
HAL Id: cel-01510146
https://hal.science/cel-01510146v2

Submitted on 14 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear dynamics
Axelle Amon

To cite this version:
Axelle Amon. Nonlinear dynamics. Master. Phénomènes nonlinéaires et chaos, France. 2007. �cel-
01510146v2�

https://hal.science/cel-01510146v2
https://hal.archives-ouvertes.fr
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This course has been given from 2007 to 2017 in the 2d year of the Master Systèmes
Complexes Naturels et Industriels at Université Rennes 1.

Part of it was based on slides that are not provided in the following notes. In partic-
ular the course used to begin by a general historical introduction. Such an introduction
is very classical and can be found in numerous books.

The course is largely based on two books in particular :

• Nonlinear dynamics and chaos, S. Strogatz,

• L’ordre dans le chaos, P. Bergé, Y. Pomeau, C. Vidal.
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[. . . ] and people stopped patiently building their little houses of rational
sticks in the chaos of the universe and started getting interested in the chaos

itself – partly because it was a lot easier to be an expert on chaos, but
mostly because it made really good patterns that you could put on a t-shirt.

Terry Pratchett, Witches Abroad
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Introduction

During this course, I will mostly provide you mathematical tools to understand the qual-
itative behavior of dynamical systems. Now that it is easy and cheap to integrate nu-
merically differential equations, it might seem to you a waste of time to learn all those
mathematics. In fact, I hope to convince you during this course that on the contrary, de-
termining the general feature of the response of a dynamical system without a systematic
integration is very powerful and provides a true understanding of those systems.

All the systems we are going to study are deterministic. This mean that the future of
the system is entirely determined by the initial conditions. We will discuss in the second
part of the course why for some nonlinear systems such prediction is still very difficult
because of the sensitivity to initial conditions.

[For an historical introduction to chaos and dynamical systems, read chapters of the
book Le chaos dans la nature of C. Letellier.]
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Chapter 1

Introduction to dynamical systems

In this course we will be interested in the study of the evolution with time of an ensemble
of quantities describing a system.

From a scientific point of view, when studying the evolution of a phenomena, the main
task is the modeling part, i.e. evidenced the significant quantities or the ones which can
be truely measured and find the mathematical description of their temporal evolution.
When this task is done, we obtain a set of mathematical expressions which are differential
equations. In the case of a dependance on several variables (usually space and time), we
obtain partial differential equations (PDEs). In this course we will only study ordinary
differential equations (ODEs), for which the derivatives are only as a function of a unique
variable, which will always be considered to be the time t in the following.

The goal of this first chapter is to provide the basic mathematical tools for the study
of those ODEs. The specificity of the dynamical point of view is the way to deal with
such mathematical problems. We will not try to find exact analytical solutions, which
usually do not exist at all for the systems we will consider, but we will learn general tools
which give insights on the evolution of such systems as the possible long-term behaviors
or the evolution of the system near some particular points.

1.1 Definitions

1.1.1 Dynamical systems

We will consider systems described by a finite set of n real quantities: X1, X2,...,Xn,
whose temporal evolutions are given by ordinary differential equations of the first order:

dX1

dt
= f1(X1, X2, . . . , Xn, t)

dX2

dt
= f2(X1, X2, . . . , Xn, t)
...

dXn

dt
= fn(X1, X2, . . . , Xn, t)

(1.1)

All the functions fi will always be sufficiently regular on Rn+1.

13



14 CHAPTER 1. INTRODUCTION TO DYNAMICAL SYSTEMS

We will use the notation dXi

dt
= Ẋi. We will also use a vectorial formulation for the

set of quantities, so that the system (1.1) can be written:

dX

dt
= ~F (X, t) (1.2)

with

X =


X1

X2
...
Xn

 and ~F (X, t) =


f1(X1, X2, . . . , Xn, t)
f2(X1, X2, . . . , Xn, t)

...
fn(X1, X2, . . . , Xn, t)

 .

~F is a vector field, function of Rn+1 in Rn.

The quantities designated by X1, X2,...,Xn can be for example:

• positions and velocities of bodies submitted to mutual gravitational interaction and
conservation of momentum,

• the currents and voltages in an electrical network linked by the eletrical laws,

• the number of individuals in interacting populations in an ecosystem,

• the concentrations of reactants in a chemical reaction scheme described by reaction
kinetics,

• . . .

Remarks:

• the differential equations are ordinary, there are no partial derivatives.

• they are of the first order. If higher order derivatives appear during the model
derivation, it is always possible to reformulate the model as a first-order one of
higher dimension (see examples).

• existence and unicity of the solution of the system: a mathematical theorem (Cauchy-
Lipschitz) tells us that for the initial value problem{

dX
dt

= ~F (X, t)

X(0) = x0

with X ∈ Rn and all the fi continuous as well as all their partial derivatives ∂fi
∂Xj

in

an open ensemble Ω such that x0 ∈ Ω, then the problem as a unique solution x(t)
defined on a time interval around 0 ]t−(x0); t+(x0)[ which can be finite or infinite.

From a practical point of view, the unicity of the solution is the mathematical
formulation of what we call determinism. For a given initial condition, there is
only one possible future.
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• When dX
dt

= ~F (X), i.e. when ~F has no explicit dependence on t, the system is

called autonomous. Otherwise, when dX
dt

= ~F (X, t), the system is called non-
autonomous. A non-autonomous system can be transformed in an autonomous
one by increasing the dimension of the system of one (see examples).

• We will also study in the following discrete dynamics. In that case, the problems
will be of the form:

Xk+1 = ~F (Xk).

Instead of a continuous dependence on a variable t, we have an iterative map which
gives the value of X at the step k + 1 as a function of the previous step.

1.1.2 Phase space

The vector X belongs to the space Rn, called phase space. The dimension of the space,
n, is the number of degrees of freedom of the system.

For any initial state x0 = X(0), a solution x(t) exists which can be obtained for
example by numerical integration. The path followed by the system in the phase space
during time is called the trajectory or orbit of the system.

Figure 1.1: A trajectory in the phase space.

At each points x(t), dx
dt

= ~F (x), so that the vector field ~F gives the tangent to
the trajectory at that point, i.e. the instantaneous direction followed by the system.
Consequently, for a step δt small enough, we have1:

x(t+ δt) ' x(t) + ~F (x(t))δt,

We see that there is a direct analogy with hydrodynamics: ~F can be considered as the
velocity field of a fluid. The map φ associating to each initial condition x0 the subsequent
trajectory x(t) is called the flow of the field vector:

φ : (x0, t) 7→ x(t) = φt(x0)

1This approximation is the basis of the Euler method of integration of differential equations.



16 CHAPTER 1. INTRODUCTION TO DYNAMICAL SYSTEMS

Trajectories in the phase space never intersect. Indeed, if such intersection point
would exist, taking it as an initial condition would lead to the existence of two distinct
trajectories starting from the same point, i.e. two futures possible from the same initial
condition, which would be a violation of the determinism (or of the unicity of the solution
from a mathematical point of view). Nevertheless, we will meet some singular points in
phase space where particular orbits cross. Those points correspond in fact to asymptotic
limits for the system: they can only be reach after an infinite time.

1.1.3 Examples

1.1.3.a The simple gravity pendulum

Let’s consider a mass m hanging to a pivot O. The cord that hold the mass is rigid and
massless. The length of the cord is l.

Figure 1.2: Simple gravity pendulum.

The equation describing the movement can be obtained in different ways. Let’s use
the angular momentum conservation:

d

dt
(angular momentum) =

∑
(torques)

Let’s calculate the angular momentum:

−−→
OM × (m~v) = (l~er)× (mlθ̇~eθ)

= ml2θ̇~ez

and the torques associated to the forces:

−−→
OM ×

−→
T = ~0

−−→
OM × (m~g) = −mgl sin θ~ez
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We obtain:
d

dt
(ml2θ̇) = −mgl sin θ

θ̈ +
g

l
sin θ = 0

You have learned how to solve this problem: you need to consider only small oscil-
lations, so that you can approximate sin θ ' θ. The differential equation you obtain by
doing this approximation is the harmonic oscillator equation:

θ̈ +
g

l
θ = 0

for which we know the general form of the solution:

θ(t) = A sin

(√
g

l
t

)
+B cos

(√
g

l
t

)
,

where the constants A and B are determined by the initial conditions. You can note
that you have two unknowns (A and B) so that you need to know two initial conditions
to entirely solve the problem: the initial angle θ0 and the initial angular velocity of the
pendulum. This fact gives you a hint of the number of degrees of freedom of the system2:
it is the number of initial conditions you need, i.e. the number of coordinates of the vector
that will describe the system in the phase space.

Note that the analytical solution is valid only in the case of small oscillations. Now,
we want to have a global knowledge of the possible trajectories of the system for all the
possible initial conditions, which mean that the amplitude of the oscillations may not be
small at all.

Let’s come back to the nonlinear equation:

θ̈ +
g

l
sin θ = 0.

First we will transform this second-order equation in a larger system of first-order deriva-
tives. Let’s define X1 = θ and X2 = θ̇. We have:

Ẋ1 = θ̇ = X2

Ẋ2 = θ̈ = −g
l

sin θ = −g
l

sinX1

The system can be expressed in the following way:{
Ẋ1 = X2

Ẋ2 = −g
l

sinX1

2The definition is given from a dynamical system point of view, and may differ from the definition
you had in your mechanics class.
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which is an autonomous system of the form dX
dt

= ~F (X), with

X =

(
θ

θ̇

)
and ~F :

(
X1

X2

)
7→
(

X2

−g
l

sinX1

)
The phase space is of dimension 2.

To represent the possible trajectories in the phase space, we need to calculate the
values of the field vector F at different points. As the trajectories are tangent to those
vectors, we can progressively have a picture of the flow by the drawing of those vectors 3.
For complicated expression of the vector field, we will see during the exercises session on
Matlab that a function4 will give directly the vector field over a grid of your choice.

In the case of the example

F

(
π/2
0

)
=

(
0
−g/l

)
F

(
−π/2

0

)
=

(
0
g/l

)

F

(
0
ω

)
=

(
ω
0

)
F

(
±π
ω

)
=

(
ω
0

)
Such calculation gives coordinates of vectors which are drown as red solid arrows in Fig-
ure 1.3. You can note that without an exact calculation you can also draw the general
trend of the flow in some areas of the phase space, only by considering the signs of the
coordinates of F . We have drawn such trends with red dashed arrows in Figure 1.3. The

Figure 1.3: Vector field representation. The red arrows represent the vector field F at the considered points.

global picture of the trajectories emerges gradually from the accumulation of the tangents:
around the origin, the vectors are going round, drawing curves which look like ellipses.

3If you have studied continuum mechanics, you have proceed in the same way to figure out the
appearance of a velocity field or a deformation field from some mathematical expressions.

4The quiver function.
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It is in agreement with our analytical solution for the small amplitudes condition. We
obtained then the trajectories corresponding to oscillations, they appear as closed orbits
in the phase space. Those trajectotries are the closed loops around the origin drawn in
blue in Figure 1.5. Far from the origin, for large initial θ̇0, we see that the trajectory will
never cross the θ-axis, which mean that the angular velocity never vanished during the
movement. The pendulum does not oscillate back and forth around the vertical axis but
rotates continuously over the top. Examples of those trajectories are drawn in blue in
Figure 1.5.

Figure 1.4: Trajectories of a pendulum in the phase space.

Finally, we see in Figure 1.3 that around the points (π, 0) and (−π, 0) (which are
in fact the same due to the 2π-periodicity of the angle coordinate), trajectories behave
strangely: a pair of dashed arrows are going towards the point while the other pair moves
away from it. We are at the separation between the two types of trajectories, oscillations
and rotations. The trajectory that delimits those two behavior is called a separatrix. It
is drawn in light blue in Figure 1.5. You observe that at the point (π, 0), two trajectories
cross each other although we said it was forbidden. We are typically in one of those special
case we were talking about: if you use as initial condition any point from the separatrix,
it will take an infinite time for the system to reach the point (π, 0). And if you take that
exact point as initial condition it will stay here in the absence of any perturbation. The
point is an unstable equilibrium and we will come back to the characterization of the
trajectories around it later.

1.1.3.b The damped pendulum

In the previous example, the energy was conserved with time. In fact, we will be mainly
interested in the following in dissipative systems. In the case of the pendulum, it will
lead to the introduction of a damping term in the equation. We will describe this damping
through a viscous torque, proportional to the angular velocity and opposed to the move-
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ment −γθ̇, which will lead to an exponential decrease of the amplitude of the oscillations.

θ̈ = −γθ̇ − g

l
sin θ

Let’s proceed to the re-writting of the system using X1 = θ and X2 = θ̇

{
Ẋ1 = X2

Ẋ2 = −g
l

sinX1 − γX2

We can again draw the vector field in several points to determine the appearance of the
trajectories. (

θ0

0

)
7→
(

0
−g/l sin θ0

) (
0
ω0

)
7→
(

ω0

−γω0

)

Figure 1.5: An example of trajectory of a damped pendulum in the phase space in a case where the damping
is “small” (we will come back later to this example and give a rigourous condition). For “large” damping,
the system goes straightly to the origin without spiraling. Those two cases correspond respectively to the
underdamped and overdamped regimes.

A big difference with the conservative case is the fact that all the trajectories converge
towards the point (0, 0). This feature, the existence of attractors in the phase space for
dissipative systems, is of central importance in the following of the course. Such feature
is totally absent in conservative systems: an infinite number of closed orbits were existing
around the origin, each corresponding to a different value of the energy.

That simple example evidences also the fact that if no energy is injected in a dissipative
system to compensate the loss of energy by the damping, no exciting dynamics will arise.
The system will just converge to a position corresponding to a null energy.



1.1. DEFINITIONS 21

1.1.3.c The driven pendulum

To maintain the movement of the pendulum, one needs to drive it, generally by exerting
a periodic torque at a fixed frequency ω: M sin(ωt).

θ̈ + γθ̇ +
g

l
sin θ = M sin(ωt)

With X1 = θ and X2 = θ̇, we obtain the system{
Ẋ1 = X2

Ẋ2 = −g
l

sinX1 − γX2 +M sin(ωt)

This is our first example of a non-autonomous system. The variable t appears explicitely
in the vector field. If we introduce a new variable X3 = ωt, we obtain the system:

Ẋ1 = X2

Ẋ2 = −g
l

sinX1 − γX2 +M sinX3

Ẋ3 = ω

which is an autonomous system of dimension 3.5

Now, are we able to draw the global features of the flow as we have done for the
previous example by determining the vector field in a few points ? Yes, in principle, but
the task has become much harder. The phase space is in 3 dimensions, so we will draw
projections of the phase space in a plane. Moreover, note that we have now four param-
eters6: g

l
, γ, M and ω. We mentioned very briefly in the case of the damped pendulum

the fact that the transient behavior of the system was not the same depending on the
values of the parameters (g

l
and γ), but now we have two new parameters to deal with.

For example, we can expect that the system will not respond in the same way if ω is close
to the natural frequency of the system or very far from it.

Figure 1.6) shows the result of numerical integrations of the system for different val-
ues of the parameters. The trajectories that have been drawn correspond to a permanent
regime: we show only the behavior after that a time of integration long enough compared
to the transient of the system has elapsed. Figure 1.6(a) corresponds well to what we
expect for a linear response: the pendulum oscillates at the imposed frequency ω and
its periodic motion corresponds to a closed orbit in the phase space. Figure 1.6(c) cor-
responds also to a periodic orbit but it is a very weird one. The trajectory seems to
cross itself but it is only due to the projection in a plane. What is surprising is that the

5In this example X3 is in fact an angle, so that it is 2π-periodic and lives on a circle. In such systems,
it is common to measure the values of X1 and X2 at discrete time steps fixed by the period of the driving,
as in a stromboscopic measurement. Then the dynamics obtained is discrete. We will see examples of
that kind later.

6Nondimensionalizing the equations would reduce this number to three, but it is still a lot.
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Figure 1.6: Trajectories in the phase space of the driven damped pendulum for different value of the driving
force. See also for example http://www.myphysicslab.com/pendulum2.html

oscillation is not at the same frequency as the driving one but a sub-harmonic of it. The
two last figures 1.6(b) and (d) are totally confusing because the system does not seem to
settle on a closed trajectory. You could think that it is due to the fact that a part of the
transient is pictured on the figure but it is not the case. You can let the system integrate
for a very long time, it will still present such behavior, which is not a mere random mo-
tion in the phase space (you can see that the trajectory is confined in a finite part of the
phase space) but which is not periodic. Such kind of behavior is precisely what is called
chaos and the strange structures in the phase space are examples of strange attractors.

As you see, even a “simple” example as a driven damped pendulum exhibits a very
complex behavior. You are perhaps surprised by this result because you have extensively
studied this example before and never encounter such strange behaviors. It is because

http://www.myphysicslab.com/pendulum2.html
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you have always studied the linearized system, when oscillations are small. A linear
system will never present a chaotic behavior or even oscillations at a frequency different
from the one you imposed. In a linear system all you can observe is a response at the
driven frequency such as the one of Figure 1.6(a). The necessary ingredient to observe
exotic behavior as in Figures 1.6(b), (c) or (d) is the nonlinearity, which is in our example
the terms “sinX1” and “sinX3” in the equations. Note that the nonlinearity is not a
sufficient condition to observe chaos: there exist nonlinear differential equations which
behave themselves for all the values of the parameters.

At this stage, we realize that even a goal as modest as a rough description of all the
possible asymptotic behaviors of the system depending on the value of the parameters is
not easy to realize. Considering the complexity of what await us we need some method
to deal with such systems: we cannot find all the possible behavior easily as in the two
first examples and we cannot just run numerical integration for all the possible values of
the parameters. We need a method to address the problem, which is exactly what the
two first chapters of this course are about.

Parametric pendulum

There are several ways to drive a system. In the previous example we directly applied a
periodic torque to the system. Another method is to drive one of the parameters of the
system periodically.

A famous example of those two kinds of excitation is given by the swing (the children’s
play). You have two manners to make it oscillate: either you sit on it and periodically
bend and stretch your legs. You will oscillate at the same frequency as the one of your
impulsion. You can also stand on the swing and bend your knees periodically. The swing
will then oscillante at half the frequency of the driving one.

The second type of driving is a parametric one because it is formally equivalent to a
modulation of the gravity value and can be modeled in the following way:

g(t) = g0 + g1 cos(2ωt)

θ̈ + γθ̇ +
[g0

l
+
g1

l
cos(2ωt)

]
sin θ = 0

1.1.4 Hamiltonian vs. dissipative systems

We have seen through the pendulum example that the behavior of a system where there
is some damping is very different from the one of a system with no dissipation.

1.1.4.a Hamiltonian systems

From a physicist point of view, a conservative system designates a system where the
total energy is conserved. From a dynamical system point of view it will mean that the
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volumes in the phase space are conserved under the action of the flow. Such systems are
also called hamiltonian systems.

Consider an initial set Ω0 in the phase space and let it evolve under the action of the
flow. At time t, it has became Ωt. Quantitatively, the volume of Ωt is

V(Ω) =

∫
Ω

dX1dX2 . . . dXn

Now consider the small variation of Ω between t and t+δt, the volume
variation is given by:

δV =

∫
∂Ω

(δX).d~σ,

where ∂Ω is the frontier of the set Ω and d~σ is the vector associated
to a surface element of the frontier.

As δX = ~F (X)δt,

δV = δt

∫
∂Ω

~F (X).d~σ

δV
δt

=

∫
Ω

(~∇. ~F )dv,

where we have applied the Ostrogradski relationship and

~∇. ~F =
∂f1

∂X1

+
∂f2

∂X2

+ · · ·+ ∂fn
∂Xn

If the volume is conserved, δV
δt

= 0, and

~∇. ~F = 0

This relationship is the mathematical definition of an hamiltonian system.

Example: the simple gravity pendulum{
Ẋ1 = X2

Ẋ2 = −g
l sinX1
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We have,

~∇. ~F =
∂f1

∂X1
+
∂f2

∂X2

=
∂

∂X1
(X2) +

∂

∂X2

(
−g
l

sinX1

)
= 0

The system is indeed conservative.

1.1.4.b Dissipative systems and attractors

We said before that we will be interested only in dissipative systems in this course. For
these dissipative systems there is volume contraction in the phase space under the
action of the flow7: on average, we have ~∇. ~F < 0.

Example: The damped pendulum{
Ẋ1 = X2

Ẋ2 = −g
l sinX1 − γX2

Then,

~∇. ~F =
∂

∂X1
(X2) +

∂

∂X2

(
−g
l

sinX1 − γX2

)
= −γ

as γ > 0 in the damping case, we have ~∇. ~F < 0.

Attractors

For dissipative system, as we have seen in the damped pendulum examples, there are
attractors in the phase space, i.e. sets of the phase space where nearby trajectories all
tend to go during the transient regime. On a long time perspective all those trajectories
settle on the attractor and never leave it. In the case of the damped oscillator (without
driving, Fig. 1.5), the attractor is the point (0, 0) of the phase space. In the simpliest re-
sponse of the driven, damped oscillator, i.e. the periodic response at the driven frequency
of Figure 1.6(a), the closed orbit is an attractor.

The existence of such attractors is closely related to the volume contraction in the
phase space. A more rigourous definition of an attractor is the following: an attractor
is a set of the phase space invariant under the action of the flow. This means that if
you choose as an initial condition a point of the attractor the trajectory of your system
will follow the attractor and stay on it forever. An attractor has always a null vol-
ume because of the volume contraction. Indeed, if it had a volume different from 0,
the action of the flow would reduce this volume and the attractor would not be invariant

7We can also speak of area contraction (or area conservation for the hamiltonian case) as the discussion
is also true for areas and not only volumes.



26 CHAPTER 1. INTRODUCTION TO DYNAMICAL SYSTEMS

under the action of the flow. Each attractor has a basin of attraction which contains all
the initial conditions which will generate trajectories joining asymptotically this attractor.

When studying a nonlinear dynamical system, if we are only interested in the long-
time behaviors, we will only study the attractors of the system and determine their basin
of attractions.

The “simpliest” attractors are:

• the point: it is then a fixed point, i.e. verifying ~F (x∗) = 0. The corresponding
solution of the dynamical system does not depend on time, it is a stationary state.

• the limit cycle: i.e. a closed trajectory in the phase space. It needs a phase space
of dimension at least 2 to exist. This attractor corresponds to a periodic solution:
the quantities all take again the same values after the same time, the period of the
system.

To observe other attractors than those two types, the dimension of the phase space
has to be larger than 2. The two next sections are devoted to the study of fixed points
and limit cycles and the characterization of their stability.

1.2 Stability of fixed points

1.2.1 Fixed points

Fixed points are the particular points of the phase space verifying

dX

dt

∣∣∣∣
x∗

= 0, or ~F (x∗) = 0.

Such a point, if taken as an initial condition, will not move under the action of the flow.

Fixed points can be stables or unstables (compare for example the points (0, 0) and
(π, 0) in the simple pendulum example of Fig. 1.5). Only stables fixed points are
attractors.

1.2.2 Linear stability analysis: principle

To have an idea of what the trajectories look like in the vicinity of a fixed point x∗, we
linearize the equations around that point. Considering x near x∗: x = x∗ + δx with δx
small, we have:

dx

dt
= ~F (x)

dx∗

dt
+
d(δx)

dt
= ~F (x∗ + δx)
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Let’s go back to a detailed writting for the equation, using equation 1.1:
dδX1

dt
= f1(X∗1 + δX1, X

∗
2 + δX2, . . . , X

∗
n + δXn)

dδX2

dt
= f2(X∗1 + δX1, X

∗
2 + δX2, . . . , X

∗
n + δXn)

...
dδXn

dt
= fn(X∗1 + δX1, X

∗
2 + δX2, . . . , X

∗
n + δXn)

(1.3)

Computing the Taylor expansion of each function, we obtain:
dδX1

dt
= f1(x∗) + ∂f1

∂X1

∣∣∣
x∗
.δX1 + ∂f1

∂X2

∣∣∣
x∗
.δX2 + · · ·+ ∂f1

∂Xn

∣∣∣
x∗
.δXn

...
dδXn

dt
= fn(x∗) + ∂fn

∂X1

∣∣∣
x∗
.δX1 + ∂fn

∂X2

∣∣∣
x∗
.δX2 + · · ·+ ∂fn

∂Xn

∣∣∣
x∗
.δXn

(1.4)

A condensed way to write this system is to use the jacobian matrix of ~F :

Lij =
∂fi
∂Xj

.

Then equation 1.4 can be written:

d(δx)

dt
' ~F (x∗) + L|x∗ .δx,

as ~F (x∗) = 0, we obtain

d(δx)

dt
= L|x∗ .δx (1.5)

As L|x∗ is a matrix with constant coefficients, equation (1.5) is a linear ordinary differential
equation which can be explicitely integrated as will be briefly explained in the next part.

1.2.3 Linear differential equations

Consider a system of linear differential equations of the first order with constant coeffi-
cients:

dX

dt
= MX,

with M a matrix of size n× n with constant coefficients in R and X ∈ Rn. The solutions
of this equation are:

X = etMX(0),

where the matrix exponential eA is defined for all matrix A by the convergent serie:

eA = 1 + A+
A2

2!
+
A3

3!
+ · · ·+ Ap

p!
+ . . .



28 CHAPTER 1. INTRODUCTION TO DYNAMICAL SYSTEMS

The matrices etM verify:
et1Met2M = e(t1+t2)M

d
dt
etM = MetM

Det(etM) = etT r(M)

Case of a diagonal matrix

Even if it is mathematically a particular case, you will have a good intuition of what is
this matrix exponential by considering that M is a diagonal matrix:

M =

 λ1 0
. . .

0 λn


All the λi are in R, they are eigenvalues 8 of M . Then the exponential matrix etM is:

etM =

 eλ1t 0
. . .

0 eλnt


Then, choosing as an initial condition the eigenvector of M associated to the eigenvalue
λi:

x0 =



0
...
0
1
0
...
0


· · · ith

the trajectory is given by9:

x(t) = etMx0 = eλitx0 =


0
...
eλit

...
0


We have then three different asymptotic behaviors possible. If λi < 0, limt→+∞ e

λit = 0
and x(t) will converge to the origin, if λi = 0, x(t) will stay in x0 and finally if λi > 0,
the ith coordinate of x(t) will increase exponentially so that x(t) goes to infinity.

8The set of those eigenvalues is called the spectrum of the matrix
9Note that etM is a matrix while etλi is a scalar.
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Considering any initial condition x0 and not specifically an aigenvector of M , the
vector x0 can be written as a linear superposition of the eigenvectors {vi} :

x0 =
∑
i

αivi,

and the evolution of x(t) is given by :

x(t) =
∑
i

αie
λitvi.

When M is not diagonal, it can be either diagonalizable or not. When it is a diago-
nalizable, it means that by a change of basis (i.e. a change of coordinates), we are back
to the diagonal case. Note that those eigenvalues can be complex even if M is real but
then their complex conjugate is also necessarily in the spectrum. Then the real part of
the eigenvalue still gives the long-term behavior (exponentially incresing or decreasing
depending on its sign) while a non-null imaginary part will lead to an oscillating behavior
which superimposed on the trend given by the real part. When M is not diagonalizable,
the problem is more tricky but the behavior of etM is still given by the sign of the real part
of the eigenvalues of M . We will see examples on those different cases (complex conjugates
eignevalues, non-diagonalizable matrix) among the 2D cases studied in subsection 1.2.5.

Exercises

• Consider the system {
ẋ = 2x− y
ẏ = 2y − x

with initial conditions x(0) = 1 and y(0) = 3. Show that the solution of the system is :

x(t) = 2et − e3t

y(t) = 2et + e3t

The system can also be written:(
ẋ
ẏ

)
=

(
2 −1
−1 2

)(
x
y

)
Show that the eigenvalues of the system are 1 and 3.

• Consider the system {
ẋ = ωy
ẏ = −ωx

with initial conditions x(0) = 1 and y(0) = 7. Show that the solution is:

x(t) = cosωt+ 7 sinωt

y(t) = 7 cosωt− sinωt

The system can also be written:(
ẋ
ẏ

)
=

(
0 ω
−ω 0

)(
x
y

)
Show that the eigenvalues of the system are the complex conjugates iω and −iω.
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1.2.4 Back to the linear stability analysis

In subsection 1.2.2, we were considering the linearization of the system around a fixed
point x∗, so that we had to solve the linear equation (1.5):

d(δx)

dt
= L|x∗ .δx.

We know now that the solutions of this equation are of the form δx(t) = e(tL|x∗)δx(0).
We have then the following properties:

• if we use as an initial condition δx(0) which position compare to x∗ is given by an
eigenvector of L|x∗ associated to an eigenvalue of strictly positive real part, λ+ :
δx(0) = vλ+ , then ‖δx(t)‖ increases along the direction given by vλ+ and the system
goes away from x0. Those eigenvectors give the unstable or dilatant directions.

• if we use as an initial condition a point which position compare to x∗ is given by
an eigenvector of L|x∗ associated to an eigenvalue of strictly negative real part,
λ− : δx(0) = vλ− , then ‖δx(t)‖ decreases along the direction given by vλ− and the
system goes to x0. Those eigenvectors give the stable or contractant directions.

• the eigenvalues of null real part are problematic, we will discuss briefly this case in
the following.

To illustrate those properties, we now study in details all the possible cases in a two-
dimensional phase space.

1.2.5 2D case

In the bidimensional case a dynamical system is of the form:{
Ẋ1 = f1(X1, X2)

Ẋ2 = f2(X1, X2)
(1.6)

If we consider a small perturbation in the vicinity of a fixed point x∗ =

(
x∗1
x∗2

)
:

x = x∗ + δx =

(
x∗1 + δx1

x∗2 + δx2

)
,

we can linearize the system (1.6) around x∗:{
˙δx1 = f1(x∗1 + δx1, x

∗
2 + δx2)

˙δx2 = f2(x∗1 + δx1, x
∗
2 + δx2)
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˙δx1 = f1(x∗1, x

∗
2) + ∂f1

∂X1

∣∣∣
x∗
δx1 + ∂f1

∂X2

∣∣∣
x∗
δx2

˙δx2 = f2(x∗1, x
∗
2) + ∂f2

∂X1

∣∣∣
x∗
δx1 + ∂f2

∂X2

∣∣∣
x∗
δx2

Using Lij = ∂fi
∂Xj

∣∣∣
x∗

, we have:

{
˙δx1 = L11δx1 + L12δx2

˙δx2 = L21δx1 + L22δx2

which is exactly the same as:

d

dt

(
δx1

δx2

)
=

(
L11 L12

L21 L22

)(
δx1

δx2

)
To determine the spectrum of L, we compute the characteristic polynomial P (λ):

Det(L− λ1) =

∣∣∣∣ L11 − λ L12

L21 L22 − λ

∣∣∣∣
= (L11 − λ)(L22 − λ)− L12L21

= λ2 − (L11 + L22)λ+ L11L22 − L12L21

Which gives:

P (λ) = λ2 − Tr(L)λ+ Det(L) (1.7)

We can now consider all the possible cases for the roots of that polynomial.

1.2.5.a Two real roots distincts and non null

The characteristic polynom can be factorized in the form: P (λ) = (λ− λ1)(λ− λ2). The
matrix is then diagonalizable. Any initial condition δx(0) can be decomposed in a basis
formed by the eigenvectors v1 and v2 associated respectively to the eignevalues λ1 and
λ2: δx(0) = α1v1 + α2v2, where α1 and α2 are two real constants. The linear behavior
with time of δx(t) is then given by: δx(t) = α1e

λ1v1 + α2e
λ2v2.

Depending of the signs of λ1 and λ2 we can have the following behaviors:

• The two roots λ1 and λ2 have the same sign. Then the fixed point is called a node.
The node is stable when the two roots are negative, it is unstable when they are positive.
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Figure 1.7: Example of a stable node. The red
lines are the directions given by the eigenvectors.
The blue curves are examples of trajectories in the
phase space.

Figure 1.8: Example of an unstable node. As the
eigenvalues are of opposite sign compare to the
stable case, the figure is similar but with reverse
arrows.

• The two roots λ1 and λ2 are of opposite signs. The fixed point is called a saddle
point. It is always unstable.

Figure 1.9: Example of a saddle point. The red lines are the directions given by the eigenvectors. The blue
curves are examples of trajectories in the phase space.
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1.2.5.b Two complex conjugates roots

The characteristic polynom cannot be factorized in R. The complex conjugate eigenvalues
can be written: λ1 = σ + iω and λ2 = λ∗1 = σ − iω with σ and ω reals.

There is a change of coordinates

(
x1

x2

)
→
(
y1

y2

)
which allows to rewrite the system

in the following way: {
ẏ1 = σy1 + ωy2

ẏ2 = −ωy1 + σy2

The solutions of the system for an initial condition

(
y0

1

y0
2

)
are then:

{
y1(t) = eσt(y0

1 cosωt+ y0
2 sinωt)

y2(t) = eσt(−y0
1 sinωt+ y0

2 cosωt)

The cosωt and sinωt parts of the solution lead to oscillations with time. Such oscillations
exist only when the imaginary part of the eignevalues, ω, is different from 0. Concerning
the stability of the fixed point, it is determined by the eσt function which is in factor of
the two coordinates: the real part of the complex conjugates eignevalues, σ, determine
the stability of the fixed point.

We have then the following cases :

When σ 6= 0, the fixed point is called a spiral. It is stable for σ < 0 and unstable for
σ > 0.

Figure 1.10: Example of a stable spiral. The blue curves are examples of trajectories in the phase space. The
unstable spiral is a similar figure with reverse arrows.
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When σ = 0, the fixed point is called a center. The stability of the fixed point cannot
be determined by a linear analysis: the nonlinearities will determine if the point is finally
stable or unstable. Such points are called neutrally stable.

Figure 1.11: Example of a center.

1.2.6 Double root different from zero

A double root means that λ1 = λ2. The characteristic polynom is of the form: P (λ) =
(λ− λ0)2, where we have noted λ0 the double root. In this case the matrix is not always
diagonalizable.

• If the matrix is diagonalizable, the matrix is in fact necessarily equal to λ01. The
fixed point is then a star node. It can be stable or unstable depending on the sign of
the root.

Figure 1.12: Example of a stable star node. All the lines going to the origin are trajectories. The figure of the
unstable node is obtained by reversing the arrows.
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• If the matrix is not diagonalizable, it can nevertheless be transformed in what is
called its Jordan form, which means in the following form:[

λ0 1
0 λ0

]
Then, with the change of coordinates where the matrix is in the above form, the system
can be integrated, giving: {

y1(t) = (y0
1 + y0

2t)e
λ0t

y2(t) = y0
2e
λ0t

The fixed point is then a degenerate node. Depending on the sign of λ0, it can be stable
or unstable.

Figure 1.13: Example of a stable degenrate node. The blue curves are examples of trajectories in the phase
space. The figure of the unstable node is obtained by reversing the arrows.

1.2.6.a Summary of the 2D case

In the two-dimendional case, the eigenvalues of the matrix can be deduced from the trace
(T ) and the determinant (∆) of the matrix. As the characteristic polynomial of the
jacobian matrix is (see eq. 1.7):

P (λ) = λ2 − Tλ+ ∆

the roots of the polynomials are given by:

λ± = T
2
±
√

T 2

4
−∆ when T 2

4
> ∆

λ± = T
2
± i
√

∆− T 2

4
when T 2

4
< ∆
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We can then gathered all the previous cases in the following figure:

Figure 1.14: Summary of all the possible cases in 2 dimensions in function of the values of the determinant
and of the trace of the matrix. The red curve is the curve: T = ±2

√
∆. The hatched part of the plane

corresponds to the stable fixed points.

In two dimension, for the fixed point to be stable, you need T < 0 and ∆ > 0.

1.2.7 Higher dimensions case

The summary given on Figure 1.14 is only valid for the two dimensional case, when the
eigenvalues of the matrix can be entirely determined by the trace and the determinant of
the jacobian matrix. In the case of a higher dimension n, the eigenvalues are still roots
of the characteristic polynomial and we need to determine the sign of the real part of all
the eigenvalues λi to determine the stability of the fixed point.

If all the eigenvalues verify Re(λi) 6= 0, the fixed point is called hyperbolic. The
dynamics deduced from the linearization is an accurate representation of the true (nonlin-
ear) dynamics. We say that those cases are robust because their dynamics is not modified
by a small perturbation of the model.

Hyperbolic fixed point or not, the general rule is the following:
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• If one (or more) eigenvalue has a real part strictly positive, then the fixed
point is unstable.

• If all the eigenvalues are of real part strictly negative, then the fixed point is
stable.

• If all the eignevalues are of real part ≤ 0 but that at least one eigenvalue is of
real part null, one has to be careful: the linearization of the system does not allow
to deduce the dynamics around the fixed point. The nonlinearities determine the
stability of the system.

1.2.8 Examples

1.2.8.a The damped pendulum

The dynamical system describing the damped pendulum is (see section 1.1.3.b):{
Ẋ1 = X2

Ẋ2 = −g
l

sinX1 − γX2

To find the fixed points, we search the points x∗ which are solutions of:{
0 = x2

0 = −g
l

sinx1 − γx2

We deduce that the points

(
0
0

)
and

(
π
0

)
are fixed points as well as all the equivalents

points deduced from the 2π−periodicity.
To study the stability of those two points, we need the jacobian matrix of the system:

L =

(
0 1

−g
l

cosX1 −γ

)

• Stability of

(
0
0

)
L|(0,0) =

(
0 1
−g

l
−γ

)
T = −γ < 0 for a realistic damping, ∆ = g

l
. Consequently the fixed point

(
0
0

)
is

stable. To determine if it is a node or a spiral, we have to calculate explicitely the
eignevalues to know if they are real or imaginary.

– If γ2

4
> g

l
, then the fixed point is a node (overdamped case)
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– If γ2

4
< g

l
, then the fixed point is a spiral (underdamped case)

The particular case γ = 0, without damping, corresponds indeed to a center.

• Stability of

(
π
0

)
L|(π,0) =

(
0 1
g
l
−γ

)
T = −γ < 0 and ∆ = −g

l
. Consequently the fixed point

(
π
0

)
is a saddle point,

which is always unstable.

1.2.8.b Non hyperbolic example

Consider the following system, where a ∈ R∗{
Ẋ1 = −X2 + aX1(X2

1 +X2
2 )

Ẋ2 = X1 + aX2(X2
1 +X2

2 )

The only fixed point of the system is

(
0
0

)
. The jacobian matrix in this point takes the

value:

L|(0,0) =

(
0 −1
1 0

)
T = 0 and ∆ = 1. Consequently the fixed point is a center.

In this example we can determine the stability of the fixed point by considering the
whole system. Let’s use the following change of variable Z = X1 + iX2. The system of
equation can be reformulate in the following way:

Ż = iZ + aZ|Z|2

Consider now the module and the phase of that complex number: Z = ReiΘ{
Ṙ = aR3

Θ̇ = 1

We find that:

• if a = 0, R is constant, the system is in fact a consevative system and the trajectories
are circles of radius fixed by the initial condition.

• if a < 0, Ṙ < 0 and the radius of the trajectory decreases with time. The fixed

point

(
0
0

)
is stable.

• if a > 0, Ṙ > 0, the radius of the trajectory increases with time. The fixed point is
unstable.
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1.3 Limit cycles

1.3.1 Definition and existence

1.3.1.a Definition

A limit cycle is a closed isolated trajectory in the phase space. In the vicinity of a
limit cycle, the trajectories spiral towards or away of the cycle depending of its stability
(respectively stable and unstable). There is no other closed trajectory in the immediate
vicinity of a limit cycle.

Such cycles can only exist for nonlinear dissipative systems. For a conservative system,
closed orbits correspond to center and there are an infinity of them nested into each other.
We saw an example of such a system in the case of the simple pendulum (Subsection
1.1.3.a). The amplitude of the closed orbits are fixed by the initial condition. On the
contrary, in the case of a limit cycle, the frequency, the form and the amplitude of the
oscillations do not depend on the initial conditions.

1.3.1.b Existence: Poincaré-Bendixson theorem

This mathematical theorem is only valid for n = 2. Given dx
dt

= ~F (x) with x ∈ R2

an autonomous flow with ~F continuously differentiable. Given a sub-set R closed and
bounded of R2 which does not contain any fixed point. If there exists a trajectory
confined in R, then R contains a limit cycle.

Figure 1.15: Illustration of how the Poincaré-Bendixson theorem works. If we can draw a set as the hatched
one containing no fixed points and so that on all the frontiers of that set the flow (represented by the blue
arrows) is going inside the set, then the trajectories are trapped in this set and there is a cycle limit in the
hatched area.

A consequence of that theorem is that in two dimensions the only possible asymptotic
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behaviors for a dissipative system are stationary solutions (fixed points) and periodic
solutions (limit cycles).

1.3.1.c Example

Read the example 7.3.2 about the glycolysis cycle in the book of S. Strogatz.

1.3.2 Van der Pol oscillator

A very famous model giving rise to periodic oscillations is the Van der Pol oscillator.
We start with the linearized version of the damped pendulum:

θ̈ + γθ̇ + ω2θ = 0,

but we suppose that the damping is not anymore a constant but depends on θ and can
change of sign. This last point means that when γ < 0, it is not anymore a damping term
but an amplification term (consequently some energy is injected in the system during the
process).

A simple possible function γ(θ), which depends only on the amplitude of the oscilla-
tions, is quadratic:

γ(θ) = γ0

((
θ

θ0

)2

− 1

)
with γ0 > 0. Then, we have:

• when |θ| > |θ0|, i.e. for large amplitude oscillations, γ > 0, so that those oscillations
are damped and their amplitude decreases,

• when |θ| < |θ0|, i.e. for small amplitude oscillations, γ < 0, and gives rise to an am-
plification of the oscillation, pushing the system away from the origin in the phase
plane.

The nondimensionalisation of the equations: t′ = ωt, x = θ
θ0

, µ = γ0
ω
> 0 leads to the

following equation:
ẍ+ µ(x2 − 1)ẋ+ x = 0,

where the derivatives are now relative to t′.
Let’s proceed to the usual reformulation X1 = x and X2 = ẋ,{

Ẋ1 = X2

Ẋ2 = −X1 − µ(X2
1 − 1)X2

The only possible fixed point is

(
0
0

)
. The jacobian matrix at this point is:

L|(0,0) =

(
0 −1
1 µ

)
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T = µ > 0 and ∆ = 1 > 0, the fixed point is always unstable (either a node or a spiral
depending of the value of the non-dimensionalised damping parameter µ. Consequently,
trajectories goes away from the origin. But they are not going to infinity as the damping
increases with the amplitude of the oscillation.

The application of the Poincaré-Bendixson theorem in this case is tricky. First we
trace the curves corresponding to f1(X1, X2) = 0 on one hand and f2(X1, X2) = 0 on the
other hand. Those particular curves are called nullclines. They delimit the part of the
phase plane where the general direction of the vector field changes because of the change
of sign of one of its composant. Here the nullclines are

X2 = 0, and X2 = − 1

µ

X1

X2
1 − 1

and are represented thereafter.

Figure 1.16: Nullclines of the Van der Pol oscillator: in blue f1(X1, X2) = 0, in red f2(X1, X2) = 0. In light
grey, general trends of the vector field in the part of the phase space delimited by the nullclines.

Note that the intersections of the nullclines correspond to the fixed points as those
points verify simultaneously f1(X1, X2) = 0 and f2(X1, X2) = 0. In the example the only
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intersection is at the origin.
The orientation of the flow when X1 ∈ [−1,+1] in figure 1.16 is at the origin of the

difficulty for a direct application of the Poincaré-Bendixson theorem. Nevertheless, it is
possible to draw a curve fitting the theorem criteria, the appearance of which is shown in
the following figure.

1.3.3 Poincaré map

The stability analysis of a limit cycle is much more complicated than for a fixed point.
We are going to use a tool which is in fact very general to study the dynamics of a system
of dimension larger than 2.

To reduce the dimension of the dynamics of the system we will not study the whole
trajectory but only the intersection points of this trajectory with a surface (gen-
erally a plane) and only the points corresponding to a crossing of the surface in a given
orientation.

Those intersection points form a pattern in the plane called a Poincaré section. The
transformation T linking a point to the next one is a continuous map of the cutting plane
in itself and is called Poincaré map or first return map.

Pk+1 = T (Pk) = T (T (Pk−1)) = T 2(Pk−1) = T k+1(P0)

We have consequently transformed a continuous flow in a discrete map. Notice that the
time that elapsed between successive points is not constant in general. Nevertheless, in
the case of driven systems at a fixed frequency ω0, a Poincaré section can be obtained by
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Figure 1.17: Principle of a Poincaré section. In red: trajectory of the system in the phase space. This trajectory
intersect the plane (Π). We select the intersection points for a given orientation of the crossing of the plane
(here when the trajectory cut the plane from top to bottom). The serie of points {P0, P1, . . . , Pk, . . . } is
called the Poincaré section.

taking points at each period T0 = 2π
ω0

, as for a stroboscopy.

The Poincaré section has the same topological properties as the flow from which it has
been obtained, in particular it also presents area contraction.

Case of a limit cycle

When studying a limit cycle for the flow, a wise choice of the surface Π will lead to a
Poincaré section displaying a unique point P ∗10. P ∗ is then a fixed point of the first return
map:

P ∗ = T (P ∗).

Consequently, the study of the stability of a limit cycle can be reduced to the problem
of the stability of a fixed point but of a discrete map and not a continuous flow. The
underlying principle of the analysis of the stability is exactly the same as the one we

10And in all cases a finite number of points.
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studied in the previous section but the implementation is slightly different because of the
discrete nature of the dynamics, as we will see in the next section.

1.3.4 Floquet multipliers

Using a Poincaré section, the study of the stability of a limit cycle is thus replaced by the
study of the stability of the point P ∗. To obtain the stability of this point we procced
to a linear stability analysis taking into account of the fact that we deal with a discrete
dynamics.

Considering the map: T : Π → Π, the fixed point P ∗ ∈ Π, T (P ∗) = P ∗, and the
matrix L|P ∗ obtained by the linearization of T around P ∗. As Π is an hyperplane of
dimension n− 1 in the phase space of dimension n, L|P ∗ is a (n− 1)× (n− 1) matrix.

If P0 = P ∗ + δP0 is a point near P ∗ and calling Pi+1 = T (Pi) = P ∗ + δPi+1 the
successive iterates:

T (P ∗ + δP0) ' T (P ∗) + L|P ∗ .δP0

P1 ' P ∗ + L|P ∗ .δP0

δP1 ' L|P ∗ .δP0

T 2(P ∗ + δP0) = T (P ∗ + δP1)

P2 ' T (P ∗) + L|P ∗ .δP1

δP2 ' (L|P ∗)2 .δP0

...

T k(P ∗ + δP0) = P ∗ + (L|P ∗)k.δP0

δPk ' (L|P ∗)k .δP0

The stability of P ∗ is given by the evolution of the sequence of distances δPk between
the kth iterate Pk and the fixed point P ∗. If the sequence diverges, P ∗ is unstable: a
small perturbation is amplified and the successive points are going away from P ∗. If the
sequence of δPk converge to 0, P ∗ is stable. The behavior of the sequence is governed by
the incremental powers of L|P ∗ .

We can again study the diagonal case to understand how (L|P ∗)k behave. If

L|P ∗ =

 λ1 0
. . .

0 λn

 then (L|P ∗)k =

 λk1 0
. . .

0 λkn


Consequently, what is now important is the values of the module of the λi compared

to 1. We have the following rules:
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• if all the eigenvalues of L|P ∗ have their module strictly less than 1, then
for all the λi, λ

k
i → 0 when k →∞ and the fixed point (and consequently the limit

cycle) is stable.

• if at least one of the eigenvalues of L|P ∗ has its module strictly greater
than 1, then for this eignevalue λi, λ

k
i diverges when k →∞ and the fixed point

(and consequently the limit cycle) is unstable.

• if all the eigenvalues of L|P ∗ have their module ≤ 1, and at least one
eigenvalue is of module strictly equal to 1, then the linear stability analysis
does not give the stability of the fixed point.

L|P ∗ is called the Floquet matrix and its eignevalues {λi}i=1...n−1 are called the

Floquet multipliers. People also use the Floquet exponents:
{
µi = 1

τ
ln |λi|

}
i=1...n−1

,
where τ is the period of the limit cycle. The previous rules, when applied to the Floquet
exponents are then similar to the ones we gived for the stability of the fixed points of
continuous flows: the rules are then on the sign of the µi.

Conclusion

In this first chapter, we have learned different tools allowing the visualization of the
dynamics of a system.

We have seen that for dissipative systems all the trajectories converge towards attrac-
tors which organize the phase space. We have studied in details two types of attractors,
the fixed points, which live in a space of dimension ≥ 1 and the limit cycles which live in
a space of dimension ≥ 2.

In the next chapter we will study the modification of the nature or number of attrac-
tors when the values of the parameters are modified.
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Chapter 2

Bifurcations

In the previous chapter we discuss the fact that disspatives systems possess attractors.
Generally, in a model, the vector field ~F depends on parameters and the behavior of the
system may depend on the values of those parameters. It means that the the number
and/or nature of attractors may change when parameters are tuned. Such a change is
called a bifurcation. The value of the parameter for which such qualitative change of
the structure of the phase space happens is called the critical value of the parameter.

The bifurcation theory studies this problem for any numbers of parameters. Here we
will study only the simple case of a vector field ~F depending only on one parameter.
Moreover, we will only study the cases where a limited part of the phase space is involved
in the change. Those particular kind of bifurcations are local and of codimension 1.

Near a bifurcation, the dynamical system can be reduced to a generic mathematical
form by a change of variables and a reduction of its dimension to keep only the directions
implied in the bifurcation. Those reduced mathematical expressions are called normal
forms and each form is associated to a type of bifurcation.

2.1 Saddle-node bifurcation

This bifurcation corresponds to the apparition or anihilation of a pair of fixed points. Its
normal form is:

ẋ = µ− x2

where x ∈ R.

The study of the stability of the normal form gives two fixed points ±√µ which
can exist only when µ ≥ 0. As ∂F

∂x
= −2x, we obtain ∂F

∂x
|+√µ = −2

√
µ < 0 and

∂F
∂x
|−√µ = 2

√
µ > 0 so that the fixed point +

√
µ is stable and the other one −√µ is

unstable.

47
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Those fixed points are then plotted in a graph as a function of the value of the param-
eter. We call such graph bifurcation diagram. The set of stable fixed points is drawn
with a solid line, the set of unstable fixed points is drawn with a dashed line.

Figure 2.1: Saddle-node bifurcation. The solid red line is the function x∗ = +
√
µ corresponding to the set of

stable stationary solutions, the dashed one x∗ = −√µ giving the set of unstable stationary solutions.

We obtain branches of solutions. A point of the bifurcation diagram from which
several branches emerge is a bifurcation point. In the case of Figure 2.1, the bifurcation
point is 0 and the critical value of the parameter µ is also 0.

For each normal form, an inverse bifurcation
is obtained by changing the sign of the non-
linearity. Here the inverse bifurcation is:

ẋ = µ+ x2

Figure 2.2: Inverse saddle-node bifurcation.

2.2 Transcritical bifurcation

This bifurcation corresponds to an exchange of stability between two fixed points. Its
normal form is:

ẋ = µx− x2

The fixed points are x∗ = 0 and x∗ = µ. dF
dx

= µ− 2x, which gives:



2.3. PITCHFORK BIFURCATION 49

• dF
dx

∣∣
0

= µ, thus the fixed point 0 is stable when µ < 0 and unstable when µ > 0,

• dF
dx

∣∣
µ

= −µ, the fixed point µ is unstable when µ < 0 and stable when µ > 0.

Figure 2.3: Transcritical bifurcation.

2.3 Pitchfork bifurcation

2.3.1 Supercritical bifurcation

The normal form of the bifurcation has the symetry x→ −x:

ẋ = µx− x3.

We can find 1 or 3 fixed points depending on the sign of µ: the fixed point x∗ = 0
exists for all values of µ, while the two symetric fixed points ±√µ exist only for µ > 0.

The stability analysis gives:

• dF
dx

∣∣
0

= µ, the fixed point 0 is stable when µ < 0 and unstable when µ > 0,

• dF
dx

∣∣
±√µ = −2µ < 0, the two symetric fixed point ±√µ are stable when they exist.

Figure 2.4: Supercritical pitchfork bifurcation.
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When the system crosses the bifurcation coming from µ < 0, it has to choose one of
the two stable branches of the pitchfork. This choice is called a symetry breaking: the
chosen solution has lost the symetry x→ −x.

2.3.2 Subcritical bifurcation

In the supercritical case, the nonlinear term −x3 saturates the linear divergence for µ > 0,
leading to two new stable solutions when x∗ = 0 becomes unstable. In the subcritical
(inverse) case, the nonlinear term is +x3 is destabilizing:

ẋ = µx+ x3

Consequently, to obtain stable solutions for µ > 0, one has to take into account higher
order terms in the normal form. Keeping the symetry x→ −x of the system, we get:

ẋ = µx+ x3 − x5 (2.1)

To obtain this bifurcation diagram, one has to study the fixed points of eq (2.1) and
their stability.

The solutions of µx+ x3− x5 = 0 are either x∗ = 0 or the solutions of the polynomial
µ + x2 − x4 = 0. Let y = x2, we search the solutions of y2 − y − µ = 0 which are
y± = 1±

√
1+4µ
2

for µ ≥ −1/4. As y = x2, we can use the y± only when they are positive.

• y+ = 1+
√

1+4µ
2

is always positive in its existence domain µ ≥ −1/4

• y− = 1−
√

1+4µ
2

is positive only when 1 ≥
√

1 + 4µ, i.e. when −1/4 ≤ µ ≤ 0.

To summarize:

• when µ < −1/4 there is only one stationary solution, x∗ = 0, and as dF
dx
|0 = µ < 0,

it is stable.

• when −1/4 ≤ µ ≤ 0, there are five fixed points. x∗ = 0 still exists and is still stable.
The four other fixed points are given by ±√y+ and ±√y−. We will not detail the
linear stability analysis but you can make the calculation and show that the two

solutions ±
√

1−
√

1+4µ
2

are unstable while ±
√

1+
√

1+4µ
2

are stable.
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• when µ ≥ 0, only 3 fixed points remain because the solutions ±√y− do not exist
anymore. The fixed point x∗ = 0 is now unstable as µ > 0, while the solutions

±
√

1+
√

1+4µ
2

are still stable.

Figure 2.5: Subcritical pitchfork bifurcation.

In the interval [−1/4; 0], several stable solutions coexist: there is bistability between
the solutions. The choice between the 0 solution and one or the other of the symetric
stable branches depends on the history of the system. An hysteresis cycle will be
observed when the parameter µ is tuned one way and the other around the values −1/4
and 0.

2.4 Hopf bifurcation

This bifurcation corresponds to the emergence of a periodic solution from a stationary
solution.

For all the previous bifurcations between different fixed points, a one-dimensional
normal form was sufficient to describe each bifurcation. But now, as a limit cycle is a
bidimensional object, one needs a bidimensional normal form to describe the bifurcation.
This is taken into account by writting an equation on a complex:

ż = (µ+ iγ)z − z|z|2 (2.2)

with z ∈ C, µ and γ in R and γ 6= 0.
Fixed points are given by: (µ + iγ)z = |z|2z, and if γ 6= 0, the only solution is z = 0

(because |z|2 ∈ R).
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To do the linear stability analysis, we want more conventional writting of the equations
with two equations on variables in R. Writing z = x+ iy, we have:{

ẋ = µx− γy − x(x2 + y2)
ẏ = µy + γx− y(x2 + y2)

The linearization in (0, 0) gives

L|(0,0) =

[
µ −γ
γ µ

]
,

from which we deduce ∆ = µ2 + γ2 > 0 and T = 2µ. Consequently, the fixed point (0, 0)
is stable for µ < 0 and unstable for µ > 0. At the bifurcation, the behavior around the
fixed point changes from a convergent spiral to a divergent spiral. To understand what
happens to the trajectories when µ > 0, we use the other decomposition of a complex
number with modulus and phase: z = reiθ which gives:{

ṙ = µr − r3

θ̇ = γ

We recognize for the evolution of the modulus the normal form of a supercritical pitchfork
bifurcation, while the phase has a linear dependence in time. We deduce from this system
that the stable solution for µ > 0 is a solution of fixed modulus but linearly increasing
phase with time. It is a periodic solution which verifies r =

√
µ and θ = γt + θ0. The

bifurcation diagram of a Hopf bifurcation is given in Figure 2.6.

Figure 2.6: Hopf bifurcation.

The subcritical case exists: ż = (µ + iγ)z + z|z|2. The study is exactly the same as
the supercritical case, leading to unstable limit cycles solution for µ < 0.
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2.5 Imperfect bifurcation. Introduction to catastro-

phe theory

Bibliography:

• Nonlinear dynamics and chaos, S. Strogatz,

• Dynamiques complexes et morphogénèse, C. Misbah.

Coming back to the pitchfork bifurcation, you can have the intuition that the bifur-
cation diagram we draw was idealized and that in fact, in a real system a branch will be
always chosen preferentially because of some imperfection of the system.

This problematic deals with the question of the robustness of the model to a pertur-
bation (note that we speak of the perturbation of the model and not of a given solution
of the equations).

In this part, we want to know how the pitchfork bifurcation will be modified if a new
parameter h is added to its normal form:

ẋ = µx− x3 + h

Do we observe the same qualitative bifurcation or not ? Does it keep its general proper-
ties ?

Let’s find the fixed points of this new equation. They are given by the intersection of
the curve y = g(x) with g(x) = x3 − µx with the line y = h.

Figure 2.7: Finding the fixed points of ẋ = µx− x3 + h: intersection of the curve y = g(x) and of y = h.

By studying the function g(x), we obtain that g(x) is strictly growing when µ < 0,
so that there is a unique fixed point x∗ for given values of the parameters µ and h. For
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µ > 0, the derivative of g(x) is negative in the interval [−
√

µ
3
,+
√

µ
3
], so that depending

on the value of h, we can find either 1 or 3 fixed points (respectively blue and green cases
on the right part of Figure 2.7). A straightforward calculation gives that we find 3 fixed
points when h ∈ [−2µ

3

√
µ
3
,+2µ

3

√
µ
3
], while for values of h outside this interval there is

only one fixed point.

In the space of the parameters (µ, h), we can then draw a stability diagram as shown
in Figure 2.8 The hatched area is delimited by the curves h = 2µ

3

√
µ
3

and h = −2µ
3

√
µ
3
.

Figure 2.8: Stability diagram of the imperfect pitchfork bifurcation.

Their junction point in (0, 0) is a singular point called a cusp.

To find the stability of the fixed points, we can use the fact that if F (x) = µx−x3 +h,
dF/dx = −g′(x), so that we can deduce the stability of a fixed point from the sign of
the derivative of g. We see that in the case µ < 0, the only existing fixed point is stable.
When µ > 0, the fixed points obtained in the increasing part of g (the rightmost and
leftmost ones) are stable, while the one obtained in the decreasing part (middle fixed
point) is unstable.

We can now draw different types of bifurcation diagrams: bifurcation diagrams at
fixed µ and varying h and the ones at fixed h and varying µ.

The bifurcation diagram for a fixed value of µ and considering as a varying parameter
h depends on the sign of µ (see figure 2.9).
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Figure 2.9: Bifurcation diagrams in function of the parameter h.

We see in figure 2.9 that a bifurcation occurs only in the case µ > 0, more precisely the
bifurcation diagram displays two saddle-node bifurcations which corresponds in figure 2.7
right to the tangency of the line y = h with the curve y = g(x).

We can also deduce the bifurcation diagram at fixed h > 0 and for varying µ (you can
draw the case h < 0 by yourself as an exercise):

Figure 2.10: Bifurcation diagram of the imperfect pitchfork bifurcation when h > 0.

This bifurcation is called the imperfect pitchfork bifurcation.

Finally the full representation of the stationary solutions in function of the 2 param-
eters h and µ is the following one:
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Figure 2.11: Cusp catastrophe.

This is an example of what is called a catastrophe. In this precise case it is called
cusp catastrophe.

2.6 Examples

2.6.1 Start of a laser

Bibliography: Les lasers, D. Dangoisse, D. Hennequin, V. Zehnlé

2.6.1.a Model

A laser is a device emitting coherent light. It consists of a gain medium enclosed in a
resonant cavity formed by mirrors. At least one of those mirrors is partially transparent,
ensuring the output emission.

We will study one of the simpliest model for the gain medium: only two states for
the atoms constituting this medium will be considered. The states will be called 1 and 2
and the associated energy will be called E1 and E2 > E1. The lowest level E1 is not the
fundamental state. The relationship between the frequency ν of the light emitted by the



2.6. EXAMPLES 57

laser and the energy gap E2 − E1 is :

E2 − E1 = ~ω = hν.

Let’s defined the following variables :

• N1(t) is the number of atoms in the state 1 per unit volum at time t,

• N2(t) is the number of atoms in the state 2 per unit volum at time t,

• I(t) is the photons flux in the gain medium, i.e. the number of photons crossing a
unit surface by unit time.

The mechanisms governing the light emission and absorption have been described by
A. Einstein in 1916 :

• absorption :

During this process, a photon of energy hν is absorbed and an atom switches from
state 1 to state 2. The number of atoms shifting from state 1 to state 2 is thus
proportional to N1 and I. The proportionality coefficient has the dimension of a
surface, it is called the absorption cross section and will be noted σa. Consequently,
we have for the variation of the population of atoms in each states between times t
and t+ ∆t :

(∆N2)abs = σaIN1∆t

(∆N1)abs = −σaIN1∆t

To calculate the variation of the photons flux, we consider a cylinder in the gain
medium along the direction propagation of the photons :
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Per unit time, I(t)S photons enter in the volume Sc∆t and I(t + ∆t)S photons
exit. Besides, σaIN1 photons are absorbed per unit time and unit volume, so:

I(t+ ∆t)S − I(t)S = −(σaIN1)(c∆tS)

(∆I)abs = −σaIN1c∆t

• Stimulated emission: symetrically to the process of absorption, there is emission
of photons stimulated by photons already present in the cavity:

It is very important to note that this emission is not spontaneous : the photons
that are generated when the atoms decay from state 2 to state 1 are clones of the
photons already present in the gain medium. They share all the properties of the
photon that have stimulated the emission, in particular its wave vector. We have
for the variations of the quantities that describe our system:

(∆N2)sti = −σstiIN2∆t

(∆N1)sti = σstiIN2∆t

(∆I)sti = σstiIN2c∆t

In the case considered here, we have σsti = σa = σ.

• Losses and decay: Independantly of the presence of photons already in the cavity,
atoms which are not in the fundamental state tend to decay spontaneously towards
lower states by emitting photons which are not coherent with the ones constituting
the photons flux and consequently do not contribute to I. Atoms may also decay
by other modes than the emission of photons: collisions, vibrations... For the sake
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of simplicity, we will consider that the decay rate of the atom population does not
depend of the state level:

(∆N2)d = −γN2∆t

(∆N1)d = −γN1∆t

Two other effects have to be taken into account. First because of the partially trans-
parent output mirror, a term of loss for the flux has to be included for the evolution of
I:

(∆I)loss = −κI∆t.

Finally, a laser is an out-of-equilibrium system but we have until now not discussed
the energy input in the system. Indeed, with only the terms described right now, the
levels would decay until they are empty and the photons flux would decrease until the
extinction of the light flux. In a laser, the energy injection consists in a feeding of the
higher level, i.e. state 2, enforcing what is called a population inversion. The process is
called the “pumping” of the laser and the pumping rate will be denoted λ.

Putting everything together, we obtain a model describing the evolution of a laser:

dN2

dt
= σIN1 − σIN2 − γN2 + λ

dN1

dt
= −σIN1 + σIN2 − γN1

dI
dt

= −cσIN1 + cσIN2 − κI

We can notice that the relevant variables for the description of the medium are not
the individual values of the population of atoms but only the difference D = N2 − N1

which is called the population inversion, and the system can be rewritten with only two
variables : {

Ḋ = −2σID − γD + λ

İ = cσID − κI
We can non-dimensionnalize the system using the following change of variables : D =

σc
κ
D, I = 2σ

γ
I, τ = γt, and A = σc

κγ
λ and we obtain :
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{
Ḋ = −D(I + 1) + A

İ = kI(D − 1)

where the time variable governing the derivatives is now τ and the control parameter is A,
the pumping parameter. Indeed it corresponds to the parameter that can generally easily
be tuned experimentally, for example by the variation of an electrical current which is
used to excite the atoms to a higher state, or any other mean of pumping. The parameter
k depends of the loss of the mirrors through κ and of the gain medium through γ, so that
this parameter is constant for a given laser.

2.6.1.b Study of the dynamical system

We thus have to study the dynamical system of dimension 2:{
Ḋ = −D(I + 1) + A

İ = kI(D − 1)

Fixed points {
A = D(I + 1)
0 = I(D − 1)

There are two fixed points:

• I = 0 and D = A, the laser is not emitting any light.

• D = 1 and I = A − 1, the light flux increases with the pumping while the
population inversion is saturated to a constant value.

Jacobian matrix

L =

(
−(I + 1) −D

kI k(D − 1)

)
Stability of (D = A, I = 0)

L|(A,0) =

(
−1 −A
0 k(A− 1)

)
The trace is T = k(A− 1)− 1 and the determinant ∆ = −k(A− 1).

• when A < 1, ∆ > 0 and T < 0, the fixed point is stable.

• when A > 1, ∆ < 0, the fixed point is a saddle point and is unstable.
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Stability of (D = 1, I = A− 1)

L|(1,A−1) =

(
−A −1

k(A− 1) 0

)
The trace T = −A is always negative and the determinant is ∆ = k(A− 1).

• when A < 1, ∆ < 0 the fixed point is a saddle point and is unstable.

• when A > 1, ∆ > 0, the fixed point is stable.

Bifurcation From the study of the stability of the fixed points, we deduce that a bifur-
cation occurs for the value of the control parameter A = 1. There is an exchange of
stability between two different fixed points so that it is a transcritical bifurcation.

Taking into account the fact that I and A are both positive, we can draw the
bifurcation diagrams :

The diagrams show that there is a threshold for the start of a laser. The existence
of such threshold is typical of a nonlinear system. When the laser is emitting, the
population inversion saturates.
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2.6.2 Oscillating chemical reactions

2.6.2.a Chemical kinetics

Bibliography: Instabilités, Chaos et Turbulence, P. Manneville.

Let’s consider the elementary step of a chemical reaction :

N∑
i=1

niAi →
N∑
i=1

n′iAi

where the Ai are the N chemical species implied in the reaction (either reactants or prod-
ucts), of concentration [Ai], ni (resp. n′i) is the number of mole of Ai before (resp. after)
the reaction and can be 0.

The reaction rate is proportional to the number of reactional collisions per unit of time.
A reactional collision implies all the reactants at a same location. The probability to have
one species Ai at a given location is proportional to its concentration. Consequently, the
reaction rate is of the form k

∏n
i=1[Ai]

ni with k the reaction rate constant (which depends
on the temperature). When a collision happen, n′i moles of Ai are producted and ni
moles consumed, leading to a variation n′i − ni of the number of mole of the species Ai.
Consequently, the dynamics of the reaction is given by the N equations :

d[Ai]

dt
= (n′i − ni)k

n∏
i=1

[Ai]
ni

If there are several steps to the reaction, the total variation of [Ai] is given by the sum of
the variations corresponding to each individual reaction step.

2.6.2.b Belousov-Zhabotinsky oscillating reaction

Bibliography: L’ordre dans le chaos, P. Bergé, Y. Pomeau, C. Vidal.

B. Belousov was a Russian chemist who discovered the existence of oscillating chemical
reactions. Such reactions have been studied more deeply afterwards by A. Zhabotinsky
in the 60s.

Reactants are1 : sulfuric acid H2SO4, malonic acid CH2(COOH)2, sodium bromate
NaBrO3 and cerium sulfate Ce2(SO4)3. Those reactants, in aqueous solution with certain
concentrations, can lead to oscillations in the concentrations of some ions implied in the
reaction. Those oscillations can be visualized using a colored redox indicator (e.g. ferroin).

If the reaction is done by simply mixing a given quantity of reactants in a closed
container, the oscillations are transitory. To maintain the reaction, you have to supply
continuously some reactants, to stir continuously the solution and to have an outlet for

1There are several variants of the reaction.
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the overflow.

The dynamical variables of the system are the instantaneous values of the concentra-
tion of all the species in the reactor. But in that kind of experiment only a few variables
are practically measurable. It can be (see L’ordre dans le chaos) :

• the electrical potential difference between two electrodes immersed in the solution.
The relationship between the measured voltage and the concentration in Br− (in
the case of the reaction described previously) is given by the Nernst equation.

• the transmission of light through the tank at a given wavelength. The Beer-Lambert
law is then used to describe the absorption of the light. For example, for λ = 340 nm,
the absorption is mainly due to the Ce4+ ions.

Another concern is the parameters which can be tuned in such a system. It can be
the temperature, which will change the constants of the reactions kj, or the concentration
of the species in input, or the flux rates of the pumps that provide the reactants which
changes the time spent by the reactants in the tank.

Concerning the modeling of the experiment, the problem is that such reactions are
very complicated and can imply a lot of elementary steps which are not known. In fact the
complete reaction schematics of some of those reactions is still debated. Among the tips
that help for the modeling of such complicated systems is the fact that the characteristic
times of the steps of the reaction can be very different so that for example the faster ones
can be considered to be instantaneous. Using that kind of approximation it is possible to
consider simplier models with a reduce number of differential equations containing only
the dynamics of interest for the phenomenon studied.

2.6.2.c The Bruxellator

Bibliography:

• Nonlinear dynamics and chaos, S. Strogatz,

• Instabilités, Chaos et Turbulence, P. Manneville

From a theoretical point of view, because of the complexity of real chemical reactions,
an approach consists in the search of minimal models which will lead to an oscillating
dynamics. The “Bruxellator” is such a kinetical model proposed by I. Prigogine and
R. Lefever in 1968. They considered the global reaction

A+B → C +D
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constituted of four steps of elementary reactions and implying two free intermediates
species X and Y . The sequence of elementary reactions considered is:

A → X

B +X → Y + C

2X + Y → 3X

X → D

The control parameters of the system are the concentration of species A and B and we
suppose that those concentrations can be maintained at constant values by a continuous
supply. All the reaction constant rates are supposed equal to 1. We note [A] = A.

The kinetics laws give us the following system of differential equations :

dX

dt
= (1− 0)A+ (0− 1)BX + (3− 2)X2Y + (0− 1)X

dY

dt
= (1− 0)BX + (0− 1)X2Y

dC

dt
= (1− 0)BX

dD

dt
= (1− 0)X

Note that C and D are directly given by X so that there are finally only two pertinent
variables for the understanding of the dynamics of the system: X and Y . Consequently,
we want to study the dynamical system:

dX

dt
= A− (B + 1)X +X2Y

dY

dt
= BX −X2Y

Fixed points. They are given by :

A = [(B + 1)−XY ]X

BX = X2Y

For A > 0, we have necessarily X 6= 0. We deduce that the only fixed point has for
coordinates in the phase space :

X = A and Y =
B

A
.
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Jacobian matrix.

L =

(
−(B + 1) + 2XY X2

B − 2XY −X2

)
Stability of the fixed point.

L|(A,B
A

) =

(
B − 1 A2

−B −A2

)

The determinant of the jacobian matrix is ∆ = A2 > 0, and the trace is T =
B − 1 − A2. When B < 1 + A2, the fixed point is stable, when B > 1 + A2, it is
unstable. At the bifurcation, the fixed point shifts from a stable spiral point to an
unstable spiral point.

Consequently, if the concentration A is constant, for low concentration of B, the
reaction will reach a stationary state: the concentration of C and D are constant
after a transient. When increasing B, there is a destabilisation of this state through
a Hopf bifurcation leading to a limit cycle. The concentrations in C and D then
display oscillations.

Poincaré-Bendixson. We want to apply the Poincaré-Bendixson theorem for given val-
ues of A and B with B > 1 + A2.

We search the nullclines, i.e. the two curves along which the vector field is parallel
to one of the axis of the phase plane.

• The first curve is given by A− (B + 1)X +X2Y = 0, which leads to:

Y = f(X) =
(B + 1)X − A

X2
.

To study this function, we compute its derivative: f ′(x) = −(B+1)X2+2A
X3 , which

changes of sign when X = 2A
B+1

:

X 0 2A
B+1

+∞
f ′ + 0 -
f ↗ ↘

• The second function is given by BX −X2Y = 0, leading to:

Y = g(X) =
B

X
.
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To draw the curves, we need to know the position of the fixed point (which is the
intersection of the two nullclines) compared to the maximum of f(X). When the
fixed point is unstable:

B > A2 + 1

B + 1 > 2

1 >
2

B + 1

A >
2A

B + 1

The two curves can then be drawn:

To find a domain on the frontier of which the vector field always points inside the
domain, we need to find a line of negative slope smaller than the one of the vector
field in the case Ẏ < 0 and Ẋ > 0.

dY

dX
=

BX −X2Y

A− (B + 1)X +X2Y

= −1 +
A−X

A− (B + 1)X +X2Y

when X > A, we thus have dY
dX

< −1 so that any line of negative slope strictly larger
than -1 will do, here we used a −1/2 slope:
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Integration with Matlab We can also for given values of the parameter draw the null-
clines (f in cyan and g in green), the vetor field (in blue, rescaled) and an example
of trajectory (in red, after a transient the trajectory settle on the limit cycle):

Figure 2.12: Integration of the system for A = 1 and B = 3 superimposed with the nullclines and the general
directions of the vector field (the size of the vectors have been rescaled).
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Conclusion

We have presented in this chapter several bifurcations, which correspond to the modifica-
tion of the number and/or the nature of the attractors of a dynamical system.

We have illustrated some of those bifurcation by few examples coming from different
field (start of a laser, chemical reactions).
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Chapter 3

Strange attractors

We want now to study new kind of attractors that can only exist for dimension of the
phase space at least of three. We will study two kind of attractors, first the torus and
the associated quasi-periodic regime, and then strange attractors which are the attractors
associated to chaotic signals.

The central subject of this chapter is the study and understanding of irregular (or
aperiodic) temporal dynamics sustained on a long-term basis. From an experimental
point of view, when we measure an irregular signal at the output of a system, it can have
several origins. It can be a very noisy signal, so that the deterministic behavior we want
to study is blurred by a stochastic signal. But we can also have signals for which noise is
negligible but the dynamics itself lead to the observation of an irregular behavior, which
is exactly the case of interest for us. We will discuss in this chapter how to distinguish
those two kinds of aperiodic behaviors.

In the following we will first study the dynamics on a torus, which will lead us to
the description of complicated behaviors coming from a dynamics on a high-dimensional
torus in the phase space and to the Landau’s theory of transition to the turbulence. In
opposition to this vision of complexity coming from high dimensional dynamics, we will
study in the second part of this chapter strange attractors, which can exhibit an irregular
dynamics even with a small number of degrees of freedom (at least 3). In the last part
we will study tools to characterize those attractors.

Most of this chapter is based on the book L’ordre dans le chaos of P.
Bergé, Y. Pomeau and C. Vidal.

3.1 Beyond periodicity

3.1.1 Dynamics on a torus

If a system has a two-dimensional torus as an attractor in the phase space, its dynamics
is characterized by two frequencies f1 and f2 which are linked to the typical rotation rates
around the two axes of the torus.

69
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To visualize the trajectories, it is much easier to cut the torus in order to obtain a
plane (the variables ωit = 2πfit have been chosen for the axes):

Then the trajectories have to be represented by taking into account periodic boundary
conditions:
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As the trajectories can not cross themselves and as they are confined on the surface
of the torus, we see that the general direction of the trajectories is bounded. There are
in fact two possibilities: either the trajectory closes on itself and it is in fact a periodic
orbit, or it is not closed but in this last case it needs to have enough space to go round
and round again without crossing itself. Consequently, the trajectory must have the same
general form over and over again, so that we can put an inifnite number of them ones
beside the others. In fact, from a topogical point of view, we see then that we can work
with lines of constant slope to think about those trajectories, the slope being necessarily
constant to avoid any crossing.

The slope of the lines is given by the ratio f2/f1. When this ratio is a rationnal p/q
(p, q ∈ N), the trajectory will necessarily close on itself after q revolutions along f1 (and p
along f2). When the ratio f2/f1 is irrational (we say then that f1 and f2 are incommen-
surable), i.e. when it is not possible at all to write it as a ratio of two integers, then the
trajectory will never close on itself and it will have enough space to go round and round
all over the torus. We then say that the trajectory will cover the torus in a dense manner.

When the ratio f2/f1 is a rational, the period of the temporal signal is then pT1 = qT2.
A Poincaré section of the trajectory will give a finite number of points.

The number of points obtained depend on the orientation of the Poincaré plane Π
compared to the torus. For example, if the plane is orthogonal to the f1 axis of rotation
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as on the figure above, we will obtain p points, while if Π is orthogonal to the f2 plane of
rotation, we will obtain q points. If we note r the finite number of points of intersection
P1, P2, . . . , Pr, the first return map T gives:

T (Pi) = Pi+1 and T r(Pi) = Pi.

Figure 3.1 and 3.2 are examples of such behavior. They correspond to the following
parametric equations:

X1(t) = 3 cos(ω1t) + cos(ω2t) cos(ω1t)
X2(t) = 3 sin(ω1t) + cos(ω2t) sin(ω1t)
X3(t) = sin(ω2t)

(3.1)

Figure 3.1: System (3.1) for ω1 = 2π× 3.2 and ω2 = 2π× 2.1. (a) Representation of the periodic orbit in the
phase space. (b) Poincaré section using the plane X1 = 0, consisting in 32 points. (c) Temporal dynamics of
X1. (d) FFT of the temporal signal X1(t) in a logarithmic scale.

On the other hand, when the ratio f2/f1 is irrational, the Poincaré section will give
an infinite number of points which will form a closed curve.
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Figure 3.2: System (3.1) for ω1 = 2π × 3.2 and ω2 = 2π × 2. (a) Representation of the periodic orbit in
the phase space. (b) Poincaré section using the plane X1 = 0, forming a continuous curve. (c) Temporal
dynamics of X1. (d) FFT of the temporal signal X1(t) in a logarithmic scale.

The first return map T verifies in this case T (C) = C,
i.e. the curve C is invariant under the action of T .

The kind of temporal behavior observed in the case
f1 and f2 incommensurable and corresponds to what
is called quasi-periodicity.

Figure 3.3 shows such kind of response. The dynamics is not periodic, as can be seen
by the infinite number of points in the Poincaré section, nevertheless the temporal signal
is not chaotic either. Indeed, the spectral analysis of the temporal signal displays only
three peaks, showing that the underlying dynamics is in fact quasi-periodic.

More generally, the spectrum of a quasi-periodic signal can be more complicated with
harmonics corresponding to combinations |a1f1 + a2f2| with a1, a2 ∈ Z. Nevertheless the
dynamics is “simple” because it is composed only of a countable number of peaks in the
Fourier space.
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Figure 3.3: System (3.1) for ω1 = 2π× (1 +
√

5) and ω2 = 2π× 2. (a) Representation of the periodic orbit in
the phase space. (b) Poincaré section using the plane X1 = 0, consisting in 8 points. (c) Temporal dynamics
of X1. (d) FFT of the temporal signal X1(t) in a logarithmic scale.

We have considered here only the biperiodic case, and a T 2 torus which exists in a phase
space of dimension at least 3. Higher dimensional T n tori exist implying n frequencies
and living in spaces of dimension at least n + 1. As each frequency is indepedent of all
the others, dynamics on a very high dimensional torus implying a lot of harmonics will
have a spectrum with so much peaks that it can be considered almost as continuous. The
signal is then very close to a white noise.

3.1.2 First characterization of an aperiodic behavior

The previous discussion about quasi-periodicity shows the importance of the study of the
spectrum of a signal for the identification of its dynamics.

An important feature of aperiodic signals is that we cannot deduce the future behavior
of the system using the signal we have already recorded, however long that recording may
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be. This loss of memory can be evidenced using the auto-correlation function:

C(τ) = 〈X(t)X(t+ τ)〉t =
1

t2 − t1

∫ t2

t1

X(t)X(t+ τ)dt

The function C(τ) gives an indication of the similarity of the signal at time t with the
signal at time t + τ . If X(t) and X(t + τ) are totally decorrelated, 〈X(t)X(t + τ)〉t =
〈X(t)〉t〈X(t+ τ)〉t = 〈X〉2t . If X(t) and X(t+ τ) are identical, 〈X(t)X(t+ τ)〉t = 〈X2〉t.
Consequently, the function C(τ) is bounded by those values.

For a periodic signal, C(τ) periodically takes its maximal value. Conversely, for an
aperiodic signal, the temporal autocorrelation function goes to a minimal value1 for a
large enough delay τ . Its shape is thus roughly the one shown on the left in the above
figure. The Fourier transform of such a curve is shown on the right. The width of the
continuous band in the Fourier space increases when the typical time of decay of the auto-
correlation function C(τ) decreases. The Fourier transform of the function C(τ) is the
power spectral density of X (Wiener-Khintchine theorem). Consequently, an aperiodic
signal displays a continuous part in its spectrum.

A first characterization of an irregular signal is thus always the study of its power
spectral density. When a continuous band exists in the spectrum, possibly superimposed

10 for a signal verifying 〈X〉 = 0 or after normalization of the function C.
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to several lines of definite frequency, it is a first indication that the signal may be chaotic.
However, such a characterization is not enough to evidence chaos, as a large continuous
band in the spectrum can be linked to the measurement of a very noisy signal or of a
quasi-periodic signal containing a lot of harmonics of several incommensurable frequencies
measured with a spectrum analyzer of limited resolution.

3.1.3 Landau’s theory of turbulence

Between the 40’s and the 70’s, the accepted theory for the description of how chaos
appears in a system was in fact a vision based on quasi-periodicity and was developed by
L. Landau and E. Hopf. They proposed an interpretation of the transition from a laminar
regime in a fluid to a turbulent one when the Reynolds number increases, as a succession
of Hopf bifurcations.

If the dynamical variable we consider is the velocity of the fluid in a point (typically
where a captor is placed), a laminar regime is a stationnary state. When the Reynolds
number (Re) increases, the stationnary state becomes unstable and a first Hopf bifurca-
tion takes place. Increasing further the Reynolds number, the observed regime becomes
more and more complicated. In the Landau theory, this phenomenon is due to a suc-
cession of Hopf bifurcations which take place successively when the Reynolds number is
increased giving rise to new frequencies. Each of those successive bifurcations leads to an
enrichment of the spectral density of the signal by the emergence of the new frequencies,
of their harmonics and of the numerous combination of all those frequencies. After several
successive Hopf bifurcations, with a spectrum analyzer of finite resolution, the spectrum
observed in such a scenario is a continuous one.

The trajectory of such a system lives on a high-dimensional torus in a higher-dimensional
phase space. Such a theory is thus based on the idea that for a signal to be chaotic, it
needs to have a very large number of degrees of freedom and that the observed complex-
ity reflects this high dimensionality. The change of point of view that occured at the
end of the 70’s with the chaos theory is that you do not need a high dimensional phase
space to have complexity: chaos may arise in a three-dimensional space, and a nonlinear
deterministic system with only three degrees of liberty can give birth to aperiodic signals.

Nevertheless, the breakthrough of the chaos theory does not give an understanding of
the turbulence transition. And while in the beginning of this paragraph I left some confu-
sion between what is called “chaos” and what is called “turbulence”, I want now to distin-
guish what is generally designated by those two words. In most of the works concerning
dynamical systems, chaos designates aperdiodic deterministic behavior of finite-number
of degrees of freedom systems, while turbulence implies spatially-extended systems, i.e.
systems possessing an infinite numbers of dimensions and which need partial differential
equations for the description of dynamics. As you will see in the following, most of the
tools presented in this chapter for the study of chaos and strange attractors can only be
used for systems of low dimensions. Dynamics in phase space of high dimension is more
accuratly studied using tools coming from statistics.
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3.2 Strange attractors

3.2.1 General properties

In 1971, D. Ruelle and F. Takens published an article called “On the Nature of Tur-
bulence” and introduced a new kind of attractors of topological nature different from a
torus: the strange attractors. The essential characteristics of those attractors is the sen-
sitivity to initial conditions: two trajectories, however close to each other initially, will
diverge one from the other after some time, the distance between the trajectories growing
exponentially with time.

Such a behavior is not possible on a torus: we saw in the first section of this chapter
that the topology of the torus combined with the impossibility for the different trajectories
to cross each others leads either to closed orbits or to trajectories parallel one to the others.

Consequently, strange attractors need to possess something in their topology that
allow divergence of the trajectories, a feature which is called “stretching”. But as they
are attractors, their topology also need to ensure that all the trajectories stay in a bounded
part of the phase space, and thus have to be re-injected back in the same sub-space. Some
“folding” is thus also needed in the structure of the attractor.

Figure 3.4: Rössler attractor (cf. Matlab session).

What is called “stretching” and “folding” can be observed on the Rössler attractor
shown in Figure 3.4. It is a three-dimensional system we will study during the practicals
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in the computer lab. We observe that a part of the trajectory is in the (X1, X2) plane
but it needs to go out of the plane for some divergence between the trajectories to take
place. The trajectory is then re-injected on the plane to stay on the attractor.

Because of the successive stretching and folding underlying its structure and as a tra-
jectory on the attractor never intersect itself, a strange attractor has a foliated structure.
The dimension of such a structure cannot be an integer. We say that the attractor is a
fractal object. Such feature ensures that objects of dimension larger than 2 have a null
volume in the phase space.

Figure 3.5: From L’ordre dans le chaos. Principle of the successive stretching and folding underlying the
structure of the Rössler attractor.

3.2.2 A theoretical illustrative example: the Smale attractor

To understand practically the mechanisms of stretching and folding, we will study in this
part a model illustrative of those mechanisms. The Smale attractor is a theoretical model
of a discrete chaotic dynamics. It consists of the iteration of a map on the plane. The
attractor is obtained through the iteration of a procedure described hereafter.

Stretching. A rectangle is stretched of a factor 2 along one axis and compressed of a
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factor 1/(2η) in the other direction. For η > 1, the area of the rectangle decreases,
which introduces some dissipation in the model (area contraction).

Folding. If we keep only the stretching transformation:

(
x
y

)
→
(

2 0
0 1/2η

)(
x
y

)
,

the size of the rectangle along the x direction will grow indefinitely. A folding of
the rectangle ensures that the new set of points remains in the initial domain:

Iteration. The whole process is then iterated.

Finally, the attractor is the set obtained in the limit of an infinite number of iteration
of the process. The set obtained in this limit has a complex foliated structure: a fractal
structure. Its dimension is smaller than 2 but still larger than 1. This limit set is an
attractor and exhibits sensitivity to initial conditions. Indeed if we consider two adjacents
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points in the initial rectangle A0B0C0D0, because of the infinite number of successive
stretching, their distance will increase exponentially along the x direction.

Note that we said that strange attractors only exists in phase space of dimension larger
or equal to three and we have just presented an example in dimension 2, which seems to
be contradictory. But the affirmation that chaos arises only from dimension 3 concerns
only continuous time dynamical systems. For iterative maps, we will see that chaos may
arise even for one-dimensional map.

3.2.3 Experimental point of view: the delay embedding method

Experimentally, one has access only to a very limited number of measurable variables.
Typically, only one variable X(t) is recorded during time.

Consequently, the usual situation is to have a long aperiodic serie of data X(t) and
a problem is to deduce a prospective strange attractor from those data. In certain con-
ditions, which correspond to dynamics with a low number of degrees of freedom, each
variable entails the main characteristics of the dynamics. It is then possible to recon-
struct an attractor of the same topology of the underlying one governing the dynamics
using a representation in a space of arbitrary dimension n using the following coordinates:

{X(t), X(t+ τ), X(t+ 2τ), . . . , X (t+ (n− 1)τ)} ,

where τ is a chosen delay. This method corresponds more or less to a numerical calculation
of the successive derivatives of the time series X(t).

Figure 3.6: Example of the application of the delay embedding method on an experimental signal from
Topological analysis of chaotic signals from a CO2 laser with modulated losses, M. Lefranc and P. Glorieux,
Int. J. Bifurcation Chaos Appl. Sci. Eng. 3 643-649 (1993).

The embedding dimension n is chosen as the smallest dimension for which there are
no crossing of the trajectories in the phase space, i.e. the smallest dimension for which
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the attractor is unfolded. The choice of τ has to be done mainly by trials. It has to be of
the order of a fraction of the typical time the trajectory spent to go around the attractor.
The attractors obtained for different values of τ are different but have the same topology.

3.3 Strange attractors characterization

In this last part we will present some tools that can be used to characterize the structure
of strange attractors.

3.3.1 First return map

To visualize the structure of an attractor, Poincaré sections can be done. In the example
shown in Figure 3.7 the successive sections evidenced the stretching and folding process
that takes place along the attractor. As you can easily imagine those kind of represen-
tations are only useful when the embedding dimension of the attractor is of dimension 3
and the Poincaré section of dimension 2.

Figure 3.7: Example of successive Poincaré section of an attractor obtained from experimental time series of
the intensity of a CO2 laser with modulated losses (from M. Lefranc, The topology of deterministic chaos:
Stretching, squeezing and linking, NATO Security Through Science Series D – Information and Communication
Security, 7, 71 (2007)).

When the system is dissipative enough and the section is made in a region of the
phase space where the contraction is high, a part of the attractor is approximatively a
surface and the section obtained in this region is almost unidimensional. The Poincaré
map is then an unidimensional map. The study of this map can give information on the
dynamics of the system.
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The first return map, which links Pk+1 to Pk, has in general (n−1)
dimensions and in the case considered in this part only 2 dimen-
sions: (

αk+1

βk+1

)
= T

(
αk
βk

)

But as the curve is unidimensional, a single coordinate (α or β or a curvilign co-
ordinate) is suficient to describe the one-dimensional map dynamics. This means that
generally we will keep only the α or the β coordinate or a combination of the two and we
will finally end up with a one-dimensional map.

A very common experimental method to obtain a one-dimensional first return map is
in fact to collect the successive values of the local maxima and to plot each value as a
function of the previous one.

Using this method we can for example obtain the first-return map corresponding to
the Lorenz attractor (see Matlab session):

Figure 3.8: Left: temporal trace of one of the coordinates of the Lorenz model. Right: first-return map
obtained from the temporal trace by plotting each local maxima as a function of the previous one.

When such an unidimensional map can be obtained, a lot of information qualitative
or even quantitative can be deduced from it. The first thing being that the obtention of
a well defined curve for the first return map allows to assert that the dynamics is indeed
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deterministic. As a matter of fact, the knowledge of a point in the section allows to deduce
the whole sequence of its iteratives and thus the future of the system.

Practically, this method is limited to low dimensional dynamics with a high level of
contraction. Surprisingly, a wealth of experimental systems can be analyzed using this
tool. This is linked to the fact that several well-known “roads” towards chaos can be
described using one-dimensional maps. We will come back on the subject in the next
chapter.

3.3.2 Lyapounov exponents

3.3.2.a Introduction

As the main characteristic of a strange attractor is its sensitivity to initial conditions, a
quantification of this feature is essential. This divergence between trajectories is quantified
using the Lyapounov exponents.

Consider ~X(t), a trajectory on the attractor. Practically to obtain such a trajectory
numerically, we integrate during a time long enough the system with an arbitrary initial
condition until we can consider the transients have vanished. Then we use the end point
of this integration as an initial condition ~X(0) for a new trajectory ~X(t) (see practicals

in computer lab). Consider ~X ′(t) a trajectory stemming from a point ~X ′(0) very close to
~X(0). We note δ(t) = ‖ ~X ′(t) − ~X(t)‖ the distance between the two trajectories at time
t. We study the evolution of this difference with time.

When there is sensitivity to initial conditions, there is an exponential divergence be-
tween the two trajectories. This means that the plot of ln δ(t) as a function of time
presents a linear part with a positive slope.

The slope of that line, λ, is what is usually called
the Lyapounov exponent. It characterizes the
divergence of the trajectories as it means that
δ(t) ∼ δ0e

λt. The saturation of the curve at long
time is due to the fact that δ has reached the size
of the attractor and cannot become larger. The
exponent has the dimension of the inverse of a
time: it is a growing rate.

A positive Lyapounov exponent is the unambigu-
ous signature of a chaotic regime.

To be rigorous, the rough point of view presented here has to be refined: there are in
fact several Lapounov exponents: the same number as the dimension of the phase space.
But at long time, the behavior of δ(t) will be dominated by the largest exponent, which
is usually called “the” Lyapounov exponent. Another approximation in the previous
rough representation is that the value of λ depends on the trajectory considered and
of the position along the attractor. Consequently, a good estimation of the Lyapounov
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exponent requires to repeat the previous procedure on several trajectories and to perform
an average of the slopes obtained.

3.3.2.b Mathematical point of view

The mathematical formulation of the calculation of all the Lyapounov exponents is the

following. Consider the following dynamical system: d ~X
dt

= ~F ( ~X).

We will consider a linearization of the equations all along a trajectory: ~X(t) is a

trajectory on the attractor and ~X ′(t) = ~X(t) + δ ~X(t)

d ~X ′

dt
= ~F ( ~X + δ ~X)

d ~X

dt
+
dδ ~X

dt
' F ( ~X) + L| ~X(t) .δ

~X(t)

Consequently,
dδ ~X

dt
' L| ~X(t) .δ

~X(t),

where you have to note that the coefficients of L| ~X(t) depend on time. This study differs
consequently from the one we did for the fixed points. In spite of this dependence of the
jacobian matrix on time, an integration is still possible, at least numerically, leading to
the obtention of a matrix L(t) such as δ ~X(t) = L(t)δ ~X(0). The eigenvalues of L(t) give
the evolution with time of the difference between the trajectories.

Let’s reasoning in the case when the jacobian matrix L| ~X(t) is independent of time2 and

of eigenvalues λ1, λ2, . . . , λn constants. Then L(t) has for eignevalues eλ1t, eλ2t, . . . , eλnt.
Then:

Tr
(
L+(t)L(t)

)
= e(λ1+λ∗1)t + e(λ2+λ∗2)t + · · ·+ e(λn+λ∗n)t

For time t large enough, the exponential with the largest real value dominates over all
the other exponentials, so that:

λ ~X = lim
t→∞

[
1

2t
ln
(
Tr
(
L+(t)L(t)

))]
(3.2)

This formula is valid even when the coefficients of L| ~X(t) depend on time, and it gives

the (largest) Lyapounov exponent linked to the trajectory ~X(t). You still need to average
over several trajectories to have a good estimate of the Lyapounov exponent.

3.3.2.c Experimental point of view

An experimental estimation of the Lyapounov exponent is not easy to obtain. A possible
method is based on the first return map: In the case when you are able to reduce the

2It is a massive simplification but it allows to obtain a mathematical expression which is in fact valid
in the general case.
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dynamics to a first return map (not necessarily an unidimensional one) T , an analytical
fit of this application can be obtained numerically.

Taking a point Y1 in the Poincaré section, the orbit of the point can be calculated
using the map: Y2 = T (Y1), . . . , Yp = T (Yp−1). If now we consider another point of the
section very close to Y1: Y ′1 = Y1 + δY1, we have:

δY2 = LY1δY1

δY3 = LY2δY2 = LY2LY1δY1

...
...

δYp = LYp . . . LY2LY1δY1

In the previous expressions, the matrices LYi are directly obtained by the linearization of
the analytical expression of the fit of the first return map around Yi.

If we note the matrix Jp = LYp . . . LY2LY1 , we have:

λ̃ =
1

2p
ln
[
Tr
(
J+
p Jp

)]
Contrary to the case of the calculation in the full phase space where the exponent has the
dimension of the inverse of time (see equation (3.2)), the exponent obtained by the study
of the first return map has no dimension. λ̃ gives the rate of divergence of the trajectories
per average period of time between two intersections of the section plane.

In the particular case of an unidimensional dynamics described by the function f(x),
we have:

Jp =

p∏
i=1

f ′(xi) and λ̃ =
1

p

p∑
1

ln |f ′(xi)|.

Example: Chaos in the Belousov-Zhabotinskii reaction, J. L. Hudson and J. C. Mankin, J.

Chem. Phys. 74, 6171 (1981)

Figure 3.9: Dots: first return map
obtained experimentally. Lines: fit
by intervals, see expressions on the
right.

x ≥ 172 y = 175− 4.62(1.44− (x− 172))1/3 exp(0.0126x)

172 > x ≥ 150 y = 175− 4.42(1.44 + (172− x))1/3 exp(0.0126x)

150 > x ≥ 60 y = 175− 182(175− x)2.04 exp(0.0918x)

x < 60 y = 191− 0.375x

Average value obtained for the Lyapounov exponent:

λ̄ ' 0.62

But this value is very sensible to the parameters used in
the fit: see the discussion in the original article.
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3.3.3 Fractal dimension

We mention previously that another characteristic of a strange attractor is that the di-
mension of this attractor is fractal. We now give a more precise definition of this word
and examples of calculation of this quantity in model or practical cases.

3.3.3.a Box counting dimension

There exists different manner to give a measurement of the dimension of an object. All
those methods give exactly the same values for lines, surfaces and other common objects,
but their implementation differ slightly practically. We will present here the box counting
method to understand how such methods work.

Consider a set of points in a n-dimensional space. To cover all the points of the
set using cubes of side size ε, we need a minimal number of cubes which is N (ε). The
dimension of the set is then:

d = lim
ε→0

ln (N (ε))

ln (1/ε)

This expression means that for ε small enough, we have N (ε) ∼ ε−d.

We can apply this definition on sets of known dimension:

An isolated point. Then, whatever the value of ε, N (ε) = 1, and consequently d = 0.

A line. You need L/ε to cover a line of size L with boxes of size ε. consequently:

d = lim
ε→0

ln (L/ε)

ln (1/ε)

d = lim
ε→0

lnL− ln ε

− ln ε
−−→
ε→0

1

A surface. You need S/ε2 to cover a surface of area S with boxes of side size ε. conse-
quently:

d = lim
ε→0

ln (S/ε2)

ln (1/ε)

d = lim
ε→0

lnS − 2 ln ε

− ln ε
−−→
ε→0

2

3.3.3.b Examples of fractal sets

We will now apply this method to fractals obtained by iteration of a procedure.

Cantor ternary set
This mathematical object is obtained by the iteration of the process of removing the

middle third of segments:
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The set obtained when the process is iterated an infinite number of time is called the
Cantor ternary set. It consists in an infinite number of points, so that it is not of zero
dimension, but it is much “smaller” than a line. We can calculate its dimension by using
the box counting method. We will take a particular sequence of ε: εp = (1/3)p. We
have indeed εp −−−→

p→∞
0 and using the method of construction of the set, we can deduce:

N (εp) = 2p. Consequently:

d = lim
p→∞

ln (N (εp))

ln (1/εp)
= lim

p→∞

ln(2p)

ln(3p)
= lim

p→∞

p ln 2

p ln 3

d =
ln 2

ln 3
' 0.63

Koch curve
Another construction of a fractal structure is based on the adding of equilateral tri-

angles in the middle third of each segments instead of removing it:

As in the previous example, using
εp = (1/3)p, we find N (εp) = 4p, so
that:

d =
ln 4

ln 3
' 1.26

3.3.3.c Application to strange attractors

If we want to calculate the fractal dimension of an attractor obtained either by an embed-
ding of experimental data or numerical integration, we have to analyze a set of discrete
points in a n-dimensional phase space. It is a finite sequence of points: X1, X2, . . . , XN .

We will not use the box counting method but a variant3: we count the average number
of points C(ε) of the attractor in spheres of given size ε:

3See Matlab session and L’ordre dans le chaos.
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C(ε) =
1

N2

N∑
i,j=1

H (ε− ‖Xi −Xj‖) ,

where H is the Heaviside function: if x < 0, H(x) = 0 and if x ≥ 0, H(x) = 1.
An average along the attractor is necessary as the density of points along the attractor

varies a lot depending on the amount of stretching or folding in the area considered.

The relationship between the density C(ε) computed here and the number of boxes
considered in the previous part is the following: if we use spheres instead of cubes in
the box counting method, N (ε)C(ε) is a constant: it is the total number of points of the
recording. If d is the dimension of the attractor, we await that the number of spheres
necessary to cover the set is of the form N (ε) ∼ ε−d. The average number of points by
sphere is thus awaited to be of the form: C(ε) ∼ εd.

We will see during the Matlab session that the typical observed behavior for C(ε) in
function of ε is the following one:

The saturation at large values of ε is linked to
the finite size of the attractor. The plateau at
small values of ε is linked to the sampling rate
and the fact that we have a discrete sequence of
points. The slope of the linear part between the
two plateaus gives the dimension of the attrac-
tor.

Conclusion

For a phase space of dimension 3 or higher, a nonlinear dynamical system may present
a peculiar aperiodic dynamics called chaos. The main property of this dynamics is the
sensitivity to initial conditions, which can be characterized by Lyapounov exponents. The
attractors corresponding to this dynamics are called strange attractors, which are fractal
structures. The topology of those attractors are governed by two processes: stretching
and folding.
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Chapter 4

Transition towards chaos

In this chapter we will study how successive bifurcations can lead to chaos when a pa-
rameter is tuned. It is not an extensive review : there exists a lot of different manners
to transit to chaos, we will just spend some time on the transistions that are rather well
known.

The understanding of the successive bifurcations leading to chaos is mostly based
on the study of one-dimensional maps so that the first section of the chapter will be
dedicated to some general useful tools for those kind of studies. The following parts are
each dedicated to a transition towards chaos: the second part describes the subharmonic
cascade, the third one the intermittency phenomenon, and the last part the transition
towards chaos by quasi-periodicity. The description of each of those transitions will be
done using a generic one-dimensional map typical of each road to chaos.

The one-dimensional maps that will be studied can have several meanings. They can
correspond to a model of a discrete dynamics: for example, the logistic function is used
to describe successive generations in population dynamics. But we have also seen that a
high-dimensional dynamics can be reduced in some conditions to a first return map which
can be unidimensional. Finally, from a pure mathematical point of view, the mere study
of a one-dimensional map (as the study of the logistic map by M. J. Feigenbaum) can
lead to a very good understanding of the mechanisms underlying chaos by itself.

4.1 One-dimensional maps

Let’s consider a one-dimensional map f : R→ R. We study the discrete dynamics given
by the successive iterates of the function from an initial point x0, which is then the initial
condition of the time serie defined by:

xn+1 = f(xn).

89
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4.1.1 Graphical construction

That kind of dynamics can be studied using a graphical construction. We draw the curve
y = f(x) and we obtain the successive points using the line y = x:

The intersection points of the curve y = f(x) and of the line y = x give the fixed
points of the system as they obey to x∗ = f(x∗).

Those fixed points can be stable or unstable, depending on the behavior of the suc-
cessive iterates from a point in the vicinity of x∗.

4.1.2 Stability of the fixed points

As in Chapter 1, to determine the stability of a fixed point x∗ we study the iterates
stemming from an initial condition x0 very close to the fixed point x∗, i.e. x0 = x∗ + δx0

with δx0 � x∗. We can then compute the first approximation of the iterates:

x1 = f(x0) = f(x∗ + δx0) ' f(x∗) + f ′(x∗)δx0 = x∗ + f ′(x∗)δx0

We deduce δx1 = x1 − x∗ = f ′(x∗)δx0. By iteration, we obtain:

δxn = [f ′(x∗)]
n
δx0

Consequently, and as we have already seen in Chapter 1, if |f ′(x∗)| < 1, the fixed point
is stable and if |f ′(x∗)| > 1 it is unstable. The stability of the fixed point can thus be
deduced graphically by checking the slope of the tangent to the curve in x∗.
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4.2 Subharmonic cascade

This transition is also named a “period-doubling” cascade: starting from a periodic be-
havior of period T , the increase of a parameter leads to a first bifurcation to a new periodic
regime of period 2T , then to another one of period 4T , then 8T and so on. We thus ob-
serve successive 2nT periodic regimes whith increasing n as the parameter is tuned until
we reach a value of the parameter for which the system becomes chaotic.

This transition can be understood by studying the logistic map.

4.2.1 The logistic map

The logistic map is the function:

f(x) = rx(1− x),

where r is a parameter.
We will also study this discrete dynamics in the last computer session.

4.2.1.a Domain of study

First, we want the dynamics to be bounded, i.e. that no time series go to infinity. This
condition reduces the set of values of x that can be taken as initial conditions. The
curve y = f(x) is a parabola whith a maximum for x = 1/2 and verifying f(0) = 0 and
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f(1) = 0. As f(1/2) = r/4, if 0 ≤ r ≤ 4, then for all x ∈ [0, 1], f(x) ∈ [0, 1]. We will thus
consider the dynamics only on the interval [0, 1] and restrict the domain of variation of
the parmaeter r to the interval [0, 4].

4.2.1.b Fixed points

The fixed points are given by : x∗ = rx∗ − rx∗2 from which we deduce 2 fixed points:

• x∗ = 0 which is always a fixed point,

• x∗ = r−1
r

which exists only when 0 < r−1
r
< 1, i.e. when r > 1.

We can see on the following graphs how this new fixed point appears when r increases:

4.2.1.c Fixed points stabiity

• For 0 < r < 1 there is a unique fixed point x∗ = 0. As f ′(0) = r, 0 < f ′(0) < 1,
the fixed point is stable (see also graphs above).
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When r exceeds 1, the tangent in 0 becomes greater than 1 and the fixed point 0
becomes unstable. We can observe this change of slope of the curve at the origin
on the previous figures. Simultaneously to that destabilization a new intersection
of the curve with the line y = x occurs.

• For 1 < r < 3, the fixed point 0 is now unstable but there is a new fixed point :
x∗ = r−1

r
.

f ′
(
r − 1

r

)
= 2− r,

so that −1 < f ′(x∗) < 1 for 1 < r < 3 and the new fixed point is stable in this range.

When r increases above 3 the non-zero fixed point becomes unstable but no new
fixed point appears. Consequently, for r > 3 there are two fixed points but the two
of them are unstable.

4.2.1.d Periodic dynamics of the iterate map

For 3 < r < 3.569946..., the response of the system is periodic1. Just after 3, in the
permanent regime, the iterates oscillate between two values. This behavior can still be
understood by a geometrical construction:

To understand this behavior, the function to study is g = f ◦ f . Indeed, if we have
an oscillation between x̃1 and x̃2, we have x̃2 = f(x̃1) and x̃1 = f(x̃2), so that x̃1 =
f (f(x̃1)) = g(x̃1) and x̃2 = f (f(x̃2)) = g(x̃2), which means that x̃1 and x̃2 are fixed

1See Matlab session.
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points of g. As a matter of fact, the drawing of the curves y = g(x) before and after
r = 3 shows that two new fixed points appear for the function g for r > 3 as shown in
the Figures below:

For r . 3 (left Figure), the curve y = g(x) has two intersection points with the line
y = x: 0 and r−1

r
, i.e. the same fixed points as the function f(x). Indeed, fixed points of

f are perforce also fixed points of f ◦ f .
When the parameter r crosses 3 (middle Figure), the slope of the tangent to the curve

y = g(x) in x∗ = r−1
r

becomes greater than 1 and the fixed point x∗ becomes unstable.
Two new fixed points then appear simultaneously on either side of x∗ (right Figure).

The fixed point x∗ = r−1
r

is unstable and the two new fixed points are stable. The bifur-
cation that occurs is consequently a pitchfork bifurcation.

The mathematical study of g can be done. First, we compute the expression of g:

g(x) = rf(x) (1− f(x))

= r [rx(1− x)] [1− rx(1− x)]

= r2x(1− x) [1− rx(1− x)]

To find the fixed points, we write

x = r2x(1− x) [1− rx(1− x)]

and then we factorize the polynom r2x(1− x) [1− rx(1− x)]− x using the fact that r−1
r

is a known root. We can then demonstrate that :

x̃1 =
1 + r −

√
(r − 1)2 − 4

2r
and x̃2 =

1 + r +
√

(r − 1)2 − 4

2r

which only exist when r ≥ 3.

To study the stability of those fixed points, we have to calculate g′(x̃). We have
g′(x) = f ′(x)f ′ (f(x)) so that

g′(x̃1) = f ′(x̃1)f ′ (f(x̃1)) = f ′(x̃1)f ′(x̃2) = g′(x̃2)
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Consequently, the two points have necessarily the same stability. The computation gives:

g′(x̃1,2) = −r2 + 2r + 4.

The simultaneous destabilization of the two points happens when g′(x̃) = −1. The
corresponding critical value of r can be computed: r = 1 +

√
6 = 3.449....

This destabilization of g is totally similar to the one which has happened for the
function f when r = 3 and is exactly of the same nature. The study of the new periodic
regime that arise after the destabilization of x̃1 and x̃2 can thus be done by studying the
iterates of the function g: h = g ◦ g.

The drawing the curve of the function h = g ◦ g = f ◦ f ◦ f ◦ f for r = 3.56 shows the
four new fixed points of h after the destabilization of x̃1 and x̃2:

The scenario we have described for r > 3 is the following one: the fixed point x∗ = r−1
r

of f becomes unstable at r1 = 3 through a pitchfork bifurcation which gives rise to a
periodic solution characterized by an oscillation between two points x̃1 and x̃2. This limit
cycle becomes unstable when r2 ' 3.449 leading to a new periodic behavior corresponding
to an oscillation between four points. The bifurcation diagram is obtained by plotting the
iterates of f in the permanent regime:
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We could pursue the analysis of the iterates of f and observe successive pitchfork
bifurcations giving each birth to a limit cycle of period twice the previous one. This
process continues until a value of r called r∞:

r1 = 3

r2 = 3.449 . . .

r3 = 3.54409 . . .

r4 = 5.5644 . . .

r5 = 3.568759 . . .
...

...
...

r∞ = 3.569946 . . .

If the logistic map is a unidimensional map that has been obtained from a dynamics
of higher dimension, the fixed point x∗ corresponds to a limit cycle which has a period
T . Then, when this fixed point loses its stability at r1 = 3 for a cycle between x̃1 and
x̃2, it means when coming back to the full dynamics that the limit cycle has now two
intersections in the Poincaré section and hence that the period of the new limit cycle is
2T . Similarly, at the next bifurcation in r2, the cycle complexifies again to reach a 4T
period. At each following bifurcation the period is multiply by 2. This is the origin of the
name “period-doubling” cascade.

4.2.2 Dynamics after r∞

For r > 3.569946..., we can observe ei-
ther chaotic or periodic dynamics de-
pending on the value of r.
In the bifurcation diagram, by represent-
ing the iterates of f in the permanent
regime, aperiodic responses correspond
to vertical lines where the points almost
cover segments.

We observe in the following diagrams (which are enlargement of the above bifurcation
diagram), that there are a lot of values of r for which the response is chaotic but there
are also periodic windows, which correspond to values of r where periodicity is recov-
ered. There are an infinity of such windows, we see only the larger ones on the following
representations, the largest being the 3T window.
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4.2.2.a Lyapounov exponent

The chaotic or periodic behaviors
can be identified by computing the
Lyapounov exponent for each values
of r, following the method we saw in
the previous chapter:

λ̃ =
1

N

N∑
i=1

ln |f ′(xi)|.

For r < r∞, the Lyapounov exponent is always negative. For r > r∞, for most of the
values of r the Lyaponov exponent is positive, indicating a chaotic behavior.

In fact, chaotic and periodic domains are closely intertwined: between two values
of r for which the behavior is chaotic you can always find a window of values of r for
which the behavior is periodic. The Lyapounov exponent for the periodic windows is
then negative. Most of the periodic windows are so small that we cannot see them on
the figure above because of the lack of resolution of this graph. As for the bifurcation
diagram representation, we only see the larger windows.

4.2.2.b 3T−window

The study of the 3T−window implies to study the function f ◦f ◦f for values of r between
3.8 and 3.9. Representation of this function for two different values of r are shown below:

On the left side of the figure, f ◦ f ◦ f intersects the y = x line only in 0 and x∗: there is
no 3T−cycle. On the right side, we observe 6 new fixed points: 3 stable and 3 unstable.
Those 6 fixed points appear by the crossing of the y = x line by each local extrema of
the curve as the parameter r increases. They thus all appear by pairs of a stable and an
unstable point through saddle-node bifurcations.
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The destabilization of the 3T window occurs through another cascade of period dou-
bling leading to a succession of periodic behaviors: 6T , 12T , ..., 3× 2nT .

Other periodic windows (5T , 7T , ...) can be found in the interval r∞ < r < 4.

4.2.3 Universality

4.2.3.a Qualitative point of view

All the phenomenology that we have just studied using the logistic map is shared by a
whole class of functions. All the functions that have the same general shape as the logistic
function2 present the same period-doubling cascade leading to a chaotic regime when the
parameter is tuned. After r∞, the order of apparition of the periodic windows is the same.
This succession of periodic windows embedded in chaotic regimes is called the universal
sequence.

For example, we show thereafter a study of the
iterates of the function f(x) = r sin(πx), for x ∈
[0, 1] and r ∈ [0, 1] showing the similarity of the
bifurcation diagrams between the logitic map and
the sine one.

2The functions have to be unimodal, i.e., continuous, differentiable, concave and with a maximum.
Consequently, all the curves that are bell-shaped.
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4.2.4 Quantitative point of view

For all those functions, the cascade of period-doubling comes from the fact that the desta-
bilization mechanism at each bifurcation is the same: only the scales on the axis change
as well as the precise form of the function.

This similarity can be already seen in the iterates of the logistic function. The following
curves show that the parts of the curve of the iterates we need to study to understand
each bifurcation have the same shape as the one of the logistic curve but at a smaller
scale.

In fact, after a proper renormalisation (i.e. a change of the scales of the graphs to
superimposed the curves), we obtain from any unimodal function a sequence of unidi-
mensional functions using the iterates f 2n and those sequences all converge to the same
universal function.
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Because of this universal mechanism, the quantitative study of the values of the pa-
rameters for which the successive bifurcations occur: r1, r2, r3, . . . , rn, . . . , allows to
define a universal constant δ:

rn − rn−1

rn+1 − rn
−−−→
n→∞

δ

δ is called the Feigenbaum constant and δ = 4.669....

Another scaling law characterizes the change of the size of the successive pitchforks
along the vertical axis in the bifurcation diagram.

This size corresponds to the distance between the location of the maximum of the
initial function (1/2 in the case of the logistic map) and the closest fixed point:

The ratio an
an+1

tends towards another universal constant:

an
an+1

−−−→
n→∞

α,

with α = −2.5029.... This constant is linked to the size factor necessary to rescale the
successive curves at each iteration. The limit universal curve is then defined implicitely
by:

f(x) = αf 2
(x
α

)
.
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4.3 Intermittency

This kind of transition towards chaos is characterized by the apparition of bursts of
irregular behaviors interrupting otherwise regular oscillations. When the parameter is
tuned further towards chaos, those bursts are more and more prevalent until a fully
chaotic regime is reached.

4.3.1 Type I intermittency

The dynamics is now described by the following one-dimensional map:

f(x) = x+ ε+ x2,

where ε is a small parameter (|ε| � 1). We study orbits given by the iterates xn+1 = f(xn).

The fixed points are given by: x∗ = x∗ + ε+ (x∗)2, so that:

• if ε < 0, x∗ = ±
√
−ε,

• if ε > 0, there are no fixed point.

When ε < 0, we can determine the stability of the fixed points:

• f ′(
√
−ε) = 1 + 2

√
−ε > 1, so that the fixed point +

√
−ε is unstable

• f ′(−
√
−ε) = 1− 2

√
−ε < 1, the fixed point −

√
−ε is stable.

Consequently, when the parameter ε increases from a small negative value to a small
positive one, a pair of fixed points, one stable, one unstable, disappears. This scenario
corresponds to an inverse saddle-node bifurcation. You can understand from the figures
below why a saddle-node bifurcation is also called a tangent bifurcation.



4.4. TRANSITION BY QUASI-PERIODICITY 103

When ε & 0 there are no more fixed points but if ε is small
enough, the system will spend a lot of time in the region where
the function is very close to the line y = x, as can be obtained
by a geometric construction.

When the system is trapped in this region, the observed response is very close to the
periodic response which was existing just before the bifurcation, and was corresponding
to the stable fixed point −

√
−ε. When the system exits the channel between the curve

y = f(x) and the line y = x, the next iterates can take very large values, which correspond
to a burst in the temporal response. The system then explores the phase space before to
be reinjected at the entrance of the channel where it will again be trapped. The closer
to the bifurcation the system is, the longer the time spent in the channel will be. The
observed behavior is then quasi-regular oscillations interrupted by irregular bursts. The
duration of the sequences of quasi-regular oscillations between the bursts becomes shorter
and shoter when moving away from the bifurcation.

4.3.2 Other intermittencies

There exists other types of intermittencies but the general behavior: regular oscillations
interrupted by bursts of irregular behavior, are common to all those transitions3.

For example, in the “type III” intermittency, the bursts display a subharmonic behav-
ior and the one-dimensional map associated is:

f(x) = −(1 + ε)x+ ax2 + bx3.

4.4 Transition by quasi-periodicity

This transition has been proposed by D. Ruelle, F. Takens and S. Newhouse in 1978.
The mathematical theorem underlying this transition is difficult. Roughly, it says that
3-frequencies quasi-periodicity is not robust, i.e. a T 3 torus does not withstand pertur-
bations, however small. Consequently, if a system goes through three successive Hopf
bifurcations, there is a very high probability that a strange attractor emerges after the
third bifurcation.

3For more details read the corresponding chapter in L’ordre dans le chaos.
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We will first study a model which gives rise to quasi-periodicity but also to frequency
locking. Then we will describe how chaos can occur in this system.

4.4.1 First-return map

The one-dimensional map describing this transition is based on a Poincaré section of the
torus supporting the 2-frequencies quasi-periodic regime just before the last bifurcation.
This section is a closed curve when the regime is indeed quasi-periodic, i.e. when the two
frequencies are incommensurable:

The one-dimensional variable used to described the system is the angle θn giving the
position of the nth point along the curve, using an arbitrary point as a reference (P0 in
the schematic example). For the sake of simplicity, a variable which takes its values in
the interval [0, 1] is preferred, so that finally the dynamical variable is: φn = θn

2π
. The first

return map is the function f such as φn+1 = f(φn).

We know that for this kind of dynamics we need to characterize the ratio of the two
effective frequencies of the system around the torus. This quantity is given by the winding
number :

σ = lim
n→∞

φn − φ0

n
.

When σ is irrational, the system is quasi-periodic.
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When the system is locked in frequency, σ is a rational p/q, the system is periodic and
the Poincaré section displays a finite number of points, q if the section is well chosen. We
have then a q-cycle φ∗1, φ∗2, . . . , φ∗q, and

(f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
q fois

(φ∗i ) = f q(φ∗i ) = φ∗i + p (mod 1) = φ∗i .

The stability analysis is based on the calculation of:

[f q]′ (φ) =
[
f q−1 ◦ f

]′
(φ)

= f ′(φ) ·
[
f q−1

]′
(f(φ))

= f ′(φ) ·
[
f q−2 ◦ f

]′
(f(φ))

= f ′(φ) · f ′ (f(φ)) ·
[
f q−2

]′ (
f 2(φ)

)
= f ′(φ) · f ′ (f(φ)) · f ′

(
f 2(φ)

)
· · · f ′

(
f q−1(φ)

)
If we apply this formula to any point of a q−cycle, we obtain:

[f q(φ∗i )]
′ = f ′(φ∗1) · f ′(φ∗2) · · · f ′(φ∗q),

and the q−cycle is stable when ∣∣∣∣∣
q∏
i=1

f ′(φ∗i )

∣∣∣∣∣ < 1.

4.4.2 Arnold’s model

The archetypal first-return function for the study of the transition to chaos by quasi-
periodicity is the following one:

φn+1 = φn + α− β

2π
sin(2πφn) (mod 1),

the function is noted fα,β, so that φn+1 = fα,β(φn), and f ′α,β(φ) = 1− β cos(2πφ).

When β = 0, the dynamics obtained is simply given by φn+1 = φn+α and corresponds
exactly to the example of trajectories we studied at the beginning of chapter 3 of straight
lines of constant slope on the unfold torus. Here the slope of the lines is α and corre-
sponds to the ratio of the two frequencies. The behavior is then periodic or quasi-periodic
depending on the value of α. In such a model, no locking of the frequencies coming from
dynamical reasons is possible as there is no nonlinear term allowing the characteristic
frequencies of the system to adjust spontaneously.

The coupling stems from the term −β sin(2πφn)/2. When β > 0 we will be able to
obtain locking or unlocking of the oscillations depending on the value of β for a given
value of α.
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4.4.2.a Frequency locking: Arnold’s tongues

Case σ = 1: a winding number σ = 1 corresponds to a a frequency locking 1 : 1 and to
a unique point on the Poincaré map. Consequently, it is a fixed point of the map:

φ∗ = φ∗ + α− β

2π
sin(2πφ∗)

which leads to the relation
2πα

β
= sin(2πφ∗).

A solution, and thus a limit cycle, thus exists only for −1 <
2πα
β

< 1. This region of 1 : 1 locking can be represented

on a (α, β) diagram as a hatched area. Stable cycles verify
|1− β cos(2πφ∗)| < 1, so that for 0 < β < 1 the obtained limit
cycle is always stable.
If α and β are given, the stable fixed point can also be find
using a graphical methods on the one-dimensional map:

Each of those one-dimensional maps correspond to a different set of parameters (α, β).
The left figure (parameters: blue point on the stability diagram, first return map: blue
curve) is the case of a stable fixed point corresponding to the 1 : 1 locking. In the second
example (middle figure, parameters: green point on the stability diagram, first return
map: green curve), fixed points corresponding to φ∗ = f(φ∗) still exist but they are all
unstable. In the last case (right figure, parameters: magenta point on the stability dia-
gram, first return map: magenta curve), no fixed points of the form φ∗ = f(φ∗) exists.

Case σ = p/q: For other values of σ = p/q, fixed points of the function f qα,β =
fα,β ◦ fα,β ◦ · · · ◦ fα,β have to be found. For example, for the values of parameter (α =
0.345, β = 0.8) which was our example of a case without 1 : 1 frequency locking (right
figure, magenta color), the function f ◦ f ◦ f has 3 stable fixed points, as can be shown
by plotting φn+3 as a function of φn instead of φn+1 as a function of φn:
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The domain of existence of this 3−cycle can be studied. For a given value of β we can
search for the interval of the values of α for which the fixed points exist and are stable:

Studying systematically f 3
α,β, we obtain then a new set

of “tongues” that we can add to the stability diagram.

Repeating this study we obtain domains of frequency locking, called “Arnold’s tongues”,
that we can gather on a diagram. For a given 0 < β < 1, we have intervals of frequency
locking separated by domains of quasi-periodicity.

4.4.2.b Transition to chaos

When β > 1, the tongues corresponding to frequency locking in the (α, β) plane overlap.
If we go back to the study of the one-dimensional map of a quasi-periodic regime, we
observe that the map is not any more inversible for β > 1:
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Figure 4.1: Figure from V. Croquette course http://www.lps.ens.fr/~vincent/.

If we represent the winding number
σ as a function of α, the graph
obtained looks like a staircase,
called a devil’s staircase, formed by
horizontal plateaus corresponding
to the locking domains.

When β increases, the width of the
stairs widened and the locking do-
mains are wider and wider. At
β = 1, the tongues are intersect-
ing each other and the unlocked do-
mains of quasi-periodicity form a set
of points almost empty. The stair-
case is said to be complete, the sum
of the width of all the stairs is equal
to 1. Figure 4.2: Arnold’s tongues, figure from V. Croquette course

http://www.lps.ens.fr/~vincent/.

http://www.lps.ens.fr/~vincent/
http://www.lps.ens.fr/~vincent/
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The non-inversibility is the fact that the same φn+1 can have different antecedents. It
happens when the curve is not monotoneous anymore. As f ′α,β(φ) = 1 − β cos(2πφ), the
non-inversibility appears when the derivative can change sign, i.e. only if β > 1. From
the Poincaré section point of view it corresponds to a folding of the closed curve, which
is an indication of the destruction of the torus.

Figures from the book Deterministic Chaos, W.G Schuster and W. Just.

In the domain β > 1, we can then observe chaos when the torus is destroyed. Still,
some regions of locking persist for some values of the parameters, but outside those regions
we observe chaos. Their is a close imbrication of chaotic domains and periodic domains
in the parameter space.

As for the other studied routes towards chaos, the main features of the transitions
does not depend of the precise form of the considered map but of some generic properties
of the first return map.
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Conclusion

In this chapter we studied very briefly some roads towards chaos. What is important to
note is that all those transitions depend only on a few general properties of the function
describing the dynamics of the system. When a first-return map is closed to one of the
model maps that have been presented in this chapter, the transition to chaos will be of
the type of the corresponding model. This universality explain why those routes have
been observed in very different systems.

Much more transitions to chaos exist and most of them are far from being understood
as well as the ones described here.
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