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Structural and Reduced Form Models
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Financial Analysis for Credit Risk

In this course we consider mainly credit risk analysis for structured financial
products such as CDOs but credit risk arises in many different forms

Credit risk problematics are embedded in all types of activities:
retail banking
private banking
commercial and investment banking with corporates
lending between banks

Credit risk is embedded in a wide variety of financing instruments:
Bonds, Commercial Papers
Loans (syndicated, bilateral), Credit Lines
Project Finance, Structured Finance
Specialised finance, Equity Financing, Stock loan..etc
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Financial Analysis for Credit Risk

Two issues to analyse "Credit Risk" in traditional lending:

capacity to pay financial flows
capacity to reimburse debt at maturity or to refinance

To measure the capacity to pay interests people will look usually, amongst
other things, at the interest coverage ratio:

Interest coverage ratio = interest expenses on debt
Earnings Before Interests and Taxes

EBIT: Earnings Before Interests and Taxes
EBITDA: Earnings Before Interests,Taxes, Depreciation and
Amortization

In more structured financing a collateral/security can also be taken into
account
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Financial Analysis for Credit Risk

It seems Altman was the first to introduce statistical models to predict
bankruptcy and to quantify this risk

Altman’s (1968) financial score based on some financial ratios:

X1 Working Capital / Total Assets.
X2 Retained Earnings / Total Assets
X3 Earnings Before Interest and Taxes / Total Assets
X4 Market Value / Book Value of Total Debt
X4 Sales / Total Assets (industry dependent)

Reminders:
Working Capital = Current Assets - Current Liabilities
Current Assets = Cash + Account Receivables + Inventories

Pierre Brugière copyrights Pierre Brugière May 4, 2020 6 / 112



Financial Analysis for Credit Risk

Altman’s Z-Score: with various revisions in 1983 and 1993
Based on historical studies of bankruptcies the Z-score was defined as:
Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5
with the following predictions associated:
if Z < 1.81 default within 1 year is predicted
if 1.81 ≤ Z ≤ 2.67 no prediction
if Z > 2.67 prediction of no default within 1 year

The following results were obtained on the samples tested:
90.9% success rate in predicting bankruptcy
97% success rate in predicting non-bankruptcy
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Financial Analysis for Credit Risk

Some refinements have been done to the model in particular to define a
probability of default.

Ohlson (1980) proposed the LOGIT Model:
P(Default|X1,X2, · · · ,Xn) = 1

1+exp(−β1X1−β2X2−···−βnXn)

where the parameters βi are estimated on a sample by maximizing the
likelihood.

Remarks:
P(Default|X ) = 1

1+exp(−〈β′X 〉) ⇐⇒ ln( P(Default|X )
1−P(Default|X ) ) = 〈β′X 〉

f (p) = ln( p
1−p ) is called the logit function

g(x) = 1
1+e−x is called the sigmoid function

f = g−1

f (0.5) = 0
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Financial Analysis for Credit Risk

Remarks: Likelihood of a binomial model B(p):
For a single observation yi ∈ {0, 1} L(yi ) = pyi (1− p)1−yi

The Likelihood for the defaults or not of p companies according to

Ohlson’s model is :
i=n∏
i=1

pyii (1− pi )
1−yi (with yi ∈ {0, 1} )

the factors Xi which impact the probability of defaults pi are observed
for all these companies
the Maximum Likelihood method consists in finding the βi which
maximise the likelihood (calibration of the model)
when considering a new company, the probability of default for this
company will be calculated by observing the variables Xi for this
company an using the coefficients βi calculated previously
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Financial Analysis for Credit Risk

Altman and Ohlson’s models were developed principally for financial
analysts with an estimation of the parameters based on bankruptcy
historicals.
Since then other models have been developed which:

are better suited for trading purposes
are calibrated on corporate bonds and credit derivatives market prices
instead of observed bankruptcies
modelize the credit dynamics

Pierre Brugière copyrights Pierre Brugière May 4, 2020 10 / 112



Structural and Reduced Form Models

For these new models two principal types:

Structural Models: (Black-Scholes(1973), Merton(1974),
Leland(1994), Schaeffer(2004))
Reduced Form Models: (Jarrow-Turnbull(1997), Duffie-Singleton
(1999))

Definition: Structural Models - KMV
model the dynamics of the Assets At and Liabilities Lt
assumption that the default happens iff At < Lt

in their simplest form: At = A0exp(σWt − σ2

2 t) and Lt = L0

approach adopted by Moody’s KMV
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Structural Models

Definition: Distance to Default (DTD)
The Distance to Default is the number of standard deviations between the
ln of the current value of the company’s assets (assumed to be normally
distributed) and the log of its liabilities.

Example: We assume

Assets: A0 = EUR100 and AT = A0exp(rT )exp(σWT − σ2

2 T )

volatility of the assets: σ = 25%, r = 0
Liabilities: LT = L0 = EUR60

then: AT < LT ⇐⇒ WT√
T
< 1

σ
√
T

[ln( L0
A0

) + σ2

2 T ] = DTD + σ
2

√
T

so here the 1 year Distance to Default is 2.
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Reduced Form models

Definition: Reduced Form models
the instant of default τ is modelised by an Exponential law of
intensity λ, E(λ), under the risk neutral probability P

when the intensity is constant :
P(τ > t) = exp(−λt)

when the intensity is deterministic but time dependent :
P(τ > t) = exp(−

∫ t
0 λsds)

when the intensity is stochastic τ is a Cox process :
P(τ > t) = E [exp(−

∫ t
0 λ(s,Xs)ds)] where (Xs)s≥0 is a stochastic

process

Remark:
(Xs) can be taken as the short term interest rate if it is considered that
monetary policy has a significant impact on the economy
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Reduced Form Models

Proposition : variational definitions of exponential laws
Exponential laws can be defined equivalently if the following ways:

τ ∼ E(λ)⇐⇒ P(t < τ < t + dt|τ > t) = λdt

τ ∼ E(λt)⇐⇒ P(t < τ < t + dt|τ > t) = λtdt

τ ∼ E(λ(t,Xt))⇐⇒ P(t < τ < t + dt|τ > t, {Xs , s ∈ [0, t]}) =
λ(t,Xt)dt

Notation We note Xt = {Xs , s ∈ [0, t]}
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Reduced Form Models

Demonstration:
We just need to show the stochastic case as the other cases are particular
cases. We note F (t) = P(τ > t|Xt).
P(t < τ < t + dt|τ > t,Xt) = λ(t,Xt)dt

=⇒ P(t<τ<t+dt|Xt)
P(τ>t|Xt)

= λ(t,Xt)dt

=⇒ F (t)−F (t+dt)
F (t) = λ(t,Xt)dt

=⇒ dlnF (t) = −λ(t,Xt)dt

=⇒ F (t) = F (0)exp(−
t∫
0
λ(s,Xs)ds)

but F (0) = 1 and F (t) = E (1τ>t |Xt)
so, P(τ > t) = E (1τ>t) = E

[
E (1τ>t |Xt)

]
= E

[
F (t)

]
= E

[
exp(−

t∫
0
λ(s,Xs)ds)

]
. Q.E.D.
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Reduced Form models: Stochastic Intensity and Interest
Rate

In an economy where the instantaneous short term interest rate depends on

the factors (Xs)s≥0 if we note βt = exp(−
t∫
0
r(Xs)ds) the actualisation

factor then the price of a zero coupon bond of maturity T and nominal 1
with credit risk and zero recovery rate is E [βT1τ>T ]

Proposition

E [βT1τ>T ] = E
[
exp(−

∫ T
0 (r(Xs) + λ(s,Xs))ds)

]
so, λ(s,Xs) is the "instantaneous spread" at time s

Demonstration:
E [βT1τλ>T ] = E

[
E [βT1τλ>T |Xt ]

]
= E

[
βTE [1τλ>T |Xt ]

]
= E

[
βT exp(−

∫ T
0 λ(s,Xs)ds)

]
= E

[
exp(−

∫ T
0 r(Xs)ds)exp(−

∫ T
0 λ(s,Xs)ds)

]
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Reduced Form Models

= E
[
exp(−

∫ T
0 (r(Xs) + λ(s,Xs))ds)

]
Q.E.D.

Corollary
If the short term interest rate r and the intensity of default λ are constant
then the price of a zero coupon bond of maturity T and nominal 1 with
credit risk and zero recovery rate is E [βT1τ>T ] = exp(−(r + λ)T ).
As a consequence λ can be inferred from the price of a risky bond.

Exemple :
If we assume that a one year zero coupon government bond is worth
100.10 % and that a one year zero coupon bond issued by risky issuer Zco
is worth 99.50% then the intensity of default λ for the risky issuer is
ln(100.10

99.50 ) = 0.6%
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Reduced Form Models

Remarks:
a time dependent λt enables to calibrate a model to a term structure
of spreads
as we will show later a stochastic λ(t,Xt) enables to modelize
correlation between bonds
if λ is small then P(τ < 1) ∼ λ. So if λ = 2% the probability of
default within one year is approx 2%

exponential laws are memoryless i.e :
P(t < τ < t + δ|τ > t) = P(τ < δ)

exponential laws and normal laws are the two "benchmarks" in finance
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Pricing a new Issuance

To price a new issuance several methods can be considered at this stage,
amongst them:

if a rating already exists for the company and if the bond is vanilla
price the spread based on this rating, the type of industry and the
comparables
analyse the fundamentals of the company, find a "comparable
company" having a similar bond already issued and price by
comparison
analyse the fundamentals of the company and use for example
Ohlson’s model to calculate a probability of default and from there
derive a price for the bond
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Pricing a new Issuance

If the bond is complex because :
there are some conditional payouts
there are some collaterals which guarantees it
there are some specific optionalities embedded
there are some hybrid issues involved

Then it it may be necessary to start with a full modelisation of all the
stochastic elements involved before being able to be able to come up with
a price.
The example below show how credit risk modelisation can be
embedded in a classic "Black and Scholes" modelisation framework
(which is based on the notion of non arbitrage possibility and risk neutral
probability).
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Example: Construction of P and λ by arbitrage

Exemple: we consider a two period economy 0,T with:
a risk free asset, a company’s stock and bond
the stock is worth 100 with possible future values 130 and 0 (default)
the risk free asset has a return of 5%

we assume that the company’s bond will be worth at maturity:
106 if the company’s stock is worth 130
84.8 if the company defaults (Recovery Rate 80%)

If there is no arbitrage, we have the following results:
a) the bond can be replicated by investing in the stock and risk-free bond
b) the value of the risky bond is 97.10 today
c) the risk neutral probability verifies p = 80.77% (probability no default)
d) we have λ = 21.35%
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Example: Construction of P and λ by arbitrage

Demonstration:
a) we search for a and b such that:
a105 + b130 = 106 and a105 + b × 0 = 84.8
So, a = 0.808 is the number of risk-free bonds to purchase and b = 0.163
is the number of stocks to purchase to replicate the corporate bond.
b) if there is no arbitrage, the price of the risky bond is then
0.808× 100 + 0.163× 100 = 97.10
c) the corresponding risk neutral probability is such that
130
1.05p + 0

1.05(1− p1) = 100 so p = 80.77% .
d) P(τ > 1) = p1 ⇐⇒ e−λ = 19.23%⇐⇒ λ = 21.35%

Remarks: For the risky-Bond we have 97.10 = 106
1.05 × e−3.89% so the

return of the bond will be 3.89% higher than the return of the risk-free
bond if the bond does not default. This excess return is called the spread
of the bond (calculated as a continuous rate).
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Example: Construction of P and λ

Remarks:
when calibrating a Reduced Form model the risk free rate and the
price of the risky bond are observed and from there λ can be deducted
Duffie and others have compared the "implied" λ (under the risk
neutral probability) for corporate Bonds derived from their prices and
compared them to the "realized" λ (under the "real probability")
derived from the defaults over the subsequent periods and found that
λimplied ∼ 2× λrealized
discrepencies between λimplied under the risk neutral possibility and
λrealized under historical probability can be seen as similar issues to the
discrepencies between "implied volatility" and "realized volatility"

Pierre Brugière copyrights Pierre Brugière May 4, 2020 23 / 112



Recovery Rate

Theorem and Definition : Recovery Rate R and Spread
The Recovery Rate R is the fraction of the amount due recovered if the
counterparty defaults.
In practice R depends on the type of debt issued by the company (senior,
junior, secured...)

if R is the recovery rate of a zero coupon of maturity T

if r is the risk-free rate for the same maturity
if S is the spread of the risky bond of maturity T

if λ is the constant default rate (under the risk neutral probability)
then: S ∼ (1− R)λ
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Recovery Rate

Demonstration:
Pricing the zero coupon with the risk neutral probability we have:
e−(r+S)T = e−rT (e−λT + R(1− e−λT )) =⇒ e−ST = (1− R)e−λT + R .
Developing to the first order we get the result.

Remark:
In the previous example we have S = 3.89%, λ = 21.35% and the recovery
is R = 80% so (1− R)λ = 4.27%. Here the (first order) approximation of
S is not very good because λ is taking a quite large value
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Reduced Form Models: Cox Process

Exercise (alternative definition of a Cox process ) :
Let λ(.) be positive on Rd and X = (Xs)s≥0 be a stochastic process of Rd

Let τ1 be an exponential law of parameter 1 independent from X

Let τλ de defined by τλ(ω) = inf{t,
t∫
0
λ(Xs)(ω)ds ≥ τ1(ω)}

Show that τλ ∼ E(λ(X ))
Demonstration:
P(τλ > t) = E [1τλ>t ] = E

(
E [1τλ>t |X ]

)
E [1τλ>t |X ] = P

(
τ1 >

t∫
0
λ(Xs)(ω)ds|X

)
as X and τ1 are independent

P
(
τ1 >

t∫
0
λ(Xs)(ω)ds|X

)
= exp

(
−

t∫
0
λ(Xs)(ω)ds

)
so, P(τλ > t) = E

[
exp
(
−

t∫
0
λ(Xs)(ω)ds

)]
Q.E.D.
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Collateralized Debt Obligations
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Collateralized Debt Obligations
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Collateralized Debt Obligations

Rationale of the transaction:
the risk is repackaged to be able to sell it better
different type of investors can choose between different type of risks
potentially Rating/ Pricing Arbitrage (up to 2008 too many senior
tranches rated AAA)
in the past potentially regulatory arbitrage (for keeping the risk on the
equity tranche and deconsolidating)
technology of packaging and tranching which can be applied to cash
or synthetic underlyings

=⇒ Important to notice the importance of the "correlation" when
pricing a CDO’s tranche
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Collateralized Debt Obligations
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Collateralized Debt Obligations

Example: we consider 2 Bonds, with zero Recovery rate, of EUR 500
Nominal each, packaged in a EUR 1000 Notional CDO and note Zi = 1 if
the Bond i defaults before maturity and otherwise Zi = 0

a) if we assume that Z1 = Z2 then:
either the two bonds default together, resulting in a payout of zero for
both tranches or
none of the bonds defaults, resulting in a payout for both tranches of
EUR 500

In this case, both tranches are the same, the senior tranche is not safer
than the junior tranche and the correlation between the defaults is 100%.

b) if we assume that Z2 = 1− Z1 then:
there is always one bond which defaults so

the junior tranche has always a payout of zero
the senior tranche has always a payout of EUR 500

In this case the correlation between the defaults is −100% and the two
tranches have extremely different behaviours
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Collateralized Debt and Loan Obligations

=⇒ Note that in this extreme example, the pricing of the two tranches
does not depend on the probabilities of default (which nevertheless have to
add up to 100% here) but only on the correlation !

Remarks:
a low correlation between the bonds is good for senior tranche holders
and bad for junior tranche holders
a high correlation between the bonds is good for junior tranche holders
and bad for senior tranche holders
the impact of correlation is less clear for mezzanine tranches holders

To price CDOs we will need to simulate Bernouilli variables which
are correlated
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CDOs and CLOs

CLOs package together high-risk corporate debt and are then sold to
institutional investors seeking potentially substantial returns
CDOs (collateralized debt obligations), were comprised mostly of
subprime mortgages and were blamed for the financial meltdown a
decade ago
The global CLO market is in 2019 between 1.4 and 2 trillion. In 2007,
CDOs were 1.2 to 2.4 trillion
Today’s CLOs usually comprise corporate loans across a diversified set
of industries

source https : //www.intralinks.com/blog/2019/11/clos − should − they − stay − or − should − they − go
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Collateralized Debt Obligations

Source: Securities Industry and Financial Markets Association (SIFMA)
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Collateralized Loan Obligations

US CLO Issuance, Source: The Journal of Structured Finance Summer 2019
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Collateralized Loan Obligations

Fixed-Income instruments issuance; Index 2005 = 100, Source: Guggenheim May 2019
https://www.guggenheiminvestments.com/perspectives/portfolio-strategy/collateralized-loan-obligations-clo
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Simulating Correlated Binomials

We construct here Bernouilli variables with the same parameter p which are
correlated. The correlation is created through the default parameter in the
following way.

Theorem: Simulation of Correlated Bernouilli Variables
Let (Zi )i∈J1,nK be independent variables of uniform law in J0, 1K
Let p̃ be a random variable in J0, 1K with density f
Let (Xi )i∈J1,nK be Bernouilli variables defined by Xi = 1⇐⇒ Zi < p̃
Then:
a) the (Xi )i∈J1,nK are Bernouilli variables of parameters p̄ = E [p̃]

b) ∀i 6= j , ρ(Xi ,Xj) = Var(p̃)
p̄(1−p̄)
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Simulating Correlated Binomials

Demonstration :
a) E (Xi ) = E

(
E (Xi |p̃)

)
= E

(
E (1Zi<p̃|p̃)

)
= E (p̃)

b) E (XiXj) = E
(
E (XiXj |p̃)

)
= E (p̃2) as Xi and Xj are independent

conditionnally on p̃
so, Cov(XiXj) = E (p̃2)− E (p̃)2 = Var(p̃) and we know that for Bernouilli
Var(Xi ) = Var(Xj) = E (p̃)(1− E (p̃)) Q.E.D.

We consider now CDOs composed of bonds of the same notional with the
same probabilities of default and same correlations and we are interested in
calculating the law of the number of Bonds which default and therefore the

law of Dn =
i=n∑
i=1

Xi
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Simulating Correlated Binomials

Remarks :
the limitation of the model is that the resulting correlation between
two bounds is always positive
is p̃ is constant the correlation between the bonds is zero
if P(p̃ = 0) = 1

2 and P(p̃ = 1) = 1
2 the correlation between the bonds

is 100% as var [p̃] = 1
4 and p̄(1− p̄) = 1

4

exercise 1 :
Show that ∀X random variable in J0, 1K, Var [X ] ≤ 1

4

Hint : Var [X ] = E [(X − E (X ))2] = E [
(
(X − 1

2) + (1
2 − E (X )

)2
]

= E [(X − 1
2)2] + E [(1

2 − E (X ))2] + 2E [(X − 1
2)(1

2 − E (X )
)
]

= E [(X − 1
2)2] + (1

2 − E (X ))2 − 2(1
2 − E (X ))2

= E [(X − 1
2)2]− (1

2 − E (X ))2 ≤ E [(X − 1
2)2] ≤ 1

4 and the minimum is
attained iff ∀ω, |X (ω)− 1

2 | = 1
2
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Simulating Correlated Binomials

exercise 2 :
Often in simulations p̃ ∼ B(α, β) (beta law of parameters α > 0 and
β > 0) where the density is given by fα,β(x) ∝ xα−1(1− x)β−11x∈J0,1K
Show that:
a) E [p̃] = α

α+β noted (p̄)

b) Var [p̃] = p̄(1−p̄)
α+β+1

c) simulating with p̃ we have ∀i 6= j , ρ(Xi ,Xj) = 1
α+β+1

d) show that ∀p, ρ ∈K0, 1J, ∃α > 0, β > 0, α
α+β = p̄ and 1

α+β+1 = ρ

Remarks: The Beta law is quite useful for the simulation of correlated
Bernouilli variables as it is possible to choose α and β to obtain any
possible probability of default and (positive) correlation wanted in the
model.
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Beta distribution

Beta distribution - source wikipedia
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Simulating Correlated Binomials

Theorem: Law of Dn

n

a) E
(
Dn
n

)
= p̄

b) Var
(
Dn
n

)
= p̄(1−p̄)

n + n−1
n Var [p̃]

c) Dn
n −→ L(p̃) (convergence in law)

so, in practice the probability that less than k bonds over n default is
approximated by P(p̃ < k

n )

demonstration

a) E
(
Dn
n

)
= E

(
1
n

i=n∑
i=1

Xi

)
= 1

n

i=n∑
i=1

E
(
Xi

)
= E [p̃]

b) Var
(
Dn
n

)
= 1

n2

i=n∑
i=1

Var(Xi ) + 1
n2
∑
i 6=j

Cov(Xi ,Xj)

= 1
n2
× n × p̄(1− p̄) + 1

n2
× n(n − 1)× var [p̃]
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Simulating Correlated Binomials

c) to show the convergence in law we show the convergence of the
distribution functions

lim
n−→+∞

P(Dn
n < t) = lim

n−→+∞
E (1Dn

n
<t)

= lim
n−→+∞

E (E (1Dn
n
<t |p̃)) = E (E ( lim

n−→+∞
1Dn

n
<t |p̃))

but when p̃ is known Dn
n −→ p̃ almost surely. so

E ( lim
n−→+∞

1Dn
n
<t |p̃) = 1p̃<t so,

lim
n−→+∞

P(Dn
n < t) = E [1p̃<t ] = P(p̃ < t) Q.E.D.

Remarks: If the variables were not correlated in c) we would have
convergence towards a single number, the mean, according to the
Law of Large Numbers, instead of a convergence to a distribution
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Histograms for Dn

n for a CDO of 50 Bonds (1000 simulations)

Histograms are plotted by joining the values obtained for each 2% bucket
p̃ ∼ Beta(10, 90) =⇒ E [p̃] = 10% and Var [p̃] = 0.99%
p̃ ∼ Beta(1, 9) =⇒ E [p̃] = 10% and Var [p̃] = 9.09%
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Beta Law for p̃ and CDO Pricing

Example: we consider a CDO made of 50 Bonds of equal Notional 100
each. We assume that the probabilities of default of the Bonds is 10% and
note ρ the correlation of default between the bonds. We assume that the
CDO has three tranches: Equity tranche (First 10% Loss), Junior Tranche
(next 20% Loss), Senior Tranche (last 70% Loss). To calculate the price of
the three tranches we use the approximation in Law L(Dn

n ) ∼ Beta(α, β):

Table: Pricing as a function of ρ

i.i.d Bernouilli Beta(10,90) Beta(1,9)
E [p̃] 10% 10% 10%
ρ 0 0.99% 9.09%

Senior 100% 100% 99.45%
Junior 91.68% 89.85% 82.93%
Equity 16.64% 20.32% 38.08%
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Simulating Correlated Binomials

Definition: Diversity Score (Moody’s)
The Diversity Score is the number of uncorrelated bonds with the same
probability of default p̄ for which the variance of the proportion of losses
would be the closest to Var(Dn

n )

Remark: The diversity score summarizes the real diversification effect
created by Bonds which are correlated.

Example: for n bonds with probability of default p and correlation ρ
Var
(
Dn
n

)
= p̄(1−p̄)

n + n−1
n Var [p̃] so we are searching for m such that

p̄(1−p̄)
m = p̄(1−p̄)

n + n−1
n Var [p̃]

N.A: for n = 100, p = 2% and ρ = 20%, σ20%(D100
100 ) = 6.38%

with 5 independent assets σ0%(D5
5 ) = 6.26% and with 4 independent assets

σ0%(D4
4 ) = 7.00%. So we will take 5 as the Diversity Score.

Pierre Brugière copyrights Pierre Brugière May 4, 2020 46 / 112



Diversity Score

Diversity Score and Standard Deviation for different values of the correlation
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Structural Models for p̃

We analyse here how Structural Models enable to create correlation in the
modellisation (instead of creating it ex-nihilo in the model)
We make the following assumptions :

bond i is in default at time T iif Ai
T < D i where:

dAi
t = rAi

tdt + σiAi
tdW

i
t

σi is the same for all companies and is noted σ
the distance to default is the same for all companies and we note
c = 1

σ
√
T

[ln(D
i

Ai
0
)− rT + σ2

2 T ]

we assume that the Brownian motions W i
t verify

dW i
t = ρdWt +

√
1− ρ2dB i

t where the B i
t are brownian motions

which are independent between them and independent from Wt

Remarks :
With the model ∀i 6= j , ρ(W i

t ,W
i
t ) = ρ, and Wt is the common factor

which creates correlation between the Ai
t and the default of the bonds.
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Structural Models for p̃

Proposition
Let Zi be the Bernouilli random variable with value 1 if the company i

defaults and 0 otherwise. Then Zi = 1⇐⇒ B i
T√
T
< c√

1−ρ2
− ρ√

1−ρ2
WT√
T

Demonstration simple

Remark 1 : Let Φ be the repartition fonction of a normal law N (0, 1).
B i
T√
T
∼ N (0, 1) =⇒ Φ(

B i
T√
T

) ∼ U(0, 1)

so Xi = 1⇐⇒ Φ
(
W i

T√
T

)
< Φ

(
c√

1−ρ2
− ρ√

1−ρ2
WT√
T

)
so we end up simulating (as previously) correlated Bernouilli variables with
the function p̃ having a law p̃ ∼ Φ

(
c√

1−ρ2
− ρ√

1−ρ2
WT√
T

)

Pierre Brugière copyrights Pierre Brugière May 4, 2020 49 / 112



Structural Models for p̃

Remark 2 : We have different alternatives for p̃ to generate correlated
binomials:

to use a beta distribution B(α, β) (as seen previoulsy)
to use the distribution of Φ(α + βZ ) (where Z ∼ N (0, 1))

In both cases:
first we solve for α and β to match the desired value for p̄ and ρ
then to price the CDO we approximate the law of Dn

n by the law of p̃

Proposition
If p̃ ∼ Φ(α + βZ ) (where Z ∼ N (0, 1)) then
a) E [p̃] = Φ

(
α√
1+β2

)
(that we note also p̄)

b) E [p̃2] = Φ
2, β2

1+β2

(
α√
1+β2

, α√
1+β2

)
c) P(p̃ < t) = Φ

(
1
β [Φ−1(t)−

√
1 + β2Φ−1(p̄)]

)
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Structural Models for p̃

a) E [p̃] = E [Φ(α + βZ )] = E [E (1Z0<α+βZ |Z )]
(with Z0 ∼ N (0, 1) independent from Z )
= E [1Z0−βZ<α] = E [1 Z0−βZ√

1+β2
< α√

1+β2
] = Φ( α√

1+β2
)

b) E (p̃2) = E [Φ(α + βZ )2]
and Φ(α + βZ )2 = E [1Z0<α+βZ1Z1<α+βZ |Z ]
(with Z0, Z1,Z independent N (0, 1)
so, E [Φ(α + βZ )2] = E [1Z0<α+βZ1Z1<α+βZ ]
= E [1 Z0−βZ√

1+β2
< α√

1+β2
1 Z1−βZ√

1+β2
< α√

1+β2
]

= Φ
2, β2

1+β2
( α√

1+β2
, α√

1+β2
)

with Φ2,γ repartition function of a bivariate normal variable N

(
1 γ
γ 1

)
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Calibration of the two Models for p̃

c) P(p̃ < t) = P(Φ(α + βZ ) < t) = Φ( Φ−1(t)−α
β )

as Φ( α√
1+β2

) = p̄ we have α = Φ−1(p̄)
√

1 + β2 so

P(p̃ < t) = Φ
(

1
β [Φ−1(t)−

√
1 + β2Φ−1(p̄)]

)
. Q.E.D.

Example we consider a CDO with 100 Bonds of the same Notional and
recovery rate of zero. The default of the bonds are modelized by Bernouilli
variables Xi of parameter p and correlations ρ. We consider a junior
tranche for the CDO which is exposed to the losses between above 10%
and up to 30%. Price this junior tranche assuming p̄ = 2% and ρ = 10%
with the two previous models:
a) assuming p̃ ∼ B(α, β)
b) assuming p̃ ∼ Φ(α + βZ ) where Z ∼ N (0, 1)
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Calibration of the two Models for p̃

Results:
a) we solve and find α = (1

ρ − 1)p̄ and β = (1
ρ − 1)(1− p̄). So, here

p̃ ∼ B(0.18, 8.82). Taking a risk free rate of zero we price the junior

tranche in % of face value as 1
20

i=30∑
i=11

P(D100
100 < i

100) that we approximate by

1
20

i=30∑
i=11

P(p̃ < i
100) = 98.12%

b) we solve α√
1+β2

= −2.05375 and (using a program to calculate the

bivariate normal) β2

1+β2
= 0.18. This implies α = −2.2678 and

β2 = 0.2195. The sign of β is not determined as both Z and −Z are
N (0, 1), we will take β = 0.468521. Now,
1
20

i=30∑
i=11

P(Φ(α + βZ ) < i
100) = 1

20

i=30∑
i=11

Φ( 1
β [Φ−1( i

100)− α]) = 99.66%
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Calibration of the two Models for p̃

Remarks:
the pricings for a) and b) are not exactly the same as the two laws
used for p̃ produce the same expectations and correlations between
the default events (the Bernouilli variables) but not exactly the same
joint distributions. Also they do not generate the same laws for Dn

n
and therefore not the same pricing.
the fact that the two laws generated for Dn

n are different is also put in
evidence by the fact that (as it has been demonstrated previoulsy) Dn

n
converge here towards two different distributions which are the two
distinct laws of p̃ that we use.
the choice of the distribution p̃ used to create the correlation structure
is therefore important and it is exactly the aim of the study of copulas
to create adequate correlation structures. Transformations of normal
variables Φ(α + βZ ) to create correlation structures have been
criticised after 2008.
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Calibration of the two Models for p̃

Modelizing p̃ with Beta(α, β) or Φ(α + βZ)
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Generalization to None Zero Recovery Rate

Proposition
We assume here that:

the percentage lost for a bond which defaults (i.e 1− R) is f (p̃)

f (p) is an increasing function of p

If we note Lfn = 1
n

i=n∑
i=1

f (p̃)1Zi<p̃ the loss in percentage for the CDO

we have : Lfn −→ L(p̃f (p̃)) (convergence in law).

Demonstration :
to show the convergence in law we show the convergence of the
distribution function
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Generalization to None Zero Recovery Rate

lim
n−→+∞

P(Lfn < t) = lim
n−→+∞

E (1Lfn<t) = lim
n−→+∞

E (E (1Lfn<t |p̃))

= E (E ( lim
n−→+∞

1Lfn<t |p̃))

when p̃ is known then according to the law of large numbers
Lfn −→ E [f (p̃)1Zi<p̃] = f (p̃)p̃ and so 1Lfn<t −→ 1f (p̃)p̃<t

from there lim
n−→+∞

P(Lfn < t) = E (E (1p̃f (p̃)<t |p̃)) = P(p̃f (p̃) < t) Q.E.D.

Remarks: if R = 0 then f (p̃) is always 1 and we find the result we already
demonstrated that L(p̃f (p̃)) ∼ L(p̃)
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Cox Models and p̃ Models

Remark: In the Cox model a default occurs for company i iff

Ei <
∫ t

0
λ(Xs)ds

where the Ei are independent and independent from X .
Let F (t) = P(Ei ≤ t) = 1− exp(−t). Then the Zi = F−1(Ei ) are
independent U([0, 1]) and a default occurs for company i iff

Zi < F−1(

∫ t

0
λ(Xs)ds)

⇐⇒ Zi < p̃

where p̃ = 1− exp(−
∫ t
0 λ(Xs)ds).
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Infection Models

Definition: Infection Models
Let (Zi )i∈J1,nK and (Yi ,j)i 6=j∈J1,nK be independent variables, we assume
Zi ∼ B(p) and ∀i 6= j , Yi ,j ∼ B(q)
Then we define in a contagion model the variables (Xi )i∈J1,nK by :
Xi = Zi + (1− Zi )[1−

∏
j 6=i

(1− ZjYj ,i )]

Remark:
The only possible values for Xi are 1 and 0.
Xi = 1⇐⇒ Zi = 1 or ∃i 6= j , Zj = 1 and Yj ,i = 1 (i.e contamination)

We are now going to study the law of the Xi and their correlations.
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Infection Models

Proposition
Xi ∼ B(1− (1− p)(1− pq)n−1)

Demonstration : because of independence
E (X1) = E (Z1) + (1− E (Z1))[1−

∏
j 6=1

(1− E (Zj)E (Yj ,1))]

= p + (1− p)[1− (1− pq)n−1]
= p + 1− p − (1− p)(1− pq)n−1

= 1− (1− p)(1− pq)n−1 Q.E.D.
Remarks :
L(X1) −−−−−→

n−→+∞
1

Proposition
E [X1X2] = 1− 2(1− p)(1− pq)n−1 + (1− p)2(1− 2pq + pq2)n−2
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Infection Models

Demonstration :
E [X1X2]

= E
[(

Z1+(1−Z1)[1−
∏
j 6=1

(1−ZjYj ,1)]
)(

Z2+(1−Z2)[1−
∏
j 6=2

(1−ZjYj ,2)]
)]

we have 3 different type of terms:
a) E [Z1Z2] = p2 (because Z1 and Z2 are independent)
b) E

(
Z1(1− Z2)[1−

∏
j 6=2

(1− ZjYj ,2)]
)
(this value will appear two times)

= E
(
Z1(1− Z2)

)
− E

(
Z1(1− Z1Y1,2)(1− Z2)

∏
j /∈{1,2}

(1− ZjYj ,2)
)

= p(1− p)− (p − pq)(1− p)(1− pq)n−2

= p(1− p)[1− (1− q)(1− pq)n−2]

c)E
[
(1− Z1)(1− Z2)[1−

∏
j 6=1

(1− ZjYj ,1)][1−
∏
j 6=2

(1− ZjYj ,2)]
]

multiplying first the two terms on the right we get 3 different type of terms:
◦ E [(1− Z1)(1− Z2)] = (1− p)2
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Infection Models

◦ −E
[
(1− Z1)(1− Z2)

∏
j 6=2

(1− ZjYj ,2)] (this value will appear two times)

= −E
[
(1− Z1)(1− Z1Y1,2)(1− Z2)

∏
j /∈1,2

(1− ZjYj ,2)
]

= −(1− pq − p + pq)(1− p)(1− pq)n−2

= −(1− p)2(1− pq)n−2

◦ E
[
(1− Z1)(1− Z2)

∏
j 6=1

(1− ZjYj ,1)
∏
j 6=2

(1− ZjYj ,2)
]

= E
[
(1−Z1)(1−Z1Y1,2)(1−Z2)(1−Z2Y2,1)

∏
j /∈1,2

[(1−ZjYj ,1)(1−ZjYj ,2)]
]

= (1− pq − p + pq)2(1− pq − pq + pq2)n−2

= (1− p)2(1− 2pq + pq2)n−2

so at the end we obtain:
p2 + 2p(1− p)[1− (1− q)(1− pq)n−2] + (1− p)2

−2(1− p)2(1− pq)n−2 + (1− p)2(1− 2pq + pq2)n−2

= 1− 2(1− p)(1− pq)n−1 + (1− p)2(1− 2pq + pq2)n−2 Q.E.D.

Pierre Brugière copyrights Pierre Brugière May 4, 2020 62 / 112



Infection Models

exercise :

Let Dn =
i=n∑
i=1

Xi , calculate as a function of p and q :

a) E [Dn] and
b) Var [Dn]

Hint :

a) E [Dn] =
i=n∑
i=1

E [Xi ] = nE [X1]

b) Var [Dn] = E
[
(
i=n∑
i=1

Xi )
2
]
− (E [Dn])2 =

i=n∑
i=1

j=n∑
j=1

E
[
XiXj

]
− (E [Dn])2

= n(n − 1)E [X1X2] + nE [X1]− n2E [X1]2

So we know how to calculate the first two moments of Dn as a function of
p and q but in fact we can also calculate the law of Dn
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Infection Models

Proposition :
∀k ∈ J1, nK,

P(Dn = k) = C k
n

i=k∑
i=1

C i
kp

i (1− p)(n−i)(1− q)i(n−k)[1− (1− q)i ](k−i)

Demonstration :
P(Dn = k) = C k

n P(X1 = 1,X2 = 1, · · · ,Xk = 1,Xk+1 = 0, · · · ,Xn = 0)
and {X1 = 1,X2 = 1, · · · ,Xk = 1} can de decomposed in k − 1 cases
depending on the number i of "direct" defaults. So
P(X1 = 1,X2 = 1, · · · ,Xk = 1,Xk+1 = 0, · · · ,Xn = 0)

=
i=k∑
i=1

C i
kP(Z1 = 1,Z2 = 1, · · · ,Zi = 1, (Zi+1 = 0,Xi+1 = 1), · · · , (Zk =

0,Xk = 1),Xk+1 = 0, · · · ,Xn = 0)
we can write each event as the intersection of three events

Pierre Brugière copyrights Pierre Brugière May 4, 2020 64 / 112



Infection Models

◦ {Z1 = 1,Z2 = 1, · · · ,Zi = 1,Zi+1 = 0, · · · ,Zn = 0}
◦ {∃j ∈ J1, iK,Yj ,i+1 = 1, · · · ,∃j ∈ J1, iK,Yj ,k = 1}
◦ {∀j ∈ J1, iK,Yj ,k+1 = 0, · · · , ∀j ∈ J1, iK,Yj ,n = 0}
the three events are independent.
◦ the probability of the first one is pi (1− p)(n−i)

◦ the probability of the second one is [1− (1− q)i ](k−i)

◦ the probability of the third one is (1− q)i(n−k) Q.E.D.

Pierre Brugière copyrights Pierre Brugière May 4, 2020 65 / 112



Infection Models

Example :

Table: Infection Models for n = 30

p = P(Zi = 1) 1% 1% 1% 1% 1%
q 0% 10% 20% 50% 100%

p∗ = P(Xi = 1) 1% 3.83% 6.58% 14.39% 26.03%
Correlation 0% 12% 21% 50% 100%

Diversity Score 30 6.7 4.1 2 1

Remarks : if q = 100%
P(Xi = 1) = 1−P(Xi = 0) = 1− (P(Z1 = 0))30 = 1− (1−p)30 = 26.03%
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Copulas

Pierre Brugière copyrights Pierre Brugière May 4, 2020 67 / 112



Copulas

Definition : Copulas

C : [0, 1]d −→ [0, 1] is a copula iff C is a multivariate cumulative
distribution for a random vector of [0, 1]d i.e
∃(U1,U2, · · · ,Ud) r.v (Ω,P) −→ [0, 1]d such that:

∀i ∈ J1, dK, Ui ∼ U([0, 1])

C (u1, u2, · · · , ud) = P(U1 ≤ u1,U2 ≤ u2, · · · ,Ud ≤ ud)

Notation : we note
FU(u1, u2, · · · , ud) = P(U1 ≤ u1,U2 ≤ u2, · · · ,Ud ≤ ud) the
multidimensional cumulative distribution function of U.
By definition for any copula C there is U = (U1,U2, · · · ,Ud) with
Ui ∼ U([0, 1]) such that C = FU
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Copulas

Exemples : Let U = (U1,U2) where U1 and U2 ∼ U([0, 1])
a) if U1 and U2 are independent then FU(u, v) = uv
b) if U2 = U1 then FU(u, v) = min(u, v)
c) if U2 = 1− U1 then FU(u, v) = max(u + v − 1, 0)

Demonstration : Let’s show c)
P(U1 ≤ u, 1− U1 ≤ v) = P(U1 ≤ u,U1 ≥ 1− v) = P(1− v ≤ U1 ≤ u)
= max(u + v − 1, 0) Q.E.D.

Theorem : Frechet-Hoeffding Bounds
Let U = (U1,U2) be a r.v with Ui ∼ U([0, 1]) then
∀u, v ∈ [0, 1], max(u + v − 1, 0) ≤ FU(u, v) ≤ min(u, v)
so the cases U2 = U1 and U2 = 1− U1 represents the two extreme
"correlation-structures".
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Copulas

Demonstration :
P(U1 ≤ u,U2 ≤ v) ≤ P(U1 ≤ u) and P(U1 ≤ u,U2 ≤ v) ≤ P(U2 ≤ v)
implies P(U1 ≤ u,U2 ≤ v) ≤ min(P(U1 ≤ u),P(U2 ≤ v))
P({U1 ≤ u} ∪ {U2 ≤ v}) = P(U1 ≤ u) + P(U2 ≤ v)− P(U1 ≤ u,U2 ≤ v)
implies P(U1 ≤ u,U2 ≤ v) ≥ P(U1 ≤ u) + P(U2 ≤ v)− 1 Q.E.D.

Definition : Quantile (or Pseudo-Inverse)

We define F+
X : [0, 1] −→ R ∪ {−∞} ∪ {+∞} by

F+
X (y) = inf

x∈R
{P(X ≤ x) ≥ y}

Definition
f is strictly increasing at x iff ∀x1 < x < x2, f (x1) < f (x) < f (x2)
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Copulas

General Properties
FX is increasing and right-continuous
F+
X is increasing and left continuous

FX is continuous at x ⇐⇒ P(X = x) = 0
FX (x) ≥ y ⇐⇒ x ≥ F+

X (y)

F+
X (FX (x)) ≤ x

FX (F+
X (y)) ≥ y

F+
X continuous at FX (x)⇐⇒ FX strictly increasing at x

F+
X continuous at FX (x)⇐⇒ F+

X (FX (x)) = x

FX continuous at F+
X (y)⇐⇒ F+

X strictly increasing at y
FX continuous at F+

X (y)⇐⇒ FX (F+
X (y)) = y

FX and F+
X continuous ⇐⇒ FX invertible and F−1

X = F+
X
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Copula

Calculation of the Pseudo Inverse
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Copulas

Demonstration : Let as an exercise

Proposition and Definition. Copula CX of a Random Vector
If X r.v taking values ∈ R
a) FX continuous =⇒ FX (X ) ∼ U([0, 1])

if X = (X1, · · · ,Xd) with cdfs FX1 , · · · ,FX1 continuous and
U = (FX1(X1), · · · ,FXd

(Xd)) then
b) ∀i ∈ J1, dK, FXi

(Xi ) ∼ U([0, 1])

We call copula of X and note CX the function FU
(that we can also note CU)
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Copulas

Demonstration:
a) let y ∈]0, 1[
P(FX (X ) < y) = 1− P(FX (X ) ≥ y)
= 1− P(X ≥ F+

X (y)) (according to the general properties)
= P(X < F+

X (y)) = P(X ≤ F+
X (y)) (because FX is continuous)

= FX (F+
X (y)) = y (according to the proposition as FX is continuous)

so FX (X ) ∼ U([0, 1]) Q.E.D.

b) direct consequence of a)

Remarks :
if U = (U1,U2, · · · ,Ud) with Ui ∼ U([0, 1]) then CU = FU .
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Copulas

Sklar’s theorem enable to build a random vector with given continuous cdf
marginals and copula.

Sklar’s Theorem: Multivariate with given Marginals and Copula
Let U = (U1,U2, · · · ,Ud) with Ui ∼ U([0, 1])
Let F1,F2, · · · ,Fd be continuous cumulative distribution functions.
Let X = (F+

1 (U1),F+
2 (U2), · · · ,F+

d (Ud))
Then,

FXi
= Fi and

CX = CU
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Copulas

Demonstration :
a) P(Xi ≤ x) = P(F+

i (U) ≤ x)
= P(U ≤ Fi (x)) (according to the general properties)
= Fi (x) Q.E.D.

b) CX (u1, u2, · · · , ud)
= P(F1(X1) ≤ u1, · · · ,Fd(Xd) ≤ ud) (by definition)
= P((F1 ◦ F+

1 )(U1) ≤ u1, , · · · , (Fd ◦ F+
d )(Ud) ≤ ud)

but Fi continuous =⇒ Fi ◦ F+
i = Id (according to the general properties)

so,
= P(U1 ≤ u1, · · · ,Ud ≤ ud)
= CU(u1, · · · , ud) Q.E.D.
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Copulas

Remark 1 : According to Sklar’s theorem:
for any copula C and
for any continuous cdfs (Fi )i∈J1,dK

we can find a multivariate random variable X such that:
the Fi are the marginal cdfs of X
CX = C

we will have FX (x1, x2, · · · , xd) = C (F1(x1),F2(x2), · · · ,Fd(xd))

Remark 2 : It is easy to simulate a Gaussian vector Z with a given
correlation matrix and therefore easy to simulate variables U with marginals
U([0, 1]) and with CU = CZ by calculating for each value of Z the vector
U = (FZ1(Z1), · · · ,FZd

(Zd))
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Simulations

Exercise: Let Z be a Gaussian vector with a given correlation matrix and
CZ be its copula. Let F1, · · · ,Fd be continuous cdfs.
Show that we can simulate a r.v X of copula CZ and marginals Fi by

simulating Z and
calculating for each value of Z the vector
X = ((F+

1 ◦ FZ1)(Z1), · · · , (F+
d ◦ FZd

)(Zd))

Solution:
FZi

(Zi ) ∼ U([0, 1]) =⇒ F+
i (FZi

(Zi )) has for cdf Fi (according to Sklar’s
theorem). So, we get the right marginals for X
CX (u1, · · · , ud) = P(F1(X1) ≤ u1, · · · ,Fd(Xd) ≤ ud)
= P(F1 ◦ (F+

1 ◦ FZ1)(Z1) ≤ u1, · · · ,Fd ◦ (F+
d ◦ FZd

)(Zd) ≤ ud)
= P(FZ1(Z1) ≤ u1, · · · ,FZd

(Zd) ≤ ud) = CZ (u1, · · · , ud)
so we get the right copula for X . Q.E.D.
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Copula

Simulations Gaussian Copula for various values of ρ
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Copulas and SRM Models

Remarks:
In the SRM model Xi = 1⇐⇒ B i

T√
T
< c√

1−ρ2
− ρ√

1−ρ2
WT√
T

but Z i < α + βZ ⇐⇒ Φ
(

Z i−βZ√
1+β2

)
< Φ

(
α√
1+β2

)
Let
U = (U1, · · · ,Ud) with Ui = Φ

(
Z i−βZ√

1+β2

)
and

G = ( Z1−βZ√
1+β2

, · · · , Z
id−βZ√
1+β2

) then

Ui ∼ N (0, 1) and CU = CG and therefore CU is a Gaussian Copula

The fact that the defaults (Ui < Φ
(

α√
1+β2

)
) are correlated implies, when

simulating U, the formation of a cluster of points (density of points higher
than the average) in the region near 0 as the probability for this event is
higher than what would be expected for a product of the marginals.
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Copulas

Proposition : Invariance Properties of the Copulas
Let X = (X1,X2, · · · ,Xd) with continuous marginal cdfs Fi
Let T1,T2, · · · ,Td be strictly increasing real functions
Let Y = (Y1,Y2, · · · ,Yd) with Yi = Ti (Xi )
then CY = CX

So, the Copula, which measures the association between the variables, is
invariant by change of variables under strictly increasing functions (which is
not the case for the linear correlation).

Demonstration : CY (u1, · · · ud) = P(FY1(Y1) ≤ u1, · · · ,FYd
(Yd) ≤ ud)

but FYi
(y) = P(Yi ≤ y) = P(Ti (Xi ) ≤ y) so

FYi
(Ti (x)) = P(Ti (Xi ) ≤ Ti (x)) = P(Xi ≤ x) (as Ti is strictly increasing)

so, FYi
(Ti (x)) = FXi

(x) and in particular FYi
(Yi ) = FYi

(Ti (Xi )) = FXi
(Xi )

so,
CY (u1, · · · ud) = P(FX1(X1) ≤ u1, · · · ,FXd

(Xd) ≤ ud) = CX (u1, · · · ud).
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Copulas

Proposition : Copulas for Normalized Gaussian Vectors
Let X be a "normalized" Gaussian vector N (0,Σ) with components
Xi ∼ N (0, 1) and correlation matrix Σ invertible.
Let CX the copula of X and cX its density. Then:

CX (x) = FX (Φ−1(x1),Φ−1(x2), · · · ,Φ−1(xd))

cX (x) = 1
|R|

1
2
exp(−1

2x
′(Σ−1 − Id)x)

where Φ is the cdf of a N (0, 1)

Demonstration :
FX (x1, x2, · · · , xd) = P(X1 ≤ x1, · · · ,Xd ≤ xd)
= P(Φ(X1) ≤ Φ(x1), · · · ,Φ(Xd) ≤ Φ(xd)) (as Φ is strictly increasing)
= CX (Φ(x1), · · · ,Φ(xd)) so,
CX (x1, x2, · · · , xd) = FX (Φ−1(x1),Φ−1(x2), · · · ,Φ−1(xd)) = Q.E.D.
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Copulas

Applying ∂
∂x1∂x2···∂xd to FX (x1, x2, · · · , xd) = CX (Φ(x1),Φ(x2), · · · ,Φ(xd))

we get
fX (x1, x2, · · · , xd) = cX (Φ(x1),Φ(x2), · · · ,Φ(xd))φ(x1)φ(x2) · · ·φ(xd)
the density fX (x) equals ( 1√

2π
)dexp(−1

2x
′Σ−1x) and

φ(x1)φ(x2) · · ·φ(xd) = ( 1√
2π

)dexp(−1
2x
′x) Q.E.D.

Proposition
The Copula of a Gaussian vector depends only on its correlation matrix Λ

Demonstration : if X is a Gaussian vector of correlation matrix Σ we
know (from the invariance property) that the normalized Gaussian vector Y
where Yi = Ti (Xi ) = Xi−µi

σi
has the same copula as X and that

Y ∼ N (0,Λ) where Λ is the correlation matrix of X . Q.E.D.
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Copulas : Example

Remark: We can create a correlation structure on d binomial variables
Xi ∼ B(pi ) by choosing a copula C and (α1, α2, · · · , αd) such that:
∀i ∈ J1, dK , C (1, · · · , αi , 1 · · · ) = pi
Example: Here d = 3 and p1 = 1%, p2 = 2% and p3 = 3%.
Z = (Z1,Z2,Z3) is a Gaussian vector with correlation ρ = 50% between
two variables and we assume that Xi = 1 (i defaults) ⇐⇒ Zi ≤ αi

Solving P(Zi ≤ αi ) = pi we find: α1 = −2.326 α2 = −2.054 α3 = −1.881
Here we do not try to calibrate a correlation matrix for Z to match some
input correlations between the Xi but calculate the correlations between
the defaults induced by the correlation matrix of Z .
Here we get E (X1X2)− E (X1)E (X2) = P(Z1 < α1,Z2 < α2)− p1p2 and
ρ(X1,X2) = cov(X1,X2)

σ(X1)σ(X2) = 13.32%

and in the same way ρ(X1,X3) = 13.89% and ρ(X2,X3) = 16.16%.
To simulate Z we simulate X and then calculate (1X1<α1 , 1X2<α2 , 1X3<α3)
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Copulas

Rosenblatt’s Theorem
Let X = (X1,X2, · · · ,Xd) be a random vector of Rd

we assume that the law of X has a density fX (x1, x2, · · · , xd) strictly
positive
Let T : Rd −→ Rd be defined by T (x) = y with
y1 = P(X1 ≤ x1)
y2 = P(X2 ≤ x2|X1 = x1), · · ·
yd = P(Xd ≤ xd |X1 = x1,X2 = x2, · · · ,Xd−1 = xd−1)
Then, T (Y ) ∼ U([0, 1]d)
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Copulas

Demonstration:
Let h be a measurable function from Rd to R
E [h(Y )] = E [h(T (X ))] =

∫
Rd h(T (x))fX (x)dx

We consider the change of variable y = T (x).
The Jacobian matrix [dydx ] is triangular and the diagonal elements are:

∂
∂x1

P(X1 ≤ x1) = fX1(x1)

∂
∂x2

P(X2 ≤ x2|X1 = x1) = fX2|X1=x1(x2) · · ·
∂
∂xd

P(Xd ≤ xd |Xd−1 = xd−1 · · · ,X1 = x1) = fXd |(Xd−1=xd−1··· )(xd)

so, the determinant of the Jacobian Matrix equals fX (x1, x2, · · · , xd)
so after the change of variable : E [h(Y )] =

∫
T (Rd ) h(y)dy

as the yi are probabilities T (Rd) ⊂ [0, 1]d and by mass conservation
T (Rd) = [0, 1]d

so ∀h,E [h(Y )] =
∫

[0,1]d h(y)dy =⇒ Y ∼ U([0, 1]d) Q.E.D.
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Other Copulas

In some situations a Copula C is defined analytically as any function
satisfying the properties of a cdf of a variable taking its values in [0, 1]d

and whose marginals are U([0, 1])

Exemples of Copula :

Clayton C (u, v) = max(u−θ + v−θ − 1, 0)−
1
θ with θ > −1 and θ 6= 0

Gumbel-Hougaard C (u) = exp
([
−

i=d∑
i=1

(−ln(ui ))θ
] 1
θ

)
with θ > 1 and the conventions ln(0) = −∞ and exp(−∞) = 0

Archimedean C (u) = ψ(
i=d∑
i=1

ψ−1(ui ))

with ψ : [0,∞] −→ [0, 1] satisfying (among other things)
ψ(0) = 1 and ψ(∞) = 0
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Other Copulas

Remarks
there are some conditions C must satisfy to be a copula. For a two
dimension copula we need at least C (u, 0) = C (0, v) = 0 and
C (u, 1) = u and C (1, v) = v

there are some conditions the function ψ must satisfy for the
Archimedean expression to be a copula
the Clayton and Gumbel-Hougaard copulas are two particular cases of
Archimedean copulas. For the Clayton Copula ψ(θ) = 1

θ (u−θ − 1)
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Archimedean Copulas

Theorem (admitted)
If Z is a random variable with Z > 0 and if
ψZ (s) = E [exp(−sZ )] for s ∈ [0,∞] (Laplace transform)
Then,
the Archimedean function defined by ψZ is a copula

exercise:
Show that if Z ∼ Gamma(1

θ , 1) with 0 < θ < +∞ then the Archimedean
Copula generated by ψZ is the Clayton Copula of parameter θ

Solution:

ψZ (s) =
+∞∫
0

z
1
θ
−1e−z

Γ( 1
θ

)
e−szdz = (1 + z)−

1
θ

Remarks: Archimedean Copulas can be created "on demand" by
calculating the Laplace transform of any arbitrary random variable Z
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Simulating Copulas

Even if the simulation of Gaussian Copulas is easy it may be more
complicated to simulate arbitrary copulas.
The Rosenblatt Theorem provides an easy way to simulate copulas in
dimension 2.

Proposition
let U = (U1,U2) of copula C with Ui ∼ U([0, 1])
If T is the Rosenblatt’s transformation

T (U) = (U1,
∂C
∂u1

(U1,U2)) and the components are i.i.d U([0, 1])

So, if we take W ∼ U([0, 1]) independent from U1 then
T−1(U1,W ) ∼ U

Remark: in practice for each simulation (u1,w) we find u2 the solution of
∂C
∂u1

(u1, u2) = w and by doing so we simulate U of Copula C .
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Copulas : Measures of Association between Variables

Background : Pearson’s linear correlation ρ(X ,Y ) = cov(X ,Y )
σ(X )σ(X ) measures

only the affine relationship between variables and presents some
imperfections to measure the "link" between two variables. For example:

if X ∼ N (0, 1) and Y = X 2 then ρ(X ,Y ) = 0 while there is a strong
link between Y and X (we can indeed predict Y perfectly from X )
if f and g are increasing in general cov(X ,Y ) 6= cov(f (X ), g(Y ))

Definition : Kendall’s tau
Let (X ,Y ) be a random variable. Let (X1,Y1), (X2,Y2) be independent
with the same law as (X ,Y ). We call Kendall’s tau and note τ(X ,Y ) the
quantity P((X1 − X2)(Y1 − Y2) ≥ 0)− P((X1 − X2)(Y1 − Y2) < 0)
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Copulas : Measures of Association between Variables

Properties Kendall’s τ
−1 ≤ τ(X ,Y ) ≤ 1
if f and g are strictly increasing τ(f (X ), g(Y )) = τ(X ,Y )

τ(FX (X ),FY (Y )) = τ(X ,Y )

U ∼ U([0, 1) =⇒ τ(U,U) = 1 and τ(U, 1− U) = −1
If (X ,Y ) has C for Copula then
τ(X ,Y ) = −1 + 4

∫
[0,1]2 C (u, v) ∂

2C
∂u∂v dudv

Remark:
if X ∼ N (0, 1) and Y = X 2 then τ(X ,Y ) = 1
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Copulas : Measures of Association between Variables

Demonstration: let’s show the last point
as τ(FX (X ),FY (Y )) = τ(X ,Y ) we can show it for X and Y ∼ U([0, 1])
τ(X ,Y ) = P((X1−X2)(Y1−Y2) ≥ 0)− (1−P((X1−X2)(Y1−Y2) ≥ 0))
= −1 + 2P((X1 − X2)(Y1 − Y2) ≥ 0)
= −1 + 2(P(X1 − X2 ≤ 0,Y1 − Y2 ≤ 0) + P(X2 − X1 ≤ 0,Y2 − Y1 ≤ 0))
as (X1,Y1) and (X2,Y2) have the same law, so we just need to calculate
the first probability.
P(X1 − X2 ≤ 0,Y1 − Y2 ≤ 0) = E (E (1X1≤X21Y1≤Y2)|X2,Y2)) and
E (1X1≤x21Y1≤y2) = P(X1 ≤ x2,Y1 ≤ y2) = CX (x2, y2)

so we have to calculate E (C (X2,Y2)) =
∫

[0,1]2 C (u, v) ∂
2C

∂u∂v dudv

so τ(X ,Y ) = −1 + 4
∫

[0,1]2 C (u, v) ∂
2C

∂u∂v dudv Q.E.D.
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Copulas : Measures of Association between Variables

Remark Kendall’s tau:
Based on the observations (xi , yi )i∈J1,nK the Kendall’s tau is estimated by
the quantity

2
n(n − 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj)
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Copulas : Measures of Association between Variables

Definition : Spearman’s correlation
If (X ,Y ) is a random variable with marginal laws FX and FY then the
Spearman’s correlation ρS is defined by ρS(X ,Y ) = ρ(FX (X ),FY (Y ))

Properties Spearman’s correlation
−1 ≤ ρS(X ,Y ) ≤ 1
if f and g are strictly increasing ρS(f (X ), g(Y )) = ρS(X ,Y )

τ(FX (X ),FY (Y )) = ρS(X ,Y )

U ∼ U([0, 1) =⇒ ρS(U,U) = 1 and ρS(U, 1− U) = −1
If (X ,Y ) has C for Copula then
ρS(X ,Y ) = −3 + 12

∫
[0,1]2 C (u, v)dudv
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Copulas : Measures of Association between Variables

Demonstration :
Let C be the copula of (X ,Y ) i.e the cdf of (U,V ) where U = F1(X ) and
V = F2(Y ), let ρS(X ,Y ) = E(UV )−E(U)E(V )

E(U)E(V )

E (UV ) =
1∫
0

1∫
0
uv ∂2C

∂u∂v dudv =
1∫
0
u
( 1∫

0
v ∂2C
∂u∂v dv

)
du

=
1∫
0
u
(

[v ∂C∂u ]10 −
1∫
0

∂C
∂u dv

)
du =

1∫
0
u
(
fU(u)−

1∫
0

∂C
∂u dv

)
du

= E (U)−
1∫
0

( 1∫
0
u ∂C∂u du

)
dv = E (U)−

1∫
0

(
[uC (u, v)]10 −

1∫
0
C (u, v)du

)
dv

= E (U)−
1∫
0
P(V ≤ v)dv +

1∫
0

1∫
0
C (u, v)dudv

= E (U)− E (V ) +
1∫
0

1∫
0
C (u, v)dudv =

1∫
0

1∫
0
C (u, v)dudv

and E (U)E (V ) = 1
4 and Var(U) = Var(V ) = 1

12 Q.E.D.
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Copulas : Measures of Association between Variables

Remark: Spearman’s correlation.
Based on the observations (xi , yi )i∈J1,nK the Spearman’s correlation is
estimated by calculating the correlations of the

(Fx[n](xi ),Fy [n](yi ))

where Fx[n](xi ) is the quantile for xi amongst x1, x2, · · · , xn and Fy [n](yi ) is
the quantile for yi amongst y1, y2, · · · , yn.
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Appendix : Risk Neutral Probability and Utility functions
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Risk Neutral Probability (discrete case)

Background: We consider an economy with two instants {0, 1} where
there are d assets whose vector of prices X is represented today by the
vector X0 = (X 1

0 ,X
2
0 , · · · ,X d

0 )′. We assume that at instant 1 there are n
possible states for the economy and for each state i ∈ J1, nK the vector of
the prices of the assets is Xi = (X 1

i ,X
2
i , · · · ,X n

i )′. We assume that prices
are all strictly positive.

Definition: Absence of Arbitrage (AOA)
We say that there is no arbitrage in the economy iff:
{w ∈ Rd ,∀i ∈ J1, nK〈w ,Xi 〉 ≥ 0} ⊂ {w ∈ Rd , 〈w ,X0〉 ≥ 0}

Remarks :
The definition means that it is not possible to receive money today to build
a strategy which has positive values tomorrow in all cases.
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Risk Neutral Probability (discrete case)

Theorem and Definition: Risk Neutral Probability
a)the two following propositions are equivalent:

there is no arbitrage in the economy

we can find (λi )i∈J1,nK, λi ≥ 0 such that X0 =
i=n∑
i=1

λiXi

b) if there is a risk-free asset in the economy of return r over [0, 1] then:
i=n∑
i=1

λi = 1
1+r

if we define a probability π, over the n possible values of X at time 1,
by πi = λi (1 + r) then X0 = 1

1+r Eπ[X ] and π is called the risk neutral
probability for the economy.
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Risk Neutral Probability (discrete case)

Demonstration :
a) one of the implications is obvious.
We assume now that there is no arbitrage and define the cone

C = {
i=n∑
i=1

λiXi ,∀i ∈ J1, nKλi ≥ 0}.

Then C is convex and if X /∈ C we can separate X from C by an hyperplane
and find w ∈ Rd such that: 〈w ,X0〉 < 0 and for all Xi in C 〈w ,Xi 〉 > 0
but this would contradict the AOA hypothesis, so X0 ∈ C. Q.E.D.

b) if we assume that the risk-free asset is component j then:

X j
0 =

i=n∑
i=1

λiX
j
i and X j

i = X j
0(1 + r) =⇒

i=n∑
i=1

λi = 1
1+r Q.E.D.
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Risk Neutral Probability (discrete case)

Exercise : we assume that there are 3 assets, of prices today
X0 = (1, 5, 10)′ and 3 possible states of the economy tomorrow defined by
the 3 vector of prices for the assets:
X1 = (1.03, 5, 11)′, X2 = (1.03, 5, 10)′, X3 = (1.03, 6, 10)′.
a) explain why the risk-free rate is 3%
b) show that π = (0.30, 0.55, 0.15)′

c) explain why there is no arbitrage in this economy.
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Risk Neutral Probability (discrete case)

Remark : If we assume that the vector of prices today is X0 = (1, 5, 10)′

and that the 3 vectors of prices for tomorrow are :
X1 = (1.03, 5, 10)′, X2 = (1.03, 6, 12)′, X3 = (1.03, 6, 13)′ then
a) π = (0.85, 0.15, 0)′ is the risk neutral probability
b) according to a) there is no arbitrage
c) the strategy w = (0,−2, 1)′ costs today zero and the possible outcomes
tomorrow are 0 for the first two states and 1 for state 3, so it seems
attractive to play it (as there is only upside) but strictly speaking this is not
an arbitrage according to our definition.
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Risk Neutral Probability (continuous case)

Background:
We consider a probability space (Ω,F ,P) with F = (Ft)t≥0 where Ft

represents the information available at time t.
We assume that there are d financial assets following the equations:
dX i

s = µisX
i
sds + σisX

i
sdW

i
s where Ws = (W 1

s ,W
2
s , · · · ,W d

s ) is a
d-dimensional Brownian motion.

Theorem and Definition : Risk Neutral Probability
We can find a probability Q on (Ω,F) such that:
W ∗ defined by: dW i∗

s = (dW i
s + µis−rs

σi
s

ds) is a Brownian motion under Q
We can then re-write the model:
dX i

s = rsX
i
sds + σisX

i
sdW

∗i
s where W ∗ is a Brownian motion under Q and

Q is called the risk neutral probability.
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Risk Neutral Probability (continuous case)

Lemma and Definition
If (Zs)s≥0 is a martingale under P with Zs ≥ 0 and Z0 = 1 and if we define
Q for any random variable Yt Ft-measurable by EQ [Yt ] = EP [YtZt ] then:

Q is a probability on (Ω,F)

EQ [YT |Ft ] = EP [YT
ZT
Zt
|Ft ]

Usually we note (dQdP )t = Zt and so we write EQ [Yt ] = EP [Yt(
dQ
dP )t ]

Demonstration Lemma : easy

Demonstration Theorem (hint) :
We note ∆i

s = µis−rs
σi
s

and ∆s = (∆1
s ,∆

2
s , · · · ,∆d

s )′.
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Risk Neutral Probability (continuous case)

We search for a probability Q under which (W ∗
s )s≥0 is a Brownian motion

For that we need EQ [dW ∗
t |Ft ] = 0 and EQ [dW ∗

t (dW ∗
t )′|Ft ] = IdRddt

We note (dQdP )t = Zt and so search for Zt .
EQ [dW ∗

t |Ft ] = EP [dW ∗
t
Zt+dt

Zt
|Ft ] = EP [(dWt + ∆tdt)(1 + dZt

Zt
)|Ft ]

= EP [dWt |Ft ] + 1
Zt
EP [dWtdZt |Ft ] + ∆tdt = 1

Zt
EP [dWtdZt |Ft ] + ∆tdt

If we search Z of the form dZs = 〈Bs , dWs〉 with Bs ∈ Rd (no drift term as
martingale) then:
EP [dWtdZt |Ft ] = EP [dWt〈dWt ,Bt〉|Ft ] = EP [dWt(dWt)

′Bt |Ft ]
= EP [dWt(dWt)

′|Ft ]Bt = Btdt so, EQ [dW ∗
t |Ft ] = 0⇐⇒ Bt = −∆tZt

Solving dZs = 〈−∆t , dWs〉Zs and Z0 = 1 we get:

Zt = exp
( t∫

0
−〈∆s , dWs〉 − 1

2

t∫
0
||∆s ||2ds

)
(we do not discuss here the

conditions on ∆s for integrability that can be found in Girsanov’s theorem)
The condition EQ [dW ∗

t (dW ∗
t )′|Ft ] = IdRddt is easy to verify Q.E.D.
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Risk Neutral Probability (continuous case)

Remark 1: for d = 1 we get that:

XT = X0e
µT eσWT− 1

2σ
2T where (Ws)s≥0 is a Brownian under P

XT = X0e
rT eσW

∗
T−

1
2σ

2T where (W ∗
s )s≥0 is the Brownian under Q

defined by W ∗
T = WT + µ−r

σ T

(dQdP )T = exp( r−µσ WT − 1
2( r−µσ )2T )

for any function h, EQ [h(XT )] = EP [h(XT )(dQdP )T ]

Exercise: verify by calculations for d = 1 that
EQ [h(rT + σW ∗

T )] = EP [h(µT + σWT )(dQdP )T ]
Solution: EQ [h(rT + σW ∗

T )] = E
Q

W∗
T

[h(rT + σz)]

=
∫
h(rT + σz) 1

2π
√
T
exp(− z2

2T )dz
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Risk Neutral Probability (continuous case)

If we take the new variable u such that µT + σu = rT + σz we get :
◦ h(rT + σz) = h(µT + σu)

◦ exp(− z2

2T ) = exp(− (u+µ−r
σ

T )2

2T ) = exp(− u2

2T )exp(−µ−r
σ u − 1

2(µ−rσ )2T )
so,∫
h(rT + σz) 1

2π
√
T
exp(− z2

2T )dz

=
∫
h(µT + σu)exp(−µ−r

σ u − 1
2(µ−rσ )2T ) 1

2π
√
T
exp(− u2

2T )du

= EP [h(µT + σWT )exp(−µ−r
σ WT − 1

2(µ−rσ )2T )] Q.E.D.
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Utility functions

Remark 2: we call u a utility function compatible with the price of asset
X , P the "real" probability and "Q" the risk neutral probability.
As X0 = EP [e−rTu(XT )] and X0 = EQ [e−rTXT ] we have under the
previous assumptions concerning the law of X under P :
EP [e−rTu(XT )] = EP [e−rTXT f (WT )] with
f (w) = exp( r−µσ w − 1

2( r−µσ )2T )

if we define g(x) = f ( 1
σ [ln( x

X0
) + (σ

2

2 − µ)T ]) then
f (WT ) = g(XT ) and EP [e−rTu(XT )] = EP [e−rTXTg(XT )]
so, u(x) = xg(x) is an adequate utility function for this modelisation of X .
In the following graph we represent xg(x) for various values of r , µ and σ
with x0 = 1 and T = 1.
Note that depending on the value of the parameters xg(x) is not always
increasing (which shows its limits in terms of admissible utility function..)
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Risk Neutral Probability (continuous case)

Utility functions derived from Girsanov’s Theorem
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