0 = −c(e3 ⊗ e3)e3 = −c e3; (4.27)

• on S1, n1 = (0, 0, 1) so

σ n1 = c(e3 ⊗ e3)e3 = c e3; (4.28)

The last two results mean that the tractions are uniformly distributed over the
end cross sections; this is a direct consequence of the assumed conjecture and of
the Saint-Venant Principle. Passing to the resultant we can determine the last
unknown, c: on S1, N(x3 = `) = N . Then∫

Sl

σ33 ds =

∫
Sl

c ds = N ⇒ c =
N

A
, (4.29)

where A is the area of the cross section. Finally,

σ =
N

A
e3 ⊗ e3, (4.30)

ε =
N

EA
[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.31)

u =
N

EA
(−ν x1,−ν x2, x3). (4.32)

The quantity EA is the extension stiffness of the beam. Because all the equations
are satisfied, for the Kirchhoff theorem eqs. (4.30), (4.31) and (4.32) are the
solution of the Saint-Venant Problem for the extension case.
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4.8 Bending

In pure bending, the only action different from zero on the end S0 is

M0 = M1 e1 +M2 e2, (4.33)

while T1 = T2 = N = M3 = 0. Using the superposition principle, we consider
separately the two cases of M1 and M2, and we study first M1.

4.8.1 Conjecture on the stress field

The beam is acted upon by tractions on the ends that have as unique global effect
a moment around the axis x1. We tentatively assume, following the semi-inverse
method, that σ is defined by

σ13 = σ23 = 0, σ33 = b x2, b ∈ R → σ = b x2(e3 ⊗ e3), (4.34)

or in matrix form

σ =

 0 0 0
0 0 0
0 0 b x2

 , (4.35)

i.e. we assume a linear distribution of σ33 with x2, the axis orthogonal to x1,
which is the axis of M1. Unlike the extension case, the stress state is no more
homogeneous.

The equilibrium equations reduce to the only

σ33,3 = 0, (4.36)

which is obviously satisfied by the assumed stress field, while the Beltrami-Michell
compatibility equations are all identically null, because σ13 = σ23 = 0 and σ33 is
linear.

About the boundary conditions:

• on Sl, nl = (n1, n2, 0) so

σ nl = b x2(e3 ⊗ e3)(n1e1 + n2e2) = o; (4.37)

• on S0, n0 = (0, 0,−1) so

σ n0 = −b x2(e3 ⊗ e3)e3 = −b x2 e3; (4.38)
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• on S1, n1 = (0, 0, 1) so

σ n1 = b x2(e3 ⊗ e3)e3 = b x2 e3. (4.39)

The datum on the ends is the knowledge of M1, so, considering e.g. S1, one has

∫
S1

(p− o)× σn1 ds = M1e1 →

b

∫
S1

(x1e1 + x2e2)× x2e3 ds = M1e1 →

b

∫
S1

(−x1x2e2 + x2
2e1) ds = M1e1.

(4.40)

Remembering that x1 and x2 are central principal axes of inertia, the first term
under integral is null (it is a product of inertia, always null when done with respect
to a couple of principal axes) while∫

S1

x2
2 ds := J1, (4.41)

the moment of inertia of the cross section around x1. Finally we get

b J1 e1 = M1 e1 → b =
M1

J1

, (4.42)

which gives the formula of Navier

σ33 =
M1 x2

J1

, (4.43)

relating the stress σ33 to the mechanical action, the geometrical characteristics of
the cross section, condensed in J1, and the position, namely the distance from the
centroid. The formula of Navier shows that σ33 takes its extreme values on the
points of the cross section whose distance from the the axis x1 is the highest, while
on the points of the axis x1, σ33 = 0: the axis x1 is the neutral axis, see Fig.
4.3.

Because all the conditions are fulfilled, for the Kirchhoff theorem the field σ so
found is the solution.
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Figure 4.3: Variation of σ33 on a cross section.

4.8.2 The strain field

We can now determine ε:

ε =
1 + ν

E
σ − ν

E
trσ I → ε =

M1 x2

EJ1

[e3 ⊗ e3 − ν(e1 ⊗ e1 + e2 ⊗ e2)] , (4.44)

or in matrix form

ε =
M1 x2

EJ1

 −ν 0 0
0 −ν 0
0 0 1

 . (4.45)

The quantity EJ1 is the bending stiffness of the beam (relative to the axis x1).

4.8.3 Displacements

We can now pass to calculate u:

u1,1 = u2,2 = −ν M1

EJ1

x2, u3,3 =
M1

EJ1

x2,

u1,2 + u2,1 = u1,3 + u3,1 = u2,3 + u3,2 = 0.

(4.46)

The displacements are hence quadratic functions; integrating u3,3 we get

u3 =
M1

EJ1

x2x3 + w(x1, x2), (4.47)
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with w(x1, x2) an unknown function. Then, from eqs. (4.465,6), we have

u1,3 = −w,1, u2,3 = − M1

EJ1

x3 − w,2, (4.48)

so

u1 = −x3w,1 + u(x1, x2), u2 = −1

2

M1

EJ1

x2
3 − x3w,2 + v(x1, x2), (4.49)

with u(x1, x2) and v(x1, x2) two unknown functions.

From eqs. (4.461,2) we obtain

−x3w,11 + u,1 = −ν M1

EJ1

x2, −x3w,22 + v,2 = −ν M1

EJ1

x2 (4.50)

and because these two equations must be true ∀x3, it is necessarily

w,11 = w,22 = 0, (4.51)

i.e. w(x1, x2) is harmonic, so we get

u = −ν M1

EJ1

x1x2 + f1(x2), v = −ν
2

M1

EJ1

x2
2 + f2(x1), (4.52)

with f1(x2) and f2(x1) two unknown functions. So:

u1 = −x3w,1 − ν
M1

EJ1

x1x2 + f1(x2),

u2 = −1

2

M1

EJ1

x2
3 − x3w,2 −

ν

2

M1

EJ1

x2
2 + f2(x1),

(4.53)

which inserted into eq. (4.464) gives

−2x3w,12 − ν
M1

EJ1

x1 + f1,2 + f2,1 = 0. (4.54)

Because the last three terms are independent from x3, necessarily

w,12 = 0, (4.55)

so finally w(x1, x2) must be linear in x1 and x2:

w = βx1 + γx2 + c0 (4.56)
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and from what remains of the last equation we get

f1,2 = −α, f2,1 − ν
M1

EJ1

x1 = α, (4.57)

so

f1 = −αx2 + c1, f2 =
ν

2

M1

EJ1

x2
1 + αx1 + c2, (4.58)

with α, β, γ, c0, c1, c2 six arbitrary constants.

Finally, the displacement field is of the type

u1 = −ν M1

EJ1

x1x2 − αx2 − βx3 + c1,

u2 =
M1

2EJ1

(νx2
1 − νx2

2 − x2
3) + αx1 − γx3 + c2,

u3 =
M1

EJ1

x2x3 + βx1 + γx2 + c0.

(4.59)

The integration arbitrary constants are determined by the boundary conditions on
the beam ends; if we fix the end S0 so that

u1 = u2 = u3 = u1,3 = u2,3 = u2,1 = 0, (4.60)

then we get

α = β = γ = c0 = c1 = c2 = 0 (4.61)

and finally the displacement field u is defined by the components

u1 = −ν M1

EJ1

x1x2,

u2 =
M1

2EJ1

(νx2
1 − νx2

2 − x2
3),

u3 =
M1

EJ1

x2x3.

(4.62)

Looking at u3 or also at eq. (4.44), we can see that fibers on the opposite sides of
axis x1 suffer deformations of the opposite sign: elongation on one side, contraction
on the other one, while the fibers on axis x1 remain unchanged. This confirms the
name neutral axis given to x1.
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4.8.4 The Euler-Bernoulli law

Let us now consider a point of the central axis, o = (0, 0, x3); the displacement of
such a point is

u0 =

(
0,− M1

2EJ1

x2
3, 0

)
, (4.63)

so its new position o′ = o+ u0 has coordinates

ξ1 = 0,

ξ2 = − M1

2EJ1

x2
3,

ξ3 = x3.

(4.64)

The deformed axis of the beam is hence a parabola. The plane that contains the
deformed axis is called the plane of bending. In this case, it is the same plane
containing the couple M1.

The curvature χ of the axis is given by the general formula for the curvature of a
plane curve:

χ =
ξ2,33

[1 + (ξ2,3)2]
3
2

. (4.65)

When, as in our case, strains are small, then

|ξ2,3| � 1, (4.66)

so it can be neglected in front of 1, which gives the approximation for the curvature

χ ' ξ2,33. (4.67)

From this last and from eq. (4.642) we get hence

χ = − M1

EJ1

, (4.68)

which is the celebrated Euler-Bernoulli law for bending1. It relates the cause,
the bending moment M1, to the effect, the curvature χ, through the mechanical
and geometrical characteristics of the beam, condensed in the bending stiffness
EJ1.

1This result can be obtained also through a more direct, geometrical approach: we assume
that any cross section remains plane and orthogonal to the deformed axis; this assumption, which
is the constitutive assumption of the Euler-Bernoulli beam theory was a result in the rigorous
demonstration done before. Then, the length of a fiber on the central axis x3 subtended by a
small angle dθ is

ds0 = R dθ,
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4.8.5 Deformation of the cross section

Equation (4.64) gives the tangent t to the deformed central line:

t = o′,3 = (0,−M1x3

EJ1

, 1) (4.69)

or, introducing the radius of curvature

R =
1

χ
=
EJ1

M1

, (4.70)

t = (0,−x3

R
, 1). (4.71)

Equation (4.623) shows that all the points of a cross section remain in a plane: any
cross section is transformed into another planar section, turned with respect to the
original one. In addition, because the cross section remains planar, we can neglect,
for the while, the displacement in the plane of the cross section and consider only
its rigid rotation about the neutral axis. So,

u =

(
0,− x

2
3

2R
,
x2x3

R

)
(4.72)

and any point p = (x1, x2, x3) of such a section is transformed into

p′ = p+ u = (x1, x2 −
x2

3

2R
, x3 +

x2x3

R
). (4.73)

where R is the radius of curvature of the deformed central axis; such a fiber is not stretched. For
the Euler-Bernoulli assumption, the length of a (stretched) fiber subtended by the same angle
dθ but at a distance x2 from the central axis is

ds = (R+ x2) dθ,

so that the extension ε33 is given by

ε33 =
ds− ds0

ds0
=

(R+ x2) dθ −R dθ

R dθ
=
x2

R
.

We now assume that such an extension is produced by a longitudinal stress σ33, which is given
by the Lamé’s equations as

σ33 = Eε33 =
x2

R
E.

Remembering that the axes x1 and x2 are principal central axes of inertia, when integrating upon
the cross section the stress σ33 and its moments about the three axes, the only non vanishing
term is the moment about the axis x1 and we obtain easily

M1 = −
∫
S

σ33x2 ds = −E
R

∫
S

x2
2 ds = −EJ1

R
→ χ =

1

R
= − M1

EJ1
.

The sign − is due to the convention on the positive value for M1.
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Then, because o′ = (0,−x2
3/2R, x3), eq. (4.64), any vector p′ − o′, lying in the

plane of the deformed section, is of the type

p′ − o′ = (x1, x2,
x2x3

R
) (4.74)

and finally
t · (p′ − o′) = 0, (4.75)

i.e., ∀x3, the tangent to the deformed central line is orthogonal to any vector of the
deformed cross section passing by x3. This means that any cross section remains
not only planar, but also perpendicular to the axis also after deformation.

This result is a characteristic of pure bending of beams in the framework of the
Saint-Venant Problem, and it proceeds, if it is not taken as a basic hypothesis, see
note 1, from the initial assumption of linear distribution for σ33. To be remarked
that this result is correct only for pure bending, i.e. for bending produced by end
couples, while strictly speaking it is not correct for bending accompanying the
shear, see Sect. 4.10.

To study how a cross section at x3 = ζ is deformed in its plane, we consider a
rectangular section of width 2b and height 2h. The two vertical sides x1 = ±b will
go into

η1 = ±b
(

1 +
νM1

EJ1

x2

)
. (4.76)

The two vertical sides go hence into two inclined straight lines, whose inclination
does not depend upon the position of the section along the beam axis.

The upper and lower sides x2 = ±h will go into

η2 = ±h+
M1

2EJ1

(νx2
1 − νh2 − ζ2). (4.77)

The two horizontal sides deform hence into a parabola and the cross section be-
comes like in fig. 4.4

4.8.6 Biaxial bending

The case of M2 is evidently analogous and the computations lead to

σ33 = −M2x1

J2

, (4.78)

with J2 the moment of inertia of the cross action about the axis x2.
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Figure 4.4: Deformation of a rectangular cross-section for pure bending.

The case of biaxial bending, i.e. of the contemporary presence of both M1 and M2,
is simply obtained summing up the contributions of M1 and M2:

σ33 =
M1x2

J1

− M2x1

J2

. (4.79)

The equation of the neutral axis is hence

σ33 = 0 → M1x2

J1

=
M2x1

J2

, (4.80)

that can be transformed into

x2 =
1

tanψ

(
ρ1

ρ2

)2

x1, (4.81)

where

ψ = arctan
M1

M2

(4.82)

while

ρi :=

√
Ji
A

(4.83)

is the radius of gyration of the cross section with respect to axis xi, i = 1, 2.

By consequence, the inclination θ of the neutral axis on x1 is

tan θ =
x2

x1

=
1

tanψ

(
ρ1

ρ2

)2

→ tan θ tanψ =

(
ρ1

ρ2

)2

. (4.84)
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Figure 4.5: Biaxial bending.

The general situation is that depicted in Fig. 4.5. Let us consider the angle

θ −
(π

2
− ψ

)
= θ + ψ − π

2
; (4.85)

it is equal to π/2, i.e. M and the neutral axis are orthogonal, ⇐⇒

θ + ψ − π

2
=
π

2
→ θ + ψ = π ⇐⇒ tan(θ + ψ) = 0. (4.86)

But

tan(θ + ψ) =
tan θ + tanψ

1− tan θ tanψ
=

1
tanψ

(
ρ1
ρ2

)2

+ tanψ

1−
(
ρ1
ρ2

)2 = 0

⇐⇒ tan2 ψ = −
(
ρ1

ρ2

)2

,

(4.87)

which is impossible: M and the neutral axis cannot be orthogonal in the case of
biaxial bending. This means that whenever M is not aligned with one of the two
principal central axes of inertia, then M is not orthogonal to the neutral axis.

4.8.7 Bending and extension

If an axial force N is added to the bending moments M1 and M2, because all of
these internal actions produce exclusively σ33 as stress components, their effect
can be added directly and we get

σ33 =
N

A
+
M1x2

J1

− M2x1

J2

=
1

A

(
N +

M1x2

ρ2
1

− M2x1

ρ2
2

)
. (4.88)
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It is immediately recognized that the neutral axis does not pas by the centroid of
the cross section and in general it can be completely exterior to it. In such a case,
the stress σ33 does not change of sign on the section. The general analysis of such
problem needs some elements of projective geometry and it is beyond the scope of
this text.

4.9 Torsion

For the case of torsion, the cylinder is acted upon on the end S0 by tractions whose
resultant is null and whose resultant moment is, for any cross section,

MT = M3 e3. (4.89)

The study of torsion is, mathematically speaking, much more complicate than that
of extension or bending. That is why, following also a historical order, we examine
first the simplest case of circular cross section, then we will pass to consider the
problem of torsion for a generally shaped cross section and finally we will consider
an elegant approximate solution for thin hollow sections.

4.9.1 The circular section

We consider a circular section of radius R and we make the following conjecture
about the displacement vector u (Coulomb, 1770): each point p moves rigidly
on a circular arc, remaining on its own section S, turning of an angle which is
proportional to the distance of S from the end S0, assumed as clamped. With such
an assumption, see Fig. 4.6,

∀p = (x1, x2, x3) ∈ S,


u1 = r cos(α + θ)− r cos θ,

u2 = r sin(α + θ)− r sin θ,

u3 = 0,

(4.90)

with r = |p − o| and α is the angle by which the cross action is rigidly rotated.
For a small rotation,

u1 = r(cosα cos θ − sinα sin θ − cos θ) ' r(cos θ − α sin θ − cos θ)

= −r α sin θ = −α x2,

u2 = r(sinα cos θ + cosα sin θ − sin θ) ' r(α cos θ + sin θ − sin θ)

= r α cos θ = α x1,

u3 = 0.

(4.91)
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Figure 4.6: Torsion of a circular section.

About the dependence of u from x3, for the assumption that α(x3) is proportional
to the distance from S0 we have

α(x3) = α x3, (4.92)

with the constant α that is called the torsion or twist angle; α measures the
relative rotation of two cross sections at unit distance.

Finally, the assumed displacement field is

u1 = −α x2x3,

u2 = α x1x3,

u3 = 0.

(4.93)

Coulomb gave the first this kinematics of the torsion, but wrongly he assumed it
valid for any cross section, which is false.

The strain field is hence

ε =
∇u +∇>u

2
=
α

2
[−x2(e1 ⊗ e3 + e3 ⊗ e1) + x1(e2 ⊗ e3 + e3 ⊗ e2)] , (4.94)

or in matrix form

ε =
α

2

 0 0 −x2

0 0 x1

−x2 x1 0

 ; (4.95)

because trε = 0, the deformation is isochoric. By the Lamé’s equations we get the
stress field:

σ = 2µε+ λtrε I = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1) + x1(e2 ⊗ e3 + e3 ⊗ e2)] , (4.96)
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or in matrix form

σ = µα

 0 0 −x2

0 0 x1

−x2 x1 0

 . (4.97)

It is immediate to check that such a stress field satisfies the equilibrium and the
Beltrami-Michell’s compatibility equations. For what concerns the boundary con-
ditions,

• on Sl, nl = (
x1

R
,
x2

R
, 0) so

σ nl = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] (
x1

R
e1 +

x2

R
e2) = o;

(4.98)

• on S0, n0 = (0, 0,−1) so

σ n0 = −µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] e3 = µα(x2,−x1, 0);
(4.99)

• on S1, n1 = (0, 0, 1) so

σ n1 = µα [−x2(e1 ⊗ e3 + e3 ⊗ e1)

+x1(e2 ⊗ e3 + e3 ⊗ e2)] e3 = µα(−x2, x1, 0).
(4.100)

We know that the resultant moment of the stress on each basis equals the torque:

M3 e3 =

∫
S1

(x1, x2, 0)× µ α(−x2, x1, 0) ds

= µ α

∫
S1

(x2
1 + x2

2) ds e3 = µ α J0 e3,

(4.101)

with J0 the polar moment of inertia of the section; for the circle,

J0 =
πR4

2
(4.102)

hence

M3 =
πR4

2
µ α (4.103)

and

82



üij rl

I_/\ \-
-.-t \

4lt
t(+)

al

Figure 4.7: Stress in a twisted circular section.

α =
M3

µ J0

. (4.104)

The torsion angle is hence proportional to the torque; the quantity µ J0 is the
torsional stiffness of the beam. Finally, we get

σ13 = −M3 x2

J0

, σ23 =
M3 x1

J0

, (4.105)

formulae algebraically similar to that of Navier, eq. (4.43): the material is mostly
stressed near the boundary and of course, for the central symmetry of the circular
section, these values are those of the stress on any couple of orthogonal diameters,
see Fig. 4.7. Hence, more generally, we can wrote that on any diameter the
tangential stress τ varies with the distance r from the center like

τ =
M3 r

J0

=
2M3r

π R4
→ τmax =

2M3

π R3
. (4.106)

4.9.2 Sections of any shape

Let us consider now a cross section of any shape, different from the circular one.
The displacement field u cannot be of the type used for the circle, because the
boundary conditions on Sl should not be satisfied. In fact, for a general section
we have, see Fig. 4.8,

nl =

(
−dx2

d`
,
dx1

d`
, 0

)
(4.107)

so with the solution valid for the circular section we should obtain
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Figure 4.8: Outward normal nl in a generally shaped section.

σ nl = µ α

(
0, 0, x1

dx1

d`
+ x2

dx2

d`

)
= o → x1dx1 + x2dx2 = 0, (4.108)

which is the differential equation of a family of circles: the circular section is the
only one compatible with the state of stress (4.97).

We then pose

u1 = −α x2x3,

u2 = α x1x3,

u3 = α ϕ(x1, x2),

(4.109)

with ϕ(x1, x2) the warping function, so called because it describes the warping, i.e.
the antiplane deformation, of the cross section. Then

ε =
∇u +∇>u

2
=
α

2
[(−x2 + ϕ,1)(e1 ⊗ e3 + e3 ⊗ e1)

+(x1 + ϕ,2)(e2 ⊗ e3 + e3 ⊗ e2)] ,

(4.110)

or in matrix form

ε =
α

2

 0 0 −x2 + ϕ,1
0 0 x1 + ϕ,2

−x2 + ϕ,1 x1 + ϕ,2 0

 ; (4.111)

because it is again trε = 0, the deformation is still isochoric. The Lamé’s equations
give the stress:

σ = 2µε+ λtrε I = µα[(−x2 + ϕ,1)(e1 ⊗ e3 + e3 ⊗ e1)

+ (x1 + ϕ,2)(e2 ⊗ e3 + e3 ⊗ e2)],
(4.112)
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or in matrix form

σ = µα

 0 0 −x2 + ϕ,1
0 0 x1 + ϕ,2

−x2 + ϕ,1 x1 + ϕ,2 0

 . (4.113)

The equilibrium equations are

σ13,3 = 0, σ23,3 = 0, σ13,1 + σ23,2 + σ33,3 = 0; (4.114)

the first two equations are identically satisfied, while the last one gives

ϕ,11 + ϕ,22 = 0 → ∆ϕ = 0; (4.115)

hence, ϕ(x1, x2) must be a harmonic function.

On the boundary Sl, nl = (n1, n2, 0) and we have

σ nl = µ α (0, 0, σ13n1 + σ23n2) = o, (4.116)

which gives the equation

σ13n1 + σ23n2 = 0 → ϕ,1n1 + ϕ,2n2 = x2n1 − x1n2. (4.117)

The quantity at the first member is the derivative of ϕ along nl, while that at the
second member is a known quantity ∀p ∈ ∂S, see Fig. 4.9:

nl × (p− o) = (n1, n2, 0)× (x1, x2, 0) = (0, 0, ξ), (4.118)

with
ξ(x1, x2) = x2n1 − x1n2. (4.119)

So, finding ϕ(x1, x2) corresponds to solve the following Neumann problem:
∆ϕ(x1, x2) = 0 in S,

dϕ

dnl
= ξ(x1, x2) on ∂S,

(4.120)

with ξ(x1, x2) a known function ∀p ∈ ∂S and depending on the shape of S. The
solution depends hence on the shape of the cross section S.

The existence of a solution to this problem is guaranteed if∮
∂S

dϕ

dnl
d` = 0, (4.121)
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Figure 4.9: Torsion of a generally shaped section.

which is the case here:∮
∂S

dϕ

dnl
d` =

∮
∂S

(x2n1 − x1n2) d` =

∮
∂S

(x1dx1 + x2dx2) = 0 (4.122)

because the integrand is the exact differential of (x2
1 + x2

2)/2+const.

The resultants of the stresses σ13 and σ23 on each section are still null, as it must
be; in fact, because ϕ(x1, x2) is harmonic, for the Gauss theorem and for the
boundary condition on ∂S, we get∫

S

σ13 ds = µ α

∫
S

−x2 + ϕ,1 ds

= µ α

∫
S

[x1(ϕ,1 − x2)],1 + [x1(ϕ,2 + x1)],2 ds

=

∮
∂S

x1

(
dϕ

dnl
− x2n1 + x1n2

)
d` = 0.

(4.123)

A similar proof can be given for σ23. For the resultant moment, we get

M3 =

∫
S

(p− o)× (σ13, σ23, 0) ds = µ α

∫
S

(x2
1 + x2

2 + x1ϕ,2 − x2ϕ,1) ds. (4.124)

We put
J0

q
:=

∫
S

(x2
1 + x2

2 + x1ϕ,2 − x2ϕ,1) ds (4.125)

where

q =
J0

J0 +
∫
S
(x1ϕ,2 − x2ϕ,1) ds

(4.126)

is the torsion factor. Finally, we get

M3 = µ α
J0

q
(4.127)
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and hence

α =
q M3

µ J0

. (4.128)

The quantity µ J0/q is the torsional stiffness of the section. So, what has changed
with respect to the circular case is the calculation of the torsional stiffness, now
affected by the torsion factor. It can be proved that q is always greater than 1,
and, as it can be easily recognized, it is equal to 1 only for the circular section.
This means that, the torsion angle α is smaller for a circular section than for any
other section sharing the same polar moment of inertia and made of the same
material: the circular section is the stiffest one for torsion.

All the problem is reduced to find, for a given section, the warping function
ϕ(x1, x2). This is not possible, in general: only some few solutions are known.
Numerical approaches and approximated solutions are hence to be used.

4.9.3 The Bredt’s approximate solution

The most famous approximate solution is that of Bredt (1896) for thin-walled
hollow sections, see Fig. 4.10. We know that on the boundary of the section, ∂S,
the traction is null and that the tangential stress vector τ , defined in eq. (4.12),
is parallel to ∂S.
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Figure 4.10: General scheme for the Bredt’s solution.

The first hypothesis of Bredt is that τ is parallel to the midline C ∀t, see Fig. 4.10
(t is a curvilinear abscissa chosen arbitrarily along the midline C). Then, because
the section is thin-walled, the thickness h(t) is much smaller than the characteristic
dimension d of the cross section, e.g. d = sup{chords}, we can assume that τ is
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practically constant over the thickness h(t) ∀t: this is the second hypothesis of
Bredt.

The consequence of these hypotheses is that

τ(t) h(t) = const. (4.129)

In fact, isolating a slice of wall of the cross section, Fig. 4.11, for the equilibrium
it must be

τ1 h1 dx3 = τ2 h2 dx3 ⇒ τ h = const. (4.130)

This is analogous to what happens in hydrodynamics: the flux is constant for
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Figure 4.11: Scheme of the tangential stress for the Bredt’s solution.

permanent flows. We can now calculate τ , the norm of τ :

M3e3 =

∮
C

(p− o)× τ h dt = τ h

∮
C

(p− o)× e dt, (4.131)

because of eq. (4.129); e is the unit vector tangent to the midline C. Hence, the
term (p− o)×e is the area of the parallelogram defined, ∀p, by the vectors (p− o)
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and e. Hence, ∮
C

(p− o)× e dt = 2Ω e3, (4.132)

with Ω the area of the surface surrounded by C; then

M3e3 = 2τ h Ω e3 (4.133)

so finally we obtain the first formula of Bredt:

τ =
M3

2Ω h
. (4.134)

This simple, approximate solution fulfills, in the mean ∀h(t), only the equilibrium
equations, not the compatibility ones; it is based upon merely static considerations,
i.e. on equilibrium, and also the constitutive law is not used for it, which is hence
valid also for non-elastic materials. Nevertheless, it gives good results for small h(t)
and shows that, just like the speed of water increases when the section decreases,
so the tangential stress τ increases when the wall thickness h(t) decreases.

Through the PVD it is also possible to compute the rotation θ of a cross section:
for the situation in Fig. 4.12 it is:
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Figure 4.12: Scheme for the calculation of the twist angle with the Bredt’s solution.

• virtual work of the external actions: MBδθ;

• virtual work of the internal actions:
∫
V
σ · δε dv.

We take as virtual displacements and strains the actual ones: δθ = θB and δε = ε.
So, for the inverse Lamé’s equations we get

MB θB = 2

∫
V

(σ13 ε13 + σ23 ε23) dv =
1

µ

∫
V

(σ2
13 + σ2

23) dv. (4.135)
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But
σ2

13 + σ2
23 = τ 2 (4.136)

and τ does not depend upon x3; hence, indicating with ` the length of the midline
C,

MB θB =
`

µ

∫
S

τ 2 ds =
`

µ

∮
C

τ 2 h dt =
`

µ

(
MB

2Ω

)2 ∮
C

h

h2
dt, (4.137)

so finally

θB =
MB`

4µΩ2

∮
C

1

h
dt. (4.138)

The quantity
1

4µΩ2

∮
C

1

h
dt. (4.139)

is purely geometric and it is often put in the form

1

4µΩ2

∮
C

1

h
dt :=

q

J0

, (4.140)

with q the torsion factor and J0 the polar moment of inertia. Finally,

θB = q
MB `

µ J0

. (4.141)

As a final remark, we notice that all the results concerning torsion apply only to
compact shapes. Thin-walled open sections, in particular, cannot be treated in
this way. This topic is beyond the scope of this text and the reader is addressed
to the classical literature on beams theory.

4.10 Shear

We come now to examine the last case, that of shear. We must immediately specify
that pure shear is not possible: shear is always joint to bending, because, for the
equilibrium, the presence of a shear force at an end of the beam produces always
a bending moment (that is why the case of bending examined in sect. 4.8, where
the bending of the beam is produced uniquely by couples applied at the ends of
the beam, is sometimes called pure bending).

In this case, the beam is loaded on the end S0 by the shear

T0 = F1 e1 + F2 e2. (4.142)

90



The applied forces F1 and F2 coincide with the value of the two shear forces T1

and T2 for x3 = 0, so we will simply indicate them as such, as usually done in the
literature.

Like in the case of bending, we examine separately the two shears T1 and T2 and
after we will use the Principle of Superposition of the Effects. Let then us start
with T2, see Fig. 4.13.

nt\)€lI g--rt

r
{,

L

Figure 4.13: Scheme for the analysis of the shear.

For the equilibrium of the part of beam between S0 and S(x3) we have that

T2(x3) = T2, M1(x3) = T2 x3. (4.143)

Hence, M1(x3) is not constant along the axis of the beam and, as anticipated, it is
not possible the existence of shear without bending. Nevertheless, still using the
superposition of the effects, we ignore the presence of M1(x3) and examine only
the effects of T2.

The rigorous analysis of shear is very cumbersome, and beyond the scope of this
text. Fortunately, an approximate solution, satisfying, like the Bredt’s solution,
only to equilibrium, is rather easy to be found. We can roughly justify the use of
an approximate solution by the following consideration: for beams with `� d, like
in the Saint-Venant problem, bending largely dominates over shear, in terms of
stresses and deformations. Let us show this by a rough computation: for a beam
of rectangular section, b × h, subjected to shear, in correspondence to the most
solicited section, x3 = `, bending produces the highest stress

σ33 =
M1 x

max
2

J1

=
6T2 `

b h2
. (4.144)

For the shear stress σ23, let us assume the rude approximation of uniform stress
on the cross section (inadmissible, because it violates the result that stress must
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be tangential to the border of the section), which gives

σ23 =
T2

b h
, (4.145)

so that
σ33

σ23

=
6`

h
(4.146)

and because ` � h, then σ33 � σ23. It is is then sufficient an approximate
evaluation of the shear effects, because they are always much smaller than those
of bending, in the Saint-Venant problem.

The approximate solution for shear is due to Jourawski (1856); the first assumption
is that the cross section is symmetric with respect to the shear axis (in this case,
the axis x2). The second assumption concerns the distribution of σ23: Jourawski
assumes that it is constant on each horizontal chord, i.e. that σ23 is independent
from x1:

σ23 = σ23(x2, x3). (4.147)

This assumption violates the fundamental result of the Saint-Venant problem:
tractions are tangential to the border of the cross section. Then, a third hypothesis
is made: on the border of the section we assume that

σ13 = σ23 tanα, (4.148)

with α the angle between σ23 and the tangent to the border, see Fig. 4.14 a). In
this way, the equilibrium on the border is satisfied.

We need a fourth hypothesis, about the variation of σ13 along a horizontal chord:
we admit a linear variation between the two ends of a chord, see Fig. 4.14 b):

σ13 = σ23 tanα
x1

η
, (4.149)

with η(x2) the length of half a chord.

The stress components must be equilibrated, in particular they must satisfy the
third equilibrium equation of Cauchy:

σ13,1 + σ23,2 + σ33,3 = 0. (4.150)

The Naviers’s formula gives us

σ33 =
M1x2

J1

=
T2x2x3

J1

, (4.151)
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Figure 4.14: The shear stresses in the Jourawski solution.

so injecting it, along with eq. (4.149), into eq. (4.150) we obtain(
σ23 tanα

x1

η

)
,1

+ σ23,2 +

(
T2x2x3

J1

)
,3

= 0. (4.152)

But σ23 does not depend upon x1, while

tanα =
dη(x2)

dx2

, (4.153)

so we have

σ23
dη

dx2

1

η
+ σ23,2 +

T2x2

J1

= 0 → σ23
dη

dx2

+ η
σ23

dx2

= −ηT2x2

J1

→

d(ησ23)

dx2

= −ηT2x2

J1

→ d(ησ23) = −ηT2x2

J1

dx2.

(4.154)

We integrate now between −xo2, upper limit of the cross section, and the position
x2 of the actual chord, upon which we want to determine σ23:∫ x2

−x02
d(ησ23) = −

∫ x2

−x02
η
T2x2

J1

dx2 → σ23 = − 1

2η

T2

J1

∫ x2

−x02
2η x2 dx2. (4.155)

The last integral in the equation above is just the opposite of the static moment S,
with respect to the axis x1, of the portion of the cross section between the upper
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limit and the chord at x2. So finally, calling b = 2η the length of the chord we get
the Jourawski’s formula:

σ23 =
T2S
b J1

. (4.156)

Generally speaking, this solution does not satisfy the Beltrami-Michell compati-
bility equations. Nevertheless, it can be checked that for the case of rectangular
sections, the Beltrami-Michell equations are satisfied. So, for the Kirchhoff theo-
rem, the Jourawski’s solution is the correct one, for rectangular sections.

4.11 Yielding

The results of the Saint-Venant Problem let us calculate the state of stress at any
point of a beam. Generalizing these results to more general cases (presence of
body forces, variable section, forces on Sl etc.) is customary and supported by the
results of experience.

The knowledge of σ allows for verifying the safety of the beam. This can be done
if a yielding criterion is specified. A yielding criterion defines a limit condition,
usually stating the transition from a reversible, elastic state to an irreversible one.
Such a criterion is needed to transform the set of the σij to a unique equivalent
stress, according to the criterion, to be compared to the admissible strength, mea-
sured by, normally, tensile tests on the material composing the structure.

The very question is hence the choice of the yielding criterion. To give a detailed
account of the different yielding criteria existing in the literature is far beyond the
scope of this text, so we restrict ourselves to the most popular among the criteria
for isotropic elastic materials: the Huber-Hencky-Von Mises criterion (in short
HHVM).

According to this criterion, yielding is attained when the deviatoric elastic energy
(see Ex. 2, Chapt. 3):

Ud =
1

2
σd · εd (4.157)

reaches a critical value. Generally speaking, it is easy to show that

Ud =
1

4µ
σd · σd =

1

4µ

(
σ − 1

3
trσ I

)
·
(
σ − 1

3
trσ I

)
=

1

12µ
(3trσ2 − tr2σ)

=
1

6µ
[σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2
12 + σ2

13 + σ2
23)].

(4.158)
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With the principal stresses, one gets

Ud =
1

6µ
[σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ1σ3 − σ2σ3]

=
1

4µ
[(σ1 − p)2 + (σ2 − p)2 + (σ3 − p)2], p =

1

3
trσ.

(4.159)

The limit condition is hence
Ud ≤ k0, (4.160)

with k0 an experimentally determined value.

For the case of a tensile stress, the one existing in the unidirectional traction test
normally used for characterizing the strength of isotropic materials, say

σ = σ1(e1 ⊗ e1), (4.161)

it is

Ud =
1

4µ

[(
σ1 −

σ1

3

)2

+
2

9
σ2

1

]
=

1

6µ
σ2

1. (4.162)

So, at the limit state, when σ1 reaches the value of the yielding stress, σ0, we have

k0 =
1

6µ
σ2

0. (4.163)

The limit condition of the HHVM criterion is hence

σeq =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2
12 + σ2

13 + σ2
23) ≤ σ0,

(4.164)
or with the principal stresses

σeq =
√
σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ1σ3 − σ2σ3 ≤ σ0. (4.165)

For the case of the Saint-Venant Problem, σ11 = σ22 = σ12 = 0 everywhere in the
beam, so the criterion reduces to

σeq =
√
σ2

33 + 3(σ2
13 + σ2

23) ≤ σ0 (4.166)

and remembering that the norm τ of the tangential stress τ , eq. (4.12), is

τ =
√
σ2

13 + σ2
23 (4.167)

we finally obtain the well known formula

σeq =
√
σ2

33 + 3τ 2 ≤ σ0, (4.168)

which is normally used for checking the safety of metallic beams. The term σeq is
often called the Von Mises (equivalent) stress.
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4.12 Exercises

1. Use the representation theorem for rotations

R = I + sinα W + (1− cosα)W2,

with W the axial tensor of the rotation axis and α the amplitude of the
rotation, to show that the displacement field of the torsion for a circular
section is the one given in eq. (4.93).

2. Prove that the solution for the torsion of circular bars is valid also for a
circular pipe; what does it change in the formula for the tangential stress τ?

3. Prove that the choice of the origin of the axes, o, is immaterial for the case
of torsion.

4. Show that the exact solution for the torsion of an elliptical section of equation

x2
1

a2
+
x2

2

b2
= 1

is given by the warping function

ϕ = −a
2 − b2

a2 + b2
x1x2

and develop the expression for the tangential stress τ and for the torsion
factor q.

5. A bar is stretched by an axial force F . If the cross section area is A which
is the highest shear and on which elements of surface does it act upon?

6. A beam of cross section area A is stretched by a force F and its lateral
contraction is blocked. Show that the effective Young’s modulus is

E ′ =
1− ν

(1− 2ν)(1 + ν)
E

and determine the highest shear and the surface element where it acts upon.

7. Show that the strain energy stored in a beam stretched by a load p uniformly
distributed over the end sections is, for unit volume,

U = Us + Ud with Us =
p2

18κ
, Ud =

p2

6µ

and express the ratio Ud/Us. What happens to this ratio when the Poisson’s
coefficient varies from −1 to 1/2? Finally, calculate U as a function of
N = pA, E and ν.
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8. Show that for a cylindrical shaft acted upon by a torque M3 it is

Us = 0, Ud =
τ 2

2µ

and calculate the whole energy stored in a beam of length `, as a function of
M3, using the theorem of Clapeyron.

9. Show that for a beam bent by end couples M1 it is

Us =
1

18κ

M2
1x

2
2

J2
1

, Ud =
1

6µ

M2
1x

2
2

J2
1

.

Then, express U as a function of E and determine the whole strain energy
stored in a beam of length `. Find this same last result using the theorem
of Clapeyron.

10. For a beam acted upon by a shear force T2 on S0 show that, for the only
stress field associated to T2 and not to the related bending, it is

Us = 0, Ud =
1

2µ

(
T2S
b J1

)2(
1 +

4 tan2 α x2
1

b2

)
.

Calculate then the whole energy stored in a beam of length ` and show that
it can be put in the form

U tot
T = χ

T 2
2 `

2GA
,

where χ is a numerical coefficient called the shear factor, depending upon
the cross section shape, to be specified.

11. Still for the case of the previous exercise, show that the whole energy stored
in the beam for the bending associated to the shear force is

U tot
M =

T 2
2 `

3

6EJ1

.

12. Considering the results of the last two exercices, express the ratio

γ =
U tot
T

U tot
M

as function of the slenderness of the rod

λr =
`

ρ
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where

ρ =

√
J1

A

is the radius of gyration of the cross section of the rod. What consequences
can be drawn?

13. Examine the case of a rectangular cross section submitted to the shear T2;
find the distribution of σ13 and σ23 over the section, the maximum value of
the tangential stress and the shear factor.

14. Using the results of the last two exercices, express the ratio λr for a rod with
rectangular section.

15. Study the stress state on a circular section submitted to a pure shear.

16. Determine the tangential stress τ at any point of a square hollow section
submitted to a shear T and a torque MT .

17. Determine the stress variation on a I-shaped section submitted to a shear
along the vertical flange.

18. A I-shaped section is submitted to a moment M1 and a shear force T2. Cal-
culate the Von Mises equivalent stress in the critical points of the section.

19. A rectangular section is submitted to an axial force N and a bending moment
M . Determine the variation of σ33 on the section and the position of the
neutral axis. Then, examine the same problem reducing the actions to a
unique axial force applied with an eccentricity e to be determined. For
which values of e the stress σ33 over the section does not change of sign?

20. Imagine that in the case of the previous exercise the material cannot with-
stand tensile stresses, like in a simple contact problem. Consider the case of
a compressive axial force N and study what happens in the section for any
possible value of the eccentricity e.

21. Consider a section of the form in the figure; it is submitted to a shear T2

applied along the axis x2. Determine the shear stress at any point of the
cross section and prove that T2 can produce a torsion on the section unless
it is applied at a point CS, the shear center, that will be determined.
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22. A section of steel with section I as in the figure is submitted to a shear force

T2 and a bending moment M1. Knowing the yielding stress σ0, determine
if the section can withstand the applied actions using the HHVM criterion.
Data: h = 400 mm, t = 12 mm, e = 8 mm, b = 200 mm, T2 = 2000 KN,
M1 = 50 KNm, σ0 = 160 MPa.
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23. Calculate the stress state for the beam in the figure, having a hollows square
section. Then, check the safety of the structure using the HHVM criterion,
knowing that the limit stress is σ0. Data: T = 4 KN, b = 200 mm, t = 6
mm, ` = 4 m, σ0 = 160 MPa.

24. Check the safety of the structure in the figure with the HHVM criterion.
Data: ` = 6 m, d = 2 m, N = 2 KN, T = 3 KN, M = 8 KN, h = 200 mm,
b = 80 mm, t = 8 mm, e = 4 mm, σ0 = 160 MPa.
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Chapter 5

Rod theories

5.1 Introduction

The results of the Saint-Venant Problem greatly simplify the study of beams. In
fact, the whole stress state at any point of the beam can be found if the internal
actions, N, T1, T2,M1,M2 and M3 are known.

The problem of the study of structures composed by beams is hence reduced to
the study of the internal actions. These ones depend only upon the position along
the beam axis, say the axis z. So the equations concerning N, T1 etc. can be only
ordinary differential equations (ODEs), not partial differential equations (PDEs),
which simplifies considerably the problem and motivates for the study of beams
reduced , ideally, to their axis.

Such theories, idealizing a beam as a one-dimensional element, are called rod the-
ories (a rod is considered here to be a beam reduced to its only axis). The objec-
tive of the rod theories is hence to provide balance, compatibility and constitutive
equations for rods, i.e. for this special type of continuum.

5.2 Plane rods

In many practical cases, rods belong to a plane that contains one of their principal
axes of inertia of the cross section and are acted upon by loads that belong to such
a plane. This is the case of plane rods: the rods belong, also after the deformation,
to their original plane, where the loads act.
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The case of plane rods is much simpler than the general one, because the only
possible internal actions reduce to only N, T2 and M1 (that we will indicate, in
the following, simply by N, T and M , because there is no possibility of ambiguity
in the plane case). In the remainder of this Chapter, we will focus on plane rods;
nevertheless, it is not difficult to generalize the results of the plane case to the
general three-dimensional one, following the same approach illustrated below for
the plane case.

The objective is to write the balance, compatibility and constitutive equations for
plane rods, to arrive to a mechanical model for such elements. We will, namely,
introduce two classical models of rods, the more general Timoshenko’s one and the
very classical Euler-Bernoulli rod model.

5.2.1 Balance equations

Let us begin the study of plane rods with the balance equations. The general
situation is sketched in Fig. 5.1; loads p(z) and q(z) are the data of the problem.
The balance equations can be obtained applying the principle of the sections of
Euler to a piece of road between the positions z and z+ dz. The assumed positive
internal actions are those depicted in the figure. The equilibrium of the rod implies
that of the segment under scrutiny, submitted to the external loads and to the
internal actions transmitted to the segment by the rest of the rod through the end
sections. The balance give hence:
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Figure 5.1: General sketch for the rod’s balance equations.
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• equilibrium to axial force:

N(z + dz)−N(z) + r(z)dz = 0; (5.1)

• equilibrium to shear force:

T (z + dz)− T (z) + p(z)dz = 0; (5.2)

• equilibrium to bending moment (e. g. around the point of abscissa z):

M(z + dz)−M(z)− T (z + dz)dz − p(z)
dz2

2
−m(z)dz = 0. (5.3)

Developing the above expressions gives

N(z) +
dN(z)

dz
dz −N(z) + r(z)dz = 0,

T (z) +
dT (z)

dz
dz − T (z) + p(z)dz = 0,

M(z) +
dM(z)

dz
dz −M(z)− T (z)dz − dT (z)

dz
dz2 − p(z)

dz2

2
−m(z)dz = 0,

(5.4)

and neglecting the terms of order greater than the first we finally obtain the balance
equations for rods:

dN

dz
= −r,

dT

dz
= −p,

dM

dz
= T +m.

(5.5)

These differential equations, together with the boundary conditions on the ends of
the rod, are sufficient to determine N, T and M everywhere on the rod.

5.2.2 Compatibility equations

Let us now turn the attention on geometric considerations. In fact, we need a
link, the compatibility equations of the rods, between the displacements of the rod
and some internal kinematical quantities defining the deformation of the rod. The
general situation is that sketched in Fig. 5.2, where w is the axial displacement,
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Figure 5.2: General scheme of the kinematics of a rod.

v the deflexion, i.e. the displacement along y, β is the local rotation of the axis z
and ϕ that of the normal to the undeformed axis z.

We introduce first the extension ε, the internal kinematical descriptor of the
stretching of the axis z:

ε =
dw

dz
. (5.6)

Then, we define the curvature κ of the rod

κ = −dϕ
dz

; (5.7)

the sign − is due to the fact that in the Saint-Venant Problem the positive bending
moments are opposite to the positive concavity, see below.

Finally, we introduce the angular sliding or shear γ of the rod axis, describing how
a segment initially parallel to the rod axis changes in the deformation:

γ = β − ϕ. (5.8)

From fig. 5.2 we see that

ψ =
π

2
+ ϕ− β → γ =

π

2
− ψ = β − ϕ : (5.9)

γ measures the variation of the angle existing between the axis and a segment
orthogonal to it, from its initial value of π/2 to the final one of ψ. For small
perturbations,

tan β =
dv

dz
' β, (5.10)

so we have

γ =
dv

dz
− ϕ. (5.11)
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We remark that there is a substantial difference between a rod and a classical
continuum: in the rod theories, derivatives of angular quantities appear: a rod
is a polar continuum, i.e., unlike classical continuum bodies, it can transmit cou-
ples.

5.2.3 Constitutive equations

We have for the while only six equations, the balance, eq. (5.5), and the compat-
ibility ones, eqs. (5.6), (5.7) and (5.11), for a set of 9 unknowns on the whole:
N, T,M, v, w, ϕ, ε, κ and γ. We need hence three constitutive equations for the
rods; they can be derived using the results of the Saint-Venant Problem. The
approach is energetic: we write first the strain energy for a beam, Ub, between the
two sections 1 and 2:

Ub =
1

2

∫
Ω

σ · ε dv =
1

2

∫
Ω

σ2
33

E
+

1

µ
(σ2

13 + σ2
23) dv

=
1

2

∫ 2

1

∫
S

(
N

A
+
M y

J

)2
1

E
+

1

µ

(
TS
b J1

)2(
1 +

4 tan2 α x2

b2

)
ds dz

=
1

2

∫ 2

1

N2

EA
+
χT 2

µA
+
M2

EJ
dz.

(5.12)

Now, thinking at the beam as a rod, we write the energy Ur:

Ur =
1

2

∫ 2

1

(Nε+ Tγ +Mκ) dz. (5.13)

This result can be obtained applying the Calpeyron’s theorem at the segment dx
of the rod, considered as charged uniquely by the internal actions. Of course, the
solid being the same, it must be

Ub = Ur ∀N, T,M, (5.14)

which gives the conditions

Nε =
N2

EA
, Tγ =

χT 2

µA
, Mκ =

M2

EJ
, (5.15)

and finally the three constitutive equations for the rods:

N = EAε,

T =
µA

χ
γ,

M = EJκ.

(5.16)
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We remark that, because of the linearity of the problem, the internal actions are
proportional to their corresponding kinematical parameter. We dispose now of all
the equations for the rod theories.

The general problem is: knowing the applied actions p, q,m and the boundary
conditions, determine N, T,M, v, w and ϕ. To be noticed that the knowledge
of the constitutive equations allows for solving the problem also for hyperstatic
rods.

5.2.4 The Timoshenko’s rod

The compatibility equations can be replaced in the balance and constitutive equa-
tions to get:

• for extension

N = EAw′,

(EAw′)′ = −r,
+ b. c. (5.17)

• for shear

T =
µA

χ
(v′ − ϕ),[

µA

χ
(v′ − ϕ)

]′
= −p,

+ b. c. (5.18)

• for bending

M = −EJϕ′,

(−EJϕ′)′ = T +m =
µA

χ
(v′ − ϕ) +m.

+ b. c. (5.19)

These are the the equations of the Timoshenko’s rod model. In this model, any
straight segment originally orthogonal to the rod axis remains straight after the de-
formation, but not necessarily orthogonal to the tangent of the deformed axis.

N and w are uncoupled from T,M, v and ϕ, but these last are coupled, which
complicates the resolution.
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5.2.5 The Euler-Bernoulli rod

Since the XVIIIth century a simplified model has been proposed by L. Euler and
Jacob Bernoulli for the bending case: the basic assumption of the Euler-Bernoulli
rod theory is that

β = ϕ ⇒ γ = 0. (5.20)

Geometrically, this means the vanishing of the angular sliding: unlike in the Tim-
oshenko’s model, a segment originally orthogonal to the axis remains orthogonal
to the deformed axis: hypothesis of conservation of the normals.

For small perturbations, this assumption gives

ϕ = β ' v′ → κ = −ϕ′ = −v′′. (5.21)

The equations for N and ε are not affected by this assumption, while for M and
v we get

M = −EJv′′,
(−EJv′′)′ = T +m,

(EJv′′)′′ = p−m′.
+ b. c. (5.22)

These are the famous equations of the Euler-Bernoulli rod model. The problems
for N, T and M are uncoupled; the bending problem is reduced to a fourth-order
differential equation. For what concerns T , this can be obtained by the second
one of the above equations, not from the constitutive equation because this should
give T = 0 identically, which would imply M = constant, which is false. T can
be calculated directly by the equilibrium equation once M known, by differentia-
tion.

The above equations are valid for plane, rectilinear rods of any cross section, also
variable with z. For the very common case of constant cross section and material,
they simplify to

M = −EJv′′,
− EJv′′′ = T +m,

EJviv = p−m′.
+ b. c. (5.23)

The solution of eqs. (5.22) or (5.23), or in the general case of the Timoshenko’s
model, provides the displacement of the rod, determining hence its deformed shape,
the so-called elastica. Through the constitutive laws, the corresponding internal
action can also be obtained. The compatibility equations give finally the internal
kinematical descriptors of the deformation. The basic variables are hence the
components of displacement: v, w and, in the general theory, ϕ.
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5.2.6 The torsion equations

The results found for plane rods can be easily generalized to include an out-of-plane
effect, that of torsion MT . The general scheme is that in fig. 5.3:
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Figure 5.3: Scheme for the torsion of a rod.

• balance of the torsion:

MT (z + dz)−MT (z) +mt(z)dz = 0 →

MT (z) +
dMT (z)

dz
dz −MT (z) +mt(z)dz = 0 →

dMT

dz
= −mt;

(5.24)

• compatibility equations: the kinematical descriptor of torsion is the twist
angle θ; it is linked to the internal descriptor α, giving the relative rotation
of two sections separated by a distance dz by the relation

α =
dθ

dz
; (5.25)

• constitutive law: the strain energy of torsion for a beam is (see Ex. 8 Chapt.
4)

Ub =
1

2

∫ 2

1

q M2
T

µJ0

dz, (5.26)

and as a rod

Ur =
1

2

∫ 2

1

MT α dz, (5.27)

so we get

MT =
µ J0

q
α, (5.28)

a result already known from the Sant-Venant theory.
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Finally we have

MT =
µ J0

q
θ′,(

µ J0

q
θ′
)′

= −mt,

+ b. c. (5.29)

These equations for torsion are formally identical to those for extension, eq. (5.17).

5.3 The Mohr’s theorems

Let us now consider the case of a bent beam of constant stiffness EJ and without
distributed couples; then,

M ′ = T, T ′ = −p → M ′′ = −p, v′′ = −M

EJ
. (5.30)

These two differential equations are formally identical ; so, the elastica of a rod
coincides with the diagram of the bending moment M∗ generated by a fictitious
load

p∗ =
M

EJ
→ v = M∗. (5.31)

This is the Theorem of Mohr (1868); to remark that p∗ is the curvature. Deriving
eq. (5.31)2 gives

v′ = (M∗)′ = T ∗, (5.32)

i.e. the inclination ϕ of the elastica is given by the fictitious shear T ∗ (β ' tan β =
v′ for small perturbations). This is the corollary of Mohr.

The fictitious load p∗ is to be applied to a fictitious rod, having the same dimensions
of the real rod but whose boundary conditions must in general be changed:

• for a simply supported rod, the elastica has v = 0 and v′ 6= 0 at the edges;
the corresponding edges of the fictitious rod can be found considering that
in the correspondence it must be M∗ = 0 and T ∗ 6= 0; hence the fictitious
rod must be simply supported, like the real rod;

• for a cantilever: at the clamped edge, v = 0 and v′ = 0: the corresponding
edge in the fictitious rod must be a free edge, because in such a way M∗ = 0
and T ∗ = 0; at the free edge of the cantilever, v 6= 0 andv′ 6= 0: in the
corresponding edge of the fictitious rod it must be M∗ 6= 0 and T ∗ 6= 0, so
this edge must be clamped: a cantilever rod is transformed into a fictitious
cantilever where the edges are swapped.

Other situations can be studied in a similar way.
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5.4 The Principle of Virtual Displacements for

rods

The PVD can be adapted to rods; first of all, we define a state of virtual displacements-
deformations for a rod a state for which v, w, ϕ are

i. regular (continuous and with piecewise continuous derivatives);

ii. infinitesimal;

iii. independent from time.

Be N, T,M, p, r a field of equilibrated actions, i. e.

dN

dz
= −r,

dT

dz
= −p,

dM

dz
= T,

+ b. c. (5.33)

We can then prove the following
Theorem. (Principle of Virtual Displacements for rods): be {v∗, w∗, ϕ∗} a field
of virtual displacements for a rod of length ` in equilibrium under the action of
external and internal actions; then∫ `

0

(Nε∗ + Tγ∗ +Mκ∗) dz =

∫ `

0

(p v∗ + r w∗) dz. (5.34)

Proof. We remark first that the the left-hand side of the above equation is the
internal virtual work, produced by the internal actions for the deformations cor-
responding to the considered virtual displacements field, while to the right-hand
side we have the external virtual work, i.e. that produced by the external applied
loads. Hence, once more, the PVD states the equality of the internal and external
virtual works.

Because, by hypothesis, u∗, v∗ and ϕ∗ are sufficiently regular, we can calculate the
internal virtual deformations for the rod

ε∗ =
dw∗

dz
, γ∗ =

dv∗

dz
− ϕ∗, κ∗ = −dϕ

∗

dz
. (5.35)

Then, the internal virtual work becomes∫ `

0

[
N
dw∗

dz
+ T

(
dv∗

dz
− ϕ∗

)
−Mdϕ∗

dz

]
dz, (5.36)
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and integrating by parts we get

[N w∗ + T v∗ −M ϕ∗]`0 +

∫ `

0

[
ϕ∗
(
dM

dz
− T

)
− w∗dN

dz
− v∗dT

dz

]
dz. (5.37)

The boundary term, the first one in the above equation, vanishes because at the
edges it is either an internal action either its dual kinematical descriptor to vanish.
Because the actions are equilibrated, eqs. (5.33) are satisfied, so that the term in
brackets under the sign of integral vanishes and finally we get∫ `

0

(Nε∗ + Tγ∗ +Mκ∗) dz =

∫ `

0

(p v∗ + r w∗) dz. (5.38)

We remark that constitutive equations have not been used in the proof of the PVD,
so it is valid for any type of material behavior, not only for the elastic rods.

5.5 Hyperstatic systems of rods

The equations of rods allow, in principle, for study any problem of rod structures,
regardless of the degree of hyperstaticity. Nevertheless, practically, they can tackle
only simple cases, e.g. single rods or sometimes systems of two rods, because very
quickly they become too complicate to be solved.

Actually, this approach is complete: it provides any type of information (v, w,M
etc.) everywhere in a rod. So, the question is to know whether or not it can exist
an approach which, paying the price of a lower information, can be nevertheless
used effectively for more complicated rod structures.

The answer is yes, and such a method is actually based upon the PVD; such a
method is sometimes called the force method for solving hyperstatic rod structures,
because the unknown of the method are generalized forces (forces or couples).
We introduce it in the following Section, specifying since now that the method,
though based upon the PVD, valid for any type of material behavior, is valid only
for a linear structural behavior. This assumption implies actually two distinct and
equally important hypotheses: the material is linearly elastic, on one side, and the
perturbations are small, on the other side.
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5.5.1 The Müller-Breslau equations

We introduce the method through an example, shown in Fig. 5.4; the structure in
object is twice hyperstatic and, thanks to the assumption of linear behavior, using
the principle of superposition of the effects, we can think to the structure as the
sum of three isostatic structures. This is a key point of the method: the original
hyperstatic structures is transformed into the sum of isostatic structures, that can
be solved separately using nothing but equilibrium conditions. In particular, the
original structure is decomposed into:
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Figure 5.4: Scheme for the analysis of hyperstatic rod structures.

• a principal structure: the hyperstatic constraints have been removed (their
choice is not unique and anyway arbitrary) and the structure so obtained is
acted upon only by the given, known loads;

• a number of auxiliary structures equal to the number of hyperstatic con-
straints removed (in the example, two); each auxiliary structure is loaded
uniquely by an unknown generalized force, a reaction, statically dual of the
corresponding removed hyperstatic constraint.

Hence, there is an unknown generalized force for each degree of hyerstaticity, and
each one of them is applied to an auxiliary structure; in our example, we have hence
two unknowns, x1 and x2, indicated in Fig. 5.4. These unknowns are determined
imposing the geometrical condition that their corresponding displacement is null.
We remark hence that in this method the unknowns are forces and the equations,
compatibility conditions on the displacements.

Because each one of the structures decomposing the original hyperstatic one is
isostatic, it is possible to determine everywhere the internal actions merely using
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balance equations. We indicate with

• N0, T0,M0 the internal actions in the principal structure;

• Ni, Ti,Mi those in the ith auxiliary structure loaded with xi = 1.

Thanks to the assumption of linearity, the actual internal actions in the real,
hyperstatic structure, are given by the superposition of the effects:

N = N0 +
n∑
i=1

xiNi,

T = T0 +
n∑
i=1

xiTi,

M = M0 +
n∑
i=1

xiMi,

(5.39)

with n the degree of hyperstaticity.

To determine the unknowns xi we use the PVD; to this purpose, we consider as vir-
tual displacements those of the real structure, that are of course surely admissible.
As forces, we consider those in each one of the auxiliary structures; because these
structures are isostatic, the internal actions, calculated using balance equations,
are surely equilibrated with the external loads. As a consequence, we are autho-
rized to use the PVD with such a system of forces and field of virtual (actually, in
this case real) displacements. We apply the PVD as much times as the auxiliary
structures, i.e. as the degree of hyperstaticity:

• 1st auxiliary structure:

– virtual work of the external forces (x1 = 1): the point of application of
x1 is fix, in the real structure, so its virtual displacement is null, and
hence the corresponding virtual work;

– virtual work of the internal forces (we indicate with Ω the whole struc-
ture): ∫

Ω

(N1ε+ T1γ +M1κ) d`; (5.40)

the first equation is hence∫
Ω

(N1ε+ T1γ +M1κ) d` = 0; (5.41)
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• 2nd auxiliary structure: proceeding in the same way we obtain∫
Ω

(N2ε+ T2γ +M2κ) d` = 0. (5.42)

In the above equations, the internal kinematical descriptors ε, γ and κ are those
in the real structure. So, using the constitutive equations of elastic rods and the
superposition of the effects we get

ε =
N

EA
=
N0 + x1N1 + x2N2

EA
,

γ = χ
T

µA
= χ

T0 + x1T1 + x2T2

µA
,

κ =
M

EJ
=
M0 + x1M1 + x2M2

EJ
.

(5.43)

Replacing the relations above in the two PVD equations, after regrouping the
terms we get

x1

∫
Ω

(
N2

1

EA
+ χ

T 2
1

µA
+
M2

1

EJ

)
d`+ x2

∫
Ω

(
N1N2

EA
+ χ

T1T2

µA
+
M1M2

EJ

)
d`

+

∫
Ω

(
N1N0

EA
+ χ

T1T0

µA
+
M1M0

EJ

)
d` = 0,

x1

∫
Ω

(
N1N2

EA
+ χ

T1T2

µA
+
M1M2

EJ

)
d`+ x2

∫
Ω

(
N2

2

EA
+ χ

T 2
2

µA
+
M2

2

EJ

)
d`

+

∫
Ω

(
N2N0

EA
+ χ

T2T0

µA
+
M2M0

EJ

)
d` = 0.

(5.44)

These equations have the form of a symmetric system of linear algebraic equations;
in the general case of n degrees of hyperstaticity, we have a system of n equations
with n unknowns xi that can be synthetically written

ηijxj = ηi0, (5.45)

with

ηij = ηji =

∫
Ω

(
NiNj

EA
+ χ

TiTj
µA

+
MiMj

EJ

)
d`,

ηi0 = −
∫

Ω

(
NiN0

EA
+ χ

TiT0

µA
+
MiM0

EJ

)
d`.

(5.46)
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The terms on the diagonal, ηii are necessarily positive, as it is apparent from
the above equations. Equations (5.45) are the Müller-Breslau equations (1886),
with the coefficients of the unknowns given by eq. (5.46). They provide the
classical method for the resolution of hyperstatic systems of elastic rods. In the
very frequent case of slender rods, the extension and shear deformation are much
smaller than the bending one, so they can be neglected and the calculation of the
coefficients is greatly simplified, as it is reduced to the only bending terms.

As a last point we remark that once determined the unknowns xi, the real distri-
bution of the internal actions in the structure can be easily calculated using eq.
(5.39).

5.5.2 The dummy load method

The method of the forces does not give everything, e.g. it does not give the
displacements. Anyway, we can calculate the displacement v in a point still using
the PVD, by the so-called dummy load method. To this purpose, we apply the PVD
using as displacement field the real one and as forces those in any equilibrated
isostatic system acted upon uniquely by a unit force, the dummy load, dual of the
displacement v to be found.

The virtual work of the external forces is hence equal to v, while that of the internal
forces is ∫

Ω

(
N Nd

EA
+ χ

T Td
µA

+
M Md

EJ

)
d`, (5.47)

where N, T,M are the real internal actions; they are already known by a previous
calculation, for instance a merely static one if the structure is isostatic or having
solved the Müller-Breslau equations if it is hyperstatic. Nd, Td,Md are the internal
actions produced on the isostatic structure by the dummy load; being the struc-
ture isostatic, they can be calculated by simple static conditions, hence they are
equilibrated.

Finally, the PVD gives

v =

∫
Ω

(
N Nd

EA
+ χ

T Td
µA

+
M Md

EJ

)
d`. (5.48)
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5.5.3 Effects of the temperature

A final question concerns the effects of the temperature changes. We still use the
Hooke-Duhamel model (see Ex. 12, Chapt. 3):

ε = εm + εt, (5.49)

where εm is the mechanical deformation, given by the Lamé’s inverse equations
(3.44), while the thermal deformation εt is given by

εt = ∆t αI, (5.50)

where ∆t is the temperature variation with respect to a state where, conventionally,
εt = o, and α is the coefficient of thermal expansion.

For what concerns ∆t, the usual assumption in the rod theory is that it has a
linear variation through the thickness of the rod, see Fig. 5.5, which is rigorously
true in a stationary heat flow:

t(y) = t0 +
δt

h
y, t0 =

t+ + t−

2
, δt = t+ − t−. (5.51)

The global temperature change is hence decomposed into a uniform, t0, and an
antisymmetric one, δt.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

Figure 5.5: Decomposition of a linear temperature change on a rod.

Now, we need to link εt to the deformation descriptors, ε, γ, κ. To this end, we
consider a length of rod between the sections 1 and 2 and we write the strain energy
of the beam and of the rod, that must be equal. Because for a Saint-Venant beam
it is σ11 = σ22 = σ12 = 0, we have

1

2

∫ 2

1

(σ33ε33 + 2σ13ε13 + 2σ23ε23) dv =
1

2

∫ 2

1

(Nε+ Tγ +Mκ) dz. (5.52)

116



But the (εt)13 = (εt)23 = 0, because of eq. (5.50); then, using the Saint-Venant
Problem results and the linear variation of t through the rod thickness we get, for
the left-hand term,

1

2

∫ 2

1

[∫
S

α

(
N

A
+
M y

J

)(
t0 +

δt

h
y

)
ds

]
dz =

1

2

∫ 2

1

α

(
N t0 +M

δt

h

)
dz,

(5.53)
the other terms are null because o is the centroid of the cross section. So, because
this equation must be true ∀1 and 2, the two integrands must be equal, which
gives

ε = α t0,

γ = 0,

κ = α
δt

h
.

(5.54)

Shear deformation is not affected by temperature changes; extension is influenced
only by uniform and bending only by antisymmetric changes of temperature.
These deformation descriptors for the temperature changes can be used in the
Müller-Breslau equations to solve the case of hyperstatic rod structures thermally
loaded.

5.6 Exercises

1. Determine the elastica of a cantilever beam with EJ = const., loaded:

i. by a uniform load p;

ii. by a concentrated force F at the free edge (this is the Galileo’s problem);

iii. by a couple M at the free edge.

2. Determine the function J(z) that a homogeneous uniformly loaded cantilever
must have to bend along a circular arch of radius R.

3. Determine the axial force N and displacement w of a vertical rod with EA =
const. clamped at its ends and submitted to its own weight.

4. Determine the variation h(z) of the height of a rectangular cross section
of a cantilever loaded by a concentrated force at its free edge in order to
have everywhere the same highest stress σ33 (Galileo’s problem of the rod of
uniform strength).
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5. What does it change in the previous problem if it is the highest Von Mises
equivalent stress to be constant throughout the rod length?

6. Determine the displacement v of the center of a clamped-clamped rod loaded
at mid-span by a concentrated force F .

7. Study the structure in the figure and determine the maximum deflection (use
the rod equations of the Euler-Bernoulli model).

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

8. Resolve statically the previous exercise using the Müller-Breslau equations.

9. Find the displacement of the free edge of the rod in the figure using:

i. the rod equations;

ii. the Mohr’s theorem;

iii. the dummy load method.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

10. A rod clamped at the ends is thermally loaded by:

i. a uniform temperature t0;

ii. a through the thickness linear variation of the type t− = −t, t+ = +t.

Study the structure in both the cases, finding the reactions, internal actions
and displacements, using first the rod equations, then the Müller-Breslau
equations and the dummy load method.

11. Study the structure in the figure, finding also the rotation of the central
point, using first the rod equations, then the Müller-Breslau equations and
the dummy load method.
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12. For the structure in the following figure, determine F so as to have a null

displacement of point C.

ÊJ= c,ouf,

J _û,, ,-l

4 4 ,87'onr',

J trr-l w-J

13. Solve the previous problem with the span AB now loaded by a through the
thickness linear variation of the temperature of the type t− = −t, t+ = +t.

14. Study the structure in the figure, using first the rod equations, then the
Müller-Breslau equations.

L b --t

15. Make the same, loading now the rod uniquely by a thermal load of the type
t− = −t, t+ = +t.

16. Solve the structure in the figure using the Müller-Breslau equations.

L b --t

17. Make the same, loading now the rod uniquely by a thermal load of the type
t− = −t, t+ = +t.

18. Solve the structure in the following figure using the Müller-Breslau equations
(neglect the axial and shear deformations). What happens when λ→∞?
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L b --t

19. Calculate the total displacement of point C for the structure in the figure
using the dummy load method.

L b --t
Data:

• E = 210000 MPa

• h = 4 m

• ` = 2 m

• F = 500 KN

• a = 200 mm

• b = 200 mm

• e = 10 mm

• t = 16 mm
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20. Study the problem of a cantilever loaded by a uniform load p using the
Theorem of Minimum Total Potential Energy.

21. Using the Theorem of Castigliano, calculate the displacement of the free edge
of a cantilever of constant section loaded by a concentrated force P at the
free edge.

22. The system in the figure is composed by five identical rods; calculate the
displacement of point A using the Theorem of Castigliano.

L b --t

23. Solve Ex. 11 using the Theorem of Castigliano.

24. An infinitely long pipe, whose weight per unit length is p and whose constant
bending stiffness is EJ , lays on a horizontal plane, that can be considered
as infinitely rigid. The pipe must be lifted at a certain point, by a crane, of
a height equal to h. Which is the lifting force that the crane must produce?

25. A rod whose length is `, weight per unit length p and constant bending
stiffness EJ , lays on a horizontal plane, that can be considered as infinitely
rigid. At the left end, the rod is acted upon by a vertical force F . For what
conditions the equilibrium is ensured? How much the left end of the rod will
be lifted up by F?

26. A rod whose length is `, weight per unit length p, thickness h and constant
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bending stiffness EJ , lays on a horizontal plane, that can be considered as
infinitely rigid. The rod is heated on its upper surface to a temperature
t, while the lower part is at the temperature −t. Determine the vertical
displacement of the mid point of the rod.
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