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QOutline of the speech
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© One-fluid RANS equations
© Limitation of eddy viscosity

© Compressibility terms

© Wall models

Q Improved models - hybrid RANS/LES
@ One-fluid filtered equations and LES

@ Conclusions

Eric Goncalves Turbulence modelling in cavitating flows 2/52



General considerations




A large quantity of opened questions

@ Kolmogorov spectrum, slope # -5/3

@ Kolmogorov scale / size of two-phase structures.
@ Induced turbulence or pseudo-turbulence.

@ Compressibility effects on turbulence.

@ Anisotropy of the Reynolds tensor.

@ Increase or decrease of the turbulence intensity.
@ Cavitation-turbulence interaction at small scales.

@ no DNS data or turbulent quantities measurements.

@ non universality of two-phase flows.
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Example of flows
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Multiple scales
Turbulence scales

DNS : all scales are resolved

@ LES : large scale are resolved and small scales are modelled
@ RANS : mean flow is resolved and turbulence is modelled
@ Hybrid RANS/LES : model adapts to the mesh resolution

Phase scales

® DNS : resolution of each fluid + interface

@ pseudo-DNS : resolution of each fluid + tracking of the interface
(VoF, level set...)
o filtered (LES) and averaged (RANS) models :

o two-fluid model,
o reduced models,
@ one-fluid model
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Averaged approach - homogeneous mixture models

Averaged one-fluid equations (RANS)

@ Temporal averaged or ensemble averaged equations
@ The same operator for two-phase structure and turbulent structure
@ Boussinesq analogy used similarly to single-phase flows

@ Transport-equation models : k — ¢, k — w,...

Filtered one-fluid equations (LES)

@ First works in incompressible flow without phase transition

@ Lots of sub-grid terms - problem of modelling
@ Link with the DNS
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Averaged equations
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Average operator

Temporal phase average

Averaging over a time T :

— 1
= T/Tgbk(x,r) dr

Averaging over the time T of presence of the phase k :

= 1
O = — oK(x,7)dt
K= T Jn k(x,7)
Void fraction : a(x,t) = % = Q
k

it b b b |
=172 ! e = 31+T/2
T
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Decomposition of variable

Mass-weighted average (Favre average)

For a variable p¢, a mass-weighted average :

% PkPr _@ and  § = S aPrdk O PRk
Pk

Y oakpk 2Pk

Mass-weighted decomposition

An average part and a fluctuation (two-phase and turbulent contribution) :

Pk = Pk+ Pl Uk = g + uy,

bk = Pk + Py
p_/k =0 ) pk—UZ:O P pk¢Z:0
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Averaged equations (1)
Conservative equations for the phase k

Mass conservation :

Do py
ot

+ div (akﬁkﬁk) =Ty

Momentum conservation :

oy iUk
ot

Total energy conservation :

+ div (Pl ® Ug + Px) = div (u(Fk + 7)) + M

dapy (Ek 8 kk)

o + div (akpk(Ek T kk)ﬁk> = div (akPkﬂk) + div (ak(?k 4 T/E)Ek)

—div (e Gk + ak)) + Qi

New unknowns : Reynolds stress tensor 7f and turbulent heat flux gj,
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Averaged equations (2)
Fluctuating fields

The velocity fluctuating field is not divergence free (even with
incompressible phases) :

/ —
8Uk7/ 8ﬁk,/ 1 5
= — = —Uu,.ngoy
aX/ 8X/ (09% k

It leads to supplementary unknowns, called "compressible terms".
Equation for the momentum fluctuation :

" " "

Ouy ; _ Ouy; n Ol i v Ouy ;
— + PrUk, 1 —— PklUp |~ T Pkl =7
Pk ot L L 1ot
_ Tk ol Oy
Ox L) 8x,
Pk 90y T it 0 ( = ﬁ)
— | ——-M — |« u, .u
e { 0 K g \ PR it
- Ooypr - Ooyp
P {Uk,i( kpk_i_uk” kpk)}
Pk Ck ot x|
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Turbulent kinetic energy equation for the phase k

it is possible to write the equation for the phasic Reynolds stress and the phasic TKE kj

Do pycki
Tk + div (o pk kilik) = upi (Pi — ek + My + My + Dye) + T K™
with :
= oo 8”[( i .
PrakPr = —aupg Up g g 8 Production term
1"
= ’ 6uk,i . . .
Pk Qk€k = OYTy g Dissipation rate
’ 6X/
1"
= » Ol i . .
Prakl = axp, 3 Pressure-dilatation term
Xi

_ =1 &, Ooxi
= Z k N
prakM, = ogu, . |— — Mass flux term

k bl |: 8x,- aX,

// //
— 16) S0 aO‘kpk ' L Uk /
Pr oD, = —— P u 5 QT aU, | — Diffusion term
Pk %k Pk 8x, |: il — XkTy it k,l:| 8x,
reK™ Mass transfer term
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Homogeneous mixture equations or one-fluid model (1)
Mixture mean quantities

mixture density and presure : pm = > kP, Pm = Zakfk

mixture internal energy : pmem = > Py ek
mass center velocity : pmUm.i = > Py Ui
mixture viscosity : pim = > ayfix

mixture viscous stress tensor : Tm,ij = E QT ij

¢ © ¢ ¢ ¢ ¢

mixture heat flux : g, = > aygx

Mixture turbulent quantities

@ mixture turbulent kinetic energy : km = Y aky = Y a2 /2

. e —
@ mixture Reynolds stress tensor : 7, ; = — Zakpkuk,iukd.
® mixture eddy viscosity : figm = D Qkfirk
@ mixture turbulent heat flux : gf, = > axq;

@ mixture dissipation rate : £,,,, mixture specific dissipation wp,...
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Homogeneous mixture equations (2)

Conservative equations

Mass equation :
—650;" + div(pmum) = 0

Momentum equation :

apmum
ot

+ div (pm Um ® Um + Pm) = div(tm +7L)

Energy equation :

Opm(Em + km)

ot + div(pm(Em + km)um) = div(=Pmnum) — div(gm — q7,)

+ div [(Tm + T,tn)um]
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Homogeneous mixture equations (3)

Mixture turbulent kinetic energy equation

Opmk
ot

. . . " .
It is assumed that each phase shares the same fluctuating velocity u; , the same fluctuating

m = dlv( mkmum) = Pum + pmllm — pmem + PmMm + PmDm + rmK,I;y

’ . . /
pressure P and the same fluctuating viscous stress Ty

OUpm i , Ou.
P = ; M= P i
PmFm T, il Bx (AL ox;
8u =
e "a_x, ; FmKhL =0
7 aPm 7 a‘J'm,ll aO‘k
pmMm = u; |:— Ox; + u; ax; Z Ok, II
_ 11 ro m 2 !
pmDm = _87)([ |:pu 0 — ”u,':| _T
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Turbulence modelling (1)

A fluctuation is associated to a mixture quantity !

The fluctuating velocity field is not divergence free — supplementary
terms, difficult to model.

The pressure-dilatation term p,M,, is null in mean but not
instantaneously.

The mixture dissipation ¢ is not only solenoidal.
Inhomogeneous and dilatational (or compressible) contributions.

—_ o |ouu — 4 ——
pe ~ 2uwpwy +2pu 5~ | = 2usy| + 2 Hsys)
N—— 8Xk aX/ 3

PEs
ped
PEinh

The diffusion term is modelled with a gradient formulation.

The mixture dissipation equation ¢ is completely modelled following
the single-phase formulation.
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Turbulence modelling (2)

Boussinesq analogy and mixture eddy viscosity assumption ¢, :

2

Oupm,i M — gdiv uméij] = gpmkméij

j = Htm |: 8XJ aX,'

Evaluation of the mixture eddy viscosity with transport-equation models.

Turbulent Fourier law

Fourier law analogy and mixture thermal conductivity A%,

ql, = =\l grad T,

Assumption of constant turbulent Prandtl number Pr; :

tC
Zak)\t = Z k'uk pk approximed by A ~ M’;'Ditpm
r
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Turbulence modelling (3)
Usual model, k — ¢ model for a mixture

transport-equation models equivalent to single-phase turbulent models.

all supplementary terms are neglected.
only the solenoidal dissipation is taken into account.

aLk—&—div{puk—(u—&—&) gradk] = pPx — pe
ot Ok
%—&—div ue — + Bt grade| = CEP—Cfé
ot 1% M o g = slkP k p522k
k2
Mt”ﬂg

@ a large quantity of assumptions.
@ introduction of wall treatment (damping functions or wall functions)

@ a large quantity of problems!
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Limitation of the eddy viscosity




Turbulent eddy corrections

The Reboud correction

1000, -
k2 300
pe = f(P)Cu? E 800
— n = 400 .
4 P =
f(p) = Pv + ( Z ) (pl - pV) 200
Pv =PI

. 0 200 400 600 800 1000
n is usually set to 10 rho

SST correction - Bradshaw’s assumption for 2D boundary layer

_ pk/w ) _ o ou; oy
ptfim__z),ﬁfOB,Qf,/ZQQ j with Q; = — (ax,_ax,-

max (1

T ajw

Realisability constrains of Durbin

] 0. <\ Pk 0 e ke _ 2
pt = min (Cu’ m) . ;0<c<1; CM:O.OQ, s= ;Sw1th5725,-j5,-j—§5kk
21/52
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The Venturi 4°

Experimental conditions

Observations :

Operating point : @ A quasi stable cavitation of 0.70
9 Uinjer = 10.8 m/s to 0.85 m length
Pinlet —Pval @ An unsteady closure region with
? o — Clinlet P ~ 0.55 y g
B 0.5pU2, vapour cloud shedding and a

liquid re-entrant jet

Station 1 Station 2 Sration 3 Station 4 Swation §
X=0msm X=041m x=078m

Measurements

@ Time-averaged longitudinal velocity and void ratio

@ Time-averaged wall pressure evolution and RMS fluctuations
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Reboud limiter

I, density gradient

Results using the Spalart-Allmaras mo

SA + Reboud limiter

Mt

KE
KE Reboud
——v—— KE Realizable

SA Reboud
—¥— SA

75 100

mutmu

75

50

0;
0 2 mut/mu
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[ EXPERIMENT
SA Reboud

- - -=--- KLReboud

————— KE Reboud

———— KE Realizable
KWSST

EXPERIMENT
SA Reboud

KL Reboud
ffff KE Reboud

KE Realizable
KWSST

Time-averaged void fraction (left) and velocity (right) profiles
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0. 0.8

7 0.6
alpha

0.008
0,006
> 0,004

0.002

0.008
0,006
> 0.004

0.002

EXPERIMENT
SA Reboud

KL Reboud

KE Reboud

KE Realizable
KwsST

5
u (m/s)

EXPERIMENT
SA Reboud

KL Reboud

KE Reboud

KE Realizable
KWSST

5
u (m/s)
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The kK — ¢ model + SST correction

0.014 0.01
L] EXP L] EXP
—«— KL-SST:c=0.3 KL-SST:c=0.3
0.008¢ — o KLSST:c=02 0.008F o KL-SST:c=02
- -¢-- KL-SST:c=0.1 - -¢-- KL-SST:c=0.1
——=—— KL-Realizable :c=0.2 ——=—— KL-Realizable :c=0.2
0.006 ealanie e 0.006}
g E
>
> 0.004 0.004F
0.002 0.002

b 2 4 6 8 10 12 14
u (m/s)

Time-averaged void fraction (left) and velocity (right) profiles

a)
0.04
0.035
0.03
0.025
0.02
0,015
0.01
0.005 =TT
0

y(m)

0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1
x(m) x(m)

Contour of the density gradient : a; = 0.2 (left) and a; = 0.1 (right)
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Compressibility corrections




Closure relations for turbulence compressible terms
Pressure-dilatation, Sarkar formulation

,ou!
pll =P 8—xl = —aszMt+a3pEst

«o, a3 are constants to calibrate. M; = % is the turbulent Mach number.

Dilatational dissipation, Sarkar formulation
4 —— o . .
€4 = 3 1S sy = a1esMy  with ag tocalibrate

Mass flux, Jones formulation
Jul (0P 05\ _ e Op 0P
p \Ox Ox )  pPopOx; Ox;

op is a turbulent Schmidt number, which has to be calibrated.

pM =
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k — e compressible model

X (m) ’ ’ x(m)

k —e + M, ax=0.15, a3 = 0.001 (left) and a3 = 0.025 (right)

0.05 0.05
0.04f 0.04F
0.03fF 0.03fF
5 £
0.02f =002
0.01F 0.01f
of of
, . , . , , L , . .
0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1
X (m) x(m)

k — € + mass flux term, o, =1 (left) and o, = 0.0001 (right)
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k — ¢ compressible model (2)

0.05 0.05
0.04 0.041F
0.03F 0.03F
B B
=0.02F 002
el e < oot %
i \ i
L ‘ ‘ L ‘ ‘ ‘
[ 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1
m, x (m)

k—¢€+ Il + M + €4, Sarkar values, at 2 instants

[ ] EXPE L] EXPE
——a—— KEcompressible _ 1.4 | KE compressible
15 KE pd o O ¢ 1 KE pd
— & KEepsd o °- 12 h — & KEepsd
7777777 KE Reboud Pl > 1 ------- KE Reboud
> kg . © o
4 10f e a )
z z
L5 o

0.25 0.3

x9>"<‘2(m)
Time-averaged wall pressure (left) and RMS fluctuations (right)
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Wall functions
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Turbulent boundary layer

Opened questions

@ Existence of an universal velocity profile.

@ Instantaneous logarithmic area.

@ Cavitating law of the wall (x function of «).

@ Turbulence damping functions.

@ Modifications of turbulent properties downstream a pocket.
@ Compressibility effects.

Numerical study

o Computations using various meshes : y™ from 1 to 50.

@ Comparison of wall functions : two-layer model versus TBLE model.
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Two-layer wall model

Formulation - similar to single-phase flows

T = yt if yt<11.13

u

1
ut = ZInyT 4525 if yt>11.13
K

where k = 0.41 is the von Karman constant
For unsteady flows, validity of the velocity profile at each instant.

Turbulent quantities : the production of k or directly k is fixed following
the formulation by Viegas and Rubesin :

1 (Y | Ou
Pk:—/ 7L — dy
yJo Yoy

The second variable is computed through a length scale.
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Thin boundary layer equations TBLE

Simplified momentum equation :

Ouj  Oujuj 1dP 0 [(,u—l-,u )8u,}
t

ot ' ox; | pdq Oy Dy

Use of an embedded grid between the first grid point and the wall.

cell center
.

112 wall i+112

Discretization and integration of TBL equations in the embedded mesh.
Iterative solving (Newton algorithm) for the variable 7,,. The number of
nodes in the embedded grid is N =30.
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Venturi simulati

0.006 L] EXPE
——— 25177 Station 3
0.005 f —— 251x62
——— 251x61
0.004F —a—— 251x59

0.006 L] EXPE
——— 25177 Station 3
0.005 f —— 251x62
——— 251x61
0.004F —+—— 251x59

Eoo03 Eo003
0.002 0.002
0.001 0.001

° ¥ umd 10 S A v umd 10 K L

0.006 L4 EXPE 0.006 -
—o— 251x77 Station 3 4:* 5;557 Station 3
0.005F ———— 251x62 0.005
— 25162
———— 251:61 _—
0.004 251x59 0.004 v
Eo.003 Eo.03
= =!
0002 0002
0.001 0.001

’ ) ®  KE ’ utie * KWSST
Mesh influence near wall, station 3

®  EXPE 0.006 ®  EXPE
——~—— standard wall law standard wall law
——— TBLE 0.005

0.006, station 3 0.004 station 3
£
; 0.004 0008
0002
0002 0.001
o
OU 02 04 08 1 0 10

06 g
alpha u(mis)

Two-layer model versus TBLE model
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Periodic self-oscillating Venturi simulations

Frequency and CPU cost

The experimental frequency is around 45 Hz.
The inlet cavitation parameter ojpje; ~ 2.15.

mesh Ointer  frequency (Hz) cost for 100 ite. (s) ratio

174 x 77  2.13 30 525.6 1
2.18 no frequency

174 x 62 2.13 35 429.6 0.817
2.17 40

174 x 60 2.13 35 419.4 0.80
2.19 43.5

174 x 59 2.14 44 408 0.776

174 x 57 2.145 46 393 0.747

174 x 56 2.14 46 387 0.736
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Improved model and hybrid
RANS/LES




Scale Adaptive Simulation (1)

Framework

Starting point : the k — k¢ model of Rotta (1972) where k¢ = % I Rii (X, ry) dry

Correlation tensor Rjj (X, ry) = U; (X) U;j (X +ry)
velocity correlation between a fixed point and a moving point in direction y

Transport equation for W = k£ involving the integral quantity / :

3 [ 9U(R+r)

| =—-—
16 J_ oo dy

Riadry,
Expansion in Taylor series gives :
oU (X) [ U (R) [ 13U (R) [ >
| ~ Ty /700 ngdry TF 67)/2 /700 ngrydry 4 ETya /;oo Rlzrydry + ...

The second order derivative is neglected (assumption of homogeneous flow). The third order
derivative is difficult to model and Rotta neglected also this term.
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Scale Adaptive Simulation (2)
Menter modelling

Menter proposed a model using the second derivative of the velocity (indicator of the
heterogeneity of the flow) and the von Karman scale L,

U ke (€ \?
a_y2 /; Riarydry =~ Py — B (L_vk) and Ly =k

New term in the transport equation for W (S-A term), driven by a constant &.
& = 1.47 following the calibration of Menter.

Scale-adaptive model

@ The characteristic length scale is self-adaptive, function of the von Karman scale
for a standard model, the length scale is proportional to §

@ It allows to adjust the solve of turbulent structures — behaviour close to a LES

@ BUT : problem in the near-wall area, the log zone is not respected
— the S-A term is not activated in the near-wall area

@ calibration of £ in cavitating flows.
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Venturi 4° simulations

Comparison between Reboud and S-A k — ¢/ models

e EXp
— e KL . EXP
fffff KL-Reboud o8 i —— KL o
***** KL-Rebou
° 07r e KL-SAS
06 . - .
e time-averaged profiles quasi
05F . .
N K similar
[ 3 041 H
3 g e better pressure fluctuations
& &osr with S-A model

k — ¢ SAS

y(m)
y(m)

o 0025 0.05 0075 01
x(m)
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Hybrid RANS/LES turbulence models : DES

Detached Eddy Simulation of Spalart

Opv = 1 - - = =
;;/ + div [Vpﬂ — — (u+ pP) grad 17} = cp1 (1 — fr2) Spv + %grad pv.grad U
o o
~ (e - L) 2
wlTlw 12 t2 Paz

with d = min(d , CpesA) and A = max(Ax, Ay, Az).
CpEs is a constant evaluated for the decay of isotropic turbulence =0.65
In equilibrium area : o = CE,ESAZS

Drawbacks

@ Grid induced separation.

@ Transition between RANS-mode and
LES-mode : "grey" zone.

@ Calibration of the constant Cyes.
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2D simulations of the Venturi 4°

Influence of Cpes. RANS regions (black) and LES (white)

T L TTTTT—
Cdes = 0.65 Cdes = 0.9
Wall pressure and RMS fluctuations
') EXP

16 > 12

SA-DES-c065-5igma065

11
14 ——o— SA-DES-c08-sigma06
1 1 SA-DES-c09-sigma0588
xL 0.9 ——&— SA-DES-c09-sigma0579
10§ 08

>
>
[ g
i of g 0.6
S ® Exp = 05
s SA-DES-c065-sigma065 & s
—6— SA-DES-c08-sigma06 03
2 —=—— SA-DES-c09-sigma0588 g
——a SA-DES-c09-sigma0579 0.2
or 0.1
B L L L 1 0 §@cailhaas e ot )
b1 0.15 0.2 0.25 0.3 0.15 0.2 0.25 0.3
XX X-xi
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simulations of the Venturi 4

Gract

0.06

0.05

0.04

0.03

z(m)

0.02

0.01

Grac

0.06

0.05

0.04

0.03

z(m)

0.02

0.01

-0.01

gradient density visualization at two different instants :
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ho: 30000 60000 90000 120000 150000 160000 210000 240000 270000 300000

X (m)

ho: 30000 60000 90000 120000 150000 160000 210000 240000 270000 300000

0.4
X (m)

2 (m)

2 (m)

Grac
0.06

Grad

0.06

L L L L L L L s
001 002 003 004 005 006 007 008
x(m)

tho: 30000 60000 000D 120000 150000 180000 210000 240000 270000 300000

L s L L L s
0.01 002 003 004 005 0.06 007 0.08
x(m)

k — ¢ S-A (left) and DES (right)
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3D simulations of the Venturi 4° (2)

Comparison between k — ¢ Scale-Adaptive and DES simulations

Iso-surface of the void fraction for the value of 60% at two different
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simulations on

Comparison between 2D and 3D simulations

@ Good agreement between models and experiment (mid-span profiles)

@ 3D computations provides void fraction lower than 2D computations

e  EXPE ®  EXPE

0.009 —e—— SASAS3D 0.009 — = SASAS3D
0.008 —e— SA-SAS2D ooosk & SA-SAS2D
,,,,, KL-SAS 3D ——aemm KL-SAS 3D

0.007 e KLSAS2D 0.007F ——4m= KL-SAS 2D

alpha U (mis)

EXPE 00121 3 EXPE
SA-SAS 3D 0.011f —=— SA-SAS3D
SA-SAS 2D ootk —o— SASAS2D

,,,,, KL-SAS 3D
KL-SAS 3D 0.009 - —-—-e-—= KL-SAS 2D
KL-SAS 2D




3D simulations on the Venturi 4° (4)
Comparison between 2D and 3D simulations

The level of RMS pressure fluctuations is largely overestimated by the 3D
computations

0.8 [ ] EXP
——=a—— SA-SAS 3D

07k d .. —o— sasas2o

b St e KL-SAS 3D
f % ——e-- KLSAS2D

0.6

(P-PV)/PV
P'ms/P ..

X, (m)

Time-averaged wall pressure and RMS fluctuat|ons
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3D simulations on the Venturi 4° (5)

Dynamic behaviour - oblique mode using S-A simulations

Grad-tho: 30000 60000 90000 120000 150000 180000 210000 240000 270000 300000
0.0

0.05

0.04

0.03

z (m)

0.02

0.01

#

ﬁ

0

. . 1 . 1 . 1 . .
0015 0.01 002 0.03 0.04 0.05
x (m)

Density gradient visualization

— a transversal instability at a low frequency : 6 Hz.
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One-fluid filtered equations and
LES




One-fluid filtered equations

Scales

@ Micro-scales, scales which are small enough to describe individual
bubble shapes.

@ Meso-scales, which are comparable to bubble sizes.

@ Macro-scales, which entail enough bubbles for statistical
representation.

@ When LES is applied at a micro-scale, combination with interface
tracking methods (see Lakehal).

@ When LES is applied at a macro-scale, the interface resolution is not

considered.

@ The scale separation is mathematically obtained by applying a
convolution product using a large-scale-pass filter (function G).
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One-fluid filtered equations

@ For a quantity ¢, the filtered variable is defined as : ¢ = G o ¢
@ The Favre filtered variable : ¢ = po/P

@ The filtered phase indicator function Xy = G o X = ay can be
interpreted as a filtered volume fraction of phase k.

Phase indicator function

The phase indicator function is defined as :

1 if phase k is present in point M(x, t) at t
0 otherwise

XM, ) = {
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One-fluid filtered equations

Equations

Assumptions : the filtering operator commutes with time and spatial
derivatives. The mass transfer is assuming to be proportional to the
velocity divergence through a constant C.

0;5; n 9 (ﬁaifg);r Pdj) =iy (2/5 + 27,5 — 2755 — TpuU)
855 . 0 (ﬁHgi: 61’) = div (27M5u AV 2ﬁ§¢pu)
+ div <4u7'pu7'p5 4 ﬁf:/Tpu = TpHu)

g_a + V.va ng = —Tua — Cdiv(7p)
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One-fluid filtered equations

Toe = V.VX, — V.Va ; Tou = V-V
Tus = u_S—ﬁg ; Tp5:5—§
ToHu = pHV —pHV ; TSy — SV — nsSv

W) — ﬁ(Vfé/\/—\"/@ \7)

@ The subgrid term 7, is specific to two-phase flows.
@ The influence and the hierarchy of all these terms have never been
investigated in cavitating flows.

@ The magnitude of the different subgrid terms was a priori evaluated in
the case of phase separation flows and turbulence bubble interaction
(Labourasse,Vincent) — the influence of 7, is highly dependent on
the flow configurations and/or on the chosen two-phase description.
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Conclusion

Modelling difficulties

@ Lots of assumption in models.
@ Lack of experimental data or DNS.

@ Compressibility turbulent closure due to the no divergence free
fluctuating velocity field

@ Advanced turbulence models and hybrid turbulence model to improve
the level of resolved scales

@ A challenge : LES in cavitating flows.
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