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ON THE ABSOLUTE CONTINUOUS SPECTRUM OF DISCRETE

OPERATORS

CIMPA SCHOOL: THÉORIE SPECTRALE DES GRAPHES ET DES
VARIÉTÉS

TO THE MEMORY OF AHMAD EL SOUFI

SYLVAIN GOLÉNIA

Abstract. This aim of this course is to give an overview to the study of the
continuous spectrum of bounded self-adjoint operators and especially those

coming from the setting of graphs. For the sake of completeness, a short

course in spectral theory is given with proofs. The continuous and Borelian
functional calculi are also developed.
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1. Introduction

These notes are a detailed version of the 7.5 hour long course that I gave in Kairouan
from the 7th to the 16th of November 2016. This idea of this course is to provide
in a fast and motivated way the tools to young researchers that are starting in
spectral theory or graph theory. For simplicity we shall concentrate on the analysis
of bounded self-adjoint operators.
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After recalling the main properties of Hilbert spaces, we give a short course in
general spectral theory. Then we start to develop a series of examples coming from
the study of graphs. Next, we enter in the world of functional calculus. We first
construct the continuous functional calculus with detailed proofs. Subsequently
we browse few famous approaches to continuous functional calculus. In the next
section we present the theory of the essential spectrum with full proofs. After this
done, we go even further and construct the Borelian functional calculus. We discuss
the nature of the spectral measure, the Putnam theorem and the stability of the
a.c. spectrum. Finally, still motivated by the examples given on graphs, we give an
introduction to the Mourre theory.

Acknowledgments: I thank Colette Anné and Nabila Torki-Hamza for the organ-
isation of this CIMPA school. I thank also Constanza Rojas-Molina for useful dis-
cussions and comments on the script. I was partially supported by the ANR project
GeRaSic (ANR-13-BS01-0007-01). Finally, I would like to honour the memory of
Ahmad El Soufi that I met in this CIMPA School. He was a wonderful colleague.

2. Spectral properties of operators

We start with few notation. Given (X , ‖ ·‖X ) and (Y, ‖ ·‖Y) two Banach spaces, we
denote by L(X ,Y) the set of continuous linear maps acting from X to Y. Endowed
with the norm

‖T‖L(X ,Y) := sup
x∈X ,‖x‖X=1

‖Tx‖Y ,

we have that L(X ,Y) is a Banach space. When X = Y we set L(X ) := L(X ,Y).

We denote by N the set of non-negative integers (be careful 0 ∈ N), by N∗ the set
of positive integers and Z is the set of integers. We set δa,b := 1 if a = b and 0
otherwise.

2.1. Hilbert spaces. This section is a compilation of well-known results in the
theory of Hilbert spaces. We focus on the study of complex Hilbert spaces.

Definition 2.1. Given a complex vector space X , a scalar product is a map 〈·, ·〉 :
X × X → C such that for all x, y, z ∈ X and λ ∈ C :

1) 〈x+ λy, z〉 = 〈x, z〉+ λ〈y, z〉,
2) 〈z, x+ λy〉 = 〈z, x〉+ λ〈z, y〉,
3) 〈x, y〉 = 〈y, x〉
4) 〈x, x〉 = 0 if and only if x = 0.

A vector space X endowed with a scalar product is a pre-Hilbert space.

Note that the third line gives 〈x, x〉 ≥ 0.

Remark 2.2. Here we take the convention to be anti-linear with respect to the first
variable. It is a choice.

Proposition 2.3. Let (X , 〈·, ·〉) be a pre-Hilbert space. We set ‖x‖ :=
√
〈x, x〉.

We have that ‖ · ‖ is a norm, i.e., for all x, y ∈ X and λ ∈ C

1) ‖x‖ = 0 if and only if x = 0,
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2) ‖λx‖ = |λ| · ‖x‖,
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If (X , ‖ · ‖) is complete, we say that X is a Hilbert space.

A central result is the existence of a orthogonal complementary subspace.

Theorem 2.4. Let H be a Hilbert space and F ⊂ H be a closed subspace. Then

1) F⊥ := {y ∈ H, 〈x, y〉 = 0,∀x ∈ F} is a closed subspace of H.
2) We have

H = F ⊕ F⊥.
3) Moreover, given x = xF + xF⊥ in this decomposition we have:

‖x‖2 = ‖xF‖2 + ‖xF⊥‖2.

We turn to the properties of Hilbert basis.

Definition 2.5. Given a Hilbert space (H, ‖ · ‖), we say that (en)n∈N is a Hilbert
basis, if

1) 〈en, em〉 = δn,m for all n,m ∈ N . In particular, ‖en‖ = 1 for all n ∈ N,
2)
∑
n∈N Cen = H.

Remark 2.6. Sometimes it is useful to take Z or N∗ instead of N in this definition.

Definition 2.7. A metric space (X , d) is separable if and only if there is a count-
able set F ⊂ X such that F is dense in X .

Proposition 2.8. Given a Hilbert space (H, ‖ · ‖). The following statements are
equivalent:

1) H is separable,
2) H has a Hilbert basis.

Proof. 2) =⇒ 1): Given (en)n a Hilbert basis, take F := ∪n(Q + iQ)en.
1) =⇒ 2): We have F = ∪nfn with fn ∈ H. Use Gram-Schmidt on (fn)n. �

Remark 2.9. From now on:

All the Hilbert spaces are complex and separable.

We give the two main examples:

Example 2.10. Set H := `2(N;C) := {f : N → C, such that
∑
n |fn|2 < ∞}

endowed with

〈f, g〉 :=
∑
n∈N

fngn,

for f, g ∈ `2(N;C). For all n ∈ N , set en : N → C given by en(m) := δn,m. We
have that (en)n∈N is a Hilbert basis.
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Example 2.11. Set H := L2([−π, π];C), endowed with

1

2π

∫ π

−π
f(x)g(x) dx,

with f, g ∈ H. For all n ∈ Z, set en(x) := einx. We have that (en)n∈Z is a Hilbert
basis.

2.2. Polarisation. We turn to the polarisation properties.

Proposition 2.12. Let X be C-vector space. We take Q : X × X → C to be a
sesquilinear form which is linear on the right and anti-linear on the left, i.e.,

1) Q(x, y + λz) = Q(x, y) + λQ(y, z),
2) Q(x+ λy, z) = Q(x, z) + λQ(y, z),

for all x, y, z ∈ X et λ ∈ C. Set Q(x) := Q(x, x) (because this is not necessarily
real!). We have the following identity of polarisation:

Q(x, y) =
1

4

3∑
k=0

ikQ(ikx+ y).

Proof. Develop the right hand side. �

Remark 2.13. In particular we get:

〈x, y〉 =
1

4

3∑
k=0

ik‖ikx+ y‖2.

In other words, given a norm that comes from a scalar product, we can recover the
scalar product. To recall this formula, note that ik lies next to the anti-linear part
of the scalar product.

Remark 2.14. When the vector space is real a bilinear form Q satisfies:

Q(x, y) =
1

4
(Q(x+ y)−Q(x− y)) ,

for all x, y ∈ X .

Corollary 2.15. Given H a Hilbert space and S, T two bounded operators. If

〈x, Sx〉 = 〈x, Tx〉, pour tout x ∈ X

then S = T .

Proof. Set Q1(x, y) := 〈x, Sy〉 and Q2(x, y) := 〈x, Ty〉 for all x, y ∈ H. There
are sesquilinear forms. By hypothesis we have Q1(x) = Q2(x) for all x ∈ H. In
particular we have:

〈x, Sy〉 =
1

4

3∑
k=0

ikQ1(ikx+ y) =
1

4

3∑
k=0

ikQ2(ikx+ y) = 〈x, Ty〉.

which is the result. �
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2.3. Spectral properties of bounded operators. We start with the notion of
spectrum

Definition 2.16. Let T ∈ L(H).

1) The resolvent set of T is:

ρ(T ) := {λ ∈ C, λId− T is invertible}.

2) If λ ∈ ρ(T ), we define the resolvent Rλ(T ) (or simply Rλ) of T at λ by

Rλ(T ) := (λId− T )−1.

3) The spectrum of T is

σ(T ) := C \ ρ(T ).

4) We say that λ ∈ C is an eigenvalue of T if λId−T is not injectif, i.e., ker(λId−
T ) 6= {0}. The point spectrum is given by:

σp(T ) := {λ ∈ C, ker(λId− T ) 6= {0}}.

Remark 2.17. If λ ∈ ρ(T ), Rλ(T ) ∈ L(H) (Banach’s Theorem).

Remark 2.18. Set T ∈ L(H). Let U ∈ L(H), be unitary. Then, σ(T ) = σ(UTU∗).

Remark 2.19. We have:

1) When H is of finite dimension and T ∈ L(H), the rank theorem states that T is
surjective if and only if T is injective if and only if it is bijective. In particular

σp(T ) = σ(T ), when dimX <∞

The situation is very different in infinite dimension.
2) The point spectrum is usually different from the set of eigenvalues.

Proposition 2.20. Let T ∈ L(H).

1) If |λ| > ‖T‖ then λ ∈ ρ(T ). In particular σ(T ) ⊂ D(0, ‖T‖). Moreover,

‖(λ− T )−1‖ ≤ 1

|λ| − ‖T‖
.

2) ρ(T ) is open and non-empty in C.
3) σ(T ) is compact in C.
4) σp(T ) ⊂ σ(T ).

Proof. 1) We have λ 6= 0. Then ‖λ−1T‖ < 1. Moreover since

λId− T = λ(Id− λ−1T ),

we deduce that Id− λ−1T is invertible. In particular λ ∈ ρ(T ). Furthermore,

‖(λId− T )−1‖ =
1

|λ|
‖(Id− λ−1T )−1‖ ≤ 1

|λ|

∞∑
k=0

∥∥∥∥Tλ
∥∥∥∥n =

1

|λ| − ‖T‖
.

2) First we prove that the group invertible linear continuous maps is open in L(H).
Let H be invertible. Let V ∈ L(H) such that ‖V ‖ < ‖H−1‖−1.

‖H−1V ‖ ≤ ‖H−1‖ · ‖V ‖ < 1.
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We have:
H + V = H (Id−H−1V )︸ ︷︷ ︸

invertible by 1)

By composition this yields that H + V is invertible as product of invertible maps.
In particular, B(H, ‖H−1‖−1) ⊂ GL(H). In other words, GL(H) is open.

Let ϕ : C → L(X ) be given by ϕ := λ 7→ λId − T . We have that ϕ is continuous
because it is Lischiptz.

‖ϕ(λ)− ϕ(µ)‖ = ‖(λ− µ)Id‖ = |λ− µ|.
Note that ρ(T ) = ϕ−1 (GL(X )). The resolvent set is the reciprocal image of an
open set by a continuous function. Hence, it is open.

3) By 2) σ(T ) is closed and by 1) it is bounded. It is therefore compact.

4) The eigenvalues are part of σ(T ) by definition. Since σ(T ) is closed then by
taking the closure σp(T ) ⊂ σ(T ). �

Definition 2.21. Given T ∈ L(H). We call spectral radius:

rad(T ) := inf{r, σ(T ) ⊂ B(0, r)}.

Proposition 2.22. Let T ∈ L(H), we have

rad(T ) = lim
n→∞

‖Tn‖1/n = inf
n∈N
‖Tn‖1/n.

Proof. If T = 0, the result is trivial. Set T 6= 0.

1) We start with the equality of the right hand side. Fix m ∈ N. For all n ∈ N,
there exist p, q ∈ N with q ∈ [0,m[ such that n = pm + q. If ‖T‖ > 1, we have
‖T q‖ ≤ ‖T‖p ≤ ‖T‖n. Moreover if ‖T‖ ≤ 1, ‖T p‖ ≤ 1. This yeilds

‖Tn‖ ≤ ‖Tm‖p · ‖T q‖ ≤ max(1, ‖T‖m) · ‖Tm‖p.
Then note that ‖T‖m/n tends to 1 and that p/n tends to 1/m as n goes to ∞. We
infer

lim sup
n→∞

‖Tn‖1/n ≤ lim sup
n→∞

(
(max(1, ‖T‖m))

1/n · ‖Tm‖p/n
)
≤ ‖Tm‖1/m.

for all m ∈ N. Therefore:

lim sup
n→∞

‖Tn‖1/n ≤ inf
m∈N
‖Tm‖1/m ≤ lim inf

m→∞
‖Tm‖1/m.



8 SYLVAIN GOLÉNIA

In particular, the limit limm→∞ ‖Tm‖1/m exists and is equal to infm∈N ‖Tm‖1/m.

2) We now show that the limit is equal to the spectral radius. The radius of
convergence of the series

∑
n z

n+1Tn is (lim supn ‖Tn‖1/n)−1. Thus, if we take

|λ| > lim supn ‖Tn‖1/n the series S :=
∑
n T

n/λn+1 converges. Easily we see that
S(λId−T ) = (λId−T )S = Id. In particular λ ∈ ρ(T ) and S = Rλ(T ). This yields

r(T ) ≤ lim sup
n→∞

‖Tn‖1/n = lim
n→∞

‖Tn‖1/n.

Next, we prove that the spectral radius cannot be smaller. If σ(T ) ∩ B(0, r)c 6= ∅
for some r < limn ‖Tn‖1/n then

Rλ(T ) = (λId− T )−1 =
1

λ

(
Id− 1

λ
T

)−1

is analytic for |λ| > r. We then have z → (1 − zT )−1 is analytic on B(0, r−1)
and then the radius of convergence of the power series

∑
n z

nTn, that is equal

to lim supn ‖Tn‖1/n would be greater than r−1. But by hypothesis r−1 >
(limn ‖Tn‖1/n)−1. Contradiction. �

Remark 2.23. Because of possible nilpotent component, the spectral radius is not
equal to the norm in general. For instance for

H :=

(
0 1
0 0

)
we have 0 = rad(H) < ‖H‖.

Proposition 2.24 (Identities of the resolvent). Let S, T ∈ L(H).

1) Suppose that λ ∈ ρ(S) ∩ ρ(T ). We have:

Rλ(T )−Rλ(S) = Rλ(T )(T − S)Rλ(S).

2) Suppose that λ, µ ∈ ρ(T ), then

Rλ(T )−Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ) = (µ− λ)Rµ(T )Rλ(T ).

In particular Rλ and Rµ commute.
3) The map R·(T ) := λ 7→ Rλ(T ) acting from ρ(T ) into GL(H) is differentiable

with derivative:
dRλ
dλ

= −R2
λ.

Proof. We have:

(λId− T )−1 − (λId− S)−1 =

= (λId− T )−1(λId− S)(λId− S)−1 − (λId− T )−1(λId− T )(λId− S)−1

= (λId− T )−1((λId− S)− (λId− T ))(λId− S)−1

= (λId− T )−1(T − S)(λId− S)−1.

2) similar.
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3) By the previous proposition we have that T 7→ T−1 is continuous. This implies
that λ 7→ Rλ(T ) is continuous on ρ(T ). We therefore use 2):

Rλ0
(T )−Rλ(T )

λ0 − λ
= −Rλ0(T )Rλ(T ).

and let λ tend to λ0 to conclude. �

By bootstrap we see that the third property implies that the resolvent is infinitely
differentiable on the resolvent set. We have actually a stronger result.

Proposition 2.25 (Analycity of the resolvent). Let T ∈ L(H). The map
R·(T ) := λ 7→ Rλ(T ) is analytic on ρ(T ). Given λ0 ∈ ρ(T ), then for all
λ ∈ D(λ0, ‖Rλ0

‖−1) ⊂ ρ(T ) we have:

Rλ =
∑
n≥0

(−1)nRn+1
λ0

(λ− λ0)n.

Moreover, we have:

‖Rλ0
‖ ≥ 1

d(σ(T ), λ0)
,(2.3.1)

where d(σ(T ), λ0) := inf(|z − λ0|, z ∈ σ(T )).

Proof. We have ‖(λ− λ0)Rλ0
‖ < 1 and the power series∑
n≥0

(−Rλ0
(λ− λ0))n

converges normally in L(X ) and therefore converges (because H is a Hilbert). Set

Sλ := Rλ0

∑
n≥0

(−Rλ0(λ− λ0))n =
∑
n≥0

(−1)nRn+1
λ0

(λ− λ0)n.

Hence we have:

(λId− T )Sλ = (λ0Id− T )Sλ + (λ− λ0)Sλ

=
∑
n≥0

(−1)nRnλ0
(λ− λ0)n −

∑
n≥0

(−1)n+1Rn+1
λ0

(λ− λ0)n+1 = Id.

Similarly Sλ(λId − T ) = Id. Therefore we have λ ∈ D(λ0, ‖Rλ0
‖−1), Rλ = Sλ.

Moreover, as ‖(λ0 − λ)Rλ0
‖ < 1 implies λ ∈ ρ(T ), by taking the contraposition we

obtain that if λ ∈ σ(T ) then

‖Rλ0
‖ ≥ 1

|λ− λ0|
≥ 1

d(σ(T ), λ0)
.

This ends the proof. �

Proposition 2.26. Let T ∈ L(H) where H is a complex Hilbert space. Then
σ(T ) 6= ∅.

Remark 2.27. This proposition is wrong when H is real. Take for instance(
0 1
−1 0

)
.

It has no eigenvalue.
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Proof. If σ(T ) = ∅, then λ 7→ Rλ(T ) is analytic on C. For |λ| ≥ ‖T‖, we have:

Rλ(T ) =
1

λ

∑
n≥0

(
1

λ
T

)n
.

Then, we see that Rλ tends to 0 when |λ| tends to ∞.

In particular, supλ∈C ‖Rλ‖ <∞. For all x, y ∈ H we have that λ→ 〈x,Rλy〉 is an
analytic and bounded function on C. Liouville theorem ensures that 〈x,Rλy〉 = 0
for all λ ∈ C. We conclude that Rλ = 0 for all λ ∈ C. This is a contradiction with
the definition of invertibility. �

2.4. Adjoint of an operator. We first recall the Riesz’s isomorphism.

Proposition 2.28 (Riesz’s isomorphism). Set φ ∈ H′, where H′ is the set of anti-
linear continuous forms defined on H. Then there exists a unique xφ ∈ H such
that

φ(x) = 〈x, xφ〉,
for all x ∈ H. Moreover ‖xφ‖H = ‖φ‖H′ .

Remark 2.29. Here we have chosen the space of anti-linear forms instead of the
space of linear forms. It seems a bit peculiar but this provides that

Φ :

{
H′ → H
φ 7→ xφ

is a (linear) isomorphism of Hilbert spaces.

Proof. First we check that ‖x 7→ 〈x, xφ〉‖ = ‖xφ‖. If xφ = 0, this is clear. Suppose
that it is not zero. On one side we have:

|〈x, xφ〉| ≤ ‖x‖ · ‖xφ‖,
for all x ∈H . On the other side:∣∣∣∣〈 xφ

‖xφ‖
, xφ

〉∣∣∣∣ = ‖xφ‖.

We turn to unicity. If xφ and x′φ are both solutions, then

〈x, xφ − x′φ〉 = 0,

for all x ∈H . By taking x = xφ− x′φ, we obtain that ‖xφ− x′φ‖ = 0 and therefore

that xφ = x′φ.

We turn to the construction. If φ = 0 set xφ = 0. Set φ ∈ H′ non-zero. Since φ
is continuous, its kernel is of co-dimension 1. Let Y be the orthogonal of ker(φ) in
H, i.e.,

H = Y ⊥ ker(φ).

Let y ∈ Y such that ‖y‖ = 1. Set

ψ(x) := 〈x, φ(y) · y〉.
First note that ψ and φ are 0 on ker(φ), because Y ⊥ ker(φ). Then

ψ(y) = 〈y, φ(y) · y〉 = φ(y) · ‖y‖2 = φ(y)

and therefore ψ = φ on Y . We conclude that φ = ψ on H. �
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In this course we focus on the study of bounded operators. In particular, we shall
not discuss the notion of adjoint of a unbounded self-adjoint operator.

Proposition 2.30. Set T ∈ L(H). There is a unique S ∈ L(H) so that

〈x, Ty〉 = 〈Sx, y〉,
for all x, y ∈ H. We denote it by T ∗ := S. Moreover, we have:

‖T‖ = ‖T ∗‖.

Proof. Given x ∈ H, by Riesz, there is x̃ ∈ H such that

〈x, Ty〉 = 〈x̃, y〉, for all y ∈ H.

Note that S := x 7→ x̃ is linear. Moreover,

‖Sx‖ = ‖x̃‖ = sup
‖y‖=1

〈x̃, y〉 = sup
‖y‖=1

〈x, Ty〉 ≤ ‖x‖ · ‖T‖.

Therefore S ∈ L(H ) and ‖S‖ ≤ ‖T‖. Finally, since 〈Sx, y〉 = 〈X,Ty〉, we also
have:

‖Ty‖ = sup
‖x‖=1

〈x̃, Ty〉 = sup
‖x‖=1

〈S̃x, y〉 ≤ ‖S‖ · ‖y‖.

Hence ‖S‖ = ‖T‖. �

Remark 2.31. We have T ∗∗ = T .

Proposition 2.32. Given T ∈ L(X), we have:

‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2.

Proof. First, ‖TT ∗‖ ≤ ‖T ∗‖ · ‖T‖ = ‖T‖2. Then, we have

‖Tx‖2 = |〈Tx, Tx〉| = |〈x, T ∗Tx〉| ≤ ‖x‖2‖T ∗T‖,
for all x ∈ H . In particular ‖T‖2 ≤ ‖T ∗T‖. This gives the last equality. For the
first one, use the last one with T ∗ instead of T and recall that ‖T‖ = ‖T ∗‖. �

Definition 2.33. Let T ∈ L(H),

1) T is normal if T ∗T = TT ∗.
2) T is self-adjoint if T = T ∗.
3) T is unitary if T ∗T = TT ∗ = Id.

Exercise 2.1. Set T ∈ L(H). Using the polarisation identity, prove that T is
unitary if and only T is surjective and is an isometry, i.e., ‖Tx‖ = ‖x‖, for all
x ∈ H.

Proposition 2.34. Let T ∈ L(H). For all λ ∈ C,

1) ker(λId− T ) = Im(λId− T ∗)⊥,

2) ker(λId− T )⊥ = Im(λId− T ∗).

Proof. For 1), we have:

x ∈ ker(λId− T )⇔ λx− Tx = 0⇔ 〈λx− Tx, y〉 = 0, for ally ∈ H,
⇔ 〈x, λy − T ∗y〉 = 0, for all y ∈ H

⇔ x ∈ Im(λId− T ∗)⊥.
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Then, for 2), recall that for a vector space X, we have X = (X⊥)⊥. �

Proposition 2.35. Let T ∈ L(H) be self-adjoint. Then

1) σ(T ) ⊂ R.
2) For z ∈ C \ R, we have z /∈ σ(T ) and

‖(zId− T )−1‖ ≤ 1

=(z)
.

3) Let λ1 and λ2 two distincts eigenvalues of T , Then ker(λ1Id−T ) ⊥ ker(λ2Id−T ).
4) T has at most a countable number of eigenvalues.

Proof. 1) Let z = a+ ib with a, b ∈ R. For all x ∈H , we have:

‖(zId− T )x‖2 = ‖(aId− T )x+ ibx‖2

= ‖(aId− T )x‖2 + ‖bx‖2 + 〈(aId− T )x, ibx〉+ 〈ibx, (aId− T )x〉︸ ︷︷ ︸
=0

≥ |=(z)|2 · ‖x‖2.(2.4.2)

Therefore zId−T is injective. Similarly, zId−T ∗ is also injective. We deduce from
the previous proposition that zId − T has dense image. Using (2.4.2) and some
Cauchy sequence sequences we infer that the image is closed. The operator zId−T
is bijective. In particular σ(T ) ⊂ R.

2) We apply (2.4.2) with x = (zId− T )−1y to get

‖(zId− T )−1x‖ ≤ 1

|=z|
‖x‖,

for all x ∈H .

3) Let x1 ∈ ker(λ1Id − T ) \ {0} and x2 ∈ ker(λ2Id − T ) \ {0}. Since λ1 6= λ2, one
of them is non-zero, say λ1 6= 0. We have:

〈x1, x2〉 =
1

λ1
〈Tx1, x2〉 =

1

λ1
〈x1, Tx2〉 =

λ2

λ1
〈x1, x2〉.

If 〈x1, x2〉 6= 0, then λ1 = λ2. Contradiction.

4) By 3), the eigenspaces are two by two orthogonal. Suppose that the algebraical
dimension of the eigenspaces is non-countable. We take xi, with norm being 1 in
every subspaces. This is a uncountable Hilbert basis for the Hilbert space given by
the closure of the direct sum of the eigenspaces. Hence, the initial Hilbert space is
not separable. Contradiction. �

Proposition 2.36. Let T ∈ L(H) be self-adjoint. Then

‖A‖ = sup
‖x‖=‖y‖=1

|〈x,Ay〉| = sup
‖x‖=1

|〈x,Ax〉|.

Proof. First we have:

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=‖y‖=1

|〈y,Ax〉|,

where we used the Riesz’s isomorphism in the second inequality. Indeed, the anti-
linear form y 7→ 〈y,Ax〉 has norm ‖Ax‖ which is in turn equal to sup‖y‖=1 |〈y,Ax〉|.
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We turn to the second equality. Set a := sup‖x‖=‖y‖=1 |〈x,Ay〉|. It is enough to

show that |〈x,Ay〉| ≤ a for all x and y such that ‖x‖ = ‖y‖ = 1. If 〈x,Ay〉 = 0
there is nothing to do so we suppose it is non-zero. Set

b :=
〈x,Ay〉
|〈x,Ay〉|

,

whose norm is 1. By polarisation, we have:

|〈x,Ay〉| = 〈x,Aλy〉 = <〈x,Aλy〉 = <

1

4

3∑
k=0

ik 〈ikx+ λy,A(ikx+ λy)〉︸ ︷︷ ︸
∈R


=

1

4
(〈x+ λy,A(x+ λy)〉 − 〈−x+ λy,A(−x+ λy)〉)

≤ a

4

(
‖x+ λy‖2 + ‖ − x+ λy‖2

)
≤ α,

where we used in the last equality that ‖x‖ = ‖y‖ = |b| = 1. �

Proposition 2.37. Let T ∈ L(H) be self-adjoint. Let

m := inf{〈x, Tx〉, x ∈ H with ‖x‖ = 1}
M := sup{〈x, Tx〉, x ∈ H with ‖x‖ = 1}.

Then σ(T ) ⊂ [m,M ]. Moreover, m and M belong to σ(T ). In particular

‖T‖ = max(|m|, |M |)

and ‖T‖ ∈ |σ(T )|.

Proof. We have 〈x, Tx〉 ≥ m‖x‖2, for all x ∈H . Therefore for ε > 0, we get

〈x, (T − (m− ε)Id)x〉 ≥ ε‖x‖2,

for all x ∈H . Using Cauchy sequences, we deduce that (T − (m−ε)Id) is injective
and with closed range. Taking the adjoint, we also infer that the range is dense in
H . Then (T − (m − ε)Id) is bijective and therefore ] −∞,m[⊂ ρ(T ). Repeating
with −T we also get ]M,∞[⊂ ρ(T ).

Set now S := mId + T . We have that 〈x, Sx〉 ≥ 0. By the previous proposition,
‖S‖ = M +m. Then since the spectral radius is equal to the norm in the case of a
self-adjoint operator, we infer that, M +m ∈ σ(S) = σ(T ) +m. Then M ∈ σ(T ).
Repeat the proof with S := M Id− T for m.

The link with ‖T‖ is given by Proposition 2.36. �

We can also compute the spectrum with the help of approximate eigenvalues:

Proposition 2.38. Let H ∈ L(H) be self-adjoint. Then λ ∈ σ(H) if and only if

∃fn ∈ H, ‖fn‖ = 1 and ‖(H − λ)fn‖ → 0.

Proof. Take λ ∈ σ(H). Since σ(H) ⊂ R, (2.3.1) ensures that there are λn ∈ ρ(H)
such that λn → λ and such that ‖(H − λId)−1‖ → ∞, when n→∞. For all ε > 0,
there exist yn ∈ H with norm 1 such that

‖(H − λnId)−1yn‖ ≥ (1− ε)‖(H − λnId)−1‖.
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Then, set

fn :=
(H − λnId)−1yn
‖(H − λnId)−1yn‖

.

Note that ‖fn‖ = 1. Next, remark that

‖(H − λId)fn‖ ≤ |λ− λn|+ ‖(H − λn)fn‖

≤ |λ− λn|+
‖yn‖

(1− ε)‖(H − λnId)−1‖
→ 0,

as n→∞. Therefore λ is an approximate eigenvalue for H.

Suppose now that λ is an approximate eigenvalue for H. Suppose also that λ ∈
ρ(H). As (H − λ)−1 ∈ L(H), there is c > 0 such that

‖(H − λ)−1x‖ ≤ c‖x‖, for all x ∈ H.
In particular, by taking x = (H − λ)fn, we infer

1 = ‖fn‖ ≤ c‖(H − λ)fn‖ → 0, as n→∞.
This a contradiction. Hence, λ ∈ σ(H). �

2.5. Few words about compact operators. We recall the main properties of
compact operators. We refer for instance to [RS1, Section VI.5] for the proofs.

Definition 2.39. Let T ∈ L(X ,Y), where X and Y are two Banach spaces. We
say that T is a compact operator if TBX (0, 1) is relatively compact. We denote
the set of compact operators by K(X ,Y) and simply by K(X ) if X = Y.

Theorem 2.40. Let H be a Hilbert space with dim(H) =∞ and let K ∈ K(H).

1) 0 ∈ σ(K).
2) σ(K) \ {0} is exclusively constituted of eigenvalues of finite multiplicity. They

can accumulate solely in 0.
3) Assume also that K is self-adjoint. Let {0} ∪ {λn}n∈I be the spectrum of K.

Denoting by fn the eigenfunctions of K associated to λn we have that

H = ker(K)
⊕
⊕n∈ICfn.

The compact operators have the property to improve the convergence.

Proposition 2.41. Let K ∈ K(H). Let fn that tends weakly to f in H, i.e.,
〈fn, g〉 → 〈f, g〉, for all g ∈ H, as n→∞. Then,

1) There is M > 0 such that ‖fn‖ ≤M , for all n ∈ N.
2) Kfn tends in norm to Kf , i.e., ‖K(fn − f)‖ → 0 as n→∞.

Proposition 2.42. Let K ∈ K(H). Let Tn ∈ L(H) for n ∈ N and T ∈ L(H).

1) Assume that Tn tends weakly to T , i.e.,

〈Tnf, g〉 → 〈Tf, g〉,
for all f, g ∈ H, as n → ∞. Then there is M > 0 such that ‖Tn‖ ≤ M , for all
n ∈ N. Moreover, KTn tends strongly to KT , i.e.,

‖KTnf‖ → ‖KTf‖,
for all f ∈ H, as n→∞.
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2) Assume that KTn tends strongly to T , then there is M > 0 such that ‖Tn‖ ≤M ,
for all n ∈ N. Moreover, KTn tends in norm to KT , i.e. ‖KTn −KT‖ → 0, as
n→∞.

Note that

norm convergence ⇒ strong convergence ⇒ weak convergence.

2.6. Operators of multiplication. We start with the discrete case.

Proposition 2.43. Let H := `2(N;C). Let F ∈ `∞(N;C). We denote by F (Q) the
operator of multiplication by F , i.e., for all f ∈ H,

(F (Q)f)(n) := F (n)f(n), for all n ∈ N.

1) F (Q) is bounded.
2) F (Q) is normal.
3) F (Q) is self-adjoint if and only if F (n) ∈ R, for all n ∈ N.
4) F (Q) is unitary if and only if |F (n)| = 1, for all n ∈ N.
5) Given λ ∈ C, we have:

ker(λId− F (Q)) = {f ∈ `2(N;C) with support in F−1({λ})}.
In particular ∪n∈N{F (n)} is the set of eigenvalues of F (Q).

6) σ(F (Q)) = ∪n∈N{F (n)}.
7) F (Q) is compact if and only if limn→∞ F (n) = 0.
8) F (Q) is of finite rank if and only if F has finite support.

Proof. 1) The operator is bounded because:

‖F (Q)f‖2 =
∑
n∈N
|F (n)f(n)|2 ≤ ‖F‖2∞‖f‖2.

Then note that (F (Q))∗ = F (Q). Therefore, 2), 3) and 4) follow directly.

5) Set λ ∈ C. Let f be with support in F−1({λ}). We obtain

F (n)f(n) = λf(n), ∀n ∈ N.(2.6.3)

because f(n) = 0 when F (n) 6= λ. Hence f ∈ ker(λId − F (Q)). Reciprocally,
suppose that f ∈ ker(λId−F (Q)). This yields (2.6.3). Given n such that F (n) 6= λ
we infer from (F (n) − λ)f(n) = 0 that f(n) = 0. In particular, f is with support
in F−1({λ}).

6) By 5), since the spectrum is closed, we obtain ∪n∈N{F (n)} ⊂ σ(F (Q)). Let

λ /∈ ∪n∈N{F (n)}. Set

G(n) :=
1

λ− F (n)
.

Since λ /∈ ∪n∈N{F (n)}, note that G ∈ `∞(N;C). In particular, by 1), G(Q) is
bounded. Finally observe that

(F (Q)− λId)G = G(F (Q)− λId) = Id.

Hence λ /∈ σ(F (Q)). By contraposition, this yields σ(F (Q)) ⊂ ∪n∈N{F (n)}.

7) Suppose that F (Q) is compact. Therefore the spectrum of F (Q) is the union
of {0} and of a sequence (that could be finite or empty) of non-zero eigenvalues



16 SYLVAIN GOLÉNIA

that converges to 0. Recalling 5) we obtain that limn→∞ F (n) = 0. Suppose now
that (F (n))n∈N does not converges to 0, since the sequence is bounded there is a
subsequence (F (ϕ(n)))n∈N that converges to some λ 6= 0, where ϕ is an increasing
function. Suppose that F (Q) is compact. We have that ‖δϕ(n)‖ = 1 and that
(δϕ(n))n tends weakly to 0. By compactness of F (Q), as n→∞, F (Q)δϕ(n) tends
to 0. However, ‖F (Q)δϕ(n))‖ tends to |λ| 6= 0. Contradiction.

8) Note that ran(F (Q)) = {F (Q)f, f ∈ `2(N;C)}). If F is with finite support,
clearly dim ran(F (Q)) is a finite dimension. Suppose that F (Q) is of finite rank,
then the spectrum of F (Q) is given by {0} and a finite number of eigenvalue of
finite multiplicity. Using 5), we infer that F is with finite support. �

Exercise 2.2. Let H := `2(N;C). Give F ∈ `∞(N;C) such that σ(F (Q)) = [0, 2].

We now turn to the continuous case. Here [0, 1] plays no special rôle but is here to
fix ideas. One could redo the proof with X being a compact set of Rn with almost
no change.

Proposition 2.44. Let H := L2([0, 1];C). Let F ∈ C0([0, 1];C). We denote by
F (Q) the operator of multiplication by F , i.e., for all f ∈ H,

(F (Q)f)(x) := F (x)f(x), for all x ∈ [0, 1].

1) F (Q) is bounded.
2) F (Q) is normal.
3) F (Q) is self-adjoint if and only if F (x) ∈ R, for all x ∈ [0, 1].
4) F (Q) is unitary if and only if |F (x)| = 1, for all x ∈ [0, 1].
5) λ is an eigenvalue of F (Q) if and only if F−1({λ}) is of non-empty interior. It

this holds, λ is an eigenvalue of infinite multiplicity.
6) σ(F (Q)) = F ([0, 1]).
7) F (Q) is compact if and only if F ≡ 0

Proof. Since F is continuous and [0, 1] compact, ‖F‖∞ is finite. Then, for all
f ∈ L2([0, 1]), we have:

‖F (Q)f‖2 ≤
∫ 1

0

|f(x)|2 · |F (x)|2 dx ≤ ‖F‖2∞‖f‖2.

Then note that (F (Q))∗ = F (Q). Therefore, 2), 3) and 4) follow directly.

5) If g ∈ ker(F (Q)− λId) \ {0}, we have that:

(F (x)− λ)g(x) = 0, pour tout x ∈ [0, 1].

On the other hand, g−1({0}) is closed, because g is continuous. Then, for all
x0 ∈ g−1(C \ {0}), there exists an open neighbourhood Vx0

of x0 such that Vx0
⊂

g−1(C \ {0}). On Vx0 , we can divide by g(x) and infer:

(F (x)− λ) = 0, for all x ∈ Vx0
.

We conclude that Vx0
⊂ f−1({λ}) has non-empty interior.

Suppose now that F−1({λ}) has non-empty interior. There exists an open and
non-empty interval O such that O ⊂ F−1({λ}). For all g ∈ C([0, 1];C) non-zero
and with support in O, we have

(F (x)− λ)g(x) = 0, for all x ∈ [0, 1].
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Thus, g ∈ ker(F (Q)− λId) \ {0}. Moreover, for all N ∈ N∗ and all i ∈ {1, . . . , N},
we can construct gi ∈ C([0, 1];C)\{0} with support in O and such that the supports
are two by two disjoint. The function gi are linearly independent and eigenvalues of
F (Q) associated to λ. Therefore, for all N ∈ N∗, we have dim ker(Tf − λId) ≥ N .

6) If F−1(λ) = ∅, we have that F (x)− λ 6= 0, for all x ∈ [0, 1]. In particular, since
F si continuous, inf |f(x)− λ| > 0 and x 7→ 1/(f(x)− λ) is continuous. Therefore
1/(F (Q)− λ) is bounded and

(F (Q)− λ)
1

F (Q)− λ
=

1

F (Q)− λ
(F (Q)− λ) = Id.

Hence, λ ∈ ρ(F (Q)− λ).

Suppose now that there is x0 ∈ [0, 1] such that F (x0) = λ. If there is an open
neighbourhood O of x0 such that F (O) = λ, then λ is an eigenvalue. If this is not
the case, for all ε > 0 there exists an open interval I =]x0, x0 + η[ or ]x0 − η, x0[
for some η > 0 such that 0 < |F (x)− λ| < ε for all x ∈ I. Suppose that F (Q)− λ
is invertible. There is a bounded operator B such that, for all g ∈ L2([0, 1];C). We
infer that

(F (x)− λ)(Bg)(x) = g(x), a.e.

In particular, for almost x ∈ I, we have:

(Bg)(x) =
1

F (x)− λ
g(x), a.e. in ∈ I.

To fix ideas, take I =]x0, x0 + η[. Set gn(x) := 1[x0,x0+1/n]

√
n. We have ‖gn‖ = 1

and for n large enough

|(Bgn)(x)| ≥ 1

ε
|gn(x)|, a.e. in ∈ I.

In particular

‖B‖ ≥ 1

ε
.

By letting ε goes to 0, this yields that the norm of B is not finite. We conclude
that λ ∈ σ(F (Q)) is not invertible.

Finally we turn to 7). If F ≡ 0 this is clear. Suppose that F (Q) is compact. Then
recalling that σ(F (Q)) \ {0} is constituted of eigenvalues of finite multiplicity, 5)
implies that σ(F (Q)) = {0}. By 6) we conclude that F ≡ 0. �

Exercise 2.3. State this result for F ∈ L∞([0, 1];C).

3. Examples of self-adjoint operators acting on the discrete line

We now develop the spectral analysis of some basic but important models.

3.1. The adjacency matrix acting on Z. Let H := `2(Z;C). We define the
adjacency matrix by:

(Af)(n) := f(n− 1) + f(n+ 1), for f ∈ H.
It is a self-adjoint operator. Indeed we have for all g, f ∈ H:

〈f,Ag〉 =
∑
n∈Z

f(n) (g(n+ 1) + g(n− 1)) =
∑
n∈Z

f(n+ 1) + f(n− 1)g(n) = 〈Af, g〉



18 SYLVAIN GOLÉNIA

The Fourier transform F : `2(Z)→ L2([−π, π]) is defined by

(Ff)(x) :=
1√
2π

∑
n

f(n)e−ixn, for all f ∈ `2(Z) and x ∈ [−π, π].

It is unitary and its inverse is given by:

(F−1f)(k) =
1√
2π

∫ π

−π
f(x)eikx dx, for all f ∈ L2([π, π]) and k ∈ Z.

We take advantage of the Fourier Transform to study A and set:

Ã := FAF−1.

Let f ∈ L2([−π, π]). We have:

(Ãf)(x) = F (AF−1f)(x) =
1√
2π

∑
n

e−ixn(AF−1f)(n)

=
1√
2π

∑
n

e−ixn
(
(F−1f)(n+ 1) + (F−1f)(n− 1)

)
=

1

2π

∑
n

e−ixn

∫ π

−π

(
ei(n+1)tf(t) + ei(n−1)tf(t)

)
dt

=
1

2π

∑
n

e−ixn

∫ π

−π
eint2 cos(t)f(t) dt = 2 cos(t)f(t).

Therefore

Ã := FAF−1 = 2 cos(Q).

In particular by Proposition 2.44

σ(A) = [−2, 2]

and A has no eigenvalue.

Exercise 3.1. Compute the spectrum of A using the approximate eigenvalues ap-
proach.

3.2. The adjacency matrix acting on N. We turn to the half-line version. Let
H := `2(N;C). For f ∈ `2(N), we define the adjacency matrix by:

(Af)(n) :=

{
f(n− 1) + f(n+ 1), if n ≥ 1,
f(1), if n = 0.

The Fourier transform F : `2(N)→ L2
odd([−π, π]) is defined by

(Ff)(x) :=
1√
2π

∑
n∈N

f(n+ 1) sin((n+ 1)x), for all f ∈ `2(N) and x ∈ [−π, π].

It is unitary.

We take advantage of this Fourier transform and obtain similarly

Ã := FAF−1 = 2 cos(Q).
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In particular:

σ(A) = [−2, 2],

and A has no eigenvalue.

Exercise 3.2. Compute F−1 and show that Ã = 2 cos(Q).

3.3. The discret Dirac operator acting on Z. Next, we study properties of
relativistic (massive or not) charged particles with spin-1/2. We follow the Dirac
formalism, see [Di]. We shall focus on the 1-dimensional discrete version of the
problem to simplify. The mass of the particle is given by m ≥ 0. For simplicity,
we re-normalize the speed of light and the reduced Planck constant by 1. Let
H := `2(Z;C2), endowed with the scalar product

〈f, g〉 =
∑
n∈Z
〈f(n), g(n)〉C2 =

∑
n∈Z

f1(n)g2(n) + f2(n)g2(n).

where f, g ∈ H, f(n) =

(
f1(n)
f2(n)

)
and g(n) =

(
g1(n)
g2(n)

)
.

The Dirac discrete operator, acting on `2(Z;C2), is defined by

Dm :=

(
m d
d∗ −m

)
,

where d := Id− τ and τ is the right shift, defined by

τf(n) = f(n+ 1), for all f ∈ `2(Z;C).

Note that τ∗f(n) = f(n− 1), for all f ∈ `2(Z;C).

The operator Dm is self-adjoint and we have:

D2
m =

(
∆ +m2 0
0 ∆ +m2

)
,

where ∆ = 2−AZ. Recall that σ(∆) = 2− σ(AZ) = [0, 4].

Since we have a direct sum, we have:

σ(D2
m) = [m2,m2 + 4].

To remove the square above Dm, we define the symmetry S on `2(Z;C) by

Sf(n) = f(−n)

and the unitary operator on `2(Z;C2)

U :=

(
0 iS
−iS 0

)
.

Clearly U = U∗ = U−1. We have that

UDmU = −Dm.

In particular, we have

σ(Dm) = σ(−Dm) =
[
−
√
m2 + 4,−m

]
∪
[
m,
√
m2 + 4

]
and Dm has no eigenvalue. We refer to [GH] for a further spectral analysis of this
model and references therein.
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Exercise 3.3. Show that Dm is unitarily equivalent to( √
m2 + 2− 2 cos(Q) 0

0 −
√
m2 + 2− 2 cos(Q)

)
,

which acts in L2([−π, π];C2). Compute the spectrum in an alternative way.

4. Operator acting on graphs

4.1. Boundedness. There are many type of discret graphs. Here we stick to the
two of them. Let V be a finite or countable set and let E := V × V → {0, 1} such
that

E (x, y) = E (y, x), for all x, y ∈ V .

We say that G := (V ,E ) is an non-oriented graph with edges E and vertices V .

We say that x, y ∈ V are neighbours if E (x, y) = 1. We write x ∼ y and N (x) :=
{y ∈ V, x ∼ y}.

The degree of x ∈ V is given by:

degG(x) := |{y ∈ E | x ∼ y}|.

In the sequel we suppose:

Hypotheses: degG(x) <∞ and E (x, x) = 0 for all x ∈ V .

Set

H := `2(V ;C) := {f : V → C,
∑
x∈V
|f(x)|2 <∞},

endowed with 〈f, g〉 :=
∑
x∈V f(x)g(x). We set also

Cc(V ) := {f : V → C with finite support}.
The Laplacian is given by:

∆f(x) =
∑
y∼x

(f(x)− f(y)), for all f ∈ Cc(V ).

The adjacency matrix is given by

Af(x) =
∑
y∼x

f(y), for all f ∈ Cc(V ).

Note that ∆ = degG(Q)−A. They are both symmetric on Cc(V).

Proposition 4.1. We have:

1) The following equivalences hold true:

∆ bounded ⇐⇒ A bounded⇐⇒ deg(·) bounded.

In particular, is deg(·) is bounded then ∆ and A are self-adjoint.
2) The following estimate hold true:

0 ≤ 〈f,∆f〉 ≤ 2〈f, deg(Q)f〉, for all f ∈ Cc(V ).

In particular, σ(∆) ⊂ [0, 2 supx∈V deg(x)].
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Proof. We start with the second point.

〈f,∆f〉 =
1

2

∑
x∈V

∑
y∈V

E (x, y)|f(x)− f(y)|2

≤
∑
x∈V

∑
y∼x

(|f(x)|2 + |f(y)|2) = 2〈f, deg(Q)f〉,

for f ∈ Cc(V ).

We turn to the first point. For ∆, using 2) and that 〈δx,∆δx〉 = deg(x) we have
the equivalence between ∆ and deg.

We focus on A.

|〈f,Af〉| =

∣∣∣∣∣∑
x∈V

f(x)
∑
y∼x

f(y)

∣∣∣∣∣ ≤ 1

2

∑
x

∑
y∼x

(
|f(x)|2 + |f(y)|2

)
= 〈f, deg(Q)f〉.

Therefore, by Proposition 2.36, if deg is bounded, A is bounded. We turn to the
other implication, since E(x, y) ∈ {0, 1}, we have:

‖A|f | ‖2 =
∑
x

∣∣∣∣∣∑
y∼x
E(x, y)|f(y)|

∣∣∣∣∣
2

≥
∑
x

∑
y∼x
E(x, y) |f(y)|2 =

∑
x

∑
y∼x
E(x, y) |f(x)|2

= 〈f, deg(Q)f〉.

Therefore,

sup
‖f‖=1

|〈f, deg(Q)f〉| ≤ sup
‖f‖=1

‖A|f | ‖2 ≤ ‖A‖2.

Again Proposition 2.36 concludes that deg(Q) is bounded. It ends the proof. �

4.2. Case of a tree. Consider a tree G = (E ,V), a connected graph with no cycle.
Due to its structure, one can take any point of V to be a root. We denote it by ε.

ε S0

• • S1

• • • • • • S2

We define inductively the spheres Sn by S−1 = ∅, S0 := {ε}, and Sn+1 := N (Sn) \
Sn−1. Given n ∈ N, x ∈ Sn, and y ∈ N (x), one sees that y ∈ Sn−1 ∪ Sn+1.

We write x ∼> y and say that x is a son of y, if y ∈ Sn−1, while we write x <∼ y
and say that x is a father of y, if y ∈ Sn+1.

Notice that ε has no father.
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Given x 6= ε, note that there is a unique y ∈ V with x ∼> y, i.e., everyone apart
from ε has one and only one father. We denote the father of x by ←−x .

Given x ∈ Sn, we set `(x) := n, the length of x. The offspring of an element x is
given by

off(x) := |{y ∈ N (x), y ∼> x}|,
i.e., it is the number of sons of x. When `(x) ≥ 1, note that off(x) = deg(x)− 1.

We consider the tree G = (E ,V) with uniform offspring sequence (bn)n∈N, i.e., every
x ∈ Sn has bn sons. We define:

(Uf)(x) := 1{∪n≥1Sn}(x)
1√
b
`
(
←−x
) f(←−x ), for f ∈ `2(V).

Easily, one get ‖Uf‖ = ‖f‖, for all f ∈ `2(V). The adjoint U∗ of U is given by

(U∗f)(x) :=
1√
b`(x)

∑
y∼>x

f(y), for f ∈ `2(V).

Note that one has:

(AGf)(x) =
√
b`(←−x ) (Uf)(x) +

√
b`(x) (U∗f)(x), for f ∈ Cc(V).

Supposing now that bn ≥ 1 for all n ∈ N, we construct invariant subspaces for AG.

We start by noticing that dim `2(Sn) =
∏
i=0,...,n−1 bn, for n ≥ 1 and dim `2(S0) =

1. Therefore, as U is an isometry, U`2(Sn) = `2(Sn+1) if and only if bn = 1.

Set Q0,0 := `2(S0) and Q0,k := UkQ0,0, for all k ∈ N. Note that dimQ0,k =
dim `2(S0) = 1, for all k ∈ N. Moreover, given f ∈ `2(Sk), one has f ∈ Q0,k if and
only if f is constant on Sk.

We define recursively Qn,n+k for k, n ∈ N. Given n ∈ N, suppose that Qn,n+k is
constructed for all k ∈ N, and set

• Qn+1,n+1 as the orthogonal complement of
⊕

i=0,...,nQi,n+1 in `2(Sn+1),

• Qn+1,n+k+1 := UkQn+1,n+1, for all k ∈ N \ {0}.

We sum-up the construction in the following diagram:
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S0

S1
S2 S3

S4

S5

S6

Figure 1. An antitree with spheres S0, . . . , S6.

We point out that dimQn+1,n+1 = dimQn+1,n+k+1, for all k ∈ N and stress that
it is 0 if and only if bn = 1. Notice that U∗Qn,n = 0, for all n ∈ N.

Set finally Mn :=
⊕

k∈N Qn,n+k and note that `2(G) =
⊕

n∈N Mn. Moreover, one

has that canonically Mn ' `2(N;Qn,n) ' `2(N)⊗Qn,n. In this representation, the
restriction An of A to the space Mn is given by the following tensor product of
Jacobi matrices:

An '


0

√
bn 0 0 · · ·√

bn 0
√
bn+1 0

. . .

0
√
bn+1 0

√
bn+2

. . .
...

. . .
. . .

. . .
. . .

⊗ 1Qn,n .

Now A is given as the direct sum
⊕

n∈NAn in ⊕n∈NMn. This decomposition is
extracted from [GS] and takes roots in [AF].

In particular, for a binary tree, i.e, bn = 2 for all n ∈ N,

An '
√

2


0 1 0 0 · · ·

1 0 1 0
. . .

0 1 0 1
. . .

...
. . .

. . .
. . .

. . .

⊗ 1Qn,n .

Hence, A is the infinite direct sum of copies of
√

2AN.

We obtain that

σ(A) = [−2
√

2, 2
√

2]

and A has no eigenvalue.

4.3. Case of an antitree. We define the class of antitrees. This section is inspired
from [BK, GS2]. The sphere of radius n ∈ N around a vertex v ∈ V is the set
Sn(v) := {w ∈ V | dG(v, w) = n}. A graph is an antitree, if there exists a vertex
v ∈ V such that for all other vertices w ∈ V \ {v}

N (w) = Sn−1(v) ∪ Sn+1(v),

where n = dG(v, w) ≥ 1. The distinguished vertex v is the root of the antitree.
Antitrees are bipartite and enjoy radial symmetry.
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We denote the root by v, the spheres by Sn := Sn(v), and their sizes by sn := |Sn|.
Further, |x| := d(v, x) is the distance of x ∈ V from the root.

The operator P : `2(V)→ `2(V), given by

Pf(x) :=
1

s|x|

∑
y∈S|x|

f(y), for all f ∈ `2(V) and x ∈ V,

averages a function over the spheres. Thereby, P = P 2 = P ∗ is the orthogonal
projection onto the space of radially symmetric functions in `2(V). A function
f : V → C is radially symmetric, if it is constant on spheres, i.e., for all nodes
x, y ∈ V with |x| = |y|, we have f(x) = f(y).

For all radially symmetric f , we define f̃ : N → C, f̃(|x|) := f(x), for all x ∈ V.
Note that

P`2(V ) =

{
f : V → C, f radially symmetric,

∑
n∈N

sn|f̃(n)|2 <∞

}
' `2(N, (sn)n∈N),

where (sn)n∈N is now a sequence of weights.

The key observation is that

A = PAP and ÃPf(|x|) = s|x|−1P̃ f(|x| − 1) + s|x|+1P̃ f(|x|+ 1),

for all f ∈ Cc(V ), with the convention s−1 = 0.

Using the unitary transformation

U : `2(N, (sn)n∈N)→ `2(N), Uf̃(n) =
√
snf̃(n),

we see that A is unitarily equivalent to the direct sum of 0 on (P`2(V ))⊥

and a Jacobi matrix acting on `2(N) with 0 on the diagonal and the sequence
(
√
sn
√
sn+1)n∈N on the off-diagonal.

A ' 0⊕


0

√
s0
√
s1 0 0 · · ·

√
s0
√
s1 0

√
s1
√
s2 0

. . .

0
√
s1
√
s2 0

√
s2
√
s3

. . .
...

. . .
. . .

. . .
. . .

 .

In particular, if sn = 2 for all n ∈ N, σ(A) = [−2, 2] and 0 is the only eigenvalue.
It is of infinite multiplicity.

5. Continuous functional calculus

We pursue the analysis of self-adjoint operator and develop the theory of continuous
functional calculus.

5.1. Point and continuous spectrum. We start with a first decomposition of
the spectrum.

Definition 5.1. Let H be a bounded self-adjoint operator. We set:

Hp := Hp(H) := {f ∈ ker(λ−H), λ ∈ σp(H)}
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the spectral subspace associated to σp(H). We set also:

Hc := Hc(H) := H⊥p
the spectral subspace associated to continuous spectrum of H.

Theorem 5.2 (RAGE). Let H be self-adjoint in H and K be a compact operator
in H. Let φ0 ∈ Hc(H). We have:

1

T

∫ T

0

‖KeitHφ0‖2 dt→ 0, as T →∞,

where eitHφ is the unique solution to the Schrödinger equation:{
i(∂tφ)(t) = (Hφ)(t)

φ(0) = φ0.

The RAGE Theorem due to Ruelle [Rue], Amrein and Georgescu [AG] and Enss
[E]. A proof may be found in [CFKS] for instance.

Remark 5.3. In the previous examples, by taking K = 1X(Q), where X is a finite
set, we see that the if the initial condition is taken in the spectral subspaces asso-
ciated to the continuous spectrum of H then it escapes, in average, every compact
set.

Remark 5.4. We refer to C. Rojas-Molina’s course for a different presentation.
We also mention that she uses this theorem to prove the spectrum is purely point
almost surely in the setting of random Schrödinger operators acting on Zd.

5.2. Motivation and polynomial case. The aim is to localise more precisely in
the spectrum a vector. For instance, one would like to know around which energy
a φ is taken in Hc. We shall build the continuous functional calculus.

We take for instance AZ. We have that

AZ = F2 cos(Q)F−1,

where F is a unitary transform.

Given f ∈ C(σ(AZ)), we can define the

f(AZ) := Ff(2 cos(Q))F−1

Unfortunately, for a general self-adjoint operator H, it is complicate to find such a
unitary transformation. To overcome this problem we will build directly f(H) by
first considering polynomials and then by proceeding by density.

We aim at defining the continuous functional calculus for bounded self-adjoint op-
erator. We start with polynomials. We define the operator P (T ) ∈ L(H) by:

P (T ) :=

n∑
k=0

akT
k, when P (X) :=

n∑
k=0

akX
k, with n ∈ N and ai ∈ C.

Note that, given P,Q ∈ C[X] and λ, µ ∈ C, we have:

(λP + µQ)(T ) = λ(P (T )) + µ(Q(T ))

(PQ)(T ) = P (T )Q(T ) = Q(T )P (T ).
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Proposition 5.5 (Spectral mapping). Given T ∈ L(H) and P ∈ C[X], we have:

P (σ(T )) = σ(P (T ))

Proof. Let λ ∈ C. We have λ root of P (λ) − P . There exists Q ∈ C[X] such that
P (λ)− P (X) = (λ−X)Q(X), then

P (λ)Id− P (T ) = (λId− T )Q(T ) = Q(T )(λId− T ).

If P (λ) /∈ σ(P (T )), we set S := (P (λ)Id− P (T ))−1. We get:

(λId− T )Q(T )S = Id = SQ(T )(λId− T ).

This implies that λId− T is invertible with inverse Q(T )S = SQ(T ). In particular
λ /∈ σ(T ). By contraposition we have proven that P (σ(T )) ⊂ σ(P (T )).

We turn to the reverse inclusion. It is enough to deal with degP = n ≥ 1. Let
µ ∈ σ(P (T )) and λ1, . . . , λn roots of P − µ. We have:

P (X)− µ = c(X − λ1) . . . (X − λn),

for some c 6= 0. This gives:

P (T )− µId = c(T − λ1Id) . . . (T − λnId).

Since µ ∈ σ(P (T )), P (T ) − µId is not invertible, there exist i0 ∈ {1, . . . n} such
that (T − λi0) is not invertible, then λi0 ∈ σ(T ). Moreover, P (λi0) = µ. Hence,
σ(P (T )) ⊂ P (σ(T )). This concludes the proof. �

Let P ∈ C[X] be given by P =
∑n
k=0 akX

k, we set:

P :=

n∑
k=0

akX
k and |P |2 := PP .

We estimate the norm of P (T ) :=
∑n
k=0 akT

k. This step is crucial so as to extend
to the case of continuous functions.

Proposition 5.6. Let P ∈ C[X]. Then P (T )∗ = P (T ) and

‖P (T )‖ = max
t∈σ(T )

|P (t)|.

Note that we have a max because σ(T ) is compact and P is continuous.

Proof. The fact that P (T )∗ = P (T ) follows from T ∗ = T . Using (2.32), we obtain

‖P (T )‖2 = ‖P (T )P (T )∗‖ = ‖P (T )P (T )‖ = ‖|P |2(T )‖.

Note then that |P |2(T ) is self-adjoint because

〈x, |P |2(T )y〉 = 〈x, P (T )P (T )y〉 = 〈P (T )P (T )x, y〉 = 〈|P |2(T )x, y〉,(5.2.4)

for all x, y ∈ H. Moreover |P |2(T ) ≥ 0 because

〈x, |P |2(T )x〉 = 〈P (T )x, P (T )x〉 ≥ 0,(5.2.5)
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for all x ∈ H. Finally,

‖P (T )‖2 = ‖|P |2(T )‖, by (5.2.4)

= maxσ(|P |2(T )), by (5.2.5) and Proposition 2.37

= max
t∈σ(T )

|P |2(t), by Proposition 5.5

=

(
max
t∈σ(T )

|P (t)|
)2

.

which gives the result. �

5.3. The continuous case. We recall the theorem of Stone-Weierstrass, e.g.,
[RS1, Theorem IV.9].

Theorem 5.7 (Stone-Weierstrass). Let K a Hausdorff compact space. Let A be a
sub-algebra of C(K;C), endowed with the uniform norm, such that:

1) If f ∈ A then f ∈ A.
2) A separates points, i.e., for all x 6= y in K, there exists f ∈ A such that

f(x) 6= f(y).
3) The identity belongs to A.

Then A = C(K;C).

We deduce the main theorem.

Theorem 5.8 (Continuous functional calculus). Let T ∈ L(H) be a self-adjoint
operator. There is a unique continuous morphism Φ : C(σ(T )) → L(H) (of ∗-
algebra) satisfying:

1) Φ(P ) = P (T ), for all P ∈ C[X],
2) Φ(f + λg) = Φ(f) + λΦ(g),
3) Φ(fg) = Φ(f)Φ(g),
4) Φ(f) = (Φ(f))∗,

for all f, g ∈ C(σ(T )) and λ ∈ C. Moreover, Φ is an isometry, i.e.,

‖Φ(f)‖ = max
t∈σ(T )

|f(t)|, for all f ∈ C(σ(T )).(5.3.6)

Remark 5.9. In the sequel, we shall denote Φ(f) by f(T ).

Proof. We set
Φ0 : A → L(H),Φ0(f) := f(T )

where
A := {P |σ(T ), with P ∈ C[X]},

endowed with the sup norm.

First note that if P and Q are two polynomials with the same restriction to σ(T ).
Then,

‖P (t)−Q(T )‖ = ‖(P −Q)(T )‖ = max
t∈σ(T )

|(P −Q)(t)| = 0.

This means that P (T ) = Q(T ). Therefore Φ0 is well-defined.
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Notice that Φ0 is an isometry. By Stone-Weierstrass’Theorem we see that A is
dense in C(σ(T )), for the sup norm. By density, there exists a unique linear map

Φ : C(σ(T ))→ L(H)

such that Φ|A = Φ0 and such that ‖Φ‖L(C(σ(T )),H) = ‖Φ0‖L(A,H). Moreover, since
Φ0 satisfy 2, 3 et 4 and that is an isometry, by density Φ also satisfies the points. �

Remark 5.10. We stress that if λ ∈ ρ(T ), we obtain:

‖(λId− T )−1‖ =
1

d(λ, σ(T ))
.

This equality does not hold true in general for bounded operators but also holds true
for normal operators.

We link the functional calculus with the spectrum.

Proposition 5.11. Let H be self-adjoint. We have:

σ(H) = {λ ∈ R, ϕ(H) 6= 0, for all ϕ ∈ C(σ(H);C) with ϕ(λ) 6= 0}

Proof. Let λ ∈ σ(H). Take ϕ ∈ C(σ(H);C) with ϕ(λ) 6= 0. By (5.3.6), we see that
‖ϕ(H)‖ ≥ |ϕ(λ)| 6= 0. In particular, ϕ(H) 6= 0. Assume now that λ /∈ σ(H). There
exists ϕ ∈ C(σ(H);C) such that ϕ(λ) 6= 0 and such that ϕ|σ(H) = 0. By (5.3.6), we
obtain that ‖ϕ(H)‖ = 0, i.e., ϕ(H) = 0. By contraposition we obtain the reverse
inclusion. �

We pursue the link with the spectrum and extend the spectral mapping theorem.

Proposition 5.12 (Spectral mapping). Given T ∈ L(H) self-adjoint and f ∈
C(σ(T );C). Then,

σ(f(T )) = f(σ(T )).

Proof. Let λ /∈ f(σ(T )). We set g(t) := (λ − f(t))−1. We have g ∈ C(σ(T )). By
functional calculus,

g(T )(λId− f(T )) = (λId− f(T ))g(T ) = Id.

Then, λ /∈ σ(f(T )), i.e, σ(f(T )) ⊂ f(σ(T )).

Set now λ ∈ f(σ(T )). For all n ∈ N, we choose gn ∈ Cc(R; [0, 1]) being 1 in λ and
0 away from [λ− 1/n, λ+ 1/n]. By functional calculus,

‖(λId− f(T ))gn(T )‖ = max
t∈[λ−1/n,λ+1/n]∩σ(T )

|(λ− f(t))gn(t)| → 0,

when n→∞.

Note also that ‖gn(T )‖ = 1. Then, there exists a sequence xn with norm 1 such
that ‖gn(T )xn‖ ≥ 1/2. We set

yn :=
gn(T )xn
‖gn(T )xn‖

.

We have ‖yn‖ = 1 and

‖(λId− f(T ))yn‖ ≤ 2‖(λId− f(T ))gn(T )‖ · ‖xn‖ → 0.

In particular λ ∈ σ(f(T )). �

The functional calculus is stable by composition.
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Proposition 5.13. Let T ∈ L(H) be self-adjoint, f ∈ C(σ(T )) and g ∈ C(f(σ(T ))).
Then,

g(f(T )) = (g ◦ f)(T ).

Recall that f(σ(T )) = σ(f(T )). Then g(f(T )) has a meaning by applying the
functional calculus for f(T ).

Proof. Set
A := {g ∈ C(f(σ(T ))), g(f(T )) = (g ◦ f)T}.

Clearly A is an algebra and A contains the function 1. Moreover, the function g
defined by g(x) = x is in A, because g(f(T )) = f(T ) and g ◦ f = f . Besides, the
functions separates points. Take now g ∈ A. We have:

g(f(T )) = (g(f(T )))∗ = ((g ◦ f)(T ))∗ = g ◦ f(T ),

the A is stable by conjugaison. By Stone-Weirstrass, we get: A = C(f(σ(T ))).

It remains to show that A is closed. Let gn ∈ C(f(σ(T ))) that tends to g ∈
(f(σ(T ))) for the sup norm. By functional calculus for f(T ), we see that ‖g(f(T ))−
gn(f(T ))‖ → 0, when n → ∞. Then, by functional calculus for T , as gn ◦ f tends
uniformly to g ◦ f , we have that ‖(g ◦ f)(T )) − (gn ◦ f)(T )‖ → 0, when n → ∞.
Then g ∈ A and A is closed. �

Exercise 5.1. Let H be a self-adjoint operator.

1) Prove that

eitH =

∞∑
n=0

(itH)n

n!
,

where the left hand side is given by functional calculus.
2) Prove that eitH is unitary.

Exercise 5.2. Let H ∈ L(H) such that 〈f,Hf〉 ≥ 0, for all f ∈ H.

1) Prove that H is self-adjoint. (Hint: Use the polarisation identity)
2) Prove that σ(H) ⊂ [0,∞[.
3) Prove that there is (a unique) T self-adjoint with σ(T ) ⊂ [0,∞[, such that

T 2 = H. It is the square root of H.

6. Other functional calculi

We give now more or less explicit ways to deal with the functional calculus of H
self-adjoint.

6.1. The Fourier approach. Let f ∈ L1(R;C). Set

f̂(ξ) :=
1

2π

∫
R
f(t)e−itξ dt,

Assume that f̂ ∈ L1(R;C). Then we have:

f(H) =

∫
R
f̂(ξ)eiξH dξ,

where the integral exists in L(H).
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Exercise 6.1. Where do we use that f̂ ∈ L1(R;C)? Prove the equality.

6.2. The Holomorphic approach. Let f be holomorphic in an open neighbour-
hood Ω of σ(H), where is H is bounded

f(H) =

∫
Γ

f(z)(H − z)−1 dz,

where the integral exists in L(H) and Γ is a contour with indice 1 that circumvents
σ(T ). [Da2, Section 1.5]

6.3. Helffer-Sjöstrand’s formula. For ρ ∈ R, let Sρ be the class of function
ϕ ∈ C∞(R;C) such that

∀k ∈ N, Ck(ϕ) := sup
t∈R
〈t〉−ρ+k|∂kt ϕ(t)| <∞.(6.3.7)

We also write ϕ(k) for ∂kt ϕ. Equiped with the semi-norms defined by (6.3.7), Sρ is
a Fréchet space. Leibniz’formula implies the continuous embedding:

Sρ · Sρ
′
⊂ Sρ+ρ

′
.

Lemma 6.1. Let ϕ ∈ Sρ with ρ ∈ R. For all l ∈ N, there is a smooth function
ϕC : C→ C, call an almost analytic extension of ϕ, such that:

ϕC|R = ϕ,
∣∣∂ϕC

∂z
(z)
∣∣ ≤ c1〈<(z)〉ρ−1−l|Im(z)|l

suppϕC ⊂ {x+ iy | |y| ≤ c2〈x〉},
ϕC(x+ iy) = 0, if x 6∈ suppϕ.

for constants c1, c2 depending on the semi-norms (6.3.7) of ϕ in Sρ.

Let ρ < 0 and ϕ ∈ Sρ. The bounded operator ϕ(A) can be recover by Helffer-
Sjöstrand’s formula:

ϕ(A) =
i

2π

∫
C

∂ϕC

∂z
(z −A)−1dz ∧ dz,

where the integral exists in the norm topology. We refer for instance to [Da] for a
self-contained approach.

Exercise 6.2. Using ‖(z −A)−1‖ ≤ 1/|Im(z)|, show that the integral converges in
norm.
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7. The discrete and the essential spectrum

We already separated the spectrum in two part that suited perfectly with the
RAGE Theorem. Here the aim is to analyse the part of the spectrum is stable
under compact perturbation.

7.1. Definition of the essential spectrum.

Definition 7.1. Let T ∈ L(H) be a self-adjoint operator. We set

σd(T ) := {λ ∈ R, λ is an isolated eigenvalue of finite multiplicity},
σess(T ) := σ(T ) \ σd(T ).

These spectra are called discret and essential, respectively.

Proposition 7.2. Let T be self-adjoint in a Hilbert space H of infinite dimension,
then σess(T ) 6= ∅.

Proof. Suppose that the spectrum is purely discret. Since it is contained in a
compact there is a sub-sequence of eigenvalues that converges to a point of the
spectrum. The later is not isolated. Contradiction. �

7.2. Link with the functional calculus.

Proposition 7.3. Let T be a self-adjoint operator acting in H and λ ∈ σ(T )
isolated.

1) λ ∈ σp(T ).
2) Given ϕ ∈ C(σ(T )) defined by 1 on λ and 0 elsewhere, we have that ϕ(T ) is an

orthogonal projection with range ker(λId− T ).

Proof. First since ϕ(λ) = 1, ϕ(T ) is a projection. Indeed,

‖ϕ2(T )− ϕ(T )‖ = sup
t∈σ(T )

|ϕ2(t)− ϕ(t)| = |ϕ2(λ)− ϕ(λ)| = 0.

Moreover, the projection is orthogonal because ϕ is with real values and therefore
ϕ(T )∗ = ϕ(T ) = ϕ(T ). Then we show that ran(ϕ(T )) ⊂ ker(λId− T ). We have:

‖(λId− T )ϕ(T )‖ = sup
t∈σ(T )

|(λ− t)ϕ(t)| = 0.

Take now x ∈ ker(λId− T ). We have:

(Id− ϕ(T ))x = Φ
(

(1− ϕ(·))(λ− ·)−1︸ ︷︷ ︸
∈C(σ(T ))

(λ− ·)
)
x

= Φ
(
(1− ϕ(·))(λ− ·)−1

)
(λId− T )x = 0

Then ran(ϕ(T )) = ker(λId− T ). Finally since ϕ(T ) 6= 0 by functional calculus and
then λ ∈ σp(T ). �

Proposition 7.4. Let T be self-adjoint in H and λ ∈ σ(T ). Then,

1) λ ∈ σd(T ), if and only if there exists ε > 0 and ϕ ∈ C(σ(T );R) such that
supp(ϕ) ⊂ [λ− ε, λ+ ε] with ϕ(λ) = 1 and such that ϕ(T ) is compact.
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2) λ ∈ σess(T ), if and only if for all ε > 0 and for all ϕ ∈ C(σ(T );R) such that
supp(ϕ) ⊂ [λ− ε, λ+ ε] with ϕ(λ) = 1, we have that ϕ(T ) is non-compact.

Note that in both cases that, since λ ∈ σ(T ) and that ϕ(λ) = 1, functional calculus
ensures that ϕ(T ) 6= 0.

Proof. Note that 1) and 2) are equivalent (by taking the negation).

We suppose that there exist ε > 0 and ϕ ∈ C(σ(T );R) such that supp(ϕ) ⊂
[λ− ε, λ+ ε] with ϕ(λ) = 1 and such that ϕ(T ) is compact.

Suppose that λ is not isolated. There exist a sequence λn ∈ σ(T ) (note that λ
could belong to an interval) such that λn → λ. By spectral mapping, the spectrum
of ϕ(T ) is contained in ϕ(λn) and 1 = ϕ(λ). By continuity we have ϕ(λn) → 1.
This is a contradiction with the fact that ϕ(T ) is compact (because 0 is the only
possible accumulation point). Contradiction.

We have that λ is isolated. Let ϕ0 ∈ C(σ(T )) with ϕ0(λ) = 1 and 0 elsewhere.

‖ϕ0(H)− ϕ0(H)ϕ(H)‖ = max
t∈σ(T )

|ϕ0(t)− ϕ0(t)ϕ(t)| = |ϕ0(λ)− ϕ0(λ)ϕ(λ)| = 0.

Then ϕ0(T ) = ϕ0(T )ϕ(T ) is compact, because it is a product of a compact oper-
ator and a bounded operator. By the previous proposition ϕ0(T ) is a orthogonal
projection with image ker(λId− T ). Since it is compact we deduce that it is finite
(Riesz’Theorem). In particular λ ∈ σd(T ). �

7.3. Stability and characterisation. We are now able to prove that the essential
spectrum is stable with respect to compact perturbations.

Theorem 7.5 (Weyl). Let T and V be two self-adjoint operators on H. If V ∈
K(H), i.e., compact, then

σess(T ) = σess(T + V ).

Proof. We set

A := {ϕ ∈ C(σ(T ) ∪ σ(T + V )), ϕ(T )− ϕ(T + V ) ∈ K(H)}

First A is an algebra. 1 is in A because Id − Id = 0 is compact. Then by taking
ϕ(t) = t, we see that ϕ(T ) − ϕ(T + V ) = −V ∈ K(H). This function separates
points. Suppose now that ϕ ∈ A, we have:

ϕ(T )− ϕ(T + V ) = (ϕ(T ))∗ − (ϕ(T + V ))∗ = (ϕ(T )− ϕ(T + V ))∗ ∈ K(H).

Because the adjoint of a compact operator is compact. By Stone-Weirstrass we
deduce that A = C(σ(T ) ∪ σ(T + V )). It remains to show that A is closed. Let
ϕn ∈ A that tends to ϕ ∈ C(σ(T ) ∪ σ(T + V )) for the uniform norm. We have
‖ϕn(T )−ϕ(T )‖ → 0 and ‖ϕn(T +V )−ϕ(T +V )‖ → 0 when n→∞. In particular,

ϕn(T )− ϕn(T + V )→ ϕ(T )− ϕ(T + V ),

in norm then ϕ(T )− ϕ(T + V ) ∈ K(H), because K(H) is closed.

Finally since ϕ(T )−ϕ(T+V ) is compact for all ϕ ∈ C(σ(T )∪σ(T+V )) the previous
proposition gives σess(T ) = σess(T + V ). �
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In the spirit of Proposition 2.38, we turn to a characterisation of the essential
spectrum in term of sequences.

Proposition 7.6 (Weyl’s criterion). Let T be self-adjoint on H. Then λ ∈ σess(T )
if and only if there exist fn ∈ H such that :

‖fn‖ = 1, fn ⇀ 0 et ‖(λId− T )fn‖ → 0,

when n→∞ and where ⇀ denotes the weak convergence.

Proof. Let λ ∈ σess(T ). Suppose first that λ is isolated. We have that λ is an eigen-
value of infinite multiplicity. Take (fn)n to be an orthonormal basis of ker(λId−T ).

Suppose now that λ is not isolated. There exist λn ∈ σ(T ), two by two distinct,
such that λn → λ, when n→∞. Up to a sub-sequence or considering −T , we can
suppose that λn is strictly increasing. We then construct ϕn ∈ C(σ(T ); [0, 1]) such
that ϕn(λn) = 1 and such that supp(ϕn) ⊂ [(2λn + λn−1)/3, (2λn + λn+1)/3]. In
particular, ϕn has support two by two disjoint and ‖ϕn(T )‖ = 1. Take now xn ∈ H
such that ‖ϕn(T )xn‖ ≥ 1/2. We have

fn :=
ϕn(T )xn
‖ϕn(T )xn‖

which is of norm 1. We see that fn tends weakly to 0 because for n 6= m

〈fn, fm〉 =

〈
xn

‖ϕn(T )xn‖
,

=0︷ ︸︸ ︷
ϕn(T )ϕm(T )xm
‖ϕm(T )xm‖

〉
= 0,

due to the support of ϕn and by functional calculus. Finally we have:

‖(λId− T )fn‖ ≤ 2‖(λId− T )gn(T )‖ · ‖xn‖ → 0,

by functional calculus. �

7.4. Examples. Denote by H one of the discrete operator that we have considered
before. Then take V be a function with value in R such that lim|x|→∞ V (x) = 0,
where |x| denotes the distance to a fixed point of the space. We have:

V (Q) is a compact operator

and therefore

σess(H) = σ(H) = σess(H + V ).

Here we used only the 1-point compactification by considering this limit. On Z, it
natural to consider the 2-point compactification, i.e., look at limits in ±∞. The
result is formulated as follows:

Exercise 7.1. Let H := `2(Z;C). Let V : Z → R such that c± := limn→±∞ V (n)
exists and is finite. Using that Z = N ∪ −N, prove that

σess(AZ + V (Q)) = [−2 + c−, 2 + c−] ∪ [−2 + c+, 2 + c+]

= [−2, 2] + {c−, c+}.

Exercise 7.2. Same exercice but use the Weyl’s criterion.
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On a tree there is a natural compactification that correspond to add one infinity for
each geodesic that goes to infinity. This is the hyperbolic compactification. With
more work, in [Go] one shows:

Theorem 7.7. Let G := (E ,V) be a binary tree. Let H := `2(V;C). Let V̂ := V∪∂V
be the hyperbolic compactification of V. Suppose that V : V → R is bounded and
extends continuously to V̂. Then we have:

σess(A+ V (Q)) =
[
−2
√

2, 2
√

2
]

+ V (∂V).

8. Borelian functionnal calculus

8.1. Spectral measure. The aim now is to define the spectral measure of an
operator. We would like to be able to define 1X(H), where X is a Borelian set.
In a second step we will relate some properties of the measure to the dynamical
behaviour of the Schrödinger equation.

To go from the polynomial functional calculus to the continuous one, we use the
density of polynomial with respect to the sup norm. Here in order to obtain a
Borelian functionnal calculs, we will also rely on an argument of density but we
need to work with a weaker topology. This approach is similar to the difference
that one finds between C∗-algebra and W ∗-algebra.

We will work in three steps :

1) Define the spectral measure associated to a vector.
2) Construct ϕ(H) with ϕ : R→ C being Borelian bounded.
3) Check that this construction is compatible with the property of a functional

calculus.

Step 1: Let H ∈ L(H) be a self-adjoint operator. Let f ∈ H \ {0}. By functional
calculus, we have that

Φ : C(σ(T );C)→ C, given by Φ(ϕ) := 〈f, ϕ(H)f〉
is continuous and positive (if ϕ ≥ 0 then Φ(ϕ) ≥ 0).

Therefore by Riesz-Markov’s Theorem there is a unique measure mf such that

〈f, ϕ(H)f〉 =

∫
σ(H)

ϕ(t) dmf (t).

Definition 8.1. The measure mf is called the spectral measure of H associated
to f .

Remark 8.2. If ‖f‖ = 1, note that mf is a probability measure.

Step 2: Given ϕ ∈ B(σ(H)) = B(σ(H);C), i.e, a borelian bounded function, we
set:

〈f, ϕ(H)f〉 :=

∫
σ(H)

ϕ(t) dmf (t).

We now explain why ϕ(H) is a well-defined bounded operator (why does ϕ(H) is
linear? Does it depend on the choice of f?).
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Given ϕ ∈ C(σ(H)). For f ∈ H, we set

Bϕ(f, f) := 〈f, ϕ(H)f〉 =

∫
σ(H)

ϕ(t) dmf (t)

and stress that mf is a bounded measure. Indeed,

mf (σ(H)) =

∫
σ(H)

1dmf (t) = 〈f, 1(H)f〉 = ‖f‖2,

because 1(H) = Id. (recall the starting point with polynomials).

We also set

Bϕ(f, g) := 〈f, ϕ(H)g〉
Recallying the polarisation formula

Bϕ(f, g) =
1

4

3∑
k=0

ikBϕ(ikf + g, ikf + g),

we see that there is a complex measure mf,g such that:

Bϕ(f, g) =

∫
σ(H)

ϕ(t) dmf,g(t), where mf,g :=
1

4

3∑
k=0

ikmikf+g.

Notice that:

mλf+g,h = λmf,h +mg,h and mh,λf+g = λmh,f +mh,g.

We now take ϕ ∈ B(σ(H)). We extend the definition of Bϕ in the following way:

Bϕ(f, g) :=

∫
σ(H)

ϕ(t) dmf,g(t).

By the property of the measure we see that:

Bϕ is a sesquilinear form.

We now prove that it is continuous. First we note that:

|Bϕ(f, f)| ≤ ‖ϕ‖∞
∫
σ(H)

1 dmf (t) = ‖ϕ‖∞〈f, 1(H)f〉 = ‖ϕ‖∞‖f‖2.(8.1.8)

We aim at showing:

|Bϕ(f, g)| ≤ ‖ϕ‖∞‖f‖ · ‖g‖, for all f, g ∈ H.

Set:

α := sup
‖f‖=1

|Bϕ(f, f)|.

It is enough to show that |Bϕ(f, g)| ≤ α for all f et g such that ‖f‖ = ‖g‖ = 1.

If Bϕ(f, g) = 0 there is nothing to do. We set

λ :=
Bϕ(f, g)

|Bϕ(f, g)|
.

Note that |λ| = 1.
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By polarisation, we have:

|Bϕ(f, g)| = Bϕ(f, λg) = <Bϕ(f, λg) = <

1

4

3∑
k=0

ik Bϕ(ikf + λg, ikf + λg)︸ ︷︷ ︸
∈R


=

1

4
(Bϕ(f + λg, f + λg)−Bϕ(−f + λg,−f + λg)〉)

≤ α

4

(
‖f + λg‖2 + ‖ − f + λg‖2

)
≤ α,

where we used in the last line that ‖x‖ = ‖y‖ = |λ| = 1.

We turn to the existence of ϕ(H).

Note that f 7→ Bϕ(f, g) is a continuous anti-linear from. Therefore there exists
T (g) such that

Bϕ(f, g) = 〈f, T (g)〉, for all f ∈H .

It is easy to see that T (g1 + λg2) = T (g1) + λT (g2).

Moreover, by Riesz’isomorphism, we get:

‖Tg‖ = ‖f 7→ Bϕ(f, g)‖ ≤ ‖ϕ‖∞‖g‖.

Therefore T is a linear bounded operator. We denote it by ϕ(H).

Using (8.1.8), we infer:

‖ϕ(H)‖ ≤ sup
x∈σ(H)

|ϕ(x)|, for all ϕ ∈ B(σ(H)).(8.1.9)

Step 3: We now need a result of density. It is a consequence of the monotone class
Theorem.

Definition 8.3. Let Ω be a real and open interval. A family ϕn : Ω → C, with
n ∈ N, is boundedly convergent if:

1) There is a finite M such that |ϕn(x)| ≤M for all n ∈ N and x ∈ Ω.
2) If ϕ(x) := limn→∞ ϕn(x) exists for all x ∈ Ω.

Proposition 8.4. Let Ω be a real and open interval. Let F be a family of bounded
complex functions on Ω, such that Cc(Ω) ⊂ F . If F is stable under bounded con-
vergence of sequences, then the set of bounded Borelian function B(Ω) is included
in F .

We now obtain:

Theorem 8.5. Let H be self-adjoint operator acting on H. There is a unique map
Φ̂ : B(R)→ L(H) such that:

1) Φ̂(ϕ+ λψ) = Φ̂(ϕ) + λΦ̂(ψ),

2) (Φ̂(ϕ))∗ = Φ̂(ϕ),

3) Φ̂(ϕ× ψ) = Φ̂(ϕ)Φ̂(ψ),

4) Φ̂(x) = H,
5) If ϕn(x) → φ(x) for all x ∈ R and if supn ‖ϕn‖∞ < ∞ then for all f ∈ H,

Φ(ϕn)f → Φ(ϕ)f , as n→∞.
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Moreover we have:

6) ‖Φ̂(H)‖ ≤ ‖ϕ|σ(H)‖∞
7) If Hf = λf , then Φ(ϕ)f = ϕ(λ)f ,
8) If ϕ ≥ 0 then σ(Φ(ϕ)) ≥ 0.

Remark 8.6. As before we denote Φ(ϕ) by ϕ(H).

Remark 8.7. Given a Borel set I ⊂ σ(H), we have that EI(H) := 1I(H) is an
orthogonal projector. Moreover,

〈f,EI(H)f〉 =

∫
I
dmf (t) = mf (I).

and

〈f,EI(H)g〉 =

∫
I
dmf,g(t) = mf,g(I).

Therefore I → EI(H) is a measure with projector values in L(H).

Using for instance the Bochner integral, we can prove that for ϕ ∈ B(σ(H))

ϕ(H) =

∫
σ(H)

ϕ(t)dEt(H).

Proof. Unicity: Suppose that Φ and Φ̃ are satisfying the points 1) to 5). Using
Theorem 5.8 we see that

Cc(R) ⊂ {ϕ ∈ B(R),Φ(ϕ) = Φ̃(ϕ)}.
Thanks to point 5) and Proposition 8.4, we infer that Φ(ϕ) = Φ̃(ϕ), for all ϕ ∈ B(R).

Existence: We set Φ(ϕ) := ϕ(H), where the latter is constructed in the second
step.

Take ϕ,ψ ∈ B(R), f ∈ H and λ ∈ C. We have:

〈f, (ϕ+ λψ)(H)f〉 =

∫
σ(H)

(ϕ+ λψ)(t)dmf (t)

=

∫
σ(H)

ϕ(t)dmf (t) +

∫
σ(H)

λψ(t)dmf (t) = 〈f, (ϕ(H) + λψ(H))f〉

In particular by Proposition 2.15, we obtain 1).

Now notice that, since mf is

〈f, (ϕ(H))∗f〉 = 〈f, ϕ(H)f〉 =

∫
σ(H)

ϕ(t)dmf (t) =

∫
σ(H)

ϕ(t)dmf (t) = 〈f, ϕ(H)f〉.

By Proposition 2.15, we obtain (ϕ(H))∗ = ϕ(H).

We turn to 3). First we set

S0 := {ϕ ∈ B(R), (ϕψ)(H) = ϕ(H)ψ(H),∀ψ ∈ Cc(R)}.
By Theorem 5.8, Cc(R) ⊂ S0. We show that S0 is stable under boundedly conver-
gence. Suppose that the family ϕn ∈ Cc(R), with n ∈ N, is boundedly convergent.
We denote its limit by ϕ. We have that there is M > 0 such that |ϕn| ≤M , for all
n ∈ N. Let ϕ ∈ Cc(R). By Theorem 5.8,

〈f, (ϕnψ)(H)f〉 = 〈f, ϕn(H)ψ(H)f〉
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On one side we have:

〈f, ϕn(H)ψ(H)f〉 =

∫
σ(H)

ϕn(t)dmf,ψ(H)f (t)→
∫
σ(H)

ϕ(t)dmf,ψ(H)f (t)

= 〈f, ϕ(H)ψ(H)f〉, as n→∞,

by dominated convergence. On the other side, note that |(ψϕn)| ≤M‖ψ‖∞, for all
n ∈ N. Hence,

〈f, (ϕnψ)(H)f〉 =

∫
σ(H)

(ϕnψ)(t)dmf,f (t)→
∫
σ(H)

ϕψ(t)dmf,f (t)

= 〈f, (ϕψ)(H)f〉, as n→∞,
by dominated convergence. Therefore, ψ ∈ S0. The set S0 is stable under boun-
dedly convergence. Using Proposition 8.4, we obtain that S0 = B(R).

Next, we set:

S := {ψ ∈ B(R), (ϕψ)(H) = ϕ(H)ψ(H),∀ϕ ∈ B(R)}.
Since S0 = B(R) we obtain that Cc(R) ⊂ S. We show that S0 is stable under
boundedly convergence. Suppose that the family ψn ∈ Cc(R), with n ∈ N, is
boundedly convergent. We denote its limit by ψ. We have that there is M > 0
such that |ψn| ≤M , for all n ∈ N. Let ϕ ∈ B(R). Since S0 = B(R),

〈f, (ϕψn)(H)f〉 = 〈f, ϕ(H)ψn(H)f〉
On one side we have:

〈f, ϕ(H)ψn(H)f〉 = 〈ϕ(H)∗f, ψn(H)f〉

=

∫
σ(H)

ψn(t)dmϕ(H)∗f,f (t)→
∫
σ(H)

ψ(t)dmϕ(H)∗f,f (t)

= 〈ϕ(H)∗f, ψ(H)f〉 = 〈f, ϕ(H)ψ(H)f〉, as n→∞,

by dominated convergence. On the other side, note that |ϕψn| ≤ M‖ϕ‖∞, for all
n ∈ N. Hence,

〈f, (ϕψn)(H)f〉 =

∫
σ(H)

(ϕψn)(t)dmf,f (t)→
∫
σ(H)

ϕψ(t)dmf,f (t)

= 〈f, (ϕψ)(H)f〉, as n→∞,
by dominated convergence. Therefore, ψ ∈ S. The set S is stable under boundedly
convergence. Using Proposition 8.4, we obtain that S = B(R). In particular 3)
holds true.

The point 4) is clear thanks to Theorem 5.8. We check the point 5). Take ϕn and
ϕ as in 5).

‖(ϕn(H)− ϕ(H))f‖2 = 〈f, (ϕn(H)− ϕ(H))∗(ϕn(H)− ϕ(H))f〉
= 〈f, (ϕn(H)− ϕ(H))(ϕn(H)− ϕ(H))f〉, by 2)

= 〈f, (|ϕn|2(H)− (ϕnϕ)(H)− (ϕϕn)(H) + |ϕ|2(H))f〉, by 3)

=

∫
σ(H)

(|ϕn|2(t)− (ϕnϕ)(t)− (ϕϕn)(t) + |ϕ|2(t))dmf (t)

=

∫
σ(H)

|ϕn(t)− ϕ(t)|2dmf (t)→ 0, as n→∞,
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by dominated convergence.

The point 6) is given by (8.1.9). The point 8), comes from the fact that if ϕ ≥ 0, in
particular, ϕ is real-valued function. Hence, by 2), ϕ(H) is self-adjoint. Moreover,

〈f, ϕ(H)f〉 =

∫
σ(H)

ϕ(t)dmf (t) ≥ 0

Therefore, Proposition 2.37 ensuite that σ(ϕ(H)) ⊂ R+.

We finish with point 7). Suppose that Hf = λf . Set:

T := {ϕ ∈ B(R), ϕ(H)f = ϕ(λ)f}

Since Hnf = λnf by induction, we infer that C[X] ⊂ T . By Stone-Weirstrass,
applied on all compact sets, we obtain that Cc(R) ⊂ T . Finally using 5), we see
that T is stable under boundedly convergence. This yields T = B(R). �

We strengthen Proposition 5.11

Proposition 8.8. Let H be a self-adjoint operator.

σ(H) = {λ ∈ R, E[λ−ε,λ+ε](H) 6= 0, for all ε > 0}.

Proof. We recall

σ(H) = {λ ∈ R, ϕ(H) 6= 0, for all ϕ ∈ C(σ(H);C) with ϕ(λ) 6= 0}.

Take λ ∈ σ(H) and ε > 0. Let ϕ ∈ Cc([λ − ε, λ + ε];R) such that ϕ(λ) 6= 0. We
have ‖ϕ(H)‖ > 0 by (5.3.6). We have:

0 < ‖ϕ(H)‖ = ‖ϕ(H)E[λ−ε,λ+ε](H)‖ ≤ ‖ϕ(H)‖ · ‖E[λ−ε,λ+ε](H)‖.

Therefore, E[λ−ε,λ+ε](H) 6= 0.

Take now λ /∈ σ(H). There is ε > 0 such that [λ− ε, λ+ ε] ∩ σ(H) = ∅. Therefore
by (8.1.9) we see that E[λ−ε,λ+ε](H) = 0. �

8.2. Nature of the spectral measure. There is a link between the spectrum
and nature of the spectral measure. The easiest one is given in the next exercice.

Exercise 8.1. E{λ}(H) 6= 0 if and only if λ is an eigenvalue of H. Moreover
E{λ}(H) is an orthogonal projector with image ker(λ−H).

To go further we recall some general facts about measure theory.

Definition 8.9. Let µ be a Borel sigma-finite measure on R.

1) We say that x ∈ R is an atom for µ if µ({x}) > 0.
2) We say that µ is continuous if µ has no atom.
3) We say that µ is supported by Borel set Σ if µ(R \ Σ) = 0.
4) We say that µ is absolutely continuous with respect to the Lebesgue measure if

µ(I) = 0 when Leb(I) = 0. We denote it by µ� Leb.
5) We say that µ is singular with respect to the measure ν when there exists a Borel

set Σ such that µ(R \ Σ) = 0 and ν(Σ) = 0. We denote it by µ ⊥ ν.

We recall the Theorem of Radon-Nykodim and refer to [Rud, Chapter 6].
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Theorem 8.10 (Radon-Nykodim). Let µ be a Borel sigma-finite measure on R
which is absolutely continuous with respect to the Lebesgue measure. Then there
exists f ∈ L1

loc(R, dx) such that

µ(A) =

∫
A

f(x) dx,

for all A Borel sets.

We now turn to the decomposition of the spectral measure. We recall the Lebesgue
decomposition of a measure, e.g., [Rud, Chapter 6].

Theorem 8.11 (Lebesgue decomposition). Given µ be a Borel sigma-finite mea-
sure on R. There are measures µp and µc which are purely atomic and continuous,
respectively, such that:

µ = µp + µc.

We have µp ⊥ µc.

Moreover, there are measures µac and µsc, which are continuous with respect to the
Lebesgue measure and singular with respect to it, respectively, such that:

µc = µac + µsc.

We have µac ⊥ µsc.

We now put into practice this decomposition. Given f ∈ H and H self-adjoint, we
have:

‖f‖2 = 〈f, f〉 =

∫
R
dmf (x)

=

∫
R
dmp

f (x) +

∫
R
dmac

f (x) +

∫
R
dmsc

f (x)

=

∫
R

1Σp(x)dmf (x) +

∫
R

1Σac(x)dmf (x) +

∫
R

1Σsc(x)dmf (x)

= 〈f,EΣp(H)f〉+ 〈f,EΣac(H)f〉+ 〈f,EΣsc(H)f〉
= ‖EΣp(H)f‖2 + ‖EΣac(H)f‖2 + ‖EΣsc(H)f‖2,

where Σp, Σac, and Σsc are Borel sets that are supporting the discrete, ac, sc part,
respectively.

Danger: These sets depend a priori on f .

Using the separability of the space and cyclic vectors, we can prove, e.g., [Ja, Section
4.8]:

Theorem 8.12. Let H be self-adjoint in H, there are closed (Hilbert) subspaces
Hp, Hac, and Hsc such that

H = Hp ⊕Hac ⊕Hsc︸ ︷︷ ︸
Hc

and, denoting by mf the spectral measure of H associated to f ,

1) if f ∈ Hp then mf is atomic,
2) if f ∈ Hac then mf is absolutely continuous with respect to the Lebesgue measure,
3) if f ∈ Hsc then mf is singularly continuous with respect to the Lebesgue measure.



ABSOLUTE CONTINUOUS SPECTRUM 41

We denote by P p, P ac, and P sc the respective projection.

Moreover, ϕ(H)HX ⊂ HX , for X ∈ {p, ac, sc} and ϕ ∈ B(R).

Remark 8.13. Note that
P p = Eσp(H).

We now decompose the spectrum. Set X ∈ {p, ac, sc} and let

σX(H) := σX(H|HX ).

We have:
σ(H) = σp(H) ∪ σac(H) ∪ σsc(H).

Be careful: We do not have in general that the different spectra are two by two
disjoint. We could have mixed spectrum. For instance, by taking a direct sum, it
is easy to construct an example such that

σ(H) = σp(H) = σac(H) = σsc(H) = [0, 1].

Proposition 8.14. Given f ∈ Hac. Let K be a compact operator. Then

Ke−itHf → 0, as t→∞.

Remark 8.15. Recall that given f ∈ Hsc ⊂ Hc and K a compact operator, the
RAGE’s theorem ensures a priori solely:

1

T

∫ T

0

‖Ke−itHf‖2 dt→ 0, as T →∞.

Remark 8.16. Take K = 1X(Q), where X is a finite set in the examples of graphs,
by denoting by H the studied operator, we see that for f ∈ Hac we have

1X(Q)e−itHf → 0, as t→∞.
The particle escapes to infinity.

Proof. Let f ∈ Hac and let g ∈ H. We denote by

mg,f (I) := 〈g,EI(H)f〉.
This measure is purely absolutely continuous with respect to the Lebesgue measure
because, for I such that Leb(I) = 0, we have:

|mg,f (I)| = |〈g,EI(H)f〉| ≤ ‖g‖2 · ‖EI(H)f‖2 = 0.

By the Riemann-Lebesgue’s Theorem, we have that

t 7→ m̂g,f (t) :=
1√
2π

∫
R
e−ixt dmg,f (x) ∈ C0(R),

where C0(R) denotes the continuous functions that tend to 0 at infinity. Using
functional calculus, we infer

〈g, e−itHf〉 → 0, as t→∞.
Therefore for {gj}j=1,...,N ⊂ H, we get: 〈

∑
j gj , e

−itHf〉 → 0, as t→ 0. By density

of the finite rank operator in the set of compact operator, for K ∈ K(H), we obtain:

Ke−itHf → 0, as t→∞.
This finishes the proof. �
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Example 8.17. We now decompose the spectrum of AZ which acts on H := `2(Z).

First note that the different spectra are stable by unitary equivalence. We recall that
AZ is unitarily equivalent to

ϕ(Q) in L2(−π, π),

where ϕ(x) := 2 cos(x). Note that ϕ(Q)L2(0, π) ⊂ L2(0, π) and ϕ(Q)L2(−π, 0) ⊂
L2(−π, 0).

Take f in L2(0, π). Set I ⊂ (0, π) such that Leb(I) = 0.

‖EI(ϕ(Q))f‖2 = ‖Eϕ−1(I)(Q)f‖2 =

∫
ϕ−1(I)

|f(x)|2 dx

=

∫
I
|f(ϕ(x))|2|ϕ′(x)|︸ ︷︷ ︸

∈L1

dx = 0.

Do the same with f in L2(−π, 0). Therefore, that the spectrum of AZ is purely
absolutely continuous with respect to the Lebesgue measure.

Exercise 8.2. Let ϕ ∈ C1([−π, π];R) such that ϕ′(x) = 0 if and only if x ∈ [−1, 1].
Let H := ϕ(Q) in L2([−π, π]). Show that:

σp(H) = {ϕ(0)}, σac(H) = ϕ([−π, π]), and σsc(H) = ∅.

8.3. The cantor measure. Set f : [0, 1]→ [0, 1] given by:

f(x) :=



3x, if x ∈
[
0,

1

3

]
,

0, if x ∈
[

1

3
,

2

3

]
,

3x− 2, if x ∈
[

2

3
, 1

]
.

For n ∈ N∗, set En+1 := f−1(En), where E0 := [0, 1]. This gives

E1 = [0, 1/3] ∪ [2/3, 1],

E2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 9/9]

and so on. We have

C := ∩n∈NEn.
This is the triadic Cantor set. Note that C is compact, C 6= ∅, and Leb(C) = 0.

Let α ∈ C([0, 1]) be constructed as follows.

α(x) :=


1
2 , for x ∈

(
1
3 ,

2
3

)
,

1
4 , for x ∈

(
1
9 ,

2
9

)
,

3
4 , for x ∈

(
7
9 ,

8
9

)
,

etc...

and extended by continuity on [0, 1], e.g., [DMRV].

The function α is strictly increasing and its derivative is 0 almost everywhere. The
Cantor measure is defined by prescribing

µC(a, b) := α(b)− α(a).(8.3.10)
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and extending it to the Borel sets. We have that µC(C) = 1 and that Leb(C) = 0.
Note also that µC(x) = 0, for all x ∈ C. Therefore µC is singular continuous with
respect to the Lebesgue measure.

8.4. Putnam’s theorem and a.c. spectrum. Using the spectral theorem, we
establish Stone’s formula:

1

2
〈f, (E[a,b](H) + E(a,b)(H))f〉 = lim

ε→0+

1

π

∫ b

a

Im(〈f, (H − λ− iε)−1f〉) dx.

where f ∈ H, e.g., [RS1, Theorem VII.13].

Proposition 8.18. Let H be self-adjoint in Hilbert space H. Set a < b. Suppose
that there is f ∈ H such that

c(f) := sup
ε∈(0,1)

sup
λ∈(a,b)

|Im(〈f, (H − λ− iε)−1f〉)| <∞

Then E(a,b)(H)f ∈ Hac.

Assume that {f, c(f) <∞} is dense in H, then:

σ(H)|(a,b) = σac(H)|(a,b), σp(H)|(a,b) = σsc(H)|(a,b) = ∅.

Proof. Set f ∈ H. By Stone’s formula and the fact that given a set J , ‖EJ(H)f‖ ≤
‖EJ(H)f‖, we have for c < d

0 ≤ 〈f,E(c,d)(H))f〉 ≤ lim
ε→0+

1

π

∫ d

c

Im(〈f, (H − λ− iε)−1f〉) dx.

Set S := ∪Ni=1(ai, bi) is open in (a, b), where the intervals are taken two by two
disjoint. Suppose first that N <∞. We have:

‖ES(H)f‖2 ≤ lim
ε→0+

1

π

∫
S

Im(〈f, (H − λ− iε)−1f〉) dx.

≤ C
∑
i

∫ bi

ai

dx = C · Leb(S).

Suppose then that N =∞. For m ∈ N, set Sm := ∪mi=1(ai, bi).

‖ES(ϕ(Q))f‖2 = lim
m→∞

‖ESm(ϕ(Q))f‖2 ≤ C lim
m→∞

Leb(Sm) = C · Leb(S).

Take finally I ⊂ (a, b) be such that Leb(I) = 0. Since the Lebesgue measure is
outer-regular for all k ∈ N∗ there is an open set S(k) such that I ⊂ S(k) and
|S(k)| ≤ 1/k. This implies that ‖EI(H)f‖ = 0. This gives E(a,b)(H)f ∈ Hac.

Assume that {f, c(f) < ∞}. Since Hac is closed we obtain that E(a,b)(H)f ∈ Hac

for all f ∈ H. �

We give a basic and central result in the theory of positive commutator. The first
stone was set by C.R. Putnam, see [Put].

Proposition 8.19 (Putnam). Let H be a bounded self-adjoint operator acting in a
Hilbert space H. Suppose that there is a bounded self-adjoint operator A, such that:

[H, iA] = C∗C,(8.4.11)
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where C is a bounded and injective operator. Then,

sup
ε>0

sup
λ∈R

∣∣〈f, Im(H − λ− iε))−1f
〉∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2,

for all f ∈ D((C∗)−1). In particular, the spectrum of H is purely absolutely con-
tinuous.

Remark 8.20. Note that (C∗)−1 is an unbounded operator with dense domain,
since C is injective.

Proof. Set R(z) := (z −H)−1. Then

‖CR(λ± iε)‖2 = ‖R(λ∓ iε)C∗CR(λ± iε)‖
= ‖R(λ∓ iε)[H, iA]R(λ± iε)‖
= ‖R(λ∓ iε)[H − λ∓ iε, iA]R(λ± iε)‖
≤ ‖AR(λ± iε)‖+ ‖R(λ∓ iε)A‖+ 2ε‖R(λ∓ iε)AR(λ± iε)‖ ≤ 4‖A‖/ε.

Therefore, we obtain

2‖CImR(λ± iε)C∗‖ = ‖2iεCR(λ+ iε)R(λ− iε)C∗‖ ≤ 8‖A‖.

Therefore,

sup
ε>0

sup
λ∈R

∣∣〈f,=(H − λ− iε))−1f
〉∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2.

Stone’s formula ensures that the measure given by ‖E(·)(H)f‖2 is purely-absolutely

continuous for all f ∈ D((C∗)−1). Since the domain is dense in H and that Hac is
closed, we obtain the result. �

Here we have proved a stronger result than the absence of singularly continuous
spectrum

sup
ε>0

sup
λ∈R

∣∣〈f, Im(H − λ− iε))−1f
〉∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2,

For the a.c. spectrum it would suffice to have on the right hand side a constant
that depends on f . Here we have an explicit dependency of f that is uniform in a
certain sense.

The bound that we obtain is in fact equivalent to the global propagation estimate:∫
R
‖C∗e−itHf‖2dt ≤ c‖f‖2,

for some c > 0 and all f ∈ H, e.g., [RS4, Theorem XIII.25].

The particle not only escape to infinity but will localise where C∗ is small.

8.5. On the stability of the a.c. spectrum. We now aim at perturbation theory.
We start with a negative result. Adding something which is too big compare to H
will destroy the a.c. part of H, e.g., [Ka, Section X.2.1].

Theorem 8.21. Let H be a self-adjoint operator. There exists a compact and
self-adjoint operator K such that

σpp(H +K) ∩ σess(H) = σess(H).



ABSOLUTE CONTINUOUS SPECTRUM 45

Remark 8.22. Whereas a compact perturbation is small when we study the stability
of the essential spectrum, here we see that the nature of the spectrum, for instance
being purely-a.c., is not stable under this class.

We turn to a positive result, e.g., [RS3, Theorem IX.8].

Theorem 8.23 (Kato-Rosenblum). Let H be a self-adjoint operator. Let T be self-
adjoint and trace class, i.e., T compact such that

∑
i |λi(T )| < ∞. Then, Hac(H)

is unitarily equivalent to Hac(H + T ). In particular,

σac(H) = σac(H + T ).

Remark 8.24. Even if Hac(H) = H the theorem does not guarantee that Hac(H+
T ) = H. We could have that Hsc(H + T ) 6= 0.

We now prove the remark. Given a self-adjoint operator H and f ∈ H. Set
mf (·) := 〈f,E(·)(H)f〉. We define the Borel transform of mf by setting:

Fmf (x) :=

∫
R

dmf (ξ)

ξ − x
.

The de la Vallée-Poussin’s result links the boundary value of Fmf with the Lebesgue
decomposition of mf .

Theorem 8.25 (de la Vallée-Poussin). Let

Amf := {x, lim
ε→0+

Fmf (x+ iε) =∞}

and

Bmf := {x, lim
ε→0+

Fmf (x+ iε) is finite and ImFmf (x+ i0+) > 0}.

Then, mf (R \ (Amf ∪Bmf )) = 0, mac
f (R \Bmf ) = 0, ms

f (R \Amf ) = 0.

Let L2([0, 1],Leb|[0,1] +mC), where mC is defined in (8.3.10). We see that

σ(Q) = [0, 1], σpp(Q) = ∅, σac(Q) = [0, 1], and σsc(Q) = C.

For λ ∈ R, we set

Hλ := Q+ λP{1},

where

P{1} := 1〈1, ·〉.
We have that for λ ∈ R \ {0},

σess(Hλ) = [0, 1], σac(Hλ) = [0, 1], and σsc(Hλ) = ∅.

Proof. A direct computation gives:

1

π
ImFm(x+ i0+) =

 1, x ∈ (0, 1),
1/2, x ∈ {0, 1},
0, x /∈ [0, 1].

and for x ∈ (0, 1):

ReFm(x+ i0+) = ln

(
x

1− x

)
,
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for x ∈ (0, 1). Since for any measure µ we have

ImFµ(x0 + iε) ≥ µ ({y, |x− y| ≤ ε}) ,

we infer:

FµC (x+ i0+) =

{
+∞, x ∈ C,
0, x /∈ C, since the measure is not supported here

Recall that

Fµλ(z) = 〈1, (Hλ − z)−11〉 =

∫
(x− z)−1dµλ(x),

i.e., µλ is the spectral measure associated to Hλ and to the vector 1.

We now turn to the study of µλ and focus on Fµλ(z), for all z ∈ C\R. The resolvent
identity gives

(Hλ − z)−1 = (H0 − z)−1 − λ(Hλ − z)−1P1(H0 − z)−1.

This gives:

Fµλ(z) = Fµ0(z)− λFµλ(z)Fµ0(z).

Therefore

Fµλ(z) =
Fµ0

(z)

1 + λFµ0(z)
.

This yields

Im(Fµλ(z)) =
Im(Fµ0(z))(

1 + λRe(Fµ0(z))
)2

+ λ2Im(Fµ0(z))2
.

The singular part of the spectrum of Hλ is supported by:

Aλ := {x, lim
ε→0+

Fµλ(x+ iε) =∞}.

Given λ 6= 0, we see that [0, 1] ∩ Aλ = ∅. Therefore there is no singular spectrum
for Hλ. The spectrum of Hλ is purely absolutely continuous. �

9. The Mourre theory

9.1. Motivation. It is very complicated to apply the Putnam theorem in practice
because of the boundedness of A.

We sacrifice the boundedness of A in the Putnam theorem and try to exploit the
positivity of a commutator.

We start with ϕ(Q) := 2 cos(Q) on H := L2(−π, π). For f ∈ C∞c ((−π, π)) we set:

A0f :=
1

2
(i∂xϕ

′(Q) + ϕ′(Q)i∂x) .

This operator is essentially self-adjoint and we denote by A0 its closure.
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For f ∈ C∞c ((−π, π)), we have:

2[ϕ(Q), iA0]f = −[ϕ(Q), ∂xϕ
′(Q) + ϕ′(Q)∂x]f

= (∂xϕ
′(Q) + ϕ′(Q)∂x)ϕ(Q)f − ϕ(Q)(∂xϕ

′(Q) + ϕ′(Q)∂x)f

= ϕ′′(Q)ϕ(Q)f + (ϕ′(Q))2f + ϕ′(Q)ϕ(Q)f ′ + (ϕ′(Q))2f + ϕ′(Q)ϕ(Q)f ′

− (ϕ′′(Q)ϕ(Q)f + ϕ′(Q)ϕ(Q)f ′ + ϕ′(Q)ϕ(Q)f ′)

= 2ϕ2(Q)f.

In other words, using the density of C∞c in H, we infer:

[ϕ(Q), iA0] = (ϕ′(Q))2.

This gives:

[ϕ(Q), iA0] = 4 sin2(Q) = (2− 2 cos(Q))(2 + 2 cos(Q)).

1

1

2 cos

4 sin2

Remark 9.1. Note that 4 sin2(x) = 0 if and only if cos′(x) = 0.

The operator 4 sin2(Q) is injective and non-negative. Taking apart that A0 is
unbounded, we are in the setting of Putnam’s theory. We hope to deduce that
2 cos(Q) is purely a.c. by this method.

Take I be a closed subset included in the interior of [−2, 2] = σ(ϕ(Q)). We have:

EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q)) = EI(ϕ(Q))(2− ϕ(Q))(2 + ϕ(Q))EI(ϕ(Q))
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σ(ϕ(Q))

x 7→ (2− x)(2 + x)

x 7→ 1I(x)

σ(ϕ(Q))

x 7→ (2− x)(2 + x)1I(x)

c > 0

There is c > 0, for all f ∈ H,

〈f,EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q))f〉 = 〈f,EI(ϕ(Q))(2− ϕ(Q))(2 + ϕ(Q))EI(ϕ(Q))f〉

=

∫
σ(ϕ(Q))

1I(x)(2− x)(2 + x)1I(x)dmf (ϕ(Q))(x)

≥ c
∫
σ(ϕ(Q))

1I(x)dmf (ϕ(Q))(x)

= c〈EI(ϕ(Q))f,EI(ϕ(Q))f〉.

In other words we have that there is c > 0 such that

EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q)) ≥ cEI(ϕ(Q)),

holds in the form sense, i.e., when applied to any f on both side.

We now go back to H := `2(Z;C) and will go into perturbation theory.

Recall that the Fourier transform F : `2(Z)→ L2([−π, π]) is defined by

(Ff)(x) :=
1√
2π

∑
n

f(n)e−ixn, for all f ∈ `2(Z) and x ∈ [−π, π].
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The adjacency matrix is given by:

(AZf)(n) := f(n− 1) + f(n+ 1), for f ∈ H.

and

AZ = F−12 cos(Q)F

Moreover, for f ∈ Cc(Z), the set of function with compact support, a direct com-
putation gives:

Af := F−1A0Ff = i

(
1

2
(U∗ + U) +Q(U∗ − U)

)
f,

where

Uf(n) := f(n− 1) and (U∗f)(n) = f(n+ 1).

The operator A is essentially self-adjoint on Cc(Z). We denote its closure with the
same symbol. We refer to Remark 9.4 for the notion of unbounded self-adjoint
operator.

Thanks to the previous calculus, we have:

[AZ, iA] = (2−AZ)(2 +AZ)

and, given I closed included in the interior of [−2, 2], the spectrum of AZ, there is
a positive constant c > 0:

EI(AZ)[AZ, iA]EI(AZ) ≥ cEI(AZ),

in the form sense, i.e., when applied to f ∈ H on both side.

We now add a perturbation. Let V : Z→ R be such that

lim
n→±∞

V (n) = 0 and lim
n→±∞

n(V (n)− V (n+ 1)) = 0.

In particular, we have :

V (Q) ∈ K(H) and Q(V (Q)− V (Q+ 1)) ∈ K(H).

Take f ∈ Cc. We have:

[U∗, V (Q)]f(n) = (U∗V (Q)f)(n)− (V (Q)U∗f)(n)

= (V (Q)f)(n+ 1)− V (n)f(n+ 1) = (V (n+ 1)− V (n))f(n+ 1)

= ((V (Q+ 1)− V (Q))U∗f)(n).

We obtain:

[U∗, V ] = (V (Q+ 1)− V (Q))U∗ and [U, V ] = (V (Q− 1)− V (Q))U.
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This yields:

2[V (Q), iA]f = 2

[
V (Q), i · i

(
1

2
(U∗ + U) +Q(U∗ − U)

)]
= [(U∗ + U) +Q(U∗ − U), V (Q)] f

= [U∗, V ]f + [U, V ]f +Q[U∗, V ]f −Q[U, V ]f, since [Q,V (Q)] = 0

= (V (Q+ 1)− V (Q))︸ ︷︷ ︸
compact

U∗f + (V (Q− 1)− V (Q))︸ ︷︷ ︸
compact

Uf

+Q(V (Q+ 1)− V (Q))︸ ︷︷ ︸
compact

U∗f −Q(V (Q− 1)− V (Q))︸ ︷︷ ︸
compact

Uf.

Therefore,

[V (Q), iA] ∈ K(H).

We plug this information into the previous estimate. We set H := AZ + V (Q)

[H, iA] = [AZ, iA] + [V (Q), iA] = (2−AZ)(2 +AZ) + compact

= (2−AZ − V (Q))(2 +AZ + V (Q)) + compact

= (2−H)(2 +H) + compact.

Recall that, by the Weyl’s Theorem, σess(H) = [−2, 2], therefore by taking I being
closed in the interior of the essential spectrum of H we get, there are

c := inf
x∈I

(2− x)(2 + x) > 0

and a compact operator K such that

EI(H)[H, iA]EI(H) ≥ cEI(H) + EI(H)KEI(H)︸ ︷︷ ︸
compact

,(9.1.12)

in the form sense. This is a Mourre estimate.

9.2. General Theory. In the beginning of the eighties, E. Mourre had the bril-
liant idea to localize (8.4.11) in energy. His theory was developed in [Mou] to show
the absolute continuity of the continuous spectrum of 3-body Schrödinger opera-
tors and to study their scattering theory. His work was immediately generalized to
the N -body context in [PSS]. In particular, one wanted to show their asymptotic
completeness and the Mourre estimate, c.f., (9.1.12), played a crucial role in the
proof. Now, Mourre’s commutator theory is fundamental tool to develop the sta-
tionary scattering theory of general self-adjoint operators. We refer to [ABG] for
some historical developments and to [Go2] for a more complete introduction to the
subject.

Definition 9.2. Given a bounded operator H acting in a complex Hilbert space H
and k ∈ N, one says that H ∈ Ck(A) if t 7→ e−itAHeitAf is Ck for all f ∈ H.

Proposition 9.3. Let H be a bounded operator and A be a (possibly unbounded)
self-adjoint operator The following assertions are equivalent:

1) H ∈ C1(A).
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2) There is a constant c > 0 such that

|〈Hf,Af〉 − 〈Af,Hf〉| ≤ c‖f‖2,(9.2.13)

for all f ∈ D(A).

Remark 9.4. Be careful, in practice A is a unbounded self-adjoint operator. We
did not develop its spectral theory in this course. One should keep in mind that the
spectrum of A is real and that the theory of Borel functional calculus is also valid in
this context. To prove it, one replaces the statements about polynomial with rational
functions that are bounded on R.

Note that, by density of D(A), (9.2.13) defines a bounded operator that we denote
by [H,A]◦, or simply [H,A] when no confusion can arise.

We can prove that the derivative of t 7→ e−itAHeitAf for t = 0 is equal to [H,A]◦.

One can show that HD(A) ⊂ D(A) and therefore [H,A] has a meaning, on the
operator sense, on D(A) is equal to [H,A]◦|D(A) = (HA−AH)|D(A).

Remark 9.5. In our example, H ∈ C1(A).

Proposition 9.6 (“Virial Theorem”). Let H ∈ C1(A) with H bounded and self-
adjoint and A self-adjoint.

1) If the following Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H) +K,

where K ∈ K(H) and c > 0, then H has a finite number of eigenvalue in I,
counted with multiplicity.

2) If the following strict Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H),

where c > 0, then H has no eigenvalue in I.

Remark 9.7. The operator A is the conjugate operator associated to H.

Remark 9.8. In our example, the eigenvalues of H that do not belong to {−2, 2}
are of finite multiplicity and can only accumulate to {−2, 2}.

Proof. Let f be an eigenfunction of H associated to λ ∈ I. To motivate the
approach we start with a wrong proof.

〈f, [H, iA]◦f〉 = 〈f, [H − λ, iA]◦f〉
= i〈(H − λ)f︸ ︷︷ ︸

=0

, Af︸︷︷︸
f∈D(A)?

〉 − i〈 Af︸︷︷︸
f∈D(A)?

, (H − λ)f︸ ︷︷ ︸
=0

〉= 0?

As in general f /∈ D(A), we change slightly the approach. Set for τ 6= 0,

Aτ :=
1

iτ
(eiAτ − Id)

Note that for g ∈ D(A),

lim
τ→0

Aτg = Ag.
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Moreover, we have for all g ∈ H

[A,H]◦g = lim
τ→0

1

iτ

(
eiτAHe−iτA −H

)
g = lim

τ→0

1

iτ
[eiτA, H]e−iτAg = lim

τ→0
[Aτ , H]g.

We can compute in a legal way.

〈f, [H, iA]◦f〉 = lim
τ→0
〈f, [H, iAτ ]f〉

= lim
τ→0
〈f, [H − λ, iAτ ]◦f〉

= lim
τ→0

i〈(H − λ)f︸ ︷︷ ︸
=0

, Aτf︸︷︷︸
Aτf∈H

〉 − i〈 Aτf︸︷︷︸
Aτf∈H

, (H − λ)f︸ ︷︷ ︸
=0

〉 = 0.

We turn to the point 2. We apply the strict Mourre estimate to f , where Hf = λf
and λ ∈ I. Note first that

f = E{λ}(H)f = EI(H)f.

Therefore, we get

‖f‖2 = ‖EI(H)f‖2 ≤ 1

c
〈f,EI(H)[H, iA]◦EI(H)f〉

=
1

c
〈EI(H)f, [H, iA]◦EI(H)f〉

=
1

c
〈f, [H, iA]◦f〉 = 0.

Therefore H has no eigenvalue in I.

We now prove the point 1. Suppose that, for all n ∈ N, there are λn ∈ I and
fn ∈ H such that ‖fn‖ = 1 and Hfn = λfn.

We apply the Mourre estimate to fn. We get:

0 = 〈fn, EI(H)[H, iA]◦EI(H)fn〉 ≥ c〈EI(H)fn, EI(H)fn〉+ 〈EI(H)fn,KEI(H)fn〉
≥ c 〈fn, fn〉︸ ︷︷ ︸

=1

+〈fn,Kfn〉

≥ c− ‖Kfn‖2

Or fn ⇀ 0 (weak convergence) and K compact, therefore ‖Kfn‖ → 0. With n
large enough we obtain a contradiction with the fact that c > 0. �

Proposition 9.9. Let H ∈ C1(A) with H bounded and self-adjoint and A self-
adjoint. Assume that the following Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H) +K,

where K ∈ K(H).

If H has no eigenvalue in I, then for all λ in the interior of I there is J :=
[λ− ε, λ+ ε], with ε > 0 small enough, such that

EJ (H)[H, iA]◦EJ (H) ≥ c

2
EJ (H),

holds true.
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Proof. Set In := [λ− 1/n, λ+ 1/n]. Since there is no eigenvalue in I, we have that
for all f ∈ H that

‖EIn(H)f‖2 =

∫
In
dmf (x)→ 0, as n→∞,

by dominated convergence.

Since K is compact, we have that ‖KEIn(H)‖ → 0, as n → ∞. Therefore, for n
large enough, we obtain that ‖KEIn(H)‖ ≤ c‖EIn(H)‖/2. Therefore we obtain:

EIn(H)[H, iA]◦EIn(H) ≥ c

2
EIn(H).

We conclude by setting J := In. �

Assume that H ∈ C1(A) and

EI(H)[H, iA]◦EI(H) ≥ cEI(H).

We will deduce some dynamical properties.

Given f ∈ H and ft := e−itHf its evolution at time t ∈ R under the dynamic
generated by the Hamiltonian H, one looks at the Heisenberg picture:

Hf (t) := 〈ft, Aft〉.(9.2.14)

As A is an unbounded self-adjoint operator, we take f := ϕ(H)g, with g ∈ D(A)
and ϕ ∈ C∞c (I). We can prove that Hf is well-defined as e−itHϕ(H) stabilises the
domain of A. This implies also that Hf ∈ C1(R).

Remark 9.10. Note that EI(H)f = EI(H)ϕ(H)g = ϕ(H)g = f.

Since H ∈ C1(A), the commutator [H, iA]◦ is a bounded operator. We denote by
C its norm.

H′f (t) = 〈ft, [H, iA]◦ft〉 = 〈ft, EI(H)[H, iA]◦EI(H)ft〉.

We now use the Mourre estimate above I and since eitH is unitary, one gets:

c‖f‖2 ≤ H′f (t) ≤ C‖f‖2.

Now integrate the previous inequality and obtain

ct‖f‖2 ≤ Hf (t)−Hf (0) ≤ Ct‖f‖2, for t ≥ 0

The transport of the particle is therefore ballistic with respect to A, we have some
transport in the direction given by A. Purely absolutely continuous spectrum is
therefore expected.

Theorem 9.11. Suppose that H is a bounded and self-adjoint operator and that A
is self-adjoint. Assume that H ∈ C2(A) and that

EI(H)[H, iA]◦EI(H) ≥ cEI(H),

holds true for some non-empty and closed interval I. Then:

1) The spectrum of H restricted to I is purely absolutely continuous.
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2) Given J a closed interval included in the interior of I, for all s > 1/2 there is a
constant c > 0, such that the following limiting absorption principle holds true:

sup
λ∈J

sup
ε>0
|〈f, (H − λ− iε)−1f〉| ≤ c‖〈A〉sf‖2,

where 〈x〉 :=
√

1 + x2.
3) There is c > 0 such that for all f ∈ H,∫

R
‖〈A〉−se−itHEJ (H)f‖2 dt ≤ c‖f‖2.

The original proof given in [Mou], see also [PSS], relies on the use of a differential
inequality. Their hypothesis was slightly stronger that the one given by the class
C2(A). The latter was introduced by V. Georgescu and its collaborators. They
greatly improved this hypothesis. We refer to [ABG] for historical developments.
Under the class C2(A), one can provide a different proof which relies on commutator
expansions, see [GJ, Gé] and also [Go2] for a sketch of proof and a review for recent
applications.

9.3. Final example. A direct application of the previous theorem gives:

Theorem 9.12. Suppose that H := AZ + V (Q), where

lim
n→±∞

V (n) = 0, lim
n→±∞

n(V (n)−V (n+ 1)) = 0, and sup
n
n2|V (n)−V (n+ 1)| <∞

Then:

1) The essential spectrum of H is σess(H) = [−2, 2].
2) The eigenvalues of H that do not belong to {−2, 2} are of finite multiplicity and

can only accumulate to {−2, 2}.
3) σsc(H) = ∅.
4) Given J a closed interval included in the interior of I, for all s > 1/2 there is a

constant c > 0, such that the following limiting absorption principle holds true:

sup
λ∈J

sup
ε>0
|〈f, (H − λ− iε)−1f〉| ≤ c‖〈Q〉sf‖2,

for all f ∈ D(〈Q〉s).
5) There is c > 0 such that for all f ∈ H,∫

R
‖〈A〉−se−itHEJ (H)f‖2 dt ≤ c‖f‖2.

With more technology, we can prove that

1) Under the hypothesis that there is ε > 0 such that

lim
n→±∞

V (n) = 0, lim
n→±∞

n1+ε(V (n)− V (n+ 1)) = 0,

the conclusions of the Theorem remain true, e.g., [BoSa].
2) Under the hypothesis that n 7→ V (n + k) − V (n) ∈ `1(Z) holds true for some

k ∈ Z, we have that
σsc(H) = ∅

and that there is no eigenvalue in (−2, 2). We refer to [GH] for historical devel-
opments and application to the Dirac case.
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