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Collateralized Debt Obligations

Reduced Form Models

Proposition : variational definitions of exponential laws Exponential laws can be defined equivalently if the following ways:

τ ∼ E(λ) ⇐⇒ P(t < τ < t + dt|τ > t) = λdt τ ∼ E(λ t ) ⇐⇒ P(t < τ < t + dt|τ > t) = λ t dt τ ∼ E(λ(t, X t )) ⇐⇒ P(t < τ < t + dt|τ > t, {X s , s ∈ [0, t]}) = λ(t, X t )dt Notation We note X t = {X s , s ∈ [0, t]} Pierre Brugière
copyrights Pierre Brugière May 4, 2020

Reduced Form Models

Demonstration:

We just need to show the stochastic case as the other cases are particular cases. We note F (t) = P(τ > t|X t ). P(t < τ < t + dt|τ > t, X t ) = λ(t, X t )dt =⇒ P(t<τ <t+dt|Xt )

P(τ >t|Xt ) = λ(t, X t )dt =⇒ F (t)-F (t+dt) F (t) = λ(t, X t )dt =⇒ dlnF (t) = -λ(t, X t )dt =⇒ F (t) = F (0)exp(- t 0 λ(s, X s )ds) but F (0) = 1 and F (t) = E (1 τ >t |X t ) so, P(τ > t) = E (1 τ >t ) = E E (1 τ >t |X t ) = E F (t) = E exp(- t 0 λ(s, X s )ds) . Q.E.D.

Reduced Form models: Stochastic Intensity and Interest Rate

In an economy where the instantaneous short term interest rate depends on the factors (X s ) s≥0 if we note β t = exp(-t 0 r (X s )ds) the actualisation factor then the price of a zero coupon bond of maturity T and nominal 1 with credit risk and zero recovery rate is

E [β T 1 τ >T ]
Proposition E [β T 1 τ >T ] = E exp(-T 0 (r (X s ) + λ(s, X s ))ds) so, λ(s, X s ) is the "instantaneous spread" at time s Demonstration:

E [β T 1 τ λ >T ] = E E [β T 1 τ λ >T |X t ] = E β T E [1 τ λ >T |X t ] = E β T exp(- T 0 λ(s, X s )ds) = E exp(- T 0 r (X s )ds)exp(- T 0 λ(s, X s )ds)
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Reduced Form Models = E exp(-T 0 (r (X s ) + λ(s, X s ))ds) Q.E.D.

Corollary

If the short term interest rate r and the intensity of default λ are constant then the price of a zero coupon bond of maturity T and nominal 1 with credit risk and zero recovery rate is

E [β T 1 τ >T ] = exp(-(r + λ)T ).
As a consequence λ can be inferred from the price of a risky bond.

Exemple :

If we assume that a one year zero coupon government bond is worth 100.10 % and that a one year zero coupon bond issued by risky issuer Zco is worth 99.50% then the intensity of default λ for the risky issuer is ln( 100.10 99.50 ) = 0.6%

Reduced Form Models

Remarks:

a time dependent λ t enables to calibrate a model to a term structure of spreads as we will show later a stochastic λ(t, X t ) enables to modelize correlation between bonds if λ is small then P(τ < 1) ∼ λ. So if λ = 2% the probability of default within one year is approx 2% exponential laws are memoryless i.e : P(t < τ < t + δ|τ > t) = P(τ < δ) exponential laws and normal laws are the two "benchmarks" in finance

Pricing a new Issuance

To price a new issuance several methods can be considered at this stage, amongst them:

if a rating already exists for the company and if the bond is vanilla price the spread based on this rating, the type of industry and the comparables analyse the fundamentals of the company, find a "comparable company" having a similar bond already issued and price by comparison analyse the fundamentals of the company and use for example Ohlson's model to calculate a probability of default and from there derive a price for the bond

Pricing a new Issuance

If the bond is complex because :

there are some conditional payouts there are some collaterals which guarantees it there are some specific optionalities embedded there are some hybrid issues involved

Then it it may be necessary to start with a full modelisation of all the stochastic elements involved before being able to be able to come up with a price. The example below show how credit risk modelisation can be embedded in a classic "Black and Scholes" modelisation framework (which is based on the notion of non arbitrage possibility and risk neutral probability).

Example: Construction of P and λ by arbitrage Remarks: For the risky-Bond we have 97.10 = 106 1.05 × e -3.89% so the return of the bond will be 3.89% higher than the return of the risk-free bond if the bond does not default. This excess return is called the spread of the bond (calculated as a continuous rate).

Example: Construction of P and λ

Remarks:

when calibrating a Reduced Form model the risk free rate and the price of the risky bond are observed and from there λ can be deducted Duffie and others have compared the "implied" λ (under the risk neutral probability) for corporate Bonds derived from their prices and compared them to the "realized" λ (under the "real probability") derived from the defaults over the subsequent periods and found that λ implied ∼ 2 × λ realized discrepencies between λ implied under the risk neutral possibility and λ realized under historical probability can be seen as similar issues to the discrepencies between "implied volatility" and "realized volatility"

Recovery Rate

Theorem and Definition : Recovery Rate R and Spread

The Recovery Rate R is the fraction of the amount due recovered if the counterparty defaults. In practice R depends on the type of debt issued by the company (senior, junior, secured...) if R is the recovery rate of a zero coupon of maturity T if r is the risk-free rate for the same maturity if S is the spread of the risky bond of maturity T if λ is the constant default rate (under the risk neutral probability) then: S ∼ (1 -R)λ
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Recovery Rate

Demonstration:

Pricing the zero coupon with the risk neutral probability we have: e -(r +S)T = e -rT (e -λT + R(1 -e -λT )) =⇒ e -ST = (1 -R)e -λT + R.

Developing to the first order we get the result.

Remark:

In the previous example we have S = 3.89%, λ = 21.35% and the recovery is R = 80% so (1 -R)λ = 4.27%. Here the (first order) approximation of S is not very good because λ is taking a quite large value

Reduced Form Models: Cox Process

Exercise (alternative definition of a Cox process ) : Let λ(.) be positive on R d and X = (X s ) s≥0 be a stochastic process of R d Let τ 1 be an exponential law of parameter 1 independent from X Let τ λ de defined by τ λ (ω) = inf{t,

t 0 λ(X s )(ω)ds ≥ τ 1 (ω)} Show that τ λ ∼ E(λ(X )) Demonstration: P(τ λ > t) = E [1 τ λ >t ] = E E [1 τ λ >t |X ] E [1 τ λ >t |X ] = P τ 1 > t 0 λ(X s )(ω)ds|X
as X and τ 1 are independent in the past potentially regulatory arbitrage (for keeping the risk on the equity tranche and deconsolidating) technology of packaging and tranching which can be applied to cash or synthetic underlyings =⇒ Important to notice the importance of the "correlation" when pricing a CDO's tranche

P τ 1 > t 0 λ(X s )(ω)ds|X = exp - t 0 λ(X s )(ω)ds so, P(τ λ > t) = E exp - t 0 λ(X s )(ω)ds Q.E.D.

Collateralized Debt Obligations

Example: we consider 2 Bonds, with zero Recovery rate, of EUR 500 Nominal each, packaged in a EUR 1000 Notional CDO and note Z i = 1 if the Bond i defaults before maturity and otherwise Z i = 0 a) if we assume that Z 1 = Z 2 then: either the two bonds default together, resulting in a payout of zero for both tranches or none of the bonds defaults, resulting in a payout for both tranches of EUR 500 In this case, both tranches are the same, the senior tranche is not safer than the junior tranche and the correlation between the defaults is 100%. b) if we assume that Z 2 = 1 -Z 1 then: there is always one bond which defaults so the junior tranche has always a payout of zero the senior tranche has always a payout of EUR 500 In this case the correlation between the defaults is -100% and the two tranches have extremely different behaviours

Collateralized Debt and Loan Obligations

=⇒ Note that in this extreme example, the pricing of the two tranches does not depend on the probabilities of default (which nevertheless have to add up to 100% here) but only on the correlation !

Remarks:

a low correlation between the bonds is good for senior tranche holders and bad for junior tranche holders a high correlation between the bonds is good for junior tranche holders and bad for senior tranche holders the impact of correlation is less clear for mezzanine tranches holders

To price CDOs we will need to simulate Bernouilli variables which are correlated

CDOs and CLOs

CLOs package together high-risk corporate debt and are then sold to institutional investors seeking potentially substantial returns CDOs (collateralized debt obligations), were comprised mostly of subprime mortgages and were blamed for the financial meltdown a decade ago

The global CLO market is in 2019 between 1.4 and 2 trillion. In 2007, CDOs were 1.2 to 2.4 trillion Today's CLOs usually comprise corporate loans across a diversified set of industries 

Simulating Correlated Binomials

We construct here Bernouilli variables with the same parameter p which are correlated. The correlation is created through the default parameter in the following way.

Theorem: Simulation of Correlated Bernouilli Variables

Let (Z i ) i∈ 1,n be independent variables of uniform law in 0, 1 Let p be a random variable in 0, 1 with density f Let (X i ) i∈ 1,n be Bernouilli variables defined by

X i = 1 ⇐⇒ Z i < p Then: a) the (X i ) i∈ 1,n are Bernouilli variables of parameters p = E [ p] b) ∀i = j, ρ(X i , X j ) = Var ( p) p(1-p) Pierre Brugière copyrights Pierre Brugière May 4, 2020
Simulating Correlated Binomials

Demonstration : a) E (X i ) = E E (X i | p) = E E (1 Z i < p | p) = E ( p) b) E (X i X j ) = E E (X i X j | p) = E ( p2 ) as X i and X j are independent conditionnally on p so, Cov (X i X j ) = E ( p2 ) -E ( p) 2 = Var ( p) and we know that for Bernouilli Var (X i ) = Var (X j ) = E ( p)(1 -E ( p)) Q.E.D.
We consider now CDOs composed of bonds of the same notional with the same probabilities of default and same correlations and we are interested in calculating the law of the number of Bonds which default and therefore the

law of D n = i=n i=1 X i
Simulating Correlated Binomials exercise 2 : Often in simulations p ∼ B(α, β) (beta law of parameters α > 0 and β > 0) where the density is given by f

α,β (x) ∝ x α-1 (1 -x) β-1 1 x∈ 0,1 Show that: a) E [ p] = α α+β noted ( p) b) Var [ p] = p(1-p) α+β+1 c) simulating with p we have ∀i = j, ρ(X i , X j ) = 1 α+β+1 d) show that ∀p, ρ ∈ 0, 1 , ∃α > 0, β > 0, α α+β = p and 1 α+β+1 = ρ
Remarks: The Beta law is quite useful for the simulation of correlated Bernouilli variables as it is possible to choose α and β to obtain any possible probability of default and (positive) correlation wanted in the model.

Simulating Correlated Binomials

Theorem: Law of Dn n a) E Dn n = p b) Var Dn n = p(1-p) n + n-1 n Var [ p] c) Dn n -→ L( p)
(convergence in law) so, in practice the probability that less than k bonds over n default is approximated by

P( p < k n ) demonstration a) E Dn n = E 1 n i=n i=1 X i = 1 n i=n i=1 E X i = E [ p] b) Var Dn n = 1 n 2 i=n i=1 Var (X i ) + 1 n 2 i =j Cov (X i , X j ) = 1 n 2 × n × p(1 -p) + 1 n 2 × n(n -1) × var [ p]
Simulating Correlated Binomials c) to show the convergence in law we show the convergence of the distribution functions lim

n-→+∞ P( Dn n < t) = lim n-→+∞ E (1 Dn n <t ) = lim n-→+∞ E (E (1 Dn n <t | p)) = E (E ( lim n-→+∞ 1 Dn n <t | p)) but when p is known Dn n -→ p almost surely. so E ( lim n-→+∞ 1 Dn n <t | p) = 1 p<t so, lim n-→+∞ P( Dn n < t) = E [1 p<t ] = P( p < t) Q.E.D.
Remarks: If the variables were not correlated in c) we would have convergence towards a single number, the mean, according to the Law of Large Numbers, instead of a convergence to a distribution Beta Law for p and CDO Pricing

Example: we consider a CDO made of 50 Bonds of equal Notional 100 each. We assume that the probabilities of default of the Bonds is 10% and note ρ the correlation of default between the bonds. We assume that the CDO has three tranches: Equity tranche (First 10% Loss), Junior Tranche (next 20% Loss), Senior Tranche (last 70% Loss). To calculate the price of the three tranches we use the approximation in Law L( Dn n ) ∼ Beta(α, β): 

Simulating Correlated Binomials

Definition: Diversity Score (Moody's)

The Diversity Score is the number of uncorrelated bonds with the same probability of default p for which the variance of the proportion of losses would be the closest to Var ( Dn n )

Remark: The diversity score summarizes the real diversification effect created by Bonds which are correlated.

Example: for n bonds with probability of default p and correlation ρ Var Dn n = p(1-p) n + n-1 n Var [ p] so we are searching for m such that

p(1-p) m = p(1-p) n + n-1 n Var [ p] N.
A: for n = 100, p = 2% and ρ = 20%, σ 20% ( D 100 100 ) = 6.38% with 5 independent assets σ 0% ( D 5 5 ) = 6.26% and with 4 independent assets σ 0% ( D 4 4 ) = 7.00%. So we will take 5 as the Diversity Score.

Structural Models for p

We analyse here how Structural Models enable to create correlation in the modellisation (instead of creating it ex-nihilo in the model) We make the following assumptions : bond i is in default at time T iif A i T < D i where:

dA i t = rA i t dt + σ i A i t dW i t σ i
is the same for all companies and is noted σ the distance to default is the same for all companies and we note

c = 1 σ √ T [ln( D i A i 0 ) -rT + σ 2
2 T ] we assume that the Brownian motions W i t verify dW i t = ρdW t + 1 -ρ 2 dB i t where the B i t are brownian motions which are independent between them and independent from W t

Remarks :

With the model ∀i = j, ρ(W i t , W i t ) = ρ, and W t is the common factor which creates correlation between the A i t and the default of the bonds.

Structural Models for p Proposition

Let Z i be the Bernouilli random variable with value 1 if the company i defaults and 0 otherwise.

Then Z i = 1 ⇐⇒ B i T √ T < c √ 1-ρ 2 -ρ √ 1-ρ 2 W T √ T

Demonstration simple

Remark 1 : Let Φ be the repartition fonction of a normal law N (0, 1).

B i T √ T ∼ N (0, 1) =⇒ Φ( B i T √ T ) ∼ U(0, 1) so X i = 1 ⇐⇒ Φ W i T √ T < Φ c √ 1-ρ 2 -ρ √ 1-ρ 2 W T √ T
so we end up simulating (as previously) correlated Bernouilli variables with the function p having a law p ∼ Φ

c √ 1-ρ 2 -ρ √ 1-ρ 2 W T √ T

Structural Models for p

Remark 2 : We have different alternatives for p to generate correlated binomials: to use a beta distribution B(α, β) (as seen previoulsy) to use the distribution of Φ(α + βZ ) (where Z ∼ N (0, 1)) In both cases: first we solve for α and β to match the desired value for p and ρ then to price the CDO we approximate the law of Dn n by the law of p

Proposition

If p ∼ Φ(α + βZ ) (where Z ∼ N (0, 1)) then a)

E [ p] = Φ α √ 1+β 2 (that we note also p) b) E [ p2 ] = Φ 2, β 2 1+β 2 α √ 1+β 2 , α √ 1+β 2 c) P( p < t) = Φ 1 β [Φ -1 (t) -1 + β 2 Φ -1 ( p)] a) E [ p] = E [Φ(α + βZ )] = E [E (1 Z 0 <α+βZ |Z )] (with Z 0 ∼ N (0, 1) independent from Z ) = E [1 Z 0 -βZ <α ] = E [1 Z 0 -βZ √ 1+β 2 < α √ 1+β 2 ] = Φ( α √ 1+β 2 ) b) E ( p2 ) = E [Φ(α + βZ ) 2 ] and Φ(α + βZ ) 2 = E [1 Z 0 <α+βZ 1 Z 1 <α+βZ |Z ] (with Z 0 , Z 1 ,Z independent N (0, 1) so, E [Φ(α + βZ ) 2 ] = E [1 Z 0 <α+βZ 1 Z 1 <α+βZ ] = E [1 Z 0 -βZ √ 1+β 2 < α √ 1+β 2 1 Z 1 -βZ √ 1+β 2 < α √ 1+β 2 ] = Φ 2, β 2 1+β 2 ( α √ 1+β 2 , α √ 1+β 2 )
with Φ 2,γ repartition function of a bivariate normal variable N 1 γ γ 1
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Calibration of the two Models for

p c) P( p < t) = P(Φ(α + βZ ) < t) = Φ( Φ -1 (t)-α β ) as Φ( α √ 1+β 2 ) = p we have α = Φ -1 ( p) 1 + β 2 so P( p < t) = Φ 1 β [Φ -1 (t) -1 + β 2 Φ -1 ( p)] . Q.E.D.
Example we consider a CDO with 100 Bonds of the same Notional and recovery rate of zero. The default of the bonds are modelized by Bernouilli variables X i of parameter p and correlations ρ. We consider a junior tranche for the CDO which is exposed to the losses between above 10% and up to 30%. Price this junior tranche assuming p = 2% and ρ = 10% with the two previous models: 1+β 2 = 0.18. This implies α = -2.2678 and β 2 = 0.2195. The sign of β is not determined as both Z and -Z are N (0, 1), we will take β = 0.468521. Now,

1 20 i=30 i=11 P(Φ(α + βZ ) < i 100 ) = 1 20 i=30 i=11 Φ( 1 β [Φ -1 ( i 100 ) -α]) = 99.66%
Calibration of the two Models for p Remarks:

the pricings for a) and b) are not exactly the same as the two laws used for p produce the same expectations and correlations between the default events (the Bernouilli variables) but not exactly the same joint distributions. Also they do not generate the same laws for Dn n and therefore not the same pricing.

the fact that the two laws generated for Dn n are different is also put in evidence by the fact that (as it has been demonstrated previoulsy) Dn n converge here towards two different distributions which are the two distinct laws of p that we use. the choice of the distribution p used to create the correlation structure is therefore important and it is exactly the aim of the study of copulas to create adequate correlation structures. Transformations of normal variables Φ(α + βZ ) to create correlation structures have been criticised after 2008.

Generalization to None Zero Recovery Rate

lim n-→+∞ P(L f n < t) = lim n-→+∞ E (1 L f n <t ) = lim n-→+∞ E (E (1 L f n <t | p)) = E (E ( lim n-→+∞ 1 L f n <t | p)) when p is known then according to the law of large numbers L f n -→ E [f ( p)1 Z i < p ] = f ( p) p and so 1 L f n <t -→ 1 f ( p) p<t from there lim n-→+∞ P(L f n < t) = E (E (1 pf ( p)<t | p)) = P( pf ( p) < t) Q.E.D.
Remarks: if R = 0 then f ( p) is always 1 and we find the result we already demonstrated that L( pf ( p)) ∼ L( p)

Cox Models and p Models

Remark: In the Cox model a default occurs for company i iff

E i < t 0 λ(X s )ds
where the E i are independent and independent from X .

Let

F (t) = P(E i ≤ t) = 1 -exp(-t). Then the Z i = F -1 (E i ) are independent U([0, 1]
) and a default occurs for company i iff

Z i < F -1 ( t 0 λ(X s )ds) ⇐⇒ Z i < p where p = 1 -exp(- t 0 λ(X s )ds).
Infection Models

Proposition X i ∼ B(1 -(1 -p)(1 -pq) n-1 ) Demonstration : because of independence E (X 1 ) = E (Z 1 ) + (1 -E (Z 1 ))[1 - j =1 (1 -E (Z j )E (Y j,1 ))] = p + (1 -p)[1 -(1 -pq) n-1 ] = p + 1 -p -(1 -p)(1 -pq) n-1 = 1 -(1 -p)(1 -pq) n-1 Q.E.D. Remarks : L(X 1 ) -----→ n-→+∞ 1 Proposition E [X 1 X 2 ] = 1 -2(1 -p)(1 -pq) n-1 + (1 -p) 2 (1 -2pq + pq 2 ) n-2
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Infection Models

Demonstration :

E [X 1 X 2 ] = E Z 1 +(1-Z 1 )[1- j =1 (1-Z j Y j,1 )] Z 2 +(1-Z 2 )[1- j =2 (1-Z j Y j,2 )]
we have 3 different type of terms:

a) E [Z 1 Z 2 ] = p 2 (because Z 1 and Z 2 are independent) b) E Z 1 (1 -Z 2 )[1 - j =2
(1 -Z j Y j,2 )] (this value will appear two times)

= E Z 1 (1 -Z 2 ) -E Z 1 (1 -Z 1 Y 1,2 )(1 -Z 2 ) j / ∈{1,2} (1 -Z j Y j,2 ) = p(1 -p) -(p -pq)(1 -p)(1 -pq) n-2 = p(1 -p)[1 -(1 -q)(1 -pq) n-2 ] c)E (1 -Z 1 )(1 -Z 2 )[1 - j =1 (1 -Z j Y j,1 )][1 - j =2 (1 -Z j Y j,2 )]
multiplying first the two terms on the right we get 3 different type of terms:

• E [(1 -Z 1 )(1 -Z 2 )] = (1 -p) 2
Infection Models

• -E (1 -Z 1 )(1 -Z 2 ) j =2
(1 -Z j Y j,2 )] (this value will appear two times)

= -E (1 -Z 1 )(1 -Z 1 Y 1,2 )(1 -Z 2 ) j / ∈1,2 (1 -Z j Y j,2 ) = -(1 -pq -p + pq)(1 -p)(1 -pq) n-2 = -(1 -p) 2 (1 -pq) n-2 • E (1 -Z 1 )(1 -Z 2 ) j =1 (1 -Z j Y j,1 ) j =2 (1 -Z j Y j,2 ) = E (1-Z 1 )(1-Z 1 Y 1,2 )(1-Z 2 )(1-Z 2 Y 2,1 ) j / ∈1,2 [(1-Z j Y j,1 )(1-Z j Y j,2 )] = (1 -pq -p + pq) 2 (1 -pq -pq + pq 2 ) n-2 = (1 -p) 2 (1 -2pq + pq 2 ) n-2
so at the end we obtain:

p 2 + 2p(1 -p)[1 -(1 -q)(1 -pq) n-2 ] + (1 -p) 2 -2(1 -p) 2 (1 -pq) n-2 + (1 -p) 2 (1 -2pq + pq 2 ) n-2 = 1 -2(1 -p)(1 -pq) n-1 + (1 -p) 2 (1 -2pq + pq 2 ) n-2 Q.E.D.
Infection Models exercise :

Let D n = i=n i=1
X i , calculate as a function of p and q :

a)

E [D n ] and b) Var [D n ] Hint : a) E [D n ] = i=n i=1 E [X i ] = nE [X 1 ] b) Var [D n ] = E ( i=n i=1 X i ) 2 -(E [D n ]) 2 = i=n i=1 j=n j=1 E X i X j -(E [D n ]) 2 = n(n -1)E [X 1 X 2 ] + nE [X 1 ] -n 2 E [X 1 ] 2
So we know how to calculate the first two moments of D n as a function of p and q but in fact we can also calculate the law of D n

Infection Models

Proposition :

∀k ∈ 1, n ,

P(D n = k) = C k n i=k i=1 C i k p i (1 -p) (n-i) (1 -q) i(n-k) [1 -(1 -q) i ] (k-i)
Demonstration :

P(D n = k) = C k n P(X 1 = 1, X 2 = 1, • • • , X k = 1, X k+1 = 0, • • • , X n = 0) and {X 1 = 1, X 2 = 1, • • • , X k = 1} can de decomposed in k -1 cases depending on the number i of "direct" defaults. So P(X 1 = 1, X 2 = 1, • • • , X k = 1, X k+1 = 0, • • • , X n = 0) = i=k i=1 C i k P(Z 1 = 1, Z 2 = 1, • • • , Z i = 1, (Z i+1 = 0, X i+1 = 1), • • • , (Z k = 0, X k = 1), X k+1 = 0, • • • , X n = 0)
we can write each event as the intersection of three events

Infection Models

Example :

Table : Infection Models for n = 30 p = P(Z i = 1) 1% 1% 1% 1% 1% q 0% 10% 20% 50% 100% p * = P(X i = 1) 1% 3.83% 6.58% 14.39% 26.03% Correlation 0% 12% 21% 50% 100% Diversity Score 30 6.7 4.1 2 1

Remarks : if q = 100% P(X i = 1) = 1 -P(X i = 0) = 1 -(P(Z 1 = 0)) 30 = 1 -(1 -p) 30 = 26.03%
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Copulas Definition : Copulas

C : [0, 1] d -→ [0, 1] is a copula iff C is a multivariate cumulative distribution for a random vector of [0, 1] d i.e ∃(U 1 , U 2 , • • • , U d ) r.v (Ω, P) -→ [0, 1] d such that: ∀i ∈ 1, d , U i ∼ U([0, 1]) C (u 1 , u 2 , • • • , u d ) = P(U 1 ≤ u 1 , U 2 ≤ u 2 , • • • , U d ≤ u d ) Notation : we note F U (u 1 , u 2 , • • • , u d ) = P(U 1 ≤ u 1 , U 2 ≤ u 2 , • • • , U d ≤ u d ) the multidimensional cumulative distribution function of U.
By definition for any copula C there is

U = (U 1 , U 2 , • • • , U d ) with U i ∼ U([0, 1]) such that C = F U

Copulas and SRM Models

Remarks:

In the SRM model

X i = 1 ⇐⇒ B i T √ T < c √ 1-ρ 2 -ρ √ 1-ρ 2 W T √ T but Z i < α + βZ ⇐⇒ Φ Z i -βZ √ 1+β 2 < Φ α √ 1+β 2 Let U = (U 1 , • • • , U d ) with U i = Φ Z i -βZ √ 1+β 2 and G = ( Z 1 -βZ √ 1+β 2 , • • • , Z i d-βZ √ 1+β 2 ) then U i ∼ N (0, 1) and C U = C G and therefore C U is a Gaussian Copula
The fact that the defaults (U i < Φ α √

1+β 2 ) are correlated implies, when simulating U, the formation of a cluster of points (density of points higher than the average) in the region near 0 as the probability for this event is higher than what would be expected for a product of the marginals.

Copulas

Applying ∂ ∂x 1 ∂x 2 •••∂x d to F X (x 1 , x 2 , • • • , x d ) = C X (Φ(x 1 ), Φ(x 2 ), • • • , Φ(x d )) we get f X (x 1 , x 2 , • • • , x d ) = c X (Φ(x 1 ), Φ(x 2 ), • • • , Φ(x d ))φ(x 1 )φ(x 2 ) • • • φ(x d ) the density f X (x) equals ( 1 √ 2π ) d exp(-1 2 x Σ -1 x) and φ(x 1 )φ(x 2 ) • • • φ(x d ) = ( 1 √ 2π ) d exp(-1 2 x x) Q.E.D.

Proposition

The Copula of a Gaussian vector depends only on its correlation matrix Λ Demonstration : if X is a Gaussian vector of correlation matrix Σ we know (from the invariance property) that the normalized Gaussian vector Y where

Y i = T i (X i ) = X i -µ i σ i
has the same copula as X and that Y ∼ N (0, Λ) where Λ is the correlation matrix of X . Q.E.D.

Copulas Demonstration:

Let h be a measurable function from

R d to R E [h(Y )] = E [h(T (X ))] = R d h(T (x))f X (x)dx
We consider the change of variable y = T (x). The Jacobian matrix [ dy dx ] is triangular and the diagonal elements are:

∂ ∂x 1 P(X 1 ≤ x 1 ) = f X 1 (x 1 ) ∂ ∂x 2 P(X 2 ≤ x 2 |X 1 = x 1 ) = f X 2 |X 1 =x 1 (x 2 ) • • • ∂ ∂x d P(X d ≤ x d |X d-1 = x d-1 • • • , X 1 = x 1 ) = f X d |(X d-1 =x d-1 ••• ) (x d ) so, the determinant of the Jacobian Matrix equals f X (x 1 , x 2 , • • • , x d ) so after the change of variable : E [h(Y )] = T (R d ) h(y )dy as the y i are probabilities T (R d ) ⊂ [0, 1] d and by mass conservation T (R d ) = [0, 1] d so ∀h, E [h(Y )] = [0,1] d h(y )dy =⇒ Y ∼ U([0, 1] d ) Q.E.D.

Other Copulas

In some situations a Copula C is defined analytically as any function satisfying the properties of a cdf of a variable taking its values in [0, 1] d and whose marginals are U([0, 1])

Exemples of Copula : Clayton C (u, v ) = max(u -θ + v -θ -1, 0) -1 θ with θ > -1 and θ = 0 Gumbel-Hougaard C (u) = exp - i=d i=1 (-ln(u i )) θ 1 θ with θ > 1 and the conventions ln(0) = -∞ and exp(-∞) = 0 Archimedean C (u) = ψ( i=d i=1 ψ -1 (u i )) with ψ : [0, ∞] -→ [0, 1] satisfying (among other things) ψ(0) = 1 and ψ(∞) = 0
Other Copulas Remarks there are some conditions C must satisfy to be a copula. For a two dimension copula we need at least

C (u, 0) = C (0, v ) = 0 and C (u, 1) = u and C (1, v ) = v
there are some conditions the function ψ must satisfy for the Archimedean expression to be a copula the Clayton and Gumbel-Hougaard copulas are two particular cases of Archimedean copulas. For the Clayton Copula ψ(θ) = 1 θ (u -θ -1)

Simulating Copulas

Even if the simulation of Gaussian Copulas is easy it may be more complicated to simulate arbitrary copulas.

The Rosenblatt Theorem provides an easy way to simulate copulas in dimension 2.

Proposition

let U = (U 1 , U 2 ) of copula C with U i ∼ U([0, 1]) If T is the Rosenblatt's transformation T (U) = (U 1 , ∂C ∂u 1 (U 1 , U 2 )) and the components are i.i.d U([0, 1]) So, if we take W ∼ U([0, 1]) independent from U 1 then T -1 (U 1 , W ) ∼ U
Remark: in practice for each simulation (u 1 , w ) we find u 2 the solution of ∂C ∂u 1 (u 1 , u 2 ) = w and by doing so we simulate U of Copula C .

Demonstration: let's show the last point as τ (F X (X ), F Y (Y )) = τ (X , Y ) we can show it for X and Y ∼ U([0, 1]) τ (X , Y ) = P((X 1 -X 2 )(Y 1 -Y 2 ) ≥ 0) -(1 -P((X 1 -X 2 )(Y 1 -Y 2 ) ≥ 0)) = -1 + 2P((X 1 -X 2 )(Y 1 -Y 2 ) ≥ 0) = -1 + 2(P(X 1 -X 2 ≤ 0, Y 1 -Y 2 ≤ 0) + P(X 2 -X 1 ≤ 0, Y 2 -Y 1 ≤ 0)) as (X 1 , Y 1
) and (X 2 , Y 2 ) have the same law, so we just need to calculate the first probability.

P(X 1 -X 2 ≤ 0, Y 1 -Y 2 ≤ 0) = E (E (1 X 1 ≤X 2 1 Y 1 ≤Y 2 )|X 2 , Y 2 )) and E (1 X 1 ≤x 2 1 Y 1 ≤y 2 ) = P(X 1 ≤ x 2 , Y 1 ≤ y 2 ) = C X (x 2 , y 2 ) so we have to calculate E (C (X 2 , Y 2 )) = [0,1] 2 C (u, v ) ∂ 2 C ∂u∂v dudv so τ (X , Y ) = -1 + 4 [0,1] 2 C (u, v ) ∂ 2 C ∂u∂v dudv Q.E.D.
Remark : If we assume that the vector of prices today is X 0 = (1, 5, 10) and that the 3 vectors of prices for tomorrow are : X 1 = (1.03, 5, 10) , X 2 = (1.03, 6, 12) , X 3 = (1.03, 6, 13) then a) π = (0.85, 0.15, 0) is the risk neutral probability b) according to a) there is no arbitrage c) the strategy w = (0, -2, 1) costs today zero and the possible outcomes tomorrow are 0 for the first two states and 1 for state 3, so it seems attractive to play it (as there is only upside) but strictly speaking this is not an arbitrage according to our definition.

Risk Neutral Probability (continuous case)

Background:

We consider a probability space (Ω, F, P) with F = (F t ) t≥0 where F t represents the information available at time t.

We assume that there are d financial assets following the equations:

dX i s = µ i s X i s ds + σ i s X i s dW i s where W s = (W 1 s , W 2 s , • • • , W d s ) is a d-dimensional Brownian motion.

Theorem and Definition : Risk Neutral Probability

We can find a probability Q on (Ω, F) such that: W * defined by: dW i * s = (dW Risk Neutral Probability (continuous case)

Remark 1: for d = 1 we get that:

X T = X 0 e µT e σW T -1 2 σ 2 T where (W s ) s≥0 is a Brownian under P X T = X 0 e rT e σW 

  search for a and b such that: a105 + b130 = 106 and a105 + b × 0 = 84.8 So, a = 0.808 is the number of risk-free bonds to purchase and b = 0.163 is the number of stocks to purchase to replicate the corporate bond. b) if there is no arbitrage, the price of the risky bond is then 0.808 × 100 + 0.163 × 100 = 97.10 c) the corresponding risk neutral probability is such that 130 1.05 p + 0 1.05 (1 -p 1 ) = 100 so p = 80.77% . d) P(τ > 1) = p 1 ⇐⇒ e -λ = 19.23% ⇐⇒ λ = 21.35%

  source https : //www .intralinks.com/blog /2019/11/clos -shouldtheystayorshouldthey -

  Histograms for D n n for a CDO of 50 Bonds (1000 simulations) Histograms are plotted by joining the values obtained for each 2% bucket p ∼ Beta(10, 90) =⇒ E [ p] = 10% and Var [ p] = 0.99% p ∼ Beta(1, 9) =⇒ E [ p] = 10% and Var [ p] = 9

  a) assuming p ∼ B(α, β) b) assuming p ∼ Φ(α + βZ ) where Z ∼ N (0, 1)Calibration of the two Models for p Results: a) we solve and find α = ( 1 ρ -1) p and β = ( 1 ρ -1)(1 -p). So, here p ∼ B(0.18, 8.82). Taking a risk free rate of zero we price the junior tranche in % of face value as 1 -2.05375 and (using a program to calculate the bivariate normal) β 2

  * T -1 2 σ 2 T where (W * s ) s≥0 is the Brownian under Q defined by W * T = W T + µ-r σ T ( dQ dP ) T = exp( r -µ σ W T -1 2 ( r -µ σ ) 2 T ) for any function h, E Q [h(X T )] = E P [h(X T )( dQ dP ) T ] Exercise: verify by calculations for d = 1 that E Q [h(rT + σW * T )] = E P [h(µT + σW T )( dQ dP ) T ] Solution: E Q [h(rT + σW * T )] = E Q W * T [h(rT + σz)] = h(rT + σz) 1 2π √ T exp(-z 2 2T )dz

  

  

  We can then re-write the model: dX i s = r s X i s ds + σ i s X i s dW * i s where W * is a Brownian motion under Q and Q is called the risk neutral probability.We search for a probability Q under which (W * s ) s≥0 is a Brownian motion For that we needE Q [dW * t |F t ] = 0 and E Q [dW * t (dW * t ) |F t ] = Id R d dt We note ( dQ dP ) t = Z t and so search for Z t . E Q [dW * t |F t ] = E P [dW * t Z t+dt Zt |F t ] = E P [(dW t + ∆ t dt)(1 + dZt Zt )|F t ] = E P [dW t |F t ] + 1 Zt E P [dW t dZ t |F t ] + ∆ t dt = 1 Zt E P [dW t dZ t |F t ] + ∆ t dt If we search Z of the form dZ s = B s , dW s with B s ∈ R d (no drift term as martingale) then: E P [dW t dZ t |F t ] = E P [dW t dW t , B t |F t ] = E P [dW t (dW t ) B t |F t ] = E P [dW t (dW t ) |F t ]B t = B t dt so, E Q [dW * t |F t ] = 0 ⇐⇒ B t = -∆ t Z t Solving dZ s = -∆ t ,dW s Z s and Z 0 = 1 we get: ||∆ s || 2 ds (we do not discuss here the conditions on ∆ s for integrability that can be found in Girsanov's theorem) The condition E Q [dW * t (dW * t ) |F t ] = Id R d dt is easy to verify Q.E.D.

				i s + µ i s -rs σ i
	Z t = exp	t 0	-∆ s , dW s -1 2	t 0

s ds) is a Brownian motion under Q
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Simulating Correlated Binomials

Remarks :

the limitation of the model is that the resulting correlation between two bounds is always positive is p is constant the correlation between the bonds is zero if P( p = 0) = 1 2 and P( p = 1) = 1 2 the correlation between the bonds is 100% as var [ p] = 1 4 and p(1 -p) = 1 4 exercise 1 : Show that ∀X random variable in 0, 1 , Var [X ] ≤ 1 4 Hint : Infection Models

Definition: Infection Models

Let (Z i ) i∈ 1,n and (Y i,j ) i =j∈ 1,n be independent variables, we assume

Then we define in a contagion model the variables (X i ) i∈ 1,n by :

Remark:

The only possible values for X i are 1 and 0.

We are now going to study the law of the X i and their correlations.

Copulas

Exemples :

Theorem : Frechet-Hoeffding Bounds

Copulas

Definition : Quantile (or Pseudo-Inverse)
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Copulas

General Properties F X is increasing and right-continuous 

We call copula of X and note C X the function F U (that we can also note C U )
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Copulas
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Copulas

Sklar's theorem enable to build a random vector with given continuous cdf marginals and copula.

Sklar's Theorem: Multivariate with given Marginals and Copula

Copulas
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Copulas

Remark 1 : According to Sklar's theorem:

for any copula C and for any continuous cdfs

we can find a multivariate random variable X such that:

the

Remark 2 : It is easy to simulate a Gaussian vector Z with a given correlation matrix and therefore easy to simulate variables U with marginals U([0, 1]) and with C U = C Z by calculating for each value of Z the vector
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Simulations

Exercise: Let Z be a Gaussian vector with a given correlation matrix and C Z be its copula. Let F 1 , • • • , F d be continuous cdfs. Show that we can simulate a r.v X of copula C Z and marginals F i by simulating Z and calculating for each value of Z the vector

Solution:

has for cdf F i (according to Sklar's theorem). So, we get the right marginals for X 

Copulas

Proposition : Invariance Properties of the Copulas

the Copula, which measures the association between the variables, is invariant by change of variables under strictly increasing functions (which is not the case for the linear correlation).

Copulas Proposition : Copulas for Normalized Gaussian Vectors

Let X be a "normalized" Gaussian vector N (0, Σ) with components X i ∼ N (0, 1) and correlation matrix Σ invertible.

Let C X the copula of X and c X its density. Then:

where Φ is the cdf of a N (0, 1)
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Copulas : Example

Remark: We can create a correlation structure on d binomial variables

Example: Here d = 3 and p 1 = 1%, p 2 = 2% and p 3 = 3%. Z = (Z 1 , Z 2 , Z 3 ) is a Gaussian vector with correlation ρ = 50% between two variables and we assume that

Here we do not try to calibrate a correlation matrix for Z to match some input correlations between the X i but calculate the correlations between the defaults induced by the correlation matrix of Z .

Here we get

σ(X 1 )σ(X 2 ) = 13.32% and in the same way ρ(X 1 , X 3 ) = 13.89% and ρ(X 2 , X 3 ) = 16.16%. To simulate Z we simulate X and then calculate (1

Then, the Archimedean function defined by ψ Z is a copula exercise: Show that if Z ∼ Gamma( 1 θ , 1) with 0 < θ < +∞ then the Archimedean Copula generated by ψ Z is the Clayton Copula of parameter θ Solution:

Remarks: Archimedean Copulas can be created "on demand" by calculating the Laplace transform of any arbitrary random variable Z Pierre Brugière copyrights Pierre Brugière May 4, 2020

Copulas : Measures of Association between Variables

Background : Pearson's linear correlation ρ(X , Y ) = cov (X ,Y ) σ(X )σ(X ) measures only the affine relationship between variables and presents some imperfections to measure the "link" between two variables. For example: if X ∼ N (0, 1) and Y = X 2 then ρ(X , Y ) = 0 while there is a strong link between Y and X (we can indeed predict Y perfectly from X ) if f and g are increasing in general cov (X , Y ) = cov (f (X ), g (Y ))

Definition : Kendall's tau

Let (X , Y ) be a random variable. Let (X 1 , Y 1 ), (X 2 , Y 2 ) be independent with the same law as (X , Y ). We call Kendall's tau and note τ (X , Y ) the quantity P

Copulas : Measures of Association between Variables 

Properties Spearman's correlation
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Copulas : Measures of Association between Variables

Demonstration :

Let C be the copula of (X , Y ) i.e the cdf of (U, V ) where U = F 1 (X ) and

Copulas : Measures of Association between Variables

Remark: Spearman's correlation.

Based on the observations (x i , y i ) i∈ 1,n the Spearman's correlation is estimated by calculating the correlations of the

where

Appendix : Risk Neutral Probability and Utility functions
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Risk Neutral Probability (discrete case)

Background: We consider an economy with two instants {0, 1} where there are d assets whose vector of prices X is represented today by the vector

. We assume that at instant 1 there are n possible states for the economy and for each state i ∈ 1, n the vector of the prices of the assets is

We assume that prices are all strictly positive.

Definition: Absence of Arbitrage (AOA)

We say that there is no arbitrage in the economy iff:

Remarks :

The definition means that it is not possible to receive money today to build a strategy which has positive values tomorrow in all cases.

Risk Neutral Probability (discrete case)

Theorem and Definition: Risk Neutral Probability a)the two following propositions are equivalent: there is no arbitrage in the economy we can find

if there is a risk-free asset in the economy of return r over [0, 1] then:

if we define a probability π, over the n possible values of X at time 1, by

and π is called the risk neutral probability for the economy.
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Demonstration : a) one of the implications is obvious.

We assume now that there is no arbitrage and define the cone

Then C is convex and if X / ∈ C we can separate X from C by an hyperplane and find w ∈ R d such that: w , X 0 < 0 and for all X i in C w , X i > 0 but this would contradict the AOA hypothesis, so X 0 ∈ C. Q.E.D. b) if we assume that the risk-free asset is component j then:

Exercise : we assume that there are 3 assets, of prices today X 0 = (1, 5, 10) and 3 possible states of the economy tomorrow defined by the 3 vector of prices for the assets: X 1 = (1.03, 5, 11) , X 2 = (1.03, 5, 10) , X 3 = (1.03, 6, 10) . a) explain why the risk-free rate is 3% b) show that π = (0.30, 0.55, 0.15) c) explain why there is no arbitrage in this economy. 

Demonstration Lemma : easy Demonstration Theorem (hint) :

We note
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Risk Neutral Probability (continuous case)

If we take the new variable u such that µT + σu = rT + σz we get :
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Utility functions

Remark 2: we call u a utility function compatible with the price of asset X , P the "real" probability and "Q" the risk neutral probability. As X 0 = E P [e -rT u(X T )] and X 0 = E Q [e -rT X T ] we have under the previous assumptions concerning the law of X under P : E P [e -rT u(X T )] = E P [e -rT X T f (W T )] with f (w ) = exp( r -µ σ w -1 2 ( r -µ σ ) 2 T ) if we define g (x) = f ( 1 σ [ln( x X 0 ) + ( σ 2 2 -µ)T ]) then f (W T ) = g (X T ) and E P [e -rT u(X T )] = E P [e -rT X T g (X T )] so, u(x) = xg (x) is an adequate utility function for this modelisation of X . In the following graph we represent xg (x) for various values of r , µ and σ with x 0 = 1 and T = 1. Note that depending on the value of the parameters xg (x) is not always increasing (which shows its limits in terms of admissible utility function..)