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Calibration versus Prediction
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Background

We distinguish several type of statistical problems :

Regression problems where Y and X are quantitative variables and
where Y is inferred by a function f (X )

Classification problems where Y is a qualitative variable and where
the class of Y is inferred from X

Clusterization problems where a quantitative variable X is observed
and classified into groups of similar features.

Remarks: Often a qualitative variable will be ”coded” for modelisation
purposes into a quantitative variable but usually without any implicit order
relationship or proximity notion between the values coded, and this
contrarily to what would happen for ”native” quantitative variables.
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Calibration versus Prediction

We will focus mainly on classification problems where:

Y is a binary variable and X is a quantitative variable in Rd .

(X 1,Y 1), (X 2,Y 2), · · · (X n,Y n) are observations

The issue is to choose:

a particular class of models F ∈ {Fα}
a function f within F to estimate Y by f (X )

We define a measure of error between Y and f (X ) as :

‖Y − f (X )‖ for a regression problem

1Y 6=f (X ) for a classification problem

Mathematically in a classification problem the goal is to find f which
minimizes the risk E [1f (X )6=Y ]
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Calibration versus Prediction - Risk Measure

Definition: Calibration Error and Expected Error

For any f in F we note:

R(f ) := E [1f (X ) 6=Y ]

Rn(f ) := 1
n

i=n∑
i=1

1f (Xi ) 6=Yi

Calibration associates to a sample (Xi ,Yi )i∈J1,nK an element fn of F which
minimizes Rn(f ). By doing so fn is a random variable taking its value in F
and we define by extension for fn:

Rn(fn) := 1
n

i=n∑
i=1

1fn(Xi )6=Yi
the calibration error for fn

R(fn) := E [1fn(Xn+1) 6=Yn+1
] the expected error for fn
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Calibration versus Prediction - Risk Measure

Proposition: Calibration Error and Expected Error

E [Rn(fn)] ≤ R(fn) which means (not surprisingly) that the expected error
on calibration is less than the expected error on prediction, i.e that it is
easier to calibrate than to predict...

Demonstration: Rn(fn) = min
f ∈F

Rn(f ) so, E [Rn(fn)] = E [min
f ∈F

Rn(f )]

but E [min
f ∈F

Rn(f )] ≤ min
f ∈F

E [Rn(f )] = min
f ∈F

E [1f (Xn+1)6=Yn+1
]

∀(Xi ,Yi )i∈J1,nK fn ∈ F so:
E [1fn(Xn+1)6=Yn+1

/(Xi ,Yi )i∈J1,nK] ≥ min
f ∈F

E [1f (Xn+1)6=Yn+1
]

by taking the expectation we get:
E [1fn(Xn+1)6=Yn+1

] ≥ min
f ∈F

E [1f (Xn+1)6=Yn+1
] so in conclusion

R(fn) = E [1fn(Xn+1)6=Yn+1
] ≥ min

f ∈F
E [1f (Xn+1)6=Yn+1

] ≥ E [min
f ∈F

Rn(f )] =

E [R(fn)]. Q.E.D
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Calibration versus Prediction - Risk Measure

Example: Let (X ,Y ) be random variables with X ∼ U([0, 1]) and
Y = 1X≤a with a ∈]0, 1[.
We assume that we do not know the existing relationship between X and
Y but want to build a classifier based on some sampling (Xi ,Yi )i∈J1,nK and
a machine F = {1x≤α, 1x≥α}α∈R.
If we assume that when observing (Xi ,Yi )i∈J1,nK we choose the classifier
fn = 1x≤Max(X11{Y1=1},X21{Y2=1},..,Xn1{Yn=1}) of F then show that:

Rn(fn) = 0

R(fn) = 1−(1−a)n+1

n+1

Hint: R(fn) =
a∫

0

P

(
max
i∈J1,nK

Xi1{Xi<a} < u

)
du

Pierre Brugiere (copyrights Pierre Brugiere ) Machine Learning in Finance February 23, 2017 8 / 121



Calibration versus Prediction

Our goal is:

not so much to explain perfectly what has happened (calibration) but

to be as precise as possible in the prediction

So we face a dilemma as:

a model which has too many parameters may enable perfect
calibration but lead to over-fitting and a poor quality of prediction

a too simplistic model which fits only very poorly the sample data has
no chance to predict accurately

The Vapnik Chernovenkis theorem enables to control R(fn) based on:

Rn(fn)

the complexity, noted VC (F), of the model F
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Calibration versus Prediction - VC dimension

Remarks: in Machine Learning

each family Fα of estimators is called a machine

the phase of calibration is called the learning phase

if the Yi are known in the sample and thus an error of calibration can
be calculated, the learning is said to be supervised

Definition: VC dimension of Rd classifiers

Let F = {fα}α∈E be a family of classificators, each fα being a function
from Rd to {0, 1}.
The Vapnik Chervonenkis dimension of F noted VC (F) is the maximum
number of points of Rd that can be classified in all possible different ways
by some classificators of F .
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Calibration versus Prediction - VC dimension

Remarks: VC (F) = k if and only if it is possible to find k points
(xi )i∈J1,kK in Rd such that for any of the 2k possible labelling (yi )i∈J1,kK in

{0, 1}k it is possible to find f in F such that ∀i ∈ J1, kK, f (xi ) = yi .

VC Theorem (admitted): Confidence interval for the risk of prediction

We note (Xi ,Yi )i∈J1,nK a i.i.d sample of (X ,Y )
Let F = {fα}α∈E be a machine with VC (F) < n
Let fn be defined by Rn(fn) = min

f ∈F
Rn(f ) for the learning sample

(Xi ,Yi )i∈J1,nK, then:

∀η ∈ [0, 1], P
(
R(fn) > Rn(fn) + φn,η

(
VC(F)

n

))
≤ η

where φn,η(x) =
√
x(1 + ln( 2

x )) + 1
n ln( 4

η ) so[
0,Rn(fn) + φn,η(VC(Fd )

n )
]

is an interval at confidence level 1− η for R(fn)
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Calibration versus Prediction - VC dimension

Example 1: If we assume VC (F) = 20, n = 10, 000
then with η = 1% we obtain P(R(fn) > Rn(fn) + 12.81%) ≤ 1%

Example 2: In the previous example of classification with
F = {1x<α, 1x≥α}α∈R it is easy to check that VC (F) = 2.
With 10,000 observations the VC-theorem then guarantees that at 95%
confidence level R(fn) (for estimators with minimum empirical risks)
should be within the interval [0, 4.98%] (as Rn(fn) = 0 and
φ10,000,5%( 2

10,000 ) = 4.98%).
We note that the estimation of the confidence interval for this particular
problem is quite loose because as seen previously

R(fn) = 1−(1−a)n+1

n+1 ≤ 1
n+1 = 0.01%.
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Calibration versus Prediction - VC dimension
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Calibration versus Prediction - VC dimension

Example: We consider the following machine (of {0, 1}-classifiers) in R2:
F = {1ax+by+c≥0, (a, b) ∈ R2 r {0}, c ∈ R}.
Each classifier, classifies points in R2 according to their positions relatively
to the line ax + by + c = 0.
We notice that:

we can find 3 points in R2 that can be {0, 1}-classified in all possible
ways with classifiers from F
it seems impossible to find 4 points in R2 that can be {0, 1}-classified
in all possible ways

If the later assumption is true, it will prove that VC (F) = 3.
We are going to prove this result as a particular case of a more general
result.
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Calibration versus Prediction - VC dimension

1

1

1

Three points from R2 being {0, 1}-classified in all possible ways by the machine F (blue=1,red=0)
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Calibration versus Prediction - VC dimension

Theorem : VC dimension of oriented hyperplanes of Rd

Let x1, x2, · · · , xn be n points of Rd

Let Fd = {1{<w ,x>+c≥0},w ∈ Rd r {0}, c ∈ R} be the family of

{0, 1}-classifiers defined by the oriented hyperplanes of Rd .
Then, x1, x2, · · · , xn can be {0, 1}-classified in all possible ways by Fd if
and only if x2 − x1, x3 − x1, · · · , xn − x1 are linearly independent.

Corollary

VC (Fd) = d + 1

Remarks: From the corollary, for an ”affine classifier” in Rd the VC
dimension is the number of parameters.

Pierre Brugiere (copyrights Pierre Brugiere ) Machine Learning in Finance February 23, 2017 16 / 121



Calibration versus Prediction - VC dimension

Demonstration theorem: Let’s assume that x2 − x1, x3 − x1, · · · , xn − x1

are linearly independent and let (yi )i∈J1,nK be a {0, 1}-classification of the
(xi )i∈J1,nK.
let I1 be the indices of the xi with the same classification as x1

let I2 be the indices of the xi with a different classification from x1

we want to prove that we can separate the {xi}i∈I1 and the {xi}i∈I2
Let C1 (resp C2) be the convex envelope of the {xi}i∈I1 (resp {xi}i∈I2)
Let’s start proving that C1 ∩ C2 = ∅
If this was not the case we could find (λi )i∈I1 (λj)j∈I2 such that:
∀i ∈ I1 λi ≥ 0, ∀j ∈ I2 λj ≥ 0,

∑
i∈I1

λi = 1,
∑
j∈I2

λj = 1

and
∑
i∈I1

λixi =
∑
j∈I2

λjxj (1)

by substracting x1 from both terms of (1) we would have :∑
i∈I1\{1}

λi (xi − x1) =
∑
j∈I2

λj(xj − x1) which would be in contradiction with

the assumption of independence in the theorem
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Calibration versus Prediction - VC dimension

So necessarily C1 ∩ C2 = ∅.
By compacity we deduct that we can find z1 ∈ C1 and z2 ∈ C2 such that
|z1 − z2| = distance(C1, C2) > 0. If now we consider the hyperplane
orthogonal to z2 − z1 and containing z1+z2

2 it is easy to check that:

this hyperplane separates C1 and C2 and has for equation
〈x , z2 − z1〉 = 〈 z1+z2

2 , z2 − z1〉
〈z1, z2 − z1〉 < 〈 z1+z2

2 , z2 − z1〉 < 〈z2, z2 − z1〉
the points of C1 satisfy 〈x , z2 − z1〉 ≤ 〈z1, z2 − z1〉
the points of C2 satisfy 〈x , z2 − z1〉 ≥ 〈z2, z2 − z1〉

So C1 and C2 are separated by an hyperplane and so the (xi )i∈I1 (xi )i∈I2 .
So the independence condition shows that the points can be classified in
all possible ways.
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Calibration versus Prediction - VC dimension

Let’s prove now that:
(the points can be classified in all possible ways) ⇒
( x2 − x1, x3 − x1, · · · , xn − x1 are linearly independent).
For this we show the contraposition.
If we assume that x2 − x1, x3 − x1, · · · , xn − x1 are linearly dependent then

we can find (λi )i∈J2,nK ∈ Rn−1 \ {0} such that
i=n∑
i=2

λi (xi − x1) = 0 (2)

we then note:
I = {i ∈ J2, nK, λi ≥ 0} J = {i ∈ J2, nK, λi < 0}
λi = λ+

i if λi ≥ 0 and λi = −λ−i if λi < 0 and we can rewrite (2) as∑
i∈I
λ+
i (xi − x1)−

∑
j∈J

λ−j (xj − x1) = 0 (3)

a) We assume in a first case that the λi are not all of the same sign and
without loss of generality that

∑
i∈I
λ+
i ≥

∑
j∈J

λ−j
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Calibration versus Prediction - VC dimension

If the (xi )i∈J2,nK can be separated with Fd we can find w and c such that:
∀i ∈ I , 〈w , xi 〉 ≥ c and ∀j ∈ J, 〈w , xj〉 < c but from (3):∑
i∈I
λ+
i 〈w , xi 〉 −

∑
j∈J

λ−j 〈w , xj〉 = (
∑
i∈I
λ+
i −

∑
j∈J

λ−j )〈w , x1〉 (4)

implies that x1 cannot be separated from the (xi )i∈I as∑
i∈I
λ+
i 〈w , xi 〉 −

∑
j∈J

λ−j 〈w , xj〉 ≥ (
∑
i∈I
λ+
i −

∑
j∈J

λ−j )c

implies from (4) that 〈w , x1〉 ≥ c as well. Q.E.D
b) If we assume now that the λi are all of the same sign and without loss
of generality that this sign is positive then (2) can be rewritten as
i=n∑
i=1

λixi = (
i=n∑
i=1

λi )x1 (5) which proves that no classifier in Fd can separate

the (xi )i∈J2,nK from x1 as:

∀i ∈ J2, nK, 〈w , x〉 ≥ c ⇒
i=n∑
i=1

λi 〈x , xi 〉 ≥ (
i=n∑
i=1

λi )c and from (5) this

implies 〈w , x1〉 ≥ c as well. Q.E.D
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Calibration versus Prediction - VC dimension

Demonstration corollary:
In Rd if we take d vectors x1, x2, · · · xd independent then according to the
theorem, the vectors: 0, x1, x2, · · · xd can be classified in all possible ways
by Fd . This proves that VC (Fd) ≥ d + 1.
Conversely we know that if x1, x2, · · · xn can be classified in all possible
different ways by Fd then the n − 1 vectors xd − x1 must be independent
and therefore n − 1 ≤ d and VC (Fd)− 1 ≤ d .
Consequently VC (Fd) = d + 1. Q.E.D
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Calibration versus Prediction - VC dimension

Remarks: For hyperplane classifiers VC (Fd) is the number of parameters
of the hyperplanes, but in general the VC dimension is something different
from the number of parameters of the model.
Exercice:
We consider on R the machine F = {1sin(αx)>0, α ∈ R}
and the (xi )i∈J1,lK defined by xi = 10−i .
Show that for any {0, 1}-classification (yi )i∈J1,lK of the (xi )i∈J1,lK the

classifier 1sin(αx)>0 with α = π

(
1 +

i=l∑
i=1

(1− yi )10i
)

classifies perfectly all

the points. Conclude that VC (F) = +∞
Demonstration:
For any indice 1 < j < l we have:

αxj = π

(
1 +

i=j−1∑
i=1

(1− yi )10i

)
10−j +π(1− yj) +π

i=l∑
i=j+1

(1− yi )10i−j
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Calibration versus Prediction - VC dimension

We notice that the last term is a multiple of 2π and thus can be noted
2kπ and that the first term is always between 0 and π and thus can be
noted βπ with 0 < β < 1 so:
if yj = 1, sin(αx) = sin(βπ + 0 + 2kπ) = sin(βπ) > 0
if yj = 0, sin(αx) = sin(βπ + π + 2kπ) = sin(βπ + π) < 0
so 1sin(αx)>0 classifies xj correctly.
We can prove the same for x1 and xl which proves that whatever the
labels are for the (xi )i∈J1,lK we can classify them correctly.
Now ∀l , VC (F) ≥ l ⇒ VC (F) = +∞. Q.E.D

Remarks: In the exercise above the classifiers depends only on one
parameter but the VC dimension of the machine is infinite. So the
complexity of a model, as measured by its VC dimension, and the number
of parameters can be quite different in the non-linear case.
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Maximum Margin Classifiers
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Maximum Margin Classifiers

Definition

Let (xi , yi )i∈J1,nK be a sample of (X ,Y ) with xi ∈ Rd and yi ∈ {0, 1}
Let Hw ,b = {x ∈ Rd , 〈w , x〉+ b = 0}
We say that Hw ,b separates totally the (xi , yi )i∈J1,nK iff
for one class of points 〈w , x〉+ b ≥ 0 while for the other class
〈w , x〉+ b < 0.

Proposition

Let Hw ,b be an hyperplane of Rd then for any x ∈ Rd ,

d(x ,Hw ,b) = |〈w ,x〉+b|
‖w‖

Notation:
We note X0 = {xi , i ∈ J1, nK such that yi = 0},
X1 = {xi , i ∈ J1, nK such that yi = 1} and S = {(xi , yi )}i∈J1,nK
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Maximum Margin Classifiers

Demonstration:
Let y = pHw,b

(x) be the othogonal projection of x onto Hw ,b then,
∃λ ∈ R, y − x = λw and d(x ,Hw ,b) = |λ|‖w‖
but, y − x = λw ⇒ 〈w , y − x〉 = λ‖w‖2 ⇒ −b − 〈w , x〉 = λ‖w‖2

this implies λ = −b−〈w ,x〉
‖w‖2 and |λ|‖w‖ = |b+〈w ,x〉|

‖w‖ Q.E.D

Exercise: Show that

d(Hw ,b1 ,Hw ,b2) = |b2−b1|
‖w‖

Hw ,b = H−w ,−b

d(Hw ,b1 ,H−w ,−b2) = |b2−b1|
‖w‖
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Maximum Margin Classifiers

Definition: Margin, Maximum Margin Hyperplane

Let (xi , yi )i∈J1,nK be a sample of (X ,Y ) with xi ∈ Rd and yi ∈ {0, 1}.
if Hw ,b separates totally the (xi , yi )i∈J1,nK.

We call margin of Hw ,b and note ∆(Hw ,b) the quantity :{
max
c1,c2

d(Hw ,c1 ,H−w ,−c2)

Hw ,c1 ,H−w ,−c2 separates totally the (xi , yi )i∈J1,nK

We say that Hw ,b has maximum margin iff any other hyperplane H
separating totally the (xi , yi )i∈J1,nK, verifies ∆(H) ≤ ∆(Hw ,b)

Exercise: Show that if the (xi , yi )i∈J1,nK are a sample of (X ,Y ) separable
by an hyperplane, then the margin of the maximum margin hyperplane is
d(C0, C1) where C0 and C1 are the convex envelopes of the two classes.
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Maximum Margin Classifiers

Exercise: Let (xi , yi )i∈J1,nK be a sample of (X ,Y ). Let Hw ,c be an
hyperplane which separates the convex envelopes C0 and C1.
a) show that ∃c0 and c1,

∀x ∈ C0, 〈w , x〉+ c0 ≥ 0

∀x ∈ C1, 〈−w , x〉 − c1 ≥ 0 and

∆(Hw ,c) = |c1−c0|
‖w‖

b) show that,

d(H
w ,

c0+c1
2
,Hw ,c0) =

| c0+c1
2
−c0|

‖w‖ =
| c1−c0

2
|

‖w‖

d(H
w ,

c0+c1
2
,H−w ,−c1) =

| c0+c1
2
−c1|

‖w‖ =
| c0−c1

2
|

‖w‖

∀x ∈ C0, 〈w , x〉+ c0+c1
2 ≥ ∆(Hw,c )

2 ‖w‖ (5)

∀x ∈ C1, 〈w , x〉+ c0+c1
2 ≤ −∆(Hw,c )

2 ‖w‖ (6)
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Maximum Margin Classifiers

- w- w

ww

Maximum Margin Hyperplane Hw
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Maximum Margin Classifiers

Remarks:

H
w ,

c0+c1
2

lies at equal distance from the two hyperplanes, orthogonal

to w , separating, with maximum distance between them, C0 and C1.
We note this hyperplane Hw

If we define ω = w
‖w‖

2
∆ and b = c0+c1

∆‖w‖
we can write (5) and (6) in the standard form:
∀x ∈ C0, 〈ω, x〉+ b ≥ 1 (5)
∀x ∈ C1, 〈ω, x〉+ b ≤ −1 (6)
The three (parallel) hyperplanes defined previously can now be noted
Hω,b−1, H−ω,−b−1 and Hω,b and d(H−ω,−b−1,Hω,b−1) = 2

‖ω‖
Therefore, in practice to search for an hyperplane with maximum
margin search for ω and b which solve:

(P)


max
ω,b

2
‖ω‖

∀xi ∈ X0, 〈ω, x〉+ b ≥ 1
∀xi ∈ X1, 〈ω, x〉+ b ≤ −1
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Maximum Margin Classifiers

Remarks: ω and b also solve:

(P)


min
ω,b
‖ω‖2

∀xi ∈ X0, 〈ω, xi 〉+ b ≥ 1
∀xi ∈ X1, 〈ω, xi 〉+ b ≤ −1

which is a quadratic problem with affine constraints, which can be solved
using the Karush-Kuhn-Tucker theorem.
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Structural Risk Minimization and Gap Tolerant Classifiers
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SRM and Gap Tolerant Classifiers

In the Structural Risk Minimization method:

we define nested ensembles of classifiers (machines),
F1 ⊂ F2 · · · ⊂ Fk · · · , with VC (F1) < VC (F2) < · · · < VC (Fk)

for the sample (xi , yi )i∈J1,nK, we calculate for each machine Fk the
best classifier fn,k and its empirical risk Rn(fn,k)

to control in the best possible way the error of prediction at
confidence level 5%, we pick the estimator fn,k which minimizes

Rn(fn,k) + φn,5%(VC(Fk )
n )
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SRM and Gap Tolerant Classifiers

Definition: ∆-Gap Tolerant Classifier of Diameter D

For w ∈ Rd , b ∈ R and BD a ball in Rd of diameter D we define hBD ,∆
w ,b as:

hBD ,∆
w ,b (x) = 1 iff x ∈ BD and 〈w , x〉+ b ≥ ∆‖w‖

2

hBD ,∆
w ,b (x) = 0 iff x ∈ BD and 〈w , x〉+ b ≤ −∆‖w‖

2

if x /∈ BD or |〈w , x〉+ b| < ∆‖w‖
2 then hBD ,∆

w ,b is not defined
Such a {0, 1}-classifier is called a ∆-Gap Tolerant classifier of diameter D

Remarks:

For the ∆-Gap tolerant classifier of diameter D the two hyperplanes
H
w ,b−∆‖w‖

2

and H
w ,b+ ∆‖w‖

2

which separates two distinct classes of

points are distant of ∆.

We allow in the definition that the classifier may classify some points
incorrectly
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SRM and Gap Tolerant Classifiers

Only one Gap Tolerant Classifier classifies all the points here
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SRM and Gap Tolerant Classifiers

Theorem admitted: VC of ∆-Gap Tolerant Classifier of Diameter D

Let F∆,D = {hBD ,∆
w ,b ,w ∈ Rd , b ∈ R and BD is a ball of diameter D}

then VC (F∆,D) ≤ 1 + Min(D
2

∆2 , d)

Remark:

the notion of margin was introduced to classify as robustly as possible
(i.e to minimize the risk of misclassification in case of a small errors in
the measurements).

using classifiers with a fixed margin may reduce significantly the VC
dimension of the Machine when observing data in large dimension.
For example if d = 1, 000, 000, D = 1, ∆ = 0.1, the VC dimension of
hyperplane classifiers is 1, 000, 001 while the same hyperplane
classifiers with a margin of 0.1 and a diameter of 1 have a VC
dimension of no more than 101.
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SRM and Gap Tolerant Classifiers

Theorem admitted: Max Margin (Husch Scovel)

In Rk , the margin ∆ at which a family of k + 1 points within a ball of
radius 1 can be classified in all possible ways by a family of ∆- Gap tolerant

classifiers (of radius 1) cannot be more than
√

k+1
k

√
1

[ k+1
2

]
+ 1

k+1−[ k+1
2

]

where [k+1
2 ] denotes the integer part of k+1

2 . This maximum can be
attained for some particular choices of families of k + 1 points.

Remarks:
We know that is is possible to find k + 1 points of Rk that can be classified
in all possible ways by hyperplane classifiers. By renormalizing these points
we can put them inside a ball of radius 1 and the hyperplanes renormalized
will continue to classify them in all possible ways. This family of classifiers
exhibits a certain margin and the theorem above gives us a limit in terms
of the maximum margin we can expect. Later on we will show that the
maximum margin is attained when the points form a simplex of the affine
space Rk i.e can be seen as an othonormal family of vectors of Rk+1.
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SRM and Gap Tolerant Classifiers

The strategy to predict with Gap Tolerant Classifiers after observing a
(learning) sample (xi , yi )i∈J1,nK is as follows:

define a ball BD that is most likely to contain most realizations of X

build a set of nested Gap Tolerant machines
Fα0,D ⊂ Fα1,D ⊂ · · · ⊂ Fαn,D with decreasing margins
α0 > α1 > · · · > αn

for each machine select a gap tolerant classifier fn,αn with minimum
empirical error R(fn,αn) (when an observation is within the gap or
outside the ball, the machine does not classify and the error of
classification for this point is zero)

using the fact that VC (Fαi ,D) ≤ 1 + Min(D
2

α2
i
, d) choose a machine

for which the error of calibration R(fn,αn) and the complexity term,

estimated by 1 + Min(D
2

α2
i
, d) are providing the best control on the

error of prediction.
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Trade-off between Margin and Errors
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Trade-off between Margin and Errors

Theorem and Definition:

The set {x ∈ Rd , |〈wx + b〉| ≤ 1} consists of points in Rd between Hw ,b−1

and H−w ,−b−1.
As d(Hw ,b−1,H−w ,−b−1) = 2

‖w‖ this ensemble is called hyperplan of

thickness 2
‖w‖ and is noted H

2
‖w‖
w ,b .

When the sample points {(xi , yi )}i∈J1,nK are separable (with yi ∈ {−1, 1})
we search for an hyperplane of maximum thickness separating the points
and solve

(P)


min
w ,b
‖w‖2

∀xi ∈ X1, 〈w , xi 〉+ b ≥ 1
∀xi ∈ X−1, 〈w , xi 〉+ b ≤ −1
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Trade-off between Margin and Errors

(P) can also be written as:{
min
w ,b
‖w‖2

∀(xi , yi ) ∈ S, yi [〈w , xi 〉+ b] ≥ 1

When the points cannot be totally separated (i.e the domain of (P) is ∅ )
we search for w , b and ξ = (ξi )i∈J1,nK ∈ Rn solutions of:

(PC )


min

w ,b,{ξi}i∈J1,nK

‖w‖2 + C
i=n∑
i=1

ξi

∀(xi , yi ) ∈ S, yi [〈w , xi 〉+ b] ≥ 1− ξi
∀i ∈ J1, nK, ξi ≥ 0
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Trade-off between Margin and Errors

Remarks:

the (ξi )i∈J1,nK are (slack) variables which enable the relaxation of the
constraints of strict separability of the (xi , yi ) ∈ S
the parameter C ≥ 0 is a cost of not separating a point correctly,
based on the distance between this point and the frontier of the
hyperplane defining its class

other cost functions could have been used for mis-classification such

as C
i=n∑
i=1

ξ2
i or C

i=n∑
i=1

1ξi>0 but with slightly different solutions and

interpretations for (PC )

at this point we have not defined what would be the strategy of
classification for a new observation x lying between Hw ,b−1 and
H−w ,−b−1 .
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Trade-off between Margin and Errors: Resolution

to solve:

(PC )


min

w ,b,ξ∈Rn
‖w‖2 + C

i=n∑
i=1

ξi

∀(xi , yi ) ∈ S, yi [〈w , xi 〉+ b] ≥ 1− ξi (1)
∀i ∈ J1, nK, ξi ≥ 0 (2)

we consider the Lagrangian:

L(w , b, ξ, α, µ) = ‖w‖2+C
i=n∑
i=1

ξi−
i=n∑
i=1

αi (yi [〈w , xi 〉+ b]− 1 + ξi )−
i=n∑
i=1

µiξi

with ξ = (ξ1, ξ2, · · · , ξn)′, α = (α1, α2, · · · , αn)′ and µ = (µ1, µ2, · · · , µn)′

Lemma 1: (property of the Lagrangian)

max
α∈(R+)nµ∈(R+)n

L(w , b, ξ, α, µ) equals:
+∞ if either (1) or (2) are not satisfied

‖w‖2 + C
i=n∑
i=1

ξi if both (1) and (2) are satisfied
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Trade-off between Margin and Errors: Resolution

Demonstration:
yi [〈w , xi 〉+ b − 1 + ξi ] < 0⇒ lim

αi→+∞
L(w , b, ξ, α, µ) = +∞ and

ξi < 0⇒ lim
µi→+∞

L(w , b, ξ, α, µ) = +∞. This proves the first part.

Now, if both (1) and (2) are satisfied then ∀α ∈ (R+)n, ∀µ ∈ (R+)n

−
i=n∑
i=1

αi (yi [〈w , xi 〉+ b − 1 + ξi ])−
i=n∑
i=1

µiξi ≥ 0 and so the minimum (of

zero) is attained for α = µ = 0.

As L(w , b, ξ, 0, 0) = ‖w‖2 + C
i=n∑
i=1

ξi this proves the result.

Pierre Brugiere (copyrights Pierre Brugiere ) Machine Learning in Finance February 23, 2017 44 / 121



Trade-off between Margin and Errors: Resolution

f(x)f(x)f(x)f(x)

Lagrangian principle illustrated

Pierre Brugiere (copyrights Pierre Brugiere ) Machine Learning in Finance February 23, 2017 45 / 121



Trade-off between Margin and Errors: Resolution

Lemma 2: (mini-max theorem)

For any domains Y and Z and real function g defined on YxZ:

max
z∈Z

[
min
y∈Y

g(y , z)

]
≤ min

y∈Y

[
max
z∈Z

g(y , z)

]
Demonstration:

min
y∈Y

g(y , z) ≤ g(y , z)⇒ max
z∈Z

[
min
y∈Y

g(y , z)

]
≤ max

z∈Z
g(y , z) (1)

As (1) is true for all y the inequality stands for the min of the right term

of (1). So, max
z∈Z

[
min
y∈Y

g(y , z)

]
≤ min

y∈Y

[
max
z∈Z

g(y , z)

]
Q.E.D
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Trade-off between Margin and Errors: Resolution

Table: example for mini-max

g(y,z) y=1 y=2 y=3

z=3 3 3 1
z=2 2 1 3
z=1 1 2 3

for the example here:

max
z∈Z

[
min
y∈Y

g(y , z)

]
= 1

min
y∈Y

[
max
z∈Z

g(y , z)

]
= 3
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Trade-off between Margin and Errors: Resolution

Lemma 3: (Lagrangian method)

Solving PC is equivalent to solving:

min
w ,b,ξ∈Rn

[
max

α∈(R+)nµ∈(R+)n
L(w , b, ξ, α, µ)

]
Demonstration: this follows directly from lemma 1

Definition: Duality

min
w ,b,ξ∈Rn

[
max

α∈(R+)nµ∈(R+)n
L(w , b, ξ, α, µ)

]
is called the primal problem

max
α∈(R+)nµ∈(R+)n

[
min

w ,b,ξ∈Rn
L(w , b, ξ, α, µ)

]
is called the dual problem

The dual problem is noted P∗C
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Trade-off between Margin and Errors: Resolution

Remarks:

if d is the value obtained for the dual problem and p for the primal
problem then according to the mini-max lemma d ≤ p

according to the KKT theorem, a way to guarantee that d = p is,
when solving the dual problem, min

w ,b,ξ∈Rn
L(w , b, ξ, α, µ) to impose

some additional constraints, known as the ”complementary slackness”
conditions, defined here by:
(KKT1): ∀i ∈ J1, nK, αi (yi [〈w , xi 〉+ b]− 1 + ξi ) = 0
(KKT2): ∀i ∈ J1, nK, µiξi = 0.
The effect of these complementary constraints is to increase d up to
d∗ such that d∗ = p.

some convex analysis results guarantee that here (convex function
optimized under affine constraints on a domain with a non empty
interior) d = d∗ = p. So (KKT1) and (KKT2) are automatically
satisfied when solving P∗C and will not be added to the constraints for
P∗C but will just be used as auxiliary equations when useful.
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SVM and C-SVM
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SVM and C-SVM: Solving the Dual Problem

To solve max
α∈(R+)nµ∈(R+)n

[
min

w ,b,ξ∈Rn
L(w , b, ξ, α, µ)

]
we first solve

min
w ,b,ξ∈Rn

L(w , b, ξ, α, µ) as a function of α and µ.

L(w , b, ξ, α, µ) =

= ‖w‖2 +
i=n∑
i=1

ξi (C − αi − µi )− 〈w ,
i=n∑
i=1

αiyixi 〉 − b
i=n∑
i=1

αiyi +
i=n∑
i=1

αi

∂L
∂w is defined as ( ∂L

∂w1
, ∂L∂w2

, · · · , ∂L∂wn
)

∂L
∂w = 2w ′ −

i=n∑
i=1

αiyixi ⇒ w = 1
2

i=n∑
i=1

αiyixi (C1)

∂L
∂b = 0⇒

i=n∑
i=1

αiyi = 0 (C2)

∂L
∂ξi

= 0⇒ C − αi − µi = 0 (C3)
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SVM and C-SVM: Solving the Dual Problem

so by duality:

(PC )⇔


max

α∈(R+)nµ∈(R+)n
−1

4‖
i=n∑
i=1

αixi‖2 +
i=n∑
i=1

αi

C − αi − µi = 0
i=n∑
i=1

αiyi = 0

⇔


max
α∈Rn

−1
4‖

i=n∑
i=1

αixi‖2 +
i=n∑
i=1

αi

0 ≤ αi ≤ C
i=n∑
i=1

αiyi = 0

which can be solved numerically

we note α∗ the solution of this system
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SVM and C-SVM: Interpretation

Remarks:

from (C1): w∗ = 1
2

i=n∑
i=1

yiα
∗
i xi

from (KKT1), (KKT2) and (C3):{
∀i ∈ J1, nK, (C − α∗i )ξi = 0 (as µ∗i = C − α∗i )
∀i ∈ J1, nK, α∗i (yi [〈w∗, xi 〉+ b]− 1 + ξi ) = 0

so b∗ can be determined by picking indices i for which 0 < α∗i < C as
in this case: ξi = 0 and consequently yi [〈w∗, xi 〉+ b∗]− 1 = 0,
leading to : b∗ = yi − 〈w∗, xi 〉.
Note that in practice, as in the determination of α∗ there may be
some approximation errors, b∗ is calculated as the average of
yi − 〈w∗, xi 〉 for the indices i for which 0 < αi < C .

we will see later (with ν-SVMs) how to control further the
optimization problem to make sure that we get some αi satisfying
0 < αi < C .
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SVM and C-SVM: Interpretation

Remarks:
two types of vectors xi are used to determine w∗

the xi for which 0 < α∗i < C
in this case (KKT2) and (C3) ⇒ ξi = 0 and yi [〈w∗, xi 〉+ b]− 1 = 0
and these xi are well classified and belongs to one the two separating
hyperplanes Hw ,b−1 and H−w ,−b−1

the xi for which α∗i = C which can be misclassified, as in this case
there is no constraint of nullity on ξi derived from (KKT2) and (C3)

Definition : Support Vector, Support Vector Machines

The vectors xi for which α∗i 6= 0 (and which are used for the expression of
w∗) are called ”support vectors”. The method of classification is then
called ”Support Vector Machines” and noted ”SVM”.
When some errors are permitted in the classification, with the introduction
of the ”slack variables” ξ and the cost C the method is called C-SVM.
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SVM and C-SVM: Interpretation

Remarks:
When the points from the sample are perfectly separable the solution of
(P) correspond to the solutions of (PC ) for C large enough. Indeed if the
cost C is large enough the solution of (PC ) will maximize the margin while
constricting the ξi to zero.
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The Kernel Trick
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The Kernel Trick

Classification after a change of variable
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The Kernel Trick

In some situations the (xi , yi )i∈J1,nK cannot be separated by an hyperplane

in Rd but it is possible to find a transformation φ such that the
(φ(xi ), yi )i∈J1,nK are separable.

Example: Consider in R2 the classification of (X ,Y ) where
X = (X 1,X 2)′ and Y = 1(X 1)2+(X 2)2≤1. In the graph we represent the xi
for a sample of 6 points (xi , yi )i∈J1,6K. The blue points are the points for
which Yi = 1 and the red points the points for which Yi = 0.
It appears that we cannot separate correctly these points in R2.
If we consider now,

φ :

(
α
β

)
−→

 α
β

α2 + β2

 then the points (φ(xi ), yi )i∈J1,nK can be

separated by the hyperplane H of R3 defined by:

H =


αβ
γ

 ∈ R3, γ = 1


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The Kernel Trick

We now consider transformations φ: Rd −→ l2(R) where l2(R) is the
vector space of sequences (zi )i∈N such that

∑
i∈N

z2
i < +∞ and 〈, 〉N is

defined by 〈(zi )i∈N, (tj)j∈N〉N =
∑
i∈N

zi ti

In the space Vect{φ(xi ), i ∈ N} a C-SVM classifies a point y according to

the values of:
i=n∑
i=1

α∗i yi 〈φ(x∗i ), y〉N + b∗

and we will now classify a new observation x based on the values of:
i=n∑
i=1

α∗i yi 〈φ(x∗i ), φ(x)〉N + b∗ that we can write as
i=n∑
i=1

α∗i yiKφ(x∗i , x) + b∗

where Kφ: RdxRd −→ R is defined by Kφ(x , z) = 〈φ(x), φ(z)〉N
To determine what flexibility we earn by using classificators based on
functions Kφ we are going to determine what the set of functions {Kφ} is.
For this purpose we use Mercer’s theorem.
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The Kernel Trick

Theorem and Definition : Mercer’s Theorem

Let K : RdxRd −→ R be such that,

∀x , y ∈ Rd , K (x , y) = K (y , x)

∀f ∈ L2(Rd ,R),
∫
K (x , y)f (y)dy ∈ L2(Rd ,R)

If we define 〈., .〉K : L2(Rd ,R)xL2(Rd ,R) −→ R by,
〈f , g〉K =

∫
K (x , y)f (x)g(y)dxdy

then the two following propositions are equivalent:

(P1): ∃φ : Rd −→ l2(R) such that K (x , y) = 〈φ(x), φ(y)〉N
(P2): the bilinear symmetric form 〈., .〉K is positive on L2(Rd ,R).

A function K satisfying these properties is called a Kernel.
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The Kernel Trick

Demonstration:
If we assume (P1), then ∀f ∈ L2(Rd ,R) :
〈f , f 〉K =

∫ ∫
K (x , y)f (x)f (y)dxdy =

∫ ∫
〈φ(x), φ(y)〉Nf (x)f (y)dxdy

= 〈
∫
φ(x)f (x)dx ,

∫
φ(y)f (y)dy〉N = ‖

∫
φ(x)f (x)dx‖2

N.
So 〈., .〉K is positive (and bilinear and symmetric as well)

If we assume (P2). As 〈., .〉K is symmetric it can be diagonalised so
∃(ei )i∈N ∈ L2(Rd ,R) and (λi )i∈N elements of R such that:

〈ei , ej〉L2 = δi ,j

∀f ∈ L2(Rd ,R), 〈f , ei 〉K = λi 〈f , ei 〉L2

So, if f and g are in L2(Rd ,R), after decomposing f and g on the
orthonormal basis (ei )i∈N we get:
〈f , g〉K = 〈

∑
i∈N
〈f , ei 〉L2ei ,

∑
j∈N
〈g , ej〉L2ej〉K =

∑
i∈N
〈f , ei 〉L2〈g , ei 〉L2λi .
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The Kernel Trick

As 〈., .〉K is assumed to be positive λi ≥ 0. so:
〈f , g〉K =

∑
i∈N

λi (
∫
f (x)ei (x)dx)(

∫
g(y)ei (y)dy) and by Fubini

=
∑
i∈N

λi
∫ ∫

f (x)ei (x)g(y)ei (y)dxdy and by inversions of the sums

=
∫ ∫ ∑

i∈N
λiei (x)ei (y)f (x)g(y)dxdy

as the equality holds for any function f and g we can identify K as:
K (x , y) =

∑
i∈N

λiei (x)ei (y) = 〈φ(x), φ(y)〉N with

φ(x) = (
√
λiei (x))i∈N Q.E.D

Remarks:

‖φ(x)‖2
N =

∑
i∈N

λie
2
i (x)∫

‖φ(x)‖2
Ndx =

∑
i∈N

λi
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The Kernel Trick: Radial Basis Functions

Theorem: Example of Kernels in Rd

a) ∀k ∈ N : (x , y) −→ 〈x , y〉kd is a kernel
b) (x , y) −→ exp(−‖x − y‖2

d) is a kernel

Demonstration:∫ ∫
〈x , y〉kd f (x)f (y)dxdy =

∫ ∫
(
i=d∑
i=1

x iy i )k f (x)f (y)dxdy

=
∫ ∫ ∑

i1,i2,··· ,ik
x i1x i2 · · · x iky i1y i2 · · · y ik f (x)f (y)dxdy

=
∑

i1,i2,··· ,ik

(∫
x i1x i2 · · · x ik f (x)dx

) (∫
y i1y i2 · · · y ik f (y)dy

)
=

∑
i1,i2,··· ,ik

(∫
x i1x i2 · · · x ik f (x)dx

)2 ≥ 0

As the form is positive, according to Mercer’s Theorem 〈x , y〉kd is a kernel.
Q.E.D
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The Kernel Trick: Radial Basis Functions

∫ ∫
exp(−‖x − y‖2

d)f (x)f (y)dxdy
=
∫ ∫

exp(2〈x , y〉d)exp(−‖x‖2
d)exp(−‖y‖2

d)f (x)f (y)dxdy

=
∑
k∈N

∫ ∫
2k
〈x ,y〉kd
k!

[
exp(−‖x‖2

d)f (x)
] [

exp(−‖y‖2
d)f (y)

]
dxdy

as 〈x , y〉kd is a kernel, each of the terms are positive, so the sum is
positive, so exp(−‖x − y‖2

d) is a kernel. Q.E.D

Remarks:

∀σ ∈ R, exp(−‖x−y‖
2
d

2σ2 ) is a kernel, called the ”Gaussian Kernel”

h(x , y) is called radial basis function i.i.f we can find ψ such that
h(x , y) = ψ(‖x − y‖d)

the Gaussian kernel is a radial basis function
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The Kernel Trick: Radial Basis Functions

Theorem and Definition

For any (zj)j∈J1,lK of Rd it is equivalent to classify a point x :

in φ(Rd) based on the sign of 〈
j=l∑
j=1

βjφ(zj), φ(x)〉+ b

in Rd based on the sign of
j=l∑
j=1

βjKφ(zj , x) + b

These classifiers parametrized by zj , βj , b, l are called classifiers of Kernel
K and form a set (machine) noted FK

When classifying (φ(xj), yj)j∈J1,nK in Vect{φ(xi ), i ∈ J1, nK} (or

Vect{φ(Rd)}) the maximum margin classifier corresponds to the classifier
of FKφ defined by l = n, zj = xj , βj = α∗j yj , b = b∗

It is equivalent to do SVM classification in Vect{φ(Rd)} or classification
of Kernel Kφ in Rd

Demonstration: simple
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The Kernel Trick: Radial Basis Functions

Remark 1: for a C-SVM the margin of the hyperplane in φ(Rd) is defined

by 2
‖ω∗‖N where ω∗ =

i=n∑
i=1

α∗i yiφ(xi ). This quantity can be calculated from

the kernel K as ‖
i=n∑
i=1

α∗i yiφ(xi )‖2
N = β∗′[K (xi , xj)]β∗ where [K (xi , xj)] is

the matrix of RnxRn formed by the {K (xi , xj)}i ,j∈J1,nK and β∗ is the vector
of components α∗i yi .

Remark 2: in RN the hyperplanes 〈ω, x〉N + b = 0 have an infinite VC
dimension therefore we may wonder if the Kernel method is going to lead
to some over-fitting. For a Gaussian Kernel Kσ(x , z) = exp(−‖x−z‖

2σ2 ) we
can make the following remarks:

∀x ∈ Rd , ‖φ(x)‖N = 1 because ‖φ(x)‖2
N = K (x , x) = exp(− ‖0‖

2σ2 ) = 1
so the transformed points to classify are localized on the surface of
the sphere centred on zero and of radius 1 of RN (which is an
important restriction).
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The Kernel Trick: Radial Basis Functions

∀x , z ∈ Rd , 〈φ(x), φ(z)〉N ≥ 0 because Kσ(x , z) ≥ 0. so, all the
points to classify are situated in the same orthant of
Vect{φ(xi ), i ∈ J1, nK} (which restricts further where the points can
lay).

all the points φ(xi ) to classify can be separated from 0 as for all the

points 〈
j=n∑
j=1

φ(xj), φ(xi )〉 ≥ 〈φ(xj), φ(xi )〉 ≥ 1

when using a kernel K we can restrict the set FK to the set of
classifiers FK

∆ for which 2√
β′[K(zi ,zj )]β

≥ ∆ by doing so we know that

the corresponding classifiers in Vect{φ(Rd)} are ∆-GAP-tolerant
classifiers of radius 1 and margin at least ∆. From this we deduct
that VC (FK

∆ ) ≤ 1 + 4
∆2 .
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The Kernel Trick: Radial Basis Functions

Exercice:

Let Fn
σ =

 h : Rd −→ {−1, 1}, h(x) = Θ

(
i=n∑
i=1

µiKσ(x , zi ) + b

)
,

zi ∈ Rd , µi ∈ R, b ∈ R,


where, Θ(u) = 1 if u ≥ 0 and otherwise Θ(u) = −1 be a machine of
{−1, 1}-classifiers and let (xi )i∈J1,nK be n distinct points of Rd , and d be
the minimum distance between the points i.e d = min

i 6=j
‖xi − xj‖d .

Let σ be such that (n − 1)exp(− d
2σ2 ) < 1.

Let (yi )i∈J1,nK be a {−1, 1} labelling of the (xi )i∈J1,nK.

a) show that Θ

(
i=n∑
i=1

yiKσ(x , xi )

)
classifies correctly the (xi , yi )i∈J1,nK

b) deduct from a) that VC (Fn
σ) ≥ n
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The Kernel Trick: Radial Basis Functions

Remarks:

Let (xi )i∈J1,nK be n distinct points of Rd , then ∀i 6= j
〈φσ(xi ), φσ(xj)〉N −→

σ→0
0 so in the limit the (φσ(xi ))i∈J1,nK are

orthonormal in RN and thus independent and therefore separable by
an hyperplane of the vector space they generate in RN. So if σ is
small enough the (xi )i∈J1,nK can be labelled as desired in Rd .
as we will see later if n+ points are labelled 1 and n− are labelled -1
on a sphere of radius 1 and are orthogonal they can be separated by

an hyperplane of margin
√

1
n+ + 1

n− . So if σ is very small it is easy to

separate the points with such a margin as random orthogonal points
on the sphere with random labelling could be classified with this
margin.
If there is a real structure the classes should be separable without
having to totally ”orthogonalize” the observations
In general cross-validation will be used to justify that the model is
adequate.
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The Kernel Trick: classifications for various parameters

The margin increases as σ decreases (σ2 < σ1) and the points on the sphere are ”orthogonalized”
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The Kernel Trick: Radial Basis Functions

Example:
We consider the ∆-classifier h in R2 defined by:

h(x) = 1⇔
i=4∑
i=1

αiyiKσ(x , zi ) + b1 ≥ 0

h(x) = −1⇔
i=4∑
i=1

αiyiKσ(x , zi ) + b2 ≤ 0 with

z1 =

(
0.2
0.2

)
z2 =

(
0.2
0.8

)
z3 =

(
0.8
0.2

)
z4 =

(
0.8
0.8

)
α1 = α2 = α3 = α4 = 1 and y1 = 1,y2 = −1,y3 = −1,y4 = 1

We colour in green the region classified {−1}, in blue the region classified
{1} and leave in white the rest of the space.
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The Kernel Trick: Radial Basis Functions

in all the examples here the 4 points zi are classified correctly but
with different margins

to understand how φσ(.) spreads apart the points zi , on the sphere of
radius 1, we calculate: min

i 6=j
d(φσ(zi ), φσ(zj)) = min

i 6=j
Kσ(zi , zj).

For σ = 0.1 we have min
i 6=j

d(φσ(zi ), φσ(zj)) = 1.414, which means that

the φσ(zi ) are ”almost” orthogonal (they would be orthogonal for the
value

√
12 + 12 =

√
2 which is their maximum value).

For σ = 1 we have min
i 6=j

d(φσ(zi ), φσ(zj)) = 0.574, and the points are

not ”orthogonalized” as previously.

in terms of the margins at which we separate the (transformed)

points we first calculate for ω =
i=4∑
i=1

φσ(zi ) the quantity

‖ω‖N =
√

1′4[K (zi , zj)]14 = 2 then:
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The Kernel Trick: Radial Basis Functions

for σ = 1, b1 = −0.00164, b2 = 0.00164 we get ∆ = |b2−b1|
||ω||N = 0.1

for σ = 0.1, b1 = −0.80, b2 = 0.80 we get ∆ = |b2−b1|
||ω||N = 0.8

as we will see later, the maximum margin at which we can separate 2 group
of two points all orthogonal and on a sphere of radius 1 is 1√

1
2

+ 1
2

= 1

and in the two numerical examples here:
for σ = 0.1 (where the points have almost been orthogonalized) we can
come close to this limit while
for σ = 1 even with a margin at only around 0.1 it is starting to become
challenging to classify the points
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The Kernel Trick: classifications for various parameters

various classifications
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Shattering Orthogonal Vectors
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Shattering Orthogonal Vectors

Maximum margin for separation of orthogonal points of S1
N
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Shattering Orthogonal Vectors

Remarks:

For two vectors x1, x2 of S1
N orthogonal and classified 1 and −1, the

maximum margin of an hyperplane separating them is
√

2. The
hyperplanes forming the borders of the separation set are: Hw ,−1 and
Hw ,1 with w = x1 − x2.

For three vectors x1, x2, x3 of S1
N orthogonal and classified −1 for x3

and 1 for the others, the maximum margin of an hyperplane

separating them is
√

3
2 . The hyperplanes forming the borders are:

Hw ,− 1
2

and Hw ,1 with w = 1
2x1 + 1

2x2 − x3
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Shattering Orthogonal Vectors

Proposition: Maximum Margin on S1
N

Let {xi}i∈J1,n+K be n+ vectors of S1
N labelled 1 and {zj}j∈J1,n−K be n−

vectors of S1
N labelled −1. If we assume that the {xi , zj} form a family of

orthogonal vectors and define w = 1
n+

i=n+∑
i=1

xi − 1
n−

j=n−∑
j=1

zj then :

Any hyperplane of margin ∆ which separates the {xi} from the {zj}
satisfies ∆ ≤

√
1
n− + 1

n+

Hw , 1
n+

and Hw ,− 1
n−

are the borders of the maximum margin

hyperplane classifier which separates the {xi} from the {zj} and

d(Hw , 1
n+
,Hw ,− 1

n−
) =

√
1
n− + 1

n+
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Shattering Orthogonal Vectors

Demonstration:

w+ = 1
n+

i=n+∑
i=1

xi belongs to the convex envelope of the {xi} and

w− = 1
n−

j=n−∑
j=1

zj belongs to the convex envelope of the {zj}.

As the maximum margin is the distance between the two convex envelopes
we have: ∆ ≤ MaxMargin = d(Cx , Cz) ≤ d(w+,w−) and

d(w+,w−) =
√

1
n− + 1

n+ which proves the first bullet point.

As the vectors are orthogonal we have:
∀xi , 〈w , xi 〉 = 1

n+ and ∀zj , 〈w , zj〉 = − 1
n− so Hw ,− 1

n+
and Hw , 1

n−
separate

the points. We also have:

d(Hw ,− 1
n+
,Hw , 1

n−
) =

|− 1
n+− 1

n− |
‖w‖ =

√
1
n− + 1

n+ which means that the

maximum margin is reached for Hw ,− 1
n+

and Hw , 1
n−

which therefore

constitute the borders of the maximum margin hyperplane classifier.
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Shattering Orthogonal Vectors

Remarks:
If we note k + 1 = n+ + n−, {pi}i∈J1,1+kK = {xi}i∈J1,n+K ∪ {zj}j∈J1,n−K and

p = 1
k+1

i=1+k∑
i=1

pi then:

∀i ∈ J1, 1 + kK, d(p, pi ) =
√

k
k+1 so p and the k + 1 points pi are in

an affine space of dimension k and the pi ’s are on the sphere of

center p and radius
√

k
k+1 of this affine space

min
i∈J0,k+1K

√
1
i + 1

k+1−i =
√

1
[ k+1

2
]

+ 1
k+1−[ k+1

2
]

the k + 1 points qi =
√

k+1
k pi are orthogonal on a sphere of radius 1

and according to the previous proposition can always be classified
(whatever there label is) with a margin equal to:√

k+1
k

√
1

[ k+1
2

]
+ 1

k+1−[ k+1
2

]
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Shattering Orthogonal Vectors

Corollary: Maximum Margin on S1
N

The maximum margin for a Gap tolerant classifier of radius 1 for k + 1
points is attained by taking k + 1 points pi forming an orthogonal family

with norms
√

k+1
k of Rk+1. Seen from the affine space of dimension k

they generate these points lay on a sphere of radius 1 and can be
separated with the maximum possible margin.

Demonstration:
According to the previous remarks the points qi can be classified with Gap
classifiers reaching the maximum margin according the admitted theorem
in the section on Gap classifiers
Remarks:
The k + 1 points qi form a simplex in the affine space of dimension k that
they generate as ∀i 6= j , d(qi , qj) =

√
2
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Shattering Orthogonal Vectors

Example:
Let z1, z2, z3 be three orthogonal vectors of norms 1. We note
w = 1

3 (z1 + z2 + z3) and Hw ,−1 the hyperplane of the vector space
Vect(z1, z2, z3) defined by Hw ,−1 = {x ∈ Vect(z1, z2, z3), 〈w , x〉 = 1

3}
then:

z1, z2, z3 and w belongs to Hw ,−1 as they all verify 〈w , x〉 = 1
3

z1, z2, z3 lay on a circle of center w and radius
√

2
3 as they all verify

d(zi ,w) =
√

( 2
3 )2 + ( 1

3 )2 + ( 1
3 )2

z1, z2, z3 form a simplex / equilateral triangle as for all i 6= j ,
d(zi , zj) =

√
2

the distance between the segment (convex envelope) formed by any 2
points zi , zj and the third one zk , which is also the maximum margin
of an hyperplane classifier separating the points, equal:

d( 1
2 (zi + zj), zk) =

√
1
4 + 1

4 + 1 =
√

3
2
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ν-SVM
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ν-SVM: Schölkopf, Smola, Williamson, Bartlett

Definition: ν-SVM

For any learning sample {(xi , yi )}iεJ1,nK and ν > 0 we call ν-SVM the

solution of: (Pν)


min

w ,b,ρ,ξi

1
2‖w‖

2 − 2ρ+ ν
n

i=n∑
i=1

ξi

yi (〈w , xi 〉+ b) ≥ ρ− ξi
ξi ≥ 0

Remark 1:
The definition is similar to the definition of a C − SVM but the new
parameter ρ is introduced to enable a better geometric interpretation of
the problem and to have an upper bound on the fraction of misclassified
points (ξi > 0) and a lower bound on the fraction of support vectors
(αi > 0). We did not put the condition ρ ≥ 0 which is automatically
verified for a solution of this problem.
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ν-SVM

Remark 2:
In (Pν) the two hyperplanes which classify the points −1 and 1 are Hw ,b−ρ
and H−w ,−b+ρ and the distance between them (which represents the

margin of the classifier) is 2ρ
‖w‖d . In the minimization the quantity ‖w‖dρ

does not appear but instead the quantity ‖w‖d − ρ which leads to simpler
numerical implementations and geometric interpretations of the results.

Proposition: Dual Problem for ν-SVM

(Pν)⇔ (Dν) where (Dν)



min
αi

1
2‖

i=n∑
i=1

αiyixi‖2
d

i=n∑
i=1

αiyi = 0

i=n∑
i=1

αi = 2

0 ≤ αi ≤ ν
n

and w∗ =
i=n∑
i=1

α∗i yixi
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ν-SVM

Demonstration (hint):
The Lagrangian L(w , b, ρ, ξ, α, β) of Pν is:

1
2‖w‖

2 − 2ρ+ ν
n

i=n∑
i=1

ξi −
i=n∑
i=1

αi [yi (〈w , xi 〉+ b)− ρ+ ξi ]−
i=n∑
i=1

βiξi .

so we get: ∂L
∂w = w ′ −

i=n∑
i=1

αiyix
′
i = 0 (Cν1)

∂L
∂b = −

i=n∑
i=1

αiyi = 0 (Cν2)

∂L
∂ρ = −2 +

i=n∑
i=1

αi = 0 (Cν3)

∂L
∂ξi

= ν
n − αi − βi = 0 =⇒ 0 ≤ αi ≤ ν

n (Cν4)
From these equations we see that (Dν) is the dual of (Pν) and that
consequently (due to the form of the problem) the solutions will be the
same each time (Dν) has a finite solution. We note also that for (Dν) to
have a finite solution we need ν ≥ 2 otherwise the last two constraints of
(Dν) cannot be satisfied simultaneously.
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ν-SVM

Theorem and Definition : Reduced Convex Envelope

Let {(xi , yi )}iεJ1,nK be a sample. We assume that the two classes {−1, 1}
are represented in this sample (i.e X−1 6= ∅ and X1 6= ∅ ).

Let Eν(X1) = {
∑
{i ,yi=1}

αixi/
∑
{i ,yi=1}

αi = 1 and 0 ≤ αi ≤
ν

n
} and

Eν(X−1) = {
∑

{i ,yi=−1}

αixi/
∑

{i ,yi=−1}

αi = 1 and 0 ≤ αi ≤
ν

n
} then:

Eν(X1) and Eν(X−1) are convex sets and are called reduced convex
envelopes of X−1 and X1

finding d(Eν(X1), Eν(X−1)) and solving (Dν) is the same problem
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ν-SVM

Demonstration (hint):
Demonstrating the convexity of Eν(X1) and Eν(X−1) is straightforward.
The points on which d(Eν(X1), Eν(X−1)) is attained are the solutions of:

min
αi≥0
‖
∑

{i ,yi=1}
αixi −

∑
{i ,yi=−1}

αixi‖2
d∑

{i ,yi=1}
αi = 1∑

{i ,yi=−1}
αi = 1

0 ≤ αi ≤ ν
n

⇔



min
αi

‖
i=n∑
i=1

αixiyi‖2
d

i=n∑
i=1

αiyi = 0

i=n∑
i=1

αi = 2

0 ≤ αi ≤ ν
n

Q.E.D
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ν-SVM

Corollary: Geometric Interpretation

If we note z1 =
∑

{i ,yi=1}
α∗i xi and z2 =

∑
{i ,yi=−1}

α∗i xi then:

‖z1 − z2‖d = d(Eν(X1), Eν(X−1))

Hw∗,b∗−ρ∗ and H−w∗,−b∗−ρ∗ derived from (Pν) are both orthogonal to
z1 − z2

Demonstration :

z1 − z2 =
i=n∑
i=1

α∗i yixi which is the expression of w∗ for (Pν). Q.E.D
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ν-SVM

Corollary: Number of Support Vectors, Number of Errors for (Pν)

For the classification problem (Pν) (ν ≥ 2):

1
n#{i , ξi 6= 0} ≤ 2

ν (majoration of the proportion of points from the
sample misclassified)
1
n#{i , αi 6= 0} ≥ 2

ν (minoration of the proportion of points from the
sample used as support vectors)

Demonstration : The KKT conditions for (Pν) are:
(KKTν1) : αi [yi (〈w , xi 〉+ b)− ρ+ ξi ] = 0
(KKTν2) : βiξi = 0
(KKTν2) and (Cν4) ⇒ (νn − αi )ξi = 0 so ξi 6= 0⇒ αi = ν

n

using (Cν3) :
i=n∑
i=1

αi = 2⇒
∑

i ,ξi 6=0

αi ≤ 2 ⇒ #{i , ξi 6= 0}νn ≤ 2

so 1
n#{i , ξi 6= 0} ≤ 2

ν which shows the first point.
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ν-SVM

According to (Cν4) 0 ≤ αi ≤ ν
n

using (Cν3) :
n∑

i=1
αi = 2⇒

∑
i ,αi 6=0

ν
n ≥ 2⇒ 1

n#{i , αi 6= 0} ≥ 2
ν Q.E.D

Remark: The ν-SVM enables to control the number of errors committed
by the classifier through the parameter ν.

Theorem (admitted): B Schoelkopf, A Smola, R Williamson, P
Bartlett

Under certain conditions of continuity on P(X ,Y )

1
n#{i , ξi 6= 0} −→ 2

ν (convergence in probability)
1
n#{i , αi 6= 0} −→ 2

ν (convergence in probability)
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ν-SVM

Proposition: Relationship between C − SVM and ν − SVM

Let w(ν), b(ν),ρ(ν),ξ(ν) be the solutions of the ν-SVM (Pν) with
ρ(ν) 6= 0, then:
w(ν)
ρ(ν) , b(ν)

ρ(ν) , ξ(ν)
ρ(ν) are the solutions of the C-SVM (PC ) with C = 2ν

nρ(ν) .
As a consequence these two classifiers have the same decision boundaries.

Demonstration :

(Pν)⇔


min

w ,b,ρ,ξi

1
2‖w‖

2 − 2ρ+ ν
n

i=n∑
i=1

ξi

yi (〈w , xi 〉+ b) ≥ ρ− ξi
ξi ≥ 0

First note that ρ(ν) = 0 would correspond to a trivial solution for (Pν)
because in this case the function to minimize would always be positive and
would then reach its minimum value of zero for the trivial solution
w = 0, b = 0, ξ = 0. So we consider here ν − SVM for which ρ(ν) 6= 0.
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ν-SVM

If we assume now that (Pν) has a non trivial solution (i.e ρ(ν) 6= 0) then
w(ρ(ν)), b(ρ(ν)), ξ(ρ(ν)) are solutions of

min
w ,b,ξi

1
2‖w‖

2 − 2ρ(ν) + ν
n

i=n∑
i=1

ξi

yi (〈w , xi 〉+ b) ≥ ρ(ν)− ξi
ξi ≥ 0

⇔


min
w ,b,ξi

1
2‖

w
ρ(ν)‖

2 − 2
ρ(ν) + ν

nρ(ν)

i=n∑
i=1

ξi
ρ(ν)

yi (〈 w
ρ(ν) , xi 〉+ b

ρ(ν) ) ≥ 1− ξi
ρ(ν)

ξi
ρ(ν) ≥ 0

So the arguments are the solutions of:
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ν-SVM


min
w ,b,ξi

‖ w
ρ(ν)‖

2 + 2ν
nρ(ν)

i=n∑
i=1

ξi
ρ(ν)

yi (〈 w
ρ(ν) , xi 〉+ b

ρ(ν) ) ≥ 1− ξi
ρ(ν)

ξi
ρ(ν) ≥ 0

which is a C − SVM with C = 2ν
nρ(ν)

Q.E.D.
The hyperplane borders for the ν- classifier (Pν problem) are:
Hw(ν),b(ν)−ρ(ν) and H−w(ν),−b(ν)−ρ(ν) and
the hyperplane borders for the C - classifier (PC problem) are:
Hw(ν)
ρ(ν)

,
b(ν)
ρ(ν)
−1

and H−w(ν)
ρ(ν)

,− b(ν)
ρ(ν)
−1

which are the same hyperplanes. Q.E.D
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Single Class SVM, Unsupervised Learning
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Single Class SVM, Unsupervised Learning

Background :

For a learning sample (xi )i∈J1,nK issued from a probability PX we

search a subset of Rd as ”simple” and ”small” as possible containing
the (xi )i∈J1,nK.

The embedding is done after an immersion into RN via a function φ
based on a Kernel K . Some points may be allowed to be misclassified
(i.e left outside the domain) in RN but at a cost. In this case a
trade-off is made between the size and complexity of the domain
chosen to embed the xi and the measure of the errors of classification
made.

For a new observation z in Rd the hypothesis that z is issued from
the probability distribution PX will be accepted (with a certain
confidence level) if φ(z) is in D.
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Single Class SVM, Unsupervised Learning

Remarks:

DK = {x ∈ Rd , φ(x) ∈ D} may appear as a single or several clusters
of Rd .

As the sample (xi )i∈J1,nK consists here of unlabelled data, the problem
of determining DK is called unsupervised learning

From now on we will use the Kernel Kσ(x , y) = exp
(
−‖x−y‖

2
d

2σ2

)
and

note φσ the associated transformation.
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Single Class SVM: Clusterization without errors

We consider first for the sample (xi )i∈J1,nK of Rd the problem:

(Uσ)⇔


min
w∈RN

1
2‖w‖

2

∀i ∈ J1, nK, 〈w , φσ(xi )〉 ≥ 1

Remarks:

As mentioned previously, ∀x ∈ Rd , φσ(x) ∈ S1
N (the sphere of center

0 and radius 1 of RN)

(Uσ) has a domain of definition which is not empty because

w =
j=n∑
j=1

φσ(xj) verifies

〈w , φσ(xi )〉 =
j=n∑
j=1

Kσ(xj , xi ) = 1 +
∑
j 6=i

Kσ(xj , xi ) ≥ 1

We admit that the min for (Uσ) is attained. We note wσ such a
solution for (Uσ)
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Single Class SVM: Clusterization without errors

‖wσ‖N ≥ 1 because 1 ≤ 〈wσ, φσ(xi )〉 ≤ ‖wσ‖N‖φσ(xi )‖N = ‖wσ‖N
{φσ(x), x ∈ Rd , 〈w , φσ(xi )〉 ≥ 1} are the points in the portion of the
sphere delimited by Hw ,−1

The distance between the center of the sphere S1
N and Hwσ ,−1 is

1
‖wσ‖N . By minimizing ‖wσ‖N we minimize the portion of S1

N delimited
by Hwσ ,−1 which defines DKσ

σ defines the complexity of the model used and thus the complexity
of the separation domain DKσ . At σ fixed ‖wσ‖N defines the size of
the domain

in the graph below we see wσ and DKσ for various values of σ. Note
that despite the fact that D (the slice of the sphere) increases when σ
decreases, DKσ decreases as σ decreases.
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Single Class SVM: Clusterization without errors

Hyperplane separating the points with maximum distance to the origin (delimiting the smallest portion of the sphere)
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Single Class SVM: Clusterization without errors

Example: we consider the points:

x1 =

(
0.327

0.3

)
x2 =

(
0.673

0.3

)
x3 =

(
0.5
0.6

)
which form an equilateral

triangle in R2 (with sides of lengths d = 0.346).
The problem is symmetric in RN as ∀i 6= j , 〈φσ(xi ), φσ(xj)〉 = exp(−d

2σ2 )
and the solution wσ of (Uσ) will be a linear combination of the φσ(xi ) with
equal coefficients α(σ) and the three φσ(xi ) will be on the hyperplane.

We determine α(σ) such that
j=3∑
j=1

α(σ)Kσ(xj , xi ) = 1

so, α(σ) =
[
1 + 2exp(−d

2σ2 )
]−1

and DKσ = {x ∈ R2,
i=3∑
i=1

α(σ)Kσ(xi , x) ≥ 1}

We plot below DKσ for various values of σ.
The parameter σ defines the complexity of the domain and α(σ) defines
the domain of minimum size that contains the {xi}i∈J1,3K.
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Single Class SVM: Clusterization without errors

various classifications
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Single Class SVM: Clusterization without errors

Table: Size of the domain DKσ
for various levels of complexity

σ (complexity) α(σ) 1
‖w‖N λ(DKσ) (size of the domain)

0.140 0.914 0.603 4.92%

0.145 0.897 0.610 11.88%

0.150 0.878 0.616 14.24%

0.180 0.761 0.662 20.46%

Remarks: Generally

as σ → 0, the domain DKσ in Rd ”converges” to the set formed by
the sample points only, while the φσ(x) for all points of Rd get
”orthogonalized” i.e verify ∀x 6= y , 〈φσ(x)φσ(y)〉 −→ 0
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Single Class SVM: Clusterization without errors

as σ → 0, wσ ∼
i=n∑
i=1

φσ(xi ) as all points from φσ(Rd) becomes

orthogonal on S1
N resulting in all points zj from the sample to verify

〈wσ, φσ(xj)〉 ∼ 1 while any other point x in Rd satisfies
〈wσ, φσ(x)〉 ∼ 0

as σ → 0, d(Hwσ ,−1, 0) ∼ 1√
n

so it is not an achievement to be able

to separate the φσ(xi ) by an hyperplane of distance only 1√
n

because

any random set of n points ”sufficiently orthogonalized” could have
been separated with the same distance to the origin

generally the adequation of the model chosen will be tested by cross
validation.
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Single Class SVM: Clusterization with errors

We consider now the problem:

(Uσ,ν)


min

w∈RN,ρ,ξi

1
2‖w‖

2 − 2ρ+ ν
n

i=n∑
i=1

ξi

〈w , φσ(xi )〉 ≥ ρ− ξi
ξi ≥ 0

which is the extension of the previous clustering problem but this time
with some errors ξi allowed in the classification. A ν formulation has been
chosen instead of a C -formulation in order to have a better-interpretability
of the parameters.
This problem is the same as the problem (Pν) studied previously but this
time without the variable b and with all the yi equal to 1 so the dual
problem here is the same as the dual of (Pν) but without the condition

related to b (which was
i=n∑
i=1

αiyi = 0) and with all the yi taken equal to 1

in the equations
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Single Class SVM: Clusterization with errors

So we obtain,

Proposition: Dual Problem for ν-SVM

(Uσ,ν)⇔ (U∗σ,ν) where (U∗σ,ν)


min
αi

1
2

i=n∑
i=1

j=n∑
j=1

αiαjk(xi , xj)

i=n∑
i=1

αi = 2

0 ≤ αi ≤ ν
n

with: w∗ =
i=n∑
i=1

α∗i φσ(xi )
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Single Class SVM: Alternative Geometric Approach

Consider the problem

(Bσ,ν)


min

R∈R,c∈RN,ξ∈Rn
2R2 + ν

n

i=n∑
i=1

ξi

‖φ(xi )− c‖2
N ≤ R2 + ξi

ξi ≥ 0

where we search the ball of RN of minimum radius which contains the
φ(xi ). The cluster in Rd will be defined as the points whose images φ(x)
belongs to this ball. Some errors are permitted (some points from the
sample are left outside the domain) in order to minimize the radius.

Proposition

When applied to the same vectors φ(xi ), (Bσ,ν) and (Uσ,ν) are two
formulations of the same problem and c∗ = w∗

2
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Single Class SVM: Alternative Geometric Approach

Demonstration: we consider the Lagrangian

L(R, c , ξ, α, β) = 2R2 + ν
n

i=n∑
i=1

ξi −
i=n∑
i=1

αi (R
2 + ξi −‖φ(xi )− c‖2

N)−
i=n∑
i=1

βiξi

so we get:

∂L
∂R = 4R − 2R

i=n∑
i=1

αi = 0 =⇒
i=n∑
i=1

αi = 2

∂L
∂c = −2

i=n∑
i=1

αi (φ(xi )− c)′ = 0 =⇒
( i=n∑

i=1
αi

)
c =

i=n∑
i=1

αiφ(xi )

and so from the previous equation c = 1
2

i=n∑
i=1

αiφ(xi )

∂L
∂ξi

= ν
n − αi − βi = 0 =⇒ 0 ≤ αi ≤ ν

n

We can now rewrite L(R, c, ξ, α, β) as:

(2R2 −
i=n∑
i=1

αiR
2) +

i=n∑
i=1

ξi (
ν
n − αi − βi ) +

i=n∑
i=1

αi‖φ(xi )− c‖2
N and the first

two terms are zero when the conditions are satisfied
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Single Class SVM: Alternative Geometric Approach

replacing c by its expression we get:
i=n∑
i=1

αi‖φ(xi )− c‖2
N

=
i=n∑
i=1

αi‖φ(xi )‖2
N +

( i=n∑
i=1

αi

)
‖c‖2

N −2 <
i=n∑
i=1

αiφ(xi ), c >

= 2 + 2‖c‖2
N − 4‖c‖2

N = 2− 1
2

i=n∑
i=1

j=n∑
j=1

αiαjK (xi , xj) so the dual problem is

(B∗σ,ν)


max
αi

2− 1
2

i=n∑
i=1

j=n∑
j=1

αiαjK (xi , xj)

i=n∑
i=1

αi = 2

0 ≤ αi ≤ ν
n

with c∗ = 1
2

i=n∑
i=1

αiφ(xi ) Q.E.D
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Single Class SVM: Alternative Geometric Approach

Equivalent geometric approaches for clusterization (here for symmetry reasons α1 = α2 = 1)
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Trees and Ensemble Methods
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Biais Variance Tradeoff

Background:
Let (X ,Y ) be a random variable of (Ω,F ,P) with Y taking its values in
Rd and being in L2(Ω,Rd ,P)
Let F be a set of measurable functions such that
∀f ∈ F ,

∫
||f [X (w)]||2dP(w) < +∞

We note g(X ) = E [Y /X ] and ε = Y − g(X )
We are going to study how an estimator calibrated on a sample of (X ,Y )
depends on the sample and the uncertainty this creates in terms of the
prediction function
We note Z (n) = {(Xi ,Yi )}j∈J1,nK a n-sample of (X ,Y ) and fZ(n) the
estimator calibrated with this sample. So ∀ω ∈ Ω, fZ(n)(ω) ∈ F and we
study the quantity E [||Yn+1 − fZ(n)(Xn+1)||2].
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Bias Variance Trade-off

Theorem and Definition

With the previous notations where:
Z = (X ,Y ), g(X ) = E [Y /X ], ε = Y − g(X ) and f̄ (x) = E [fZ(n)(x)]
we have:
E [||Yn+1 − fZ(n)(Xn+1)||2/Xn+1 = x ]

= E [||ε||2] + ||g(x)− f̄ (x)||2 + E [||fZ(n)(x)− f̄ (x)||2]
We call:

E [||ε||2] the irreducible error

||g(x)− f̄ (x)||2 the (biais)2 of the model when predicting in x

E [||fZ(n)(x)− f̄ (x)||2] the variance of the model when predicting in x
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Bias Variance Trade-off

Demonstration:
E [||Yn+1 − fZ(n)(Xn+1)||2/Xn+1 = x ]
= E [||g(x) + εn+1 − fZ(n)(x)||2/Xn+1 = x ]
= E [||g(x)− fZ(n)(x)||2 + ||εn+1||2] because εn+1 is centred and
independent from Z (n)
= E [||εn+1||2] + E [||f̄ (x)− fZ(n)(x)||2] + ||g(x)− f̄ (x)||2 because for any
random vector U and vector b
E [||U − b||2] = E [||U − E (U)||2] + ||E (U)− b||2 Q.E.D

Corollary

∀x E [||Yn+1 − fZ(n)(x)||2/Xn+1 = x ]

≥ E [||Yn+1 − f̄ (x)||2/Xn+1 = x ]
≥ E [||Yn+1 − g(x)||2/Xn+1 = x ]
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Bias Variance Trade-off

Remarks:

the term E [||f̄ (x)− fZ(n)(x)||2] reflects the variance of predictions
resulting from the randomness of the calibration samples. As different
learning samples produce different predictor functions we do not know
which predictor will be the more accurate.

the term E [||f̄ (x)− fZ(n)(x)||2] shows that once we have defined the

calibration process: Z (n) −→ fZ(n) the ”theoretical” estimator f̄ is
better (from a quadratic error point of view) than using a ”random”
predictor fZ(n)

in practice it is usually not possible to calculate f̄ but if we have
different learning samples {Z j(n)}j∈J1,lK (or split one learning sample

in l several learning samples) we can approximate f̄ by 1
l

i=l∑
i=1

fZ j (n)
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Bias Variance Trade-off

Remarks:(continued)

in ensemble methods, the average predictor 1
l

j=l∑
i=j

fZ j (n) will be chosen

instead of the single predictor fZ1(n),··· ,Z l (n) made on the aggregate of
the l learning samples.

in the bias-variance formula we see some analogy with the Vapnik’s
paradigm for estimation. Using a large/complex universe of
estimators F will make it more likely to find functions f̄ close to g
(i.e verifying ||f̄ − g || small) but the complexity of F may also have
the effect of creating predictors exhibiting large variances to the
calibrating parameters (i.e having large E [||f̄ − fZ(n)||2].
We will see later on how this principle is used for the construction of
random forests...
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Bias Variance Trade-off

Bias Variance illustrated
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Boosting, Bagging

In ensemble methods, the average predictor 1
l

j=l∑
j=1

fZ j (n) in general is not

built based on several distinct and independendent training sets Z j(n) but
on a single training set Z (n) which is re-used several times according to
the bootstrap method

Definition: bootstrap method

If Z (n) = ((X1,Y1), (X2,Y2), · · · , (Xn,Yn)) is a learning set, the bootstrap
method consists in building n new training sets Z i (n) by picking for each
training set Z i (n) n samples (Xj ,Yj) from the original training set Z (n)
with replacements.

proposition

If we call N(n) the number of distinct samples from the original training
set Z (n) that are picked at least once when building a new training set

Z i (n) we have E [N(n)
n ] = 1− (1− 1

n )n and so E [N(n)
n ] ∼

+∞
1− 1

e = 0.6321...
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Boosting, Bagging

demonstration Let 1i be the random variable which takes the value 1 if
the sample (Xi ,Yi ) is picked for the new training set Z j(n)
P(1i = 0) = (1− 1

n )n.

The number of distinct samples picked to build (Xj ,Yj) is N =
i=n∑
i=1

1i

so E [N] =
i=n∑
i=1

E [1i ] = n[1− (1− 1
n )n] Q.E.D

Remarks:

Random Forests are built, by training trees on bootstraped samples

in case of a regression problem an average is made over all the
random trees created. When averaging, the variance is reduced while
the bias stays constant

in case of a classification problem some majority decision rules or
others will be taken depending on the classifications made by the
various trees
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