
HAL Id: cel-01345597
https://hal.science/cel-01345597

Submitted on 14 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

” Beyond ” Turing computability: a historical
perspective
Liesbeth de Mol

To cite this version:
Liesbeth de Mol. ” Beyond ” Turing computability: a historical perspective. Doctoral. Belgium.
2016. �cel-01345597�

https://hal.science/cel-01345597
https://hal.archives-ouvertes.fr

L. De Mol

“Beyond” Turing computability: a historical perspective

Liesbeth De Mol

CNRS - UMR 8163 Savoirs, textes, Langage

Université de Lille 3, France

liesbeth.demol@univ-lille3.fr

Computability workshop 2016y 1

Introduction L. De Mol

Introduction

Topic Discussion of alternative models to computability by Church and Post

Method? Analysis from the bottom-up – focus on the practice, how that shapes the (content of the) results and, indirectly, their

later use.

Motivation and why you might care

– (locally) “Challenge” the “classical” story – “beyond” Turing – understanding computability without assuming the classical

story

– (locally) What does it mean to compute?

– (globally) “[...] time after time I found that because of my ignorance of these antecedents, I had not, nor could have, really

understood those ideas. All the logical analysis in the world will not reveal the intentions behind ideas, and without these

intentions one all too easily misunderstands and misjudges the ideas and theories of a writer no longer living. [...] one also

finds that current ideas and results can illuminate older and crustier ideas. The lesson seems to be this: we cannot fully

understand our own conceptual scheme without plumbing its historical roots, but in order to appreciate those roots, we may

well have to filter them back through our own ideas.” (Judson Webb, 1980)

Computability workshop 2016 2

The Church-Turing thesis L. De Mol

1. Church-Turing thesis

Computability workshop 2016 3

The Church-Turing thesis L. De Mol

What is the Church-Turing thesis?

⇒What was it about?

Identification Vague notion Formal device

Church: definition eff. calculability λ-def. & gen. rec. functions

m

Turing: definition computability Turing machines

⇒Why?

• Context of mathematical logic and more specifically Hilbert’s formalism, NOT computer science (20s and 30s)

• Motivation: “It appears that there is no way of finding the general criterion for deciding whether or not a well-formed formula a is

provable. [...] the undecidability is even the conditio sine qua non for the contemporary practice of mathematics, using as it does

heuristic methods, to make any sense. The very day on which the undecidability does not obtain any more, mathematics as

we now understand it would cease to exist; it would be replaced by an absolutely mechanical prescription, by means of

which anyone could decide the probaility or unprovability of any given sentence. Thus we have to take the position: it is generally

undecidable, whetehr a given well-formed formula is provable or not. (Von Neumann, 1927)

Computability workshop 2016 4

The Church-Turing thesis L. De Mol

Why Turing rules!

Church’s thesis “We now define the notion [...] of an effectively calculable function of positive integers by identifying it with the

notion of a recursive function of positive integers (or of a λ-definable function of positive integers.)”

Turing’s thesis According to my definition, a number is computable if its decimal expansion can be written down by a machine”

⇒ “[I]t was Turing alone who [...] gave the first convincing formal definition of a computable function” (Soare, 2007). Why?

– Turing’s main question: “The real question at issue is: What are the possible processes which can be carried out in

computing a number?” (Turing, 1936) -

– Turing’s approach: Analysis of human computer as satisfying number of conditions (locality and boundedness conditions).

These can be formalized by a (Turing) machine

⇔ Church’s ‘approach’?: Thesis only after a thorough analysis of λ-calculus and recursive functions (bottom-up)

Computability workshop 2016 5

Church’s thesi/es L. De Mol

Church’s thesi/es

Computability workshop 2016 6

Church’s thesi/es L. De Mol

Church’s background in a nutshell (1)....

Interst in foundations

It was Veblen who urged me to study Hilberts work on the plea, which may or may not have been fully correct, that he himself

did not understand it and he wished me to explain it to him. At any rate, I tried reading Hilbert. Only his papers published in

mathematical periodicals were available at the time. Anybody who has tried those knows they are very hard reading. I did not

read as much of them as I should have, but at least I got started that way.

“Quasi-heuristic” approach to tackle foundational problems

(independence of AC)“The object of this paper is to consider the possibility of setting up a logic in which the axiom of choice

is false. [...] [I]f a considerable body of theory can be developed on the basis of one of these postulates without obtaining

inconsistent results, then this body of theory, when developed, could be used as presumptive evidence that no contradiction

exists” (Church, 1927)

(consistency set of postulates for mathematics) “Our present project is to develop the consequences of the foregoing set of

postulates, until a contradiction is obtained from them, or until the development has been carried so far consistently as to make it

empirically probable that no contradiction can be obtained from them.” (Church, 1933)

Computability workshop 2016 7

Church’s thesi/es L. De Mol

Church’s background in a nutshell (2)....

Motivations for a set of postulates (1932/33)

Yet another formalization of mathematics after (!) Gödel “In this paper we present a set of postulates for the foundation of

formal logic” (Church, 1932)

Going beyond Gödel “I was seeking to do the very thing that Gödel proved impossible” (Church in a letter to Dawson, July 25,

1983)

“[...] This is conceivable on account of the entirely formal character of the system which makes it possible to abstract from the

meaning of the symbols and to regard the proving of theorems (of formal logic) as a game played with marks on paper according

to a certain arbitrary set of rules” (Church 1933) ∼ Post

Formal system such “[...] that every combination of symbols belonging to our system, if it represents a proposition at all, shall

represent a particular proposition, unambiguously, and without the addition of verbal explanations.”

⇒ Introduction of the λ-operator – an abstraction operator – to denote functions: Ex. Numbers or functions? “x4 + x is

smaller than 1000” vs. “x4 + x is a primitive recursive function” ⇒ λx.x4 + x

⇒ Notion of function application If E and F are lambda terms, so is (EF), viz. applying a function to an argument.

Computability workshop 2016 8

Church’s thesi/es L. De Mol

... Church’s thesi/es

“Our object is to prove empirically (!) that the system is adequate for the theory of positive integers” (Kleene, 1935)

Argument by example The results of Kleene are so general and the possibilities of extending them apparently so unlimited that

one is led to the conjecture that a [λ-] formula can be found to represent any particular constructively defined function

of positive integers whatever. (Church in a letter to Bernays, January 23, 1935)

⇒ Church, 1936, three arguments: argument by confluence, argument by example and so-called step-by-recursive-step argument

(”Each rule of procedure must be a recursive operation”): no proper analysis of very notion of effective calculability!

⇒ Theoretical constructions vs. practical form: [Turing’s] has the advantage of making the identification with effectiveness

in the ordinary (not explicitly defined) sense evident immediately – i.e. without the necessity of proving preliminary theorems.

[Recursiveness and λ-definability] have the advantage of suitability for embodiment in a system of symbolic logic. (Church,

1936)

“Turing’s definition of computability was intrinsically plausible, whereas with the other two [recursive functions andλ-definability],

a person became convinced only after he investigated and found, much by surprise, how much could be done with the defini-

tion.” (Kleene in an interview with Aspray, 1985)

⇒ (Historically speaking, there is no such thing as CTT!)

Computability workshop 2016 9

Post’s two theses L. De Mol

Post’s two theses

Computability workshop, 2016 10

Post’s Thesis I L. De Mol

Thesis I: Generating sequences and limits of the computable

Computability workshop 2016 11

Post’s Thesis I L. De Mol

Post’s ambitions in the 20s

⇒ Various documents: (PhD, Account of an anticipation, Note on a fundamental problem in postulate theory)

⇒ Purpose? Research in foundations: “[T]o obtain theorems about all [mathematical] assertions” – proof consistency, completeness

and decidability of propositional logic

⇒ Approach? Development of a “general form of symbolic logic” as an “instrument of generalization” characterized by the “method

of combinatory iteration” which “eschews all interpretation” – modeling (processes of) symbolic logic (∼ Lewis’ “mathematics without

meaning”):

[T]he method of combinatory iteration completely neglects [...] meaning, and considers the entire system purely from the

symbolic standpoint as one in which both the enunciations and assertions are groups of symbols or symbol-complexes [....]

and where these symbol assertions are obtained by starting with certain initial assertions and repeatedly applying certain

rules for obtaining new symbol-assertions from old.

⇒ 1920-21: Deciding the “finiteness problem” for first-order logic

“Since Principia was intended to formalize all of existing mathematics, Post was proposing no less than to find a single

algorithm for all of mathematics.” (Davis, 1994)

Computability workshop 2016 12

Post’s Thesis I L. De Mol

Post’s method at work: Generalization through formalization

Computability workshop 2016 13

Post’s Thesis I L. De

Generalization I: Systems in canonical form A

Propositional Logic Canonical form A

I. If p is an elementary proposition than so is ∼ p If p1, . . . , pm1
are elementary propositions than so is

f1(p1, . . . , pm1
)

.

.

.

If p and q are elementary propositions than so is p ∨ q If p1, . . . , pmµ are elementary propositions than so is

fµ(p1, . . . , pmµ)

II. The assertion of a function involving a variable p pro-

duces the assertion of any function found from the given

one by substituting for p any other variable q, or ∼ q, or

(q ∨ r)a

The assertion of a function involving a variable p pro-

duces the assertion of any function found from the

given one by subsituting for p any other variable q, or

f1(q1, . . . , qm1
), or fµ(q1, . . . , qmµ)

III. ⊢ P ⊢ g11(P1, ..., Pk1
) . . . ⊢ gr1 (P1, ..., Prr)

⊢∼ P ∨Q
.
.
.

⊢ g1r1 (P1, ..., Pr1) . . . grrr (P1, ..., Prr)

produce produce produce

⊢ Q ⊢ g1(P1, ..., Pk1
) . . . ⊢ gr(P1, ..., Prr)

Continued on next page

aThis corresponds to substitution

Computability workshop 2016

Post’s Thesis I L. De Mol

Table 1 – continued from previous page

Propositional Logic Canonical form A

IV. Postulates: Postulates:

⊢∼ (p ∨ p) ∨ p ⊢ h1(p1, p2, . . . , pl1)

⊢∼ (p ∨ (q ∨ r)) ∨ (q ∨ (p ∨ r)) ⊢ h2(p1, p2, . . . , pl2)

⊢∼ q ∨ (p ∨ q) . . .

⊢∼ (∼ q ∨ r) ∨ (∼ (p ∨ q). ∨ (p ∨ r)) . . .

⊢ (p ∨ q) ∨ (q ∨ p) ⊢ hλ(p1, p2, . . . , plλ)

Computability workshop 2016 14

Post’s Thesis I L. De Mol

Generalization II: Tag systems

“The general problem [of determining for any two expressions in any system in canonical form A, what substitutions would

make those expressions identical] proving intractable, successive simplifications thereof were considered, one of the last being [the]

problem of “tag.” Again, after the finiteness problem for systems in canonical form A involving primitive functions of only one argument

was solved, an attempt to solve the problem for systems going, it seemed, but a little beyond this one argument case, led once

more essentially to the selfsame problem of “tag.” The solution of this problem thus appeared as a vital stepping stone in any further

progress to be made.”

Computability workshop 2016 15

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

Generalization II: Tag systems

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

101110111010000001101

1101110100000011011101

11101000000110111011101

0100000011011101110100

000001101110111010000

00110111011101000000
︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Very much in the spirit of the method of combinatory iteration – pure symbol manipulators without meaning.

⇒ Study of two decision problems (finiteness problems) for tag systems: the halting and reachability problem starting from the

simplest case to the more ‘complex’ ones (µ = 1, 2, 3, ..., v = 1, 2, 3... – unpublished manuscript)

Computability workshop 2016 16

Post’s Thesis I L. De Mol

The frustrating problem of “Tag” and the reversal of Post’s programme

⇒ Exploring tag systems: pencil-and-paper computations and “observations”

• “Observation” of three classes of behavior: periodicity, halt, unbounded growth.

• Three decidable classes (v = 1;µ = 1; µ = v = 2) (Wang, 1963; De Mol, 2010) – the proof involved “considerable labor ”

• Infinite class with µ = 2, v = 3: “intractable” (Minsky, 1967; De Mol, 2011)

• Infinite class with µ > 2, v = 2: a zoo of TS of “bewildering complexity”

⇒ Principia vs. Lewis-like Abstract form (“mathematics without meaning”) → shift to an analysis of the behavior → limitations of

Lewis’ ideal mathematics

⇒ The reversal rooted in experience “[T]he general problem of “tag” appeared hopeless, and with it our entire program of the

solution of finiteness problems. This frustration [my emphasis], however, was largely based on the assumption that “tag” was but a

minor, if essential, stepping stone in this wider program.” (Post,1965)

Computability workshop 2016 17

Post’s Thesis I L. De Mol

After nine months of tagging

⇒ Development of two more forms: canonical form C (Post production systems):

g11Pi1
1

g12Pi1
2

. . . g1m1
Pi1m1

g1(m1+1) abaP1abP2b abaaaaaabababbaaaaab

g21Pi2
1

g22Pi2
2

. . . g2m2
Pi2m2

g2(m2+1) aP3bbP4b abaaaaaabababbababbaaaaab

. .

gk1Pik
1

gk2Pik
2

. . . gkmk
Pikmk

gk(mk+1)

produce produce produce

g1Pi1g2Pi2 . . . gmPimg(m+1) abaP3b ababaaaaaababab

.... and Normal form:

giPi 1101Pi 110111011101000000

produces

Pigi′ Pi001 11011101000000001

Computability workshop 2016 18

Post’s Thesis I L. De Mol

... towards Post’s thesis I

⇒ Insight that apparent simplicity does not imply ‘real’ simplicity: Proof of “the most beautiful theorem in mathematics” (Minsky, 1961)

⇒ Idea that the whole PM can be reduced to normal form

[F]or if the meager formal apparatus of our final normal systems can wipe out all of the additional vastly greater complexities

of canonical form [...], the more complicated machinery of [the canonical form] should clearly be able to handle formulations

correspondingly more complicated than itself.

⇒ Post’s thesis I – any set of sequences that can be “generated” by some finite process can also be “generated” by the “primitive”

normal form

⇒ The finiteness problem for normal form is unsolvable

Computability workshop 2016 19

Post’s Thesis I L. De Mol

Thesis II: Solvability and the realm of the computable

Computability workshop 2016 20

Post’s Thesis I L. De Mol

Taking into account the human factor in generating sets....

Problem with thesis I: Post’s believe in thesis I rooted in his own experiences and interaction with his forms (∼ Church and

Kleene) ⇒ less convincing for people not familiar with these forms (see e.g. correspondence Church-Post: “while it is clear that

every generated set in your sense is lambda-enumerable (recursively enumerable), I can see no way of proving the converse of

this, and at the moment, therefore, it seems to me possible that the notion of a generated set is less general.” (Church to

Post, June 26, 1936)

Post’s analysis: “[for the thesis to obtain its full generality] an analysis should be made of all the possible ways the human mind

can set up finite processes to generate sequences.” (∼ Turing’s “What are the possible processes which can be carried out in

computing a number?”)

“[E]stablishing this universality [of the characterization of generated set of sequences in terms of normal form] is not

a matter for mathematical proof, but of psychological analysis of the mental processes involved in combinatory

mathematical processes.

⇒ Post’s solution: Identification between Solvability and Formulation 1 (almost identical to Turing machines)

Computability workshop 2016 21

Post’s Thesis I L. De Mol

... opposition against definitional character of Church’s thesis

A working hypothesis “Its purpose is not only to present a system of a certain logical potency but also, [...] of psychological

fidelity ”

[T]o mask this identification under a definition hides the fact that a fundamental discovery in the limitations of the mathe-

maticizing power of Homo Sapiens has been made and blinds us to the need of its continual verification.

“The writer cannot overemphasize the fundamental importance to mathematics of the existence of absolutely unsolvable combina-

tory problems. True, with a specific criterion of solvability under consideration, say recursiveness [...], the unsolvability in question

[...] becomes merely unsolvability by a given set of instruments. [The] fundamental new thing is that for the combinatory

problems the given set of instruments is in effect the only humanly possible set.” (Post, 1965)

Post’s new programme – Towards a natural law In search of wider and wider formulations and to prove that all these are

logically reducible to the original formulation 1

⇔ “In sharp contrast, Turing attempts to give an analytic argument for the claim that these simple processes are sufficient to capture

all human mechanical calculations.” (Sieg, 2005)

Computability workshop 2016 22

“When the bubble finally burst”.... L. De Mol

“When the bubble of symbolic logic finally burst” The rise of computer science

“....with the bubble of symbolic logic as universal logical machine finally burst, a new future dawns for it as

the indispensable means for revealing and developing those limitations. For [...] Symbolic Logic may be

said to be Mathematics become self-conscious. (Post, 1965)

Computability workshop 2016 23

“When the bubble finally burst”.... L. De Mol

The rise of computer science...

• Late 40s: development of electronic and programmable machine to “relieve th[e] bottleneck of slow manual and analogue com-

putation

• It is the machine’s speed that requires the introduction of logic into the machine: “[C]ontemplate the prospect of locking twenty

people for two years during which they would be steadily performing computations. And you must give them such explicit

instructions at the time of incarceration that at the end of two years you could return and obtain the correct result for your lengthy

problem! This dramatizes the necessity for high planning, foresight, and consideration of the logical nature of computation. This

integration of logic in the problem is a consequence of the high speed. ” (Von Neumann, 1948)

• Steady introduction of “formal methods” in CS practices

⇒ Leading question Why does CS-as-a-practice require formal methods? What kind of methods are suitable to the purpose?

⇒ Rediscovery of formal work on computability in context of programming and machine design – different roles for Church, Post and

Turing

Computability workshop 2016 24

“When the bubble finally burst”.... L. De Mol

The significance of Turing’s model for practices of CS

• ??The stored-program?? – an afterthought

• The (U)TM as a model for real machines (automata studies and real machines)

“Let us imagine the operations performed by the computer to be split up into simple operations which are so elementary that

it is not easy to imagine them further divided.” (Turing, 1936)

“[It is not] economically feasible to use a machine to perform complicated operations because of the extreme slowness and

fairly large amount of memory required. [...] [It is suggested] that it may be possible to reduce the number of components

required for logical control purposes, particularly if any cheap memory devices are developed.” (Moore, 1952)

“In this article will be described the logical principles of an electronic digital computer which has been simplified to the

utmost practical limit at the sacrifice of speed.” (van der Poel, 1952)

• ... and as a means to express the fundamental interchangeability of instructions and data which allow to express the notion

of a general-purpose machine in a formal manner

• “An impossible program”, Strachey, 1965: ”A well-known piece of folklore among programmers holds that it is impossible to

write a program which can examine any other program and tell, in every case, if it will terminate or gte into a closed loop when it

is run”

⇒ Turing’s UTM as a tool to reflect on the theoretical characterization of computers and programs (not about CTT however) ⇒ But

(!) ”programs unclear and conceptually not helpful” (Backus, 1978)

Computability workshop 2016 25

“When the bubble finally burst”.... L. De Mol

The significance of Post’s model for practices of CS

• Backus-Naur form (Notation and programming!): “It was only in trying to describe ALGOL 58 that I realized that there was

trouble about syntax description. It was obvious that Post’s productions were just the thing [m.i.], and I hastily adapted them to

that use.” (Backus, 1981)

<letter string> ::= <letter> | <letter string><letter>

<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | Y | W | X | Y | Z

• Patterson and Burroughs company: “We are interested in your “productions” and your theory of canconical languages, which ap-

peal to us as possibly the most natural approach to the theory of computabiliy from the standpoint of one interested in syntactical

machines.” (letter to Post, Dec. 17, 1952)

• Chomsky and formal language theory: Post’s canonical form C = Post production systems: “I was interested at the time in

automata theory and possible applications to linguistics. I’d studied standard versions of recursive function theory (Kleene, etc.),

but when I came across Post’s work (in Davis) it was obvious that this was a good framework for systems of the sub-recursive

hierarchy that could be adapted to the study of language, specifically context-sensitive and context free grammars” (personal

communication, 2005) ⇒ formal languages in compiler design – accepting a particular string with the grammar formalizing the

PL

⇒ Post’s influence mostly on the syntactical level of programs – development of devices which generate sequences as a model

for “formal” reasoning ideal for the study of “rewriting” A to B

Computability workshop 2016 26

“When the bubble finally burst”.... L. De Mol

The significance of Church’s model for practices of CS

Use of λ-calculus to develop and reason about functional languages: pure and impure functional languages (eg pure LISP vs.

Scheme)

“A program is a function of one variable” (Rosser, 1984): a+ b is really λx(λy.x+ y)ab

λ-calculus as thé programming language (6= TMs), viz. trh Church-Landin thesis: “Programming languages are λ-calculus

sweetened with syntactic sugar ” (Traktenbrot, 1988) – ”Syntactic sugar causes cancer of the semicolon” (Perlis) ∼ the search for

the ultimate PL (the ALGOl program)

The λ-calculus as a calculus for reasoning about the meaning of programs (denotational semantics): ”The problem of explaining

[...] equivalences of expressions (whether in the same or different languages) is one of the tasks of semantics and is much too

important to be left to syntax alone/ Besides, the mathematical concepts are required for the proof that the various equivalences

have been correctly described” (Scott and Strachey, 1971)

Denotation maps input into output; function from environment to a denotation

Computability workshop 2016 27

Discussion L. De Mol

Discussion – afterthoughts

Computability workshop 2016 28

Discussion L. De Mol

Discussion – afterthoughts: Value historical study of early models?

⇒ Different questions result in different models. And the differences do matter!!

• (Post) Finding the ultimate form without much meaning results in a syntax which makes possible automatic treatment exactly

because it is so formal

• (Church) The development of a system which is basically a calculus for functions and focusdes on the notion of variable is

fundamental to develop theories of programming

• (Turing) The top-down analysis of Turing of the notion of computability results in a model that allows to reflect on the limitations

and characterization of computers as abstract programmable devices

⇒ The differences between the old models do matter retrospectively – CTT as a generic term hides this nuance

⇒ In focusing too much on one hero of a discipline one sees less clearly a fundamental characteristic of practices of CS which require

domain-specific developments

⇒ (in retrospect) Models that go “beyond” Turing? The Wegner mistake and a missed chance

Computability workshop 2016 29

