

Archéozoologie: implication paléo-environnementale Thierry Argant

▶ To cite this version:

Thierry Argant. Archéozoologie: implication paléo-environnementale. Master. Archéologie du Territoire et de l'Environnement (ATE), spécialités Archéozoologie-Archéobotanique (UE B.1.1.C), Campus des Quais, bâtiment Belenos, France. 2016, pp.34. cel-01402500

HAL Id: cel-01402500

https://hal.science/cel-01402500

Submitted on 29 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Master Archéologie, Sciences pour l'archéologie - UE B.1.1.C Archéologie du Territoire et de l'Environnement (ATE) Spécialités Archéozoologie-Archéobotanique

Archéozoologie : implication paléoenvironnementale

- Au menu du jour -

Copplications concrètes - Argant - 2016

Les forces en présence

• Une problématique à considérer en amont : le mode de collecte

• À chaque classe son niveau de pertinence : plus tu es gros plus ta zon d'insertion est grande, ou alors tu as des ailes et Différents objets d'étude : Gant - 2016 tu compenses.

Les mollusques

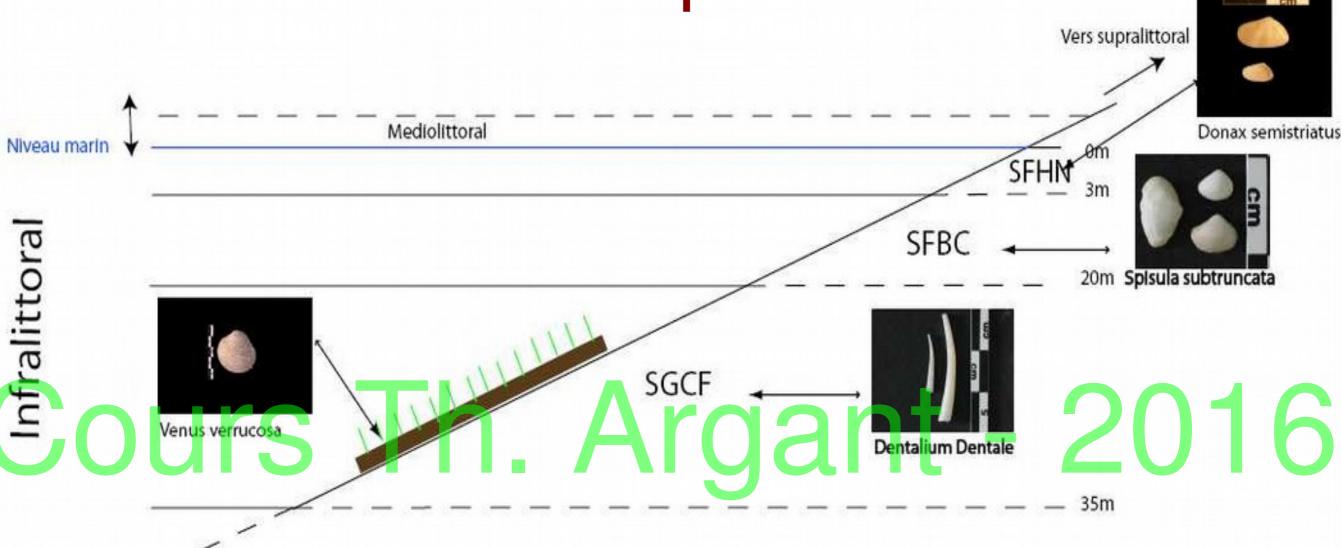
- Les microvertébrés (Mammifères, Batraciens, Reptiles)
- La grande faune (Mammifères et Oiseaux)

Avec un seul pied tu ne vas pas loin! La malacofaune ou l'échelle locale Le mode de collecte

type de prélèvement	En coupe
Sédiment	Frais ou immergé avant tamisage (défloculation des argiles si nécessaire)
Quantité en milieu riche	1 à 2 litres
Quantité en milieu pauvre Stockage avant étude	10 litres Après séchage progressif, en sachet plastique ou boîte rigide
Tamisage	À l'eau courante (de préférence)
Maille minimum	0,5 mm
Nombre d'échantillon	Tous les 5 à 20 cm en colonne continue
Seuil de représentativité	200 individus
Taux de détermination	Très élevé
Mode de tri	Sous loupe binoculaire, par le spécialiste

La Malacofaune

Chaque espèce est inféodée à un milieu bien caractéristique et se **déplace peu**. Sa présence sur un site est donc un bon indice pour décrire le contexte environnemental très local.


En raisonnant sur des **associations d'espèces**, on arrive à distinguer des biotopes relativement précis. Par exemple :

forestier, forestier humide et chaud, steppique, hygrophile, palustre, eaux

Les biocénoses benthiques

Vers le circalittoral:

biocénose du détritique côtier

SFHN: biocénoses des sables fins de haut niveau de 0 à 3 m

SFBC: biocénoses des sables fins biens calibrés de 3 à 20 m

SGCF: biocénoses de s sables grossiers de courant de fond, biocénoses des Herbiers de posidonies

: herbiers à posidonies

V = vasicole

VS = vases sableuses

SV = sables vaseux

S = sables

SFHN = sables fins de haut niveau

SFBC = sables fins bien calibrés

SGCF = sables grossiers des courants de fonds

Lre = large répartition écologique

Ri,c = roche infra, circa

A = algues

HP = herbiers de posidonies

mo = matière organique

dos - dossaluro

Alvania lineata	Α
Alvania montagui	А
Alvania reticulata	А
Alvania sp.	sspr
Amyclina corniculum	R
Anomia ephippium	R
Aporrhais pespelicani	Mixt
Balanus	R
Bittium reticulatum	HPR
Bittium reticulatum f. lateillei	HPR
Brachidontes variabilis	R
Calliostoma sp.	sspr
Callista chione	SV
Capulus hungaricus	R
Cardiidae	sspr
Cardita abtiquata	sspr
Cardita aculeata	Mixt
Cerastoderma	V,VS
Cerastoderma edule	S
Cerastoderma glaucum	S/des

Taxon Cerithium vulgatum

Photo

Tallle Diamètre 25 x h 66 mm

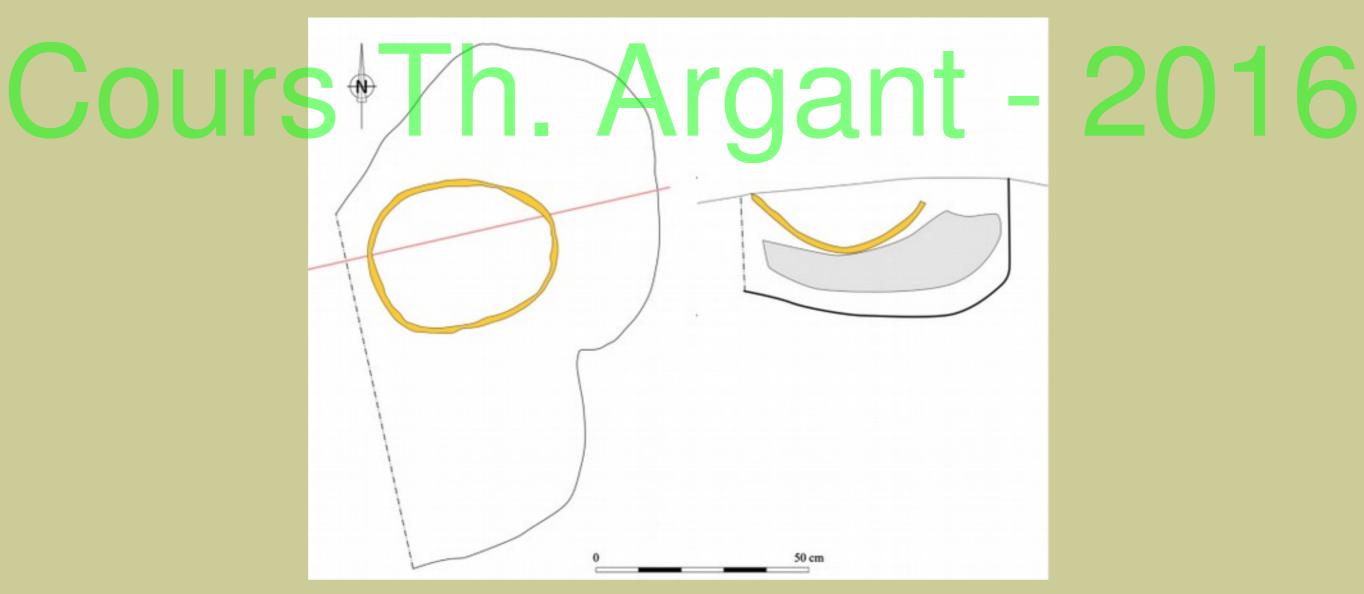
Signification écologique Sables, Rochers (SR)

Caractèristiques principales Espèce de la famille des Cerithiidae, c'est un gastéropode assez solide et élancé. Chaque spirale possède deux files de petites tubercules pointant vers l'arrière,

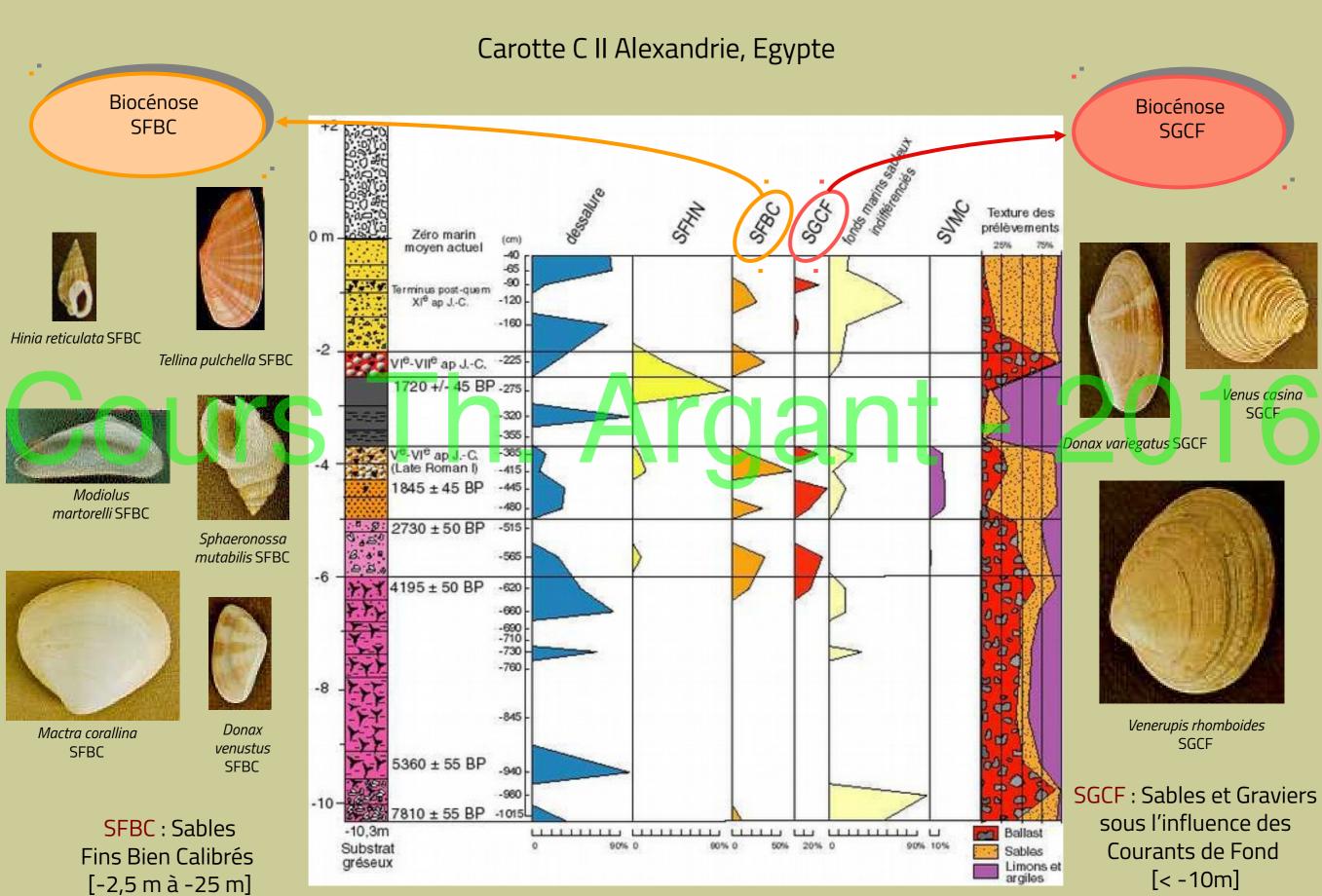
l'ornementation étant très variable. D'une coloration marron avec de petites taches claires. C'est une espèce commune en Méditerranée.

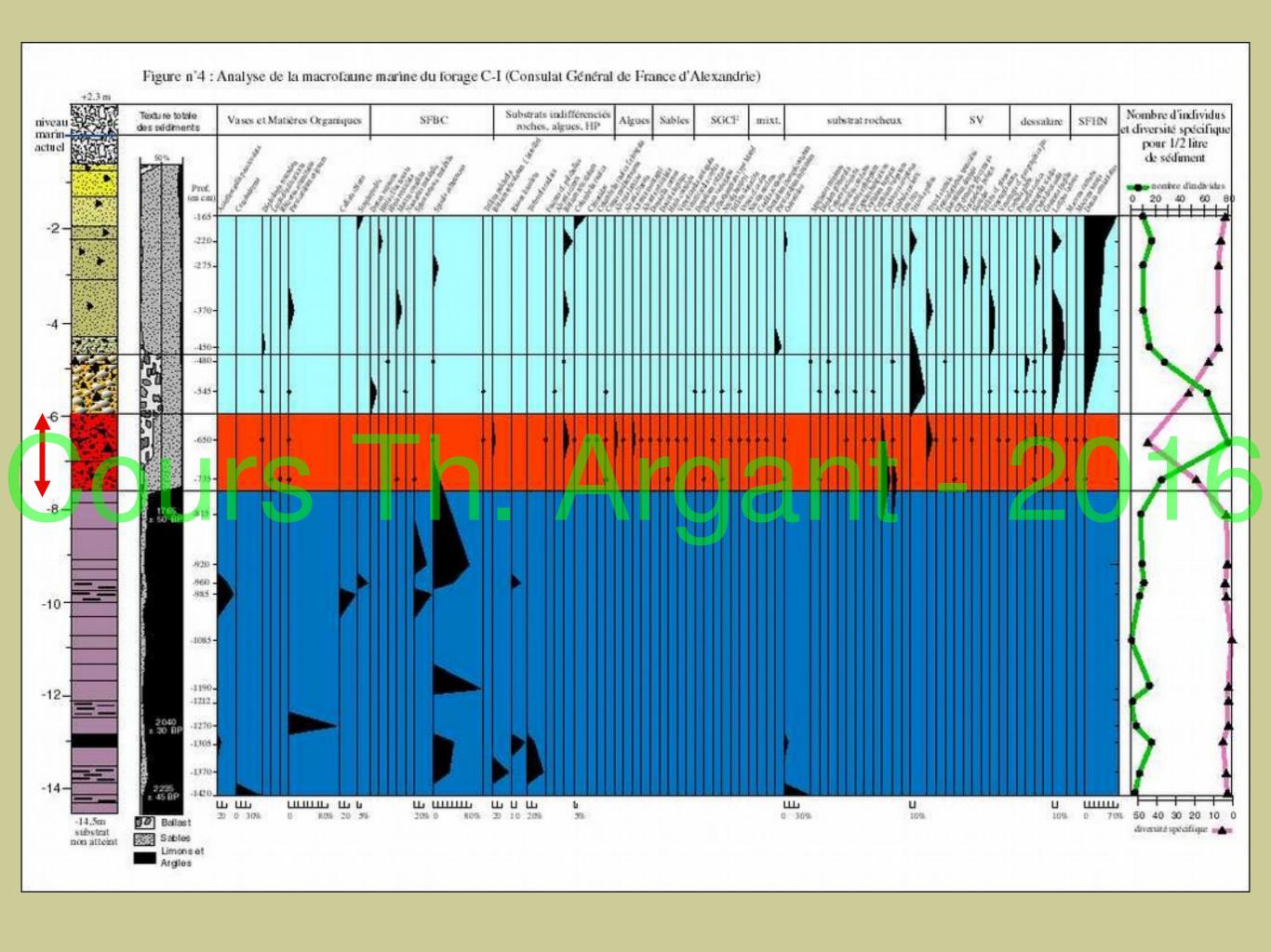
Bibliographie

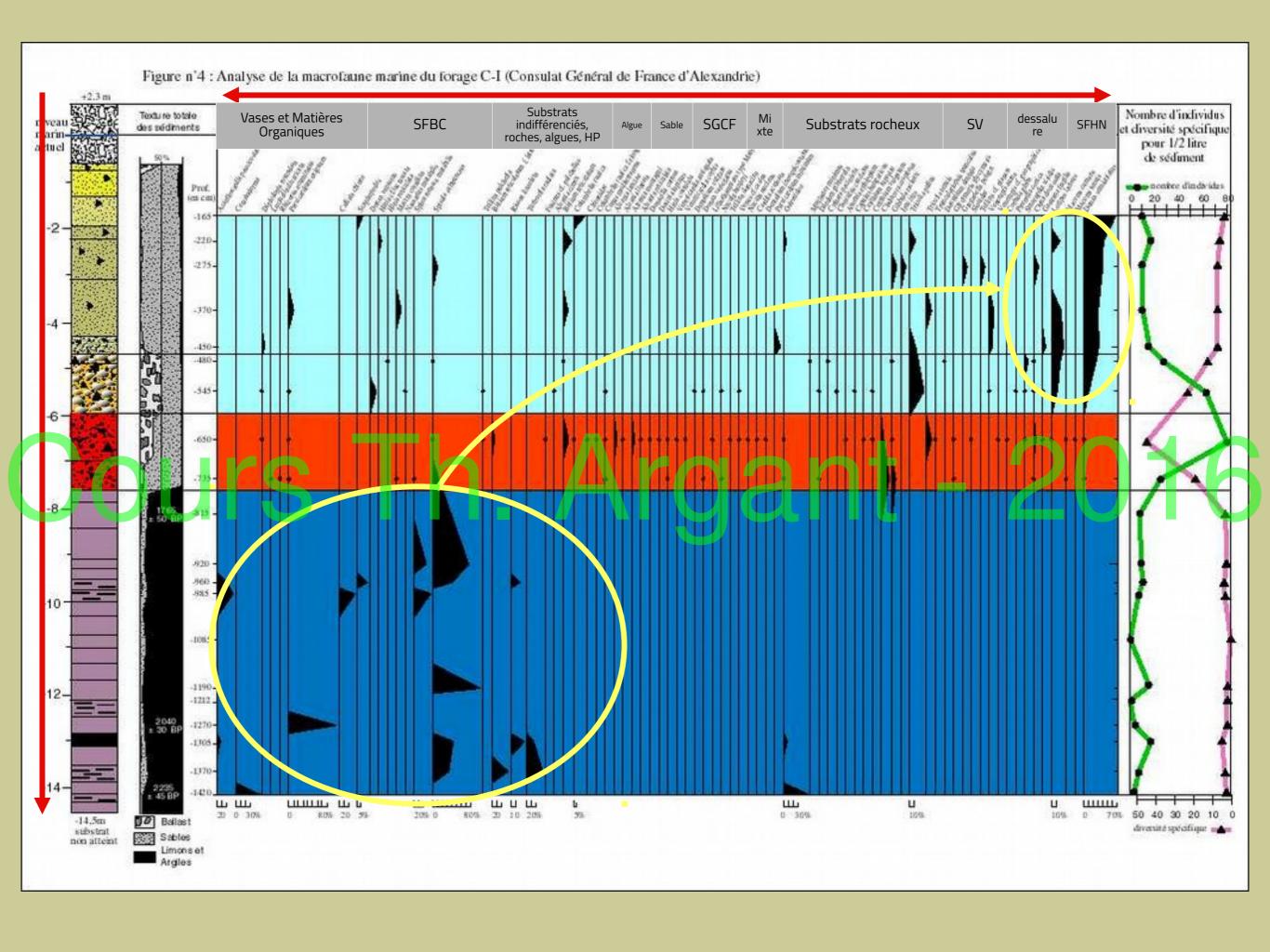
Guilia D'angelo, Stefano Gargiullo, (1991), Guida alle conchiglie mediterranee, Milan, Fabbri Editori, 224 p


Numéro

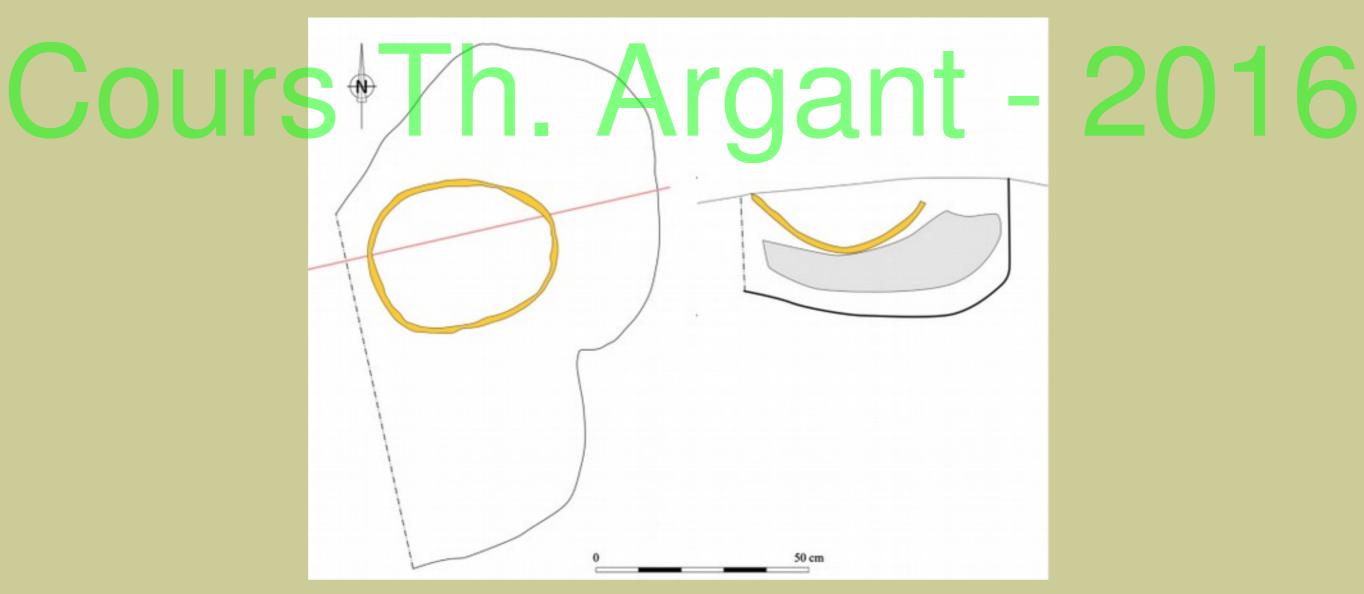
9


Habitat II vit entre les sables et les rochers des zones médiolittorale et infralittorale. 2016


L'interprétation d'une structure


- Contexte : Lyon Rue appian un fond de vase au dessus d'un dépôt d'incinération
- Datation : fin du ler début du IIème s. ap. J.-C.

ASSEMBLAGES DES PELECYPODES ET GASTEROPODES MARINS

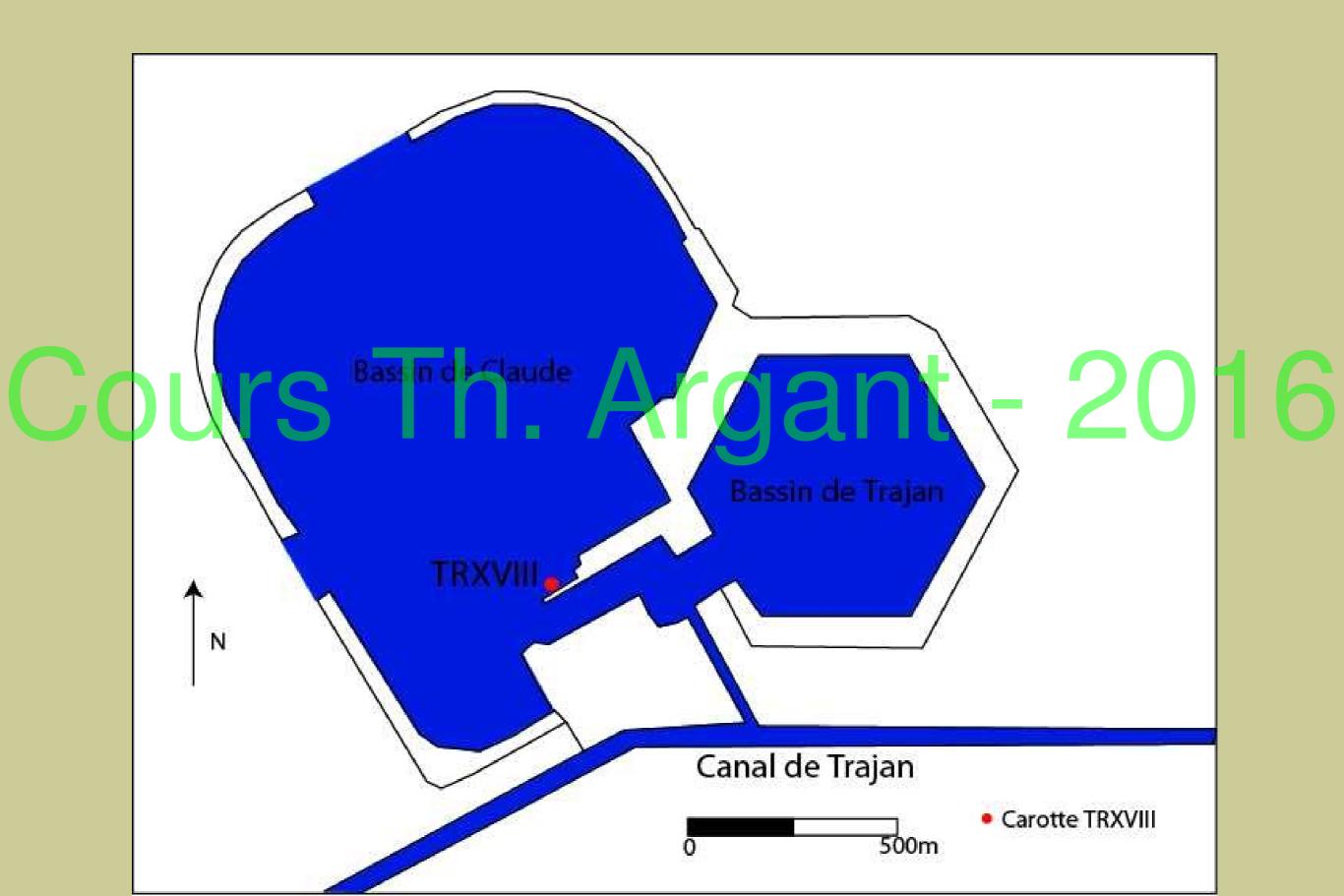


L'interprétation d'une structure

- Contexte : Lyon Rue appian un fond de vase au dessus d'un dépôt d'incinération
- Datation : fin du ler début du IIème s. ap. J.-C.

Application au port de Trajan à Ostie

Un complexe portuaire en milieu deltaïque


- √Installation au sein même du delta du Tibre
- ✓ Actions des apports sédimentaires terrigènes sur les structures
- Evolution des biocénoses soumises à cette situation

Cours Thomas Argant - 2016 l'évolution de la station

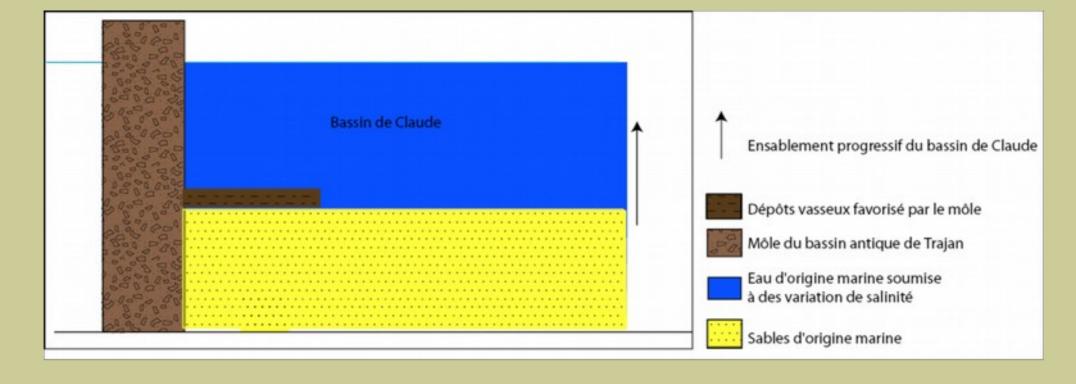
✓ L'évolution des peuplements est soumise aux changements de structurations de l'environnement

Reconstitution des bassins de Claude et Trajan

Reconstitution paléoécologique

•		Carotte TR XVIII	Unités Sédimentaires	Texture globale des sédiments	Unité	s	Evolution des biocénoses	Interprétations paléoenvironnementale
,	120	ø	Remblais Sables vaseux gris					
		4 44 44 4	clair/roux à posidonies			E3	Developpement d'une biocénose lagunaire introduite par des dynamiques nouvelles	
,			Vase sableuses avec coquilles et aegagropiles		E	E2	Des biocénoces soumise a l'influence d'apports continentaux caractérisant l'abandon du site	Envassement du port de Claude
	220		Sables vaseux gris foncé riche en coquille			E1	Amorce de transition biocénotique	dans l'antiquité tardive
,	290	444	Sables gris coquillées avec posidonies et tessons de céramique		_	D3	Encrages des biocénoses "anthropiques" et multiplicités des faciès résultant de la stabilisation de l'environnement	Poursuite de l'ensablement
3		77:07:06:04 0:37:43:07:0	Sables limoneux coquillées		D	D2	Répercution des Impacts de l'anthropisation sur les biocénoses	avec de nombreux faciès
	350		Sables coquillées gris/roux		Λ	DI	Developpement d'une biocénose sableuse a la faveur d'un milieu plus calme	favorisés par le Môle
4	440		Sables fins bruns/gris sans coquilles ni posidonies		С	r	Des biocénoses soumise a un stress écologique important	Ensablement du port de Claude sous la période Trajane
			Sables grossiers et éléments anguleux		В		Phase de remaniement défavorable aux biocénoses	Construction du môle de Traja
	580	Addisonation (Sables fins lités					
6	650	Ø						Fonctionnement du port de Claude
	-000		Passée noirâtre					
8	760		Sables stériles		A		Un milieu qui empêche le developpement de biocénoses	Environnement pré-portuaire a dominante fluviale
	850			-				
9		Ø		Fraction grossière Sables Limons et argiles				

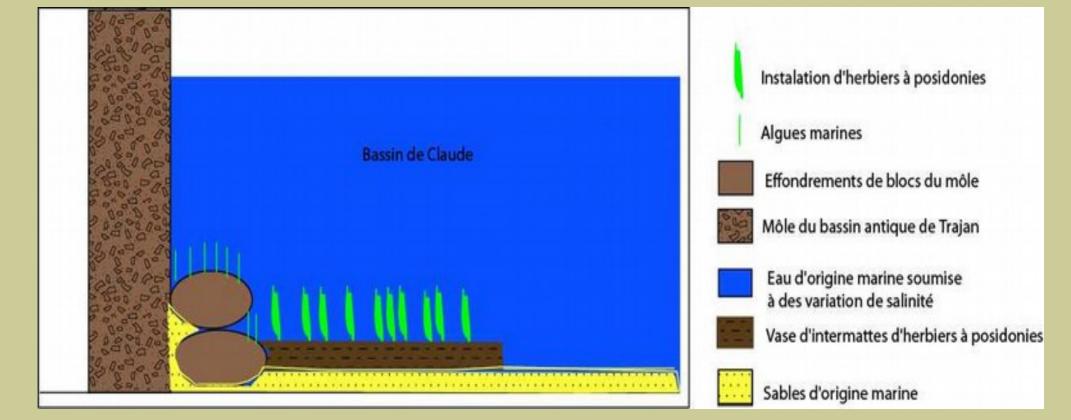

Un milieu soumis à l'influence d'apports fluviaux


Eaux sous influence marine

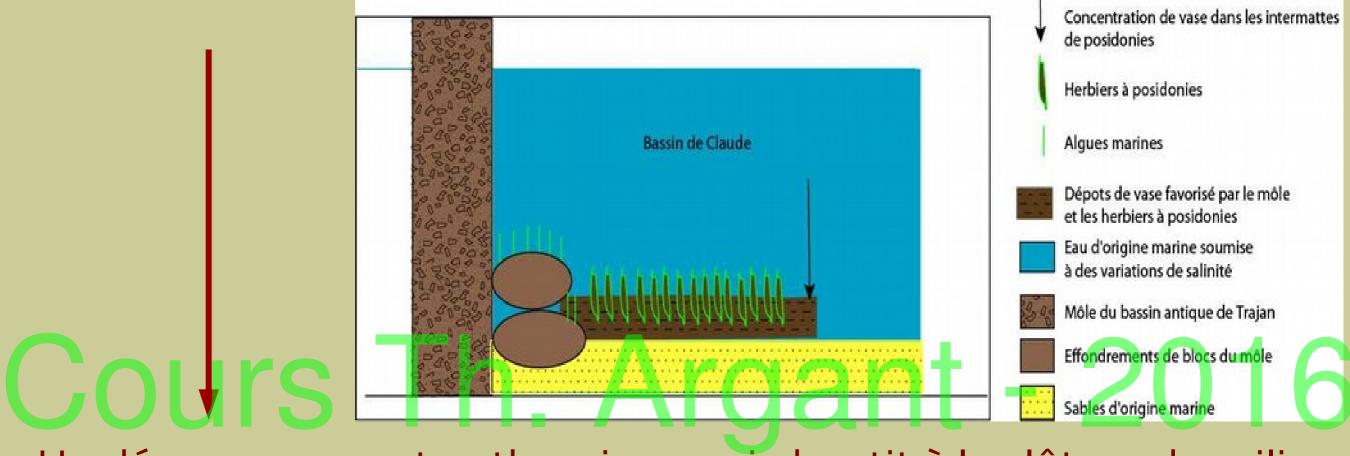
Sables du bassin de Claude d'origine marine

Construction du môle de Trajan

Ensablement progressif du bassin de Claude



Développement d'algues favorisé par les éboulis du môle



Algues marines + un milieu plus calme = apparition d'herbiers à

posidonies

Une station calme avec un herbier à posidonies favorise l'envasement de la station

Un désengagement anthropique qui aboutit à la clôture du milieu

aux apports marins

Tout petit et à la merci des prédateurs! La microfaune un cran au-dessus : rayon de Le mode de collecte 5 km

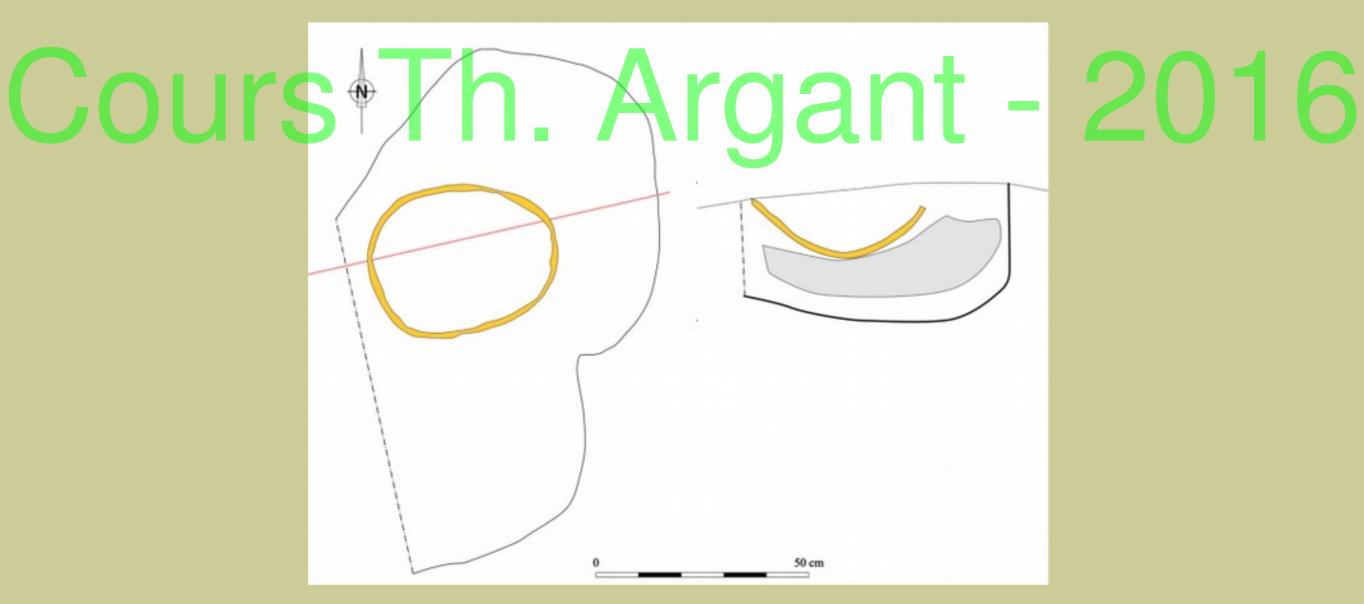
type de prélèvement	En couche								
Sédiment	Frais ou immergé avant tamisage (défloculation des argiles si nécessaire)								
Quantité en milieu riche	30 litres								
Quantité en milieu pauvre Stockage avant étude	200 litres ou plus Après séchage progressif, en sachet plastique ou boîte rigide								
Tamisage	À l'eau courante (de préférence)								
Maille minimum	0,5 ou 1 mm								
Nombre d'échantillon	1 par US ou par passe si US épaisse	203							
Seuil de représentativité	100 à 200 individus								
Taux de détermination	Très élevé pour les dents (et m'sieur, m'sieur pour les oiseaux, on fait	comment ?)							
Mode de tri	Sous loupe binoculaire, par le spécialiste								

Les Microvertébrés

- ✓ Rongeurs, Insectivores (Hérisson, musaraignes, taupe, chauves-souris,...), Batraciens, Reptiles, Poissons.
- Leur biotope est bien caractérisé, mais leur présence peut être due aux Prédateurs (Rapaces, Carnivores, ...)

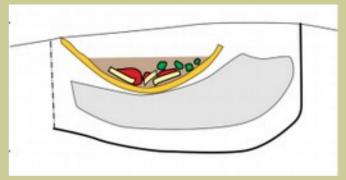
Environnement à plus grande échelle (rayon de 5 km), estimation du climat local, environnement domestique (présence de commensaux des sultures et des graniers)

Lézard vert (Lacerta bilineata)


Microtus arvalis (Campagnol des champs)

L'interprétation d'une structure

- Contexte: Lyon 05, 1 rue Appian un fond de vase au dessus d'un dépôt d'incinération
- Datation : fin du ler début du Ilème s. ap. J.-C.



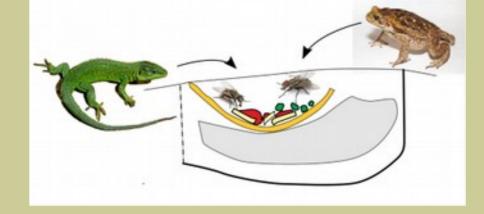
L'interprétation d'une structure

Taxon	NR	
Bos taurus	2	
Sus domesticus	5	
Caprinae	1	
Apodemus flavicollis	7	
Sorex minutus	9	
Crocidura russula	3	
Neomys fodiens	3	
Crocidura/Neomys	7	
Passériforme	1	
Lacerta bilineata	44	
Batracien(s)	20	
NR déterminé	102	
Mammifères grande taille	6	
Mammifères taille moyenne	24	
Mammifères petite taille	2	
Microfaune	367	
Restes indéterminés	7	
NR total	502	

Nourriture offerte : petits

fragments d'os, végétaux

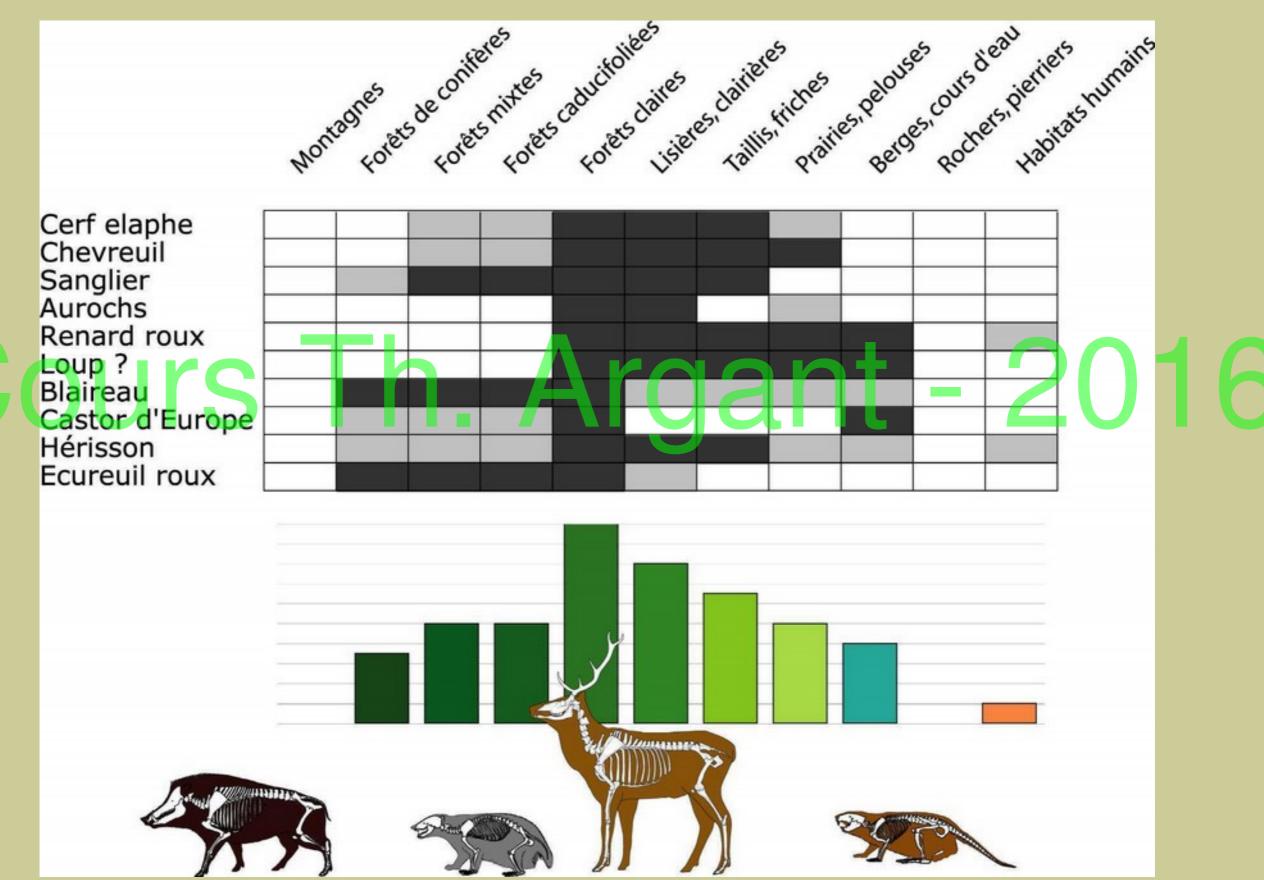
Rongeur : attiré par


graines, végétaux

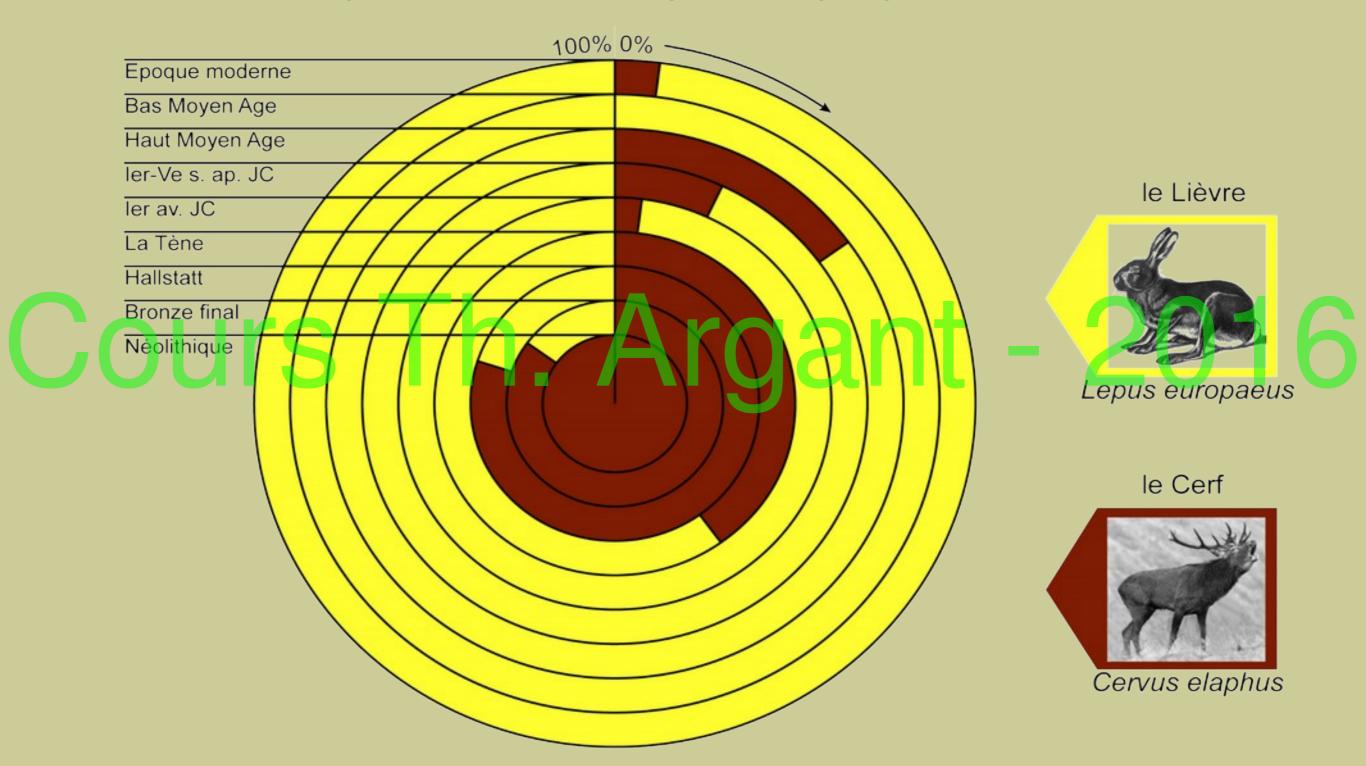
Insectes : attiré par nourriture

Insectivores : attirés par

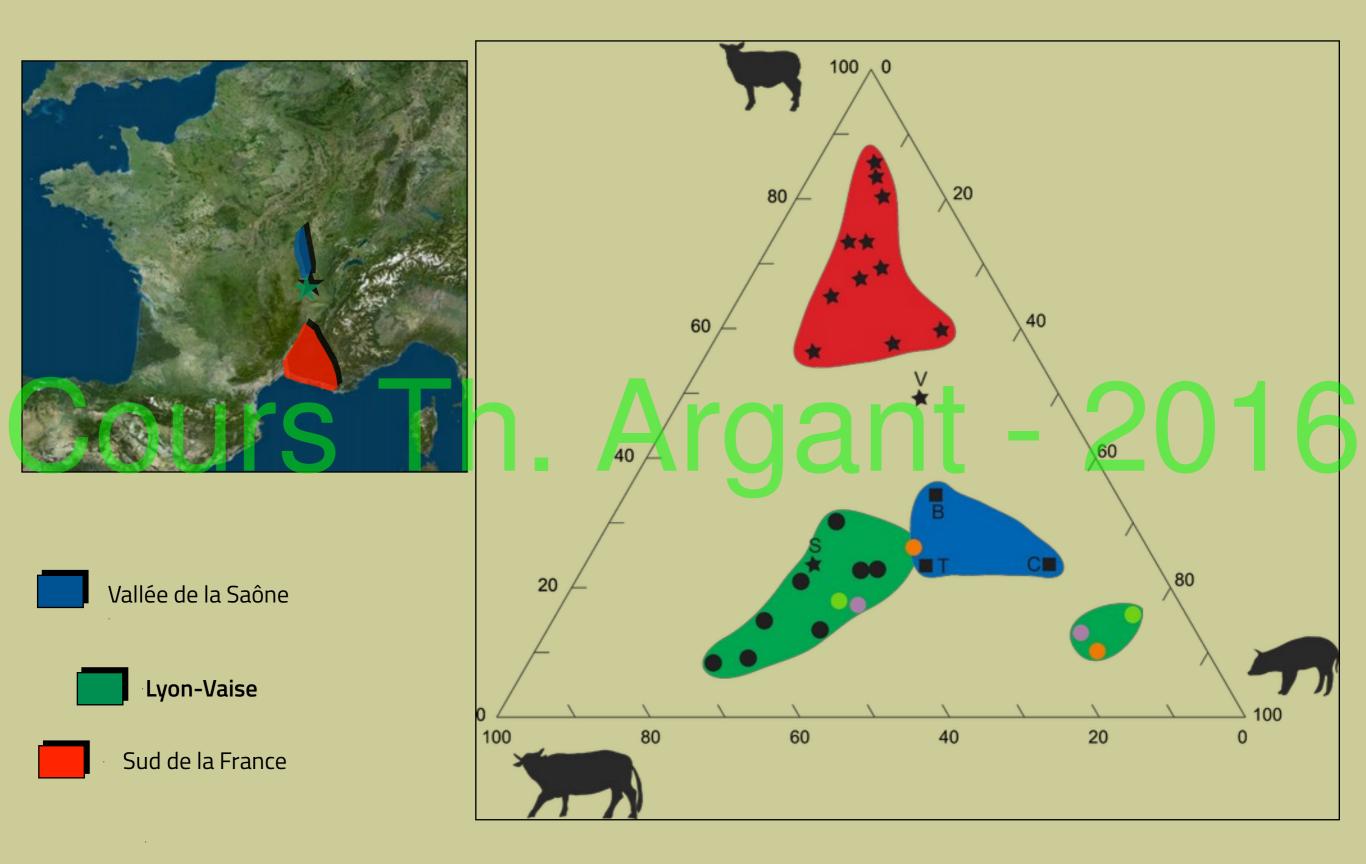
insectes



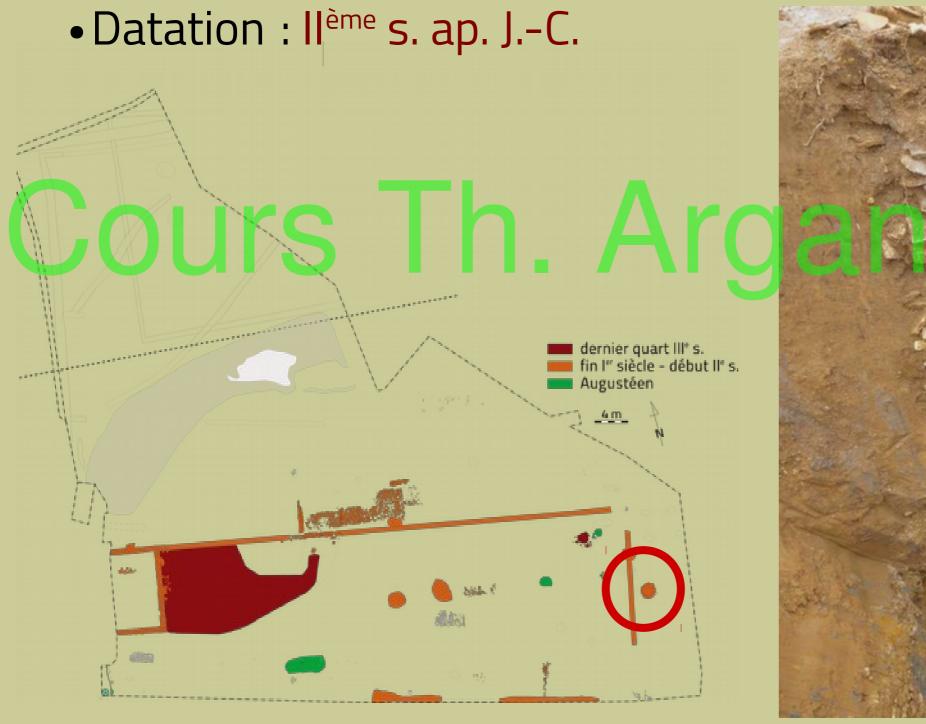
La faune potentiellement consommée


- Mammifères domestiques, sauvages (longueur supérieure à 20 cm),
 Oiseaux, Poissons...
- Leur biotope est connu. Les animaux domestiques ont également des exigences bien précises.
- Environnement à l'échelle régionale, qualité des étendues d'eau, exploitation du milieu par l'Homme (activité cynégétique, pêche (surpêche), gestion des troupeaux, et des espaces nécessaires à leur entretien,...

Valence écologique des espèces de Mammifères du site mésolithique du « 14 rue des Tuileries » (Lyon - Vaise)


(fouille G. Maza - 2007-2008)

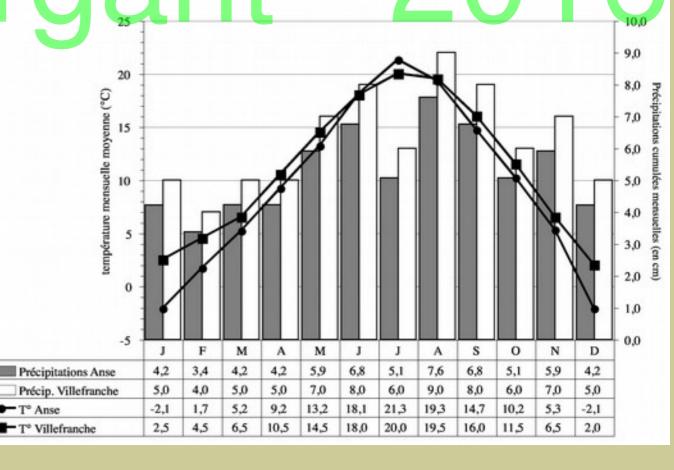
Evolution du rapport entre le nombre de restes de lièvre et de cerf, à Lyon, du Néolithique à l'époque Moderne.


Des régimes alimentaires dépendant de la géographie

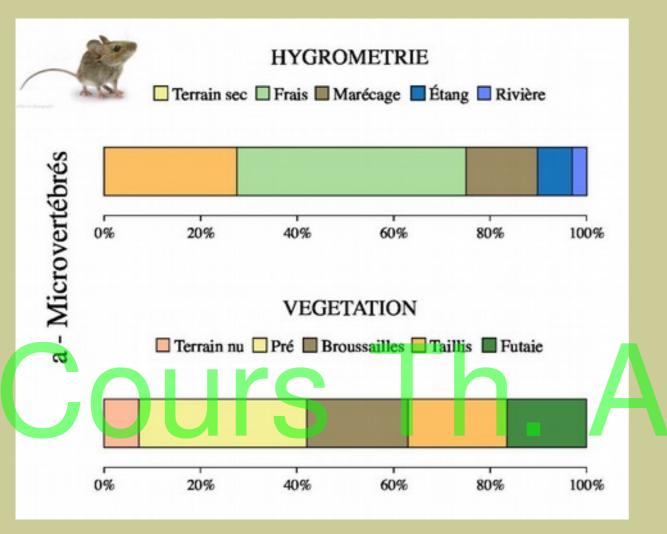
Proportions au sein de la triade domestique au Hallstatt

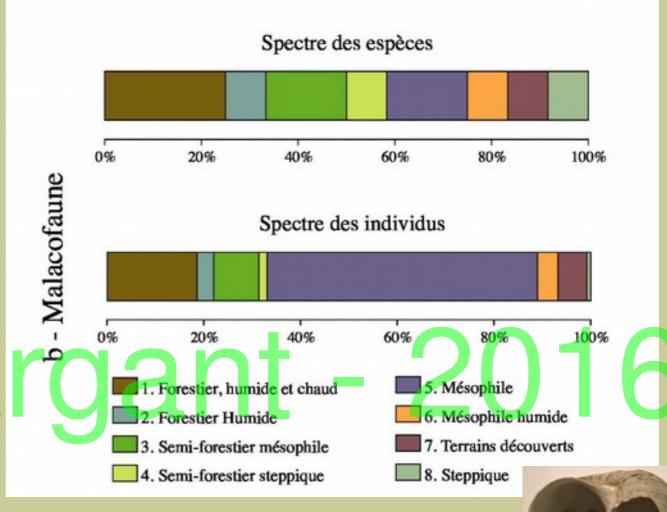
Le puits d'Anse (69) – un coteau dédié aux vergers

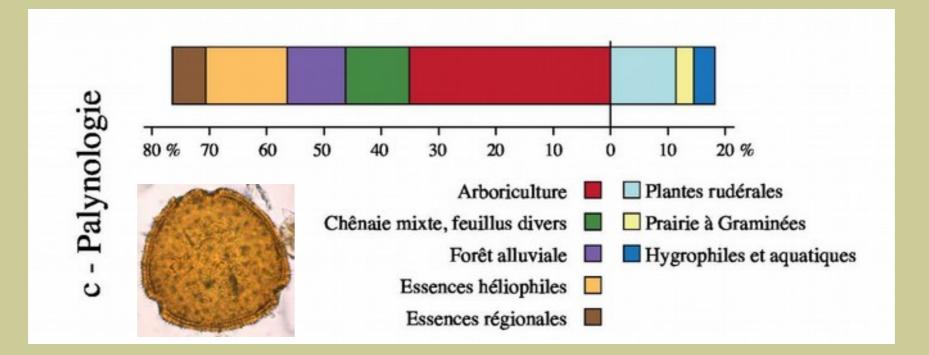
• Contexte : Anse, La Logère (69), occupation antique



La microfaune


	LATITUDE	LONGIT.	ALTITUDE		TEM	PERAT	URBS		ECART	GEL	PRECIP.	NEIGE	PLUE	ORAGE	BRUME	HUMID.	COUV.	SOLE
				MOYENNES E				KEMES	Été/Hiver		/année	couvert.				RELAT.	NUAG.	
	* Nord	ond "Est	en m	*Yan	maxi	mini	maxi	mini	*C	n,3/an	(om/an)	n,Jian	n,J/an	n, l/an	n_l/an	%	n, Van	n,j/an
Annual State				A	В	C			D	N	G	1	H	,	L	K	M	R
Microtus arvalis	49,28	30,51	233	7.7	20,8	-7,2	36,8	-30,1	28,1	151	49	79	155	22	52	74.9	174	136
Microtus agrestis	55,32	49,32	105	5,0	20,0	-7,4	35,5	-30,5	27,4	147	71	94	173	15	50	77,6	194	123
spodemus sylvaticus	42,47	40,32	403	12,9	24,7	0,5	38,4	-12,6	24,1	88	57	62	108	21	28	73,0	153	198
Arvicola sapidus	43,58	0,12	66	14,0	20,9	8,0	36,7	-8,8	12,9	33	64	6	123	18	48	82,5	221	194
Таіра ешторага	51,21	37,00	150	6,3	20,4	-7,7	38,1	-31,6	28,1	165	57	73	144	21	44	76	240	167
Sorex araneus	55,38	54,48	141	2,7	19,4	-13,0	35,8	-36,9	32,5	191	58	116	160	18	40	77	205	148
Crocidura leucodon	44,28	32,05	203	11,0	22,9	-0,9	38,1	-21,1	23,8	116	54	43	110	20	49	74	176	186
Anguis fragilis	49,28	23,08	111	9,4	19,3	1,7	35,0	-23,3	17,6	106	64	69	143	19	42	78	185	176
Lacerta viridis	45,31	13,59	189	11,7	23,3	1,9	38,9	-14,6	21,4	76	67	26	120	24	46	76	186	183
Rana lessona	46,49	16,54	87	9,7	20,9	-0,7	37,6	-21,2	21,7	109	65	47	141	19	41	78	202	167
Rana temporaria	58,06	28,52	136	5,5	19,8	-8,2	33,8	-24,5	28,0	165	66	81	153	16	40	78	205	148
Rana dalmatina	44,46	12,43	106	12,2	22,7	3,3	38,1	-11,8	19,5	54	72	24	135	24	43	77	193	178
θωγίο δωγίο	49,27	82,48	200	6,5	21,8	9,7	37,6	-28,3	31,5	162	67	103	134	16	38	73	182	184
Bufo calamita	49,16	13,39	106	9,7	19,3	-1,0	35,4	-21,8	8,9	134	65	58	142	21	51	78	56	170
Bufo viridis	52,10	42,23	159	6,2	23,0	-10,9	34,6	-33,4	33,8	180	52	111	154	18	34	75	186	169
Pelobates cultripes	41,18	-5,03	131	15,1	22,7	7,7	39,4	-8,2	15,0	41	69	3	106	21	39	76	194	212
Bombina variegata	46,30	13,41	129	11,0	22,0	0,6	38,4	-16,0	21,4	91	63	33	130	25	50	75	196	168
Alyses obstetricans	45,24	1,23	125	12,3	19,4	5,0	36,7	-13,0	14,3	82	75	5	126	20	52	76	210	185
Salamandra salamand	44,38	10,46	86,3	12,5	22,2	3,5	36,4	-9,7	18,7	82,8	66,6	17,8	118,3	19,9	44,8	76,1	193,2	178,0
n	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Moy	48,2	27,0	154,4	9,4	21,3	-2,1	36,9	-21,5	22,8	116,2	63,1	57,4	136,4	19,9	43,7	76,5	186,5	171,5
Max	58,1	82,5	403,2	15,1	24,7	8,0	39,4	-8,2	33,8	191,3	75,2	116,2	172,6	25,5	52,1	82,5	240,1	212,4
Min	41,2	-5,0	65,7	2,7	19,3	-13,0	33,8	-36,9	8,9	33,0	49,0	2,7	106,5	15,3	28,1	73,0	55,5	122,7
	4,8	21,9	75,8	3,5	1,6	6,4	1,6	8,9	7.	48,4	7,1	36,4	18,7	2,8	6,6	2,2	37,9	22,2
VAR	22,6	481,2	5743,1	11,9	2,7	41,4	2,6	79,6	50,8	2345,6	50,0	1327,8	350,2	7,7	43,6	4,8	1434,8	492,
CV	9,9	81,3	49,1	36,8	7,7	-303,8	4,3	-41,4	31,3	41,7	11,2	63,4	13,7	14,0	15,1	2,9	20,3	12,9


CV	9,9	81,3	49,1	36,8	7,7	-303,8	4,3	-41,4	31,3	41,7	11,2	63,4	13,7
		OUV		GÉTA			(UMIDIT	DU SOL DU			Sylv.	Hygrour.	Indice de
	ROCALLE	PRAIRIE	BROUSS.	TAILLIS	PUTAIR	SEC	FRAIS	MARÉC.		EAU VIVE		Higgston	pluviosité
		No.	%	56	W.	%	16	%	56	16	%	- %	per vicinia.
	8		U	v	W	AA	AB	AC	AD	AE.	P	Q	
Microtus arvalis	0	100		0	0	100	0	0	0	0	0	0	20,8
Microtus agrestis	0	50		0	0	0	100	0	. 0	0	0	25	33,5
Apodemus sylvaticus	5	5	30	50	10	10	85	5	. 0	0	60	20	16,8
Arvicola sapidus	0	60	30	10	0	0	55	0	15	30	10	75	21,5
Тагра ешторага	0	70	10	10	10	0	100	0	0	0	20	25	22,6
Sorex araneus	0	10	20	20	50	. 0	60	40	0	0	70	75	25,4
Crocidura leucodon	0	10	30	40	20	100	0	0	0	0	60	0	16,4
Anguis fragilis	10	10	50	30	0	20	80	0	0	0	30	25	25,1
Lacerta viridis	10	0	60	30	0	90	10	0	0	0	30	0	22,0
Rana esculenta	20	60	20	0	0	0	10	90	0	0	0	100	25,2
Rana temporaria	10	60	20	10	0	0	80	20	0	0	0	75	27,6
Rana dalmatina	0	20	10	20	50	0	80	20	0	0	70	75	26,7
Bufo bufo	10	10	10	50	20	40	40	20	0	0	70	75	24,6
Bufo calamita	10	60	20	10	0	40	40	20	0	0	10	75	25,3
Pelobates cultripes	0	100	0	0	0	60	0	0	40	0	0	75	20,0
Bombina variegata	0	0	10	20	70	0	20	30	50	0	90	80	22,5
Alyses obstetricans	20	0	10	20	50	0	90	10	0	0	70	75	26,0
Salamandra salamand	40	0	0	20	40	10	40	0	20	30	100	50	21,5
n	18	18	18	18	18	18	18	18	18	18	18	18	18
Moy	5,8	38,6	22,2	17,8	15,6	30,0	47,2	14,2	6,9	1,7	32,8	52,8	23,6
Max	20,0	100,0		50,0	70,0	100,0	100,0		50,0	30,0	90,0	100,0	33,5
Min	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	16,4
	6,9	34,9		16,6	23,1	38,8	38,2		15,1	7,1	32,5	33,6	4,0
VAR	47,8	1217,1	288,9	277,1	532,0	1505,9	1459,5		226,9	50,0	1056,5	1127,1	16,0
CV	118,5	90,4		93,6	148,3	129,4	80,9	159,8	216,9	424,3	99,2	63,6	17,0



La confrontation des faunes et des flores

Fin de la séance...

... bonne digestion et à la semaine prochaine...

... le vendredi 04 novembre... Coupour... I h. Argant - 2016

Un grand varia sur les autres problématiques abordées par l'archéozoologie.