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Course 1 outline

© Preamble
@ Course schedule
@ Online
@ Course outline

© Introduction

© The harmonic oscillator
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Preamble

PREAMBLE
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Preamble Course schedule

Course syllabus

maxime.nicolas@univ-amu.fr
Batiment Fermi, bureau 212

Schedule:
@ 5 lectures
@ 5 workshops for civil eng. students
@ 3 workshops for mech. eng. students

Final exam: January 25th, 2017
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Preamble [OLIITIY

Online

This course is available on ENT/AmeTice:

Sciences & technologies » Polytech » Cours communs »
[16] - S5 - JGC52D + JMES1C - Ondes et vibrations (Maxime Nicolas)

with
@ lecture slides
@ workshops texts
@ past exams
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Preamble [OLIITIY

A book

This course is included in a book (paper and pdf versions available):

PARCOURS
INGENIEUR

.Ondes

¢lectromagnétisme
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Preamble Course outline

Course outline

@ Introduction & harmonic oscillator
@ The wave equation and its solutions
© 1D transverse and longitudinal waves
@ 2D waves: vibration of plates

© beam vibration
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Introduction

Introduction
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Where to find waves and vibrations?

Short answer: everywhere:

waves in fluids — acoustics — sound
waves in fluids — ripples, waves and tsunamis

waves in solids — compression waves

@ vibrations of structures — planes, cars,
and many more
@ electromagnetic waves — light, radio, X-rays, ~-rays
@ chemical oscillators
@ population dynamics
@ health issues due to vibrations
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017
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A few definitions

@ wave: propagation of an oscillation or a vibration
@ vibration: motion around an equilibrium state
@ oscillation: motion of a body around an equilibrium point

november 2016 — january 2017 10 /
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Introduction

Equilibrium

november 2016 — january 2017 11 /
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t-periodical functions

F(t+7)=F(t), Vt

f=r1l w=2nf=2n/r

f(t) T f(t) T

/\ ANEEE ,
VvV VvV

f(t) T (1)

oA
N\ X t
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x-periodical functions

F(x+X)=F(x), Vx
k=2m/\
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The harmonic oscillator

The harmonic oscillator
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The harmonic oscillator

Example 1

The mass-spring system:

z(t)

t
O }-
x position 1a force de rappel

d'équilibre du ressort raméne
1a masse vers la
position d'équilibre.
d’x
m—; + kx=0

dt?

M. Nicolas (Polytech Marseille GC3A)
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Example 2

mL— + mgsinf =0
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Examples comparison

spring-mass pendulum

md—§+kx:0 Ld2+mgsm9 0

Zx+w0x 0 39+w05m0 0
k/m wo =v/g/L

linear equation for x non linear equation for 6

november 2016 — january 2017 17 /
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The harmonic oscillator

Linearization

For any (continuous and derivable) function F near xp:

F)xmg = Fx0) + 3 = ~ (

n=1

2 o) - x0)"

for F(#) =sinf, x ~ 0:
F(O)=0-—+.

november 2016 — january 2017
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations

18
31 /



Examples comparison

spring-mass pendulum

md—§‘+kx:0 Ld2+mgsm9 0

X1 2x=0 0+ w30 =0
k/m wo =v/g/L

linear equation for x linear equation for 6 «< 1

november 2016 — january 2017 19 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 31



The harmonic oscillator

The harmonic oscillator equation

The equation for a physical quantity A(t) (x or 6) is

this is a 2nd order differential equation.

on the blackboard

november 2016 — january 2017 20 /
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The harmonic oscillator equation

2
A
C:j? +wgA=0
General solution:
A(t) = Are™0t + Aye 0t = By cos(wot) + Ba sin(wot)

With the initial conditions (Ag,Ao)

A
A(t) = Ag cos(wot) + =2 sin(wot)
wo

november 2016 — january 2017 21/
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View of the solution

At) ; :
Alt 3T
Wl ’ Op =7
X 1 + : / \
T /27 3 /
(a) :
: 1 T
A(t L t=_
( ) 7\ 7\ / 2
- —1 i — AN
N\ /T 2r 3
\_ \_ _/ - T
(b) (c) =1

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations
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Energy

This equation describes a conservative system (no loss of energy):

d’A
F +W8A =0

Back to the mass-spring example:
2

X
mﬁ-l‘kX:O

november 2016 — january 2017 23 /
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Harmonic oscillator with damping

Introducing a fluid damping force (prop. to velocity):

A dA
— +y— +wiA=0
gz Vgr T

november 2016 — january 2017 24 /
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The harmonic oscillator

Solution with damping

Testing function
A _ ert
Characteristic equation:
r?yr+ wg =0

with 2 solutions
Y 1 7 5 2 Y

A(t) =e 12 (Are™ + Aze ")

and

november 2016 — january 2017
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Weak damping solution

72—4w§<0, a=iwi,

1

4

t=

] Y (©
A(t) = e /2 [Ao cos(wit) + i (WTAO + Ao) sin(wlt)]
w1
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Energy loss with damping

november 2016 — january 2017
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The harmonic oscillator

Oscillator with energy input

d’A  dA
F + ’}/E + WgA = AF COS(Wt)

with Af the forcing amplitude, and w the forcing angular frequency.
proposed long time solution:
A(t) = Aj cos(wt + ¢)

Now find A; and ¢...

november 2016 — january 2017 28 /
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Solution

A(t) = Aj cos(wt + )

Ar 1

AF V(WE - w?)? +w?y?

—wy
@Y= arctan (m)
0

november 2016 — january 2017 29 /
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The harmonic oscillator
View

¥ =0, e
wo w
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The harmonic oscillator
View

régime permanent

régime transitoire /
(a) (b)
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Course 2 outline

@ Coupled oscillators

© 1D infinite chain of oscillators

© The simple wave equation
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Coupled oscillators

Coupled oscillators
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Coupled oscillators

2 identical oscillators 4 coupling spring
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Coupled equations

Reminder: x; variables are perturbations out of equilibrium.

m)'él(t) = —le — kC(Xl — X2)

m)'%2(t) = —kxo — kC(Xg - X1)
or

X (t) = —ngl - wg(xl -Xx2)

%(t) = —wixo —wi(xo - x1)

with oscillating solutions:

x1 = Xpexp(iwt), xp = Xpexp(iwt)

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017
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Coupled equations as a linear problem

Wi - w? + w2 —w? X1 0
—w? wg —w? +w? Xo |
@ trivial solution: X7 = X, =0, static equilibrium
@ non trivial solution X1 #0, X5 0
det(M) =0
Two natural frequencies:

Wg = Wo

2 2
\/ w + 2wg

Wy

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 6 /22



View of the solutions

S v | B -
v mwamd | B s
© Bl | o B mvw a4
o mwwaw | e A -
S mvwwawwl [, B e

Wg = Wo wy = /w3 + 2w?2
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Coupled oscillators

Complete solution

The complete solution of the coupled oscillators problem is

x1(t) = Ag cos(wgt + @g) + Ay cos(wyt + ¢y,)
xo(t) = Agcos(wgt + pg) — Ay cos(wyt + ¢y)
The 4 constants Ag, Ay, ¢z and ¢, are to be determined by 4 initial
conditions:
@ x1(t=0) and x(t=0)
@ x1(t=0) and x(t=0)

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 8 /22



Coupled oscillators

N coupled oscillators

For a set of N coupled oscillators, we can write a set of N equations

2 AN

Xi = —wgxi — Y we(xj = Xj)
J#i
with harmonic solutions
x;j = Xiexp(iwt)
The problem writes
=
MX =0

with M a N x N matrix and X = (X1,...,Xn) an amplitude vector.

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017
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N coupled oscillators

N
@ trivial solution: X =0, static equilibrium
@ non trivial solution X; # 0

det(M) =0

which leads to N natural frequencies wj, ..., wy and the complete
solution is a linear combination of these N individual solutions:

Xj = ZA,‘ COS(wJ't + go,-)
J

the 2N constants A; and ¢; are to be determined with 2/ initial
conditions.

november 2016 — january 2017 10 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 22



Partial conclusion

o N =2 easy
@ N =3 less easy but possible
@ N >4 computer help is needed

november 2016 — january 2017 11 /
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1D infinite chain of oscillators

1D infinite chain of oscillators
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1D infinite chain of oscillators

N - oo

For a very large number of oscillators, the previous method is too
expensive!

m l\,
n—2 n—1 n n+1 n—+2
N equations
d2A,,
m e =—k(Ap—Api1) - k(An-An-1)

or

d2A,, 5 5

F = —Wwy (An - An+1) - wo(An - An—l)

= Wi(Ans1 —2A,+As1)

M. Nicolas (Polytech Marseille GC3A)
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1D infinite chain of oscillators

Continuous description

MWMDWW
n—2 n—1 n n+1 n+2
i i i i i
z— 20z z—0z z z+ 0z z+ 26z
1 1 1 1 1
1 1 1 1 1
1 1 1

A(z—20z) A(z —6z2) A(z) A(z+02) A(z+20z)

An(t) = A(z,t)

november 2016 — january 2017 14 /
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1D infinite chain of oscillators

Continuous description

Two neighboring oscillator have a very close behavior

> 2 2
L .

summing these 2 equations gives

82
An+1+An 1—2A(Z)+(5Z) ( )
then

2
Aper =240+ An1 = (52)° (g—?)
Z

november 2016 — january 2017 15 /
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1D infinite chain of oscillators

Motion equation

Back to the motion equation

d?A,
dt?

=W (Ans1 =24, + An1)
with the continuous approach

£A, | PA
dt? ot?

0?A
Ans1 —2An + An_y = (62)? (ﬁ)

and the motion equation is now

PA_10°A 5
— - Q5 —=——53 = C =wp0oZ
)
0z%2 % ot?
november 2016 — january 2017 16 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 22



The simple wave equation

The simple wave equation

november 2016 — january 2017 17 /
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Wave equation

It is a 1D wave equation
PA 1A
0z2 2 0t2

with a constant velocity c.
If a 3D propagation is needed, the wave equation writes

1 9%A
AA-—=—=0
c? It?
with the laplacian operator
02 0?92

S0 ay2 922

november 2016 — january 2017
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The simple wave equation

The wave equation general solution

The wave eq. can be written as (remember a® — b?> = (a— b)(a + b)):

o 10 0o 10
—————l=—+=-=]A=0
(82 C(?t) (82 " c8t)
The solution of the wave eq. is the sum of two functions:
A(z,t) = F(z—-ct)+ G(z +ct)

F and G are arbitrary functions.

Proof on the board ...

november 2016 — january 2017 19 /
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Example

‘\_l G(z + ct)

Ay

\ |
\
N
\
.

L
\_I

™

november 2016 — january 2017 20 /
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The simple wave equation

Exercise

Let F a function such that
e F=1if-1<z<1
@ F =0 elsewhere

With ¢ =3, draw F for

e t=0
e t=1
o t=2

november 2016 — january 2017 21 /
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The simple wave equation

The complete wave solution

The complete solution needs:
o the initial condition A(z,0)
@ the boundary conditions

but since the WE is linear, its solutions can be written as a sum of
elementary solutions

november 2016 — january 2017 22 /
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N —
Lecture 3 outline

@ Compression waves

© Vibration of a tensioned string
@ Static equilibrium of a string
@ Vibration of a string
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Compression waves

Compression waves
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Linear elasticity

F
S déformation
. p]astique
1
rupture
1
F S F 1
# 1
1 déformation
— .
I élastique
1
1 AL
L p—
L

Hooke's law:

»lm

'\
m| =
mlQ
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1D compression waves

r 8

z +dz

JER NN

For u(x) the displacement of a section located at x:

u(x) —u(x+dx)  F
dx ~ SE

hence: 9
F(x)=-SES"
Ox

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 5/ 24



Compression waves

1D compression waves

Newton’s equation for the elementary mass dm

2%u
dmﬁ = F(x) - F(x + dx)

d%u ou ou
o = 6((5). (52).]

which writes as a wave equation

)

Pu 1 0%u E
- :0 C = J—
Ox2 2 9t2 p

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 6 /24



Compression waves

Compression waves velocities

Examples and order of magnitude of compression velocity:

Matériau | p (kg.m) | E (GPa) | ¢ (m/s)
acier 7900 200 5000
cuivre 8920 124 3700
béton 2500 2,7 1 000
plexiglass | 1200 2,4 1400
verre 2500 70 5300

M. Nicolas (Polytech Marseille GC3A)

Waves & vibrations
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Vibration of a tensioned string

Vibration of a tensioned string
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ALTET O RIIER IS RS -l Static equilibrium of a string

Static equilibrium of a string
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Modeling

@ ID system: Ly > L, Liy>»L,, L, ~L,
e without rigidity (for the moment, see lecture # 5)
@ tension force:

F=To=olyL,

november 2016 — january 2017 10 /
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Shape of a string at equilibrium

:ll’ T +'d1'

dm?+?(x)+7(x+dx) =0

november 2016 — january 2017 11 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 24



Shape of a string at equilibrium

0(z + dx)

Projection on the x- and y-axis

1l
o

—T(x)cosf(x)+ T(x+ dx)cosf(x + dx)
—-dmg — T(x)sin0(x) + T(x + dx)sin0(x + dx)

november 2016 — january 2017 12 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 24



Sizgite el ¢ 8 s
Shape of a string at equilibrium
The x-axis equation means
T(x)cosf(x) = Ty = constant
Combining with the y-axis eq. leads
—dmg + To[tanO(x + dx) —tanf(x)] =0

or

m d df dtanf
M8 9 jang =8 7 AENT
LTO dx LTO dx df
Writing
d
tanf =
dx
gives
o (TN (5)
dx2  \ LTy dx
november 2016 — january 2017 13 /
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Shape of a string at equilibrium

Using a variable u = dy/dx, one can finally find

LT
y(x) = L¢ [cosh(i)—cosh( d )], Le=—2
L. 2L, mg

the shape of the string of length L, mass m, attached between two fixed
points with a d distance.

Maximum bending at the center of the string:

2OLIC)_1]

Ym = L¢ [cosh (

november 2016 — january 2017 14 /
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ALTET O RIIER IS RS -l Static equilibrium of a string

Tension of a string at equilibrium

The tensile force is

T()=—% —Tocosh(ic)

and the tensile force variation along the rope is

AT _Ymmg
Tg L Ty

This variation is thus negligible when the string is under tension (y,, < L)

november 2016 — january 2017 15 /
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Vibration of a tensioned string [EAVAIE IR IERS de]oF=3

Vibration of a string

november 2016 — january 2017 16 /
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Motion equation

The local motion equation is
82
dm 4

902 - —T(x)sinf(x) + T(x +dx)sinf(x+dx)—dmg

For a string under strong tension, the weight is negligible and the tension
is constant:

82y
o2
Assuming only a weak deviation from the equilibrium (y = 0 and
dy/dx =0)

md = To [sin@(x + dx) —sinf(x)]

. Oy
0 ~tanf ~ —
sin an 3

X
we obtain
Py 1% To m
_— = C = _ pL = —
ox2 2otz 7 oL’ L
november 2016 — january 2017
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Vibration of a tensioned string [EAVAIE IR IERS de]oF=3

Boundary conditions

The string is attached in two points:
o y(x=0)=0
o y(x=L)=0

Meaning that the wave propagation is confined between 0 and L. This
gives a steady wave

y(x,t) = A(x) cos(wt + )

introducing an amplitude function A(x).

november 2016 — january 2017 18 /
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Amplitude equation

™ +C2A=O

Its general solution is
A = Aj cos(kx) + Az sin(kx)

and the constants A; and A, are to be determined with BC

— A1=0, Ay#0 and sin(kL)=0

november 2016 — january 2017 19 /
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Vibration modes

The vibration is thus possible for a discrete set of k and w values:
T T

k=n—, and w=n-—c

L’ L

and finally the vibration may be represented as

y(x,t) = ZC sm( i )cos(nCTﬂt+g0,,)

with an integer n=1,23...

The C, and ¢, constants are to be determined by the initial conditions

(1C).

november 2016 — january 2017
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Vil ¢ @ Sl
Vibration modes

november 2016 — january 2017 21 /
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Vil ¢ @ Sl
A few definitions

e A nodal point (node):
A=0,0<x<L, Vvt

@ antinodal points (antinodes):

%20,0<X<L, Vit
dx

november 2016 — january 2017 22 /
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A few properties

The mode with the lowest frequency is the fundamental mode
mode n has n antinodes and n— 1 nodes
for a 1D system, nodes are points (0D objects)

for a ND system, nodes are objects of (N-1)D dimension

november 2016 — january 2017 23 /
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Vibration of a tensioned string [EAVAIE IR IERS de]oF=3
Movies

View movies:
@ mode 1
@ mode 3
@ modes 14345

november 2016 — january 2017 24 /
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N —
Lecture 4 outline

@ Static of a beam

© Vibration of a beam
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Static of a beam

Static of a beam
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Beam characteristics

@ geometry:
Ly>L, ~ L,
@ cross-section S
@ quadratic moment of inertia /
@ material:

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 4 /26



Beam setup

8

traction ~

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 5/ 26



Force balance

T:)1_>2+I—'—>2+T:)3_>2 =0
-T+Sdxpg+(T+dT)=0
ar _

- 1
™ Spg (1)

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 6 /26



Torque balance

—C+(C+dC)+T%+(T+dT)%:O

dC
=T
dx
using (1) ,
d-C
a2 e (2)

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations november 2016 — january 2017 7 /26



Elasticity of the beam
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Static of a beam

Elasticity of the beam

for the stretched part:

ddxay
box _ 1dF
>M dx EdS
3% R
ddx _ ¥
dx R
y
dF = -ZEdS
R
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Torque

—szfsdez—%/fsﬁdS

C:gf/;deS:%l (3)

The curvature radius is defined as

d2
1 & _dPy

("
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Quadratic moment of inertia

Calculate / for a rectangular cross-section:

M. Nicolas (Polytech Marseille GC3A)

nE
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Static of a beam

Quadratic moment of inertia

e —1
Yy
J H h
H h || H w | v
w 2 2
IS
w w
_ WH? I mD* I WH? — wh? I WH? — wh?
12 64 - 12 - 12

november 2016 — january 2017 ég /
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Static shape of a beam

Combining equations (1)-(4) gives

dy _Seg _ .
dx* IE

Easily integrated as a polynomial function with 4 integration constants.

4 BC needed!

november 2016 — january 2017
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Static shape of a beam

BC:
oy:Oand%:Oatxzo
@ T=0and C=0atx=1L

november 2016 — january 2017 14 /
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Static shape of a beam

12 3 2

The maximum deviation is at x = L

2 2
vo0- 3 (-2 8

al®
Ymax = ?
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Vibration of a beam

Vibration of a beam
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Vibration equation

Out of static equilibrium, the motion equation is

eC_ o, Py
dxz_p & ot2

Other geometric equations remain unchanged

1 d? IE

R o TR

84y+p5(82y )

ax* T IE o2
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Vibration of a beam

Hypothesis

We assume that

< _32)/
g
ot?
so that the vibration equation is
oty N 1 9%
Ox*  r?c? ot?
with
E /
C= — r= —=
p’ S
november 2016 — january 2017 18 /
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Vibration of a beam

Gyration radius

The gyration radius r is defined by

or

M. Nicolas (Polytech Marseille GC3A)

~ 7r(2r)4
64

41\
)
T

/

november 2016 — january 2017
Waves & vibrations

19
26 /



Amplitude equation

We seek solution written as
y(x,t) = A(x)e™"!

leading to an amplitude equation

The amplitude A(x) is
A(x) = By cosh(ax) + By sinh(ax) + Bz cos(ax) + Basin(ax)

with
a=+/w/cr
the wave number.

november 2016 — january 2017
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations

20
26 /



BC

The B; are determined through the BC:
e A=0atx=0

dAj/dx=0at x=0

d?Aldx®?=0at x=L

d3Aldx®=0at x=L
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BC

Bi1=-B; By=-B,
( cosh(al) + cos(al) sinh(al) +sin(al) ) ( By ) 0
sinh(aLl) —sin(al) cosh(al) + cos(al) B )

The equation for « is
cosh(al)cos(al) +1=0

or
1

cos(al) = " cosh(al)
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Graphical solution

. i

cosh(aL)

of ||

67
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Vibration modes for the beam

Fundamental mode:

™ 14472 [IE

aow1.2ﬂ, WO—F p_s

Other (higher) modes:

(2n+1)*x* [IE

™
Qpz1 = (2” + 1)Za Wn>1 412 pS

november 2016 — january 2017 24 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 26



Back to the hypothesis

Py
ot?
g & 128

a2yl 2 4.4

ya_t)z’| ymw?  (2n+1)*7w

= wA?~ ymw2

n 0 1 2 3
glymw? | 0.64 002 2x103 5x107*
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Concluding remarks

@ The shape of the beam in the fundamental mode (n = 0) is very close
to the shape of the static beam under gravity.
@ The shape of the beam of mode n > 1 has n nodes

= fundamental mode
= mode n=1

= mode n=2
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N —
Lecture 5 outline

@ Equation of vibration of membranes
© Solving method

© Vibration of rectangular membranes
@ Vibration of a square membrane

© Circular membranes

@ Vibration of a plate
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Equation of vibration of membranes

Equation of vibration of membranes
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Membrane setup

@ 2D system: Ly~ Ly, Ly > L,, L, > L,
o without rigidity

/’/’/‘/’/‘/’/‘/’/’/‘

//////////
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Tension of a membrane

Ly
L, ;
Y
x

_

F=ol,l,=Til,

F

Ty is a tension per unit length (in N-m™1)
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Equation of vibration of membranes

Evidence of the internal tension of a membrane

TGO

The force needed to close the fracture is

F = T1 x Leacture
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Motion equation

Hypothesis:
@ gravity force is negligible compared to tension force
@ tension is uniform and isotropic

We derive the motion equation from the dynamic balance of a small
element of the membrane:

2—)
dmd— f T1dC

along the z-axis:

d?z —
dm<Z 5:5 T dC)
mdt2 ( c ! >

T1 55 cos adC

()
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Equation of vibration of membranes

Motion equation

Using the Green's theorem:

Pz 0%z
//(3X2 y) - 5(3X2 3_)/2)

f(G)oc

we obtain

(

5%z

0x? -

y?

P\ 10
2ot

which is a 2D wave equation with a velocity

Ty
125

C =

with ps = M/S the surface density of the membrane.

M. Nicolas (Polytech Marseille GC3A)
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Equation of vibration of membranes

About wave velocities

@ compression waves (see lecture #3):

E
Ccomp = —
P
@ transversal waves of a string:
To
Cstring = -
oL
@ transversal waves of a membrane:
T1
Cmembrane = -
Ps
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About wave velocities

@ compression waves (see lecture #3):

E

p

Ccomp =

@ transversal waves of a string (see lecture #3):
with To = oL, L, and py = M/Ly = pL,L,

g
Cstring = -

=

e transversal waves of a membrane:
with Ty =ol, and ps = M/(L«L,) = pL,

Cmembrane =

=

november 2016 — january 2017 10 /
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Solving method

Solving method
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What we want to know

From the vibration equation

8%z 0%z 1 9%z
—_— + —_—
Ox2  Oy?

e

we want to know:
@ the natural frequencies of the membrane
@ the shape of the deformed membrane under vibration
@ nodes and anti-nodes

november 2016 — january 2017 12 /
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Method of the solution

Wee look for the z(x,y,t) solution of

P o) 10
Ox2  Oy?

S 2ot
Separating space and time variables gives
z(x,y,t) = A(x,y) cos(wt)

and the motion equation writes as an amplitude equation

62 82 w2
(@ + a—yz)A(X,Y) + gA(XJ/) =0
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Method of the solution

This amplitude equation (A2A + kA = 0) can be (a priori) solved
explicitly with the knowledge of

@ the boundary conditions (BC)

@ the initial conditions (IC)

There is no analytical solution of the membrane vibration for an arbitrary
shape! We know solutions for simple shapes:

@ a rectangular membrane (or square)

@ a circular membrane

november 2016 — january 2017 14 /
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Vibration of rectangular membranes

Vibration of rectangular membranes
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A rectangular frame

Az, y) =

2

w

L, /—-— AgA(z,y) + =2 A(z,y) =0

Ly

amplitude solution (extension from string amplitudes solution):

A(x,y) = Amnsin (mwx) sin | /7Y
L L,
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M. Nicolas (Polytech Marseille GC3A) Waves & vibrations



Vibration freq. of a rectangular membrane

Combining
02 02
(@ ) 2)A(X,y)+ A(va) 0
with
A(x,y) = Apnsin (HZX) sin (%)
gives

2 2
Wmn € m n
fmn = =3 — ] t|\—
or 2\ \L) “\L,

The fundamental frequency is for m=1and n=1 and is

-\ (2) (L)

M. Nicolas (Polytech Marseille GC3A) Waves & vibrations
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Viewing a few modes

Mode (21) Mode (31)

SO i
SIS RSSO
“ :0:’ '0"0, ST LIRSS

SOTEICSS 3
SNy tetets N
LSS IS KKK CO0SS
"‘::“‘:“:‘:’:‘:""’l"’: ! 0‘0‘:“ COTN
‘“\\“::“:‘:’0’0':1':11',"’l:::. ST o,o,o“:‘\‘\“
ESNNSS s A
S0 % NRSSS 'o,/l',,'l,,:o:o%\‘\“

<o
RS>

22,
OO SISO H508
NSRS S22
S Seoss AAL5585585
22 7 1100t 7722

ST \‘\\\“‘ / ‘!e;“
ARSI
TR NS KX
RSN
NN
SSRGS Mode (32)
"l[,' WS 2 T
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Vibration of rectangular membranes

Complete solution

The complete solution of the linear vibration equation for a rectangular
membrane is

Z(X7y7t): Z AmnSin(rnLWX)Sin(nZT—y)COS(wmnt+(pmn)
x %

(m;n)

with

2 2
w =CcT (ﬂ) + i C= g
mn L, Ly s P)

and Amn, ©mn determined through IC.
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Nodes and anti-nodes

@ A nodal line (or curve) is the set of points where
A(x,y)=0, O0<x<lLy, O<y<lL,

e A mode (m,n) has m+ n—2 nodal lines
@ anti-nodes are points where the amplitude is extremal.
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Vibration of a square membrane

Vibration of a square membrane
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Square membrane

Taking L, = L, describes a square membrane, with natural frequencies

w c
foon = — = ——\/m? + n?

2r 2L,

important remark:

fmn =Tnm

for example o1 = 5.

DEF: degenerated frequency: when two (or more) modes have the same
frequency.

november 2016 — january 2017 22 /
M. Nicolas (Polytech Marseille GC3A) Waves & vibrations 31



Square membrane
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Circular membranes

Circular membranes
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Circular membranes

Circular membranes

The amplitude equation
DA+ k*A=0

written in polar (r,0) coordinates is

PA 10A 108%A 2

o2 v or o 2
with BC
A(r=R,0)=0

Separating r and 6, the amplitude is

A(r,0) =" An(r) cos(nf + ¢p)
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Circular membranes

Circular membranes

Step to solution: variable change

X=—
c

the amplitude equation writes now as a Bessel equation

d?A, 1 n?
2 +;+(1—;)An=0

M. Nicolas (Polytech Marseille GC3A)
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Bessel equations and Bessel functions

An(x) = andn(x) + By Ya(x)
with
(X" & (=x2/4)m
)= (5) ngo mf(n+m+1)
Jn(x) cos(nm) — J_p(x)
sin(nm)

oo
/ etk gt
0

Ya(x) =

r(k)
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Bessel functions

for n=0, the Jy and Y{ Bessel functions are

1 T T T T T T T T T
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Circular vibration modes

z(r,0,t) = cos(wt) " andp(kr)cos(nb + p)

mode (01) mode (13)
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Vibration of a plate

Vibration of a plate
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Vibration of a rigid membrane

Combining membrane 4+ beam gives

2 2
B a2, 02
12p(1-1?) ot?

where h is the thickness of the plate
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