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Structural and Reduced Form Models
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Financial Analysis for Credit Risk

Two problems to analyse "Credit Risk":

capacity to pay �nancial �ows

capacity to reimburse debt at maturity or to re�nance

To measure the capacity to pay interests people will look at the interest
coverage ratio:

Interest coverage ratios = interest expenses on debt
Earnings Before Interests and Taxes

Altman's (1968) analysis based on some �nancial ratios :

X1 Working Capital / Total Assets.

X2 Retained Earnings / Total Assets

X3 Earnings Before Interest and Taxes / Total Assets

X4 Market Value / Book Value of Total Debt

X4 Sales / Total Assets (industry dependent)

Remarks: It seems Altman was the �rst to introduce statistical models to
predict bankruptcy
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Financial Analysis for Credit Risk

Reminders:

Working Capital = Current Assets - Current Liabilities
Current Assets = Cash + Account Receivables + Inventories

Altman's Z-Score: with various revisions in 1983 and 1993

Based on historical studies of bankruptcies the Z-score was de�ned as:
Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5

with the following predictions associated:
if Z < 1.81 default within 1 year is predicted
if 1.81 ≤ Z ≤ 2.67 no prediction
if Z > 2.67 prediction of no default within 1 year

The following results were obtained on the samples tested:

90.9% success rate in predicting bankruptcy

97% success rate in predicting non-bankruptcy
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Financial Analysis for Credit Risk

Some re�nements have been done to the model in particular to de�ne a
probability of default.

Ohlson (1980) proposed the LOGIT Model:
P(Default|X1,X2, · · · ,Xn) = 1

1+exp(−β1X1−β2X2−···−βnXn)

where the parameters βi are estimated on a sample by maximizing the
likelihood.

Altman and Ohlson's models were developed principally for �nancial
analysts with an estimation of the parameters based on bankruptcy
historicals.
Since then other models have been developed which:

are better suited for trading purposes

are calibrated on corporate bonds and credit derivatives market prices
instead of observed bankruptcies

modelize the credit dynamics
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Structural and Reduced Form Models

For these new models two principal types:

Structural Models: (Black-Scholes(1973), Merton(1974),
Leland(1994), Schae�er(2004))

Reduced Form Models: (Jarrow-Turnbull(1997), Du�e-Singleton
(1999))

De�nition: Structural Models

model the dynamics of the Assets At and Liabilities Lt

assumption that the default happens i� At < Lt

in their simplest form: At = A0exp(σWt − σ2

2
t) and Lt = L0

approach adopted by Moody's KMV
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Structural and Reduced Form Models

De�nition: Distance to Default (DTD)

The Distance to Default is the number of standard deviations between the
ln of the current value of the company's assets (assumed to be normally
distributed) and the log of its liabilities.

Example: We assume

Assets: A0 = EUR100 and AT = A0exp(rT )exp(σWT − σ2

2
T )

volatility of the assets: σ = 25%, r = 0

Liabilities: LT = L0 = EUR60

then: AT < LT ⇐⇒ WT√
T
< 1

σ
√
T

[ln( L0
A0

) + σ2

2
T ] = DTD + σ

2

√
T

so here the 1 year Distance to Default is 2.
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Structural and Reduced Form models

De�nition: Reduced Form models

the probability of default is modelised directly

in the simplest form:
P(τ > t) = exp(−λt) where P is the risk neutral probability

in more complex forms (Cox Processes):
P(τ > t) = E [exp(−

∫ t
0
λ(s,Xs)ds)] where (Xs)s≥0 is a

multidimensional random process

Remark 1: to the simplest Structural Form model corresponds a complex
Reduced Form Model
Remark 2: in the Reduced Form model with constant parameter λ, if the
price of a bond without credit risk of Maturity T is 100e−rT the price of a
risky Bond with the same Maturity paying zero in case of default will be
e−(r+λ)T as a result of the calculation of E [e−rT1τ>T ].
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Example: Construction of P and λ

Exemple: we consider a two period economy 0,T with:

a risk free asset, a stock and a corporate bond of maturity T = 1

the risky asset is worth 100 with possible future values 130 and 70

the risk free asset has a return of 5%

we assume that the corporate (risky) bond will be worth at maturity:

106 if the stock is worth 130 (economy in state 1)

84.8 if the stock is worth 70 (economy in state 2)

Then, if there is no arbitrage, we have the following results:
a) the bond can be replicated by investing in the stock and risk-free bond
b) the value of the risky bond is 92.54 today
c) the risk neutral probability veri�es p1 = 58.33% and p2 = 41.67%
d) according to the price derived for the risky bond we have λ = 53.90%
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Example: Construction of P and λ

Demonstration:

a) we search for a and b such that:
a105 + b130 = 106 and a105 + b70 = 84.8
So, a = 0.57 is the number of risk-free bonds to purchase and b = 0.35 is
the number of risky assets to purchase for the replicating portfolio.
b) if there is no arbitrage, the price of the risky bond is then
0.57× 100 + 0.35× 100 = 92.54
c) the corresponding risk neutral probability is such that
130
1.05p1 + 70

1.05(1− p1) = 100 so p1 = 58.33% and p2 = 41.67%.
d) P(τ > 1) = p1 ⇐⇒ e−λ = 58.33%⇐⇒ λ = 53.90%

Remarks: For the risky-Bond we have 92.54 = 106
1.05 × e−8.70% so the

return of the bond will be 8.70% higher than the return of the risk-free
bond if the bond does not default. This excess return is called the spread
of the bond (calculated as a continuous rate).
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Example: Construction of P and λ

Remarks:

when calibrating a Reduced Form model the risk free rate and the
price of the risky bond are observed and from there λ can be deducted

Du�e and others have compared the "implied" λ (under the risk
neutral probability) for corporate Bonds derived from their prices and
compared them to the "realized" λ (under the "real probability")
derived from the defaults over the subsequent periods and found that
λimplied ∼ 2× λrealized
discrepencies between λimplied under the risk neutral possibility and
λrealized under historical probability can be seen as similar issues to the
discrepencies between "implied volatility" and "realized volatility"
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Recovery Rate

Theorem and De�nition : Recovery Rate R and Spread

The Recovery Rate R is the fraction of the amount due recovered if the
counterparty defaults.
In practice R depends on the type of debt issued by the company (senior,
junior, secured...)

if R is the recovery rate of a zero coupon of maturity T

if r is the risk-free rate for the same maturity

if S is the spread of the risky bond of maturity T

if λ is the constant default rate

then: S ∼ (1− R)λ

Demonstration:
Pricing the zero coupon with the risk neutral probability we have:
e−(r+S)T = e−rT (e−λT + R(1− e−λT )) =⇒ e−ST = (1− R)e−λT + R .
Developing to the �rst order we get the result.
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Recovery Rate

Remark:

In the previous example we have S = 8.70%, λ = 53.80% and in case of
default the recovery is 84.8

106
= 80% so (1− R)λ = 10.78%. Here the

approximation of S is not very good because λ is taking a quite extreme
(large) value and corresponds to the rating of a company very distressed.

Exercice 1: if λ is deterministic and time dependant show that:

a) P(τ > T ) = exp(−ΛTT ) where ΛT = 1
T

T∫
0

λsds

b) lim
dt−→0

P(τ<t+dt|τ>t)
dt = λt

Hint:

P(τ < t + dt)− P(τ < t) = exp(−
t∫
0

λsds)
[
1− exp(−

t+dt∫
t
λsds)

]
= P(τ < t)(1− λtdt + o(dt))
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Random Intensity, Cox Process

Theorem and De�nition: Cox Process

Let (Ω,P) be a probability space.
Let λ be a positive function of Rd

Let (Xs)s≥0 be a random process of Rd representing the factors which
explain the intensity function λ(Xs) related to credit risk.
Let τ1 be an exponential law of parameter 1 independent from the (Xs)s≥0
Let τλ de de�ned by:

τλ(ω) = inf{t,
t∫
0

λ(Xs)(ω)ds ≥ τ1(ω)}

Then τλ is called a Cox Process for default and we have

P(τλ > t) = E
[
exp(−

∫ t
0
λ(Xs)ds)

]
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Random Intensity, Cox Process

Demonstration:

P(τλ > t) = E [1τλ>t ] = E
(
E [1τλ>t |σ(Xs)]

)
E [1τλ>t |σ(Xs)] = P

(
τ1 >

t∫
0

λ(Xs)(ω)ds|σ(Xs)
)

as (Xs)s≥0 and τ1 are independent

P
(
τ1 >

t∫
0

λ(Xs)(ω)ds|σ(Xs)
)

= exp
(
−

t∫
0

λ(Xs)(ω)ds
)

so, P(τλ > t) = E
[
exp
(
−

t∫
0

λ(Xs)(ω)ds
)]

Q.E.D

We assume now that we are in an economy where the instantaneous short
term interest rate depends also on the factors (Xs)s≥0. In the absence of

arbitrage if we note βt = exp(−
t∫
0

r(Xs)ds) then the price of a zero coupon

bond of maturity T , nominal 1 with credit risk and zero recovery rate is
E [βT1τ>T ]
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Random Intensity, Cox Process

Proposition

For a risky zero coupon bond of Nominal 1, recovery rate zero, and

maturity T : E [βT1τ>T ] = E
[
exp(−

∫ T
0

(r(Xs) + λ(Xs))ds)
]

so, λ(Xs) is the "instantaneous spread" at time s

Demonstration:

E [βT1τλ>T ] = E
[
E [βT1τλ>T |σ(Xs)]

]
= E

[
βTE [1τλ>T |σ(Xs)]

]
= E

[
βT exp(−

∫ T
0
λ(Xs)ds)

]
= E

[
exp(−

∫ T
0

r(Xs)ds)exp(−
∫ T
0
λ(Xs)ds)

]
E
[
exp(−

∫ T
0

(r(Xs) + λ(Xs))ds)
]
Q.E.D
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Collateralized Debt Obligations
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Collateralized Debt Obligations
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Collateralized Debt Obligations

Rationale of the transaction:

the risk is repackaged to be able to sell it better

di�erent type of investors can choose between di�erent type of risks

potentially Rating/ Pricing Arbitrage (up to 2008 too many senior
tranches rated AAA)

in the past potentially regulatory arbitrage (for keeping the risk on the
equity tranche and deconsolidating)

technology of packaging and tranching which can be applied to cash
or synthetic underlyings

=⇒ Important to notice the importance of the "correlation" when

pricing a CDO's tranche
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Collateralized Debt Obligations
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Collateralized Debt Obligations

Example: we consider 2 Bonds, with zero Recovery rate, of EUR 500
Nominal each, packaged in a EUR 1000 Notional CDO and note Zi = 1 if
the Bond i defaults before maturity and otherwise Zi = 0

a) if we assume that Z1 = Z2 then:

either the two bonds default together, resulting in a payout of zero for
both tranches or
none of the bonds defaults, resulting in a payout for both tranches of
EUR 500

In this case, both tranches are the same, the senior tranche is not safer
than the junior tranche and the correlation between the defaults is 100%.

b) if we assume that Z2 = 1− Z1 then:
there is always one bond which defaults so

the junior tranche has always a payout of zero
the senior tranche has always a payout of EUR 500

In this case the correlation between the defaults is −100% and the two
tranches have extremely di�erent behaviours
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Collateralized Debt Obligations

=⇒ Note that in this extreme example, the pricing of the two tranches
does not depend on the probabilities of default but only on the correlation !

Remarks:

a low correlation between the bonds is good for senior tranche holders
and bad for junior tranche holders

a high correlation between the bonds is good for junior tranche holders
and bad for senior tranche holders

the impact of correlation is less clear for mezzanine tranches holders

To price CDOs we will need to simulate Bernouilli variables which are
correlated
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Simulating Correlated Binomials

We construct here Bernouilli variables with the same parameter p which are
correlated. The correlation is created through the default parameter in the
following way.

Theorem: Simulation of Correlated Bernouilli Variables

Let (Zi )i∈J1,nK be independent variables of uniform law in J0, 1K
Let p̃ be a random variable in J0, 1K with density f
Let (Xi )i∈J1,nK be Bernouilli variables de�ned by Xi = 1⇐⇒ Zi < p̃
Then:
a) the (Xi )i∈J1,nK are Bernouilli variables of parameters p̄ = E [p̃]

b) ∀i 6= j , ρ(Xi ,Xj) = Var(p̃)
p̄(1−p̄)
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Simulating Correlated Binomials

Demonstration :

a) E (Xi ) = E
(
E (Xi |p̃)

)
= E

(
E (1Zi<p̃|p̃)

)
= E (p̃)

b) E (XiXj) = E
(
E (XiXj |p̃)

)
= E (p̃2) as Xi and Xj are independent

conditionnally on p̃
so, Cov(XiXj) = E (p̃2)− E (p̃)2 = Var(p̃) and we know that for Bernouilli
Var(Xi ) = Var(Xj) = E (p̃)(1− E (p̃)) Q.E.D

We consider now CDOs composed of bonds of the same notional with the
same probabilities of default and same correlations and we are interested in
calculating the law of the number of Bonds which default and therefore the

law of Dn =
i=n∑
i=1

Xi
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Simulating Correlated Binomials

Remarks :

the limitation of the model is that the resulting correlation between
two bounds is always positive

is p̃ is constant the correlation between the bonds is zero

if P(p̃ = 0) = 1
2
and P(p̃ = 1) = 1

2
the correlation between the bonds

is 100% as var [p̃] = 1
4
and p̄(1− p̄) = 1

4

Exercice 1 :

Show that ∀X ∈ J0, 1K, Var [X ] ≤ 1
4

Hint : Var [X ] = E [(X − E (X ))2] = E [
(
(X − 1

2
) + (1

2
− E (X )

)2
]

= E [(X − 1
2

)2] + E [(1
2
− E (X ))2] + 2E [(X − 1

2
)(1

2
− E (X )

)
]

= E [(X − 1
2

)2] + (1
2
− E (X ))2 − 2(1

2
− E (X ))2

= E [(X − 1
2

)2]− (1
2
− E (X ))2 ≤ E [(X − 1

2
)2] ≤ 1

4
and the minimum is

attained i� ∀ω, |X (ω)− 1
2
| = 1

2
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Simulating Correlated Binomials

Exercice 2 :

Often in simulations p̃ ∼ B(α, β) (beta law of parameters α > 0 and
β > 0) where the density is given by fα,β(x) ∝ xα−1(1− x)β−11x∈J0,1K
Show that:
a) E [p̃] = α

α+β noted (p̄)

b) Var [p̃] = p̄(1−p̄)
α+β+1

c) simulating with p̃ we have ∀i 6= j , ρ(Xi ,Xj) = 1
α+β+1

d) show that ∀p, ρ ∈K0, 1J, ∃α > 0, β > 0, α
α+β = p̄ and 1

α+β+1
= ρ

Remarks: The Beta law is quite useful for the simulation of correlated
Bernouilli variables as it is possible to choose α and β to obtain any
possible probability of default and (positive) correlation wanted in the
model.
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Simulating Correlated Binomials

Theorem: Law of Dn

n

a) E
(
Dn
n

)
= p̄

b) Var
(
Dn
n

)
= p̄(1−p̄)

n + n−1
n Var [p̃]

c) Dn
n −→ L(p̃) (convergence in law)

so, in practice the probability that less than k bonds over n default is
approximated by P(p̃ < k

n )

demonstration

a) E
(
Dn
n

)
= E

(
1
n

i=n∑
i=1

Xi

)
= 1

n

i=n∑
i=1

E
(
Xi

)
= E [p̃]

b) Var
(
Dn
n

)
= 1

n2

i=n∑
i=1

Var(Xi ) + 1
n2
∑
i 6=j

Cov(Xi ,Xj)

= 1
n2
× n × p̄(1− p̄) + 1

n2
× n(n − 1)× var [p̃]
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Simulating Correlated Binomials

c) to show the convergence in law we show the convergence of the
distribution functions
lim

n−→+∞
P(Dn

n < t) = lim
n−→+∞

E (1Dn
n
<t)

= lim
n−→+∞

E (E (1Dn
n
<t |p̃)) = E (E ( lim

n−→+∞
1Dn

n
<t |p̃))

but when p̃ is known Dn
n −→ p̃ almost surely. so

E ( lim
n−→+∞

1Dn
n
<t |p̃) = 1p̃<t so,

lim
n−→+∞

P(Dn
n < t) = E [1p̃<t ] = P(p̃ < t) Q.E.D

Remarks: If the variables were not correlated in c) we would have
convergence towards a single number (the mean) instead of a convergence
to a distribution
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Histograms for Dn

n for a CDO of 50 Bonds (1000 simulations)

Histograms are plotted by joining the values obtained for each 2% bucket
p̃ ∼ Beta(10, 90) =⇒ E [p̃] = 10% and Var [p̃] = 0.99%
p̃ ∼ Beta(1, 9) =⇒ E [p̃] = 10% and Var [p̃] = 9.09%
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Beta Law for p̃ and CDO Pricing

Example: we consider a CDO made of 50 Bonds of equal Notional 100
each. We assume that the probabilities of default of the Bonds are
modelized by Binomial variables of expected default 10% and that the
correlation of default between the bonds are ρ. We assume that the CDO
has three tranches: Equity tranche (First 10% Loss), Junior Tranche (next
20% Loss), Senior Tranche (last 70% Loss). To calculate the price of the
three tranches we use the approximation in Law L(Dn

n ) ∼ Beta(α, β):

Table: Pricing as a function of ρ

i.i.d Bernouilli Beta(10,90) Beta(1,9)

E [p̃] 10% 10% 10%

ρ 0 0.99% 9.09%

Senior 100% 100% 99.45%

Junior 91.68% 89.85% 82.93%

Equity 16.64% 20.32% 38.08%
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Simulating Correlated Binomials

De�nition: Diversity Score (Moody's)

The Diversity Score is the number of uncorrelated bonds with the same
probability of default p̄ for which the variance of the proportion of losses
would be the closest to Var(Dn

n )

Remark: The diversity score summarizes the real diversi�cation e�ect
created by Bonds which are correlated.

Example: for n bonds with probability of default p and correlation ρ

Var
(
Dn
n

)
= p̄(1−p̄)

n + n−1
n Var [p̃] so we are searching for m such that

p̄(1−p̄)
m = p̄(1−p̄)

n + n−1
n Var [p̃]

N.A: for n = 100, p = 2% and ρ = 20%, σ20%(D100
100

) = 6.38%

with 5 independent assets σ0%(D5
5

) = 6.26% and with 4 independent assets

σ0%(D4
4

) = 7.00%. So we will take 5 as the Diversity Score.
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Diversity Score

Diversity Score and Standard Deviation for di�erent values of the correlation
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Structural Models for p̃

We make the following assumptions:

bond i is in default at time T iif Ai
T < D i where:

dAi
t = rAi

tdt + σiAi
tdW

i
t

σi is the same for all companies and is noted σ

the distance to default is the same for all companies and we note
c = 1

σ
√
T

[ln(D
i

Ai
0

)− rT + σ2

2
T ]

we assume that the Brownian motions W i
t verify

dW i
t = ρdWt +

√
1− ρ2dB i

t where the B i
t are brownian motions

which are independent between them and independent from Wt

Remarks :

With the model ∀i 6= j , ρ(W i
t ,W

i
t ) = ρ, and Wt is the common factor

which creates correlation between the bonds.
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Structural Models for p̃

Proposition

Let Zi be the Bernouilli random variable with value 1 if the company i

defaults and 0 otherwise. Then Zi = 1⇐⇒ B i
T√
T
< c√

1−ρ2
− ρ√

1−ρ2
WT√
T

Demonstration simple

Remark 1 : Let Φ be the repartition fonction of a normal law N (0, 1).
B i
T√
T
∼ N (0, 1) =⇒ Φ(

B i
T√
T

) ∼ N (0, 1)

so Xi = 1⇐⇒ Φ
(
W i

T√
T

)
< Φ

(
c√
1−ρ2

− ρ√
1−ρ2

WT√
T

)
so we end up simulating correlated Bernouilli variables with the function p̃

having a law p̃ ∼ Φ
(

c√
1−ρ2

− ρ√
1−ρ2

WT√
T

)
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Structural Models for p̃

Remark 2 : We have di�erent alternatives for p̃ to generate correlated
binomials:

to use a beta distribution B(α, β)

to use the distribution of Φ(α + βZ ) (where Z ∼ N (0, 1))

In both cases:

�rst we solve for α and β to match the desired value for p̄ and ρ

then to price the CDO we approximate the law of Dn
n by the law of p̃

Proposition

If p̃ ∼ Φ(α + βZ ) (where Z ∼ N (0, 1)) then

a) E [p̃] = Φ
(

α√
1+β2

)
(that we note also p̄)

b) Var [p̃] = Φ
2, β2

1+β2

(
α√
1+β2

, α√
1+β2

)
c) P(p̃ < t) = Φ

(
1
β [Φ−1(t)−

√
1 + β2Φ−1(p̄)]

)
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Structural Models for p̃

a) E [p̃] = E [Φ(α + βZ )] = E [E (1Z0<α+βZ |Z )] (with Z0 ∼ N (0, 1)
independent from Z )
= E [1Z0−βZ<α] = E [1 Z0−βZ√

1+β2
< α√

1+β2

] = Φ( α√
1+β2

)

b) E (p̃2) = E [Φ(α + βZ )2] = E [E (1Z0<α+βZ |Z )2]
= E [E (1Z0<α+βZ |Z )E (1Z1<α+βZ |Z )] (with Z0 and Z1 ∼ N (0, 1)
independent from Z )(Fubini's Trick)

= E [E
(
E (1Z0<α+βZ |Z )E (1Z1<α+βZ |Z )|Z0,Z1

)
]

= E [E
(
1Z0<α+βZ1Z1<α+βZ |Z0,Z1

)
] = E [1 Z0−βZ√

1+β2
< α√

1+β2

1 Z1−βZ√
1+β2

< α√
1+β2

]

= Φ
2, β2

1+β2

( α√
1+β2

, α√
1+β2

) where Φ2,γ is the repartition function of

a bivariate normal variable N

(
1 γ

γ 1

)
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Calibration of the two Models for p̃

c) P(p̃ < t) = P(Φ(α + βZ ) < t) = Φ( Φ−1(t)−α
β )

as Φ( α√
1+β2

) = p̄ we have α = Φ−1(p̄)
√
1 + β2 so

P(p̃ < t) = Φ
(
1
β [Φ−1(t)−

√
1 + β2Φ−1(p̄)]

)
. Q.E.D

Example we consider a CDO with 100 Bonds of the same Notional and
recovery rate of zero. The default of the bonds are modelized by Bernouilli
variables Xi of parameter p and correlations ρ. We consider a junior
tranche for the CDO which is exposed to the losses between above 10%
and up to 30%. Price this junior tranche assuming p̄ = 2% and ρ = 10%
with the two previous models:
a) assuming p̃ ∼ B(α, β)
b) assuming p̃ ∼ Φ(α + βZ ) where Z ∼ N (0, 1)
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Calibration of the two Models for p̃

Results:

a) we solve and �nd α = (1ρ − 1)p̄ and β = (1ρ − 1)(1− p̄). So, here
p̃ ∼ B(0.18, 8.82). Taking a risk free rate of zero we price the junior

tranche in % of face value as 1
20

i=30∑
i=11

P(D100
100

< i
100

) that we approximate by

1
20

i=30∑
i=11

P(p̃ < i
100

) = 98.12%

b) we solve α√
1+β2

= −2.05375 and (using a program to calculate the

bivariate normal) β2

1+β2
= 0.18. This implies α = −2.2678 and

β2 = 0.2195. The sign of β is not determined as both Z and −Z are
N (0, 1), we will take β = 0.468521. Now,

1
20

i=30∑
i=11

P(Φ(α + βZ ) < i
100

) = 1
20

i=30∑
i=11

Φ( 1
β [Φ−1( i

100
)− α]) = 99.66%

Remark : the pricings are not exactly the same as the two laws produce
the same expectations and correlations but are not the same.
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Calibration of the two Models for p̃

Modelizing p̃ with Beta(α, β) or Φ(α + βZ)
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Generalization to None Zero Recovery Rate

Proposition

We assume here that:

the percentage lost for a bond which defaults (i.e 1− R) is f (p̃)

f (p) is an increasing function of p

If we note Lfn = 1
n

i=n∑
i=1

f (p̃)1Zi<p̃ the loss in percentage for the CDO

we have : Lfn −→ L(p̃f (p̃)) (convergence in law).

Demonstration :

to show the convergence in law we show the convergence of the
distribution function
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Generalization to None Zero Recovery Rate

lim
n−→+∞

P(Lfn < t) = lim
n−→+∞

E (1Lfn<t) = lim
n−→+∞

E (E (1Lfn<t |p̃))

= E (E ( lim
n−→+∞

1Lfn<t |p̃))

but when p̃ is known almost surely Lfn −→ E [f (p̃)1Zi<p̃] = f (p̃)p̃
so 1Lfn<t −→ 1f (p̃)p̃<t and

lim
n−→+∞

P(Lfn < t) = E (E (1p̃f (p̃)<t |p̃)) = P(p̃f (p̃) < t) Q.E.D

Remarks : if R = 0 then f is concentrated in 1 and we �nd the result we
already demonstrated as in this case L(p̃f (p̃)) ∼ L(p̃)

Pierre Brugière copyrights Pierre Brugière April 24, 2017 42 / 89



Infection Models

De�nition: Infection Models

Let (Zi )i∈J1,nK and (Yi ,j)i 6=j∈J1,nK be independent variables, we assume
Zi ∼ B(p) and ∀i 6= j , Yi ,j ∼ B(q)
Then we de�ne in a contagion model the variables (Xi )i∈J1,nK by :
Xi = Zi + (1− Zi )[1−

∏
j 6=i

(1− ZjYj ,i )]

Remark:

The only possible values for Xi are 1 and 0.
Xi = 1⇐⇒ Zi = 1 or ∃i 6= j , Zj = 1 and Yj ,i = 1 (i.e contamination)

We are now going to study the law of the Xi and their correlations.
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Infection Models

Proposition

Xi ∼ B(1− (1− p)(1− pq)n−1)

Demonstration : because of independence
E (X1) = E (Z1) + (1− E (Z1))[1−

∏
j 6=1

(1− E (Zj)E (Yj ,1))]

= p + (1− p)[1− (1− pq)n−1]
= p + 1− p − (1− p)(1− pq)n−1

= 1− (1− p)(1− pq)n−1 Q.E.D
Remarks :

L(X1) −−−−−→
n−→+∞

1

Proposition

E [X1X2] = 1− 2(1− p)(1− pq)n−1 + (1− p)2(1− 2pq + pq2)n−2
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Infection Models

Demonstration :

E [X1X2]

= E
[(

Z1+(1−Z1)[1−
∏
j 6=1

(1−ZjYj ,1)]
)(

Z2+(1−Z2)[1−
∏
j 6=2

(1−ZjYj ,2)]
)]

we have 3 di�erent type of terms:
a) E [Z1Z2] = p2 (because Z1 and Z2 are independent)

b) E
(
Z1(1− Z2)[1−

∏
j 6=2

(1− ZjYj ,2)]
)
(this value will appear two times)

= E
(
Z1(1− Z2)

)
− E

(
Z1(1− Z1Y1,2)(1− Z2)

∏
j /∈{1,2}

(1− ZjYj ,2)
)

= p(1− p)− (p − pq)(1− p)(1− pq)n−2

= p(1− p)[1− (1− q)(1− pq)n−2]

c)E
[
(1− Z1)(1− Z2)[1−

∏
j 6=1

(1− ZjYj ,1)][1−
∏
j 6=2

(1− ZjYj ,2)]
]

multiplying �rst the two terms on the right we get 3 di�erent type of terms:
◦ E [(1− Z1)(1− Z2)] = (1− p)2
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◦ −E
[
(1− Z1)(1− Z2)

∏
j 6=2

(1− ZjYj ,2)] (this value will appear two times)

= −E
[
(1− Z1)(1− Z1Y1,2)(1− Z2)

∏
j /∈1,2

(1− ZjYj ,2)
]

= −(1− pq − p + pq)(1− p)(1− pq)n−2

= −(1− p)2(1− pq)n−2

◦ E
[
(1− Z1)(1− Z2)

∏
j 6=1

(1− ZjYj ,1)
∏
j 6=2

(1− ZjYj ,2)
]

= E
[
(1−Z1)(1−Z1Y1,2)(1−Z2)(1−Z2Y2,1)

∏
j /∈1,2

[(1−ZjYj ,1)(1−ZjYj ,2)]
]

= (1− pq − p + pq)2(1− pq − pq + pq2)n−2

= (1− p)2(1− 2pq + pq2)n−2

so at the end we obtain:
p2 + 2p(1− p)[1− (1− q)(1− pq)n−2] + (1− p)2

−2(1− p)2(1− pq)n−2 + (1− p)2(1− 2pq + pq2)n−2

= 1− 2(1− p)(1− pq)n−1 + (1− p)2(1− 2pq + pq2)n−2 Q.E.D
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Infection Models

Exercice :

Let Dn =
i=n∑
i=1

Xi , calculate as a function of p and q :

a) E [Dn] and
b) Var [Dn]

Hint :

a) E [Dn] =
i=n∑
i=1

E [Xi ] = nE [X1]

b) Var [Dn] = E
[
(
i=n∑
i=1

Xi )
2
]
− (E [Dn])2 =

i=n∑
i=1

j=n∑
j=1

E
[
XiXj

]
− (E [Dn])2

= n(n − 1)E [X1X2] + nE [X1]− n2E [X1]2

So we know how to calculate the �rst two moments of Dn as a function of
p and q but in fact we can also calculate the law of Dn
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Proposition :

∀k ∈ J1, nK,

P(Dn = k) = C k
n

i=k∑
i=1

C i
kp

i (1− p)(n−i)(1− q)i(n−k)[1− (1− q)i ](k−i)

Demonstration :

P(Dn = k) = C k
n P(X1 = 1,X2 = 1, · · · ,Xk = 1,Xk+1 = 0, · · · ,Xn = 0)

and {X1 = 1,X2 = 1, · · · ,Xk = 1} can de decomposed in k − 1 cases
depending on the number i of "direct" defaults. So
P(X1 = 1,X2 = 1, · · · ,Xk = 1,Xk+1 = 0, · · · ,Xn = 0)

=
i=k∑
i=1

C i
kP(Z1 = 1,Z2 = 1, · · · ,Zi = 1, (Zi+1 = 0,Xi+1 = 1), · · · , (Zk =

0,Xk = 1),Xk+1 = 0, · · · ,Xn = 0)
we can write each event as the intersection of three events
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◦ {Z1 = 1,Z2 = 1, · · · ,Zi = 1,Zi+1 = 0, · · · ,Zn = 0}
◦ {∃j ∈ J1, iK,Yj ,i+1 = 1, · · · ,∃j ∈ J1, iK,Yj ,k = 1}
◦ {∀j ∈ J1, iK,Yj ,k+1 = 0, · · · , ∀j ∈ J1, iK,Yj ,n = 0}
the three events are independent.
◦ the probability of the �rst one is pi (1− p)(n−i)

◦ the probability of the second one is [1− (1− q)i ](k−i)

◦ the probability of the third one is (1− q)i(n−k) Q.E.D
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Infection Models

Example :

Table: Infection Models for n = 30

p = P(Zi = 1) 1% 1% 1% 1% 1%

q 0% 10% 20% 50% 100%

p∗ = P(Xi = 1) 1% 3.83% 6.58% 14.39% 26.03%

Correlation 0% 12% 21% 50% 100%

Diversity Score 30 6.7 4.1 2 1

Remarks : if q = 100%
P(Xi = 1) = 1−P(Xi = 0) = 1− (P(Z1 = 0))30 = 1− (1−p)30 = 26.03%

Pierre Brugière copyrights Pierre Brugière April 24, 2017 50 / 89



Copulas
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Copulas

De�nition : Copulas

C : [0, 1]d −→ [0, 1] is a copula i� C is a multivariate cumulative
distribution for a random vector of [0, 1]d i.e
∃(U1,U2, · · · ,Ud) r.v (Ω,P) −→ [0, 1]d such that:

∀i ∈ J1, dK, Ui ∼ U([0, 1])

C (u1, u2, · · · , ud) = P(U1 ≤ u1,U2 ≤ u2, · · · ,Ud ≤ ud)

Notation : we note
FU(u1, u2, · · · , ud) = P(U1 ≤ u1,U2 ≤ u2, · · · ,Ud ≤ ud) the
multidimensional cumulative distribution function of U

Remark : by de�nition for any copula C there is U = (U1,U2, · · · ,Ud)
with Ui ∼ U([0, 1]) such that C = FU
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Copulas

Exemples : Let U = (U1,U2) where U1 and U2 ∼ U([0, 1])
a) if U1 and U2 are independent then FU(u, v) = uv
b) if U2 = U1 then FU(u, v) = min(u, v)
c) if U2 = 1− U1 then FU(u, v) = max(u + v − 1, 0)

Demonstration : Let's show c)
P(U1 ≤ u, 1− U1 ≤ v) = P(U1 ≤ u,U1 ≥ 1− v) = P(1− v ≤ U1 ≤ u)
= max(u + v − 1, 0) Q.E.D

Theorem : Frechet-Hoe�ding Bounds

Let U = (U1,U2) be a r.v with Ui ∼ U([0, 1]) then
∀u, v ∈ [0, 1], max(u + v − 1, 0) ≤ FU(u, v) ≤ min(u, v)
so the cases U2 = U1 and U2 = 1− U1 represents the two extreme
"correlation-structures".
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Demonstration :

P(U1 ≤ u,U2 ≤ v) ≤ P(U1 ≤ u) and P(U1 ≤ u,U2 ≤ v) ≤ P(U2 ≤ v)
implies P(U1 ≤ u,U2 ≤ v) ≤ min(P(U1 ≤ u),P(U2 ≤ v))
P({U1 ≤ u} ∪ {U2 ≤ v}) = P(U1 ≤ u) + P(U2 ≤ v)− P(U1 ≤ u,U2 ≤ v)
implies P(U1 ≤ u,U2 ≤ v) ≥ −1 + P(U1 ≤ u) + P(U2 ≤ v) Q.E.D

De�nition : Quantile (or Pseudo-Inverse)

We de�ne F+
X : [0, 1] −→ R ∪ {−∞} ∪ {+∞} by

F+
X (y) = inf

x∈R
{P(X ≤ x) ≥ y}

De�nition

f is strictly increasing at x i� ∀x1 < x < x2, f (x1) < f (x) < f (x2)
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Properties

FX is increasing and right-continuous

F+
X is increasing and left continuous

P(X = x) = 0⇐⇒ FX is continuous at x

y ≤ FX (x)⇐⇒ F+
X (y) ≤ x

F+
X (FX (x)) ≤ x

FX (F+
X (y)) ≥ y

FX strictly increasing at x ⇐⇒ F+
X continuous at FX (x)

F+
X strictly increasing at y ⇐⇒ FX continuous at F+

X (y)

F+
X continuous at FX (x) ⇐⇒ F+

X (FX (x)) = x

FX continuous at F+
X (y)⇐⇒ FX (F+

X (y)) = y

FX continuous and strictly increasing ⇐⇒ FX invertible and
F+
X = F−1X
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Calculation of the Pseudo Inverse
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Demonstration : Let as an exercise

Proposition

a) FX continuous =⇒ FX (X ) ∼ U([0, 1])
b) FX continuous and U ∼ U([0, 1]) =⇒ F+

X (U) ∼ X (same law)

Demonstration :

a) Let y ∈]0, 1[
P(FX (X ) < y) = 1− P(FX (X ) ≥ y)
= 1− P(X ≥ F+

X (y)) (according to the proposition)
= P(X < F+

X (y)) = P(X ≤ F+
X (y)) (because FX is continuous)

= FX (F+
X (y)) = y (according to the proposition as FX is continuous)

so FX (X ) ∼ U([0, 1]) Q.E.D
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b) Let x ∈ X (Ω)
P(F+

X (U) ≤ x) = P(U ≤ FX (x)) (according to the proposition)
= FX (x) so F+

X (U) ∼ X Q.E.D

Sklar's Theorem: Multivariate with given Marginals and Copula

Let U = (U1,U2, · · · ,Ud) with Ui ∼ U([0, 1]) and C = FU be a copula
Let F1,F2, · · · ,Fd be d continuous cumulative distribution functions.
Let X = (F+

1 (U1),F+
2 (U2), · · · ,F+

d (Ud) and Xi = F+
i (Ui ) then:

FX is a multidimensional distribution with marginals Fi

Fi (Xi ) = FXi
(Xi ) = Ui

FX (x1, x2, · · · , xd) = C (F1(x1),F2(x2), · · · ,Fd(xd))

C (u1, u2, · · · , ud) = FX (F+
X1

(u1),F+
X2

(u2), · · · ,F+
Xd

(ud))
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Demonstration :

Fi continuous =⇒ Fi is the cdf of F
+
i (Ui ) (according to the proposition)

Fi continuous =⇒ Fi (F
+
i )(Ui ) = Ui (according to the properties)

FX (x1, x2, · · · , xd) = P(F+
1 (U1) ≤ x1,F

+
2 (U2) ≤ x2, · · · ,F+

d (Ud) ≤ xd)
but F+

i (Ui ) ≤ xi ⇐⇒ U1 ≤ Fi (xi ) (according to properties) so
= P(U1 ≤ F1(x1),U2 ≤ F2(x2), · · · ,Ud ≤ Fd(xd)) Q.E.D

Theorem and De�nition : Copula of a Multivariate Distribution

Let X = (X1,X2, · · · ,Xd) with continuous marginal cdfs Fi
Let U = (F1(X1),F2(X2), · · · ,Fd(Xd))
then
Fi (Xi ) ∼ U([0, 1]) and we call copula of X and note CX the cumulative
multivariate distribution FU .
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Simulations Gaussian Copula for various values of ρ : obtained by simulating X and calculating the Fi (Xi )
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Remark 1 : According to Sklar's theorem:

for any copula C and

for any continuous cdfs (Fi )i∈J1,dK

we can �nd a multivariate random variable X such that:

the Fi are the marginal cdfs of X

CX = C

we will have FX (x1, x2, · · · , xd) = CX (F1(x1),F2(x2), · · · ,Fd(xd))

Remark 2 : It is easy to simulate a Gaussian vector with a given
correlation matrix and therefore easy to simulate Gaussian Copulas

Conclusion: Multivariate distributions with continuous marginal cdfs are
determined by their marginals and their copula.
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Proposition : Invariance Properties of the Copulas

Let X = (X1,X2, · · · ,Xd) with continuous marginal cdfs Fi
Let T1,T2, · · · ,Td be strictly increasing real functions
Let Y = (Y1,Y2, · · · ,Yd) with Yi = Ti (Xi )
then CY = CX

So the Copula, which measures the association between the variables, is
invariant by change of variables under strictly increasing functions (which is
not the case for the correlation)

Hint Demonstration :

P(Ti (Xi ) ≤ T (ui )) = P(Xi ≤ ui ) so FTi (Xi )(T (ui )) = FXi
(ui )

CY (u1, u2, · · · , ud) = P(T (Xi ) ≤ F+
Ti (Xi )

(ui ), i ∈ J1, dK)

= P(FTi (Xi )(T (Xi )) ≤ ui , i ∈ J1, dK) = P(FXi
(Xi ) ≤ ui , i ∈ J1, dK)

= CX (u1, u2, · · · , ud) Q.E.D
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Proposition : Copulas for Normalized Gaussian Vectors

Let X be a "normalized" Gaussian vector N (0,Rd) with components
Xi ∼ N (0, 1) and correlation matrix Rd invertible.
Let CX the copula of X and cX its density. Then:

CX (x) = ΦRd
(Φ−1(x1),Φ−1(x2), · · · ,Φ−1(xd))

cX (x) = 1

|R|
1
2
exp(−1

2
x ′(R−1d − Id)x)

where Φ is the cdf of a N (0, 1) and ΦRd
is the multivariate cumulative

distribution function of a N (0,Rd)

Demonstration : from the property
FX (x1, x2, · · · , xd) = CX (F1(x1),F2(x2), · · · ,Fd(xd)) we get
ΦRd

(x1, x2, · · · , xd) = CX (Φ(x1),Φ(x2), · · · ,Φ(xd)) and
ΦRd

(Φ−1(x1),Φ−1(x2), · · · ,Φ−1(xd)) = CX (x1, x2, · · · , xd) Q.E.D
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Applying ∂
∂x1∂x2···∂xd to

ΦRd
(x1, x2, · · · , xd) = CX (Φ(x1),Φ(x2), · · · ,Φ(xd)) we get

φRd
(x1, x2, · · · , xd) = cX (Φ(x1),Φ(x2), · · · ,Φ(xd))φ(x1)φ(x2) · · ·φ(xd)

the density φRd
(x) equals ( 1√

2π
)dexp(−1

2
x ′R−1d x) and

φ(x1)φ(x2) · · ·φ(xd) = ( 1√
2π

)dexp(−1
2
u′I−1d u) Q.E.D

Proposition

The Copula of a Gaussian vector depends only on its correlation matrix Rd

Demonstration : if X is a Gaussian vector of correlation matrix Rd we
know (from the invariance property) that the normalized Gaussian vector U
where Ui = Ti (Xi ) = Xi−µi

σi
has the same copula as X and that

U ∼ N (0,Rd) Q.E.D
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Rosenblatt's Theorem

Let X = (X1,X2, · · · ,Xd) be a random vector of Rd

we assume that the law of X has a density fX (x1, x2, · · · , xd)
Let T : Rd −→ Rd be de�ned by T (x) = y with
y1 = P(X1 ≤ x1)
y2 = P(X2 ≤ x2|X1 = x1), · · ·
yd = P(Xd ≤ xd |X1 = x1,X2 = x2, · · · ,Xd−1 = xd−1)
Then :
Y = T (X ) follows a uniform law on [0, 1]d i.e

the Yi are independent

Yi ∼ U([0, 1])
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Demonstration:

Let h be a measurable function from Rd to R
E [h(Y )] = E [h(T (X ))] =

∫
Rd h(T (x))fX (x)dx

We consider the change of variable y = T (x).
The Jacobian matrix [dydx ] is triangular and the diagonal elements are:

∂
∂x1

P(X1 ≤ x1) = fX1(x1)

∂
∂x2

P(X2 ≤ x2|X1 = x1) = fX2|X1=x1(x2) · · ·
∂
∂xd

P(Xd ≤ xd |Xd−1 = xd−1 · · · ,X1 = x1) = fXd |(Xd−1=xd−1··· )(xd)

so, the determinant of the Jacobian Matrix equals fX (x1, x2, · · · , xd)
so after the change of variable : E [h(Y )] =

∫
T (Rd ) h(y)dy

as the yi are probabilities T (Rd) ⊂ [0, 1]d and by mass conservation
T (Rd) = [0, 1]d

so ∀h,E [h(Y )] =
∫

[0,1]d h(y)dy =⇒ Y ∼ U([0, 1]d) Q.E.D
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We can create a correlation structure on d binomial variables Zi ∼ B(pi )
by choosing a copula C and (α1, α2, · · · , αd) such that:
∀i ∈ J1, dK , C (+∞, · · · , αi ,+∞, · · · ) = pi

Example: Here d = 3 and p1 = 1%, p2 = 2% and p3 = 3%.
We consider a Gaussian Copula C with correlation ρ = 50% between two
variables .
We note X = (X1,X2,X3) a Gaussian Vector having C as cumulative
distribution function.
We solve P(Xi ≤ αi ) = pi and �nd α1 = −2.326 α2 = −2.054
α3 = −1.881
Here we did not try to calibrate a correlation matrix for X to match some
input correlations between the Zi but calculate the correlations between the
defaults induced by the correlation matrix of X
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Copulas : Example

Here we get E (Z1Z2)− E (Z1)E (Z2) = P(X1 < α1,X2 < α2)− p1p2 and

ρ(Z1,Z2) = cov(Z1,Z2)
σ(Z1)σ(Z2) = 13.32%

and in the same way ρ(Z1,Z3) = 13.89% and ρ(Z2,Z3) = 16.16%.
To simulate Z we simulate X and then calculate (1X1<α1 , 1X2<α2 , 1X3<α3)

Remark:

The Structural Model for default is in fact a Copula model

Exemples of Copula :

Clayton Cn(u, v) = max(u
1
n + v

1
n , 0)

1
n

Gumbel-Hougaard C (u) = exp
([
−

i=d∑
i=1

(−log(ui ))θ
] 1
θ

)
with θ > 1
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Copulas : Measures of Association between Variables

Background : Pearson's linear correlation ρ(X ,Y ) = cov(X ,Y )
σ(X )σ(X ) measures

only the a�ne relationship between variables and presents some
imperfections to measure the link between two variables. For example:

if X ∼ N (0, 1) and Y = X 2 then ρ(X ,Y ) = 0 while there is a strong
link between Y and X (we can indeed predict Y perfectly from X )

if f and g are increasing in general cov(X ,Y ) 6= cov(f (X ), g(Y ))

De�nition : Kendall's tau

Let (X ,Y ) be a random variable. Let (X1,Y1), (X2,Y2) be independent
with the same law as (X ,Y ). We call Kendall's tau and note τ(X ,Y ) the
quantity P((X1 − X2)(Y1 − Y2) ≥ 0)− P((X1 − X2)(Y1 − Y2) < 0)
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Copulas : Measures of Association between Variables

Properties Kendall's τ

−1 ≤ τ(X ,Y ) ≤ 1

if f and g are strictly increasing τ(f (X ), g(Y )) = τ(X ,Y )

τ(FX (X ),FY (Y )) = τ(X ,Y )

U ∼ U([0, 1) =⇒ τ(U,U) = 1 and τ(U, 1− U) = −1
If (X ,Y ) has C for Copula then

τ(X ,Y ) = −1 + 4
∫

[0,1]2 C (u, v) ∂
2C

∂u∂v dudv

Remark:

if X ∼ N (0, 1) and Y = X 2 then τ(X ,Y ) = 1
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Copulas : Measures of Association between Variables

Demonstration : let's show the last point
τ(X ,Y ) = P((X1−X2)(Y1−Y2) ≥ 0)− (1−P((X1−X2)(Y1−Y2) ≥ 0))
= −1 + 2P((X1 − X2)(Y1 − Y2) ≥ 0)
= −1 + 2(P(X1 − X2 ≤ 0,Y1 − Y2 ≤ 0) + P(X2 − X1 ≤ 0,Y2 − Y1 ≤ 0))
as (X1,Y1) and (X2,Y2) have the same law, so we just need to calculate
the �rst probability.
P(X1 − X2 ≤ 0,Y1 − Y2 ≤ 0) = E (E (1X2≥X11Y2≥Y1)|X1,Y1)

= E (C (X1,Y1)) =
∫

[0,1]2 C (u, v) ∂
2C

∂u∂v dudv

so τ(X ,Y ) = −1 + 4
∫

[0,1]2 C (u, v) ∂
2C

∂u∂v dudv Q.E.D
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Copulas : Measures of Association between Variables

De�nition : Spearman's correlation

If (X ,Y ) is a random variable with marginal laws FX and FY then the
Spearman's correlation ρS is de�ned by ρS(X ,Y ) = ρ(FX (X ),FY (Y ))

Properties Spearman's correlation

−1 ≤ ρS(X ,Y ) ≤ 1

if f and g are strictly increasing ρS(f (X ), g(Y )) = ρS(X ,Y )

τ(FX (X ),FY (Y )) = ρS(X ,Y )

U ∼ U([0, 1) =⇒ ρS(U,U) = 1 and ρS(U, 1− U) = −1
If (X ,Y ) has C for Copula then
ρS(X ,Y ) = −3 + 12

∫
[0,1]2 C (u, v)dudv
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Copulas : Measures of Association between Variables

Demonstration :

Let C be the copula of (X ,Y ) i.e the law of (U,V ) where U = F1(X ) and

V = F2(Y ) , let ρS(X ,Y ) = cor(U,V ) = E(UV )−E(U)E(V )
E(U)E(V )

E (UV ) =
1∫
0

1∫
0

uv ∂2C
∂u∂v dudv =

1∫
0

u
( 1∫

0

v ∂2C
∂u∂v dv

)
du

=
1∫
0

u
(

[v ∂C∂u ]10 −
1∫
0

∂C
∂u dv

)
du =

1∫
0

u
(
fU(u)−

1∫
0

∂C
∂u dv

)
du

= E (U)−
1∫
0

( 1∫
0

u ∂C∂u du
)
dv = E (U)−

1∫
0

(
[uC (u, v)]10 −

1∫
0

C (u, v)du
)
dv

= E (U)−
1∫
0

P(V ≤ v)dv +
1∫
0

1∫
0

C (u, v)dudv

= E (U)− E (v) +
1∫
0

1∫
0

C (u, v)dudv =
1∫
0

1∫
0

C (u, v)dudv

and E (U)E (V ) = 1
4
and Var(U) = Var(V ) = 1

12
Q.E.D
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Appendix : Risk Neutral Probability
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Risk Neutral Probability (discrete case)

Background: We consider an economy with two instants {0, 1} where
there are d assets whose vector of prices X is represented today by the
vector X0 = (X 1

0 ,X
2
0 , · · · ,X d

0 )′. We assume that at instant 1 there are n
possible states for the economy and for each state i ∈ J1, nK the vector of
the prices of the assets is Xi = (X 1

i ,X
2
i , · · · ,X n

i )′. We assume that prices
are all strictly positive.

De�nition: Absence of Arbitrage (AOA)

We say that there is no arbitrage in the economy i�:
{w ∈ Rd ,∀i ∈ J1, nK〈w ,Xi 〉 ≥ 0} ⊂ {w ∈ Rd , 〈w ,X0〉 ≥ 0}

Remarks :

The de�nition means that it is not possible to receive money today to build
a strategy which has positive values tomorrow in all cases.
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Risk Neutral Probability (discrete case)

Theorem and De�nition: Risk Neutral Probability

a)the two following propositions are equivalent:

there is no arbitrage in the economy

we can �nd (λi )i∈J1,nK, λi ≥ 0 such that X0 =
i=n∑
i=1

λiXi

b) if there is a risk-free asset in the economy of return r over [0, 1] then:
i=n∑
i=1

λi = 1
1+r

if we de�ne a probability π, over the n possible values of X at time 1,
by πi = λi (1 + r) then X0 = 1

1+r Eπ[X ] and π is called the risk neutral
probability for the economy
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Risk Neutral Probability (discrete case)

Demonstration :

a) one of the implications is obvious.
We assume now that there is no arbitrage and de�ne the cone

C = {
i=n∑
i=1

λiXi ,∀i ∈ J1, nKλi ≥ 0}.

Then C is convex and if X /∈ C we can separate X from C by an hyperplane
and �nd w ∈ Rd such that: 〈w ,X0〉 < 0 and for all Y in C 〈w ,Y 〉 > 0
but this would contradict the AOA hypothesis, so X0 ∈ C. Q.E.D

b) if we assume that the risk-free asset is component j then:

X j
0 =

i=n∑
i=1

λiX
j
i and X j

i = X j
0(1 + r) =⇒

i=n∑
i=1

λi = 1
1+r Q.E.D
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Risk Neutral Probability (discrete case)

Exercice : we assume that there are 3 assets, of prices today
X0 = (1, 5, 10)′ and 3 possible states of the economy tomorrow de�ned by
the 3 vector of prices for the assets:
X1 = (1.03, 5, 11)′, X2 = (1.03, 5, 10)′, X3 = (1.03, 6, 10)′.
a) explain why the risk-free rate is 3%
b) show that:{

1
1.03(π1X1 + π2X2 + π3X3) = X0(C1)

π1 + π2 + π3 = 1(C2)
=⇒ π = (0.30, 0.55, 0.15)

c) explain why there is no arbitrage in this economy

If we assume now that X2 = (1.03, 5, 12) show that:
d) π satis�es (C1) and (C2) =⇒ π = (1.4,−0.55, 0.15)
e) explain why there are arbitrages in this case
f) exhibit an arbitrage for this economy
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Risk Neutral Probability (discrete case)

Hint: for f) as there is no risk neutral probability (π is not a probability),
according to the AOA theorem, we can �nd a strategy w such that
〈w ,X0〉 < 0 and ∀i ∈ J1, 3K, 〈w ,Xi 〉 > 0.
If we consider the strategy w = (−7.6, 0.5, 0.5) then,
At inception:

the risk free asset is short-sold

the two risk free assets are purchased in quantity of 0.5 and 0.5

0.10 of cash is generated (−7.60 + 0.5× 5 + 0.5× 10 = 0.10)

At maturity:

for state 1: exiting the strategy earns 0.17
(−7.60× 1.03 + 0.5× 5 + 0.5× 11 = 0.17)

for state 2: exiting the strategy earns 0.67

for state 3: exiting the strategy earns 0.17
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Risk Neutral Probability (discrete case)

So here there is an arbitrage, as the strategy w enables to receive money at
all times (0.10 at inception and at least 0.17 in the future) and therefore
should be used in in�nite quantity if it existed.

Remark : If we assume that the vector of prices today is X0 = (1, 5, 10)′

and that the 3 vectors of prices for tomorrow are :
X1 = (1.03, 5, 10)′, X2 = (1.03, 6, 12)′, X3 = (1.03, 6, 13)′ then
a) π = (0.85, 0.15, 0)′ is the risk neutral probability
b) according to a) there is no arbitrage
c) the strategy w = (0,−2, 1)′ costs today zero and the possible outcomes
tomorrow are 0 for the �rst two states and 1 for state 3, so it seems
attractive to play it (as there is only upside) but strictly speaking this is not
an arbitrage according to our de�nition.
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Risk Neutral Probability (continuous case)

Background:

We consider a probability space (Ω,F ,P) with F = (Ft)t≥0 where Ft

represents the information available at time t.
We assume that there are d �nancial assets following the equations:
dX i

s = µisX
i
sds + σisX

i
sdW

i
s where Ws = (W 1

s ,W
2
s , · · · ,W d

s ) is a
d-dimensional Brownian motion

Theorem and De�nition : Risk Neutral Probability

Based on the previous hypotheses we can �nd a probability Q on (Ω,F)
such that:
W ∗ de�ned by: dW i∗

s = (dW i
s + µis−rs

σi
s

ds) is a Brownian motion under Q

We can then re-write the model:
dX i

s = rsX
i
sds + σisX

i
sdW

∗i
s where W ∗ is a Brownian motion under Q and

Q is called the risk neutral probability.
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Risk Neutral Probability (continuous case)

Lemma and De�nition

If (Zs)s≥0 is a martingale under P with Zs ≥ 0 and Z0 = 1 and if we de�ne
Q for any random variable Yt Ft-measurable by EQ [Yt ] = EP [YtZt ] then:

Q is a probability on (Ω,F)

EQ [YT |Ft ] = EP [YT
ZT
Zt
|Ft ]

Usually we note (dQdP )t = Zt and so we write EQ [Yt ] = EP [Yt(
dQ
dP )t ]

Demonstration Lemma : easy

Demonstration Theorem :

We note ∆i
s = µis−rs

σi
s

and ∆s = (∆1
s ,∆

2
s , · · · ,∆d

s )′.
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Risk Neutral Probability (continuous case)

We search for a probability Q under which (W ∗
s )s≥0 is a Brownian motion

For that we need EQ [dW ∗
t |Ft ] = 0 and EQ [dW ∗

t (dW ∗
t )′|Ft ] = IdRddt

We note (dQdP )t = Zt and so search for Zt

EQ [dW ∗
t |Ft ] = EP [dW ∗

t
Zt+dt

Zt
|Ft ] = EP [(dWt + ∆tdt)(1 + dZt

Zt
)|Ft ]

= EP [dWt |Ft ] + 1
Zt
EP [dWtdZt |Ft ] + ∆tdt = 1

Zt
EP [dWtdZt |Ft ] + ∆tdt

If we search Z of the form dZs = 〈Bs , dWs〉 with Bs ∈ Rd (no drift term as
martingale) then:
EP [dWtdZt |Ft ] = EP [dWt〈dWt ,Bt〉|Ft ] = EP [dWt(dWt)

′Bt |Ft ]
= EP [dWt(dWt)

′|Ft ]Bt = Btdt so, EQ [dW ∗
t |Ft ] = 0⇐⇒ Bt = −∆tZt

Solving dZs = 〈−∆t , dWs〉Zs and Z0 = 1 we get:

Zt = exp
( t∫

0

−〈∆s , dWs〉 − 1
2

t∫
0

||∆s ||2ds
)
(we do not discuss here the

conditions on ∆s for integrability that can be found in Girsanov's theorem)
The condition EQ [dW ∗

t (dW ∗
t )′|Ft ] = IdRddt is easy to verify Q.E.D
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Risk Neutral Probability (continuous case)

Remark 1: for d = 1 we get that:

XT = X0e
µT eσWT− 1

2
σ2T where (Ws)s≥0 is a Brownian under P

XT = X0e
rT eσW

∗
T−

1
2
σ2T where (W ∗

s )s≥0 is the Brownian under Q
de�ned by W ∗

T = WT + µ−r
σ T

(dQdP )T = exp( r−µσ WT − 1
2

( r−µσ )2T )

for any function h, EQ [h(XT )] = EP [h(XT )(dQdP )T ]

To verify "manually" the last bullet point we just need to check that
EQ [h(rT + σW ∗

T )] = EP [h(µT + σWT )(dQdP )T ]
So we calculate:
EQ [h(rT + σW ∗

T )] = E
Q

W∗
T

[h(rT + σz)] =
∫
h(rT + σz) 1

2π
√
T
exp(− z2

2T )dz
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Risk Neutral Probability (continuous case)

If we take the new variable u such that µT + σu = rT + σz we get :
◦ h(rT + σz) = h(µT + σu)

◦ exp(− z2

2T ) = exp(− (u+µ−r
σ

T )2

2T ) = exp(− u2

2T )exp(−µ−r
σ u − 1

2
(µ−rσ )2T )

so,∫
h(rT + σz) 1

2π
√
T
exp(− z2

2T )dz

=
∫
h(µT + σu)exp(−µ−r

σ u − 1
2

(µ−rσ )2T ) 1

2π
√
T
exp(− u2

2T )du

= EP [h(µT + σWT )exp(−µ−r
σ WT − 1

2
(µ−rσ )2T )] Q.E.D
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Risk Neutral Probability (continuous case)

Remark 2: we call u a utility function compatible with the price of asset
X , P the "real" probability and "Q" the risk neutral probability.
As X0 = EP [e−rTu(XT )] and X0 = EQ [e−rTXT ] we have:
EP [e−rTu(XT )] = EP [e−rTXT f (WT )] with
f (w) = exp( r−µσ w − 1

2
( r−µσ )2T )

if we de�ne g(x) = f ( 1
σ [ln( x

X0
) + (σ

2

2
− µ)T ]) then

f (WT ) = g(XT ) and EP [e−rTu(XT )] = EP [e−rTXTg(XT )]
so, u(x) = xg(x) works to get the equality
In the following graph we price xg(x) for various values of r , µ and σ with
x0 = 1 and T = 1
Note that depending on the value of the parameters xg(x) is not always
increasing (which shows its limits in terms of admissible utility function..)

Pierre Brugière copyrights Pierre Brugière April 24, 2017 86 / 89



Risk Neutral Probability (continuous case)

Utility functions derived from Girsanov's Theorem
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