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This work is licensed under a Creative Commons Attribution - NonCommercial - No
Derivatives 4.0 International License.

Here is a copy of the license of MAMBA. This license is known as the X11 license (also
named MIT license).

Copyright (c) <2014>, <Nicolas BEUCHER and ARMINES for the Centre de Morphologie
Mathématique(CMM), common research center to ARMINES and MINES Paristech>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

Except as contained in this notice, the names of the above copyright holders shall not be used in
advertisiEng or otherwise to promote the sale, use or other dealings in this Software without their
prior written authorization.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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INTRODUCTION

This document is the second release of a Mathematical Morphology (abbreviated
MM) exercises book using the MAMBA Image library. It is the adaptation to this library of a
former handbook written fifteen years ago which came with the Micromorph software. Some
exercises have been removed, some new ones have been added, these latter ones being taken
from the examples given in the MAMBA web page and the user manual. 

Compared to the Micromorph release, the philosophy of these new exercises is somewhat
different as the reader is not encouraged to design the various morphological operators
contained in the library. This task would certainly be too boring and not really very useful to
understand how these operators work and what is their purpose. Therefore, we simply give
some hints and suggestions regarding the choice, among all the available operators, of those
which could be relevant to solve the proposed problems.

Note also that this handbook is not a Mathematical Morphology course. It is divided into
different chapters, each one devoted to a given class of operators. Although some notions and
definitions are given at the beginning of each chapter, their purpose is only to provide a quick
reminder. Moreover, they are defined in a very simplistic way. The reader is invited to refer
to the bibliography given at the end of each chapter to go deeper into the concepts and tools
introduced in the exercises. 

The latest MAMBA release (version 2.0) is used for the solutions of the exercises. Compared
to the previous versions, some differences exist. However, it should not be difficult to adapt
these solutions to the previous versions (1.1) if necessary. The reader is invited to get and to
read the various documentation coming with the MAMBA library in order to benefit from
these exercises.

No doubt that many flaws and errors still appear in this document. My apologies for this.

I would like also to thank Nicolas Beucher for his major involvement in the design of the
MAMBA software (versions 1 and 2), the writing of the documentation, the examples, the
MAMBA web page, etc.

Fontainebleau, June 30, 2016

Introduction
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BEFORE YOU START

1 Installing and using the MAMBA library

All the exercises of this handbook use the MAMBA Image library. Therefore, you must
install this library before starting. It can be found at the MAMBA web page:

http://www.mamba-image.org

Reading the MAMBA Image Library User Manual, which can also be found there, is strongly
recommended. You will find also other interesting documents, in particular the MAMBA
Image Library Python Quick Reference, which lists all the operators of the library and the
MAMBA Image Library Python Reference if you need a more detailed information about
these operators.

Remember also that MAMBA is not a programming language but simply a Mathematical
Morphology library for Python. Therefore, you will need also to have a basic knowledge of
this language to use efficiently this handbook. 

Many exercises require only that you launch MAMBA in a Python shell. If you are under
Windows, you can simply launch the MambaShell (IDLE shell) installed with MAMBA. It
automatically defines some images and display them, which allows you to start immediately.
If you are under Linux, this shell can be used too but you need to launch it manualy. Then the
exercises can be solved by entering successive commands in the shell. Some exercises
however require the definition of more sophisticated operators which are not already present
in the MAMBA library. When it is the case, these operators have been gathered in a Python
module named Mamba_solutions.py which can be found here:

http://cmm.ensmp.fr/~beucher/stockage/Mamba_solutions.py

Finally, some exercises use other Python libraries to achieve specific tasks: curve drawings
with matplotlib, image calculations with scipy/numpy, 3D displays with VTK, etc.  The
necessary instructions for using them will be indicated everytime they are required. 

2 Organisation of the exercises

As said before, each chapter is devoted to a specific class of operators. A short reminder is
followed by the exercises. These exercises are generally briefly presented in order to let you
think about it and try to find a solution by your own. The difficulty level of each exercise is
given by the following quotation (mamba snake!):

means that the exercise is quite easy and immediate.

means that the exercise is at an intermediary level of difficulty. You will have
to combine several tools and operators to get the solution.

Before start
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means that the exercise is quite difficult (at least, I think so!). Such
an exercise can be considered as a real image analysis application.

We have limited the number of difficulty levels to three, but some exercises in this category
would deserve to have a quotation with more than three snakes...

In order to prevent you to jump directly to the solutions, these solutions are postponed to the
end of each chapter. Please, try to find a solution by yourself before looking at the proposed
one, because, as it is often the case in image analysis, this solution is seldom unique and
many tracks are available to reach it. Therefore, I do not pretend to give you the best one... 

3 The image database

During these exercises, you can use the images which are provided in the Mamba_Images
database (you can obviously use your own images). This database is available here (zip file):

http://cmm.ensmp.fr/~beucher/stockage/Mamba_Images.zip

Download and unzip it at the location of your choice. Five sub-directories are available: bin
contains binary images, grey contains greyscale images (8-bit), color (self explanatory), 32bit
contains 32-bit images and 3D contains few 3D images and sequences (which are considered
as 3D images by MAMBA). Once copied on your disk, you are advised to define the Python
working directory to avoid long and boring path entries while manipulating these images. For
instance, on Windows, assuming that the database has been unzipped at the root of disk C:/,
you have to enter the following commands:

import os
os.chdir(“c:/Mamba_Images”)

Adapt these commands if you are working with Linux.

Note also that the binary images used in the exercises are inverted in the illustrations. A
white pixel  in the image is displayed in black in the manual, for aesthetic purposes.

4 List of references

You will find at the end of each chapter a list of references. As mentioned before, the
operators and concepts used in the exercises are, most of the time, introduced very rapidly.
Therefore, this list will allow you to gain insight into these tools. These references have been
chosen because they are freely and easily available in the Web. Obviously, you can also dig
into the abundant bibliography available here and there.

Before start
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2 Definitions

2.1 Raster

1 Notations

Sets represent binary images, functions (from  into ) represent 2D greytone images.‘2 ‘

1.1 Sets
Sets are generally denoted with capital letters, X, Y, Z. Xi is the i-th connected component of
the set X.

1.2 Structuring elements
The capital letters B, H, L, M, T, etc... are used for the structuring elements. T1 , T2 are the
two components of a two-phase structuring element T = (T1 ,T2).

1.3 Functions
Functions are generally denoted with small letters, f, g, h, etc. .

1.4 Set and function transforms
The greek capital letters Ψ, Φ etc., denote transforms. Φ(X) (Φ(f) respectively) is the result
of the transformation Φ applied to the set X (to the function f respectively).

1.5 Sub-graph
The sub-graph or umbra of a function f from  into  is denoted by U(f) and represents the‘2 ‘
set of the points (x,y) of  such that y ≤ f(x).‘2x‘

Chapter 1

BASIC NOTIONS

In this chapter are reviewed the various notations used throughout this book, together with
some elementary definitions and image operators. This should allow you to get familiar with
many helpful operators for image handling and display. 

Chapter 1
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3 Some relations

3.1 De Morgan's formulae
These formulae express the duality of union and intersection:

 generally denotes the integer set (i.e. positive, negative numbers or zeros),  the set ofŒ Œ2

ordered pairs of two integers.  is called a raster, and its elements are the pixels of a 2DŒ2

image.

2.2 Grid, neighborhood graph
A graph is defined by a set of points which are called the vertices of the graph, and a set of
pairs of points taken among the vertices and called the edges of the graph.
A 2D grid is a graph:
- whose vertices belong to Œ2

- which is invariant under translation in Œ2

- and where the segments joining every edge extremity cannot cross each other.

Apart from a few exceptions, the exercises dealing with 2D images use the hexagonal grid
(this corresponds to the default setup in MAMBA).

2.3 Complementation
2.3.1 Binary images

Xc  is the complementary set of X. Any point x which is not included in X belongs to Xc.
2.3.2 Greytone images

Image complementation is defined by:
fc  = MAX - f

where f is the original image and MAX is the maximum grey level that can be used according
to the MAMBA image depth (255 for 8-bit images,  for 32-bit images).232 − 1

2.4 Union, intersection
2.4.3 Binary images

X∪Y represents the union of the two sets X and Y, that is the set of all the points that
belongs to X or to Y. X∩Y represents the intersection of the two sets X and Y, that is the set
of all the points that both belong to X and Y.

2.4.4 Greytone images, Sup, Inf
Sup(f,g), also denoted f∨g, designates the sup of two functions f and g: for every point x,
(f∨g)(x) is the highest of the two values f(x) and g(x). Inf(f,g), also denoted f∧g, designates
the inf of two functions f and g: for every point x, (f∧g)(x) is the smallest of the two values
f(x) and g(x).

Chapter 1
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4 Other definitions

You will find below a quick reminder of some definitions which will be useful all along the
exercises.

4.1 Increasing transformations
A transformation   is said to be increasing if it satisfies:

X _ Y e (X) _ (Y)
f [ g e (f) [ (g)

4.2 Extensivity/Anti-extensivity
 is extensive if:

 or  X _ (X) f [ (f)
Conversely,   is anti-extensive if:

 or (X) _ X (f) [ f
4.3 Idempotence

 is idempotent if:
 or [ (X)] = (X) [ (f)] = (f)

4.4 Duality by complementation
 and  are both dual transformations if:

 or (X) = [ (Xc )]c (f) = [ (f)c ]c

(X∪Y)c  = Xc∩Yc  and (X∩Y)c  = Xc∪Yc

Similarly:
(f ∨g)c  = fc∧gc  and (f∧g)c  = fc∨gc

3.2 Difference, symmetrical difference
X\Y denotes the set difference of X and Y. It is the set of those points belonging to X and not
to Y.

X\Y = X∩Yc

X*Y denotes the symmetrical set difference. It is the set of the points that belong to one and
only one of the two sets X and Y.

X*Y = (X∩Yc )∪(Y∩Xc ) = (X∪Y)\(X∩Y)

3.3 Commutativity, associativity, distributivity
Union, symmetrical difference and intersection are commutative and associative operations.
The same properties apply to sup and inf.
Commutativity: X 4 Y = Y 4 X

f - g = g - f
Associativity: (X 4 Y) 4 Z = X 4 (Y 4 Z) = X 4 Y 4 Z

(f - g) - h = f - (g - h)
Union and intersection are mutually distributive:

(X 4 Y) 3 Z = (X 3 Z) 4 (Y 3 Z)
(X 3 Y) 4 Z = (X 4 Z) 3 (Y 4 Z)

and so are sup and inf:
(f - g) . h = (f . h) - (g . h)
(f . g) - h = (f - h) . (g - h)

Chapter 1
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EXERCISES

Exercise n° 1

This exercise aims at getting familiar with the MAMBA library. Perform the following
operations:
- Load images into memory (use the various ways available in MAMBA to do this).
- Display images, change the display palettes, use the superposer, etc.
- Save images.
- Get image information (size, depth, etc.).
- Use the interactive thresholder tool.
To achieve this, use the following MAMBA operators: load, show and its various attributes,
hide, superpose. Use also the imageMb constructor and its corresponding methods: getSize,
getDepth.

Exercise n° 2

Prove that the function operators inf and sup can be expressed as set operations on
sub-graphs. (Prove in particular that the intersection of the sub-graphs f and g is the
sub-graph of the inf of f and of g).
Verify this with MAMBA (take two grey scale images and use the threshold and logic
operators).

Exercise n° 3

1) Prove and verify the De Morgan's formulae.
2) A transformation  is defined as follows:

, Y fixed set(X) = X 4 Y
- Is this transformation increasing, extensive, idempotent?
- Does there exist a dual transformation by complementation, and if so, indicate it.
3) Practice the corresponding MAMBA operators (logic, diff, negate).

Exercise n° 4

On the hexagonal grid each point has six neighbors. Translations are easily defined on this
grid.

Each translation is composed of elementary ones, e.g.:
 t = t1 ) t1 ) t2 ) t2 ) t2

Chapter 1
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SOLUTIONS

Exercise n° 1

Assuming that the image database has been properly downloaded and installed and that the
working directory has been set up as described in the previous chapter, there are mainly three
ways for loading images into MAMBA.
Firstly, you can create a MAMBA image and load an image file with a single operator, the
imageMb constructor. For instance:

>>> imA = imageMb(“grey/alliage.bmp”)

defines a MAMBA image imA and loads the image file alliage.bmp into it. 
You can display imA with the method show:

>>> imA.show()

Display of the image alliage. The image is padded with 0 (right stripe) to adjust its size
(480x400) with the MAMBA image size (512x400).

The settings of the image imA are automatically defined to fit the characteristics of the image
file:

The set of translations equipped with the composition law constitutes the group of
displacements.
Practice the different shift operators available in MAMBA (shift, shiftVector). Do these
operators satisfy this group structure? Verify and explain your answer. (This phenomenon is
the first occurrence of the edge effects resulting from the fact that we work on a finite field of
analysis).

As a reminder, edge effects are due to the fact that, by default, MAMBA assumes that pixels
liable to fall outside the field are lost. When re-entering these pixels (by means of a
translation in another direction), they are given an arbitrary value. This behavior will have
important consequences for the definition of geodesic transforms, but also for classical
euclidean transforms. This will clearly appear in the following exercises.

Chapter 1
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>>> imA.getSize()
(512, 400)
>>> imA.getDepth()
8

Note that the images defined by the imageMb operator have always a size multiple of
(64x2). Therefore, if the size of the loaded image does not correspond exactly to the
MAMBA format, the size of the MAMBA image is determined so that the loaded image is
entirely contained in it (the image is padded with 0, as it can be shown with the alliage image
whose actual size is 480x400).
You can also create a MAMBA image with a given size and depth, then load an image file
into it. The image will be padded or cropped to adapt itself to the MAMBA image size:

>>> imB = imageMb(448, 320, 8)
>>> imB.load(“c:/grey/alliage.bmp”)

Loading the alliage image into a 448x320 MAMBA image. The original image is cropped
to fit with the size of the MAMBA image.

The third way of loading an image consists in opening an image display. Then an image can
be loaded by means of the “load” command in the display menu which appears when clicking
in the display window. You can change the palette used for the display. For instance, to
display image im1 with the rainbow palette, type:

>>> im1.show(palette=”rainbow”)

MAMBA display window with its popup menu.

Saving a MAMBA image can be achieved with the method save:

>>> im1.save(“image1.png”)

saves the content of image im1 into the png file image1.png in the working directory.

Chapter 1
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Saving an image can also be performed with the save command in the display window menu.
You can also display and save a combination of images: a greyscale one and a binary one or
two binary images with the superpose operator. You must import this operator from the
mambaDisplay.extra module:

>>> from mambaDisplay.extra import *

Load the tools image into im1, threshold it between 100 and 255 into imbin1 (these two
images have already been defined if you use the MAMBA Python shell):

>>> threshold(im1, imbin1, 100, 255)

You can then superpose these two images:

>>> superpose(im1, imbin1)

The MAMBA image superposer.

Close the display window to exit the superposer.
Remember also that you can hide, freeze or unfreeze the display:

>>> im1.hide()

The im1 image is hidden. Restoring it can be achieved by simply showing it again.

Exercise n° 2

The solution is immediate:
Let us denote U(f), the sub-graph (sometimes called umbra) of f:
U(f) = (x, y) : y [ f(x)
and U(g), the sub-graph of g. We have:
≤(x, y), (x, y) c U(f) 3 U(g) g (x, y) c U(f) and (x, y) c U(g)
                                            g y [ f(x) and y [ g(x)
                                            g y [ inf(f(x), g(x))
                                            g y [ inf(f, g)(x)
                                            g (x, y) c U(inf(f, g))
Let  be a section at level I of the sub-graph of f:Xi(f)

Xi(f) = x : f(x) m i
 is the threshold of f between i and MAX of f. We have:Xi(f)

Xi(f - g) = Xi(f) 4 Xi(g)

Chapter 1
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Xi(f . g) = Xi(f) 3 Xi(g)
Ley us verify this with an example. Load image tools in im1 and image circuit in im2 (both
are greyscale images, MAX=255). Let us threshold these two images at level 150:

>>> threshold(im1, imbin1, 150, 255)
>>> threshold(im2, imbin2, 150, 255)

Perform the intersection of the two binary images with the logic operator:

>>> logic(imbin1, imbin2, imbin3, “inf”)

Then perform the inf between the two greyscale images (with the same logic operator):

>>> logic(im1, im2, im3, “inf”)

Inf of the two images tools and circuit (left), threshold at level 150 of the inf (middle) and
display of the thresholds at level 150 of the two initial images (right). Their intersection, in

yellow, is identical to the middle image.

We can threshold im3 at level 150 and put the result in imbin4:

>>> threshold(im3, imbin4, 150, 255)

The comparison between imbin3 and imbin4 shows that the two images are identical:

>>> compare(imbin3, imbin4, imbin4)
(-1, -1)

Exercise n° 3

1) De Morgan formulae
Let us prove that :

(X 3 Y)c = Xc 4 Yc

Let x be a point that belongs to the complementary set of , x does not belong to .X 3 Y X 3 Y
But, if x does not belong to both X and Y, it means that it does not belong to one of them at
least: x ∉ X or x ∉ Y. Q.E.D.
The same property holds for functions with the sup, inf and negate operators.
2) Let , Y is fixed.(X) = X 4 Y
Ψ is increasing:

≤X1 _ X2, (X1 ) = X1 4 Y _ X2 4 Y = (X2 )
Ψ  is extensive (obvious).
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Ψ is idempotent:
[ (X)] = (X 4 Y) 4 Y = X 4 Y = (X)

If there exists a dual transformation Φ of Ψ,  it satisfies:
, that is:[ (Xc )]c = (X)

(X) = (Xc 4 Y)c = X 3 Yc

3) Beside the logic operator, negate allows to complement a binary image or to invert a
greyscale one. The operation  can be perform with diff. Note that diff can also be usedX 3 Yc

with greytone images but with a slightly different behavior however (see the MAMBA
reference manuals).

Exercise n° 4

Translation in a 2D or 3D space is obviously an operation satisfying group properties. In
paricular, translating a point in any direction and translating it again at the same distance in
the opposite direction does not change anything. Unfortunately, it is not the case when
working in a finite space as a point falling outside the image window is definitely lost. This is
a very annoying edge effect which is constantly present when designing morphological
operators and which must be taken into account to avoid biases and errors in the
implementation of operators.
Two operators exist to shift images in MAMBA: shift (shift3D) and shiftVector (which has
no corresponding 3D operator yet).
shift performs image shiftings of any size in a given direction of the grid in use. For instance:

>>> shift(im1, im2, 1, 100, 150, HEXAGONAL)  

shifts (size 100) image im1 in direction 1 in the hexagonal grid and puts the result in image
im2. The third parameter (fill) indicates that the outside “virtual” pixels which are entering
the image window have the value 150. 

Shifting (right) of size 100 of the left image. The pixels which are propagated inside the
image have a grey value equal to 150.

shiftVector is a vector-based shifting operator. In this case, the image is simply considered
as an array of pixels and is shifted by a vector defined by its coordinates contained in a tuple.
We have:

>>> shiftVector(im1, im2, (100, 100), 180)
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This command performs a shift of image im1 to image im2 by a vector (100, 100). As for
shift, the value which is propagated inside the shifted image is defined by the parameter 180
(fill).

Left image shifted by a vector (x, y) of size (100, 100). The shifted image is filled with
pixels valued at 180.

y

x0
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1 Erosions, dilations, reminder

1.1 Binary case
The dilation of a set X by a set B of center O called a structuring element is a set Y thus
defined:

Y = X / B = x : Bx 3 X ! π

where  is the translation of the structuring element B at point x.Bx = x +
→ ⎯ 
Ob, b c B

can also be written:(X / B)
X / B = 4

bcB
X → ⎯ 

Ob

X / B = z : z = x + y , x c X , y c B
 is the transposed set of B (i. e. the symmetrical set of B with respect to O). The dilated setB

Y is then the union of the translates of X.
Similarly, the eroded set is defined by:

Z = X 0 B = x : Bx _ X
which is also written:

X 0 B = 3
bcB

X → ⎯ 
Ob

These two transformations have the following properties:
                                           (1)(X 4 Y) / B = (X / B) 4 (Y / B)

(X 3 Y) 0 B = (X 0 B) 3 (Y 0 B)
(X / B1 ) / B2 = X / (B1 / B2 )
(X 0 B1 ) 0 B2 = X 0 (B1 / B2 )

which hold, whichever are the centers of B, B1 et B2 .

1.2 Greytone case
The sub-graph U(f) of a function f can be eroded and dilated by a three-dimensional
structuring element B and it can be shown, under certain conditions, that the dilation (resp.
the erosion) of a sub-graph is still the sub-graph of a function, called the dilation (resp. the
erosion) of f by B and denoted  (resp. ).f / B f 0 B
If the structuring elements are planar, the dilation of a function f can be written:

(f / B)(x) = sup
bcB

f x +
→ ⎯ 
Ob

or else:
f / B = sup

bcB
f → ⎯ 

Ob

where  is the translated function of f of vector .f → ⎯ 
Ob

→ ⎯ 
Ob

Similarly, the erosion is defined by:
(f 0 B)(x) = inf

bcB
f x +

→ ⎯ 
Ob

or else:  
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EXERCISES

Exercise n° 1

1) Prove relations (1) and (1').
2) Prove or invalidate the following statements:
- Erosion and dilation are increasing,
- extensive, anti-extensive,
- idempotent,
- dual by complementation (or inversion for the functions).

Exercise n° 2

1) Use the MAMBA operators linearErode, linearDilate, doublePointErode and
doublePointDilate to perform the following transformations:
- erosion and dilation by a segment Ln of size n (consisting of n+1 consecutive points) in both
binary and greytone cases.

X 0 Ln, X / Ln, f 0 Ln, f / Ln
- erosion and dilation by a pair of points Kn at a distance n:

X 0 Kn, X / Kn, f 0 Kn, f / Kn
(the origin of the two structuring elements is arbitrarily chosen at one extremity).

cat                                          objects                                        shape

2) Prove that:
X 0 Ln _ X 0 Kn

f 0 B = inf
bcB

f → ⎯ 
Ob

The relations (1) are immediately transposable to functions.
                                            (1') (f - g) / B = (f / B) - (g / B)

(f . g) 0 B = (f 0 B) . (g 0 B)
(f / B1 ) / B2 = f / (B1 / B2 )
(f 0 B1 ) 0 B2 = f 0 (B1 / B2 )
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salt                                                                     circuit

Exercise n° 3

Prove that an elementary hexagon may be generated by three successive dilations of a point
by three judiciously chosen segments. Then, deduce an algorithm that allows to obtain the
erosion and the dilation by an hexagon. Program these transformations (both for the
hexagonal and square grids), and verify your algorithms on binary and greytone images.

Exercise n° 4

1) Perform erosions and dilations on binary and greyscale images (use the erode and dilate
operators).
2) Which structuring element is used?
3) Modify the structuring element. Use a square one.
4) Verify the duality of the erosion and the dilation. Is the result satisfactory Can you explain
the behavior of these operators at the edge of the images? Change the edge parameter and see
what happens.

Exercise n° 5

1) Perform the erosion by an elementary triangle, pointing upwards (take the point O for
origin).

2) Perform also the erosion by a 2x2 square.
3) What happens when the transformation is iterated? (Perform ). Represent the(X 0 B) 0 B
structuring element B' such that:

(X 0 B) 0 B = X 0 B∏

A simple way to know how it looks is to dilate a point by B, twice. Indeed:

. / B / B = B / B =
-

B / B
(X 0 B) 0 B = X 0 (B / B) e B∏ = B / B

4) Program the dilation by a triangle pointing downwards.
5) Perform the dilations by the following structuring elements:
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SOLUTIONS

Exercise n° 1

1) Let us prove that:
(X 4 Y) / B = (X / B) 4 (Y / B)

(X 4 Y) / B = 4
bcB

(X 4 Y)b = 4
bcB

(Xb 4 Yb ) = 4
bcB

Xb 4 4
bcB

Yb

that is .(X / B) 4 (Y / B)
The second relation can be proved in the same way. Let us prove the third relation :

(X / B1 ) / B2 = 4
b2cB2

(X / B1 )b2 = 4
b2cB2

4
b1cB1

Xb1
b2

= 4
b1cB1,b2cB2

(Xb1+b2 )

                         = 4
bcB1/B2

(Xb ) = X / (B1 / B2 )

2)  Let us verify the statements:

If H is the elementary hexagon, find the structuring element which is equivalent to:
B1 / H / B2

In this exercise, the class structuringElement can be useful to define some of the proposed
structuring elements. Note also that some of them already exist in MAMBA: TRIANGLE,
SQUARE2x2, TRIPOD, etc.

Exercise n° 6

1) Use the dilations and erosions by dodecagons and octogons (dodecagonalErode,
dodecagonalDilate, octogonalErode, octogonalDilate). Can you explain how these
operations are performed (see previous exercise)? 
2) Use large structuring elements (size > 100) and compare the speed of the previous
operators with the speed of the largeDodecagonalDilate and largeOctogonalDilate
transforms. Which kind of difficulty must be overcome when programming these large
structuring elements?

Exercise n° 7: Distance function

Let d be a distance defined on the points of the euclidean grid as the length of the shortest
path drawn on the grid between two points. At any point x of X, the value of the distance
function is:

 .dist(x) = d(x, Xc ) = min
ycXc

d(x, y)

Prove that, if d is the distance defined on the hexagonal grid as the length of the shortest path
drawn on the grid between two points, the distance function can be obtained by means of the
successive erosions of X by a hexagon.
Verify this by using the computeDistance operator and by comparing successive thresholds
of the obtained distance function with the corresponding erosions of increasing sizes.
Use also the computeDistance operator on the square grid.
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- Erosion and dilation are increasing transformations: true (since set union and set
intersection, sup and inf are increasing).
- Extensivity or anti-extensivity?
Consider the case of erosion.

X 0 B = 3
bcB

Xb

Since the eroded set is the intersection of the translates of X, it does not contain X, unless B
is reduced to the point of origin.
Conversely, stating that , requires to be able to write:X 0 B _ X

X 0 B = X 3 3
bcB− π

Xb

which is right only when the structuring element B contains its origin. As a general rule,
erosion is then neither extensive nor anti-extensive. It is the same for dilation.
- Erosion and dilation are idempotent : false (obvious).
- Erosion and dilation are dual transforms:

 Q.E.D.(X / B)c = 4
bcB

Xb

c

= 3
bcB

(Xb )c = 3
bcB

(X)b
c = (Xc 0 B)

Exercise n° 2

1) The linear (the structuring element is a segment) erosion (binary one,   or greytoneX 0 Ln

one,  ) is performed by means of the linearErode operator which works for binary andf 0 Ln
greytone images:

>>> linearErode(imbin1, imbin2, 4, n=15, grid=SQUARE)
>>> linearErode(im1, im2, 1, n=15, grid=HEXAGONAL)

Linear erosion of the objects image (left) of size 15 in direction 4 of the square grid (the
eroded set in in red). Linear dilation (right) of size 15 in direction 8 of the square grid (the

initial set is in blue, the dilation adds the red points).

The linear dilation (  and ) is realised with the linearDilate operator:X / Ln f / Ln

>>> linearDilate(imbin1, imbin2, 8, n=15, grid=SQUARE)
>>> linearDilate(im1, im2, 4, n=15, grid=HEXAGONAL)

You must indicate the direction of the segment, its size n (if different from 1) and the grid
used for the transformation. In the above example, the directions used are successively 4 on
the square grid, 1 on the hexagonal grid, 8 on the square grid and 4 on the hexagonal grid.
Note also that the origin of the structuring element is always an extremity of the segment.
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Linear erosion (middle image) of size 15 in direction 1 of the hexagonal grid of the initial
image (left). Linear dilation (right image) of size 15 in direction 4 of the hexagonal grid.

The erosion by a pair of points (  and ) is performed by the MAMBA operatorX 0 Kn f 0 Kn

doublePointErode and the dilation (  and  ) by doublePointDilate. TheX / Kn f / Kn
parameters are the same as those used by linearErode and linearDilate. The origin of the
doublet of points always corresponds to one of these two points:

>>> doublePointDilate(imbin1, imbin2, 4, 50)

Dilation by a pair of points (right) at distance 50 in direction 4 (hexagonal grid) of the
objects image (left).

2) Prove that . Let x be a point of . The structuring element LnX 0 Ln _ X 0 Kn X 0 Ln
translated in x is then included in X, and so are its two extremities consequently. Then x
belongs  to  the  eroded  set  (Q.E.D.)X 0 Kn

Exercise n° 3

The figure below shows how to obtain a hexagon from three segments. We have:
H = L1 / L2 / L3

Then, we write:
X / H = ((X / L1) / L2) / L3

and also:
X 0 H = X 0 (L1 / L2 / L3) = ((X 0 L1) 0 L2) 0 L3

(segment L1)* / * o* = * o*

(segment L2)* * /
*
m *

=
* * b

* *
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(segment L3)* * b
* *

/
*

*
m

=
* o *

* * *
* *

The same procedure can be used, with a fourth direction, for defining a square erosion.

(a) initial picture, (b) linear dilation at 60°, the point exits the field and is lost.

We could use the same formula to define the hexagonal dilation. However, in practice, this
approach does not work because it does not take into account border effects. Indeed, a point
which is on the field border will not always be correctly dilated, because some linear dilation
may propagate a white point outside the field. This white point is then irremediably lost. Note
that this problem does not occur with the square grid. Try to apply the following three
successive linear dilations on image points to be aware of the problem:

>>> linearDilate(imbin1, imbin2, 1, 30)
>>> linearDilate(imbin2, imbin2, 3, 30)
>>> linearDilate(imbin2, imbin2, 5, 30)

Result of three successive linear dilations of size 30 in directions 1, 3 and 5 applied to
image points (in green). In red, the points which have been lost because of edge effects.

The solution consists in performing translations in the six directions of the hexagonal grid. In
the hexagonal case, the erosion and the dilation are not correct when the transformations are
made using only three directions. Therefore, it is necessary, in order to obtain unbiased
transformations at the edges, to perform the hexagonal erosion and dilation by means of
translations in the six main directions of the grid.
Edge effects are particularly annoying when large structuring elements are used. Specific and
complex algorithms must be designed to cope with this problem. These algorithms are
described in [2].

Exercise n° 4

1) erode and dilate are the two MAMBA operators which perform erosions and dilations
with structuring elements defined on the neighborhood of a point (hexagonal or square).
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>>> erode(imbin1, imbin2)
>>> dilate(imbin1, imbin2)
>>> erode(im1, im2, 3)
>>> dilate(im1, im2, 3)

Hexagonal binary erosion and dilation of size 1, (left) initial picture, (middle) erosion,
(right) dilation.

Hexagonal greytone erosion and dilation of size 3, (left) initial picture, (middle) erosion,
(right) dilation.

2) By default, the structuring element is an hexagon. You can know the default structuring
element and change it by entering the following commands:

>>> DEFAULT_SE
structuringElement([0, 1, 2, 3, 4, 5, 6], mamba.HEXAGONAL)
>>> DEFAULT_SE.setAs(SQUARE3X3)
>>> DEFAULT_SE
structuringElement([0, 1, 2, 3, 4, 5, 6, 7, 8], mamba.SQUARE)

3) When changing the default structuring element to a square one (see above), the erosion
and dilation operators use these new structuring element without any further specification:

>>> dilate(imbin1, imbin2, 25)

You can also, without changing the default structuring element, force the dilate or erode
operators to use a specific one. For instance, assuming that the default structuring element is
an hexagon, entering the command:

>>> dilate(imbin1, imbin2, 25, SQUARE3X3)

will perform a dilation of the image imbin1 into imbin2 by a square of size 25.
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Dilation of size 25 of the shape image with an hexagon (left), dilation of size 25 with a
square (right).

4) Let us use the alumine binary image loaded in imbin1. If we perform the following
operations:

>>> erode(imbin1, imbin2, 2)
>>> negate(imbin1, imbin3)
>>> dilate(imbin3, imbin3, 2)
>>> negate(imbin3, imbin3)

Duality of the erosion and of the dilation by complementation (the images have not been
inverted in this figure).

dilate

         negatenegate

erode

The images imbin3 and imbin2 are identical as it can be asserted by comparing them:

>>> compare(imbin2, imbin3, imbin4)
(-1, -1)
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This awaited result seems strange however. Indeed, if we look at the particles of the initial
image which cut the edges, they should also have been reduced along these edges (see
illustration below). Fortunately, it is not the case, otherwise the duality would not be verified.

Erosion when the edge parameter is set to EMPTY (left) and to FILLED (right).

To achieve this, the parameter ‘edge’ can be set in erode and dilate. If ‘edge’ is set to
EMPTY, the outside of the binary image is considered as being empty. The objects under
study are entirely included in the field of analysis. The outside of a greytone image is equal to
0. When performing an erosion, a black border appears which increases and deeply reduces
the image field when the size of the transformation increases. Conversely, when setting the
edge to FILLED, the outside of the image is considered as being filled. So, in the case of the
erosion, the structuring element B, when crossing the boundary of the image field D, does not
take into account its points which are outside D (they are not considered in the inf). This is
equivalent to perform the transformation with the structuring element . This mode is, inB 3 D
fact, a geodesic mode, see chapter on the geodesic transforms.
By default, ‘edge’ is set to FILLED in the erosion and to EMPTY in the dilation. This
allows to discard the outside when computing the transformations: FILLED points are not
taken into account in the erosion and EMPTY points are not considered in the dilation.
Changing the ‘edge’ value is possible but you must be aware of the consequence of this
setting in the edge management.

Hexagonal erosion of size 4 of the initial image (left) when the parameter ‘edge’ is set to
FILLED (middle) and when set to EMPTY (right).  

>>> erode(imbin1, imbin2, 4)
>>> erode(imbin1, imbin2, 4, edge=EMPTY)
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Exercise n° 5

This exercise gives you the opportunity to use the various structuring elements pre-defined in
MAMBA.
1) Erosion by a triangle (point upwards): this structuring element is already defined in
MAMBA (TRIANGLE):

>>> erode(im1, im2, se=TRIANGLE)

2) The erosion by an elementary square is performed with the SQUARE2X2 structuring
element:

>>> erode(im1, im2, se=SQUARE2X2)

Note the position of the origin of the structuring element (lower left point).

3) Repeating two triangular transformations (erosion or dilation) results in a triangular
transformation of size 2. More generally, n iterations are equivalent to a single transformation
by a triangle of size n. Note the orientation of the triangle in the transformation when dilating
single points (use the points image loaded in imbin1):

>>> dilate(imbin1, imbin2, 2, se=TRIANGLE)

Similarly, iterating a 2x2 square transformation n times is equivalent to use a (n+1) square.
Note however the position of the origin which corresponds always to the lower left point and
the result of the dilation when applied to the image points.

>>> dilate(imbin1, imbin2, 25, se=SQUARE2X2)

Right image: dilation of the points image (left) by a TRIANGLE structuring element of size
25 (in green) and by a SQUARE2X2 structuring element of same size (in red).

4) The dilation by a triangle pointing downwards is realised by using the method transpose
applied to the TRIANGLE structuring element.This method computes the symmetry around
the origin of the structuring element: 

>>> dilate(imbin1, imbin2, 30, se=TRIANGLE.transpose())
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Dilation of the image points by a triangle of size 30 pointing downwards (the result shows
triangles pointing upwards).

5) The structuring element B1 is already defined in MAMBA and is named TRIPOD. This
structuring element is defined on the hexagonal grid. B2 is the transposition of B1. Therefore,
elementary dilations (size 1) using structuring elements B1 and B2 can be performed by:

>>> dilate(im1, im2, se=TRIPOD)
>>> dilate(im1, im2, se=TRIPOD.transpose())

Three successive dilations by B1, B2 and H are equivalent to a dodecagonal dilation:

* / B1 =
*

* *
*

*
* *

*
/ B2 =

*
* * * *

* * *
* * * *

*

Note that these two successive dilations by B1 and B2 produce a dilation by the conjugate
hexagon (hexagon turned by a 30° angle).

*
* * * *

* * *
* * * *

*

/ H =

* *
* * * * *

* * * * * *
* * * * *

* * * * * *
* * * * *

* *

Note also that Minkowski sums are used in the above operations instead of dilations (the
structuring elements are not transposed in the formulae). This has obvious no consequence
as, in the one hand, B1 is the transposed set of B2 and vice versa (H is isotropic) and, in the
second hand, dilations are commutative.

Chapter 2

33



Exercise n° 6

1) Dilations and erosions by dodecagons are available in MAMBA by means of the
dodecagonalErode and dodecagonalDilate operators. These transformations are built by
successive erosions or dilations by hexagons and conjugate hexagons, as described in the
previous exercise. The sizes of the two operations are computed so that  the resulting
dodecagon be as isotropic as possible and that each dodecagon of size n be included in  the
hexagon of same size.

Successive dodecagons of increasing sizes used by the dodecagonal operators. Each
dodecagon is included in the hexagon of same size.

>>> dodecagonalDilate(imbin1, imbin2, 20)

Dodecagonal dilation of size 20 of the objects image (left). This transformation can be
compared to the hexagonal dilation of same size (right).

Morphological operations using octogons exist also in MAMBA: octogonalErode and
octogonalDilate. These transformations are built in the same way as the dodecagonal ones by
combining operations using the SQUARE3X3 and the DIAMOND structuring elements.
The algorithmic implementation of all these transformations is thoroughly explained in [1].

>>> octogonalErode(im1, im2, 20)
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Octogonal erosion of size 20 (right) of the electrop image (left).

2) Fast implementations of erosions and dilations exist in MAMBA when working with large
structuring elements: squares, hexagons, dodecagons or octogons. The larger the size of the
structuring element, the higher the speed increase of the transformation. You can verify this
with the following experiment. Define two 1024x1024 binary images imA and imB, display
imA:

>>> imA = imageMb(1024, 1024, 1)
>>> imB = imageMb(imA)
>>> imA.show()

Load the bigcat image in imA (do not display imB!). Then, import the Python module named
time:

>>> from time import *

This module will allow to calculate approximately the computation time of a transformation.
Then compare the computation time of dodecagonalDilate and largeDodecagonalDilate by
entering the following command (all the instructions must be typed on a single line):

>>> t0 = time(); dodecagonalDilate(imA, imB, 200); t1 = time(); print(t1 - t0)

The value returned at the end of the operation is the approximate time in milliseconds of the
transformation (in this case a dodecagonal dilation of size 200). Then, do the same with the
largeDodecagonalDilate operator:

>>> t0 = time(); largeDodecagonalDilate(imA, imB, 200); t1 = time(); print(t1 - t0)

The speed of the operation can be multiplied by 5 on a performing computer. Similar speed
increases can be observed with the other operators (largeHexagonaldilate,
largeSquareDilate, etc.).

The main difficulty when implementing these operators comes from the important edge
effects which may happen if they are not controlled and avoided (see previous exercises).
Therefore, this implementation is quite tricky. More details regarding the design of these
algorithms can be found in [2].
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Exercise n° 7: Distance function

For this distance, the set of points located at a distance smaller than or equal to n from a point
x is the hexagon of size n centered in x.
Let x be a point of X located at a distance n from Xc (the distance function at x is n). The
hexagon of size n centered in x contains a point of Xc (by hypothesis) and the hexagon of size
n-1 centered in x does not contain any point of Xc (otherwise the distance would be smaller
than n). Then x belongs to the set X eroded by a hexagon of size n-1 and does not belong to
the set X eroded by a hexagon of size n.
Each section at level i of the distance function of a set X therefore corresponds to the erosion
of size i-1 of X. Computing this distance function could then be achieved by adding the
successive erosions of the set X. However, this implementation would be quite slow, the
computation time being proportional to the size of the connected components of X. The
MAMBA implementation, computeDistance, does not depend on the size of each connected
component. It is based on propagations. However, each section at level i of the result is equal
to the eroded set of size i-1.

>>> computeDistance(imbin1, im32_1)

Remind that the result of computeDistance must be stored in a 32-bit image. To verify the
equality with the erosion, do for example:

>>> threshold(im32_1, imbin2, 13, computeMaxRange(im32_1)[1])
>>> erode(imbin1, imbin3, 12)
>>> compare(imbin2, imbin3, imbin4)
(-1, -1)

Initial set (upper left), distance function computed on the hexagonal grid (upper right),
erosion of size 12 of the initial set (in red, lower left) and section at level 13 of the distance

function (lower right).
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Note also that computeDistance works on the square grid (the parameter ‘grid’ is set to
HEXAGONAL by default). 
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1 Reminder

Any morphological transformation is to lead eventually to a measure on the transformed set.
The main purpose of a transformation (or sequence of transformations) is to detect the objects
to be measured: the openings revealing size distributions are an example.
Measures that satisfy good compatibility properties with  translations and homotheties are not
so numerous. Namely, in 2D:
- area
- diameter variations
- perimeter
- connectivity number

2 Measures and morphological transformations

Any measurement consists of two steps: transformation + counting of the points of the
transformed image. Measuring an area is very simple as the transformation is identity, it then
amounts to counting the points of the set. Besides, this measure is obtained when applying
the MAMBA computeVolume operator on any binary image.
In digitized images, the intercept numbers correspond to diameter variations. On the
hexagonal grid, we have three directions:

I1 = N(0 1) ; I2 = N 1
0 ; I3 = N 1

0
On the square grid, a fourth direction is used:

I1 = N 1
0 ; I2 = N 1

0 ; I3 = N 0 1 ; I4 = N 0
1

The transformation associated with this measure then consists in extracting the intercepts.
Measuring the connectivity number is a little more complex, since it requires multiple
transformations and countings. On the hexaconal grid, we can prove that:

= N 0 0
1 − N 0

1 1
On the square grid, three transformations and countings are needed:

= N 1 0
0 0 − N 1 1

1 0 + N 1 0
0 1

Remind that in 2D, the connectivity number is equal to the number of connected components
minus the number of holes of the set.
Programming measures is not enough, you have to learn how to interpret the results. Some of
the following exercises are intended to familiarize you with this important step of
morphological treatments.

Chapter 3
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EXERCISES

Exercise n° 1

1) Use the aforementioned operators to measure areas and diameters of various binary images
(holes, cells, grains1, grains2) on hexagonal and square grids. 
2) Measure the connectivity number of the holes, cells and noise images on the hexagonal
and square grids. Can you explain the differences of values obtained on the hexagonal and
square grids?
3) Measure the perimeter of holes and cells on the two grids. Can you propose alternative
ways of obtaining this measure? Compare their respective accuracy and discuss their biases.

noisecellsholes

Exercise n° 2: Transitive and stationary hypotheses

Observing the grains1 image suggests that the set under study is entirely known and included
in the field of measurement. In that case, it is quite legitimate to speak of the area of the set
and of its connectivity number. Similarly, it is possible to define the area of the eroded (or
dilated) set provided that it is entirely contained in the field of measurement. When this

3 Measures in MAMBA, precisions and suggestions

The MAMBA library contains some basic measurement operators. They are named
computeArea, computeDiameter, computePerimeter and computeConnectivityNumber
and are acting only on binary images. More deteails about these operators can be found in
[1].
As said before, all these operators use the computeVolume function which computes the
number of pixels of a binary image and the integral (volume of the sub-graph) of a greytone
image. computeVolume returns an integer value.
The other operators contain a parameter (a tuple), the scale factor, allowing to return
calibrated measures corresponding to the real dimensions of the image. The returned
measures are real values, except for the connectivity number which is always an integer. In
the following exercises, this scale factor is set by default to (1.0, 1.0).
In this chapter and in the next ones, some exercises require the computation of curves and
graphical data. To achieve this, we recommend the use of the matplotlib library. Install it,
together with the scipy and numpy libraries which are very useful Python libraries when
performing scientific calculations.
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assumption of exhaustive knowledge is enforced, the measurement working mode is said to
be transitive.
Conversely, on the grains2 image, such a hypothesis is hardly acceptable. Obviously, only a
part of a more extended set appears in the field of analysis. In that case, the only meaningful
measures are those related to the unit area: ratio, specific connectivity number, etc. . We then
speak of a stationary working mode. Measurements are performed by constructing non biased
estimates. Thus, the ratio of a set X is estimated by:

t = mes(X 3 D)
mes(D)

D is the field of measurement, and  corresponds to the part of set X that is known.X 3 D
1) Can you compute a non biased estimate of the ratio of the eroded set X? (As the eroded set
X is biased in the field D, you have to find a field D' in which the eroded set is exact, and use
it to obtain the ratio estimate).
2) Same question for the dilated set.

grains2grains1

Exercise n° 3

C(l) denotes the covariance of size l, the measure of the area (transitive case) or of the ratio
(stationary case) of the set X eroded by a pair of points at a distance l. In fact, the
transformation itself is often called covariance.
In the stationary case, the covariance is an estimate of the probability for a pair of points to
be included into the set X assumed to extend to the whole space.
1) Program the covariance (stationary case only). To do so, refer to the suggestions made
above (especially, concerning the plotting of the curve with matplotlib).
2) Application to particle1, particle2 and eutectic images.
3) Interpret the main features of the curve C(l), more particularly C(0), C(∞), the tangent at
the origin, and the overall outlook of the curve.

eutectic                                      particle1                                   particle2
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SOLUTIONS

Exercise n° 1

1) Measuring areas is achieved with the computeArea operator and diameters (intercept
numbers) with computeDiameter. Load the binary image noise in imbin1 and type:

>>> computeArea(imbin1)
21129.0

The area is a real number. As the scale factor is set by default to (1.0, 1.0), this value is equal
to the value returned by computeVolume (number of pixels for a binary image). This latter
value, however, is a long integer:

>>> computeVolume(imbin1)
21129L

To test the measurement of the diameters, load the cat image in imbin1, then type:

>>> computeDiameter(imbin1, 2)
244.0

This command returns a real value equal to 244.0 corresponding to the vertical diameter (the
programmed direction is 2, that is the horizontal one on the hexagonal grid). In direction 1,
we have:

>>> computeDiameter(imbin1, 1)
461.5244305559566

Exercise n° 4: Individual analysis of particles

The measurement operators introduced and used in the previous exercises work on the whole
binary image.  These measures are not able to distinguish the various connected components
contained in the image. However, it is often necessary to measure separately each particle in
the image.
The purpose of this exercise is to present some MAMBA operators which can be very helpful
to extract easily each connected component of a set and to measure it individually. Two
operators, in particular, are interesting: label and getHistogram.
label generates a 32-bit image where each connected component of the initial image is
assigned a single grey value. This operator also returns the number of connected components
of the set.
getHistogram works on greyscale (8-bit) images and produces a list of 256 integer values.
The i-th value correponds to the number of pixels in the image with a grey value equal to i. 
1) Practice the label and the getHistogram operators. Use the matplotlib library to plot the
histograms.
2) Find a way to easily extract each connected component of a set.
3) Can you design a procedure for measuring rapidly the area of each particle of a set?
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The non integer result in this direction comes from the fact that, the vertical scale factor
being equal to 1, the hexagonal grid is not isotropic. Thus, parallel lines in directions other
then 2 are not at a distance one apart.

Horizontal intercepts (right) of the left image. With a default scale factor, the number of
intercept points in the horizontal direction is equal to the diameter.

The vertical diameter is proportional (equal if the scale factor is equal to 1) to the number of
intercepts in the horizontal direction (configurations (1 0)). These configurations can be
extracted with the diffNeighbor operator. For details on this operator and on the settings of
its parameters, see the MAMBA user and reference manuals. You can verify this by loading
the cat image in imbin1 and entering the following commands:

 >>> diffNeighbor(imbin1, imbin1, 4)
>>> computeVolume(imbin1)
244L

The integer returned value (number of intercepts points) is equal to the diameter obtained
with the operator computeDiameter.
Note also that, in all the measurement operators, the edge of the binary image is always set to
EMPTY. As a consequence, diameter measurements in transposed directions (1 and 4 on the
hexagonal grid for instance) give identical results. Indeed, any entry in a given direction into
a connected component must be followed by an exit: any intercept in this direction is
followed by a corresponding intercept in the opposite direction.
You can also perform these measurements on the square grid:
 
>>> computeDiameter(imbin1, 3, grid=SQUARE)
244.0

The value of the diameter in direction 3 of the square grid is obviously equal to the diameter
in direction 2 of the hexagonal grid.

2) The connectivity number of a binary image is given by the computeConnectivityNumber
operator. This operator extracts the various configurations used in the connectivity number
formulae and returns the measure. In the design of this operator, we must take care of the
origin of the structuring elements to avoid biases due to edge effects. With the holes image
loaded in imbin1, we have:

>>> computeConnectivityNumber(imbin1)
-1L
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Remember that, in 2D, the connectivity number is equal to the number of connected
components of a set minus its number of holes. Note that another operator, named
computeComponentsNumber, is available in MAMBA. It returns the number of connected
components:

>>> computeComponentsNumber(imbin1)
6

Therefore, the holes images contains 7 holes (6 - 7 = -1).

The 6 connected components of the holes image (in red) and the 7 holes (in yellow). 

The connectivity number can also be measured on the square grid:

 >>> computeConnectivityNumber(imbin1, grid=SQUARE)
-1L

The result is the same on both grids. However, most of the time, it is not the case, as it can be
verified with the noise image:

>>> computeConnectivityNumber(imbin1)
1156L
>>> computeConnectivityNumber(imbin1, grid=SQUARE)
2097L

On the square grid (left), the two points are neighbors (one component). On the hexagonal
grid (right), the same configuration is cut into two components (non neighbor points).

This difference is due to the fact that the neighborhood relationships between points are not
the same on the hexagonal and square grids. On the hexagonal grid, every point, belonging
either to the set or to the background, has six neighbors. On the square grid, points belonging
to the set have eight neighbors, whereas points belonging to the background have only four
neighbors. Note that the number of connected components is also different:

>>> computeComponentsNumber(imbin1)
2901
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>>> computeComponentsNumber(imbin1, grid=SQUARE)
2549

3) The only unbiased measure of the perimeter is given by applying the digital version of the
Cauchy formula which relates the perimeter to the mean diameter variation D in all the α
directions:

P = E (D ) = ¶
0

D d

The perimeter is equal to π multiplied by the mean diameter of the set. The digital version of
this formula is implemented in the computePerimeter operator. The averaging is performed
in three or four directions depending on the grid in use:

P = k i=1

k
Di

k is the number of directions used. For the images cells and holes respectively, we get:

>>> computePerimeter(imbin1)
788.8308609606588

for the cells image and:

>>> computePerimeter(imbin1)
2166.8588057782454

for the holes one.
There are other means for measuring a so-called perimeter, however, they all present more or
less important biases. It is the case, in particular, for the internal contour measurement
(number of points) of a set. The result is particularly inaccurate when the measured set is
thin. The points of the boundary should be counted twice. 
To reduce this bias, the external contour can be measured and the average of the two
measurements can be taken. But, on the hexagonal grid, it can be proved that the difference
between the external and internal contours is equal to 6ν, where ν is the connectivity number.
Then we have:

(external_contour + internal_contour)/2  =  internal_contour + 3ν
Since this average depends on the number of connected components of the picture, it is
biased. Moreover, it is not exact for the connected components touching the edges. Load the
two_three_holes image in imbin1 and enter the following commands:

>>> erode(imbin1, imbin2)
>>> diff(imbin1, imbin2, imbin2) # internal contour
>>> computeVolume(imbin2)
1606L

The internal contour contains 1606 points. Then enter:

>>> dilate(imbin1, imbin3)
>>> diff(imbin3, imbin1, imbin3)
>>> computeVolume(imbin3)
1576L
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The external contour contains 1576 points. The difference is equal to -30. The computation of
the connectivity number gives:

>>> computeConnectivityNumber(imbin1)
-5L

which verifies the above formula.

The two_three_holes image (left) and the internal (yellow) and external (red) contours.

Exercise n° 2: Transitive and stationary hypotheses

1) X being known in the field D only, computing an unbiased estimate of the ratio of the
eroded set  then consists in looking for a field D' in which the eroded set is not biased.X 0 B
One should have :

[(X 3 D) 0 B] 3 D∏ = (X 0 B) 3 D∏

i.e. (X 0 B) 3 (D 0 B) 3 D∏ = (X 0 B) 3 D∏

This equality is satisfied for any X if :
 (D 0 B) 3 D∏ = D∏

Assume that . Then, we have:D∏ _ D 0 B
(D 0 B) 3 D∏ = D∏

The above equality is satisfied.
On the contrary, assume that . We have:D∏ q D 0 B

(D 0 B) 3 D∏ = D 0 B
which satisfies the equality if and only if (D 0 B) = D∏

Therefore, the largest mask D' in which the eroded set is unbiased  is the mask D eroded by
B.
Thus, an unbiased estimate of the eroded set ratio will be:

tX0B = mes[(X 3 D) 0 B]
mes(D 0 B)

Left image: set X and its erosion. Middle image: erosion when the edge is set to EMPTY.
Right image: erosion when the edge is set to FILLED. In both cases, the erosion is

unbiased only in the field D eroded by B.
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Note that the correction (erosion of the mask) is the same whatever the setting of the edge
(EMPTY or FILLED) in the erosion. Indeed, if we consider the restriction of a set X
supposed to spread over the whole space, setting the edge to FILLED amounts to replace the
outside part of X by a filled space which obviously is not identical to the set X.

2) If the ratio of the dilated set  is not biased, so will be the ratio of the eroded setX / B
 and vice versa. This means that the mask D' in which the ratio of the dilated set isXc 0 B

measured is once again the mask .D 0 B
Let us prove this a posteriori. The mask D' must satisfy:

[(X 3 D) / B] 3 D∏ = (X / B) 3 D∏

Let us prove there is equality when . The second expression can be written:D∏ = D 0 B
(X / B) 3 D∏ = (X / B) 3 (D 0 B)

= ([(X 3 D) 4 (X 3 Dc )] / B) 3 (D 0 B)
= [[(X 3 D) / B] 4 [(X 3 Dc ) / B]] 3 (D 0 B)

= [[(X 3 D) / B] 3 (D 0 B)] 4 [[(X 3 Dc ) / B] 3 (D 0 B)]

                                                (b)
(b) is empty. Indeed:

(X 3 Dc ) / B _ Dc / B = (D 0 B)c

Then,  is included in the complementary set of . The intersection is(X 3 D)c / B (D 0 B)
empty.  Q.E.D.
We can write:

tX/B = mes[[(X 3 D) / B] 3 (D 0 B)]
mes(D 0 B)

Left image: the set X (dark grey) and its dilation (light grey). Right image: the restriction
of X to the field D does not propagate some outside parts of X inside D. The resulting

dilation is biased. Only its part inside the erosion of D is correct. 

It may seem strange that, in the case of a dilation (especially when the operation is
extensive), the correct measurement mask is obtained by an erosion. However, this result
becomes clear when we consider the connected components of X outside D, which are likely
to come inside it when dilated, contributing then to the measure. As they are not known,
considering an eroded field is compulsory to avoid measurement biases. 

Exercise n° 3

1) The operator used to compute the covariance is already known: it is named
doublePointErode. Let us define this covariance function. Its parameters are the input
image, the direction of the covariance, the range of sizes and the grid in use (set to default
grid). The operator returns a list of values.
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from mamba import *

def covariance(imIn, dir, sizeRange, grid=DEFAULT_GRID):
   """
   This operator calculates the covariance of image 'imIn' in the direction
   'dir' of 'grid' for all tha sizes in 'size_range'.
   It returns a list of real values.
   """

   imField = imageMb(imIn, 1) # Binary measurement field
   imWrk = imageMb(imIn) # Working image
   covarList = [] # Initializing the covariance list
   for i in range(sizeRange):
       doublePointErode(imIn, imWrk, dir, i, grid=grid, edge=EMPTY)
       v1 = computeVolume(imWrk)
       # Performing the erosion by a doublet of points and measuring
       # its area. Note the setting of edge!
       imField.fill(1)
       doublePointErode(imField, imField, dir, i, grid=grid, edge=EMPTY)
       v2 = computeVolume(imField)
       # Generating the current unbiased measurement mask and measuring
       # its area.
       covarValue = float(v1) / v2
       covarList.append(covarValue)
   return covarList

The covariance measure is unbiased thanks to the correction which has been introduced in
the previous exercise (erosion of the measurement mask).
Note that the edge in the erosion is set to EMPTY. It is compulsory if we want to obtain a
black strip in the measuremnt mask image. If not, this image would never change whatever
the size of the stucturing element. Consequently, the measure of the covariance would be
false.
Note also that setting the edge to EMPTY for the image to be measured makes unnecessary
the intersection of the eroded image with the eroded mask, as this setting generates in the
measured image a black strip of same size as the one appearing in the eroded mask.
Finally, the covariance function can be used also on greytone images. Verify it on the knitting
image loaded in im1, for instance:

>>> c = covariance(im1, 3, 30, grid=SQUARE)

The erosion of the left greyscale image by a doublet of points at distance 25 with the edge
set to EMPTY produces a black strip, as shown in right image.
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2) The covariance measure can be applied to the eutectic, particle1 and particle2 images.
Load eutectic in imbin1 and enter:

>>> c1 = covariance(imbin1, 2, 81)

The covariance measure in the range [0, 80] is stored in the list c1. Then, do the same with
particle1 stored in c2:

>>> c2 = covariance(imbin1, 2, 81)

And with particle2, in c3:

>>> c3 = covariance(imbin1, 2, 81)

The curves can then be plotted with matplotlib (assumed that you have installed it). Just
enter the following commands:

>>> import matplotlib.pyplot as plt
>>> x = range(81)
>>> err = plt.xlabel("Size of doublet")
>>> err = plt.ylabel("Covariance")
>>> err = plt.title("Covariance curves")
>>> err = plt.plot(x, c1, label="eutectic image", color='blue')
>>> err = plt.plot(x, c2, label="particle1 image", color='red')
>>> err = plt.plot(x, c3, label="particle2 image", color='green')
>>> err = plt.legend(loc="upper right")
>>> err = plt.show()

Plotting of the covariance curves.

Chapter 3

48



The ‘err’ variable is simply here to swallow an ugly string returned by the matplotlib
functions.

2) As shown by the covariance definition, C(0) equals the ratio of set X. C(∞) is the
probability for a couple of points at an infinite distance from each other to be both included
in X. This probability is equal to the probability of inclusion for two independent points (non
correlated occurrences). That is:

C(∞) = C2(0)
This can be verified with the covariance of particle2. The curve is relatively constant for the
large size and we have C(0) = 0.1386, C2 (0) = 0.0192 and C(80) = 0.0208.
The tangent of the curve at the origin is equal in absolute value to -C'(0). An estimate of this
value is given by:

-C'(0) = C(0) - C(1)
−C ∏(0) = mes(X 3 D ∏ ) − mes[(X 0 K1 ) 3 D ∏ ]

mes(D ∏ )

with  (K1 is the doublet of points of size 1, that is the elementary digitalD∏ = D 0 K1
segment).
The numerator can be written:

mes[(X 3 D∏ )/[(X 0 K1 ) 3 D∏ ]] = mes[X 3 (X 0 K1 )c 3 D∏ ]
i.e.:

mes(X 3 X−1
c 3 D∏ )

But  is the set X eroded by the structuring element  01, used to compute the numberX 3 X−1
c

of horizontal intercepts. -C'(0)  is then an unbiased estimate of the vertical diameter of X.
We can see how the periodical structure of the eutectic image is reflected by the covariance
curve. The minimum of the particle2 curve indicates a repulsion phenomenon between the
particles of the images: clusters of particles are separated by a minimal distance.  

Exercise n° 4: Individual analysis of particles

1) The label operator, applied to a binary image, assigns to each connected component a
single value. Apply it to the metal1 image loaded in imbin1:

>>> label(imbin1, im32_1)
38

The metal1 image (left) is labelled: a single value is assigned to each connected
component (right image displayed with the patchwork palette). 
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The labelled image is in the 32-bit image im32_1, as any image may contain more than 255
particles. The label function returns also the number of connected components in the image
(38 in this case).
The histogram of a greyscale (8-bit) image is computed by the getHistogram function. This
function returns a list of 256 integer values. The i-th component of the list indicates how
many pixels with the grey value i are contained in the image. To get the histogram of image
muscle loaded in im1, enter:

>>> histo =getHistogram

This histogram can be plotted with matplotlib:

>>> import matplotlib.pyplot as plt
>>> x = range(256)
>>> err = plt.xlabel("Grey values")
>>> err = plt.title("Greyscale histogram")
>>> err = plt.plot(x, histo)
>>> err = plt.show()

Grey level histogram of the muscle image.

2) As the label operator assigns a single value to each connected component of the labelled
set, a simple threshold of the labelled image at level [i, i] extracts the i-th particle of the
image.

Thresholding the labelled image (middle) at 12 extracts the twelfth particle (right) of the
initial binary image (left).
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>>> nb = label(imbin1, im32_1)
>>> threshold(im32_1, imbin2, 12, 12)

It is then possible to compute measures for all the particles of a binary set by extracting each
of them in a loop. For instance, we can measure the horizontal and vertical sizes of the
bounding boxes of the particles included in a binary image with the particleBoundingBoxes
operatorn (which can be found in the Mamba_solutions.py module). .

from mamba import *

def particleBoundingBoxes(imIn):
   """
   This operator returns a list containing the horizontal and vertical dimensions
   (also called Feret diameters) of all the particles contained in the binary image
   'imIn'.
   """
   
   # Defining working images
   imWrk = imageMb(imIn) 
   imWrk32 = imageMb(imIn, 32)
   # Initializing the list of results
   feretDiametersList = []
   # Labelling the binary image. nb contains the number of particles
   nb = label(imIn, imWrk32)
   # This loop calculates the size of the bounding box for each connected component    
   for i in range(nb):
       threshold(imWrk32, imWrk, i+1, i+1)
       box = computeFeretDiameters(imWrk)
       feretDiametersList.append(box)
   # Returning the list of results
   return feretDiametersList

When applying this operator to the image metal1 loaded in imbin1, we get:

>>> boxes = particleBoundingBoxes(imbin1)
>>> boxes
[(67.0, 41.0), (37.0, 12.0), (10.0, 7.0), (12.0, 8.0), (6.0, 5.0), (17.0, 16.0), (38.0, 15.0), (23.0,
17.0), (8.0, 6.0), (7.0, 9.0), (11.0, 14.0), (164.0, 61.0), (40.0, 19.0), (11.0, 13.0), (17.0, 14.0),
(16.0, 10.0), (15.0, 14.0), (24.0, 20.0), (40.0, 14.0), (11.0, 6.0), (3.0, 2.0), (55.0, 31.0), (32.0,
23.0), (20.0, 34.0), (28.0, 30.0), (6.0, 6.0), (38.0, 14.0), (25.0, 11.0), (71.0, 27.0), (12.0,
15.0), (22.0, 16.0), (13.0, 5.0), (37.0, 9.0), (47.0, 28.0), (17.0, 11.0), (16.0, 11.0), (12.0, 5.0),
(4.0, 3.0)]

This procedure performs an individual analysis of the particles of a binary image. You can
obviously obtain any measure by using the same programming template and adapting it.

3) The particle areas can be computed by means of the procedure described previously. We
just need to replace the Feret measurement by the area measurement (computeArea).
However, the computation time is proportional to the number of particles in the image. A
faster procedure can be designed with the help of the getHistogram operator. To describe
this procedure, we suppose, in a first approach, that the number of particles in the image is
less than 256. In this case, the area of all the particles can be obtained thanks to the following
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steps (the binary image is loaded in imbin1). We start by labelling the imbin1 image (the
labelled image is stored in im32_1):

>>> nb = label(imbin1, im32_1)

Then, after having verified that nb is less than 256), we extract the lower byte plane (its index
is equal to 0) of im32_1 in the greyscale image im1 with the copyBytePlane function:

>>> copyBytePlane(im32_1, 0, im1)

Now, computing the histogram of the labelled image returns a list of 256 values, the i-th
value (i different of 0) corresponding to the number of pixels of the i-th particle:

>>> histo = getHistogram(im1)
>>> histo
[52322, 906, 313, 71, 76, 34, 216, 312, 259, 42, 68, 155, 3501, 385, 124, 196, 116, 179,
265, 447, 71, 10, 648, 401, 463, 622, 42, 427, 197, 801, 150, 214, 67, 255, 780, 170, 151,
62, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The trailing zero values correspond to grey values which do not exist in the label image (no
more particle available). Finally, if we keep only the values of the list in the range (1, nb+1),
we obtain the list of all the particle areas (measured in number of pixels).
 
>>> areaList = histo[1 : nb+1]
>>> areaList
[906, 313, 71, 76, 34, 216, 312, 259, 42, 68, 155, 3501, 385, 124, 196, 116, 179, 265, 447,
71, 10, 648, 401, 463, 622, 42, 427, 197, 801, 150, 214, 67, 255, 780, 170, 151, 62, 18]

This procedure is obviously much faster than the one extracting each component one by one.
If the number of particles is higher than 255, this approach can still be used provided that the
labelled image is processed in several steps. This more complex procedure, which remains
however faster than the individual approach, is out of the scope of this exercise. A more
detailled description of the complete procedure can be found in [2].
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MAMBA operators. The purpose of this document is also to show that operations which are
often implemented with graphs can be efficiently and rapidly performed directly on images.
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EXERCISES

Exercise n° 1

1) In order to program the following transformations, use the ones (erosions, dilations)
already generated in the MAMBA library (erode, dilate, linearErode, linearDilate):
- opening and closing by a hexagon of size n,
- opening and closing by a segment of size n.
Compare your results of the two first transformations to the MAMBA operators (opening,
closing, linearOpen, linearClose).
2) Define the opening and closing by a doublet of points at distance n with MAMBA.

1 Openings, closings, definitions

1.1 Binary case
Erosion and dilation lead to the definition of two new transformations, the opening γ and the
closing ϕ:

(X) = (X 0 B) / B
(X) = (X / B) 0 B

Note that the first operation is performed with the structuring element B and the second with
the transposed structuring element , otherwise the resulting set would be shifted and theB
opening would not be anti-extensive (extensive for the closing).

1.2 Greytone case 
The opening and the closing are defined similarly:

(f) = (f 0 B) / B
(f) = (f / B) 0 B

1.3 Properties, size distribution
The opening is an increasing and anti-extensive operation. The closing is increasing and
extensive. The two transformations are idempotent.
If λB denotes the homothetic set of a convex set B, the opening is a size distribution. In
particular:

if > , [(X) B ] B = (X) B B = (X) B

[(f) B ] B = (f) B B = (f) B

The opening and the closing are used for size distribution analysis on the one hand, and for
filtering on the other hand. These two kinds of use are illustrated in the exercises.
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3) Verify the properties stated above. Prove in particular the duality by complementation of
opening and closing. Verify also that the opening by a doublet of points is not a size
distribution (openings of small size suppress more points than openings of greater size). 

Exercise n° 2

The purpose of this exercise is to get you used to the behavior of opening and closing. So,
feel free to use the transformations introduced in the previous exercise and apply them to the
provided images (grains1, grains2, particle1, particle2, balls, metal1, metal2, salt, knitting,
muscle). To help you in your quest, here are some guidelines. 

balls                                           metal1                                       metal2

1) Verify the behavior of the opening with convex structuring elements  as a size distribution,
by applying transformations of increasing size to the images grains2, balls, salt, knitting,
muscle.
2) The notion of size distribution (or granulometry) is not related to the notion of particle.
Closings allow to perform (by duality) the size distribution of pores, and thus to reveal the
spatial distribution of the connected components of a set (images particle2, salt, knitting,
muscle).
3) Both opening and closing "sieve" the connected components of a set according to their
size, but also according to their shape. You can observe this by performing hexagonal
openings of increasing size on the image balls. Besides, opening "hexagonalizes" the
remaining connected components. Then, define the opening by a dodecagon and compare it
with the hexagonal opening of same size.
Note this selective effect on a greytone image by performing openings by segments of
increasing size (images circuit and burner).

burnermuscle
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electropnoise

Exercise n° 3

Opening and closing are efficient tools for filtering noise in images. The noise image
represents a set blurred by a scatter plot and the electrop image represents a blurred greytone
image.
1) Open the image with an elementary hexagon. Do the same with closing.
2) Perform the two operations successively. Does the order matter?
3) Can you enhance the filtering? (use triangular or 2x2 square openings and closings).

Exercise n° 4: Generalization of the notion of opening

The notion of opening can be defined in a more general way. An algebraic opening is any
transformation that is:
- increasing
- idempotent
- anti-extensive
The notion of algebraic closing is defined by duality: it is an increasing, idempotent and
extensive transformation.
1) Give some examples of openings and closings.
2) Is the operation consisting in extracting particles with at least one hole an opening (binary
case) ?
3) To obtain new openings or closings, consider a family (γi) of openings or (ϕι.) of closings.
Prove that:

 resp.  is an opening.= sup
i

i = 4
i i

 resp.  is a closing.= inf
i i = 3

i i

SupOpen is the MAMBA operator which performs the supremum of openings by segments
in the directions of the grid and infClose is the corresponding closing. Try them.
4) is the inf of openings an algebraic opening?
5) Observe on the circuit and tools images that the new openings and closings have a
different selective effect compared with those described up to now. 
6) How to compute the area opening of a binary set?

Exercise n° 5

F(λ) denotes the ratio of the opening by a disk of size λ of a set X.
1) Verify that:

G( ) = F(0) − F( )
F(0)
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SOLUTIONS

Exercise n° 1

1)  You can simply obtain an opening (or a closing) by concatenating an erosion and a
dilation of the same sizes. For instance:

>>> erode(imbin1, imbin2, 12)
>>> dilate(imbin2, imbin2, 12)

or (closing of the greyscale image rice):

>>> dilate(im1, im2, 5)
>>> erode(im2, im2, 5)

Top, opening of size 12 of the particle1 image. Bottom, closing of size 5 of the rice image.

Do not forget, however, to transpose your structuring element if it is not isotropic. Otherwise,
the transformation would not be anti-extensive or extensive. Let us illustrate this with an
linear erosion of size 35 in direction 2 (hexagonal grid) followed by a linear dilation in the
same direction applied to the particle1 image:
 
>>> linearErode(imbin1, imbin2, 2, 35)

is always comprised between 0 and 1. Compute it using the area of the opened set and the
area of the eroded field of measurement D' ( ).D∏ = D 0 2 B
2) Program this measurement. Application to the size distribution of the metal1 and metal2
images.
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>>> linearDilate(imbin2, imbin2, 2, 35)

This operator is not anti-extensive. On the contrary, if we use the transposed direction for the
dilation, the anti-extensivity is verified:

>>> linearErode(imbin1, imbin2, 2, 35)
>>> linearDilate(imbin2, imbin2, 5, 35)
   

If non transposed structuring elements are used, the resulting operation is not
anti-extensive: the blue part is the intersection of the initial and final images. If transposed
structuring elements are used (right), the transform (in red) is included in the initial image.

Two operators are available in MAMBA to transpose either a structuring element or a
direction, transpose and transposeDirection:

>>> TRIANGLE
structuringElement([0, 3, 4], mamba.HEXAGONAL)
>>> TRIANGLE.transpose()
structuringElement([0, 1, 6], mamba.HEXAGONAL)
>>> transposeDirection(3, SQUARE)
7

General openings and closings already exist in MAMBA. The operators are named opening
and closing. Linear (the structuring element is a digital segment) openings and closings also
exist: linearOpen and LinearClose.
Another important point with openings and closings concerns the setting of the edge. In both
operators, you can set the edge to FILLED (default) or EMPTY. In any case, this setting has
no effect on the dilation which is always performed with the edge set to EMPTY. The setting
of the edge only affects the erosion. An opening with a FILLED edge can be considered as a
geodesic opening where the geodesic space corresponds to the field D of the image (see
chapter 6 on geodesy for further explanations). When edge is set to EMPTY, be aware that
the result is biased on the edge but it is still an opening (that is an increasing, anti-extensive
and idempotent transform, see exercise 4). In the case of the closing, when edge is set to
EMPTY, the result is not extensive and cannot be considered as an algebraic closing. In
order to cope with this problem, the sup (or union in the binary case) of the result and the
original image is performed. This corrected transform is an algebraic closing. Indeed, this
transform is extensive by construction. It is also an increasing one, being composed of
dilations, erosions and boolean operators whic are increasing. Let us prove that the corrected
closing transform is idempotent.
X is supposed to be included in the mask D . The operation is performed in three(X 3 D = X)
steps:
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- Dilation of X by B and intersection with D (the outside part is lost):
(X / B) 3 D

- Erosion of the result by the transposed structuring element:
[(X / B) 3 D] 0 B

- The initial set is added (union) to the previous result:
[[(X / B) 3 D] 0 B] 4 X = Y

Let us apply the same operation on the resulting set Y:
(Y / B) = [[[(X / B) 3 D] 0 B] 4 X] / B

= [[(X / B) 3 D] 0 B] / B 4 (X / B)
= [(X / B) 3 D]B 4 (X / B)

Then we intersect with D:
(Y / B) 3 D = [(X / B) 3 D]B 3 D 4 [(X / B) 3 D]

The first term is equal to , as  is included in D and its opening by[(X / B) 3 D]B [(X / B) 3 D]
 also. We have:B

(Y / B) 3 D = [(X / B) 3 D]
[(Y / B) 3 D] 0 B = [(X / B) 3 D] 0 B

[[(Y / B) 3 D] 0 B] 4 Y = [[(X / B) 3 D] 0 B] 4 [[[(X / B) 3 D] 0 B] 4 X]
[[(Y / B) 3 D] 0 B] 4 Y = [[(X / B) 3 D] 0 B] 4 X = Y

This operation is idempotent.

Closing without correction, when the edge is set to EMPTY (left). The operator is not
extensive (green part should not exist). Corrected closing (right). 

This correction is included in the MAMBA closing operators (closing and linearClose).
 
2) The opening and closing by a doublet of points are not included in the MAMBA library.
They can be defined as following:

from mamba import *

def doublePointOpen(imIn, imOut, dir, n, grid=DEFAULT_GRID, edge=FILLED):
   """
   Performs an opening by a doublet of points of size 'n' in direction 'dir'.
   'edge' is set to 'FILLED' by default. 
   """
   
   doublePointErode(imIn, imOut, dir, n, edge=edge, grid=grid)
   doublePointDilate(imOut, imOut, transposeDirection(dir, grid=grid), n, grid=grid)

def doublePointClose(imIn, imOut, dir, n, grid=DEFAULT_GRID, edge=FILLED):
   """
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   Performs a closing by a doublet of points of size 'n' in direction 'dir'.
   If 'edge' is set to 'EMPTY', the operation must be modified to remain extensive.
   """
   
   imWrk = imageMb(imIn)
   if edge==EMPTY:
       copy(imIn, imWrk)
   doublePointDilate(imIn, imOut, dir, n, grid=grid)
   doublePointErode(imOut, imOut, transposeDirection(dir, grid=grid), n, edge=edge,
   grid=grid)
   if edge==EMPTY:
       logic(imOut, imWrk, imOut, "sup")
   
3) Duality by complementation of opening and closing. It is possible to write:

(X)B = (X 0 B) / B = (Xc / B)c / B
                   ,  Q.E.D.= ((Xc / B) 0 B)c = (Xc )B c

The opening by a doublet of point is not a size distribution (granulometry). Indeed, if you
perform an opening with a doublet of points at a given distance, then another one with a
doublet at a larger distance, the first operation may remove more points than the second one.
To verify this, load image particle2 in imbin1 then enter the following commands:

>>> doublePointOpen(imbin1, imbin2, 2, 30)
>>> computeVolume(imbin2)
2908L
>>> doublePointOpen(imbin1, imbin2, 2, 45)
>>> computeVolume(imbin2)
4250L

Initial particle2 image (left). Opening by an horizontal doublet of points at distance 30
(middle) and at distance 45 (right).

 
Exercise n° 2

1) Openings by convex homothetics as a size distribution (or granulometry)
The images below illustrate the use of the opening as a size distribution (granulometric)
transformation. Transforms of increasing size act as a sieve, by removing more and more
particles according to their size. Note also that the remaining ones are modified, their initial
shape is not preserved.
Sizes distributions can also been applied on greytone images. The sieving and filtering effect
is clearly visible on the muscle image where increasing openings tend to remove the white
features in the image.
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From top to bottom and from left to right: hexagonal openings of increasing sizes (5 by 5)
of the balls image.

Successive openings of the muscle image show the progressive disappearance of the white
dots.

2) Size distribution by closing
The closing, which is the dual transformation with respect to the opening can be used to
perform the size distribution of the space between particles. Thus, we use a property of the
morphological notion of granulometry, which is to be defined without refering to the concept
of particle (or connected component). Applied on binary images, the closing provides
information on the spatial scattering of the particles by progressively connecting them.
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Successive closings of the metal2 image. The particles are progressively connected and the
clusters are emphasized.

Applied to a greyscale image, the closings filter the dark features (they fill them) and
concatenate the white ones.

Successive hexagonal closings of the knitting image.

3) Influence of the shape on the opening
We already noticed the importance of the shape of the structuring element in the opening and
closing operations. It is particularly obvious in the previous example where successive
hexagonal openings were applied to the balls image. As their size increases, the remaining
particles become more and more hexagon-shaped. To compare openings performed with
hexagons and dodecagons, the dodecagonal opening must be defined. The MAMBA
operator, dodecagonalOpening is designed as such:
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from mamba import *

def dodecagonalOpening(imIn, imOut, n=1, edge=FILLED):
   """
   Performs an opening operation on image 'imIn' with a dodecagon and puts the result in
'imOut'.
   'n' controls the size of the opening.
   The default edge is set to 'FILLED'. Note that the edge setting operates in the
   erosion only.
   """
  
   dodecagonalErode(imIn, imOut, n, edge=edge)
   dodecagonalDilate(imOut, imOut, n, edge=EMPTY)

Hexagonal (middle) and dodecagonal (right) openings of same size of the balls image
(left).

 
Dodecagonal openings are smoother than hexagonal ones.
The shape of the structuring element plays an important role for selecting the appropriate
features in an image. For instance, applying openings by vertical segments of great size on
the circuit image preserves the vertical features whereas the horizontal ones are filtered:

>>> linearOpen(im1, im2, 1, 50, grid=SQUARE)

Opening by a vertical segment of size 50 (right) of the circuit image (left). The vertical
features are more or less preserved, the horizontal ones are filtered.

Exercise n° 3

1) Hexagonal opening and closing
The following images show the result of an hexagonal opening and closing on the image
noise.
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Hexagonal opening (middle) and closing (right) of the noise image (left).

2) Sequence of operations
In a sequence of operations, the order is important, as shown by the two images below.

Left image, hexagonal opening followed by an hexagonal closing. Right image, the order
of operations is reversed.

3) The triangle and 2x2 square structuring elements are already defined in MAMBA. They
are named respectively TRIANGLE and SQUARE2X2.  Triangular openings and closings
are obtained by entering:

>>> opening(imbin1, imbin2, se=TRIANGLE)
>>> closing(imbin2, imbin2, se=TRIANGLE)

or:

>>> closing(imbin1, imbin2, se=TRIANGLE)
>>> opening(imbin2, imbin2, se=TRIANGLE)

for the reverse order.

Left image, triangular opening followed by a triangular closing. Right image, the order of
operations is reversed.
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The hexagonal filtering is stronger than the triangular one. The hexagonal opening always
removes more points than the triangular one. However, its action is more rough. This is why,
with triangular operators, the order of operations still matters, yet to a lesser extent.
In order to enhance filtering, the same operations should be performed with a transposed
triangle.

It is possible to define filters where openings and closings of increasing sizes are alternated.
These filters exist in the MAMBA library. They are named alternateFilter (a simple
alternance opening/closing or closing/opening) and fullAlternateFilter (a sequence made of
simple alternate filters of increasing sizes). Try them on the noise image loaded in imbin1 by
entering:

>>> fullAlternateFilter(imbin1, imbin2, 2, True)
>>> fullAlternateFilter(imbin1, imbin2, 2, False)

The first operation is a full alternate filter of size 2 starting with an hexagonal opening ( the
parameter ‘openFirst’ in the operator is set to True):

2 ) 2 ) 1 ) 1
In the second one, the first operation is a closing:

2 ) 2 ) 1 ) 1

Full alternate filter of size 2: left image, the filter starts with an hexagonal opening, right
image, the filter starts with an hexagonal closing.

Exercise n° 4: Generalization of the notion of opening

1) The operation consisting in filling the holes of a binary image is a closing. The operation
consisting in extracting the particles whose area is greater than N is an opening, called area
opening. Conversely, the operation consisting in extracting the particles whose surface is
smaller than N is not an opening (not increasing). The operation where the particles are
contained in a bounding box larger than a given size (N, N) is an opening (sometimes called
attribute opening).
The truncation of a function at level λ (all that is higher is reduced to value λ) is an opening
(it is even a size distribution).
2) The transformation ψ which selects particles with at least one hole is not an opening,
because the operation is not increasing. Take, for instance, a connected component X that
does not contain a hole and take  equal to the interior contour of X. We have:Y _ X

(X) = — ; (Y) = Y
That is:

(X) _ (Y)
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3) Let us prove that  is an opening. sup
i

i

The transformation is increasing:
Let f < g.

 for γι is an opening (hence increasing)≤i, i(f) [ i(g)
≤i, i(f) [ sup

j
j(g)

 Q.E.D.sup
i

i(f) [ sup
j

j(g)

The transformation is anti-extensive:
≤i, i(f) [ f

therefore  Q.E.D.sup
i

i (f) [ f

The transformation is idempotent:
Let us denote .= sup

i
i

 by definition≤j, (f) m j(f)
≤j, j( (f)) m j( j(f)) = j(f)

for γj is increasing and idempotent.

 a fortiori.≤j, sup
k

k ( (f)) m j(f)

then we have ≤j, ( (f)) m j(f)
then ( (f)) m sup

j
( j(f))

that is: ( (f)) m (f)
hence  since Ψ is anti-extensive. Q.E.D.( (f)) = (f)

By a similar reasoning, we can prove that   is a closing.= inf
i i

These transformations are named respectively supOpen and infClose in the MAMBA
library:

>>> supOpen(im1, im2, 5)

Sup of linear openings of size 5 of the retina2 image. The white dots have been suppressed
but the elongated blood vessels are preserved.

4)  is not an opening! Indeed, the transformation is increasing and anti-extensive but itinf
i i(f)

is not idempotent. This is clearly shown in the following counter-example:
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The inf of 2 openings is not an opening.

The openings γ1 et γ2 of the initial set (left cross) by L1 and L2 respectively are shown on the
right. , intersection of the two openings, is the central square. The opening of thisinf( 1, 2)
square by L1 or L2 is equal to the empty set.

5) The following images show the effect of isotropic closing compared with closing by
intersection of linear closings. The difference between the two is particularly obvious in the
case of elongated objects. The first transformation filters the objects according to their
thickness, and the second is controlled by their elongation: an elongated object is  preserved
even if it is narrow.

>>> closing(im1, im2, 20)
>>> infClose(im1, im2, 20)

Initial image (left), hexagonal closing of size 20 (middle), sup of linear closings of size 20
(right).

6) We have already seen in a previous exercise (exercise n° 4, chapter 3) how to use the label
and getHistogram operators to extract a particle from an image (provided that the image
contains at most 255 particles). Therefore, an easy but slow solution would consist in
extracting each particle and rejecting it if its area is less than N. But a more efficient
approach is possible, based on the use of another MAMBA operator, lookup. To see how it
works, load the metal1 image in imbin1. Then  enter the following commands:

>>> label(imbin1, im32_1)
38
>>> copyBytePlane(im32_1, 0, im1)
>>> histo = getHistogram(im1)
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The binary image is labelled (we verify that it contains less than 256 connected components).
Then the label image is converted into a greyscale (8-bit) one and its histogram is computed
and stored in a list.

>>> histo[0] = 0
>>> area = 300

The first value of the histogram is forced to 0 as it corresponds to the area of the background.
Then a variable ‘area’ is defined and set to 300. This variable contains the cutting value
under which a particle is removed. The next command defines a new list ‘areaThresh’ where
every histogram value (that is every area) is replaced by 0 if it is less than ‘area’ and by 255
if it is larger than or equal to ‘area’ (thanks to the list comprehension in Python, this can be
achieved with a single coding line...):

>>> areaThresh = [255*(x >= area) for x in histo]

You can print these two lists to compare them. Finally, enter:

>>> lookup(im1, im2, areaThresh)

lookup applies the look-up table ‘areaThresh’ to image im1 and stores the new image in im2.
This operator replaces the grey value equal to i by a new value equal to areaThresh[i]. Thus,
the particles with an area less than ‘area’ are replaced by 0 whilst the others are given the
value 255. Extracting the latter particles is achieved by a simple thresholding.

Particles of the metal1 image (left) are removed if their area is less than 300 (right).

This procedure, however, suffers from two drawbacks. Firstly, the lookup needs to be
recalculated when changing the value of ‘area’. Secondly, it does not work properly if the
number of particles is higher than 255. Enhancing it is out of the scope of this exercise all the
more so since the MAMBA library already contains the right operator. It is named
areaLabelling and labels any particle of a set with a value equal to its area. The label image
is obviously stored in a 32-bit image.  Try this operator with the binary_foam image. Define a
binary image of size (640, 480) and a 32-bit image of same size:

>>> imA = imageMb(640, 480, 1)
>>> imB = imageMb(imA, 32)

Then load the binary_foam image in imA and type:

>>> areaLabelling(imA, imB)
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Area labelling of the left image. Each cell is labelled with a value equal to its area.

Exercise n° 5

1) Prove that G(λ) takes its values between 0 and 1.
Given:

G( ) = 1 − F( )
F(0)

G(λ) is monotonous, since the opening is anti-extensive, with G(0) = 0. When , d∞
, .F( ) d 0 G( ) d 1

An estimate of G(λ) is given by:
G( ) = mes(X 3 D ∏ ) − mes(X B 3 D ∏ )

mes(X 3 D ∏ )
or else:

G( ) = mes[X/X B 3 D ∏ ]
mes(X 3 D ∏ ) (D ∏ = D 0 2 B)

Remember that the measure of the ratio of the opened set Xλ is unbiased in the field D eroded
by 2λB, as the opening is made of an erosion followed by a dilation.

2) Computation of G(n)
In a digital space, we have:

G(n) = mes[X/XnB 3 D ∏ ]
mes(X 3 D ∏ )

It may happen that, for high values of n, the denominator be equal to 0. But, as it is also the
case for the numerator, G(n) is equal to 1. So the correct formula is:

 if  G(n) = mes[X/XnB 3 D ∏ ]
mes(X 3 D ∏ ) mes(X 3 D∏ ) ! —

 if notG(n) = 1
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Upper left: The real set X is only known in the field D; lower left; true opening of X by B;
upper right: result of the opening when edge is set to EMPTY; lower right: result of the

opening when edge is set to FILLED.

Firstly, we can define the computation of G(n), named granulometricMeasure:

from mamba import *

def granulometricMeasure(imIn, n):
   """
   Granulometric measure (size distribution measure) of the binary image
   'imIn' after an hexagonal opening of size n.
   This function returns a real value between 0 and 1.
   """
   
   imWrk1 = imageMb(imIn, 1)
   imWrk2 = imageMb(imIn, 1)
   opening(imIn, imWrk1, n)
   diff(imIn, imWrk1, imWrk2)
   imWrk1.fill(1)
   erode(imWrk1, imWrk1, 2*n, edge=EMPTY)
   logic(imWrk2, imWrk1, imWrk2, "inf")
   measure1 = computeVolume(imWrk2)
   logic(imIn, imWrk1, imWrk2, "inf")
   measure2 = computeVolume(imWrk2)
   if measure2 <> 0:
       granulometry = float(measure1)/measure2
   else:
       granulometry = 0
   return granulometry

This operator returns a single measure corresponding to an opening of size n. Then, we can
define the operator, named granulometry, allowing to compute this measure for a given
range of values. This operator returns a list of real values:
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def granulometry(imIn, size):
   """
   Computes the granulometry of binary image 'imIn' in the range (0, 'size' -1) by an
   hexagonal opening.
   """
   
   granuList =[]
   for i in range(size):
       mes = granulometricMeasure(imIn, i)
       granuList.append(mes)
   return granuList    
  
You can test this measure on the metal1 image, loaded in imbin1:

>>> metal1 = granulometry(imbin1, 20)

The result is stored in the metal1 list. Then, load the metal2 image and type:

>>> metal2 = granulometry(imbin1, 20)

to obtain the result in the metal2 list.

Size distributions (hexagonal openings) of the metal1 and metal2 images. 

The two curves can be plotted:

>>> import matplotlib.pyplot as plt
>>> size = range(20)
>>> err = plt.xlabel("Size of opening")
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>>> err = plt.ylabel("Cumulative ratio")
>>> err = plt.title("Size distributions")
>>> err = plt.plot(size, metal1, label="metal1 image", color="blue")
>>> err = plt.plot(size, metal2, label="metal2 image", color="red")
>>> err = plt.legend(loc="lower right")
>>> err =plt.show()

REFERENCES

[1] J.Serra: Courses on Mathematical Morphology, Opening, Closing
(http://cmm.ensmp.fr/~serra/cours/pdf/en/ch3en.pdf)
This course gives a general presentation of the concepts of opening and closing. It is advised,
before reading this chapter, to have a look on the previous ones (basic notions, erosion,
dilation) also available at http://cmm.ensmp.fr/~serra/acours.htm to get familiar with the
notations and the needed notions and concepts.
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2 Contrasts, Reminder

Let η be an anti-extensive transformation and ξ an extensive transformation of a function f. A
three-state contrast of primitives η and ξ is any transformation κ such that, for any f:
(i) κ(f)(x) only depends on ξ(f)(x), η(f)(x) and f(x) and on possible constants.
(ii) κ(f)(x) can only take one of these three values (the choice depending on a decision rule).
Besides, if κ(f)(x) cannot take the value f(x), the contrast is said to be a two-state contrast.

1 Reminder 

Before we can extract any object from a greytone image, it is often necessary to enhance the
image. The enhancement of an image is mainly obtained by a filtering operation. A
morphological filter is a transformation φ which fulfils the two following properties:

(i) φ is increasing
(ii) φ is idempotent.

1.1 Sequential alternate filter
The white (resp. black)  alternate sequential filter (ASF) consists, as the name indicates, in
alternating morphological openings and closings (resp. closings and openings) of increasing
size. Let γn be a size distribution and ϕn an anti-size distribution, the white alternate
sequential filter of size n of a function f is defined by:

n(f) = n n n−1 n−1... 2 2 1 1(f)
Similarly, the black alternating sequential filter of size n of f is defined by:

n(f) = n n n−1 n−1... 2 2 1 1(f)

1.2 Morphological center
1.2.1 Definition

Let (Ψi ) be a family of increasing transformations. Put:
 et = . i = - i

The center c of the family (Ψi ) is:
c = (I - ) .

(I represents the identity function).
The center is not a filter (it is not idempotent), but it is convergent when iterated and its limit
is a filter.

1.2.2 Examples
1. for (Ψi ) = (γϕ, ϕγ) :

c(f) = [f - ( (f) . (f))] . ( (f) - (f))
2. for (Ψi ) = (γϕγ, ϕγϕ) :

c(f) = [f - ( (f) . (f))] . ( (f) - (f))
This center is also called an automedian filter (its limit being a filter).

Chapter 5

MORPHOLOGICAL FILTERS

Chapter 5

73



EXERCISES

Exercise n° 1

1) You have already used alternate sequential filters (chapter 4, exercise n° 3) on the noise
image by means of hexagonal and triangular openings and closings.
Continue this exercise:
- by increasing the number of iterations (size of the filter) with hexagonal and triangular
structuring elements.
- by using different size intervals for the openings and closings (alternate filters with sizes
increasing by steps larger than 1), with hexagonal and dodecagonal structuring elements.
2) Test the sequential alternating filters on greytone images by using the various openings
and closings described up to now (hexagonal, dodecagonal, triangular, by sup of linear
openings).
You can use the retina3, burner and electrop images (but also any image of your choice).

retina3

Exercise n° 2

Let κ be the contrast of primitives ξ and η and its decision rule the following:
 if ξ(f)(x) - f(x) ≤ f(x) - η(f)(x):

κ(f)(x) = ξ(f)(x)
                                                    if not:

κ(f)(x) = η(f)(x)
1) How many states is the contrast κ?

chromosomes
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SOLUTIONS

Exercise n° 1

1) Use the already known operators alternateFilter and fullAlternateFilter. By increasing
the size of the alternating sequential filter, details, either white or black, of increasing size
gradually disappear. The main objects and shapes are preserved while the contours are
smoothed.

White (start with an opening) alternate filters of noise image with hexagons of size 1 (left),
3 (middle) and 4 (right).

2) Program κ:
a) for η = hexagonal erosion of size n and ξ = hexagonal dilation of size n.
b) for η = morphological hexagonal opening of size n and ξ = morphological hexagonal
closing of size n.
c) for η = hexagonal opening of size n and ξ = hexagonal closing of size 5*n.
Apply these transformations to the chromosomes image.
3) Verify that the contrast defined in 2-a is not idempotent and that the one defined in 2-b is
idempotent.

Exercise n° 3

Let κ be a transformation defined by:
κ(f) = 3f - γ(f) -ϕ(f)

(γ is an opening, ϕ is a closing).
1) Is κ a contrast in the sense given above?
2) Program κ and apply it to the chromosomes image.

Exercise n° 4

1) Apply the automedian filter (which is not a filter according to the definition given above)
defined with the doublet (ϕγ, γϕ) to the retina3 image.
2) program with MAMBA the automedian filter defined with the triplet (ϕγϕ, γϕγ).
3) See how many iterations of this last filter are required to reach idempotence with burner,
retina2 and retina3 images.
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Black (start with a closing) alternate filters of noise image with hexagons of size 1 (left), 3
(middle) and 4 (right).

By using different sizes for openings and closings, the white pixels prevail over the black or
vice-versa as the case may be.
If we use triangular structuring elements, the choice of an opening or a closing as first
operator is less important: triangular filters are weaker than hexagonal ones, so the first step
of the alternate filter is very similar in both cases.

Full alternate sequential filter of size 4 of the noise image with a triangular structuring
element, starting with an opening (left) and a closing (right).

The operator largeHexagonalAlternateFilter allows to perform alternate filters with size
intervals larger than 1. Entering this line:

>>> largeHexagonalAlternateFilter(imbin1, imbin2, 1, 6, 2, False)

applies the following filter to image imbin1: 
 

5 ) 5 ) 3 ) 3 ) 1 ) 1

 and  being hexagonal openings and closings. The successive steps are 1, 3 (1 +2) and 5i i
(3 + 2).

In the same way, the command:

>>> largeHexagonalAlternateFilter(imbin1, imbin2, 1, 8, 3, False)

performs the following filter:
7 ) 7 ) 4 ) 4 ) 1 ) 1
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Alternate filters starting by a closing of size 1 with a step equal to 2 (left) or to 3 (right).

You can also use dodecagonal structuring elements (but also octogonal ones). Try the
largeDodecagonalAlternateFilter:

>>> largeDodecagonalAlternateFilter(imbin1, imbin2, 1, 6, 2, False)
>>> largeDodecagonalAlternateFilter(imbin1, imbin2, 1, 8, 3, False)

Alternate filters with dodecagons starting by a closing of size 1 with a step equal to 2 (left)
or to 3 (right).

2) Alternate sequential filters with various types of openings and closings:
(a) opening and closing by hexagons, triangles and dodecagons
The alternateFilter and fullAlternateFilter already used with binary images can be applied
on greytone images. Load the retina3 image in im1 and enter:

>>> alternateFilter(im1, im2, 1, True)
>>> alternateFilter(im1, im2, 1, False)

Hexagonal alternate filters of size 1 applied on retina3 image (left), starting with an
opening (middle) and a closing (right).

You can try also the alternate filters with triangles:
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>>> alternateFilter(im1, im2, 3, True, se=TRIANGLE)
>>> alternateFilter(im1, im2, 3, False, se=TRIANGLE)

Triangular alternate filters of size 3 applied on retina3 image, starting with an opening
(left) and a closing (right).

Dodecagonal filters can also be applied. Load the electrop image in im1 and enter these
commands:

>>> largeDodecagonalAlternateFilter(im1, im2, 1, 5, 1, True)
>>> largeDodecagonalAlternateFilter(im1, im2, 1, 5, 1, False)

Full dodecagonal alternate filter of size 4 of the electrop image (left), starting with an
opening (middle) and with a closing (right).

Note that all the filters using large structuring elements (largeHexagonalAlternateFilter,
largeDodecagonalAlternateFilter, largeSquareAlternateFilter, etc.) are meant to reduce
the computation time for large sizes (larger than 10). They are not optimised for small filter
sizes.

(b) sup-opening of linear openings and inf-closing of linear closings
A sequential alternate filter using the sup of linear openings of the inf of linear closings
already exists in MAMBA. It is named linearAlternateFilter. This filter can be used either
with the hexagonal or square grids. Apply it on the retina3 image loaded in im1:

>>> linearAlternateFilter(im1, im2, 4, True)
>>> linearAlternateFilter(im1, im2, 4, False, grid=SQUARE)

The first filter is applied on an hexagonal grid (three directions are used), the second one on a
square grid (four directions used).

Chapter 5

78



Linear filters applied on retina3 image (left): size 5 filter applied on the hexagonal grid
and starting with a sup of openings (middle), filter of same size applied on the square grid

and starting with an inf of closings (left).

Exercise n° 2

1) κ is a two-state contrast (obvious).
2) Programming κ
The operator contrast defined below uses one of the three combinations of transformations
according to the value of the parameter type:

from mamba import *

def contrast(imIn, imOut, size, type):
   """
   Contrast operators applied on image 'imIn'. The result is in 'imOut'. The size
   of the operators is given by 'size'.
   'type' allows to select the type of operators:
   'type' < 1, the two contrast operators are erosion and dilation of size 'size'.
   'type' = 1, the two operators are opening and closing of size 'size'.
   'type' > 1, the first operator is an opening of size 'size', the second one
   is a closing of size 5*size.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   if type > 0:
       opening(imIn, imWrk1, size)
       size1 = size
       if type > 1:
           size1 = size * 5
       closing(imIn, imWrk2, size1)
   else:
       erode(imIn, imWrk1, size)
       dilate(imIn, imWrk2, size)
   sub(imIn, imWrk1, imWrk3)
   sub(imWrk2, imIn, imWrk4)
   generateSupMask(imWrk4, imWrk3, imMask, False)
   convertByMask(imMask, imOut, 0, computeMaxRange(imIn)[1])
   logic(imWrk1, imOut, imOut, "inf")
   negate(imMask, imMask)
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   convertByMask(imMask, imWrk4, 0, computeMaxRange(imIn)[1])
   logic(imWrk2, imWrk4, imWrk4, "inf")
   logic(imWrk4, imOut, imOut, "sup")

Contrast operators applied on the chromosomes image (upper left): dilation/erosion
contrast of size 1 (upper right), opening/closing contrast of size 6 (lower left), non

symmetric opening/closing contrast of size 5 (lower right).

3) In order to validate or invalidate the idempotence of the different contrasts defined above,
enter the following commands:

>>> contrast(im1, im2, 1, 0)
>>> contrast(im2, im3, 1, 0)
>>> compare(im2, im3, im4)
(4, 0)

The contrast defined with erosion/dilation is not idempotent (the comparison returns the
coordinates of the first different pixels).
On the contrary, enter:

>>> contrast(im1, im2, 1, 1)
>>> contrast(im2, im3, 1, 1)
>>> compare(im2, im3, im4)
(-1, -1)

In the case of a contrast by opening/closing, the operation seems to be idempotent (no
modification of the result at the second iteration). This test, however, is not a proof of
idempotence. So, let us prove the idempotence.

This contrast is defined by:
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(f) = (f) if (f) − f [ f − (f)
(f) = (f) if not

γ and ϕ being respectively an opening and a closing.
Let us calculate  with . f’ can be equal to γ(f) or to ϕ(f).) (f) = (f∏ ) f∏ = (f)
We firstly consider the points of the image f where f’ is equal to ϕ(f). In this case, we have:

, as ϕ is idempotent.(f∏ ) − f∏ = (f) − (f) = 0
, as γ is anti-extensive.f∏ − (f∏ ) = (f) − (f) m 0

Therefore:
(f∏ ) − f∏ [ f∏ − (f∏ )

So:
) (f) = (f∏ ) = (f∏ ) = (f) = (f) = (f)

We consider now the points of the image where f’ is equal to γ(f). We have then:
, as ϕ is extensive.(f∏ ) − f∏ = (f) − (f) m 0

, as γ is idempotent.f∏ − (f∏ ) = (f) − (f) = 0
Then:

f∏ − (f∏ ) [ (f∏ ) − f∏
This large inegality can be split into two cases. Suppose that:

f∏ − (f∏ ) = (f∏ ) − f∏
Then:

, hence  f∏ − (f∏ ) = (f) − (f) = 0 = (f∏ ) − f∏ (f∏ ) = f∏
By definition, we have:

(f∏ ) = (f∏ )
So:

(f∏ ) = ) (f) = (f∏ ) = f∏ = (f) = (f)
Suppose now that:

(strict inequality)f∏ − (f∏ ) < (f∏ ) − f∏
Then:

(f∏ ) = (f∏ ) = (f) = (f) = (f)
We have finally:

) (f) = (f)
at any point of the image. κ is idempotent.

Exercise n° 3

1) κ may be written in a simpler way by remarking that:
(f) = 3f − (f) − (f) = f + (f − (f)) − ( (f) − f)

The transform  is called white top-hat transform. The transform  is called blackf − (f) (f) − f
top-hat transform. These two transforms belong to a class of operators named residues (see
chapter 7). The first transform allows to extract white and narrow features from the image
whilst the second one extracts black and narrow features. These two transforms exist in the
MAMBA library. They are named whiteTopHat and blackTopHat. As explained in the
graphic below, the κ operator acts as a contrast enhancer. The white and narrow features are
lightened and the black and narrow features are darkened. 
If, for all f, we define η(f) and ξ(f) as:

(f) = min(f, f + (f − (f)) − ( (f) − f))
(f) = max(f, f + (f − (f)) − ( (f) − f))

We have,  :≤f
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(f) [ f and (f) m f
Then η is anti-extensive and ξ extensive.
Therefore κ can be written as a contrast defined by:

(f)(x) = (f)(x) if (f)(x) < f(x)
 otherwise.(f)(x) = (f)(x)

Initial image (upper left), extraction of white features with the white top-hat (upper right),
extraction of black features with a black top-hat (lower right), contrast enhancement

obtained with the contrast operator (lower left). 

Contrast by top-hat: left, original chromosomes image, (right) transform of size 4.

2) The corresponding operator, named contrastByTopHat is not included in the library. It
can be defined as following (with an hexagonal structuring element):

from mamba import *

def contrastByTopHat(imIn, imOut, size):
   """
   Contrast by top-hat of size 'size' of 'imIn', result in 'imOut'.
   The final image can be identical to the initial one.
   For greyscale images, the arithmetic operations are truncated.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imWrk1)
   whiteTopHat(imIn, imWrk2, size)
   add(imIn, imWrk2, imOut)
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   blackTopHat(imWrk1, imWrk2, size)
   sub(imOut, imWrk2, imOut)
   
Exercise n° 4

1) The automedian filter defined by:
c(f) = [f - ( (f) . (f))] . ( (f) - (f))

is already included in the MAMBA library. It is named autoMedian. Try it with the
following command (hexagonal structuring element), applied on the retina3 image:

>>> autoMedian(im1, im2, 5)

Automedian with an hexagon of size 5 of the retina3 image (left).

2) The automedian filter defined by:
(f) = [f - ( (f) . (f))] . ( (f) - (f))

can be defined with the following MAMBA procedure, named autoMedian2:

from mamba import *

def autoMedian2(imIn, imOut, n):
   """
   Morphological automedian filter performed with an alternance
   closing/opening/closing and opening/closing/opening.
   """
   
   oco_im = imageMb(imIn)
   coc_im = imageMb(imIn)
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   alternateFilter(imIn, oco_im, n, True)
   opening(oco_im, oco_im, n)
   alternateFilter(imIn, coc_im, n, False)
   closing(coc_im, coc_im, n)
   copy(coc_im, imWrk1)
   logic(oco_im, imWrk1, imWrk1, "sup")
   copy(coc_im, imWrk2)
   logic(oco_im, imWrk2, imWrk2, "inf")
   copy(imIn, imOut)
   logic(imOut, imWrk2, imOut, "sup")
   logic(imOut, imWrk1, imOut, "inf")
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3) In order to compare images, let us define an image comparator named compareImages.
This operator returns the number of modified pixels in the two images:

def compareImages(imIn1, imIn2):
   """
   Compares the two images 'imIn1' and 'imIn2' and returns the number of
   modified pixels between them.
   """
   
   imWrk1 = imageMb(imIn1, 1)
   imWrk2 = imageMb(imIn2, 1)
   generateSupMask(imIn1, imIn2, imWrk1, True)
   generateSupMask(imIn2, imIn1, imWrk2, True)
   logic(imWrk1, imWrk2, imWrk1, "sup")
   pixdiff = computeVolume(imWrk1)
   return pixdiff
   
Then, with burner loaded in the im1 image, enter:

>>> autoMedian2(im1, im2, 1)
>>> compareImages(im1, im2)
23892L
>>> autoMedian2(im2, im1, 1)
>>> compareImages(im1, im2)
6441L

Each step returns the number of modified pixels. Iterate the process until you reach
idempotence. Do the same with the retina2 and retina3 images. The following table indicates
the number of modified pixels at each iteration for each image.

00012
03011
11010
6409
301288
10231147
21850546
4221662375

1 0815175644
2 5031 6212 0343
6 7155 9286 4412
21 15924 05123 8921
retina3retina2burner

REFERENCES

[1] J.Serra: Courses on Mathematical Morphology, Morphological Filtering
(http://cmm.ensmp.fr/~serra/cours/pdf/en/ch4en.pdf)
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This course is devoted to the morphological filtering: concepts, main properties, derived
notions, etc.
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1 Reminder, binary case

Given a set X, the geodesic distance between two points x and y of X is defined as the length
of the shortest path L(x,y) included in X and joining these two points. We can now define
balls of size λ in this metrics, and then the erosion and dilation of a set Y included in X by a
geodesic ball B .
When one works on digitized sets, it can be shown that the elementary geodesic dilation is
defined by:

DX(Y) = (Y / H) 3 X
Similarly, the elementary geodesic erosion is defined by:

EX(Y) = X 3 [(Y 4 Xc ) 0 H]
H being an elementary digital ball (hexagon or square).

2 Greytone case

In the greytone case, the geodesic space under consideration may be either a set X or a
function g (the latter case is the immediate generalization of the binary notion applied to
sub-graphs). On digitized sets, the following definitions apply:
The geodesic dilation of f into the set X by an elementary hexagon centered in O is defined at
any point x by:

 DX(f)(x) = sup
b c H

x +
→ ⎯ 
Ob c X

f x +
→ ⎯ 
Ob = sup f(x); x c Hx 3 X

Likewise the erosion:
EX(f)(x) = inf

b c H

x +
→ ⎯ 
Ob c X

f x +
→ ⎯ 
Ob = inf f(x); x c Hx 3 X

The geodesic dilation of f under the function g by an elementary hexagon is defined by:
Dg(f) = inf(f / H, g)

Likewise the erosion of f over g:
Eg(f) = sup(f 0 H, g)

NB : Note that the duality is different from the one defined in the binary case. The duality
used in the binary caseis the duality based on the complementation inside the geodesic space
X. In the greytone case, the duality is defined with the image inversion (or negation): we
simply replace f by m-f (where m=255 for 8-bit images and 232 -1 for 32-bit images).
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EXERCISES

Exercise n° 1: Geodesic reconstructions

The build, dualBuild, hierarBuild, hierarDualBuild operators, which implement
reconstructions of a function f with a function g as marker are already efficiently installed
(with different algorithms) in MAMBA.
1) Let X be a set composed of several connected components {Xi}. A set Y included in X
marks one or several connected components of  X. Reconstruct the connected components of
X marked  by Y (these connected components consist of points x of X which are at a finite
geodesic distance d(x,Y) from Y). Use the binary alumine image as mask and a sufficiently
large erosion as marker. 

alumine

2) Test this reconstruction on the tools image by using as a marker an image entirely set to 0
except at a point (selected preferably at the location of an object) where the value is set to
255.

retina1tools

3 Geodesic reconstructions

Geodesic reconstructions are efficient tools for filtering, segmentation and so on. The
geodesic reconstruction is defined as the limit of iterated geodesic dilations:

RX(Y) = limnd∞ DX(Y)n

Rg(f) = limnd∞ Dg(f)n

The dual reconstruction is defined as the infinite iteration of geodesic erosions:
  ;    RX

& (Y) = limnd∞ EX(Y)n Rg
&(f) = limnd∞ Eg(f)
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3) Do the same operation on the retina1 image, by placing the point on the blood lattice.
Compare the speed of the different reconstructions of the blood vessels.

Exercise n° 2: Opening by erosion - reconstruction

1) Prove that the geodesic reconstruction of f (resp. X) by its erosion by the size n structuring
element B is an opening (the center of the structuring element B must be a point of B).
2) Use the corresponding MAMBA operator, named buildOpen, as well as the dual closing,
buildClose and compare them, on the retina1, retina2 and cat images, to the classical
opening and closing.

Exercise n° 3: Revisiting the individual analysis of particles

The individual analysis of particles has already been introduced in previous exercises (see
exercise n°4, chapter 3 and exercise n°4, chapter 4). This technique consists in extracting
each connected component of a set in order to perform some measure on it. The MAMBA
label operator gives an efficient and fast way to achieve this extraction. It is also possible to
to label each particle with the measured value as it is illustrated with the areaLabelling
operator.
1) Verify that the transformation  defined in this way:(X)

, Xi  connected component of XX = 4
i=1

n
Xi

 such that (X) = 4Xj mes(Xj ) >
is a size distribution.
2) There exists another operator in the MAMBA library, named measureLabelling, which
allows to label every connected component of an image with a value equal to the number of
pixels of the second image which are contained in the connected component.
Design a procedure to label every particle of a binary image with its vertical diameter. Apply
it to the eutectic image.
3) Consider a binary image X and a greyscale (8-bit) one. Can you design an algorithm for
labelling any connected component of X with the maximum value taken by f inside his
connected component, that is obtaining a function g such that:

g(x) = max
ycXi

f(y) for every x c Xi

g(x) = 0 elsewhere
Do the same with the minimum value. Try these transforms with the binary tesselation image
and the greyscale road1 image.

Exercise n° 4: Holes filling, objects cutting edges

1) Apply the geodesic reconstruction algorithm for suppressing the particles of a set X
touching the edges of the field. What can be in particular the marking set Y? Application to
the grains2 image.
2) How can you fill the holes in the particles? Design an algorithm and test it on the holes
and gruyere images.
3) On a greytone image, a hole may correspond to what is called a basin if the image is
considered as a topographic surface. We can then imagine to fill up these holes, as would do
rain water, the exceeding water spilling outside the  limits of the image. Similarly to the
binary case, design an algorithm for filling the holes on a greytone image and apply it to the
circuit and tools images.
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4) Can you find a way to eliminate the inclusions in the alumine image?

alumine

Exercise n° 5: Regional maxima and minima

Let p0 ,...,pn  be the points of the image E. V(pi ) is the value of the image in pi. p0 p1 ...pn  is
called a path if, ∀i, pi+1  and pi are neighbors. p0 ...pn is said to be strictly ascending if, ∀i,
V(pi+1) ≥ V(pi ) and V(p0 ) < V(pn ). p0 ...pn is said to be strictly descending if,  V(pi+1 ) ≤ V(pi

) and V(p0 ) > V(pn ).
A connected set X of the image E is a regional maximum if there exists no strictly ascending
path coming from X:

 is not strictly ascending.≤x c X,≤(pi ) ic…1...N  c E, xp0...pN
1) Find an algorithm allowing to determine the regional maxima using the successive
sections of the image and the binary reconstruction.
2) In practice, the level by level approach is not used. The following one is faster: 1 is
subtracted from the image and the resulting image is reconstructed from the initial image.
The regional maxima are located where the resulting image differs from the initial image.
The dual algorithm generates the regional minima. These transformations exist in MAMBA
and are named maxima and minima. Apply the minima operator to the electrop image.
What do you observe? How can you explain this? Can you propose any enhancement?
3) The algorithmic method above allows to generalize the notions of regional minima and
maxima. A point of the graph of a function belongs to a h-maximum if the height of any non
descending path starting from this point is strictly less than h. The h-maxima are obtained by
subtracting h from the initial image. The h-maxima are located where the resulting image
differs from the initial image. The dual algorithm generates the h-minima. These h-maxima
and h-minima are obtained with the same MAMBA operators by just changing the value of
the height or depth parameters. Apply the minima operator with increasing depths to the
filtered electrop image. Can you interpret the results, in particular when depths increase?

electrop
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4) Two other operators are also available in the MAMBA library: highMaxima
(deepMinima) and maxDynamics (minDynamics).
Try the deepMinima operator on the filtered electrop image (with the same parameters).
What difference can you notice compared to the previous results obtained with the extended
minima operator?
Try the minDynamics operator and interpret the results.

Exercise n° 6

This exercise shows how a very simple transformation (opening here) combined with
geodesic reconstructions can solve a problem of detection and counting of the teeth of a
notched wheel when it is associated to a preliminary selection of the zone where these teeth
should be.
Use image wheel to extract and count its teeth.

wheel

Exercise n° 7: Analysis of the distribution of boron fibers

This exercise illustrates the judicious use of measures for solving a problem of quality
control.

boron2boron1

The boron1 and boron2 images represent boron fibers in a composite material. These fibers
reinforce the mechanical resistance of the material. The resistance increases in proportion of
the regularity of the fibers layout. Therefore, during industrial production, they are as far as
possible placed according to a regular hexagonal network. However, irregularities occur.
The problem consists in quantifying these irregularities by means of an appropriate
measurement. The images provided in the exercise are already thresholded (binary images).
1) Simplify the images in filling up the fibers (this is not easy at all!). The fibers that cut the
edge of the image field  are also to be filled.
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2) Perform hexagonal closings of increasing size and observe the result. Propose an
elementary measure to quantify the connections between the fibers. 
3) Compute the theoretical value of the specific connectivity number according to the size of
the closing, in the case of a regular distribution. Derive a quantifier of the irregularity of the
structure. Program it and apply it to the two example images.

Exercise n° 8: Size distribution of a greytone image

When a size distribution transformation is applied to a binary image, the computed size
distribution curve (see chapter 4, exercise 5) may be considered as a texture index
characterizing the size of the particles (case of the opening by a disk), the size of the pores
separating the particles (closing by a disk) or else the main directions of the image (use of  
linear structuring elements).
A particularity of the morphological notion of size distribution is that it can be applied to non
distinctive structures. The value which is then taken into account is, for example, the
subtracted or added area for each operation of increasing size. The size distribution is then
said to be “in measure” and is opposed to the size distribution “in number” which only
applies to isolated particles.
The greytone size distribution is also an "in measure" size distribution but here, the measure
more often bears on volumes than on areas. The size distribution curve will also be
considered as a texture index but this time it characterizes a relief: shape, size, height of the
volume structures contained in the sub-graph of the image.
We will try to use a greytone size distribution in order to characterize the presence of nodules
(small white domes) on lung radiographs.
Let us recall the properties to be satisfied by a size distribution transformation.
Let X be the initial set (the sub-graph of an image in our case). Let Ψ be the sieving
transformation applied to this set. We denote Ψl(X) the part of X which has been retained by
the sieve of size 1. If Ψ fulfills the three following rules, it may be considered as a
transformation with good size distribution qualities:
1. The operation must be anti-extensive, in other words the part retained by the sieve must be
a sub-set of X.
2. The operation must be increasing.
3. The operation must satisfy the following size criterion:

l1 ( l2 (X)) = l2 ( l1 (X)) = sup(l1,l2 )(X) ≤l1, l2 > 0
We know that the opening satisfies the three properties.

lung2lung1

The images to be studied are lung1 and lung2. lung1 represents a sound lung, lung2 a lung
with a nodular texture. The nodules are small white dots distributed on the whole image.
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SOLUTIONS

Exercise n° 1: Geodesic reconstructions

1) Load the alumine image in imbin1 and type:

>>> erode(imbin1, imbin2, 20)
>>> build(imbin1, imbin2)

Note that, with binary images, the build operator must be used (the hierarBuild operator does
not work with binary images). The marker image is replaced by the reconstructed image
(here in imbin2). Note also that the marker is automatically intersected with the mask before
the operation to force it to be included in the mask.

Geodesic reconstruction (in yellow) of the alumine image by a marker set (in red) obtained
by a size 20 erosion of the initial image.

2) Greytone reconstruction
Load the tools image in im1, and enter the following commands (the first line insures that
im2 is empty):

>>> im2.reset()
>>> im2.setPixel(255, (115, 140))
>>> hierarBuild(im1, im2)

1) Which kind of greytone transformation satisfying size distribution rules would allow to
reveal the difference in texture between the two lung images?
- Program a size distribution function from this transformation.
- Does it effectively differentiate the two images?
- What do we learn from the position of the maximum of the size distribution curve? 
- And from the range of this maximum?
2) What can be the use of a greytone opening by reconstruction? Program the size
distribution based on openings by reconstruction and try to explain the differences between
the two types of size distribution curves.
3) Indicate the third type of opening that can be used as a basic size distribution function to
analyze these images? Why is the range of this curve much lower than the preceding?
4) Is it possible to apply a size distribution in number to a greytone image?
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The result is comparable to the binary reconstruction, only the marked object is
reconstructed. Remark also that, if the marker image is higher than the mask image (it is the
case here), it is automatically intersected with the mask image by the hierarBuild (or build)
transform. In the cas of a dual reconstruction, an union (or sup) is performed.

Initial tools image with the marker point in green (left image). Result of the geodesic
reconstruction: the marked razor blade stands out against the background (right image).

The retina1 image and the marker (in red) in the vessels (left), result of the geodesic
reconstruction (right).

2) The same effect can be observed on the retina1 image (loaded in im1):

>>> im2.reset()
>>> im2.setPixel(255, (210, 145))
>>> hierarBuild(im1, im2)

View of the macula in the retina1 image (left), result of the geodesic reconstruction (right),
the aneurisms are removed.

We notice that the white spots situated at the center of the image (a region called macula) are
not reconstructed. Indeed, they are not connected to the vascular network. Remember that “x
and y are connected” means: there exists a downward path joining a point x of the marker to
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a point y of the mask. The non reconstructed white dots correspond to aneurisms in the retina,
a quite serious pathology of the eye fundus.

Exercise n° 2: Opening by erosion - reconstruction

1) Let us prove that the opening by erosion-reconstruction is an opening. 
Denote .0(X) = X 0 nH, m(X) = ( m−1(X) / H) 3 X
Ψm corresponds to the mth step of the geodesic dilation performed from the initial eroded set.
Ψ designates the limit of Ψm  when , that is the opening by erosion-reconstruction.m d ∞
Ψ is increasing:
Let .Y _ X
  since the erosion is increasing.Y 0 nH _ X 0 nH

 since the dilation is increasing.(Y 0 nH) / H _ (X 0 nH) / H
 since .((Y 0 nH) / H) 3 Y _ ((Y 0 nH) / H) 3 X _ ((X 0 nH) / H) 3 X Y _ X

Then . By iteration, . If Ψ(X) designates the limit of this1(Y) _ 1(X) m(Y) _ m(X)
iteration when , we have .m d ∞ (Y) _ (X)
Ψ is anti-extensive:
Obvious (each step of the geodesic dilation is included in X).
Ψ is idempotent:
Let us prove that .(X) 0 nH = X 0 nH
We have , since Ψ is anti-extensive and the erosion is increasing(X) 0 nH _ X 0 nH
Let us show that .X 0 nH _ (X) 0 nH
For this, let us prove first that . As the origin of the≤m∏ < m, m∏(X) _ m(X) _ (X)
structuring element H is inside H, the dilation is extensive. Then:
 . When , we have .≤m∏ < m, m∏(X) _ m∏+1(X) _ m(X) m d ∞ m(X) _ (X)
Let us verify now that  .≤m [ n, m(X) = (X 0 nH) / mH
Let us consider the case where  . We have:m [ n
(X 0 nH) / mH _ (X 0 nH) / nH _ X
By successive iterations, we can write:

0(X) = X 0 nH
1(X) = ( 0(X) / H) 3 X = ((X 0 nH) / H) 3 X =((X 0 nH) / H)
2(X) = ( 1(X) / H) 3 X = ((X 0 nH) / 2H) 3 X =((X 0 nH) / 2H)

§
m(X) = ( m−1(X) / H) 3 X = ((X 0 nH) / mH) 3 X =((X 0 nH) / mH)

Finally, let us prove that  .((X 0 nH) / nH) 0 nH = X 0 nH
  because the opening is anti-extensive.((X 0 nH) / nH) 0 nH _ X 0 nH
.  because the closing is extensive (an erosion is always a((X 0 nH) / nH) 0 nH q X 0 nH
closing).
When m = n, we have then:

n(X) 0 nH = ((X 0 nH) / nH) 0 nH = X 0 nH
Now consider the case where m > n. We have , then:n(X) _ m(X)

.n(X) 0 nH _ m(X) 0 nH and n(X) 0 nH = X 0 nH
Then, .≤m > n, X 0 nH _ m(X) 0 nH
When , we have .m d ∞ X 0 nH _ (X) 0 nH
Therefore .X 0 nH = (X) 0 nH
Finally, performing   starts with an erosion of  by nH followed by an iteration( (X)) (X)
of geodesic dilations. But, as , we have , Q.E.D. (X) 0 nH = X 0 H ( (X)) = (X)
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2) Test opening and buildOpen, the two operators available in the MAMBA library. As you
may notice, the classical opening is always coarser (it removes more features) than the
openBuild operator. 
 

From left to right: original image, hexagonal opening and erosion-reconstruction opening
of same size. Top image (retina1), the size is equal to 2. Middle image (cat), the size is

equal to 5. Bottom image (retina2): the size is equal to 3.

You can also compare the closing and buildClose operators, for example on the burner
image.

burner image (left), hexagonal closing of size 8 (middle), dilation-dual reconstruction
closing of same size (right).
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Exercise n° 3: Revisiting the individual analysis of particles

1) Ψλ(X) is a size distribution (granulometry):
- It is idempotent: indeed, keep of a set only the connected components whose surface is
higher than λ, then repeat the operation with the new set, the result remains unchanged.
- When  (obvious).m , (X) _ (X)
- Finally: .(X) = [ (X)] = sup( , )(X)

2) The vertical diameter is equal (up to a scale factor which will be supposed set to 1) to the
number of intercepts of the connected component in the horizontal direction (configuration
01). These intercepts can be obtained by the set difference between the initial image and its
linear horizontal elementary erosion. The intercept set can then be used to label the initial
particles by means of the measureLabelling operator:

>>> linearErode(imbin1, imbin2, 2, edge=EMPTY)
>>> diff(imbin1, imbin2, imbin2)
>>> measureLabelling(imbin1, imbin2, im32_1)

Note that the depth of the labelled image is 32-bit.
 

eutectic image (left), its horizontal intercepts (middle) and labelling of each connected
component with its vertical diameter (right).

3) These labellings are performed rapidly by using the geodesic reconstructions, as explained
in the figure below:

Labellings a set X by the maximum value (middle) or the minimum value (right) taken by
the function f inside X. These labellings are obtained by a reconstruction of f under the
indicator function g of X and by a dual reconstruction over the inverted function M - g.
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Load the tesselation image in imbin1 and the road1 image in im1 and type the following
instructions:

>>> convert(imbin1, im2)
>>> copy(im1, im3)
>>> hierarBuild(im2, im3)

The maximum value of the road1 image (left) in each cell of the tesselation image (middle)
is used to label it (right image).

Labelling the tesselation cells with the minimum of road1 in each cell is performed by the
following sequence of instructions:

>>> convert(imbin1, im2)
>>> negate(im2, im2)
>>> copy(im1, im3)
>>> hierarDualBuild(im2, im3)
>>> negate(im2, im2)
>>> logic(im3, im2, im3, "inf")

Note again that, in both cases, performing the inf between f and g (or the sup between f and
M - g) is not necessary.

Result of the labelling of the tesselation image (right) with the minimum value of the road1
image (left) in each of its connected components.

Exercise n° 4: Holes filling, objects cutting edges

1) Suppressing the particles which touch the field edges: the marking set consists of the
intersection of the initial set and the field internal contour. Load the grains2 image in imbin1
and type the following commands:

>>> imbin2.reset()
>>> dilate(imbin2, imbin2, edge=FILLED)
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>>> build(imbin1, imbin2)

Note the trick for getting the edge in one step (use of a dilation of an empty image with the
edge set to FILLED!).

Removal of the objects which touch the edges of the field: initial image (left), marker set
(field contour, middle), removed particles in red (right).

This operator already exists in the MAMBA library. It is named removeEdgeParticles.

2) Filling holes (binary image)
The initial set for the geodesic reconstruction is the complemented set. Then, the holes can be
considered as connected components which cannot be accessed from the field edge. The
marker is the same as in the preceding example and the reconstruction generates the
background pixels which are connected to the edge. Load the initial image in imbin1 and
type:

>>> negate(imbin1, imbin3)
>>> imbin2.reset()
>>> dilate(imbin2, imbin2, edge=FILLED)
>>> build(imbin3, imbin2)
>>> negate(imbin2, imbin2)

This operator, named closeHoles, exists in MAMBA.

Filling the holes of image grains2 (left). Note the distinctive feature at the bottom of the
resulting image (right): in fact, the non filled parts are not holes according to the retained

definition.

3) Filling holes in a greytone image uses exactly the same algorithm as the one described in
the binary case. In fact, the same closeHoles operator can be used indifferently for binary or
greytone images.
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On the left, initial images (tools and circuit), on the right, result of the holes filling
procedure.

4) The white inclusions inside the grains of the alumine image can be considered as “inverted
holes”. So, they can be removed with the closeHoles operator applied on the inverted image.
The inital image is loaded in im1:

>>> negate(im1, im1)
>>> closeHoles(im1, im1)
>>> negate(im1, im1)

alumine image (left) and removal of the inclusions considered as white holes in the image
(right).

Exercise n° 5: Regional maxima and minima

1) A section or threshold  at level i of a function f defined on E is made of the points ofXi(f)
E such that:

Xi(f) = x c E : f(x) m i
The geodesic reconstruction   of a set X by a marker set Y (  ) is made of all theRX(Y) Y _ X
connected components of X which are marked by Y.
The maxima of a function f can be obtained by means of a geodesic reconstruction. Let us
consider the various thresholds of f. A maximum of the function at altitude i (if it exists) will
be a connected component of the threshold  of f containing no connected component ofXi(f)
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any threshold  where . Indeed, suppose that it is not true. Therefore, there exists aXj(f) j > i
path connecting any point of the aforementioned connected component of  to any pointXi(f)
of the connected component of  contained in the previous one. Let us take . ThenXj(f) j = i + 1
path  is the projection of a non descending path on the graph G of f. So, x cannot belong tocxy

a maximum, which proves the proposition.
So, a maximum at altitude i corresponds to a connected component of  which cannot beXi(f)
rebuilt by   and the set M (f) of all the maxima of f can be defined as:Xi+1(f)

M(f) = 4
i

Xi(f)\RXi(f)[Xi+1(f)]
2) The previous algorithm is very slow as all the sections of the image must be used
sequentially. But the algorithm implemented in the maxima and minima operators uses a
reconstruction  of the initial image f by the image f-1, which allows to process inRf(f − 1)
parallel all the sections of the image.
Maxima of f are made of points of E where  is strictly positive. This functionf − Rf(f − 1)
taking only two values 0 or 1 is also the indicator function  of the maxima of f.kM(f)
Minima  of f can be obtained in a similar way by simply using the dual reconstruction m(f) R&

. We get:
km(f) = Rf

&(f + 1) − f

The right connected component of  is a maximum as it cannot be rebuilt by anyXi

connected component of  (it does not contain such a component).Xi+1

Let us detect the minima of the electrop image, loaded in im1:

>>> minima(im1, imbin1)

Minima (right) of the electrop image (left).
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The electrop image contains a great number of minima, that are most often reduced to one
point. This is typical of a noisy image. Then, we may apply the filters described above in
order to suppress, partly at least, the noise from the image. Try different filters (openings,
closings, alternate sequential filters). The alternate sequential filter of size 2, starting by an
opening is quite efficient:

>>> alternateFilter(im1, im2, 2, True)
>>> minima(im2, imbin1)

Minima (right) of the electrop image (left) filtered with an alternate sequential filter of size
2 starting with an hexagonal opening.

3) Enter the following commands:

>>> alternateFilter(im1, im2, 2, True)
>>> minima(im2, imbin1, 10)
>>> minima(im2, imbin2, 50)
>>> minima(im2, imbin3, 100)

From left to right: extended minima of size 10, 50 and 100 extracted from the filtered
electrop image.

As depth increases, the current binary resulting image always contains the previous one.The
operator is extensive. It marks the regions of the initial image which are progressively arased
by the geodesic reconstructions.

Try now the deepMinima operator:

>>> deepMinima(im2, imbin1, 10)
>>> deepMinima(im2, imbin2, 50)
>>> deepMinima(im2, imbin3, 100)
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From left to right: deep minima of size 10, 50 and 100 extracted from the filtered electrop
image.

This operator is no longer extensive. It preserves only he connected components of the
extended minima which contain at least one minimum with a depth higher than or equal to h.

Finally, apply the minDynamics operator:

>>> minDynamics(im2, imbin1, 10)
>>> minDynamics(im2, imbin2, 50)
>>> minDynamics(im2, imbin3, 100)
 

From left to right: minima with a dynamics higher than 10, 50 and 100 extracted from the
filtered electrop image.

This operator is anti-extensive: the minima with a dynamics higher than h’ are always
included in the minima with a dynamics higher than h when h’ > h. The connected
components preserved by the minDynamics transform of size h are the initial minima of the
image whose depth is larger than or equal to h. In fact, the dynamics of a minimum is the
only concept which allows to define clearly the depth of this minimum (or the height of a
maximum with maxDynamics).

Exercise n° 6

The teeth of the wheel are extracted by means of two operators: an opening which removes
the teeth (but also other features in the image) followed by the extraction of the outside of the
image which corresponds to the region where the teeth are.
The size of the wheel image is (480, 472). First enter the following lines to define three
working images. Note that the actual size of these images is (512, 472):

>>> imA = imageMb(480, 472, 1)
>>> imB = imageMb(imA)
>>> imC = imageMb(imA)
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Then load wheel in imA and type the following commands:

>>> opening(imA, imB, 3)
>>> negate(imB, imC)
>>> removeEdgeParticles(imC, imB)
>>> diff(imC, imB, imC)
>>> logic(imA, imC, imC, "inf")

A final small opening removes the tiny defects which could remain (generally, they appear as
isolated pixels):

>>> opening(imC, imC)

As the teeth are simply connected components, their number can be obtained easily with the
connectivity number measure:

>>> computeConnectivityNumber(imC)
120L

120 teeth are detected.

From top to bottom and from left to right: opening of size 3 of the wheel image, negation of
the result, removal of the connected component touching the edge (outside of the wheel),

difference of the two last images (the outside of the opened comes back), intersection of the
outside with the initial image and extracted teeth after a slight filtering.

Note that, instead of counting the teeth, the notches can be extracted, by the following
procedure (wheel is loaded in imA again):
 
>>> negate(imA, imB)
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>>> imC = imageMb(imA)
>>> removeEdgeParticles(imB, imC)
>>> diff(imB, imC, imB)
>>> closing(imB, imC, 3)
>>> logic(imA,imC, imC, "inf")
>>> opening(imC, imC)
>>> computeConnectivityNumber(imC)
120L

We have obviously as many teeth as notches.

Exercise n° 7: Analysis of the distribution of boron fibers

1) This exercise must be realised on the hexagonal grid. The simplification of the boron1
image is performed in three steps :
- Connection of the fibers boundaries (using linear dilations).
- Filling of the interior of the fibers contained in the field.
- Lastly, filling of the fibers cutting the edge of the field.
a) Connection of the fibers boundaries
Perform the following operations after the boron1 image has been loaded into imbin1:

>>> negate(imbin1, imbin1)
>>> linearDilate(imbin1, imbin1, 5, 2)

Initial boron1 image (left) and horizontal linear dilation of size 2 of the complemented
image (right).

b) The fibers are filled up by means of the closeHoles operator:

>>> closeHoles(imbin1, imbin2)

The boron fibers are partially filled up.
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c) You can notice that the fibers cutting the edge of the  field  are not filled. Therefore, a
more refined procedure must be designed to fill them. These fibers are first isolated with the
operator removeEdgeParticles and extracted:

>>> removeEdgeParticles(imbin2, imbin3)
>>> diff(imbin2, imbin3, imbin3)
>>> negate(imbin3, imbin3)

Filling the exterior fibers (1st step).
                
We can now reconstruct the largest connected component of   imbin3. In order to do so, we
can generate a marker of this  component  by  using  a large erosion. The reconstruction
provides the  complemented  image  of  the filled fibers which cut the edge of the field.

>>> erode(imbin3, imbin4, 20, edge=EMPTY)
>>> build(imbin3, imbin4)

Filling the exterior fibers (2nd step).

All we have to do now is adding the imbin2 image to imbin4 (remind  that imbin2  is inverted
with respect to imbin4):

>>> diff(imbin4, imbin2, imbin2)

Finally, the imbin2 image has still to undergo a linear dilation of size 2 so as to
counterbalance the first dilation used to connect the boundaries of the fibers. It is indeed a
dilation since we are working on the complementary set. Moreover, a dilation, that is an
extensive transformation, avoids edge effects. The linear dilation must use a transposed
structuring element with respect to the one used in the initial linear dilation.

>>> linearDilate(imbin2, imbin2, 2, 2)
>>> negate(imbin2, imbin2)
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Filling the exterior fibers (3rd step).

The whole procedure can be programmed in order to be used with the other boron image. Let
us name it closeFibers:

from mamba import *

def closeFibers(imIn, imOut):
   """
   This operation cleans the original fibers image by closing their contours
   and by filling their interiors. Note that this operation also fills the
   fibers which are cutting the edges of the image.
   """

   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   
   negate(imIn, imWrk1)
   # Linear dilation of size 2 in horizontal direction to connect
   # fiber contours.
   linearDilate(imWrk1, imWrk1, 5, 2)
   # Filling true holes (interior fibers)
   closeHoles(imWrk1, imWrk2)
   # Extracting all the fibers cutting the edges.
   removeEdgeParticles(imWrk2, imWrk3)
   diff(imWrk2, imWrk3, imWrk3)
   # The image is inverted and eroded to get a background marker.
   negate(imWrk3, imWrk3)
   erode(imWrk3, imOut, n=20, edge=EMPTY)
   # Reconstructing the background and adding fibers cutting the edges to
   # the previous ones.
   build(imWrk3, imOut)
   diff(imOut, imWrk2, imWrk2)
   # Another linear dilation in transposed direction to recover the initial
   # sizes of the fibers.
   linearDilate(imWrk2, imWrk2, 2, 2)
   # final result
   negate(imWrk2, imOut)
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Filling the fibers of the boron2 image (left) with the closeFibers procedure (right).

2) Hexagonal closings of increasing sizes tend to connect boron fibers. This connection
reduces the number of connected components and increases the number of holes. The
connectivity number should then be reduced and this reduction must be more or less fast
depending on the degree of regularity of the structure.

From left to right and from top to bottom: closings of increasing sizes (4, 6, 8 and 10) of
the boron fibers.

Therefore this measure, or more precisely its evolution in relation to the closing size is used
to quantify the regularity of the layout. A procedure measuring the connectivity numbers of
increasing closings, named checkEvenness, can be defined as following:

from mamba import *
 
def checkEvenness(imIn, maxSize):
   """
   Checks the regularity of the boron fibers arrangement by computing
   successive closings and by determining at each step the connectivity
   number of the closing. The variation of this measure from a positive
   to a negative value indicates the evenness of the arrangement. The
   more it is regular, the more this variation is fast and important.
   The successive connectivity numbers are returned in a list.
   """ 
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   imWrk = imageMb(imIn)
   ncList =[]
   for i in range(maxSize + 1):
       closing(imIn, imWrk, i)
       nc = computeConnectivityNumber(imWrk)
       ncList.append(nc)
   return ncList
   
Note that as the closing size increases, the useful part of  the  image is reduced. Besides the
fact that the measured connectivity number must be a specific number (related to the area
unit), its calculation is likely to be highly imprecise in case of large closings. This is the
reason why it is preferable to use geodesic closings in this example, the geodesic space being
the whole field of measure. This option is the default one with closings (the edge is set to
FILLED).

3) Assume the layout of the fibers is regular according to an hexagonal grid. Let r be the
radius of the fibers and 2a the distance between their centers. Let N be the number of fibers
in the field of analysis.
The fibers are all connected after a closing of size . Indeed, in order that thex m (a2 − r2)/2r
closing connects contiguous fibers two by two, it is sufficient to be able to insert a disk of
radius x at the junction of two particles.

The limit case allows to write:

, that is   x2 + a2 = (x + r)2 x = (a2 − r2)/2r
              

Now, the image shows only one connected component. Calculating the number of holes is
more complex. Indeed, in the stationary case, it is proved (in application of Euler formula)
that the average number of holes is 2N. However, since we used geodesic transforms, this
number does not correspond to the number of holes that could be measured on a regular
layout. In fact, if the image contains n1 rows of n2 fibers, the number of holes generated by
closing is approximately:

          2(n2 − 1)(n1 − 1) = 2N − 2(n1 + n2) − 2

The connectivity number is then equal to : 
                        = −(2N − 2(n1 + n2) − 3)
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The greater the closing size increases, the more it fills the holes, until they are completely
filled. This is achieved when the dilation closes the hole generated by the adjacency of three
fibers, that is when:

 or   r + x m 2a
3 x m 2a

3 − r

Then the closed set is reduced to one connected component without hole. The connectivity
number is then equal to 1. The theoretic curve of evolution of this number according to the
closing size is the following:

In view of this curve, we can say that the major sign of the regularity of the structure is the
sudden transition from highly positive values to highly negative values. The faster the
transition, the greater the regularity of the fibers network. The tangent of the curve at the
crossing point of the horizontal axis is then a possible quantizer of the degree of regularity.
The whole procedure is applied on the two images boron1 and boron2. Don’t forget to use an
hexagonal grid. Start with the boron1 image loaded in imbin1:

>>> closeFibers(imbin1, imbin2)
>>> ncList1 = checkEvenness(imbin2, 20)

The ncList1 list contains the connectivity numbers measured for the first twenty closings.
Then, perform the same operation for the boron2 image, loaded in imbin1:
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>>> closeFibers(imbin1, imbin2)
>>> ncList2 = checkEvenness(imbin2, 20)

The ncList2 list contains the corresponding connectivity numbers. We can then plot the two
curves. Enter the following commands:

>>> import matplotlib.pyplot as plt
>>> xs = range(21)
>>> ys = ncList1
>>> zs = ncList2
>>> err = plt.xlabel('Size of closing')
>>> err = plt.ylabel('Connectivity number')
>>> err = plt.title('Boron images connectivity numbers variations after closings')
>>> err = plt.plot(xs, ys, label='Boron1 image', color='red')
>>> err = plt.plot(xs, zs, label='Boron2 image', color='blue')
>>> err = plt.legend(loc='upper right')
>>> err = plt.show()

The slope of the blue curve (boron2) is steeper than the red one (boron1) indicating a
better regularity of the fibers arrangement. 

Exercise n° 8: Size distribution of a greytone image

1) We want to detect small dome-shaped structures. They are gradually eliminated by
greytone openings of increasing size. Therefore,  we can define a procedure, named
openSizeDistribution for computing this granulometry in a range of sizes:

from mamba import *

def openSizeDistribution(imIn, sizeRange):
   """
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   Computes the size distribution by hexagonal openings of the 'imIn' image
   in the range 'sizeRange'. The operator returns a list of values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       opening(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
       oldVol = vol
   return granuList
    
The opening size is increased by 1 at each iteration. SizeRange represents the number of
iterations. The value of the size distribution function for each level i corresponds to the
difference in volume between the opened image of size (i - 1) and the opened image of size i.

Let us apply this procedure on the two images lung1 and lung2 (loaded in im1 and im2):

>>> granuList1 = openSizeDistribution(im1, 25)
>>> granuList2 = openSizeDistribution(im2, 25)

Then, let us draw the two corresponding size distributions:

>>> import matplotlib.pyplot as plt
>>> xs = range(1, 26)
>>> ys = granuList1
>>> zs = granuList2
>>> err = plt.xlabel('Size of opening')
>>> err = plt.ylabel('Area variation')
>>> err = plt.title('Size distribution by hexagonal openings')
>>> err = plt.plot(xs, ys, label='lung1 image', color='red')
>>> err = plt.plot(xs, zs, label='lung2 image', color='blue')
>>> err = plt.legend(loc='upper right')
>>> err = plt.show()

It is indeed possible to differentiate the two types of texture. The radiography lung1 does not
contain any nodular structure and shows a smooth size distribution curve without any
significant maximum for openings up to a given size (equal to 20 here). The size distribution
curve of the  radiography lung2 shows a significant maximum for openings of small size.
This maximum marks the disappearance of white nodules for openings of small size.
The position of the maximum gives an indication of the average size of the nodules scattered
in the image.
It will not be possible to use the information provided by the range of the size distribution
curve unless we make some assumptions concerning the volume characteristics of the
nodules but it is out of the scope of this exercise. 
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Size distribution curves with hexagonal openings for the lung1 and lung2 images.

2) The opening by erosion-reconstruction is less active than a morphological opening. The
morphological opening tends to eliminate the small irregularities of large structures. Indeed,  
if the irregularity cannot contain the structuring element, it is eliminated even if the structure  
is preserved. On the contrary, small irregular structures may be rebuilt by the geodesic
reconstruction when they belong to a larger set, as it is the case with binary images (see
exercise 2).
As nodules are regular structures with delimited contours, the opening by reconstruction
allows a better discrimination between these nodules and other irregular structures. The size
distribution based on openings by reconstruction is defined by the following procedure,
named buildOpenSizeDistribution:

from mamba import *

def buildOpenSizeDistribution(imIn, sizeRange):
   """
   Computes the size distribution by openings by reconstruction of the
   'imIn' image in the range 'sizeRange'. The operator returns a list of values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       buildOpen(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
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       oldVol = vol
   return granuList

Apply this operator on the two images:

>>> granuList1 = buildOpenSizeDistribution(im1, 25)
>>> granuList2 = buildOpenSizeDistribution(im2, 25)

Then, draw the two corresponding size distributions:

>>> import matplotlib.pyplot as plt
>>> xs = range(1, 26)
>>> ys = granuList1
>>> zs = granuList2
>>> err = plt.xlabel('Size of opening')
>>> err = plt.ylabel('Area variation')
>>> err = plt.title('Size distribution by erosion-reconstruction openings')
>>> err = plt.plot(xs, ys, label='lung1 image', color='red')
>>> err = plt.plot(xs, zs, label='lung2 image', color='blue')
>>> err = plt.legend(loc='upper left')
>>> err = plt.show()

Size distribution curves with erosion-reconstruction openings for the lung1 and lung2
images.

The  range of the size distribution curve of the opening by erosion-reconstruction (RO in
abbreviated form) is less extended than that of the morphological opening (MO) because the
opening by erosion-reconstruction always eliminates less features than the classical opening.
However since we work on differential distributions (difference of two openings of size i and
i+1), it may happen that, for a given size of opening, the size distribution curve of the RO is
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higher than that of the MO. However, the integral of the size distribution function by RO is
always smaller than or equal to that of the morphological opening.
Some maxima may appear on the size distribution curve by reconstruction whereas they were
not visible on the classical size distribution. This is due to the fact that a large structure may  
gradually disappear at each step of the morphological opening whereas it disappears suddenly
when we use an opening by reconstruction. This phenomenon is noticeable on the lung2
image. The white feature at the upper left part of the image is suddenly eliminated by the
opening by reconstruction. If both types of size distribution are applied to this image up to
size 20, a maximum appears on the size distribution by reconstruction whereas nothing
indicates its disappearance on the other size distribution curve.

Difference between the hexagonal opening  and the erosion-reconstruction opening
observed on the left feature (red circle) in the lung2 image. The evolution between sizes 6
and 7 is progressive in the case of the hexagonal opening (the white feature size decreases

gradually), whereas it is sudden with the erosion-reconstruction opening.

3) The nodules are almost round-shaped. Other white objects are present but their shape is
more elongated. Using an approximately circular structuring element (hexagon or square)
amounts to eliminate the volume structures according to the smallest width criterion. A
narrow and elongated object will be eliminated at the same time as a circular object whose
diameter is equal to the width of the elongated object. In order to detect the nodules while
proceeding to the size distribution, it is preferable to use linear structuring elements. Then
elongated objects will be eliminated by an opening of a size equal to their length.
The operator supBuildOpen performs linear openings in the three main directions of the
hexagonal grid and then takes the sup of the three openings. Thus each structure that contains
at least one elongated element is preserved. We know that the sup of three linear openings is
an opening. Then, this opening is used as a marker for the geodesic reconstruction of the
original image. 

def buildSupOpen(imIn, imOut, size):
   """
   Performs on 'imIn' the opening by reconstruction with a marker made of a sup of
   linear openings. The result is put in 'imOut'.    
   """
   
   imWrk = imageMb(imIn)
   supOpen(imIn, imWrk, size)
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   hierarBuild(imIn, imWrk)
   copy(imWrk, imOut)

Then, this operator is used for computing the corresponding size distribution. It is named
buildSupOpenSizeDistribution:

def buildSupOpenSizeDistribution(imIn, sizeRange):
   """
   Computes the size distribution by openings by reconstruction with
   a sup marker of the
   'imIn' image in the range 'sizeRange'. The operator returns a list of
   values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       buildSupOpen(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
       oldVol = vol
   return granuList

Once again, it is applied on lung1 and lung2 images:

>>> granuList1 = buildSupOpenSizeDistribution(im1, 25)
>>> granuList2 = buildSupOpenSizeDistribution(im2, 25)

Then, the corresponding size distribution curves are drawn:

>>> xs = range(1,26)
>>> ys = granuList1
>>> zs = granuList2
>>> err = plt.xlabel('Size of linear opening')
>>> err = plt.ylabel('Area variation')
>>> err = plt.title('Size distribution by reconstruction from sup of linear openings')
>>> err = plt.plot(xs, ys, label='lung1 image', color='red')
>>> err = plt.plot(xs, zs, label='lung2 image', color='blue')
>>> err = plt.legend(loc='upper right')
>>> err = plt.show()

The range of this size distribution function is much smaller because, at each step of the
opening, much less structures are eliminated. Indeed, the criterion is no longer: "can this
structure contain an hexagon of diameter n?" but "can this structure contain a segment of
length n?". Moreover, the next operation is a reconstruction, which allows to preserve small
structures neighboring larger ones.
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Size distribution curves with a geodesic reconstruction from a sup of linear openings for
the lung1 and lung2 images.

On the lung2 radiography, the maximum characterizing the presence of nodules is shifted to
the right side of the x-axis. This is due to the fact that the selecting criterion is now the
longest radius contained in the object and that the nodules are not perfectly circular. If a non
circular nodule has a radius of 7 pixels in one direction and a radius of 8 pixels in the
opposite direction, it will disappear with an opening of size 7 using an hexagonal structuring
element and an opening of size 8 with a sup of linear openings. Its position is then shifted to
the right by one unit on the size distribution curve.

4) On a greytone image, it is possible to count its maxima and minima. These points are
significant as they indicate the presence of a dome or a valley. Of course, this information is
not sufficient to know the size and depth of these domes and valleys. Thus, impulse noise
may cause maxima or minima but we cannot properly compare the latter to minima produced
by large structures. However, it is interesting to follow the evolution of the number of
maxima or minima after openings and closings. The granulNumber operator computes the
number of maxima after openings of increasing sizes:

def granulNumber(imIn, sizeRange):
   """
   Computes the pseudo size distribution function provided by
   the number of maxima in the various openings in the range 'sizeRange'.
  The operator returns a list of values.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 1)
   imWrk3 = imageMb(imIn, 32)
   numberList = []
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   for t in range(sizeRange+1):
       opening(imIn, imWrk1, i)
       maxima(imWrk1, imWrk2)
       nb = label(imWrk2, imWrk3)
       numberList.append(nb)
   return numberList

This measure is not a size distribution since it does not fulfil some properties required by a
size distribution. In particular, it is not increasing. However,  the resulting curve can be used
as a texture index. The granulNumber operator is not differential. It measures the number of
maxima and not its variation at each step of opening.

Number of maxima after openings in the lung1 and lung2 images.

The following command lines allow to compute and to draw the corresponding curves:

>>> numberList1 = granulNumber(im1, 25)
>>> numberList2 = granulNumber(im2, 25)
>>> xs = range(26)
>>> ys = numberList1
>>> zs = numberList2
>>> err = plt.xlabel('Size of opening')
>>> err = plt.ylabel('Number of maxima')
>>> err = plt.title('Amount of maxima after hexagonal openings')
>>> err = plt.plot(xs, ys, label='lung1 image', color='red')
>>> err = plt.plot(xs, zs, label='lung2 image', color='blue')
>>> err = plt.legend(loc='upper right')
>>> err = plt.show()

In lung1 and lung2 radiographs, we can see a very high number of maxima on the non
filtered images. These maxima do not correspond to structures but to noise. For openings of
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small size, it can be noticed that the number of maxima is greater in the lung2 image. This  
indicates the presence of nodules.

In conclusion, we saw that size distribution functions inform us on the presence of nodules in
the image and on their mean size. In a wider context, a size distribution function may serve to
characterize the texture of a greytone image. It is possible to define a large number of size
distribution functions from transformations such as openings or closings. The relative
efficiency of these functions always depends on the type of images on which they are
applied. In our case, a set of varied images would be necessary to decide of the most
appropriate function.

REFERENCES

[1] C.Lantuejoul, S.Beucher: On the use of the geodesic metric in image analysis
(http://cmm.ensmp.fr/~beucher/publi/Use_of_Geodesic.pdf)
This paper introduces the concept of geodesic transformation. 

[2] S.Beucher: Geodesy and geodesic transformations
(http://cmm.ensmp.fr/~beucher/publi/Course2008_Geodesy_SB_eng.pdf)
These lecture slides (used in the Summer school of Mathematical Morphology) introduce the
geodesic transforms.

[3] S.Beucher: Maxima and Minima: A Review
(http://cmm.ensmp.fr/~beucher/publi/maxima-minima.pdf)
The purpose of this document is just to provide additional information about the concepts of
maxima and minima in MM. These concepts are often misleading and this document can be
considered as a  clarification of these notions.

Chapter 6

118



1 Residual transforms, general definition

An elementary residual operator r is built with the difference of two operators ψ and ζ called
primitives (set difference of algebraic difference):

r = ψ\ζ (binary case)
r = ψ - ζ (algebraic case)

Many morphological contrast operators belong to this class of operators.
More refined residual operators can be defined with families of primitives, and . Ini i
this case, the residual transform is composed of a doublet of operators:

= sup
icI

( i − i )

q = arg max( i − i ) + 1

2 Gradients

2.1 Classical gradient
The gradient of a function f defined on  is defined as the vector:‘2

                                                    ∫f =

Øf
Øx
Øf
Øy

In the digital case, the first-order differences may be used to express the partial derivatives:
(∫xf)(x, y) l f(x, y) − f(x − 1, y)
(∫yf)(x, y) l f(x, y) − f(x, y − 1)

These expressions correspond to digital convolutions of f with the kernels [-1  1] and .1
−1

We could also use the following differences as the expression of the partial derivatives:
(∫2xf)(x, y) l f(x + 1, y) − f(x − 1, y)
(∫2yf)(x, y) l f(x, y + 1) − f(x, y − 1)

They have the advantage of being centered in (x,y). These derivatives are performed with the

digital convolutions of f by the kernels [-1 0 1] and .
1
0

−1

Chapter 7 

RESIDUES I

The following exercises introduce morphological transformations which belong to the
class of residual operators. Among them, the gradient and top-hat operators are rather simple
(they use simple primitives). Other operators use families of primitives. In this chapter,
residues using erosions and openings will be addressed. The next chapter will be devoted to
residues based on the Hit-or-Miss Transform (HMT) and on thinnings and thickenings.
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EXERCISES

Exercise n° 1

1) On the road image, apply the MAMBA gradient operator of size λ of a function f:
g (f) = (f / B) − (f 0 B)

In practice, other differences are also used, which may be expressed in terms of digital
convolutions too. An abundant literature illustrates this subject. For example, the Sobel
operator is given for the following convolutions:

 and 1
4

−1 0 1
−2 0 2
−1 0 1

1
4

1 2 1
0 0 0
−1 0 −1

2.2 Morphological gradient
The morphological gradient of a function f defined on  or on a  sub-set  is given by:‘2

g(f) = lim
d0

(f / B) − (f 0 B)
2

where λB denotes a ball of radius λ.
On a hexagonal grid, we get: 
                                                   g(f) =

(f / H) − (f 0 H)
2

where H is a hexagon of size 1. This gradient is equal to the gradient module of a function f
continuously derivable. Most of the time, we use the function 2g (no division).
Half gradients can also be defined by:

g+(f) = (f / H) − f
g−(f) = f − (f 0 H)

The morphological gradient is a residual operator (  and ).= =

3 Top-hat transform

The top-hat is a transformation that only applies to greytone images. The top-hat wthλ of a
function f is defined by:

wthλ(f) = f - γλ(f)  (white Tophat)
where γλ is an opening of f with a structuring element of size λ.
Likewise, the conjugated top-hat bthλ of a function f is defined by:

bthλ(f) = ϕλ(f) - f  (black Tophat)
where ϕλ is a closing of f.
Black and white top-hats are also elementary residual operators.

4 Other residues

Many other residual transforms can be defined with various sequences of primitives: ultimate
erosion, ultimate opening, skeletons by openings, etc. Some of these operators will be
introduced in the exercises.
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where λB denotes a ball of size λ (take here B = H, hexagon or square). This gradient is
called thick gradient. The default value of λ is 1.
Prove and verify that the gradient of size λ is always greater than or equal to the gradient of
size μ when .m
What is the interest of using thick gradients and what is its drawback?
2) The top-hat wthn(f), named whiteTopHat, associated with the opening by a hexagon of
size n and the conjugated black top-hat bthn(f), named blackTopHat are also available in
MAMBA. Apply these transformations to the circuit, electrop, grains3, retina1 and retina2
images. Is the following property:

≤ m , wth m wth
true?
3) Note that these operations do not permit to discriminate aneurisms (small white spots)
from blood vessels on the retina1 and retina2 images. Find a top-hat allowing such
discrimination.

grains3road

Exercise n° 2

The tools image has been acquired with a non uniform light. Propose an algorithm to get a
uniform background. If this algorithm uses some parameters, indicate the rules which are
used to set them.

tools

Exercise n° 3: Ultimate erosion of a (binary) set

Let X be a set. The ultimate erosion of X is defined by:
U(X) = 4

n x c X 0 nH; dX0nH(x, X 0 (n + 1)H) = +∞
U(X) is then the set of the connected components resulting from the successive erosions of X
that cannot be reconstructed after the erosion of the immediately larger size. This operator is
a residual one, with:

 and i = i i = rec( i )

Chapter 7

121



where is the erosion of size i of the initial set and  the geodesic reconstruction of thisi rec( i )
eroded set by its elementary opening.
1) Apply this operator, named binaryUltimateErosion, to the disks image. Compute the
number of disks in the aggregate.
2) Try to determine the limits of this transformation as a tool for separating particles.

disks

Exercise n° 4: Skeleton by maximal balls (binary case)

Let X be a set. A ball of radius λ included in X is said to be a maximal ball if and only if no
ball of a radius strictly larger and containing the ball of radius λ can be found in X.

Bλ  maximal: Bλ ⊂ X; there exists no Bμ , μ > λ, Bλ ⊂ Bμ ⊂ X
The locus S(X) of the centers of the maximal balls of X is called the skeleton of X. When X
is defined on the hexagonal grid, the notion of maximal ball is replaced by that of maximal
hexagon. The purpose of this exercise is to define a residual operator which corresponds to
the skeleton S(X) of X.
1) Let , be the erosion of size n of X. Prove that if x is a point of  which doesX 0 nH X 0 nH
not belong to the open set , this point is the center of a maximal hexagon of size n.(X 0 nH)H
2) Derive the formula of the skeleton S(X) of X, expressed as a residual transform.
3) To any point x of S(X), can be associated the radius r(x) of the maximal hexagon centered
in x. The function r(x) of support S(X) is called a quench function. Verify that the pair
(S(X),r(x)) is sufficient to reconstruct the set X:

X = 4
xcS(X)

H(x, r(x))

4) Try this operator, named binarySkeletonByOpening, and compare the skeleton of the set
X with its ultimate erosion.
5) What are the drawbacks of this transformation in the digital case?

Exercise n° 5: Distance function and maxima

This exercise considers again the distance function introduced in chapter 2, exercise n° 7 and
the corresponding procedure computeDistance.
1) A point x of a digital function f is said to be a local maximum if all the first neighbor
points y of x verify the inequality:

f(y) [ f(x)
Prove that the local maxima of the hexagonal distance function are the points of the skeleton
by maximal balls. Illustrate it on the coffee image. How extract this skeleton from the
distance function?
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2) Prove that the regional maxima of the distance function are the ultimate eroded sets.
Verify it on the coffee image. What can be the interest of the h-maxima of the distance
function, with h > 1? Test it on the coffee image.

coffee

Exercise n° 6: Directional gradient

The morphological gradient is easy to implement and use. However, it provides only the
gradient modulus of the gradient vector and not its orientation or azimuth. This azimuth can
be computed by means of a residual transform built with directional gradients.
1) The morphological directional gradient of a function f in the direction a of the grid is
defined by:

g (f) = (f / L ) − (f 0 L )
where Lα is an elementary segment in direction α of the grid (6 directions for the hexagonal
grid).
Define this operator with MAMBA. Name it directionalGradient. Limit your definition to
the hexagonal grid. Apply it to the fiber1 image.
2) A residual operator can be defined with the directional gradient. We can define:

i(f) = f / Li ; i(f) = f 0 Li

where Li is the elementary segment in direction i,  in the hexagonal grid. Then,i c I = [1, ..., 6]
the residue ri is equal to:

, directional gradient in direction iri = i − i = gi

What is ?g = sup
icI

gi

The azimuth az corresponds to the direction i where gi = g. We have:
az = arg max

icI
gi

For sake of simplicity, we assume that the direction az is unique, which is not true in practice.
Program this residual operator (named vectorGradient) with MAMBA and test it on the
seismic_section image.

seismic_sectionfiber1
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SOLUTIONS

Exercise n° 1

1) Load the road image in im1 and type:

>>> gradient(im1, im2)

Then, perform a thick gradient of size 3 (result in im3):

>>> gradient(im1, im3, 3)

From left to right: initial road image, morphological gradient of size 1 and thick gradient
of size 3 (the gradient images have been multiplied by 4 for a better contrast). 

We write the thick gradient gλ as:
g (f) = (f) − (f)

where δλ is a dilation with a ball λB and ελ, the dual erosion. Consider . We have:m
,  (f(x)) = sup

yc Bx

f(x) (f(x)) = inf
yc Bx

f(x)

Therefore, as , we have:B _ B
(f(x)) [ (f(x)),≤x

(all the pixels contained in λBx are also contained in μBx).
We have also:

(f(x)) m (f(x)),≤x
Therefore:

g (f) = (f) − (f) m (f) − (f) m (f) − (f) = g (f)
This inequality can be verified by using the generateSupMask operator:

>>> generateSupMask(im3, im2, imbin1, False)

This operator puts a white pixel in imbin1 when the corresponding pixel value in im3 is
greater than or equal to its value in im2. You can verify that the imbin1 image is entirely
filled. 
The interest of thick gradients lies in the fact that, when contours are fuzzy, the contrast
measurement between the regions separated by these contours is better (the difference

3) What can you say about the exactness of this operator?
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between the sup and the inf is calculated on a larger support). Conversely, it is difficult to
estimate the appropriate size of the thick gradient and when it is too large, close contours are
likely to merge.

2) Load retina1 in im1 and grains3 in im2 and enter these commands:

>>> whiteTopHat(im1, im3, 10)
>>> blackTopHat(im2, im4, 8)

Top: white hexagonal top-hat of size 10 (right) of the retina1 image. Bottom: black top-hat
of size 8 of the grains3 image.

We have:
wth = I −
wth = I −

,  is true if and only if . This inequality is true when the opening is≤ m wth m wth m
a size distribution or granulometry (see chapter 4, exercise n° 1).

3) We already saw (chapter 4, exercise n° 4) that using the sup of linear openings allows to
discriminate between  the vessels and the aneurisms in the retina2 image. Therefore, a
top-hat transform based on the sup of linear openings (supOpen) can be designed. This
operator exists in the MAMBA library and is named supWhiteTopHat. Load the retina2
image in im1 and type:

>>> supWhiteTopHat(im1, im2, 5)

This operator provides a good discrimination. But this first result can be emphasized if a
geodesic reconstruction using the sup of openings as marker is applied to the initial image.
Doing so, the vessels are better rebuilt. Then the following subtraction produces a better
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extraction of the aneurisms. Load the retina2 image in im1 and enter the following
commands:

>>> supOpen(im1, im2, 5)
>>> hierarBuild(im1, im2)
>>> sub(im1, im2, im2)

Retina2 image (left), top-hat with a sup of linear openings (middle) and top-hat when a
geodesic reconstruction is performed before the subtraction (right). Some parts of vessels

still remaining in the middle image have totally disappeared in the right one. 

Although the result is not perfect, it is a good start for more sophisticated algorithms aiming
at extracting aneurisms in eye fundus images.

Exercise n° 2

Several solutions are possible. However, the simplest and fastest one uses the top-hat
transform applied to the initial image. It is compulsory to use an erosion-reconstruction
opening otherwise the background would not be correctly taken into account. The size of the
initial erosion must necessarily be larger than the maximal size of the objects contained in the
tools image. A larger size does not modify significantly the result. The minimal size of this
top-hat transform can be determined by computing the size distribution function which has
been introduced in chapter 6, exercise 8 (operator buildOpenSizeDistribution). Let us
compute this size distribution on the tools image loaded in im1:

>>> granuList = buildOpenSizeDistribution(im1, 35)

Then, we can plot it:

>>> import matplotlib.pyplot as plt
>>> xs = range(1, 36)
>>> ys = granuList
>>> err = plt.xlabel('Size of opening')
>>> err = plt.ylabel('Area variation')
>>> err = plt.title('Size distribution')
>>> err = plt.plot(xs, ys, label='tools image', color='red')
>>> err = plt.legend(loc='upper right')
>>> err = plt.show()

We can see that, for a size greater than 21, the area variation is negligible. There is no
variation in the range [21, 29]. So, a top-hat by reconstruction of size 25 is convenient for
obtaining a good background flattening.
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Size distribution of the opening by reconstruction. No variation occurs between sizes 21
and 29. No object has been removed in this range.

Perform the following operation:

>>> buildOpen(im1, im2, 25)
>>> sub(im1, im2, im2)

Top-hat by reconstruction of size 25 of the tools image (the contrast has been enhanced).

We can verify the efficiency of this operation by trying to threshold the initial image and the
transformed one. For this, use the dynamicThreshold operator. Type:

>>> from mambaDisplay.extra import *
>>> dynamicThreshold(im1)

Try to threshold the tools image by hitting the <q> and <w> keys. Extracting the objects in
the tools image by a simple threshold is not possible.
Try the same operator on the top-hat image:

>>> dynamicThreshold(im2)
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Although the result is not perfect, it is nevertheless possible to extract the objects by
thresholding.

Threshold of the top-hat image at level (21, 255).

No threshold value is convenient for extracting the objects of the tools image (the threshold
level here is equal to (120, 255)).

Exercise n° 3: Ultimate erosion of a (binary) set

1) Load the binary disks image in imbin1 and type:

>>> binaryUltimateErosion(imbin1, imbin2, im32_1)
>>> computeConnectivityNumber(imbin2)
6L

Ultimate erosion of the disks image (left, the result has been slightly dilated). The
associated function (right image) labels each connected component with the radius of the

corresponding disk (the rainbow palette has been used).

The number of disks is equal to 6. Note also that the binaryUltimateErosion operator
requires two output images. The second one (which must be a 32-bit image) contains the
connected components of the ultimate erosion labelled with the size of the erosion which
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generated this connected component (size + 1 in fact to cope with the fact that some
components may appear at the first iteration).

2) The separation by ultimate erosion provides satisfactory results only when the aggregate is
composed of round particles which do not interpenetrate too much. In the simple case where
the aggregate is made of disks, the ultimate erosion works if the radical axis (line passing
through their two intersection points) of two connected disks separate their centers. When the
particles are not perfectly circular but simply convex and more or less elongated, their
separation by means of the ultimate erosion may be less efficient.

The separation of two disks by ultimate erosion fails when the disks are too intricated. The
limit condition occurs when their centers are on the same side of the radical axis.

Exercise n° 4: Skeleton by maximal balls (binary case)

1) Let x be a point such that:
x c (X 0 nH) and x " (X 0 nH)H

If x belongs to the eroded set of size n, x is by definition the center of a hexagon of size n
included in X.
Assume that . x is then included in a hexagon of size 1 included in the erodedx c (X 0 nH)H
set .(X 0 nH)
A size n dilation of this hexagon results in a hexagon of size n+1 included in X. Hence the
hexagon of size n centered in x is covered by the hexagon of size n+1. Therefore it cannot be
maximal. Conversely, let us assume that x, though not belonging to the open set ,(X 0 nH)H
is not the center of a maximal hexagon of size n. Then, it is included in a hexagon of size 

covering the hexagon of size n centered in x. The erosion of  this hexagon of size m bym > n
a hexagon of size n gives a hexagon of  size which contains x. Then, m − n m 1 x c (X 0 nH)H
, which  is  contradictory.
Therefore, we can state that a necessary and sufficient condition for a point x to be the center
of a maximal hexagon of size n is that it belongs to the set:

(X 0 nH)/(X 0 nH)H
2) According to what has just been stated, in order to obtain the skeleton S(X), it is sufficient
to perform the preceding set difference for all the possible sizes of erosions, i.e.:

S(X) = 4
n=0

∞
[(X 0 nH)/(X 0 nH)H ]

This operator is a residual transform with:
, hexagonal erosion of size ii = i

, hexagonal opening of size 1 of the erosion of size ii = ( i)
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The associated function r defined on S(X) takes, at each point of S(X), the radius of the
corresponding maximal ball (hexagon) centered at this point.
3) Let us start by proving that any point x of X belongs to the maximal ball.
Indeed, if this were not the case, then there would exist a ball centered in x and contained in
X (the ball may be reduced to x itself). This ball is not included in any other ball included in
X. (Otherwise this including ball would be itself either maximal, or included in a maximal
ball). Therefore the ball centered in x is the maximal ball. x belongs to a maximal ball of X,
which contradicts the hypothesis.

maximal ball of X≤x c X, x c
The union of all the maximal balls of X is then equal to X:

X = 4
xcS(X)

H(x, r(x))

4) Use the test_dist and disks images loaded in imbin1:

>>> binarySkeletonByOpening(imbin1, imbin2, im32_1)

Here again, the quench function is put in the 32-bit image im32_1. Each pixel of the skeleton
takes the value ri + 1, where ri is the radius of the maximal hexagon centered at i.

Initial images (left) and skeletons by maximal balls (right).
The ultimate erosion is always included in the skeleton by maximal balls. This can be
verified by intersecting the ultimate erosion and the skeleton and by comparing this
intersection with the ultimate erosion. The two images are identical:

>>> binarySkeletonByOpening(imbin1, imbin2, im32_1)
>>> binaryUltimateErosion(imbin1, imbin3, im32_2)
>>> logic(imbin2, imbin3, imbin2, "inf")
>>> compare(imbin2, imbin3, imbin4)
(-1, -1)
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Skeleton (in yellow) of the disks image and its ultimate erosion (in red).

It can be easily verified that the ultimate erosion of a set is contained in the skeleton. Indeed,
let x be a point of the ultimate erosion of X. Assume this point has appeared in the erosion of
size N.  but . This point x is at an infinite geodesic distancex c (X 0 nH) x " (X 0 (n + 1)H)
from . In other words, the dilated set  does not encounter x.X 0 (n + 1)H [X 0 (n + 1)H] / H
(since this dilated set represents the set of the points of the space which are at a geodesic
distance smaller than or equal to 1 from ).X 0 (n + 1)H
But:

[X 0 (n + 1)H] / H = (X 0 nH)H
Then:

x c (X 0 nH)/(X 0 nH)H e x c S(X)

5) The previous examples show the two main drawbacks of this operator: firstly, the skeleton
is not connected (although there is no evidence that this skeleton should be connected) and,
secondly, the use of hexagons instead of disks leads to a great number of points in the
resulting image.

Exercise n° 5: Distance function and maxima 

1)  Let us prove the proposition. Let x be a point of the skeleton by hexagonal opening. x is
the center of a maximal hexagon of size n. It results that dist(x) = n + 1.
Assume there exists a neighbor y of x such that dist(y) > dist(x). Then  (hexagon ofHy

n+1

center y of size n + 1) is included in X.
But . Then, there exists an hexagon of size n + 1 that contains x and that isHx

n _ Hy
n+1

included in X, which contradicts the hypothesis according to which  is a maximalHx
n

hexagon.
Then, ∀y, neighbor of x, dist(y) ≤ dist(x). x is then a local maximum of the distance function.
Conversely, let x be a local maximum of the hexagonal distance function. Let n = dist(x) - 1.

 is the largest hexagon of center x included in X. Assume that  is not maximal, i.e.:Hx
n Hx

n

≥Hy
n∏ such that Hx

n _ Hy
n∏ and Hx

n ! Hy
n

 and it is a hexagon . Moreover  because  and .Hy
n∏ 0 Hx

n ! π Hz
m m m 1 Hy

n∏ ! Hx
n x c Hz

m

The erosion of  by a elementary hexagon is a hexagon  (possibly reduced to a singleHz
m Hz

m−1

point) and , there exists a neighbor of y in  (y belongs to the boundary of ≤y c Hz
m/Hz

m−1 Hz
m−1

 and  is not empty). However,  (otherwise , but  is the largestHz
m Hz

m−1 x " Hz
m 0 H Hx

n+1 _ X Hx
n

hexagon of  center x included in X) and . then x has a neighbor y in . ItHz
m 0 H ! π Hz

m−1
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results that  and hence . This contradicts the assumptionHy
n+1 _ X dist(y) m n + 2 = dist(x) + 1

that x is a local maximum of the distance function. Then  is a maximal hexagon.Hx
n

The local maxima of a function f can be easily extracted by remarking that, if a point x is a
local maximum, the elementary hexagonal dilation of the function at this point is equal to the
function itself. Indeed, all the values of f inside the hexagon centered at x are lower than or
equal to f(x). Therefore, the dilation of f at point x, which is equal to the sup of all the values
of the function inside Hx is equal to f(x). So, the local maxima correspond to the points x
where . Let us verify this equivalence on the coffee image loaded in imbin1.H(f(x)) − f(x) = 0
We compute the skeleton by maximal balls (result in imbin2):

>>> binarySkeletonByOpening(imbin1, imbin2, im32_1)

Then, we compute the distance function with computeDistance:

>>> computeDistance(imbin1, im32_2, edge=FILLED)

Note that the distance function is stored in a 32-bit image (im32_2) and that the edge has
been set to FILLED in order to avoid edge effects with the particles touching the edges of
the image. Then, we can extract the local maxima of the distance function as described
above:

>>> dilate(im32_2, im32_1)
>>> sub(im32_1, im32_2, im32_1)
>>> threshold(im32_1, imbin3, 0, 0)
>>> logic(imbin1, imbin3, imbin3, "inf")

The last intersection with the initial image aims at removing the local maxima contained in
the background. Finally, we can compare the two results:

>>> compare(imbin2, imbin3, imbin4)
(-1, -1)

coffee image and its skeleton by maximal hexagons.
It is also possible to obtain the skeleton by maximal balls (hexagons) of a set X by means of a
top-hat transform applied to distX. Indeed, the threshold between n + 1 and 232 - 1 of distX is
equal to the erosion of size n of X:

X 0 nH = x : distX(x) > n

Performing an elementary opening of the distance function amounts to perform the same
operation on every threshold of distX. Then, the top-hat transform, which corresponds to a set
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difference  at each threshold of , extracts the points of(X 0 nH)\(X 0 nH)H distX − H(distX)
the skeleton by maximal balls of X. Load coffee in imbin1 and type:

>>> computeDistance(imbin1, im32_1, edge=FILLED)
>>> whiteTopHat(im32_1, im32_2, 1)

To finally obtain a binary set, threshold the 32-bit image im32_2:

>>> threshold(im32_2, imbin2, 1, 1)

2) An ultimate eroded set is made of connected components of the eroded set of size n that
cannot be restored from the eroded set of size n+1, for all sizes n. But the eroded set of size n
can be obtained by thresholding the distance function (see above). Then, the connected
components of the ultimate erosion are, by definition, the maxima of the distance function.
To verify this, load the coffee image in imbin1 and type:

>>> binaryUltimateErosion(imbin1, imbin2, im32_1)

Then:

>>> computeDistance(imbin1, im32_2, edge=FILLED)
>>> maxima(im32_2, imbin3)

Compare the two results:

>>> compare(imbin2, imbin3, imbin4)
(-1, -1)

This operation is faster than the binaryUltimateErosion as it uses fast MAMBA operators.
Moreover, the computation time is independent of the size of the set X. For this reason, this
implementation of the ultimate erosion exists in MAMBA. It is named ultimateErosion.

In the coffee image, some grains are marked by more than one connected component of the
ultimate erosion, which is not satisfying for counting and segmentation (particle separation)
purposes. Using h-maxima can help to connect these markers. 

>>> computeDistance(imbin1, im32_1, edge=FILLED)
>>> maxima(im32_1, imbin3, 2)
>>> maxima(im32_1, imbin2)
>>> computeConnectivityNumber(imbin2)
54L
>>> computeConnectivityNumber(imbin3)
48L

The number of connected components of the h-maxima, with h = 2 is less (48) than the
number of initial maxima (54).

Chapter 7

133



h-maxima of height 2 of the distance function of the coffee image.

Exercise n° 6: Directional gradient

1) The operator defining elementary directional gradients of size 1 on the hexagonal grid is
the following:

from mamba import *

def directionalGradient(imIn, imOut, d):
   """
   Basic directional gradient of size 1, computed on the hexagonal grid
   in direction 'd'.
   """
   
   imWrk = imageMb(imIn)
   linearDilate(imIn, imWrk, d)
   linearErode(imIn, imOut, d)
   sub(imWrk, imOut, imOut)

Load the fiber1 image in im1 and type:

>>> directionalGradient(im1, im2, 2)
>>> directionalGradient(im1, im2, 1)

fiber1 image (left), directional gradient in direction 2 (middle) and directional gradient in
direction 1 (right). The resulting images are enhanced and displayed with the rainbow

palette.
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2) The gradient modulus is equal to the sup of the directional gradients. The azimuth is coded
in six directions and corresponds to the (first) direction where the directional gradient is
maximum. The procedure vectorGradient is defined as following:

from mamba import *

def vectorGradient(imIn, imModul, imAzim):
   """
   Modulus and azimuth of the gradient of image 'imIn'. The modulus is
   stored in 'imModul' and the azimuth (6 directions are available) in
   image 'imAzim'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn, 1)
   imModul.reset()
   imAzim.reset()
   copy(imIn, imWrk1)
   for i in range(6):
       d = i+1
       directionalGradient(imWrk1, imWrk2, d)
       generateSupMask(imWrk2, imModul, imWrk4, True)
       convertByMask(imWrk4, imWrk3, 0, d)
       logic(imWrk2, imModul, imModul, "sup")
       logic(imWrk3, imAzim, imAzim, "sup")

The seismic_section image is loaded in the imA image, a 448x448 8-bit image. Two other
images, imB and imC are also defined:        
  
>>> imA = imageMb(448, 448)
>>> imB = imageMb(imA)
>>> imC = imageMb(imA)

Then, the vectorGradient operator is applied to imA. The modulus is put in imB and the
azimuth is in imC:

>>> vectorGradient(imA, imB, imC)

Finally, the modulus image is displayed with the rainbow palette. A new 6-color palette is
defined for displaying this azimuth image:

>>> imB.show(palette="rainbow")
>>> dirpal = (0,0,0,255,0,0,255,255,0,0,255,0,0,255,255,0,0,255, 255,0,255)
>>> addPalette("direction palette", dirpal)
>>> imC.show(palette="direction palette")

3) The gradient modulus does not raise any problem. This modulus corresponds to the
maximal directional gradient. On the contrary, the azimuth is not very accurate and robust.
This is due to two facts. Firstly, the directional dilation and erosion allow to compute the
maximum and minimum values on each directional segment but it does not indicate the
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respective positions of these extrema. Therefore, the direction of the gradient vector is
sometimes defined within about a 180° angle. Secondly, the retained direction corresponds to
the first occurrence of the maximum value. But this maximum may appear for various
directions. 
Therefore, more sophisticated operators should be designed. This will be addressed in the
next chapter.

Gradient modulus of the seismic_section image (top), gradient azimuth (bottom).
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The concept of residue is revisited in this paper with the description of classical residual
transforms and the introduction of new numerical operators.
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binary operator.
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1 Introduction

The transformations developed in the following exercises are more sophisticated. According
to our previous comparison, they are the true "machine-tools" of MM. They are at the
meeting point of geodesy and homotopy. We have already handled geodesic transformations,
therefore we shall only recall the notion of homotopy, and especially that of homotopic
transformation.

2 Binary thinnings and thickenings, reminder

Let T = (T1 ,T2 ) be a two-phase structuring element. The hit-or-miss transformation of a set
X by T is equal to:

X & T = (X 0 T1 ) 3 (Xc 0 T2 )
The thickening of X by T is equal to:

X  T = X ∪ (X * T)
and the thinning is defined by:

X  T = X\(X * T)
Thinning and thickening are both dual transformations:

(Xc T)c = [Xc ∪ (Xc * T)]c = X ∩ (Xc * T)c = X \ (X * T') = X  T'
where T' = (T2 ,T1 ) is the transposed double structuring element.

3 Homotopy

Two paths of a set X are homotopic if it is possible to superpose one another by a sequence
of continuous deformations. "Continuous" means without cut and that all intermediary paths
are included in X.
 

Homotopic transform (ϕ(X) and X can be superposed without tear) and homotopic paths
(the second one can be obtained by a continuous displacement of the first one).

Chapter 8
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EXERCISES

Although all the transformations introduced or used in the following exercises can be defined
on the hexagonal or square grids, for sake of simplicity, the hexagonal case will be used in
most cases.

Exercise n° 1

The most interesting structuring elements, T = (T1,T2) are those defined on the elementary
ball (hexagon or square):

T1 ⊂ H, T2  ⊂ H
We can even write: . Indeed, T1 and T2 must have no common point if we wantT1 3 T2 = —
X * T to be different from an empty set.
1) Test the various operators available in MAMBA: hitOrMiss, thin, thick, rotatingThin,
rotatingThick, fullThin and fullThick. These operators use the doubleStructuringElement
class which allows to define double structuring elements T = (T1,T2). A tool named

By extension, a transformation Ψ which preserves homotopy is said to be homotopic.
Intuitively, a homotopic transformation Y = Ψ(X) transforms the set X into a set Y that can
be superposed on X by a continuous deformation.
When the set X is digitized according to a (square or hexagonal) grid, matching paths is easy
since any path can be defined as the concatenation of elementary edges. A homotopic
transformation does not break any paths.

4 Greytone thinnings and thickenings

Let m(x) =  and M(x) = .sup
ycT2x

f(y) inf
ycT1x

f(y)

The thickening of f by T = (T1 ,T2 ) is defined by : 
(f  T) (x) = M(x), iff m(x) ≤ f(x) < M(x)

(f  T) (x) = f(x), if not.
The thinning of f by T = (T1 ,T2 ) is defined by:

(f  T) (x) = m(x), iff m(x) < f(x) ≤ M(x)
(f  T) (x) = f(x), if not.

5 Zone of influence, SKIZ

Let us define the zone of influence of a connected component of a set. Let X be a set
composed of several connected sub-sets:

X = 4
i

Xi

The zone of influence Z(Xi) of the connected component Xi, is the set of the points closer
(according to the distance d) to Xi than to any other connected component of X.

x c Z(Xi ) g d(x, Xi ) < d(x, Xj ),≤j ! i
The points of the space which do not belong to any influence zone are the points of the
skeleton by influence zones, or SKIZ.
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hitormissPatternSelector included in the mambaDisplay.extra module can be used to
define easily any double structuring element on the elementary square or hexagon. Try this
tool and the various methods associated with these double structuring elements.
2) Apply these operators to binary images. In particular, perform the following operations:
- delete the white and black isolated points in the noise image.
- contour a set in only one transformation.

Exercise n° 2: Geodesic thickenings and thinnings

Let X be a set included in Z. The geodesic thickening of X by a structuring element T
included in the elementary hexagon can be defined by:

(X  T)Z  = (X  T) ∩ Z
1) Test this transformation (with the operators geodesicThick, rotatingGeodesicThick and
fullGeodesicThick available in MAMBA).
2) Since thinning is the dual operation of thickening, geodesic thinning is defined by:

(X  T)Z  = Z\[(Z\X)  T']
where T’ is the transposed double structuring element. Test also this transformation with the
geodesicThin, rotatingGeodesicThin and fullGeodesicThin operators.

Exercise n° 3: Greytone thinnings and thickenings

1) Use the definition given above to program with MAMBA the greytone thinning and
thickening (limit your operators to the greyscale images and the hexagonal grid).
2) Use the same template as the one used in the binary case to program the greytone rotating
and full thinnings and thickenings. 

Exercise n° 4

1) Find all possible configurations (up to a rotation) for the neighborhood of a point in the
hexagonal grid (there are 14 possibilities). 
2) Prove that the relation of homotopy for two paths C1 and C2 with same origin and same
extremity included in a set X is a relation of equivalence. 
3) From this, deduce which of these configurations generate an homotopic thinning.

Exercise n° 5

1) Homotopic full thinnings with the double structuring elements L, M and D are available in
MAMBA and are named thinL, thinM and thinD). Test them and describe their main
properties and interests (use the holes and gruyere images).

L                                     M                                    D
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gruyereholes

2) Find and test the transformations in the MAMBA library allowing to extract the
characteristic points of these homotopic transforms:
- extremities
- n-uple points
- isolated points
3) The direction of rotation and the starting orientation of the structuring elements used for
the different thinnings are totally arbitrary. Consequently, more or less important variations
occur in the resulting transformed set. These variations may even generate artefacts.

Generate the two following images above and apply to them a L thickening (also called L
skeleton) and check the result. Is it possible to improve the algorithm?

Exercise n° 6

The purpose of this exercise is the analysis of the biases introduced when using the thinD
operator to compute the geodesic center of a simply connected set and the design of some
possible enhancements of the algorithm.
Each point of a set X that is simply connected (without holes) can be valued by the greatest
geodesic distance between this point and any other point of  X. Thus, we define a function on
X, called geodesic distance function and denoted d. The maxima of this function define the
extremities of X and it minimum (unique) is the geodesic center of the set.
1) Consider the following digital set X (on the hexagonal grid). Calculate its geodesic
distance function.
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2) Prove that, if x and y are two adjacent points of X, .d(x) − d(y) < 2
3) The D double structuring element (see previous exercise), used in homotopic thinnings,
introduces some biases because it is used in rotative thinnings. We could expect better results
regarding the position of the geodesic center if the various configurations composing this
structuring element were used in parallel. However, we know that this transformation (inf of
thinnings) is not homotopic. In order to overcome this problem, we can analyse in detail the
different configurations of  D. This structuring element can be splitted into three structuring
elements:

            
1 1

1 1 0
0 0

1 1
0 1 0

0 0

1 0
0 1 0

0 0
D3                            D2                            D1

Start with D3 configuration and try to find the possible values taken by d on the neighbor
points when this value is equal to n on the central point. Deduce from this analysis which
configurations could cause problems and propose a procedure to avoid these problems. 
4) Perform the same analysis for the D1 and D2 double structuring elements and propose also
solutions to the detected issues.
5) Use the previous results to design an algorithm generating the geodesic centers of a set
composed of simply connected components. Compare this procedure with the thinD
operator.
Use the metal1 image.

metal1
 
Exercise n° 7

1) Perform the SKIZ of the binary alumine image using the computeSKIZ operator available
in MAMBA. Is the SKIZ an homotopic transform?

alumine
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2) Test the geodesic thickening on the test_thick and test_thick_marker images. Perform a
full geodesic thickening, with fullGeodesicThick, of the test_thick_marker image using the
test_thick image as geodesic space. Try the transformation with the L and D double
structuring elements. Comment the results.

test_thick_markertest_thick

3) The geodesic zones of influence Z(Yi) of the connected components Yi inside a set X
 considered as a geodesic space are composed of the x of X closer (according toY = 4

i
Yi

the geodesic distance dX) to Yi than to any other connected component of Y:
x c Z(Yi ) g dX(x, Yi ) < dX(x, Yj ),≤j ! i

Use the geodesicSKIZ operator for obtaining the geodesic SKIZ of test_thick_marker inside
the geodesic space defined by test_thick.

Exercise n° 8

We already defined some directional gradients by using linear dilations and erosions (chapter
7, exercise n° 6). However, these gradients are known to be biased, especially for the
computation of the azimuth. In order to define more accurate operators, a new gradient can
be defined in the direction α by means of thickenings and thinnings. The directional gradient
in the direction α is defined by:

g (f) = (f ? T ) − (f ; T )

where T1 and T2 form the two-phase structuring element Tα  = (T1 ,T2 )α .

Double structuring element used in the directional gradient by thinning and thickening.

The gradient modulus is equal to the maximal directional gradient. But this maximal
directional gradient may occur in several directions simultaneously. Then, we have to take
into account all these maximal directions to compute a correct azimuth. The number of
directions where the directional gradient may take its maximum value is limited. Indeed,
three directions at most can be extracted in the hexagonal grid, four in  the square grid.
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1) Find all possible configurations of maximal directional gradients (up to a rotation, and in
the hexagonal grid). Their number is equal to 5.
2) In case of non adjacent directions, the gradient is considered to be 0. In case of adjacent
directions, a unique direction is selected, which is the mean direction of all present directions.
Which configurations do we obtain (up to a rotation)? Their number is equal to 3. What is the
resulting effect and how can it be avoided?

seismic_sectionpetrole

3) Program this new directional gradient based on thinnings and thickenings and apply it to
the petrole and seismic_section images.

Exercise n° 9: Classification of particles

This problem is not related to a particular study but underlies numerous applications. It
consists in separating particles or objects according to the number of holes they contain.  This
kind of problem is frequently addressed in industrial vision (discrimination of objects
according to the number of their perforations), in automated character recognition (character
classification), in bio-medical imagery (separation of cells with or without nucleus), etc. This
separation is in fact a direct application of the notion of homotopy.
Using the gruyere, holes, noise and two_three_holes images, solve the following problems:
1) In the image, separate the particles without hole from the particles with holes.
2) Among the particles with holes, separate those with one and only one hole from those with
more than one hole.
3) Among the particles with more than one hole, extract those with two holes only from those
with three and more.
4) Is it possible to design algorithms that separate objects according to their number of holes,
whatever this number?
5) Is the transform  which extracts the particles of a set X with at least n holes an algebraicn(X)
opening? And a size distribution?

two_three_holes
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Exercise n° 10: Extremities of particles

This exercise is the continuation of exercise n° 6. It uses the geodesic distance function and,
in particular, the geodesic center to extract the extremities of simply connected particles
(without holes). 
1) Compute the geodesic centers of a set X composed of simply connected components. Use
the procedure defined in exercise n° 6 and apply it to the eutectic and hand images. You can
also use the thinD operator to obtained the centroids instead of the true geodesic centers.
2) Compute the geodesic distance of the set X\{geodesic centers}, X itself being the geodesic
space (the successive levels of this function correspond to successive geodesic erosions).
3) Extract the extremities of the particles (they correspond to the maxima of the geodesic
distance). Compare the results obtained when using the true geodesic centers and the
centroids.

hand

Exercise n° 11: Dislocations in eutectics

The eutectic image represents a lamellar eutectic material. This structure is characterized by a
two-phase lamination, with here and there undesirable defects characterized by discontinuous
lamellae. These discontinuities due to dislocations in the crystalline assembly of the material
jeopardize its mechanical properties. The loss in resistance depends, among other things, on
the length of these dislocations. Moreover, the size of the cells delimited by these
dislocations is also important. You then have to find a sequence of operations for
materializing these dislocations so as to be able to measure their length.
1) Use the previous exercise to extract the farthest extremities of the lamellae.
2) Try next to connect judiciously these extremities, so as to obtain an arc materializing each
dislocation. Try also to extract the cells delimited by the dislocations.

eutectic
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SOLUTIONS

Exercise n° 1

1) The hitormissPatternSelector is a tool which helps you to design easily double
structuring elements. Just click once (for setting the point to one) or twice (for setting it to 0)
in the corresponding window, then validate when ready. The operator will return the
corresponding structuring element.

hitormissPatternSelector for the hexagonal and square grids. The pixels belonging to T1

are in green, those belonging to T2 are in red.

>>> from mambaDisplay.extra import *
>>> dse = hitormissPatternSelector()
>>> dse
DoubleStructuringElement(structuringElement([2, 5], mamba.HEXAGONAL),
structuringElement([1, 4, 6], mamba.HEXAGONAL))

Note that the first structuring element corresponds to T2. Each structuring element can be
extracted with the getStructuringElement(ground) method:

>>> s1 = dse.getStructuringElement(1)
>>> s1
structuringElement([1, 4, 6], mamba.HEXAGONAL)
>>> s2 = dse.getStructuringElement(0)
>>> s2
structuringElement([2, 5], mamba.HEXAGONAL)

The same tool also exists for the square grid:

>>> dse = hitormissPatternSelector(SQUARE)
>>> dse
doubleStructuringElement(structuringElement([4, 5, 6], mamba.SQUARE),
structuringElement([0, 2, 8], mamba.SQUARE))

rotatingThin and rotatingThick perform respectively successive thinnings and thickenings
by rotating the double structuring element after each step. The operation stops when a
complete rotation has been performed. The rotation is always clockwise.
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fullThin and fullThick perform complete thinnings and thickenings by using successive
rotations until idempotence.

2) Examples:
- Deletion of isolated points
Define the following double structuring element (with hitormissPatternSelector):

0 0
0 1 0

0 0

>>> dse = hitormissPatternSelector()
>>> dse
doubleStructuringElement(structuringElement([1, 2, 3, 4, 5, 6], mamba.HEXAGONAL),
structuringElement([0], mamba.HEXAGONAL))

Then load the noise image into imbin1 and proceed as follows:

>>> thin(imbin1, imbin2, dse)

Similarly, define the following double structuring element and apply it to the previous
resulting image:

1 1
1 0 1

1 1

>>> dse = hitormissPatternSelector()
>>> dse
doubleStructuringElement(structuringElement([0], mamba.HEXAGONAL),
structuringElement([1, 2, 3, 4, 5, 6], mamba.HEXAGONAL))
>>> thick(imbin2, imbin2, dse)

Removing black and white isolated points in the noise image.

- Contour detection
The contour C(X) of a set X corresponds to the points of X which do not belong to the eroded
set:

C(X) = X\(X 0 H) = X 3 (X 0 H)c

This can also be written:
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C(X) = X  T , with T = (∅, H)

Load the objects image in imbin1, define the corresponding double stucturing element and
perform the thinning:

>>> dse = doubleStructuringElement(structuringElement([], mamba.HEXAGONAL),
structuringElement([0, 1, 2, 3, 4, 5, 6], mamba.HEXAGONAL))
>>> thin(imbin1, imbin2, dse)

Contour of a set obtained by a thinning operator.

Exercise n° 2: Geodesic thickenings and thinnings

1) geodesicThick, rotatingGeodesicThick and fullGeodesicThick are defined in MAMBA.
Define the following double structuring element (T1 is composed of the pixel in direction 1
and T2 contains the pixel in the opposite direction):

>>> dse = doubleStructuringElement(structuringElement([4], mamba.HEXAGONAL),
structuringElement([1], mamba.HEXAGONAL))

Then, load objects in imbin1 and perform a size 30 dilation of the image in imbin2 which will
be used as the geodesic space:

>>> dilate(imbin1, imbin2, 30)

Geodesic full thickening of the object image (in green) inside the dilated image (in yellow).
Some points (in red) do not belong to the thickening because their neighborhood

configuration does fit the double structuring elements used.
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Then, perform a full geodesic thickening (until idempotence). Due to the configuration used,
some black points appear in the final result.

>>> fullGeodesicThick(imbin1, imbin2, imbin3, dse)

2) A geodesic thinning is achieved by using a thickening by the dual structuring element, so
as to avoid the problems due to edge effects already mentioned about geodesic erosions.

Exercise n° 3: Greytone thinnings and thickenings

In the definition of the greytone thinnings and thickenings, the operations  andsup
ycT2x

f(y)

 are respectively the dilation by T2 and the erosion by T1. A grey thinning orinf
ycT1x

f(y)

thickening is obtained by testing the inequalities between the dilation, the erosion and the
initial image. This can be done with the generateSupMask operator. The pixels where the
inequalities are fulfilled are given the value of the erosion (for the thickening) or the dilation
(for the thinning). This is achieved with the convertByMask and logic operators. These
operators (limited to greyscale images on the hexagonal grid) are defined as follows:

def greyThin(imIn, imOut, dse):
   """
   Grey thinning of the 'imIn' image by the double structuring element 'dse'.
   For sake of simplicity, this operator is defined only on the hexagonal grid and
   with greyscale (8-bit) images.
   """

   imDil = imageMb(imIn)
   imEro = imageMb(imIn)
   mask1 = imageMb(imIn, 1)
   mask2 = imageMb(imIn, 1)
   gmask = imageMb(imIn)
   dilate(imIn, imDil, se=dse.getStructuringElement(0))
   erode(imIn, imEro, se=dse.getStructuringElement(1))
   generateSupMask(imIn, imDil, mask1, True)
   generateSupMask(imEro, imIn, mask2, False)
   logic(mask1, mask2, mask1, "inf")
   convertByMask(mask1, gmask, 0, 255)
   logic(gmask, imDil, imDil, "inf")
   negate(gmask, gmask)
   logic(gmask, imIn, imOut, "inf")
   logic(imDil, imOut, imOut, "sup")

def greyThick(imIn, imOut, dse):
   """
   Grey thickening of the 'imIn' image by the double structuring element 'dse'.
   For sake of simplicity, this operator is defined only on the hexagonal grid and
   with greyscale (8-bit) images.
   """

   imDil = imageMb(imIn)
   imEro = imageMb(imIn)
   mask1 = imageMb(imIn, 1)
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   mask2 = imageMb(imIn, 1)
   gmask = imageMb(imIn)
   dilate(imIn, imDil, se=dse.getStructuringElement(0))
   erode(imIn, imEro, se=dse.getStructuringElement(1))
   generateSupMask(imIn, imDil, mask1, False)
   generateSupMask(imEro, imIn, mask2, True)
   logic(mask1, mask2, mask1, "inf")
   convertByMask(mask1, gmask, 0, 255)
   logic(gmask, imEro, imEro, "inf")
   negate(gmask, gmask)
   logic(gmask, imIn, imOut, "inf")
   logic(imEro, imOut, imOut, "sup")

Rotating grey thinnings and thickenings are designed as follows (the double structuring
element is rotated clockwise):

def rotatingGreyThin(imIn, imOut, dse):
   """
   Performs a complete rotation of  grey thinnings , the initial 'dse' double
   structuring element being turned one step clockwise after each thinning.
   At each rotation step, the previous result is used as input for the next
   thinning (chained thinnings). This operator works only on the hexagonal grid
   and on 8-bit images.
   """
   
   copy(imIn, imOut)
   for i in range(6):
       greyThin(imOut, imOut, dse)
       dse = dse.rotate()

def rotatingGreyThick(imIn, imOut, dse):
   """
   Performs a complete rotation of grey thickenings, the initial 'dse' double
   structuring element being turned one step clockwise after each thickening.
   At each rotation step, the previous result is used as input for the next
   thickening (chained thickenings). This operator works only with 8-bit images
   and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
   for d in range(6):
       greyThick(imOut, imOut, dse)
       dse = dse.rotate()

Finally, full grey thinnings and thickenings are programmed with the following operators: 
 
def fullGreyThin(imIn, imOut, dse):
   """
   Performs a complete grey thinning of 'imIn' with the successive rotations of 'dse'
   (until idempotence) and puts the result in 'imOut'.
   Works with greyscale images and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
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   v1 = computeVolume(imOut)
   v2 = 0
   while v1 != v2:
       v2 = v1
       rotatingGreyThin(imOut, imOut, dse)
       v1 = computeVolume(imOut)

def fullGreyThick(imIn, imOut, dse):
   """
   Performs a complete grey thickening of 'imIn' with the successive rotations of 'dse'
   (until idempotence) and puts the result in 'imOut'. 
   Works with greyscale images and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 != v2:
       v2 = v1
       rotatingGreyThick(imOut, imOut, dse)
       v1 = computeVolume(imOut)

You can test these operators with some double structuring elements already existing in the
MAMBA library. Use for instance the hexagonalL double structuring element on the ferrite1
image, loaded in im1:

>>> hexagonalL
doubleStructuringElement(structuringElement([1, 6], mamba.HEXAGONAL),
structuringElement([3, 4], mamba.HEXAGONAL))

0 0
* * *

1 1

>>> fullGreyThick(im1, im2, hexagonalL)
>>> fullGreyThick(im1, im2, hexagonalL)

ferrite1 image (left), its full thinning with the hexagonalL structuring element (middle) and
its full thickening with the same structuring element (right).
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Most of the time, full thinning and thickening operators are not very useful as they produced
results which are not understandable easily. Moreover, they are often slow as many iterations
are needed before reaching idempotence.

Exercise n° 4

1) Below are displayed the 14 configurations (the central point is assumed to be equal to 1):

Possible neighborhood configurations of a point on the hexagonal grid (up to a rotation).
                                        (12)                        (13)                       (14)

                          (8)                         (9)                         (10)                        (11)

                                        (5)                          (6)                          (7)

                        (1)                          (2)                          (3)                          (4)

                           
2) Obvious. The homotopy relation is an equivalence relation (that is a reflexive, symmetric
and transitive relation).
3) The thinning by one of the 14 possible configurations replaces the central point 1 by 0. To
extract the configurations which generate homotopic thinnings, we must verify that:
- any path which goes by the central point (this central point is not an extremity of the path)
can be replaced, after thinning, by an equivalent path in the hexagonal neighborhood.
- the points which belong to the neighborhood are not modified by the thinning  in such a
way that the alternate paths could also be broken.
This procedure can be illustrated in the case of configuration n° 4, n° 6 and n° 10 for
instance. 
When thinning with the configuration n° 4, the only initial path is cut whilst the points on the
neighborhood are not suppressed. This configuration does not produce an homotopic
thinning.

Thinning with configuration n° 4 removes the central point whilst the neighborhood points
are not suppressed. The initial path being broken, the thinning is not homotopic.
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Thinning with the configuration n° 6 does not break the initial paths. Therefore, this
configuration produces an homotopic thinning.

Initial paths before thinning (left) and equivalent paths after thinning (right). The central
point has been removed but a path joining the extremities of the initial path can still be

defined because the neighborhood points remain after thinning.
  

Examples of possible path modifications with configuration n° 10. Points ((b) and (c)
cannot be suppressed, allowing thus alternate paths when the central point is removed.

Analysing configuration n° 10 is more complex. We can notice first that, in this
configuration, points (b) and (c) are never removed when the central point is replaced by 0,
because their neighborhood does not match the double structuring element configuration (see
figure above). However, points (a) and/or (d) may be removed. If these points are not
removed, the path joining them through the central point is replaced by the path passing
through (b) and (c). If, on the contrary, (a) is removed, this means that its neighborhood
corresponds to the configuration n° 10. However, point (e) is not suppressed by thinning. So,
any path starting from (e) and passing through (a) and the central point can be replaced by the
path drawn in the figure (bottom right). It is the same if the initial path starts from point (f),
when this later point is not suppressed by the thinning. If point (f) is also removed, the point
which is just over it (point in direction 1 between (e) and (f)) remains unchanged and the
initial path starting from this point, passing through (f) and joining (d) through the central
point can still be replaced by a path passing through  (e), (b) and (c) without cut.
Then, configuration n° 10 always produces an homotopic thinning.

When performing the same analysis with the other configurations, we can see that only those
where both T1 and T2 contain only one connected component generate homotopic thinning,
namely: configurations 2, 3, 6, 10 and 13. The same configurations where the central point is
equal to 0 generate homotopic thickenings.
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Exercise n° 5

1) The L, M and D structuring elements are combinations of some of the above mentioned
homotopic configurations (see previous exercise). For instance, L can be considered as the
union of configuration n° 3, n° 6, n° 6 rotated counterclockwise and n° 10 also rotated
counterclockwise. Then we have:

 with X ? L = 4
i
(X ? Li ) L = Li

 being the sequence of configurations listed above. Li

Homotopic full thinnings applied on the holes (left) and gruyere (right) images. From top
to bottom: original image, thinL, thinM and thinD.

Similarly:
X ; L = 3

i
(X ; Li )
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It can be shown that these unions of thickenings or intersections of thinnings produce
homotopic transforms, provided that the listed double structuring elements (with the right
orientation) are used.
Note that, in general, unions of homotopic thickenings and intersections of homotopic
thinnings (named infThin and supThick in MAMBA) are not homotopic.
Load the holes and gruyere images and test the thinL, thinM and thinD operators.
These three homotopic transformations give quite different results :
- Mthin  produces a rather high number of dendrites and barbs (very sensitive to local
irregularities).
- Dthin  reduces any simply connected set to one point (this point exists in the resulting
images although not very visible). On the contrary, when a connected components contains
holes, they are preserved (remember that it is an homotopic transform) and some thick parts
may remain.
- Lthin is the only transformation whose behavior corresponds to the intuitive idea one may
have of the skeleton of a set. This is why this thinning is sometimes called L-skeleton.
Note that thickM is the dual transform of thinD and thickD, the dual transform of thinM. The
double structuring element L is auto-dual.

2) Extracting characteristic points of the homotopic thinnings
The MAMBA operators available for extracting extremities and mutliple points are
respectively endPoints and multiplePoints. On the hexagonal grid, for instance, extremities
correspond to configurations n° 1, 2 and 3 (up to a rotation).

 
0 0

0 1 0
0 0

4
1 0

0 1 0
0 0

4
1 1

0 1 0
0 0

=
* *

0 1 0
0 0

In order to simplify the structuring element, note that these three configurations can be
merged in a single one (see above).

Skeleton (in yellow), its end points in red and its multiple points in green.

We already extracted isolated points (see exercise n° 1). They correspond to a hit-or-miss
transform with configuration n° 1.

3) To generate the first test image into  imbin1, do the following (use the method setPixel):

>>> imbin1.reset()
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>>> imbin1.setPixel(1, (127, 127))
>>> imbin1.setPixel(1, (128, 127))
>>> imbin1.setPixel(1, (131, 127))
>>> imbin1.setPixel(1, (132, 127))

An for the second one in imbin2:

>>> imbin2.reset()
>>> imbin2.setPixel(1, (128, 127))
>>> imbin2.setPixel(1, (131, 127))
>>> imbin2.setPixel(1, (129, 128))
>>> imbin2.setPixel(1, (131, 128))

Then, perform the L-skeleton by thickening:

>>> thickL(imbin1, imbin3)

First test image (left) and result of the full L thickening (right).

Perform the same transformation on the second test image:
 
>>> thickL(imbin2, imbin4)

Second test image (left) and result of the full L thickening (right).

In both cases, the result is highly biased. The separation between the two connected
components should be vertical. This bias comes from the fact that the thinning is not
isotropic, since each structuring element is applied one direction after the other. Therefore,
the first step of thickening tends to propagate the result in the first direction and the following
thickenings increase the anisotropy. 
Changing the direction of the first thickening does not reduce the bias, as shown in the
following test. Instead of using the hexagonalL structuring element in the thickL operation,
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we can use a counterclockwise rotated structuring element. This can be done by means of the
following commands:

>>> dse = hexagonalL
>>> dse = dse.rotate(-1)
>>> fullThick(imbin2, imbin3, dse)

Applied on the second test image, the result is not better.

Result of the thickL operation (right) applied on the second test image (left) when the
starting direction is different.

More efficient algorithms exist. Some of them use structuring elements defined on hexagons
of size 2 where all rotations can be used simultaneously. Another solution consists in using a
geodesic homotopic thinning in combination with the skeleton by maximal balls. Let us see
how to proceed with the following example.

Initial disk image (left), geodesic space (middle) and set to be thinned inside this geodesic
space (right).

Load image disks into imbin1, then compute the skeleton by maximal balls (by openings):

>>> skeletonByOpening(imbin1, imbin2, im32_1)

Inverting the result provides the geodesic space (in imbin3), while the set to be thinned is the
initial set minus its skeleton points (in imbin4):

>>> negate(imbin2, imbin3)
>>> logic(imbin1, imbin3, imbin4, "inf")
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We can then perform the full geodesic thinning with the L structuring element and add the
initial skeleton by openings to the thinning to get the final result::

>>> fullGeodesicThin(imbin4, imbin3, imbin4, hexagonalL)
>>> logic(imbin2, imbin4, imbin4, "sup")

Connected skeleton: in yellow, centers of maximal hexagons, in red, connecting points
added by the geodesic thinning.

 
This skeleton is interesting as it contains the centers of the maximal hexagonal and it is also
connected, which was not the case with the simple skeleton by opening. 

Exercise n° 6

1) We can notice that the value taken at point x of X by the function d corresponds to the
minimal size n of the geodesic dilation  of x which fills entirely the set X:X

n

  where  such that ≤x c X, d(x) = n n = inf(i) X
i (x) = X

This function is given in the figure below. Its maxima correspond to the extremities of the
particle and the minimum to the geodesic center. Note that, in the difgital case, these extrema
are not reduced to a single pixel.

Geodesic distance function.

2) Consider two adjacent points x and y and suppose that d(x) = n and  (n > 1).d(y) m n + 2
We have:

X
n (x) = X and X

n+1(y) ! X
But:
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X
1 (y) q x

Thus:
X
n+1(y) q X

n (x) = X
The geodesic dilation of size (n + 1) of y fills X. Therefore d(y) cannot be greater than or
equal to (n + 2).

3) Let us consider the D3 configuration. Assume that the value of d at the center point is equal
to n. The value of d on the three neighbor points can possibly be equal to n, n - 1 or n + 1.
However, among the 27 initial configurations, many of them can be discarded because either
these configurations are identical to others up to a symmetry or they are not possible because
the difference of the d function values on adjacent points is larger than 1. For instance, this
configuration is not possible because the difference of the d values on two adjacent points is
greater than 1:

  
n − 1 n + 1

n − 1 n 0
0 0

This first filtering allows to eliminate 15 configurations. Among the 12 remaining ones, a
second analysis suppresses some of them. For instance, this configuration is also impossible:

n − 1 n − 1
n − 1 n 0

0 0

Indeed, let us consider the left neighbor point (p1) where d is equal to (n - 1). The minimal
path of length (n - 1) joining this point to its farthest point p’ goes westward as shown in the
figure below. But, in this case, p3 is linked to p’ by a minimal path of length n or (n + 1).
Therefore, there exists a point p’ of X at a geodesic distance greater than (n - 1) from p3; d(p3)
cannot be equal to (n - 1).

The above configuration is not possible otherwise p3 would necessarily be linked to p’ by a
minimal geodesic path of length greater than (n - 1).

This configuration, obviously, is also impossible (otherwise, d(p0) could not be equal to n):
n + 1 n + 1

n + 1 n 0
0 0

After this second sieving performed on these 12 configurations, only four of them remain
possible (up to rotations and symmetries):
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n − 1 n

n − 1 n 0
0 0

n − 1 n
n n 0

0 0
                                                       A                                      B

          
n n + 1

n − 1 n 0
0 0

n n + 1
n + 1 n 0

0 0
                                                 C                                         D
We can notice that, for any of them, there always exists at least one neighbor point where d is
equal to n, the value taken by the geodesic distance function in p0.
We must now find configurations among these four remaining ones which can be problematic
when thinnings with all the rotations of D3 are applied in parallel, in particular,
configurations where point p2 may be removed at the same time as the central point p0, which
would break an homotopic path and also configurations where the neighbor points with d
equal to n could be removed. 
Let us see the first configuration (A). To remove p2 with a thinning by D3 (rotated), the
following pattern must appear:

0 0

0 p2

(n − 1)
p3

(n)

p1

(n − 1)
p0

(n)
0

0 0
However, this is not possible because the pattern around p2 corresponds to (after rotation and
modification of the central value):

n + 1 n
n + 1 n 0

0 0

But this configuration does not match any of the four above configurations. So, in
configuration (A), p2 is never removed whatever the direction of the D3 structuring element.
The same conclusion holds for the configuration (B).
Regarding points p1 and p3 in these configurations, if p0 has been replaced by 0 after a
thinning by D3 in a given direction, no thinning in any other direction can remove p1 or p3.

After the removal of p0 by thinning in the indicated direction, neither p1 nor p3 can be
removed by thinning in any other direction.

p2 p3

p1 0 0
0 0

Ç
Direction of thinning

p2 p3

p1 p0 0
0 0

Contrary to configurations (A) and (B), in configurations (C) and (D), the points p0 and p2

may be removed simultaneously by thinnings with D3 in opposite directions. We may have,
for instance, the following configuration:
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0 0
0 p2 p3

p1 p0 0
0 0

where p0 and p2 are replaced by 0 after simultaneous thinnings by two double structuring
elements in opposite directions. This removal must obviously be avoided because it would
break possible homotopic paths joining p1 and p3.
This long analysis of the D3 structuring element allows to design the following procedure
which eliminates all the D3 configurations (except those which are compulsory for preserving
homotopy) so that the only remaining configurations are configurations D2 and D1:

For directions i = 1, 2, 3 (of the hexagonal grid):
Perform hit-or-miss transforms of the set X with D3 in direction i and i + 180°
Perform the union of these two hit-or-miss transforms
Extract isolated points of the union
Remove isolated points from the set X (update the set)

This procedure must be iterated until idempotence. The resulting set has two properties:
- no D3 configuration is present except those which are needed to preserve homotopy.
- The geodesic distance function of the resulting set is identical on the remaining points to the
initial function. 
As a consequence, the geodesic distance function of the resulting set is identical on the
remaining points to the initial one and the geodesic center and the extremities of this resulting
set are the same up to the possible removed points.
This procedure is not isotropic as the final result depends on the order of use of the three
directions in the hit-or-miss operators. But this fact has no unfortunate consequence for the
rest of the process.

Initial set and its geodesic distance function (left), result of the complete mixed thinning by
D3 double structuring elements (left). The grey points have been removed, but the geodesic

distance function is not changed on the remaining points. The new extremities and the
geodesic center are still embedded in the previous ones. 

The complete transformation is achieved by the following operator named thinByD3:

def thinByD3(imIn, imOut):
   """
   Controlled thinning by the D3 structuring element using a mixture of
   rotational thinnings and parallel ones in order to preserve the extremities
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   and the geodesic centers of the initial binary image 'imIn'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imOut)
   dse3 = doubleStructuringElement(structuringElement([2, 3, 4], HEXAGONAL),
   structuringElement([0, 1, 5, 6], HEXAGONAL))
   dse0 = doubleStructuringElement(structuringElement([1, 2, 3, 4, 5, 6], HEXAGONAL),
   structuringElement([0], HEXAGONAL))
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 <> v2:
       v2 = v1
       for i in range(3):
           hitOrMiss(imOut, imWrk1, dse3)
           hitOrMiss(imOut, imWrk2, dse3.rotate(3))
           logic(imWrk1, imWrk2, imWrk1, "sup")
           hitOrMiss(imWrk1, imWrk2, dse0)
           diff(imOut, imWrk2, imOut)
           dse3 = dse3.rotate(1)
       v1 = computeVolume(imOut)

Load the metal1 image in imbin1 and enter the following command:

>>> thinByD3(imbin1, imbin2)

metal1 image (left) and result of a first step of complete thinning using the thinByD3
operator (right). No D3 configuration is present in the resulting image except those which

are needed to preserve homotopy.

4) Analysing thinnings by double structuring elements D1 and D2 is simpler and easier.
Concerning D1, only the two following configurations are possible:

        
n − 1 0

0 n 0
0 0

n 0
0 n 0

0 0
The first one corresponds to an extremity and the thinning does not raise any problem, except
when n = 1. This configuration corresponds then to an isolated point. The second one is
possible only when n = 1. In this case, the two points form an single connected component
and will be removed by the inf of thinnings by the D1 structuring elements. This connected
component is a geodesic center. 
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Three configurations (up to rotations and symmetries) are possible with the D2 double
structuring element:

        
n − 1 n − 1

0 n 0
0 0

n − 1 n
0 n 0

0 0

n n
0 n 0

0 0

In the first configuration, the central point is an extremity and is removed by thinning. This is
also the case in the second configuration (remember that no D3 configuration exists). The
third one is, as for D1, possible only when n = 1. In this case, the three points are removed
and, as for D1, they form a single connected component and is a geodesic center.

5) The previous analysis allows to design a procedure to extract the geodesic centers of the
simply connected components of an image. The successive steps of the procedure are iterated
until idempotence:
- The thinBy3D operator is applied to the set.
- An intersection of thinnings by all the rotations of D2 and D1 is performed on the previous
result. The connected components which have been suppressed after this step correspond to
geodesic centers.
- The geodesic reconstruction of the previous result (thinBy3D operator) using the last step
(intersection of thinnings) does not rebuild the removed geodesic centers. A set difference
extracts them and they can be reintroduced in the last result before a new iteration of the
whole procedure.
This procedure, iterated until idempotence, is realised by the geodesicCenter operator:

def geodesicCenter(imIn, imOut):
   """
   Computes the geodesic centers of the connected components of 'imIn' by using
   successive thinnings by D3, then D2 and D1 until idempotence.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imOut)
   dse1 = doubleStructuringElement(structuringElement([1, 2, 3, 4, 5], HEXAGONAL),
   structuringElement([0, 6], HEXAGONAL))
   dse2 = doubleStructuringElement(structuringElement([2, 3, 4, 5], HEXAGONAL),
   structuringElement([0, 1, 6], HEXAGONAL))
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 <> v2:
       v2 = v1
       thinByD3(imOut, imOut)
       infThin(imOut, imWrk1, dse2)
       infThin(imOut, imWrk2, dse1)
       logic(imWrk1, imWrk2, imWrk1, "inf")
       copy(imWrk1, imWrk2)
       build(imOut, imWrk2)
       diff(imOut, imWrk2, imWrk2)
       logic(imWrk1, imWrk2, imOut, "sup")
       v1 = computeVolume(imOut)
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Load image metal1 in imbin1 and enter:

>>> geodesicCenter(imbin1, imbin2)
   

Geodesic centers (in red, after a dilation) of the metal1 image (in yellow) obtained by the
geodesicCenter operator.

This operator can be compared to the thinning with the double structuring element D
producing a single point (named centroid) per particle. Use again the metal1 image and enter
the following commands:

>>> geodesicCenter(imbin1, imbin2)
>>> thinD(imbin1, imbin3)

The results are displayed in the following image. The differences are important when the
connected components are elongated with significant variations in thickness. However, in
many cases, the bias is not so important. This  is why the thinD operator is very often used as
it is simpler and faster. Remind also that these operators work only on the hexagonal grid.
There exists in MAMBA an operator adapted to the square grid for extracting centroids. It is
named homotopicReduction and it is more complex than the hexagonal one.
 

Geodesic centers obtained with the geodesicCenter procedure in yellow, with the thinD in
green (centroids). When both centers are superposed, they appear in red.

Exercise n° 7

1) Load the alumine image in imbin1 and enter:

>>> computeSKIZ(imbin1, imbin2)
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alumine image (left) and its SKIZ (right).

This transformation, as shown in the example, is not homotopic: the hole in the left particle is
filled after the SKIZ.

2) Load the test_thick image in imbin1 and the test_thick_marker image in imbin2, then enter
the following commands successively:

>>> fullGeodesicThick(imbin2, imbin1, imbin3, hexagonalL)
>>> fullGeodesicThick(imbin2, imbin1, imbin3, hexagonalD)

Result of the geodesic thickening when the L structuring element is used (left image) and
when the D structuring element is used (right image).

test_thick_markertest_thick

You may also display the imbin3 image before launching the transformations in order to see
the propagation of the thickening with the two structuring elements:

>>> imbin3.show()
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Using the L structuring element does not allow to invade the regions without thickness of the
geodesic set. On the contrary, this propagation is possible when using the D structuring
element. However, this structuring element produces many barbs.

          
0 0

* * *
1 1

0 0
* * 0

1 *
L                                   D

3) As it has been shown previously, computing the geodesic SKIZ with thickenings require to
use carefully a judicious combination of structuring elements in order to avoid the biases and
defects introduced by these transformations. This operator fortunateley already exists in
MAMBA. It is not based on thickenings but on the watershed transform (see next chapter). It
is named geodesicSKIZ. Try it with test_thick and test_thick_marker respectively loaded in
imbin1 and imbin2:
 
>>> geodesicSKIZ(imbin2, imbin1, imbin3)

Geodesic SKIZ (the boundary between the zones of influence is in green) of
test_thick_marker (in red) inside the geodesic space test_thick (in yellow).

  
Exercise n° 8

1) As already mentioned in exercise n°6 in the previous chapter, computing the gradient
azimuth requires to compute the directional gradients gα(f) for all the directions α that can be
exhibited on the digitization grid. Then, the gradient azimuth is the direction α that
corresponds to the highest directional gradient. Since the processing is made on hexagonal
grid, there are six possible directions for the azimuth. However, several directions of
directional gradients may happen to be maximal values. This phenomenon is annoying as the
gradient vector is unique at any point of the image. It is therefore necessary to correct the
rough image of the azimuths obtained by simply detecting the direction(s) of highest
directional gradient. In order to do so, a first transformation allows to detect all the directions
for which the directional gradient is maximum.
Computing these gradients by thickening/thinning implies that the directional gradients can
be maximal in three directions at most. The set of the possible configurations of maximal
directional gradients (up to the rotations) is given below:
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Set of all the configurations where the directional gradient can be maximal (its value is the
same for all the concerned directions).

The procedure for computing this directional gradient with thickenings and thinnings, named
thinThickGradient, is given below:

def thinThickGradient(imIn, imOut, dir):
   """
   Computes the modulus of the directional gradient in direction 'dir' of 'imIn' and
   stores the result in 'imOut'. A greyscale thickening and a greyscale thinning are
   used.
   """
   
   imWrk = imageMb(imIn)
   se = structuringElement([dir], HEXAGONAL)
   dse = doubleStructuringElement(se.transpose(), se)
   greyThick(imIn, imWrk, dse)
   greyThin(imIn, imOut, dse)
   sub(imWrk, imOut, imOut)

2) If the maximal gradient directions are not adjacent, then the gradient is considered to be
zero. Otherwise a unique direction is chosen, which is the mean directions of all present
directions. The initial sorting is illustrated in the following figure:

Among the above possible configurations, only these three correspond to a non zero
directional gradient.

The second configuration is quite interesting, as, in this case, the mean direction is one of the
conjugated directions of the grid. This is the reason why the azimuth of the final gradient is
coded on  twelve directions instead of six. Each direction is coded by a numerical value in the
range [0,12].
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Final azimuths retained from the above configurations. The second one is defined on
conjugated directions.

3) To program the complete gradient (modulus and azimuth), we define first a procedure
named roughVectorGrad. This procedure computes the modulus of the gradient and
generates an image coding all the directions where the directional gradient is maximal. This
coding stores in the bit plane (i -1) all the pixels where the gradient is maximal in the
direction i. For instance, if , for a given pixel, the gradient is maximal in directions 1, 3 and 4,
the value of the returned function is equal to 13 (20+22+23). This procedure is defined as
follows:

def roughVectorGrad(imIn, imOut1, imOut2):
   """
   Initial vectorial gradient of the 'imIn' image. 'imOut1' contains the modulus
   with some erroneous values (non zero) where the azimuth should be egal to zero.
   'imOut2' contains a first computation of the azimuth: all the directions where
   the modulus is maximal are stored in the various bit planes of 'imOut2'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   imOut1.reset()
   imOut2.reset()
   for i in range(6):
       dir = i + 1
       thinThickGradient(imIn, imWrk1, dir)
       generateSupMask(imWrk1, imOut1, imMask, True)
       convertByMask(imMask, imWrk2, 255, 0)
       logic(imOut2, imWrk2, imOut2, "inf")
       generateSupMask(imWrk1, imOut1, imMask, False)
       logic(imWrk1, imOut1, imOut1, "sup")
       copyBitPlane(imMask, i, imOut2)

Image petrole (left), gradient modulus provided by the roughVectorGrad (middle), azimuth
directions coded by the same procedure and colored with the patchwork palette (right).
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Note that the result is not correct yet, not only for the azimuth but also for the modulus as this
component of the gradient may be different of 0 simply because non adjacent directions may
have returned equal non zero values.
This is why this intermediary procedure must be followed by a final one, named
vectorialGradient, which generates the right directions of the azimuth and correct the wrong
values of the modulus by replacing them by 0.
The generation and coding of the final directions uses a look-up table. This look-up table is a
list which contains at index i (coding of the previous directions) the coding of the new
gradient direction. For example, an initial coding equal to 7 (directions 1, 2 and 3) will be
equal to 3 (direction 2) after correction. This look-up table, named GradLut is defined by the
defineGradLut procedure:

def defineGradLut():
   """
   Generation of the look-up table correcting the initial coding of the azimuths
   provided by the roughVectorGrad function.
   """
   
   gradLut = [0 for i in range(256)]
   for i in range(6):
       j = (2 ** i)
       gradLut[j] = (2 * i) + 1
       j = j + (2 ** (i + 1)) % 63
       gradLut[j] = 2 * (i + 1)
       j = j + (2 ** (i + 2)) % 63
       gradLut[j] = (2 * (i + 1) + 1) % 12
   return gradLut

Launch the procedure to get the look-up table:

>>> defineGradLut()
[0, 1, 3, 2, 5, 0, 4, 3, 7, 0, 0, 0, 6, 0, 5, 0, 9, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 7, 0, 0, 0, 11, 12, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Coding of the 12 directions of azimuth.
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Twelve directions are thus defined, the odd directions correspond to the main directions of
the hexagonal grid and the even directions to the conjugated directions.
The final gradient operator, named vectorialGradient, uses this look-up table to code
correctly the directions of the azimuth and replaces by zero the values of the modulus where
the azimuth is also equal to zero: 

def vectorialGradient(imIn, imOut1, imOut2):
   """
   Vectorial gradient of the 'imIn' image. 'imOut' contains the gradient modulus and
   'imOut2' contains the gradient azimuths coded by twelve directions.
   """
   
   imWrk = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   gradLut = defineGradLut()
   roughVectorGrad(imIn, imOut1, imWrk)
   lookup(imWrk, imOut2, gradLut)
   threshold(imOut2, imMask, 0, 0)
   convertByMask(imMask, imWrk, 255, 0)
   logic(imOut1, imWrk, imOut1, "inf" )

This gradient can be applied to the seismic_section image which has already been used in
exercise n°6 in the previous chapter. Load it in the imA image, a 448x448 8-bit image. Two
other images, imB and imC are also defined:        
  
>>> imA = imageMb(448, 448)
>>> imB = imageMb(imA)
>>> imC = imageMb(imA)

Then, the vectorialGradient operator is applied to imA. The modulus is put in imB and the
azimuth is in imC:

>>> vectorialGradient(imA, imB, imC)

The modulus image can be displayed again with the rainbow palette. For the azimuth, as 12
directions are now available, a new palette can be defined to display it:

>>> imB.show(palette="rainbow")
>>> dir12pal = (0,0,0, 255,0,0, 255,128,0, 255,255,0, 128,255,0, 0,255,0, 0,255,128,
0,255,255, 0,128,255, 0,0,255, 128,0,255, 255,0,255, 255,0,128)
>>> addPalette("direction12 palette", dir12pal)
>>> imC.show(palette="direction12 palette")

Color palette used to display the twelve directions of the azimuth in the vectorialGradient
procedure.

1          2          3          4           5          6           7          8          9          10         11        12
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Gradient modulus of the seismic_section image (top), gradient azimuth (bottom) obtained
with the vectorialGradient operator.

This gradient (modulus and azimuth) can be compared to the previous one where simple
linear dilations and erosions were used with 6 directions instead of 12. The azimuth is more
accurate in this latter case.

Exercise n° 9: Classification of particles

Although this problem is simple to be expressed, it may be quite complex to be solved if fast,
elegant and universal solutions are awaited. However, a simple, universal (but not fast)
solution exists. It is based on the individual analysis of particles already introduced in chapter
3, exercise n°4. Implementing this solution is performed as follows:
- The initial image is labelled with the label operator which returns the number of connected
components in the image.
- The ith particle is extracted by thresholding the labelled image in the range [i, i].
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- Measuring the connectivity number ν of the connected component gives its number of holes
nT with the formula .nT = 1 − v
- Any particle with a number of holes equal to a given value n  is added to the output image.

The MAMBA implementation of the procedure named holesSieving is the following:

def holesSieving(imIn, imOut, n):
   """
   Puts in imOut all the connected components of imIn which contains exactly n holes.
   """
   
   imWrk0 = imageMb(imIn, 32)
   imWrk1 = imageMb(imIn)
   imOut.reset()
   # Initial image labelling
   nParticles = label(imIn, imWrk0)
   for i in range(1, nParticles+1):
       # each particle is extracted and its connectivity number is measured
       threshold(imWrk0, imWrk1, i, i)
       nc = computeConnectivityNumber(imWrk1)
       # if the number of holes is equal to n, the particle is added to the output image
       if (n==(1 - nc)):
           logic(imWrk1, imOut, imOut, "sup")

This solution is quite slow as it depends of the number of particles in the image. Looking for
faster and more elegant solutions needs to analyse this problem step by step. So, let us see
first how simply connected particles can be extracted.

1) Extracting simply connected components
A first solution is based on the use of homotopic transforms. A second one uses the geodesic
reconstruction.
The first solution uses the thinD operator. We know that, when a set is simply connected,
thinD reduces it to a single point. So, these single points can be extracted and used as
markers to rebuild the simply connected components (refer to the first exercise in this chapter
to see how to extract isolated points).
Load for instance the gruyere image in imbin1 and enter the following commands:

>>> thinD(imbin1, imbin2)
>>> dse = doubleStructuringElement(structuringElement([1, 2, 3, 4, 5, 6],
HEXAGONAL),structuringElement([0], HEXAGONAL))
>>> hitOrMiss(imbin2, imbin3, dse)
>>> build(imbin1, imbin3)

The imbin3 image contains only the simply connected components of the initial image.
Note that these isolated points can also be removed with an elementary  linear erosion (in any
direction). It is compulsory to use a linear erosion (with the edge set to EMPTY to be sure to
remove isolated points which are near the edge) and not an hexagonal one because this latter
one would be likely to remove also markers of non simply connected components. Enter the
following commands:

>>> thinD(imbin1, imbin2)
>>> linearErode(imbin2, imbin3, 1, edge=EMPTY)
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>>> build(imbin1, imbin3)

From left to right: initial image, thining with D and geodesic reconstruction of the initial image by
the isolated points (simply connected particles).

Thinning with D (left), linear erosion in direction 1 - but any direction can be used
(middle), reconstruction of the particles with hole(s) with the previous erosion as marker

image (right).

The second approach consists in rebuilding the connected components of the image which
are marked by the holes. These holes are extracted first and their elementary dilation marks
the particles which contain them. These marked particles can then be reconstructed.

Left: initial image (green), holes (yellow), dilation of the holes generating markers (red).
Right: result of the geodesic reconstruction.

Use again the gruyere image loaded in imbin1 with the following commands:

>>> closeHoles(imbin1, imbin2)
>>> diff(imbin2, imbin1, imbin2)
>>> dilate(imbin2, imbin2)
>>> build(imbin1, imbin2)
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Believing that these two approaches produce the same result would be an error. Indeed, rather
complex structures may appear where holes contain connected components which may,
themselves contain holes and so on. Contrary to the gruyere image which is simple, the
homotopy image is an example of such a complex structure. This structure can be represented
as a tree, called homotopy tree. The root of the tree corresponds to the background, the first
branches correspond to the connected components adjacent to the background. The next
branches correspond to the holes adjacent to the previous connected components, etc. This
homotopy tree can also be represented by an image where each connected component is
given a label corresponding to its position in the tree.
 

Left: homotopy image. Middle: homotopy tree represented by an image; the connected
components of same color belong to the same level of homotopy. Right: corresponding

homotopy tree; the black branches represent holes.

The following procedure allows to generate the homotopy image:

def homotopyTreeBuild(imIn, imOut):
   """
   Builds the homotopy tree of the initial binary set imIn. The result is stored
   in image imOut. Each grey level corresponds to a hierarchy level of the homotopy
   tree. Extracting each level i of embedding of particles and holes of the initial 
   set consists simply in a [i, i] thresholding of imOut.
   """
   
   imWrk0 = imageMb(imIn)
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 8)
   copy(imIn, imWrk0)
   v = computeVolume(imIn)
   imOut.reset()
   i = 0
   # Loop performed until no connected component remains.
   while v!=0:
       i = i+1
       # Background extraction.
       closeHoles(imWrk0, imWrk1)
       negate(imWrk1, imWrk1)
       # Connected components adjacent to the background are rebuilt.
       dilate(imWrk1, imWrk1)
       build(imWrk0, imWrk1)
       # These particles are at level i in the homotopy tree.
       # They are removed from the current set, giving access to the next level (in imWrk0).
       diff(imWrk0, imWrk1, imWrk0)
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       v = computeVolume(imWrk0)
       # The level-i particles are labelled with i and added to the label image.
       convertByMask(imWrk1, imWrk2, 0, i)
       add(imOut, imWrk2, imOut)

Each level of hierarchy i of the homotopy tree can easily be obtained by a simple
thresholding of the homotopy image at value i.

Top left, original image. Top right, homotopy image obtained by the homotopyTreeBuild
procedure (its contrast has been enhanced). Bottom: the successive hierarchies of

homotopy obtained by thresholding the homotopy image.

Therefore, the second approach must be applied on each homotopy level.

2) Extracting particles with a single hole
Among many other possibilities, the geodesic SKIZ can be used to solve this problem.
Consider the initial set. We first close and extract its holes. Then, we keep only the non
simply connected components by rebuilding them from the set without holes. This set is
considered as the geodesic space used to perform the geodesic SKIZ of the holes inside it.
This geodesic SKIZ separates into several parts the connected components which contain at
least two holes. So we just have to rebuild the particles marked by the boundaries of the
geodesic SKIZ to obtain the particles with more than one hole.
The different steps of this procedure are given below. The initial gruyere image is in imbin1:

>>> closeHoles(imbin1, imbin2)
>>> diff(imbin2, imbin1, imbin3)
>>> copy(imbin3, imbin4)
>>> build(imbin2, imbin4)
The holes are filled in imbin2 and stored in imbin3 and imbin4. Then, the particles with
hole(s) are extracted in imbin4 (after filling).

>>> geodesicSKIZ(imbin3, imbin4, imbin3)
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>>> diff(imbin4, imbin3, imbin3)
>>> build(imbin1, imbin3)

The geodesic SKIZ of the holes inside imbin4 is stored in imbin3. Then, the boundaries of
the geodesic SKIZ are extracted and used as markers to rebuild the particles containing at
least two holes.
These steps are illustrated below.

From left to right and from top to bottom: initial image, image with its holes filled, extracted holes,
particles with holes (after filling), geodesic SKIZ of the holes in the previous image, boundaries of

the SKIZ, geodesic reconstruction of the particles containing at least two holes.

We can also use the geodesic reconstruction in a different way by defining an operator named
closeOneHole which will close one and only one hole per connected component with holes.
This operator, however, works only with particles with a single level of the homotopy tree. If
it is not the case, this operator must be applied to each level of the homotopy tree. This
operator is built as following:
- Holes of the initial set are filled.
- These holes are extracted and labelled: each hole is therefore assigned a unique numerical
value.
- The initial set with its holes filled is converted a two-level (0 and 232 - 1) 32-bit function.
- This function is rebuilt with the hole-labelled image as marker.
- Each connected component of the reconstructed image will then take the label value of only
one hole contained in it (it is the maximum label of all the holes contained in the connected
component). This hole can be extracted with the generateSupMask operator which generates
a binary mask corresponding to all the pixels of which their value in the first image is greater
than or equal to their value in the second one. The union of this mask and the original image
allows to fill one and only one hole in each connected component (see the figure below).
Then, connected components with one hole are now simply connected and can be extracted
with the procedure described previously.
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On the left, a particle contains three holes with three different labels. On the right, result of the
geodesic reconstruction of the initial image (particle with its holes filled) by the labelled image.

Only one hole share the same label. Pixels with the same value in the two images correspond to the
mask of the hole.

The closeOneHole operator is defined below:

def closeOneHole(imIn, imOut):
   """
   This procedure allows to close one and only one hole in each connected component
   of the binary image imIn. When a connected component has no hole, it remains
   unchanged in the final image stored in imOut.
   This algorithm requires a single level of homotopy in the initial image.
   """
   
   imWrk0 = imageMb(imIn, 32)
   imWrk1 = imageMb(imIn, 32)
   imWrk2 = imageMb(imIn, 32)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn)
   # The holes are filled in imWrk3 and extracted in imWrk4.
   closeHoles(imIn, imWrk3)
   diff(imWrk3, imIn, imWrk4)
   # The holes are labelled.
   nb = label(imWrk4, imWrk0)
   # The image with filled holes is converted in 32-bit.
   convertByMask(imWrk3, imWrk1, 0, computeMaxRange(imWrk1)[1])
   # Geodesic reconstruction of the label image.
   copy(imWrk0, imWrk2)  
   build(imWrk1, imWrk2)
   # The holes with same label as the built image are extracted...
   generateSupMask(imWrk0, imWrk2, imWrk4, False)
   logic(imWrk4, imWrk3, imWrk3, "inf")
   # ... and filled.
   logic(imIn, imWrk3, imOut, "sup")

Test it with the gruyere image loaded in imbin1:

>>> closeOneHole(imbin1, imbin2)
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From left to right: particles containing at least one hole, labelled holes, reconstruction of the filled
particles with the label image; this reconstruction assigns to each particle the label of only one

hole included in the particle. Extracting pixels with identical values in the label image and in the
reconstruction produces a mask of the holes to be removed. The result of the filling of a single hole

is given in the right image.

3) Extracting particles with only two holes
Separating particles with two holes from those with more than two holes is even more
complex when an approach based on homotopic thinnings is used. However, a solution using
the geodesic SKIZ can be designed once again. Let us consider a set made of particles with
two holes or more. Let us fill in the holes and perform the geodesic SKIZ of the holes in the
geodesic space made of this set without holes. The result obtained with the gruyere image
would prompt to use the multiple points of the geodesic SKIZ as markers ot particles with
more than two holes. But this would be an error as shown in the following example with the
two_three_holes image.

The geodesic SKIZ of the holes does not produce necessarily multiple points when the number of
holes is greater than 2 as illustrated in this example. Upper left: initial image. Upper right:

geodesic space (initial image without holes). Lower left: holes. Lower right: geodesic SKIZ of the
holes in the geodesic space.
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The geodesic SKIZ may be without multiple points when the particle contains three holes.
However, when the possible multiple points are removed, only particles with one and only
one hole contain a single arc in the geodesic SKIZ.

Previous geodesic SKIZ (left), boundaries of the SKIZ without their multiple points
(middle), geodesic SKIZ of the simple arcs (right). Only the particles with two holes are

marked by a single arc.

So, we just have to perform the geodesic SKIZ of the preceding arcs. When a single arc is
present in a connected component, the geodesic SKIZ is empty. On the contrary, it is not the
case when more than two holes are present. This last geodesic SKIZ can therefore be used as
a marker for reconstructing particles with more than two holes. Note also that this algorithm
does not work when the holes organisation is complex with an homotopy tree containing
more than one branch.

The list of the successive operations for obtaining the awaited result is given below.
Remember that the procedure must be applied on an initial image containing particles with at
least two holes. Load this image in imbin1 (this image can be obtained by applying on the
gruyere image the solution described in the previous section) and enter the following
commands:

>>> closeHoles(imbin1, imbin2)
>>> diff(imbin2, imbin1, imbin3)

The holes are extracted and stored in imbin3.

>>> geodesicSKIZ(imbin3, imbin2, imbin4)
>>> diff(imbin2, imbin4, imbin3)

The geodesic SKIZ of the holes is performed in the geodesic space defined by the particles
without their holes. The boundaries are stored in imbin3.

>>> multiplePoints(imbin3, imbin4)
>>> diff(imbin3, imbin4, imbin4)

The multiple points are extracted and removed. imbin4 contains only simple arcs.

>>> geodesicSKIZ(imbin4, imbin2, imbin3)
>>> diff(imbin2, imbin3, imbin3)
>>> build(imbin2, imbin3)
>>> diff(imbin1, imbin3, imbin3)
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The boundaries of the geodesic SKIZ of these simple arcs are used to rebuild the particles
which contain more than two holes. Finally, imbin3 contains particles with only two holes. 

From left to right and from top to bottom: initial image (particles with at least two holes), particles
without holes, holes, geodesic SKIZ of the holes, boundaries of the SKIZ, multiple points, simple

arcs of the SKIZ, second geodesic SKIZ of the simple arcs, boundaries of the second SKIZ,
reconstructed particles (particles with more than two holes), final result (particles with two holes).

The approach based on geodesic reconstructions is, a contrario, easy as we just need to iterate
twice the closeOneHole operator. Particles without holes after this iteration contained
initially two holes.

4) Designing an algorithm able to extract any particle with n holes or more
Remind that this algorithm already exists. It has been defined at the beginning of this
exercise. It is the holesSieving operator. Fortunately, a faster solution exists. This solution
works for all kinds of sets, even when their corresponding homotopy tree is complex. It is
based on the measureLabelling operator which has already been used to label each
connected component of a set with its area (see exercise n°3, chapter 6). This operator labels
each connected component with a value equal to the number of points of another set
contained in the connected component.
With this procedure, we can label each connected component of a set with the number of
holes contained in this component. We know that the number of holes nT of a connected
component is linked to its connectivity number ν by the following relation:

nT = 1 −
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In order to avoid to label connected components without hole with the 0 value, the labelling
will be made with the value .nT + 1 = 2 −
On the hexagonal grid (the whole exercise is solved on this grid only), the connectivity

number is obtained by counting the number of  and  configurations in the0 0
1

0
1 1

connected component according to the formula:

= n 0 0
1 − n 0

1 1 = n1 − n2

The points presenting these two configurations can be extracted with a hit-or-miss
transformation. The two sets obtained with these two hit-or-miss transforms can be used to
label the initial set X with the values n1 and n2 correponding to each connected component
with the measureLabelling operator. Then, the two label images can be subtracted and the
value 2 can be added to each non zero value to obtain a new label image where each
connected component will take a value equal to the number of holes contained in it plus 1:

nT + 1 = 2 + n2 − n1

The procedure named holesLabelling is the following:

def holesLabelling(imIn, imOut):
   """
   Labels each particle in imIn with a value equal to its number of holes +1.
   The result is put in 32-bit image imOut.
   """
   
   # Working images.
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 32)
   # Structuring elements
   dse1 = doubleStructuringElement([1,6],[0],HEXAGONAL)
   dse2 =  doubleStructuringElement([1],[0,2],HEXAGONAL)
   # Initializing the label image with 2.
   convertByMask(imIn, imOut, 0, 2)
   # Determining the 2nd configurations in the connectivity number calculation.
   # and adding their number to the label image.
   hitOrMiss(imIn, imWrk1, dse2)
   measureLabelling(imIn, imWrk1, imWrk2)
   add(imOut, imWrk2, imOut)
   # Determining the 1st configurations and subtracting them to get the
   # number of holes + 1.
   hitOrMiss(imIn, imWrk1, dse1)
   measureLabelling(imIn, imWrk1, imWrk2)
   sub(imOut, imWrk2, imOut)

Test this operator on the noise image, loaded in imbin1:

>>> holesLabelling(imbin1, im32_1)

Then, threshold the label image at the value taken by the particle in the middle of the image.
This value is equal to 485 (move the mouse cursor over it):
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>>> threshold(im32_1, imbin2, 485, 485)

Compute the connectivity number:

>>> computeConnectivityNumber(imbin2)
-483L

We have:
= 1 − nT = −483

Therefore the number of holes is equal to 484 and the label value is 485.

Note that the origin of the structuring elements have been chosen judiciously so that the
result of the hit-or-miss transform be always included in the initial set.

Initial noise image (left), labelling of the connected components by their number of holes +
1 (middle), Extraction by thresholding of the connected component with a label equal to
485 (right). Its connectivity number is equal to -483. This connected component contains

484 holes.  
 
5) This transformation is obviously anti-extensive (there are no more particles in the
transformed set than in the initial one) and idempotent (all the connected components of

 contains at least n holes and no particle is removed when the operator is appliedn(X)
again). But this transformation is not increasing. Indeed, let us consider a connected
component X1 containing n holes and another connected component X2 containing X1 but
without hole (X2 can be equal to X1 without its holes). We have then:

X1 _ X2
 and  n(X1) = X1 n(X2) = —

So:
n(X1 ) q n(X2)

This transformation is not an opening.
Now, it is only a matter of perspective... If we consider that the elements of the working
space are not somposed of pixels but of connected components, a subset X of this space is
defined as a non ordered sequence of connected components Xi. A set X1 in this space is
included in a set X2 if and only if all the connected components belonging to X1 belong also
to X2. In this (infinite) space made of all the possible connected components,  isn
increasing, anti-extensive and idempotent. It is an opening... Moreover, it is a granulometry
(size distribution). We have:

≤m > n, m ) n = n ) m = sup(n,m) = m
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Exercise n° 10: Extremities of particles

1) Load the eutectic image in imbin1 and type:

>>> geodesicCenter(imnin1, imbin2)

You can also use thinD:

>>> thinD(imbin1, imbin2)

When the connected components are elongated, there is not a great difference between the
positions of the geodesic centers and the centroids.

Geodesic centers of the eutectic image (left), centroids (right).

This difference is more important when the connected component is less elongated as it is the
case for the hand image. Try the two operators. You can define new binary images imbinA
and imbinB, their size been equal to the size of the hand image:

>>> imbinA = imageMb(256, 154, 1)
>>> imbinB = imageMb(imbinA)

Geodesic center of the hand image (left), centroid (right). Due to the palm of the hand, the
position of the two centers is quite different.

2) The geodesicDistance operator exists in MAMBA. Enter the following commands (the
initial image is in imbin1, the geodesic center in imbin2):

>>> diff(imbin1, imbin2, imbin2)
>>> geodesicDistance(imbin2, imbin1, im32_1)

The geodesic distance is stored in a 32-bit image. The maximal values of this geodesic
distance correspond to the extremities of the particles.
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Initial set made of the original image without the geodesic centers (left), geodesic distance
of this set (right, rainbow palette used).

3) The extremities are the maxima of the geodesic distance function. In fact, extremities
correspond to the ultimate geodesic erosion of the initial set minus its geodesic centers (see
exercise n°5, chapter 7).

The successive geodesic erosions of the set X\C (or geodesic dilations of C) correspond  to
successive levels of the geodesic distance function.

Extremities of the eutectic image (maxima of the geodesic distance) on the left. On the
right, extremities of the same image after an opening.

The result, however, is noisy, due to the fact that the boundaries of the set are often not
smooth enough. So, a good practice consists in applying the same algorithm on the opened
image. An elementary opening is, most of the time, sufficient to reduce the noise.
   
It is also possible to open the geodesic distance function before extracting its maxima. The
following images show the effect of these two filterings applied to the eutectic image.
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Detection of the extremities of the opened eutectic image (right) compared to the detection
by extracting the maxima of the opened geodesic distance function (left).

An operator named extremities can be defined to extract the extremities of the imIn image.
These extremities are stored in the 32-bit image imOut1. Each one is valued with its geodesic
distance to the geodesic center. The 32-bit image imOut2 contains the geodesic distance
function. The parameter InnerParticles indicates if the connected components are
considered to be completely included in the image field (it is then set to True and the
extremities of the particles touching the edge are prexerved) or not (it is set to False - its
default value- and the particles are supposed to extent outside the image window). 

def extremities(imIn, imOut1, imOut2, innerParticles=False):
   """
   This operation performs the computation of the extremities (maxima of a
   geodesic distance function) and puts the result in imOut.
   'imIn' must be a binary image, 'imOut1' is a 32-bit image containing the
   extremities and their geodesic distance to the centroid (allowing thus to
   sort them according to their distance to the center) and imOut2 a 32-bit
   image containing the entire geodesic distance from the geodesic centers.
   If 'innerParticles' is set to False(default), the particles touching the
   edge are considered as extending outside the image window. Therefore, no
   extremity is detected on the edge of the image. If 'innerParticles' is True,
   all the particles are supposed to be included in the image, so extremities
   may appear on the edge.    
   """
   
   imWrk1 = imageMb(imIn)
   # Computation of the geodesic centers.
   geodesicCenter(imIn, imWrk1) 
   # These centers are removed from the initial image (each particle contains
   # a hole).
   diff(imIn, imWrk1, imWrk1)
   # Computing the geodesic distance
   geodesicDistance(imWrk1, imIn, imOut2)
   # The extremities correspond to the maxima.
   maxima(imOut2, imWrk1)
   # Extremities on the edge are removed if 'innerParticles' is set to False.
   if not(innerParticles):
       removeEdgeParticles(imWrk1, imWrk1)
   # The extremities are given their corresponding distance to the center.
   convert(imWrk1, imOut1)
   logic(imOut2, imOut1, imOut1, "inf")
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It is possible to use the centroid (obtained by the thinD operator) instead of the geodesic
center to generate the geodesic distance and extract its maxima. The extremities obtained
from these centroids are often not different from the extremities produced with the geodesic
center, even when their respective locations are different. You can verify this with the hand
image:
 

Extremities (slightly dilated) of the hand image. The result is the same if the geodesic
center or the centroid is used.

However, if we consider the values of the geodesic distance on these extremities, they are far
from been the same, as shown in the following figure. It is likely that at least two extremities
should be at the same distance from the center point. These extremities correspond to the
farthest extremities of the set. It is actually the case when the geodesic center is used
(extremities of the thumb and  the little finger in the hand image). But it is not true when the
centroid is used.

Left image: values at the extremities of the geodesic distance from the geodesic center.
Right image: values of the geodesic distance from the centroid. 

Exercise n° 11: Dislocations in eutectics

This exercise is interesting as it shows that it is possible to build, by an appropriate sequence
of operations, features which are not visible at the first sight.
1) We saw in the previous exercise how to extract the extremities of particles. However, as
illustrated in the hand image, these extremities are not necessarily the farthest ones, that is
the extremities at the greatest distance from the geodesic center. We need, for solving the
current problem, to extract these farthest extremities. To do this, we design a new operator
named extremePoints. This operator is based on the same approach as the one used to close
one and only one hole in exercise n° 9 (closeOneHole procedure) . The extremities of the
particles are extracted and valued as explained previously. Then, they are used to rebuild by a
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geodesic reconstruction the particles which are, by this means, valued with the distance from
the geodesic center of the farthest extremities. These extremities are extracted with the
generateSupMask operator masking the extremities which have te same value as the rebuilt
image. 

The particle X has 3 extremities. In light grey, indicator function of X. In dark grey, result
of the geodesic reconstruction of the indicator function by the valued extremities. The

extremities 1 and 3 are at the same height as the reconstructed image. The margin
parameter allows to select extremities at a lower height.

The operator, named extremePoints, is the following:

def extremePoints(imIn, imOut, margin=0):
   """
   This operator is a refinement of the 'extremities' operator. It determines
   points of the connected components of the binary set 'imIn' which are the
   farthest extremity points. The 32-bit image 'imOut' contains these extreme
   points valued with their distance to the geodesic center. 'margin' is a
   parameter which allows to take into account an extremity even if its distance
   to the center is not maximal, provided that it is not lower than this
   maximal value minus 'margin'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 32)
   imWrk3 = imageMb(imIn, 32)
   imWrk4 = imageMb(imIn, 32)
   geodesicCenter(imIn, imWrk1)
   diff(imIn, imWrk1, imWrk1)
   geodesicDistance(imWrk1, imIn, imWrk2)
   maxima(imWrk2, imWrk1)
   convert(imWrk1, imWrk3)
   logic(imWrk2, imWrk3, imWrk3, "inf")
   convert(imIn, imWrk4)
   copy(imWrk3, imOut)
   hierarBuild(imWrk4, imOut)
   floorSubConst(imOut, margin, imOut)
   generateSupMask(imWrk3, imOut, imWrk1, False)
   logic(imWrk1, imIn, imWrk1, "inf")
   removeEdgeParticles(imWrk1, imWrk1)
   convert(imWrk1,imWrk3)
   logic(imWrk2, imWrk3, imOut, "inf")
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The result of the operation is stored in in 32-bit image which contains the farthest extremities
of the particles, valued with their respective distance to the geodesic center. The extremities
touching the edge of the image have been removed.

Note that a parameter, margin, is used in this operator. Its purpose is to cope with possible
differences of valuation of the farthest extremities due to parity biases. This parameter is set
to 0 by default.

From top to bottom and from left to right: valued extremities of the eutectic image,
labelling of the lamellae by the greatest geodesic distance of the points from the geodesic

center (corresponds to half the length of the particle), extremities and extreme points.

Extreme points of the eutectic image in red. In yellow, extremities which are not farthest
points.

As the difference between the two sets is not obvious, the image below shows a colored
superposition of the extremities and the extreme points.

2) Two different procedures will be described to extract the dislocations. The first one tries to
connect the extreme points to build lines corresponding to the dislocations. This connection
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uses dilations. To achieve this, two problems must be addressed: avoiding to connect extreme
points belonging to the same lamella and determining the size of these dilations.
Let us describe the different operations used in this first procedure. The initial eutectic image
is stored in imbin1 and a small opening is performed in order to smooth the boundaries. Then
the extreme points are extracted, stored in imbin2, and valued by their distance to the
geodesic center in im32_1:

>>> opening(imbin1, imbin1)
>>> extremePoints(imbin1, im32_1)
>>> threshold(im32_1, imbin2, 1, computeMaxRange(im32_1)[1])

Then, the influence zones of the lamellae are built in imbin3:

>>> computeSKIZ(imbin1, imbin3)

Original opened image (left), extreme points (middle) and influence zones of the lamellae
(right).

The next step consists in defining a separation zone between the extreme points belonging to
the same lamella. First of all, a median boundary is obtained by a geodesic SKIZ of the
extreme points inside the lamella. This median boundary is extracted and the artefacts due to
edge effects are removed. The result is put in imbin4:

>>> geodesicSKIZ(imbin2, imbin3, imbin4)
>>> diff(imbin3, imbin4, imbin4)
>>> removeEdgeParticles(imbin4, imbin4)

Then, we would like to perform geodesic dilations of these boundaries inside the influence
zones, the size of each dilation being proportional to the length of the influence zone. To
achieve this, we define a new operator, named geodesicAdaptiveDilate which perform a
geodesic dilation of each point of a 32-bit image, its size being given by its value in the
image. The final result is a binary image made of the union of all these dilations. The
procedure is defined as follows:

def geodesicAdaptiveDilate(imIn, imMask, imOut):
   """
   This operator performs a binary adaptive dilation. The 32-bit image
   'imIn' indicates for each pixel the size of the geodesic dilation (by the 
   default structuring element) which will be applied on it. The geodesic
   mask is defined by the binary image 'imMask'. The result of the dilation is
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   put in the binary image 'imOut'. It is called adaptive because its size is
   given locally for each pixel by the value of this pixel in 'imIn'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   convert(imMask, imWrk1)
   copy(imIn, imWrk2)
   v1 = 0
   v2 = computeVolume(imWrk2)
   # At each step, the dilated image is decreased. So each pixel value
   # indicates how many steps of dilation remain. When the image volume
   # does not change, the process is finished.
   while v2 > v1:
       v1 = v2
       geodesicDilate(imWrk2, imWrk1, imWrk3)
       floorSubConst(imWrk3, 1, imWrk3)
       logic(imWrk2, imWrk3, imWrk2, "sup")
       v2 = computeVolume(imWrk2)
   threshold(imWrk2, imOut, 1, computeMaxRange(imIn)[1])

New boundaries in the influence zones (left), the same boundaries after their extraction
and the removal of the edge artefacts (right).

The separation lines are given a value equal to ¼ of the length of the corresponding influence
zone. Therefore, the adaptive dilation will partition the zone into three regions: two of them
correspond to the extreme points, their length been equal to ¼ of the total length and the
middle region with a length equal to ½ of the total length. For that, the influence zones are
valued with the valuation of their extreme points. This valuation is also equal to half their
length. The result is stored in the 32-bit image im32_3 (which has been created before):

>>> im32_3 = imageMb(im32_1)
>>> convert(imbin3, im32_2)
>>> extremePoints(imbin3, im32_3)
>>> hierarBuild(im32_2, im32_3)
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Left image: extreme points (in red) of the influence zones (in blue). Right image: labelling
of the influence zones with half their respective length.  

Then, this valuation is divided by 2 (each influence zone has a value equal to ¼ of its length)
and the corresponding boundaries are given this valuation, stored in the previously defined
32-bit image im32_4: 

>>> im32_4 = imageMb(im32_1)
>>> divConst(im32_3, 2, im32_3)
>>> convert(imbin4, im32_4)
>>> logic(im32_3, im32_4, im32_4, "inf")

The geodesic adaptive dilation of logic the im32_4 image is performed. The result, stored in
the previously defined binary image imbin5, is closed in order to connect the adjacent
connected components and opened to smooth the result:

>>> imbin5 = imageMb(imbin1)
>>> geodesicAdaptiveDilate(im32_4, imbin3, imbin5)
>>> closing(imbin5, imbin5)
>>> opening(imbin5, imbin5)

Valued inside boundaries (left), their geodesic adaptive dilation (middle), final separation
zones after closing and smoothing (right).

We must now define the size of the dilations which will be applied to the extreme points.
This size will be equal to half the thickness of the influence zones of the lamellae +2, so as to
be sure that these dilations will reach the influence zones of the neighbor points. The ½
thickness is equal to the maximum of the distance function. The following operations
produce this valuation stored in the im32_3 image:

>>> computeDistance(imbin3, im32_3, edge=FILLED)
>>> hierarBuild(im32_2, im32_3)
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>>> addConst(im32_3, 2, im32_3)

Note that the distance function is computed with the edge set to FILLED in order to avoid
errors in the calculation of the thickness of the lamellae touching the edge. Then, we can
value each extreme point with this image and perform their geodesic adaptive dilation, the
geodesic space being the outside of the separation region defined previously in imbin5. The
result can be put in imbin4, after a small closing connecting the close connected components:

>>> convert(imbin2, im32_4)
>>> negate(imbin5, imbin5)
>>> logic(im32_4, im32_3, im32_4, "inf")
>>> geodesicAdaptiveDilate(im32_4, imbin5, imbin4)
>>> closing(imbin4, imbin4)

Top left: influence zones valued with half their thickness + 2. Top right: extreme points
valued with the previous image. Bottom left: geodesic space used for the adaptive dilation

(the separation zones are excluded). Bottom right: result of the adaptive dilation after
closing.

Various possibilities are available to connect the extreme points and to draw the dislocation
lines. The method proposed here uses the fullGeodesicThin operator applied with homotopic
structuring elements.   The following figure explains how it works.
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Consider the set X made of two connected components. The geodesic space is the entire
field minus X. The set to be thinned is the set Z\X. Performing a full geodesic thinning

using all the directions of the homotopic structuring elements until idempotence produces
a connection between the two initial connected components. 

Let us apply this operator. First, the set Z is built. It corresponds to the previous dilation (in
imbin4) minus the extreme points (in imbin2). Moreover, in order to avoid edge effects
during the geodesic thinning, the connected components touching the edge are separated
from this edge by removing a small border around the image (border generated in imbin6
with a dilation of an empty set!). The geodesic space is simply the complementation of
imbin2. Here are the operations:

>>> imbin6.reset()
>>> dilate(imbin6, imbin6, edge=FILLED)
>>> diff(imbin4, imbin6, imbin6)
>>> negate(imbin2, imbin3)
>>> diff(imbin6, imbin2, imbin5)

Then a full geodesic thinning is performed. Note that, for obtaining thin dislocation lines, a
thinning with D must be followed by a thinning with M (a more elegant way of doing would
consist in defining a full geodesic thinning where these structuring elements are used in
parallel). Finally, the initial extreme points are added to the result:

>>> fullGeodesicThin(imbin5, imbin3, imbin6, hexagonalD)
>>> fullGeodesicThin(imbin6, imbin3, imbin6, hexagonalM)
>>> logic(imbin2,imbin6, imbin6, "sup")

Set to be thinned made of the adaptive dilation minus the extreme points (left), geodesic
space corresponding to the complementation of the extreme points (middle), result of the

succesive full geodesic thinnings by the structuring elements D and M (right).
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The following image shows the initial set, the extreme points and the dislocation lines.

Initial eutectic image (in yellow), extreme points of the lamellae (in red) and dislocation
lines (in green).

The second procedure is different and is based on the use of the skeleton by influence zones
of the lamellae. We shall try to emphasize the dislocation lines by selecting among the arcs of
the skeleton by influence zones those which can or cannot belong to these dislocations. Let
us load the initial eutectic image in imbin1 and perform a small opening to smooth it. Then,
we build the influence zones in imbin2, the multiple points of the skeleton in imbin3 and the
simple arcs in imbin4:

>>> opening(imbin1, imbin1)
>>> computeSKIZ(imbin1, imbin2)
>>> negate(imbin2, imbin4)
>>> multiplePoints(imbin4, imbin3)
>>> removeEdgeParticles(imbin3, imbin3)
>>> diff(imbin4, imbin3, imbin4)

Note that the multiple points touching the edge are removed.

Left: lamellae of the eutectic image (red) and their influence zones (yellow). Right: simple
arcs of the SKIZ (red) and multiple points (slightly dilated in yellow).

The simple arcs touching the edge are then removed because they separate lamellae which
are not entirely included in the image window. Therefore, it is not possible to insure that
these arcs belong to dislocations:

>>> removeEdgeParticles(imbin4, imbin4)
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Similarly, the simple arcs which are not either surronding or inside the inner influence zones
are belonging to dislocations. The inner influence zones are stored in imbin2 whilst the
preserved arcs are stored in imbin5 (this working binary image has been defined previously):

>>> imbin5 = imageMb(imbin1)
>>> removeEdgeParticles(imbin2, imbin2)
>>> dilate(imbin2, imbin5)
>>> diff(imbin4, imbin5, imbin5)

Arcs touching the edge are removed (left), arcs not surrounding or inside inner influence
zones are extracted, they belong to dislocation lines (right). 

The next step consists in defining regions at the extremities of the inner influence zones
which will be used as masks in the process of selecting arcs belonging to the dislocations.
These masks are built as described in the following figure. 

The geodesic centers and the extreme points of the lamellae are extracted. The geodesic
distance of the centers inside the influence zones is computed. The influence zones are
labelled with the extreme points and are assigned the maximal distance of these points

inside each influence zone. The mask of all the points where the geodesic distance is higher
than or equal to the labelled image defines the extremity regions.

Let us perform the different steps of this construction. Another working image imbin6 is
defined. The geodesic centers of the lamellae are stored in imbin6 and the geodesic distance
of these centers inside the inner zones of influence is defined in im32_1:

>>> imbin6 = imageMb(imbin1)
>>> geodesicCenter(imbin1, imbin6)
>>> diff(imbin2, imbin6, imbin6)
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>>> geodesicDistance(imbin6, imbin2, im32_1)

The valued extreme points of the lamellae are defined in im32_2:

>>> extremePoints(imbin1, im32_2)

Left: geodesic distance of inner zones of influence. Right: extreme points of all the
particles (in yellow).

We define two new 32-bit working images im32_3 and im32_4:

>>> im32_3 = imageMb(im32_1)
>>> im32_4 = imageMb(im32_1)

The inner influence zones are labelleded with the valued extreme points. The result is stored
in im32_4:

>>> convert(imbin2, im32_3)
>>> copy(im32_2, im32_4)
>>> hierarBuild(im32_3, im32_4)

This image is compared to the geodesic distance in order to generate the extremity regions in
imbin6:

>>> generateSupMask(im32_1, im32_4, imbin6, False)
>>> logic(imbin6, imbin2, imbin6, "inf")

Left image: inner influence zones labelled with the extreme points distances. Right image:
the extremity regions corresponding to the pixels where the geodesic distance is higher

than or equal to the labelled image.
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The points adjacent of multiple points in the inner influence zones are put in a new working
image imbin7:

>>> imbin7 = imageMb(imbin1)
>>> dilate(imbin3, imbin7)
>>> logic(imbin2, imbin7, imbin7, "inf")

These points are valued with the geodesic distance and the result is stored in im32_1. Then,
the extremity zones are labelled with the maximal value taken by the adjacent points. The
result is stored in im32_3:

>>> convert(imbin7, im32_2)
>>> logic(im32_1, im32_2, im32_1, "inf")
>>> convert(imbin6, im32_4)
>>> copy(im32_1, im32_3)
>>> hierarBuild(im32_4, im32_3)

Then, the farthest point among the points adjacent to the multiple points is extracted and put
in imbin2:

>>> generateSupMask(im32_1, im32_3, imbin2, False)
>>> logic(imbin2, imbin7, imbin2, "inf")

Left image: inner influence zones (yellow) and points adjacent to the multiple points (red).
Middle image: labelling of the extremity regions with the maximal value of the geodesic

distance on the previous points. Right image: simple arcs (red) and points adjacent to the
multiple points at a maximal distance from the geodesic center (yellow).

Then, the connected components adjacent to the multiple points and containing the point(s) at
maximal distance from the geodesic center are rebuilt:

>>> build(imbin7, imbin2)

The simple arcs which are adjacent to these connected components correspond to
dislocations. They are put in imbin4:

>>> dilate(imbin2, imbin2)
>>> build(imbin4, imbin2)

The arcs previously extracted and stored in imbin5 together with the multiple points are
added:
>>> logic(imbin2, imbin5,imbin2, "sup")

Chapter 8

197



>>> logic(imbin2, imbin3,imbin2, "sup")

Left: dislocations extracted by the last procedure. Middle: dislocations previously
detected. Right: final dislocation extraction.

The cells containing the stacked lamellae can also be defined. This is done by adding the
boundaries connecting the edge and the end points of the dislocation lines to these
dislocations. The different steps of the procedure are given below.
The simple arcs touching the edge are stored in imbin5: 

>>> computeSKIZ(imbin1, imbin4)
>>> negate(imbin4, imbin4)
>>> diff(imbin4, imbin3, imbin4)
>>> removeEdgeParticles(imbin4, imbin5)
>>> diff(imbin4, imbin5, imbin5)

Inner simple arcs in red and simple arcs touching the edge in green.

The dislocation lines stored in imbin2 are clipped (adding the multiple points may have
introduced unwanted end points) and the remaining end points, corresponding to the
extremities of the lines are extracted in imbin6. These end points are dilated and used to
reconstruct the simple arcs connected to them and touching the edge. These reconstructed
arcs are added to the dislocation lines and the result is put in imbin6: 

>>> whiteClip(imbin2, imbin6, step=1)
>>> endPoints(imbin6, imbin6)
>>> dilate(imbin6, imbin6, 2)
>>> build(imbin5, imbin6)
>>> logic(imbin6, imbin2, imbin6, "sup")
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Left: end points (red) of the dislocations (green). Middle: the simple arcs touching the edge
and connected to the end points are added. Right: boundaries of the cells containing

stacked lamellae.

The lamellae belonging to the same cell can share the same label. To do this, enter the
following commands:
 
>>> negate(imbin6, imbin6)
>>> erode(imbin6, imbin6, 2, edge=EMPTY)
>>> nbCells = label(imbin6, im32_1)
>>> convert(imbin1, im32_2)
>>> logic(im32_1, im32_2, im32_2, "inf")

Lamellae belonging to the same cells have the same color.

Note that the lamella at the upper right is ambiguous. Therefore, it has been given a different
color.
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This paper describes the relationships between the skeleton by maximal balls and the homotic
skeleton realised with thinnings. 3D skeletons are also addressed.
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1 Watershed transformation

The watershed transformation is widely used for image segmentation. It is often applied on
gradient images but not only. This transformation may be seen as a flooding process. The
greytone image f is considered as a topographic surface in which holes are pierced in every
regional minimum. The topographic surface is progressively plunged into water and dams are
constructed each time that the waters coming from two distinct regional minima are on the
point to merge. At the end of the flooding process, the dams correspond to the watershed of f,
and they delimit the catchment basins of f.

The topographic surface (left image) of the initial function is flooded from its minima.
Merging lakes are separated by a dam (upper right image). When the process is complete,

the image is partitioned in catchment basins containing one minimum separated by the
watershed lines (lower right image).

Early implementations of the watershed transform were based on floodings section by section
of the image f. Modern and fast implementations (in particular the one available in MAMBA)
use hierarchical queues.

Chapter 9
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EXERCISES

Exercise n° 1

1) Practice the watershed transforms available in the MAMBA library (watershedSegment
and basinSegment). Apply them to the electrop image and to its gradient.

toolselectrop

2) An interactive segmentation tool is also available in MAMBA (interactiveSegment).
Practice it (on tools image for instance) and try to show the influence of the position of
markers on the segmentation.

Exercise n° 2: Return on the SKIZ and geodesic SKIZ operator

The SKIZ and geodesic SKIZ operators have already been introduced (see  chapter 8,
exercise n° 7). Until now, they were computed by means of homotopic thickening operators.
However, these operators can also be defined with the watershed transform.
1) Prove that the SKIZ of a set can be obtained by a watershed with a judicious use of the
watershed transform and the distance function.  Do you think that computing the distance
function is necessary to get the result. 

2 Marker-controlled watershed

The marker-controlled watershed transform is a variant of the watershed transform where the
flooding process is initiated from a set of previously defined markers instead of the minima
of the function. The classical watershed transform may therefore be seen as a
marker-controlled watershed where the markers are the minima. By the way, this is how this
operator is realised in MAMBA.

3 Hierarchical segmentation, waterfalls transformation

The waterfalls transformation is an operator based on the watershed which performs
hierarchical segmentations of an image. A hierarchical segmentation extracts and merge
regions of the image and builds a hierarchy where the salient regions are progressively
detected. This approach is useful, in particular, when the definition of good markers to be
used in a marker-controlled watershed is difficult, not to say impossible.
The MAMBA library contains different versions of these hierarchical segmentation
algorithms.
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2) This fast SKIZ operator is already available in MAMBA (fastSKIZ). Compare on the
test_skiz and alumine images the result obtained by this operator with the result obtained with
the classical thickening (computeSKIZ). What about the speed of these two operators?
3) Define similarly an algorithm for computing the geodesic SKIZ (this operator is defined in
MAMBA and is named geodesicSKIZ). Use the test_geodSKIZ image. Take its holes as
initial set and the image without holes as geodesic space.

test_geodSKIZtest_SKIZalumine

Exercise n° 3

The two-dimensional electrophoresis is a technique for separating and identifying proteins.
The migration of the proteins on the gel depends on their molecular weight and on their
electric charge. The purpose of this exercise is to extract the contour of each spot of proteins
visible in the electrop image.
1) Detect the regional minima of the image. What is your conclusion? Which transformations
can we apply to the image to enhance the result? Detect the new minima. From now on, we
shall work on the filtered image. 
2) Compute the morphological gradient (with the gradient operator). Detect the gradient
minima. Perform the watershed  transform. Is the result satisfactory?
3) Try to obtain a better result. To do so, Define markers located inside the spots and also
markers for the background as well.
- What can we take as markers of the spots?
- As background markers?
Perform the watershed transform controlled by this new set of markers. 

Exercise n° 4: Catchment basins in a digital elevation model

This exercise is devoted to the extraction of the catchment basins of a digital elevation model.
The relief image represents a digital elevation model (DEM). In this model, the altitudes of a
(true) topographic surface are sampled at the nodes of a regular grid. The purpose of this
study is to define an algorithm for extracting the catchment basins from the topography.  This
may appear to be easy since it is precisely the purpose of the watershed transform available in
MAMBA. However you will see that this application is more difficult than it seems because
of the noise present in the image.
1) Extract the regional minima from the relief image. Comment the result. Segment the relief
image into its different catchment basins and verify that one and only one catchment basin is
associated to each minimum.
2) As regional minima inside the DEM cannot correspond to outlets of the hydrographic
network, define a procedure to suppress these regional minima. Display the mask of the
pixels modified by this procedure. What are the properties of this transformation?
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3) Compute the marker-controlled watershed transformation of the relief image, using as
markers the minima which have not been removed.
4) Starting from any point of the topographic surface, how could you build the partial
catchment basin related to this point, that is the set of points which can be flooded by water
coming from this particular point?
5) What strategy would you adopt if there really existed significant closed depressions on the
topographic surface (such as volcanic craters for instance)?

relief

Exercise n° 5: Separation of particles (first approach)

You have already defined the ultimate erosion (chapter 7, exercises n° 3 and 5) of the disks
image. Using the same image, try to design an algorithm to separate the disks.
1) Use the geodesic SKIZ of the ultimate eroded sets in the initial set. Is the segmentation
satisfactory? Analyse the causes of the problem.
2) We saw that the ultimate erosions correspond to maxima of the distance function. They
also can be considered as markers of the disks to be segmented. From these two observations,
design an algorithm based on the watershed transform to segment correctly the disks (use the
computeDistance operator). 

disks

Exercise n° 6: Separation of particles (second example)

The previous exercise showed how to use the watershed transform associated with the
distance function to segment overlapping or touching objects. It also presented an ideal case
of segmentation which works immediately, without the need of any pre-processing. This is
not always the case as will prove the next example.
1) Apply the segmentation algorithm seen previously on the coffee image. What can you
observe? Why?
2) Show how the filtering of the distance function and an appropriate definition of the edge
parameter allow to overcome these difficulties.
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Exercise n° 7: Road segmentation

The purpose of this exercise is to extract the roadway in different road images. This
corresponds to the first step of the road segmentation procedure used to initiate the process
on a sequence of road images.
1) Use the hierarchical segmentation operator named enhancedWaterfalls to segment the
route image.
2) Apply the same algorithm to the road image. Is the result satisfying? Explain why.
3) Use a thick gradient for computing the initial valued watershed. Then, perform a
hierarchical segmentation. Can you explain why you get a better result. Apply the same
algorithm to the road1 and road2 images.
4) Extract two markers, one for the road and the other for the outside, and use them to
segment the road with the markerControlledWatershed operator. 

road2road1

roadroute

Exercise n° 8: Pellets segmentation in a 3D polyurethane foam

This 3D segmentation example shows that a process which has been designed for 2D images
can be applied directly to 3D images thanks to the availability in MAMBA of a mamba3D
module which contains operators transposing many 2D operators to 3D images. 
Warning! This exercise is the only one, in the exercise book, which uses mamba3D
operations. To take advantage of this exercise, it is advised to use the VTK 3D display
functionalities available in the MAMBA library. See the user manual for the installation
procedure and the restrictions.
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foam

The initial 3D foam image represents a foam made of polyurethane pellets. However, these
pellets are so compressed that the separation walls between them have disappeared. Only
corners at the junction of adjacent pellets are still visible. Nevertheless, it is possible to
rebuild the separation walls with a procedure which is, in 3D, similar, indeed identical, to the
approach used to segment coffee grains presented in the previous exercise.
1) Use the display operators in mamba3D to display the initial image.
2) Transpose in 3D the segmentation process defined for the coffee grains by using the
corresponding 3D operators available in the 3D module.

Exercise n° 9: Stamped grid in steel

A regular grid has been printed on a steel sheet before its stamping. This example shows how
the crossing points of this grid after stamping can be extracted. The new position of each
point indicates its displacement during stamping and therefore the degree of stress exerted
locally on the steel sheet.
1) Design a filtering procedure applied on the steel_sheet image to extract sufficiently good
markers of the grid cells (we suggest to use levellings filters. Don’t try to attain perfection,
multiple markers in a single cell are allowed).
2) Use the watershed operator to extract the grid.
3) Extract the crossing points of the grid.

steel_sheet

Exercise n° 10: Analysis of a burner

The burner image represents a detail of a gas heating appliance. The infrared emitter consists
of:
- a ceramic plate with cylindric holes opening onto the surface by cavities forming truncated
cones with a hexagonal base.
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SOLUTIONS

Exercise n° 1

1) The two watershed operators available in MAMBA, named watershedSegment and
basinSegment, are marker-controlled watershed operators. Both require two input images:
the image to be segmented (either 8-bit or 32-bit) and a 32-bit image containing the labelled
markers used as sources of flooding. When the markers are the minima of the image, we
obtain a classical watershed transform. The difference between the two watershed operators
is that the first one computes the watershed lines and the labelled catchment basins (each one
takes a label equal to the label of its included marker) and the second one computes only the
catchment basins (it is therefore a little bit faster). The result of the transformation is put in
the image which contained the markers. In both cases, the catchment basins are stored in the
three lower byte planes of the image (this means that a maximum of 224 - 1 catchment basins

- a raster formed of longitudinal and transversal metallic wires.
From a morphological point of view, the interesting structures are the following:
- The raster which appears on the image under the form of linear horizontal and vertical
structures in light grey tone.
- The hexagonal structures a little darker.
- The black spots located inside the hexagons. Both spots and hexagons may be partially
hidden by the raster.
- The background of the image which presents higher grey levels (white tone).
The purpose of this exercise is to extract a mask of the raster and to be able to position
correctly (with respect to the grid) the center of the visible spots.
1) What kind of grid is it interesting to use?
2) Use morphological filters in order to reduce the granular aspect of the image without
modifying the structures of interest. Do you note a significant difference between the  filters
based on closing-opening and those based on opening-closing?
3) Extract the raster.
4) Segment also the hexagonal sructures. Use the marker-controlled watershed transform to
produce a partition of the image in three regions: the raster, the hexagonal structures and the
background.
5) Extract the black spots. Use the fact that these black spots correpond to significant minima
inside the hexagonal structures.
6) Try to position as accurately as possible the centers of the visible spots.

burner
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is allowed). For the watershedSegment operator, the watershed lines are stored in the upper
byte plane. They take the value 255.
Load the electrop image in im1, compute its gradient in im2 and the minima of the gradient
in imbin1:

>>> gradient(im1, im2)
>>> minima(im2, imbin1)
Then label these minima and put the result in im32_1:
>>> label(imbin1, im32_1)
3943

As indicated, 3943 sources of flooding appear in the gradient image. Copy the label image in
im32_2 (it will be use again later). Then perform the watershed transform of the gradient
(with apparent watershed lines):
 
>>> watershedSegment(im2, im32_1)

The watershed lines can be stored in im3 as a 8-bit image or in imbin2 as a binary image:

>>> copyBytePlane(im32_1, 3, im3)
>>> copyBitPlane(im32_1, 31, imbin2)

You can also compute a watershed transform without lines (use the labelled minima
previously copied in im32_2):

>>> basinSegment(im2, im32_2)

Initial electrop image (upper left), gradient of the image (upper middle), minima of the
gradient (upper right), watershed lines of the gradient (lower left) and catchment basins

(lower right).
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The transformation produces an important over-segmentation. This is due to the large number
of initial markers (3943). These markers, sources of flooding, are due to the noise in the
image and in its gradient and they will generate as many catchment basins.

2) The interactiveSegment operator is located in the mambaDisplay.extra module which
can be imported as follows:

>>> from mambaDisplay.extra import *

This operator needs two image arguments: the image to be segmented (which can be 8-bit or
32-bit) and the 32-bit image where the result of the segmentation is stored. When launched, a
display window opens where you can define markers by clicking the left mouse button.
Markers can be simple points, segments or chains of segments. A segment or a chain are
defined by a first click to enter the location of the first extremity followed by a second click
while pressing at the same time the keyboard <control> key. Continuing to press this
<control> key allows to concatenate segments. The markers appear in green in the display.
The watershed transform of the image gradient is performed in real time and is displayed in
red as soon as at least two markers have been defined.
Load the tools image in im1 and type:

>>> interactiveSegment(im1, im32_1)

Interactive segmentation display (left), result of the segmentation after the definition of 4
markers, one in each segmented object and one in the background (right).

To leave the interactive segmentation tool, press on the <close> button. The watershed
transform is stored in im32_1 and a list of coordinates of the marker points is then returned:

[(176, 120), (92, 34, 104, 76), (110, 132), (222, 136, 187, 193)]

This list of coordinates can be used to draw the markers in a binary image (imbin1) and to
verify that using them to control the watershed of the gradient image produces the same
result. Be careful however to perform a closing of the marker set before using it. Indeed the
drawLine operator using the square grid, the segment markers will be disconnected on the
hexagonal grid (there exists another way to cope with this problem which does not need this
closing step):
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>>> imbin1.reset()
>>> imbin1.setPixel(1, (176, 120))
>>> imbin1.setPixel(1, (110, 132))
>>> drawLine(imbin1,(92, 34, 104, 76), 1)
>>> drawLine(imbin1,(222, 136, 187, 193), 1)
>>> gradient(im1, im2)
>>> closing(imbin1, imbin1)
>>> markerControlledWatershed(im2, imbin1, im3)

The markerControlledWatershed operator is applied on a greyscale image (8-bit), it uses
directly a binary set of markers and return in a greyacale image the valued watershed, that is
a watershed where each point takes the value of the initial image.
  

Left image: original tools image and the marker set (slightly dilated). Left image:
marker-controlled valued watershed of the gradient.

You can verify also that it is of the outmost importance to correctly define the markers. If a
marker is badly located (for instance, if it is crossing the boundary of a region), the result of
the segmentation is generally not satisfactory.

Only two markers have been used. Both are in the background. Therefore, the image is
divided into two catchment basins and the watershed line is not very helpful.
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Exercise n° 2: Return on the SKIZ and geodesic SKIZ operators

1) Consider a set X and the distance function  of , complement of X. The influenced(Xc ) Xc

zones of the connected components of X appears to be nothing but the catchment basins of
the watershed of d. Let us verify this with the alumine image loaded in imbin1. We compute
first the SKIZ with thickenings which will be compared to the SKIZ obtained with the
watershed transform:

>>> computeSKIZ(imbin1, imbin2)

Then, we compute the distance function of the complementary set and perform its watershed
(the markers are the connected components of the alumine image):

>>> negate(imbin1, imbin3)
>>> computeDistance(imbin3, im32_1)
>>> n = label(imbin1, im32_2)
>>> watershedSegment(im32_1, im32_2)

From top to bottom and from left to right: initial alumine image, SKIZ obtained by
thickenings, distance function of the complementary initial image, labelling of the initial

image, SKIZ obtained by watershed of the distance function, comparison of the two SKIZ:
apart some local variations due to different choices of initial directions of propagation, the

two SKIZ are similar.

The two SKIZ are very similar. The differences are due to the fact that the thickenings use
successive directions of the structuting elements whereas the watershed transform is based on
hierarchical queues which sort the pixels differently.
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Watershed (right image) of the indicator function of the initial complemented set (left
image).

It is, in fact, not necessary to compute the distance function, as the propagation of the
flooding is performed directly by the watershed operator based on hierarchical queues. We
just need to perform the watershed of the inverted initial image (after it has been converted to
a greyscale image):

>>> convert(imbin1, im1)
>>> negate(im1, im1)
>>> markerControlledWatershed(im1, imbin1, im2)

2) We already compared the SKIZ obtained by thickenings and by the watershed transform
on the alumine image and saw that there was not a significant difference between the two.
But it is not true when the two operators are applied on the test_SKIZ image. Load it in
imbin1 and enter:

>>> computeSKIZ(imbin1, imbin2)
>>> fastSKIZ(imbin1, imbin3)

Initial image (left), SKIZ obtained by thickenings (middle), SKIZ obtained by watershed of
the distance function (right). A false separation appears in the SKIZ by thickenings. This

boundary is included inside the same influence zone.

If we compare the influence zone of the U-shaped component in the two results, we remark
that a boundary appears inside this influence zone when the SKIZ is computed with
thickenings. This boundary is obviously wrong as it separates points which belong to the
same influence zone. This false boundary does not appear in the SKIZ obtained by the
watershed transform. The occurrence of this artefact can be explained by the fact that
propagations performed by thickenings are whitout memory (it is not possible to know that
two propagation fronts are coming from the same source) whereas the initial labelling of the
sources in the watershed transform allows to assess the common origin of two apparently
distinct propagation fronts. 
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The fastSKIZ operator is therefore better than the computeSKIZ one. By the way, the
former one is faster than the latter one as the computation time is shorter (no iteration of
successive thickenings is made). Moreover, this computation time does not depend of the
complexity of the initial set.

3) An appropriate labelling of the initial set, the geodesic space and the background allows to
define a function on which a watershed transform can be performed to build the influence
zones. Let us see how it works. 
Load the test_geodSKIZ image in imbin1 and close its holes in imbin2. This image will be
considered as the geodesic space. Then, the holes  are stored in imbin1:

>>> closeHoles(imbin1, imbin2)
>>> diff(imbin2, imbin1, imbin1)

We can then define a new greyscale image in im1. The points belonging to the geodesic
space are given the value 1, whilst the points in the background receive a value equal to 2.
Finally, the points belonging to the initial set are set to 0:
 
>>> convertByMask(imbin2, im1, 2, 1)
>>> sub(im1, imbin1, im1)

Upper left: initial set (holes of the test_geodSKIZ image). Upper middle: geodesic space
(test_geodSKIZ image without holes). Upper right: function used for the watershed, black

points take value 0, red ones take value 1 and green ones take value 2. Lower left:
watershed transform of the previous function. Lower middle: influence zones together with
the connected components of the geodesic space at an infinite geodesic distance from the
initial set. Lower right: in yellow, initial set, in red influence zones in the geodesic space,

in green connected components which do not belong to any influence zone.

We perform the watershed transform of this image in im2 and we threshold it to get the
binary watershed lines in imbin3, which are finally removed from the geodesic space:
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>>> valuedWatershed(im1, im2)
>>> threshold(im2, imbin3, 1, 255)
>>> diff(imbin2, imbin3, imbin3)

However, the set stored in imbin3 contains more than the influence zones as some connected
components of imbin2 are at an infinite geodesic distance from imbin1. They do not belong
to the influence zones and must be removed by means of a geodesic reconstruction and a set
difference:

>>> copy(imbin1, imbin4)
>>> build(imbin2, imbin4)
>>> logic(imbin3, imbin4, imbin3, “inf”) 

The final influence zones are stored in imbin3.
This procedure is effectively applied in the MAMBA geodesicSKIZ operator. Thanks to the
use of a geodesic reconstruction and a watershed transform, the operator is fast and its
computation time is independent of the complexity of the geodesic space.

Exercise n° 3

1) Load the electrop image into im1 and type:

>>> minima(im1, imbin1)

Original electrop image (left) and its minima (right).

Filtered image (left) and its minima (right).

There is a great number of minima, indicating that the electrop image is very noisy. It seems
that working directly with this image is not wise. So, this image is slightly filtered with an
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alternate filter of size two (opening first). The minima of the filtered image are more
significant. Type the following commands:

>>> opening(im1, im1)
>>> alternateFilter(im1, im1, 2, True)
>>> minima(im1, imbin1)

2) Compute the morphological gradient of the filtered image and detect its minima:

>>> gradient(im1, im2)
>>> minima(im2, imbin2)

Despite the fact that the initial image as been filtered, its gradient still exhibits numerous
minima (compare with the result given in exercise n° 1). Indeed, any sufficiently large flat
zone (at least three pixels) is likely to generate a minimum of gradient. Moreover, it is not
sure that increasing the size of the initial filtering would improve the result.
The watershed of the gradient image is realised with the valuedWatershed operator. The
watershed lines are extracted by thresholding:

>>> valuedWatershed(im2, im3)
>>> threshold(im3, imbin1, 1, 255)

Gradient of the filtered image (left - its contrast has been increased) and its minima
(right).

As awaited, the result is extremely "over-segmented", each minimum of the gradient being
associated with a catchment basin. Note, however, that the contours of the blobs belong to the
watershed lines but they are buried among a lot of non relevant ones.

Watershed of the gradient image and over-segmentation.
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3) Improving segmentation can be achieved by introducing relevant markers for the blobs but
also for the background. Each spot must be marked only once. The minima detected in the
above filtered image seem to be perfectly convenient.
Defining a good marker for the background is more difficult. For this, it is necessary to
define correctly where is the background. It can be stated that a pixel belongs to the
background when it is at the farthest distance from the markers of the blobs. Therefore, the
SKIZ of the spot markers could be used. But, the background pixels also need to be as bright
as possible. However, the SKIZ does not take into account the actual grey values of the
image. This is why it is preferable to perform the watershed of the image. We are sure now
that the marker of the background corresponds to the brightest pixels which are far from the
blobs. Proceed as follows:

>>> valuedWatershed(im1, im3)
>>> threshold(im3, imbin2, 1, 255)

The binary watershed lines stored in imbin2 will be the marker of the background and the
minima of the initial filtered image stored in imbin1 are the markers of the blobs. Both of
them can be gathered to perform a marker-controlled watershed of the gradient image.

Markers of the blobs in green, marker of the background in red.
 
However, we must be sure that the background marker does not touch any marker of the
blobs. For this, the pixels belonging to the blobs markers which fall inside the elementary
dilation of the background marker are removed. 

>>> dilate(imbin2, imbin3)
>>> diff(imbin1, imbin3, imbin3)
>>> logic(imbin2, imbin3, imbin3, "sup")

Preventing that markers of the blobs (M1) touch the background marker (M2) by removing
points of M1 which are inside the elementary dilation of M2. M is the final marker set.
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Finally, the contours of the blobs are obtained by a marker-controlled watershed of the
gradient image:

>>> markerControlledWatershed(im2, imbin3, im4)
>>> threshold(im4, imbin4, 1, 255)

Contours of the blobs.

It is also possible to cope with the touching markers issue by defining differently the label
image used by the watershed transform and by using the basinSegment operator instead of  
the watershedSegment one. Firstly, the blob markers in imbin1 are labelled. Their number is
returned by the label operator. Secondly, the marker of the background in imbin2 is valued
with the number of blobs + 1.  Then, the two images are added to give the final label image.
So, even if some blob markers touch the background marker, they have not the same label
and the basinSegment operator will not merge them:

>>> nBlobs =label(imbin1, im32_1)
>>> convertByMask(imbin2, im32_2, 0, nBlobs+1)
>>> logic(im32_1, im32_2, im32_1, "sup")
>>> basinSegment(im2, im32_1)

Left: labelling of all the markers, touching markers have different labels. Right: watershed
segmentation obtained with the basinSegment operator.

Finally, note that the definition of the background marker can be changed. Instead of using
the watershed of the initial filtered image, one can mark the background with the maxima of
the image (as the blobs were marked with the minima). Despite the fact that many maxima
are extracted, they can act as a unique source of flooding if we give them the same label
value. This can be done by the following commands:

>>> maxima(im1, imbin3)
>>> nBlobs = label(imbin1, im32_1)
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>>> convertByMask(imbin3, im32_2, 0, nBlobs+1)
>>> logic(im32_1, im32_2, im32_1, "sup")
>>> basinSegment(im2, im32_1)

Maxima of the initial filtered image (left), label image where all the maxima have the same
label (middle), result of the gradient watershed (right).

Changing the definition and the location of the markers may deeply modify the segmentation.
Here, some blobs may be adjacent (which was not allowed with the previous background
marker). This segmentation emphasizes the blob clusters.

Exercise n° 4: Catchment basins in a digital elevation model

1) Load the relief image into im1 and type:

>>> minima(im1, imbin1)
>>> valuedWatershed(im1, im2)
>>> threshold(im2, imbin2, 1, 255)

Left: initial relief image. Middle: minima. Right: watershed transform.

As awaited from the large number of minima, the watershed transform produces many
catchment basins. These minima come from local depressions and dips in the DEM. The
presence of these undesirable regional minima within the digital elevation model induces a
well-known over-segmentation. In fact, if there was no closed depression, the only regional
minima of the DEM would correspond to river outlets and should appear on the field border
of the image. Unfortunately, it is not the case.

2) A simple way to remove these unwanted minima consists in filling the dips which are
considered as holes (see chapter 6, exercise n° 4). 
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Initial image after holes closing (left). At the first sight, there is no significant difference
with the original image. However, the comparison of the two images shows that many dips

have been filled (right).

Apply the closeHoles operator to the initial image, compare the result with the initial image
(with the generateSupMask operator) and extract the minima:

>>> closeHoles(im1, im2)
>>> minima(im2, imbin2)
>>> generateSupMask(im2, im1, imbin3, True)

We already know that this operation is an algebraic closing: it is idempotent, increasing and
extensive.

3) We just have to apply the valuedWatershed operator to the im2 image containing the
relief image without its depressions:

>>> valuedWatershed(im2, im3)
>>> threshold(im3, imbin3, 1, 255)

The minima of the filtered relief image are touching the edge of the image and correspond
to real outlets (left). Watershed transform of the filtered image (right).

4) Determining the points of the topographic surface which are flooded from a given point is
simple, as explained in the following figure. All you have to do is to define this point as a
flooding source. A new catchment basin is generated containing all the points which are
flooded by this new source.
Try this procedure by entering the following commands. The filtered DEM image (without
depressions) is copied in im3 and the chosen pixel will be located at (60, 140):
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A new source of flooding is created at a specific position by simply replacing the pixel
value by 0. A well is generated. When the flooding coming from the other source included
in the same catchment basin reaches the point, a new watershed line appears, delimiting

the catchment basin related to the point.

>>> copy(im2, im3)
>>> im3.setPixel(0, (60, 140))
>>> valuedWatershed(im3, im4)
>>> threshold(im4, imbin1, 1, 255)

The new catchment basin is extracted by reconstruction in imbin2:

>>> negate(imbin1, imbin1)
>>> imbin2.reset()
>>> imbin2.setPixel(1, (60, 140))
>>> build(imbin1, imbin2)

DEM and the selected point in red (left). Catchment basin associated withthe point in blue
(right).

5) Taking into account some specific depressions in the DEM is easy. Once the depressions
which will be kept are defined and marked, just add these new markers to the outlet markers
before performing the watershed transform.

Exercise n° 5: Separation of particles (first approach)

1) The skeleton by geodesic influence zones of the ultimate eroded set gives the following
image (the disks image is in imbin1):

>>> binaryUltimateErosion(imbin1, imbin2, im32_1)
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>>> geodesicSKIZ(imbin2, imbin1, imbin3)

Initial disk image (left) and geodesic influence zones (in red) of the components of the
ultimate erosion (yellow).

The segmentation is not satisfactory, because the procedure does not take into account when
the different components of the ultimate eroded set appear. The propagation by the geodesic
thickening starts at the same time for all the connected components of the ultimate erosion
whereas they appear for different sizes of erosion. Therefore, the separations between the
particles are not correctly located. 

2) We know that the ultimate erosion corresponds to the maxima of the distance function of
the initial set. Let us consider the inverted distance function (see figure below). The
connected components of the ultimate erosion are then the minima of this inverted distance
function and the separations between the particles are its watershed lines.

The separation between two particles (right) corresponds to the watershed line of the
inverted distance function of the initial set (left).

First,  we can design an operator, named distanceWatershed, which performs the watershed
transform of an inverted distance function:

def distanceWatershed(imIn, imOut):
   """
   Watershed transform of a distance function loaded in 'imIn', which
   is a 32-bit image.
   This operator inverts the distance function (inversion with a limitation of the
   range of values to reduce the computaation time). 
   The result is stored in the binary image 'imOut'.
   """

   imWrk1 = imageMb(imIn)
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   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn, 1)
   imWrk4 = imageMb(imIn, 1)
   maxima(imIn, imWrk3)
   maxVal = computeRange(imIn)[1]
   imWrk1.fill(maxVal)
   sub(imWrk1, imIn, imWrk1)
   nParticles = label(imWrk3, imWrk2)
   watershedSegment(imWrk1, imWrk2)
   copyBitPlane(imWrk2, 31, imWrk3)
   threshold(imIn, imWrk4, 1, maxVal)
   diff(imWrk4, imWrk3, imOut)
   
Note that, in this procedure, the distance function d, defined in a 32-bit image, is not inverted
with the negate operator. We prefer to use its maximum value maxVal and compute the new
function (maxVal - d). This way of doing allows to restrict the function in the range
[0, maxVal] whereas the inverted function would be in the range [0, 232-1], which would
induce a very long computation time for the watershed transform.
Then, we can define the segmentParticles operator:

def segmentParticles(imIn, imOut):
   """
   Segmentation of the touching particles contained in the binary image
   'imIn'. This segmentation performs the watershed of the inverted
   distance function of the image.
   The result is stored in the binary image 'imOut'.
   """

   imWrk1 = imageMb(imIn, 32)
   computeDistance(imIn, imWrk1)
   distanceWatershed(imWrk1, imOut)

Distance function of the disk image (left), segementation by the watershed of the inverted
distance function (right).

Load the disk image in imbin1 and type:

>>> segmentParticles(imbin1, imbin2)

The separation lines are now correctly located.
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Exercise n° 6: Separation of particles (second example)

1) Load the coffee image in imbin1 and apply the segmentParticles to it:

>>> segmentParticles(imbin1, imbin2)

The segmentParticles operator, applied to the coffee image, let some defects appear. First of
all, some grains are over-segmented. These grains are marked by more than one connected
component of the ultimate erosion, which explains why they are cut into several pieces. This
phenomenon has already been observed previously (see chapter 7, exercise n° 5). It is due to
irregularities of the distance function.
Another small defect is visible at the left side of the image border. A coffee grain cutting the
edge and touching another grain inside the image field is not correctly segmented. 

Original coffee image (left) and result of the segmentation by the segmentParticles
operator (right). Some coffee grains are over-segmented. Note also that a grain on the

upper left side is badly segmented.

2) The multiple markers issue on the coffee image has already been addressed at chapter 7,
exercise n°5. We showed that extracting the h-maxima of height 2 produced connected
markers. The same operator could be used here to prevent the over-segmentation of some
coffee grains. An equivalent solution consists in performing an opening of size 2 of the
distance function. Indeed, the slope of a distance function is equal to 1 (the difference
between two adjacent points is at most equal to 1 - the function is said to be 1-Lipchitzian).

If d is a distance function, extracting the h-maxima of d and performing an opening of size
h are equivalent operations.

Load the coffee image in imbin1 and type:

>>> computeDistance(imbin1, im32_1)
>>> opening(im32_1, im32_1, 2)
>>> distanceWatershed(im32_1, imbin2)
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Segmentation of the coffee grains without over-segmentation.

The over-segmentation has disappeared. But a grain on the left side of the image is still not
correctly segmented. This is due to the fact that the distance function has been computed with
the edge parameter set to EMPTY (its default value).

When the parameter edge is set to EMPTY in the computeDistance operator, no maximum
appear (right image), whereas this maximum is present when edge is set to FILLED (left

image).

Final segmentation of the coffee image  without defects (over-segmentation and edge
effects).

The final segmentation is obtained with:

>>> computeDistance(imbin1, im32_1, edge=FILLED)
>>> opening(im32_1, im32_1, 2)
>>> distanceWatershed(im32_1, imbin2)
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Exercise n° 7: Road segmentation

1) When it is not easy or feasible to extract the objects to be segmented in an image, it is
often interesting to use hierarchical segmentation tools.
The road can be defined as a sufficiently large and quite homogeneous region in the
foreground of the image. The enhanced waterfalls operator takes an initial valued watershed
image and merges the catchment basins which are inside salient regions hence generating
different levels of hierarchy. The operator returns the number of levels found. The last one
contains the most salient regions.
Load the route image and try this operator on the valued watershed of the gradient image.
Type:

>>> gradient(im1, im2)
>>> valuedWatershed(im2, im3)
>>> enhancedWaterfalls(im3, im4)
3

The operator returns the value 3. Three levels of hierarchy were found and stacked in the
greyscale image im4. To get the last one, simply threshold it in the range [3, 255]:

>>> threshold(im4, imbin1, 3, 255)

Initial route image (left), result of the enhanced waterfalls segmentation, each level of
hierarchy is represented with a different color (middle), extraction of the highest level of

hierarchy (right).

The last segmentation contains a large region corresponding to the road which can be
extracted and used to build a marker.

2) However, if we apply the same algorithm to the road image, the result is not so good (see
below). This is due to the bad quality of the image, which is low-contrasted and fuzzy (the
camera was aboard a running car).
If a gradient of size 1 is used, when a contour is not sharp, its value is lower than the true
variation of luminance between the two regions separated by the contour. As this variation
corresponds to the value of the watershed, it is very important that this value be as close as
possible to the real one so that the enhanced waterfalls transformation be able to assess
correctly the saliency of this contour in the hierarchy.
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Value g1 of the gradient when elementary erosion and dilation are used. Value g2

corresponding to a thick gradient of size 2.

3) So, try again the algorithm with a thick gradient of size 2:

>>> gradient(im1, im2, 2)
>>> valuedWatershed(im2, im3)
>>> enhancedWaterfalls(im3, im4)
3
>>> threshold(im4, imbin1, 3, 255)

As explained above, the gradient values are better determined with a thick gradient.
Therefore, the hierarchies computed by the enhanced waterfalls transform better extract the
salient regions.
The highest hierarchical level (equal to 3) produces a good segmentation of the road.

Initial road image (left). Highest level of hierarchy (4) with a gradient of size 1 (middle).
Highest level (3) with a gradient of size 2.

You can also test this algorithm on the road1 and road2 images.

4) As mentioned above, the road should correspond to the catchment basin which is at the
foreground of the image. So, to define a road marker together with an outside one, different
steps are used and described below.
Load the road1 image in im1 and get the hierarchical segmentation (catchment basins) in
imbin1:

>>> gradient(im1, im2, 2)
>>> valuedWatershed(im2, im3)
>>> enhancedWaterfalls(im3, im4)
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4
>>> threshold(im4, imbin1, 0, 3)

Hierarchical segmentation (highest level) of the road1 (left) and road2 (right) images.

Then, we can define a first marker in imbin2 made of a dilated point located in the middle
and bottom of the image (we verify its size with the getSize method):

>>> imbin2.reset()
>>> im1.getSize()
(256, 256)
>>> imbin2.setPixel(1, (128, 240))
>>> dilate(imbin2, imbin2, 15)

Hierarchical segmentation of the road1 image (left), marker of the road (middle) and
extracted catchment basin (right).

This marker is duplicated in imbin3 (the same marker will be used later on) and used to
extract the foreground catchment basin (in imbin3). This catchment basin is filtered. Its holes
are filled:
>>> copy(imbin2, imbin3)
>>> build(imbin1, imbin3)
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>>> closeHoles(imbin3, imbin3)

This catchment basin is eroded with a sufficiently large erosion (size 10). This erosion will
ensure that the road marker will fall inside the road and will not run into its boundary and the
outside. Moreover, as we want that the road marker be composed of a single component, we
perform again a reconstruction of the eroded set to keep this connected component as marker.
The connected components which are not rebuilt are considered to be markers of the outside.

>>> erode(imbin3, imbin4, 10)
>>> build(imbin4, imbin2)
>>> diff(imbin4, imbin2, imbin4)

Erosion of the road catchment basin (left), extraction of the connected component marked
by the initial marker (middle), erosion of size 10 of the complementary of the road

catchment basin (right).

The final outside marker is obtained by eroding (same size of erosion) the complementary
part of the road catchment basin (stored in imbin3) and by adding to this set the connected
components which have not been rebuilt in the previous step.
 
>>> negate(imbin3, imbin3)
>>> erode(imbin3, imbin3, 10)
>>> logic(imbin3, imbin4, imbin3, "sup")

The non rebuilt marker in the previous step is added to the previous step (left). This set
defines the outside marker in red whilst the green connected component is the marker of

the road (right).

The entire procedure can be realised by the following roadMarkerExtract operator. The
initial image is in im1 and the 32-bit image im2 contains the labelled markers:
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def roadMarkersExtract(im1, im2):
   """
   Extraction of the road and outside markers from the segmentation obtained
   by the higher level of hierarchy of the enhanced waterfalls transform.
   'im1' contains the initial catchment basins. 'im2' is a 32-bit image containing the
   labelled markers for the road and for the outside.
   """
   
   imWrk1 = imageMb(im1)
   imWrk2 = imageMb(im1)
   imWrk3 = imageMb(im1)
   imWrk1.reset()
   imSize = im1.getSize()
   xPos = imSize[0]//2
   yPos = imSize[1]-15
   imWrk1.setPixel(1, (xPos, yPos))
   dilate(imWrk1, imWrk1, 15)
   copy(imWrk1, imWrk2)
   build(im1, imWrk2)
   closeHoles(imWrk2, imWrk2)
   erode(imWrk2, imWrk3, 10)
   build(imWrk3, imWrk1)
   diff(imWrk3, imWrk1, imWrk3)
   negate(imWrk2, imWrk2)
   erode(imWrk2, imWrk2, 10)
   logic(imWrk2, imWrk3, imWrk2, "sup")
   convertByMask(imWrk1, im2, 0, 2)
   add(im2, imWrk2, im2)

Finally, the complete road segmentation can be achieved with the roadSegment operator:

def roadSegment(im1, im2):
   """
   Segmentation of the road in image 'im1'. The result is put in
   the binary image 'im2'.
   The algortihm uses the above road markers extractor.
   """
   
   imWrk1 = imageMb(im1)
   imWrk2 = imageMb(im1)
   imWrk3 = imageMb(im1, 1)
   imWrk4 = imageMb(im1, 32)
   gradient(im1, imWrk1, 2)
   valuedWatershed(imWrk1, imWrk2)
   nbHier = enhancedWaterfalls(imWrk2, imWrk1)
   threshold(imWrk1, imWrk3, 0, nbHier -1)
   roadMarkersExtract(imWrk3, imWrk4)
   watershedSegment(imWrk1, imWrk4)
   copyBitPlane(imWrk4, 31, im2)

Test it with the route, road, road1 and road2 images:

>>> roadSegment(im1, imbin1)

Chapter 9

229



From top to bottom and from left to right, result of the road segmentation algorithm
applied to the route, road, road1 and road2 images.

Note that his road segmentation algorithm is far from being universal. The use of enhanced
waterfalls gives good results only if the road is really a salient region with a sufficient
contrast. The extraction of markers could be more robust, a deeper insight of the shape and
size of these markers should be performed. Anyway, this exercise only aims at showing the
capabilities of the morphological segmentation tools.

Exercise n° 8: Pellets segmentation in a 3D polyurethane foam

1) The foam image is a 3D image stored in the Mamba_Images/3D directory. This image is
in the foam directory and is composed of 74 2D image sections. Define properly the working
directory with the following commands:

>>> import os
>>> os.chdir(“c:/Mamba_Images/3D”)

Then import the mamba and mamba3D modules, load the foam image into the 3D imA
image and convert this image into a binary one:

>>> from mamba import *
>>> from mamba3D import *
>>> imA = image3DMb('foam')
>>> imA.convert(1)

 The size of the image is given by:

>>> ImA.getSize()
(192, 224, 74)
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If the VTK Visualisation Tool Kit has been properly installed (read carefully the MAMBA
user manual about the installation procedure and its restrictions), you can display this image
in 3D with the show() method by setting the mode to VOLUME:

>>> imA.show(mode=”VOLUME”)

3D display in VOLUME mode (VTK installed).

You can also use the PROJECTION mode (which is the default mode):

>>> imA.show(mode=”PROJECTION”)

In PROJECTION mode, the three projections of the 3D image are displayed and it is
possible to navigate inside it by moving the mouse cursor.

2) Although we are working with 3D images, the segmentation process is similar to the one
used for separating coffee grains in the exercise n° 6. Indeed, most of the 2D operators also
exist in the mamba3D package (their name is generally the same as in 2D with simply the
suffix 3D added).
In the first step, the initial image is filtered: holes are closed and a reconstruction opening is
performed to remove small artefacts which could be present in the 3D volume. A sup of
directional linear openings of size 2 is used. Note that the default grid is the Face Centered
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Cubic (FCC) grid in mamba3D. The elementary structuring element is a cuboctahedron
(each pixel has 12 neighbors).

>>> imB = image3DMb(imA)
>>> closeHoles3D(imA, imB)
>>> imC = image3DMb(imA)
>>> supOpen3D(imB, imC, 2)
>>> build3D(imB, imC)

Then, the filtered image is inverted and its 3D distance function is performed.

>>> imD = image3DMb(imA)
>>> negate3D(imC, imD)
>>> imE = image3DMb(imA, 32)
>>> computeDistance3D(imD, imE, edge=FILLED)

Initial foam image (left) and distance function of the complementary image (right).

Contrary to the 2D case where the inverted distance function was decremented in order to
reduce the computation time of the watershed transform, we prefer here to verify that the
maximal value of the distance function is less than 256 so that it is possible to transfer it into
a greyscale (8-bit) 3D image before inverting it.

>>> computeRange3D(imE)[1]
32

The maximal distance is equal to 32. So, the lowest byte plane of the imE image can be
transferred into the 8-bit imF image:

>>> imF = image3DMb(imA, 8)
>>> copyBytePlane3D(imE, 0, imF)

The distance function is filtered in order to keep its most significant maxima (markers of the
pellets).

>>> imG = image3DMb(imA, 8)
>>> opening3D(imF, imG, 3)
>>> maxima3D(imG, imB)
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Maxima of the opened distance function.

The distance function is inverted and the markers are labelled. The number of labels
corresponds to the number of pellets:

>>> negate3D(imF, imF)
>>> label3D(imB, imE)
94

Finally, a 3D watershed of the inverted distance function is performed:

>>> watershedSegment3D(imF, imE)
>>> imH = image3DMb(imA)
>>> copyBitPlane3D(imE, 31, imH)

The septa between the pellets are rebuilt (left). The separated pellets are visible in the
inverted image (right).

The result of the watershed transform can be displayed. Inverting the image shows the
separated pellets:

>>> imH.show(mode="VOLUME")
>>> negate3D(imH, imH)

As mentioned earlier, this exercise has proved that working on 3D images is not an issue with
mamba3D.
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Exercise n° 9: Stamped grid in steel

1) Levellings are filtering operators which flatten the images. Two simple implementations of
these filters are available in MAMBA: simpleLevelling and strongLevelling. Both of them
use geodesic reconstructions. The simple levelling is symmetrical while the order of the
initial operations (erosion or dilation) can be set up in the strong levelling.
Try the strongLevelling operator of size 2 on the initial steel_sheet image and extract the
maxima of the filtered image:

>>> strongLevelling(im1, im2, 2, eroFirst=False)
>>> maxima(im2, imbin1)

Some cells are correctly marked but some others are missed. Conversely, if the size of the
levelling increases, some cells are better detected, but others are concatenated:

>>> strongLevelling(im1, im2, 14, eroFirst=False)
>>> maxima(im2, imbin1)

Strong levelling of size 14 and corresponding maxima. Some cell markers are connected to
the edge.

Strong levelling of size 2 and corresponding maxima.

Therefore, a procedure named extractGridMarkers can be designed, where increasing sizes
of levellings are used. At each step (except for the first one), the maxima which touch the
edges are removed. The others are added (union) to the final result. The procedure ends when
no inner maximum remains:

def extractGridMarkers(imIn, imOut):
   """
   This procedure extracts markers of the cells of the grid printed on the
   steel sheet (image 'imIn') and puts the result in binary image 'imOut'.
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   The procedure uses the extraction of the maxima of successive strong
   levellings. At each step after the first one, the connected components
   of the maxima which touch the edge are removed. The process stops
   when no marker is available.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 1)
   # A first filtering with a strong levelling produces first seeds for the
   # markers (maxima of the filtered image).
   i = 2
   strongLevelling(imIn, imWrk1, i, eroFirst=False)
   maxima(imWrk1, imOut)
   v1 = computeVolume(imOut)
   # The same filtering is iterated for increasing sizes. Only the inner
   # maxima are preserved and added to the markers image. When no inner
   # marker is available, the process ends.
   while v1 <> 0:
       i += 2
       strongLevelling(imIn, imWrk1, i, eroFirst=False)
       maxima(imWrk1, imWrk2)
       removeEdgeParticles(imWrk2, imWrk2)
       logic(imWrk2, imOut, imOut, "sup")
       v1 = computeVolume(imWrk2)

Load the steel_sheet image in im1 and test the procedure:

>>> extractGridMarkers(im1, imbin1)

The cells are marked. Some cells contain more than one marker. They correspond to cells
which are not homogeneous.

Markers of the grid cells.

Now, the marker-controlled watershed of the inverted initial image (not its gradient!) is
performed. The binary watershed lines are stored in imbin2:

>> negate(im1, im2)
>>> label(imbin1, im32_1)
65
>>> watershedSegment(im2, im32_1)
>>> copyBitPlane(im32_1, 31, imbin2)
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As  indicated above, some cells are over-segmented. The multiple points of the watershed
transform are extracted. Close points are connected by a dilation of size 2 followed by an
intersection with the watershed lines in order to restrain the multiple points to the watershed:

>>> multiplePoints(imbin2, imbin3)
>>> dilate(imbin3, imbin4, 2)
>>> logic(imbin2, imbin4, imbin4, "inf")

Watershed transform of the inverted steel_sheet image (left) and its multiple points (right).

Among the detected multiple points, only those which are adjacent to four cells of the grid
are relevant. It could be possible to sort these points individually. However, we prefer to
design a general algorithm using a tool which has already been defined in the exercise n° 9,
chapter 8: holesLabelling. The following illustration explains this algorithm which consists
in dilating the multiple points twice and in removing from the second dilation the points
added by the first one.

The multiple point (in green) is dilated twice. The points of the first dilation belonging to
the cells (in red) are removed from the second dilation. The rsulting connected component

contains as many holes as there are neighboring cells.

The following sequence implements the algorithm:

>>> dilate(imbin4, imbin1)
>>> imbin5 = imageMb(imbin1)
>>> dilate(imbin1, imbin5)
>>> diff(imbin1, imbin2, imbin3)
>>> diff(imbin5, imbin3, imbin3)
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Multiple points after a slight concatenation (left), result of the algorithm which generates
holes inside the dilated multiple points.

 
The holesLabelling procedure labels each connected component with its number of holes +
1. The relevant crossings of the grid are obtained by thresholding the labelled image at [5,5],
value which corresponds to the number of holes (4) + 1:

>>> holesLabelling(imbin3, im32_1)
>>> threshold(im32_1, imbin5, 5, 5)

A [5,5] threshold extracts the relevant multiple points (left) which can be thinned to refine
their position (right).

 
Exercise n° 10: Analysis of a burner

1) As the raster is  oriented  in vertical  and  horizontal directions, using a square grid is more
convenient. Indeed, on  the  hexagonal grid, it is more difficult to generate the vertical
direction (it requires to perform combinations of transformations in the 60° and 120°
directions). In MAMBA, the square grid is defined with the setDefaultGrid operator: 

>>> setDefaultGrid(SQUARE)

When an operator uses a structuring element, the grid corresponding to this structuring
element is automatically used. For instance a SQUARE3X3 structuring element is used on a
square grid.
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2) The alternate sequential filters (ASF)  with opening-closing or closing-opening by a square
structuring element of size 1 give satisfactory results. There is no significant difference
between these two types of filters. Load the burner image in im1 and type:

>>> alternateFilter(im1, im2, 1, True, se=SQUARE3X3)
>>> alternateFilter(im1, im3, 1, False, se=SQUARE3X3)

You can assess the efficiency of these filters by extracting the maxima of the original image
and of the filtered ones. If both filters are very efficient to reduce noise, there is no big
difference in the number of maxima between the two results.

Left: original image (top) and its maxima (bottom). Middle: alternate sequentiel filter of
size 1 starting with an opening (top) and its maxima (bottom). Right: ASF with a closing

first (top) and its maxima (bottom).

3)  The raster is extracted by means of the following steps.

Vertical closing in direction 1 (left), in direction 5 (middle). Sup of the two closings (right).
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First of all, linear vertical closings of large size are performed. Note that, to avoid edge
effects, the two vertical directions (1 and 5) must be used. The sup of these two closings
produces a satisfactory result: 

>>> linearClose(im2, im3, 1, 100, grid=SQUARE)
>>> linearClose(im2, im4, 5, 100, grid=SQUARE)
>>> logic(im3, im4, im3, "sup")

The same procedure is applied in the horizontal direction (note the definition of a new
greyscale image in im5):

>>> linearClose(im2, im4, 3, 100, grid=SQUARE)
>>> im5 = imageMb(im1)
>>> linearClose(im2, im5, 7, 100, grid=SQUARE)
>>> logic(im4, im5, im4, "sup")

Finally, the infimum of the two preceding results provides a pretty good extraction of the
raster:

>>> logic(im3, im4, im3, "inf")

Extraction of the horizontal components of the grid (left), final result (right).

As the image is almost a two-phased image, a binary raster can be obtained by a simple
threshold in the middle of the grey values range.

Principle of the automatic thresholding of a two-phased image; the extremal grey values a
and b are computed and a threshold can be applied in the middle of the range.

Apply this to the raster image:
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>>> computeRange(im3)
(109, 196)
>>> threshold(im3, imbin3, 0, 152)

However, a more refined extraction can be obtained by a watershed transform applied on the
grey raster image. For this, markers of the raster can be defined by an ultimate erosion of the
previous coarse binary raster image, while markers of the background are obtained with an
ultimate erosion of the complementary binary set. Using ultimate erosions insure that the
markers are centered on the regions to be segmented.

>>> ultimateErosion(imbin3, imbin1, im32_1)
>>> negate(imbin3, imbin3)
>>> ultimateErosion(imbin3, imbin2, im32_1)

First binary image of the raster obtained by a simple thresholding (left). Markers of the
raster (middle) and of the background (right) obtained by ultimate erosions.

Then, a label image is built: the raster markers are given a label value equal to 2 while the
label of the background markers is equal to 1. The watershed of the gradient of the grey raster
image is performed with the basinSegment operator (no boundary is generated):

>>> im32_1.reset()
>>> add(im32_1, imbin1, im32_1)
>>> add(im32_1, imbin1, im32_1)
>>> add(im32_1, imbin2, im32_1)
>>> gradient(im3, im4)
>>> basinSegment(im4, im32_1)

Gradient of the raster image (left) and result of the watershed transform (right).

Chapter 9

240



The markers of the raster (in imbin1) and the gradient of the raster image are preserved as
they will be use for the extraction of the other features. The gradient is stored in the im5
image:

>>> copy(im4, im5)

4) Extraction of the hexagonal structures
The previous segmentation can be used to restrain the search of the hexagonal structures
inside the background region. This increases the robustness of the process.
A greyscale image of the background (labelled 1 in the previous segmentation) is generated
(each background pixel takes the value 255) and used as mask in a geodesic reconstruction.
each cell of the background is valued with its maximal grey value. Subtracting the initial
filtered image from this reconstructed image extracts the hexagonal structures:

>>> threshold(im32_1, imbin2, 1, 1)
>>> convert(imbin2, im4)
>>> copy(im2, im3)
>>> hierarBuild(im4, im3)
>>> sub(im3, im2, im4)

Each background cell is valued with its maximal grey value (left). Subtracting the initial
filtered image extracts the hexagonal structures.

Here again, a first binary image of the hexagonal structures can be obtained by a simple
thresholding of the im4 image in the middle of its range of grey values:
 
>>> computeRange(im4)
(0, 134)
>>> threshold(im4, imbin3, 67, 255)

A more refined segmentation can also be performed by a marker-controlled watershed. The
process is identical to the one used for the raster segmentation. The binary sets corresponding
to the hexagonal structures and to the background obtained by thresholding and
complementation are opened in order to remove small defects at the boundary of the
background.:

>>> opening(imbin3, imbin4, se=SQUARE3X3)
>>> diff(imbin2, imbin4, imbin3)
>>> opening(imbin3, imbin3, se=SQUARE3X3)
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The ultimate erosion of these filtered sets is performed. The components of the ultimate
erosion can be used as markers of the hexagonal structures and of the background. We could
now build the label image used by the watershed transformation.

Hexagonal structures extracted by thresholding (upper left), their opening (upper right),
background (lower left) and its opening (lower right).

However, as we want also to obtain the segmentation of the raster, we must add to the label
image the markers of the raster which have been previously generated and stored in the
imbin1 image (the label is equal to 3 for the markers of the hexagonal structures, equal to 2
for the background markers and to 1 for the raster markers) :

>>> ultimateErosion(imbin3, imbin5, im32_2)
>>> convertByMask(imbin5, im32_1, 0, 3)
>>> ultimateErosion(imbin4, imbin5, im32_2)
>>> add(im32_1, imbin5, im32_1)
>>> add(im32_1, imbin5, im32_1)
>>> add(im32_1, imbin1, im32_1)

Moreover, the marker-controlled watershed is applied to the supremum of the gradient of the
initial filtered image (stored in im2) and of the gradient of the raster image (stored in im5).
This procedure allows to better define the boundaries between the raster and the hexagonal
structures:

>>> gradient(im2, im3)
>>> logic(im3, im5, im5, "sup")
>>> basinSegment(im5, im32_1)
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Left: markers of the background (in green), of the hexagonal structures (in yellow) and of
the raster (in red). Middle: supremum of the gradient images of the initial filtered image

and of the raster image. Right: watershed segmentation.

5) Extraction of the black spots
To extract the spots, we start by building an image where the spots will be the most
significant minima. We first extract the region containing the hexagonal structures. Then we
fill the outside with the maximal grey value in the initial filtered image (it corresponds to the
background). This filling is achieved by a geodesic reconstruction:

>>> threshold(im32_1, imbin3, 2, 2)
>>> convert(imbin3, im3)
>>> logic(im2, im3, im4, "inf")
>>> negate(im3, im5)
>>> copy(im2, im3)
>>> hierarBuild(im5, im3)
>>> logic(im3, im4, im3, "sup")

The range of grey values in this image gives the maximum depth of the minima (the spots).
These spots can be marked by the minDynamics operator. Minima with a dynamics greater
than or equal to 120 (that is approximately 5/6 of the maximum depth) are extracted and
thinned. They constitute the markers of the spots:

>>> computeRange(im3)
(53, 196)
>>> minDynamics(im3, imbin4, 120)
>>> thinD(imbin4, imbin4)

Extracted hexagonal structures (left), filling of the outside (middle), minima with a high
dynamics (right, in red). 
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The outside marker is composed of the union of the raster and of the dilated background. A
size 2 dilation of the background set is performed to insure that the outside marker overrides
the boundaries of the hexagonal structures and that the watershed flooding will not be
blocked by these boundaries:

>>> threshold(im32_1, imbin3, 3, 3)
>>> imbin3.show()
>>> dilate(imbin3, imbin3, 2)
>>> threshold(im32_1, imbin2, 1, 1)
>>> logic(imbin3, imbin2, imbin3, "sup")

The watershed transform of the gradient of the inital image is realised, controlled by these
markers:

>>> im32_2.reset()
>>> add(im32_2, imbin3, im32_2)
>>> add(im32_2, imbin3, im32_2)
>>> add(im32_2, imbin4, im32_2)
>>> gradient(im2, im5)
>>> basinSegment(im5, im32_2)

Left: markers of the spots (red) and of the outside (green). Right: extraction of the spots by
the watershed transform.

6) Due to biases in the watershed transform, some spots are not adjacent to the raster even
though they should be. To overcome this, a geodesic dilation of the spots inside the
background cells can be performed:

Initial spots (left), spots after a geodesic dilation (middle), complete segmentation showing
the raster, the hexagonal structures and the spots.

>>> threshold(im32_2, imbin5, 1, 1)
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>>> threshold(im32_1, imbin4, 1, 1)
>>> negate(imbin4, imbin3)
>>> geodesicDilate(imbin5, imbin3, imbin2, 2)

A better localisation of the centers of the spots which are touching or partly hidden by the
raster can be obtained if the distance function of the set made of the union of the spots and
the raster is computed first. Then, the extraction of the maxima of the restriction of this
distance function to the spots (filtered by an elementary opening) allows to better locate the
centers of the spots. A thinD operator reduces these centers to a single point:

>>> logic(imbin2, imbin4, imbin1, "sup")
>>> computeDistance(imbin1, im32_2, edge=FILLED)
>>> convert(im32_2, im3)
>>> convert(imbin2, im4)
>>> opening(im3, im3)
>>> logic(im3, im4, im4, "inf")
>>> maxima(im4, imbin3)
>>> thinD(imbin3, imbin3)

Restriction to the spots of the distance function of the union of the spots and the raster
(left). Spots in green, raster in red and centers of the spots in blue (right).
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Conclusion

CONGRATULATIONS!

If you arrived to this point after a thorough study of this manual, you deserve
congratulations! This exercise handbook contains approximately fifty exercises and some of
them are quite difficult. Even if you just skimmed through them, we hope that you could find
ideas for designing solutions to your own image analysis applications. Moreover, we are sure
now that you are convinced that using Mathematical Morphology does not simply consist in
applying basic operators on binary images. The various tools available in the MAMBA
Image library can be used efficiently for image segmentation, feature extraction and
characterization. These operators are fast, they work on images of various sizes and depths. It
is also possible to build your own tools as this was done in fact in many exercises.

Be aware, however, that these exercises have unveil a small part of the capabilities of
Mathematical Morphology in general and of the MAMBA library in particular. If the
algorithmic chapter has been put forward, many other aspects have not been tackled: color
images (although the operators allowing to work on these images exist in MAMBA), 3D
images (except in one exercise; remind that mamba3D contains many 3D operators),
morphology on graphs (although powerful operators dealing with partitions, a dual
representation of graphs, exist in MAMBA), stochastic morphology (random sets, random
models, simulations), etc.

Nevertheless, if this exercise handbook makes you want to go further, it has fulfilled its
purpose.
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Annex

MAMBA SOURCES

This annex contains the source listing of the Python file Mamba_solutions.py. This file
collects all the MAMBA operators defined in the exercises.

# This file contains the various mamba functions providing the solutions of
# the exercises contained in the "Mathematical Morphology Exercises with Mamba"
# document (version 2).

from mamba import *

def covariance(imIn, dir, sizeRange, grid=DEFAULT_GRID):
   """
   This operator calculates the covariance of image 'imIn' in the direction
   'dir' of 'grid' for all tha sizes in 'size_range'.
   It returns a list of real values.
   """
   
   imField = imageMb(imIn, 1) # Binary measurement field
   imWrk = imageMb(imIn) # Working image
   covarList = [] # Initializing the covariance list
   for i in range(sizeRange):
       doublePointErode(imIn, imWrk, dir, i, grid=grid, edge=EMPTY)
       v1 = computeVolume(imWrk)
       # Performing the erosion by a doublet of points and measuring
       # its area. Note the setting of edge!
       imField.fill(1)
       doublePointErode(imField, imField, dir, i, grid=grid, edge=EMPTY)
       v2 = computeVolume(imField)
       # Generating the current unbiased measurement mask and measuring
       # its area.
       covarValue = float(v1) / v2
       covarList.append(covarValue)
   return covarList

def particleBoundingBoxes(imIn):
   """
   This operator returns a list containing the horizontal and vertical dimensions
   (also called Feret diameters) of all the particles contained in the binary image
   'imIn'.
   """
   
   # Defining working images
   imWrk = imageMb(imIn) 
   imWrk32 = imageMb(imIn, 32)
   # Initializing the list of results
   feretDiametersList = []
   # Labelling the binary image. nb contains the number of particles
   nb = label(imIn, imWrk32)
   # This loop calculates the size of the bounding box for each connected component    
   for i in range(nb):
       threshold(imWrk32, imWrk, i+1, i+1)
       box = computeFeretDiameters(imWrk)
       feretDiametersList.append(box)
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   # Returning the list of results
   return feretDiametersList

def doublePointOpen(imIn, imOut, dir, n, grid=DEFAULT_GRID, edge=FILLED):
   """
   Performs an opening by a doublet of points of size 'n' in direction 'dir'.
   'edge' is set to 'FILLED' by default. 
   """
   
   doublePointErode(imIn, imOut, dir, n, edge=edge, grid=grid)
   doublePointDilate(imOut, imOut, transposeDirection(dir, grid=grid), n, grid=grid)
   
def doublePointClose(imIn, imOut, dir, n, grid=DEFAULT_GRID, edge=FILLED):
   """
   Performs a closing by a doublet of points of size 'n' in direction 'dir'.
   If 'edge' is set to 'EMPTY', the operation must be modified to remain extensive.
   """
   
   imWrk = imageMb(imIn)
   if edge==EMPTY:
       copy(imIn, imWrk)
   doublePointDilate(imIn, imOut, dir, n, grid=grid)
   doublePointErode(imOut, imOut, transposeDirection(dir, grid=grid), n, edge=edge, grid=grid)
   if edge==EMPTY:
       logic(imOut, imWrk, imOut, "sup")

def dodecagonalOpening(imIn, imOut, n=1, edge=FILLED):
   """
   Performs an opening operation on image 'imIn' with a dodecagon and puts the result in 'imOut'.
   'n' controls the size of the opening.
   The default edge is set to 'FILLED'. Note that the edge setting operates in the
   erosion only.
   """
  
   dodecagonalErode(imIn, imOut, n, edge=edge)
   dodecagonalDilate(imOut, imOut, n, edge=EMPTY)

def granulometricMeasure(imIn, n):
   """
   Granulometric measure (size distribution measure) of the binary image
   'imIn' after an hexagonal opening of size n.
   This function returns a real value between 0 and 1.
   """
   
   imWrk1 = imageMb(imIn, 1)
   imWrk2 = imageMb(imIn, 1)
   opening(imIn, imWrk1, n)
   diff(imIn, imWrk1, imWrk2)
   imWrk1.fill(1)
   erode(imWrk1, imWrk1, 2*n, edge=EMPTY)
   logic(imWrk2, imWrk1, imWrk2, "inf")
   measure1 = computeVolume(imWrk2)
   logic(imIn, imWrk1, imWrk2, "inf")
   measure2 = computeVolume(imWrk2)
   if measure2 <> 0:
       granulometry = float(measure1)/measure2
   else:
       granulometry = 0
   return granulometry
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def granulometry(imIn, size):
   """
   Computes the granulometry of binary image 'imIn' in the range (0, 'size' -1) by an hexagonal
   opening.
   """
   
   granuList =[]
   for i in range(size):
       mes = granulometricMeasure(imIn, i)
       granuList.append(mes)
   return granuList

def contrast(imIn, imOut, size, type):
   """
   Contrast operators applied on image 'imIn'. The result is in 'imOut'. The size
   of the operators is given by 'size'.
   'type' allows to select the type of operators:
   'type' < 1, the two contrast operators are erosion and dilation of size 'size'.
   'type' = 1, the two operators are opening and closing of size 'size'.
   'type' > 1, the first operator is an opening of size 'size', the second one
   is a closing of size 5*size.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   if type > 0:
       opening(imIn, imWrk1, size)
       size1 = size
       if type > 1:
           size1 = size * 5
       closing(imIn, imWrk2, size1)
   else:
       erode(imIn, imWrk1, size)
       dilate(imIn, imWrk2, size)
   sub(imIn, imWrk1, imWrk3)
   sub(imWrk2, imIn, imWrk4)
   generateSupMask(imWrk4, imWrk3, imMask, False)
   convertByMask(imMask, imOut, 0, computeMaxRange(imIn)[1])
   logic(imWrk1, imOut, imOut, "inf")
   negate(imMask, imMask)
   convertByMask(imMask, imWrk4, 0, computeMaxRange(imIn)[1])
   logic(imWrk2, imWrk4, imWrk4, "inf")
   logic(imWrk4, imOut, imOut, "sup")

def contrastByTopHat(imIn, imOut, size):
   """
   Contrast by top-hat of size 'size' of 'imIn', result in 'imOut'.
   The final image can be identical to the initial one.
   For greyscale images, the arithmetic operations are truncated.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imWrk1)
   whiteTopHat(imIn, imWrk2, size)
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   add(imIn, imWrk2, imOut)
   blackTopHat(imWrk1, imWrk2, size)
   sub(imOut, imWrk2, imOut)

def autoMedian2(imIn, imOut, n):
   """
   Morphological automedian filter performed with an alternance
   closing/opening/closing and opening/closing/opening.
   """
   
   oco_im = imageMb(imIn)
   coc_im = imageMb(imIn)
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   alternateFilter(imIn, oco_im, n, True)
   opening(oco_im, oco_im, n)
   alternateFilter(imIn, coc_im, n, False)
   closing(coc_im, coc_im, n)
   copy(coc_im, imWrk1)
   logic(oco_im, imWrk1, imWrk1, "sup")
   copy(coc_im, imWrk2)
   logic(oco_im, imWrk2, imWrk2, "inf")
   copy(imIn, imOut)
   logic(imOut, imWrk2, imOut, "sup")
   logic(imOut, imWrk1, imOut, "inf")

def compareImages(imIn1, imIn2):
   """
   Compares the two images 'imIn1' and 'imIn2' and returns the number of
   modified pixels between them.
   """
   
   imWrk1 = imageMb(imIn1, 1)
   imWrk2 = imageMb(imIn2, 1)
   generateSupMask(imIn1, imIn2, imWrk1, True)
   generateSupMask(imIn2, imIn1, imWrk2, True)
   logic(imWrk1, imWrk2, imWrk1, "sup")
   pixdiff = computeVolume(imWrk1)
   return pixdiff

def closeFibers(imIn, imOut):
   """
   This operation cleans the original fibers image by closing their contours
   and by filling their interiors. Note that this operation also fills the
   fibers which are cutting the edges of the image.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   
   negate(imIn, imWrk1)
   # Linear dilation of size 2 in horizontal direction to connect fibers
   # contours.
   linearDilate(imWrk1, imWrk1, 5, 2)
   # Filling true holes (interior fibers)
   closeHoles(imWrk1, imWrk2)
   # Extracting all the fibers cutting the edges.
   removeEdgeParticles(imWrk2, imWrk3)
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   diff(imWrk2, imWrk3, imWrk3)
   # The image is inverted and eroded to get a background marker.
   negate(imWrk3, imWrk3)
   erode(imWrk3, imOut, n=20, edge=EMPTY)
   # Reconstructing the background and adding fibers cutting the edges to
   # the previous ones.
   build(imWrk3, imOut)
   diff(imOut, imWrk2, imWrk2)
   # Another linear dilation in transposed direction to recover the initial
   # sizes of the fibers.
   linearDilate(imWrk2, imWrk2, 2, 2)
   # final result
   negate(imWrk2, imOut)

def checkEvenness(imIn, maxSize):
   """
   Checks the regularity of the boron fibers arrangement by computing
   successive closings and by determining at each step the connectivity
   number of the closing. The variation of this measure from a positive
   to a negative value indicates the evenness of the arrangement. The
   more it is regular, the more this variation is fast and important.
   The successive connectivity numbers are returned in a list.
   """
   
   imWrk = imageMb(imIn)
   ncList =[]
   for i in range(maxSize + 1):
       closing(imIn, imWrk, i)
       nc = computeConnectivityNumber(imWrk)
       ncList.append(nc)
   return ncList

def openSizeDistribution(imIn, sizeRange):
   """
   Computes the size distribution by hexagonal openings of the 'imIn' image
   in the range 'sizeRange'. The operator returns a list of values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       opening(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
       oldVol = vol
   return granuList

def buildOpenSizeDistribution(imIn, sizeRange):
   """
   Computes the size distribution by openings by reconstruction of the
   'imIn' image in the range 'sizeRange'. The operator returns a list of values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
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   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       buildOpen(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
       oldVol = vol
   return granuList

def buildSupOpen(imIn, imOut, size):
   """
   Performs on 'imIn' the opening by reconstruction with a marker made of a sup of
   linear openings. The result is put in 'imOut'.    
   """
   
   imWrk = imageMb(imIn)
   supOpen(imIn, imWrk, size)
   hierarBuild(imIn, imWrk)
   copy(imWrk, imOut)

def buildSupOpenSizeDistribution(imIn, sizeRange):
   """
   Computes the size distribution by openings by reconstruction with a sup marker of the
   'imIn' image in the range 'sizeRange'. The operator returns a list of values.
   """
   
   imWrk = imageMb(imIn)
   copy(imIn, imWrk)
   granuList = []
   oldVol = 0L
   for i in range(1, sizeRange + 1):
       buildSupOpen(imIn, imWrk, i)
       sub(imIn, imWrk, imWrk)
       vol = computeVolume(imWrk)
       volInc = vol - oldVol
       granuList.append(volInc)
       oldVol = vol
   return granuList

def granulNumber(imIn, sizeRange):
   """
   Computes the pseudo size distribution function provided by the number of maxima
   in the various openings in the range 'sizeRange'. The operator returns a list of
   values.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 1)
   imWrk3 = imageMb(imIn, 32)
   numberList = []
   for i in range(sizeRange+1):
       opening(imIn, imWrk1, i)
       maxima(imWrk1, imWrk2)
       nb = label(imWrk2, imWrk3)
       numberList.append(nb)
   return numberList
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def directionalGradient(imIn, imOut, d):
   """
   Basic directional gradient of size 1, computed on the hexagonal grid in direction 'd'.
   """
   
   imWrk = imageMb(imIn)
   linearDilate(imIn, imWrk, d)
   linearErode(imIn, imOut, d)
   sub(imWrk, imOut, imOut)

def vectorGradient(imIn, imModul, imAzim):
   """
   Modulus and azimuth of the gradient of image 'imIn'. The modulus is stored in
   'imModul' and the azimuth (6 directions are available) in image 'imAzim'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn, 1)
   imModul.reset()
   imAzim.reset()
   copy(imIn, imWrk1)
   for i in range(6):
       d = i+1
       directionalGradient(imWrk1, imWrk2, d)
       generateSupMask(imWrk2, imModul, imWrk4, True)
       convertByMask(imWrk4, imWrk3, 0, d)
       logic(imWrk2, imModul, imModul, "sup")
       logic(imWrk3, imAzim, imAzim, "sup")

def greyThin(imIn, imOut, dse):
   """
   Grey thinning of the 'imIn' image by the double structuring element 'dse'.
   For sake of simplicity, this operator is defined only on the hexagonal grid and
   with greyscale (8-bit) images.
   """

   imDil = imageMb(imIn)
   imEro = imageMb(imIn)
   mask1 = imageMb(imIn, 1)
   mask2 = imageMb(imIn, 1)
   gmask = imageMb(imIn)
   dilate(imIn, imDil, se=dse.getStructuringElement(0))
   erode(imIn, imEro, se=dse.getStructuringElement(1))
   generateSupMask(imIn, imDil, mask1, True)
   generateSupMask(imEro, imIn, mask2, False)
   logic(mask1, mask2, mask1, "inf")
   convertByMask(mask1, gmask, 0, 255)
   logic(gmask, imDil, imDil, "inf")
   negate(gmask, gmask)
   logic(gmask, imIn, imOut, "inf")
   logic(imDil, imOut, imOut, "sup")

def greyThick(imIn, imOut, dse):
   """
   Grey thickening of the 'imIn' image by the double structuring element 'dse'.
   For sake of simplicity, this operator is defined only on the hexagonal grid and
   with greyscale (8-bit) images.
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   """

   imDil = imageMb(imIn)
   imEro = imageMb(imIn)
   mask1 = imageMb(imIn, 1)
   mask2 = imageMb(imIn, 1)
   gmask = imageMb(imIn)
   dilate(imIn, imDil, se=dse.getStructuringElement(0))
   erode(imIn, imEro, se=dse.getStructuringElement(1))
   generateSupMask(imIn, imDil, mask1, False)
   generateSupMask(imEro, imIn, mask2, True)
   logic(mask1, mask2, mask1, "inf")
   convertByMask(mask1, gmask, 0, 255)
   logic(gmask, imEro, imEro, "inf")
   negate(gmask, gmask)
   logic(gmask, imIn, imOut, "inf")
   logic(imEro, imOut, imOut, "sup")

def rotatingGreyThin(imIn, imOut, dse):
   """
   Performs a complete rotation of  grey thinnings , the initial 'dse' double
   structuring element being turned one step clockwise after each thinning.
   At each rotation step, the previous result is used as input for the next
   thinning (chained thinnings). This operator works only on the hexagonal grid
   and on 8-bit images.
   """
   
   copy(imIn, imOut)
   for i in range(6):
       greyThin(imOut, imOut, dse)
       dse = dse.rotate()

def rotatingGreyThick(imIn, imOut, dse):
   """
   Performs a complete rotation of grey thickenings, the initial 'dse' double
   structuring element being turned one step clockwise after each thickening.
   At each rotation step, the previous result is used as input for the next
   thickening (chained thickenings). This operator works only with 8-bit images
   and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
   for d in range(6):
       greyThick(imOut, imOut, dse)
       dse = dse.rotate()
   
def fullGreyThin(imIn, imOut, dse):
   """
   Performs a complete grey thinning of 'imIn' with the successive rotations of 'dse'
   (until idempotence) and puts the result in 'imOut'.
   Works with greyscale images and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 != v2:
       v2 = v1
       rotatingGreyThin(imOut, imOut, dse)
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       v1 = computeVolume(imOut)

def fullGreyThick(imIn, imOut, dse):
   """
   Performs a complete grey thickening of 'imIn' with the successive rotations of 'dse'
   (until idempotence) and puts the result in 'imOut'. 
   Works with greyscale images and on the hexagonal grid.
   """
   
   copy(imIn, imOut)
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 != v2:
       v2 = v1
       rotatingGreyThick(imOut, imOut, dse)
       v1 = computeVolume(imOut)

def thinByD3(imIn, imOut):
   """
   Controlled thinning by the D3 structuring element using a mixture of
   rotational thinnings and parallel ones in order to preserve the extremities
   and the geodesic centers of the initial binary image 'imIn'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imOut)
   dse3 = doubleStructuringElement(structuringElement([2, 3, 4], HEXAGONAL),
   structuringElement([0, 1, 5, 6], HEXAGONAL))
   dse0 = doubleStructuringElement(structuringElement([1, 2, 3, 4, 5, 6], HEXAGONAL),
   structuringElement([0], HEXAGONAL))
   v1 = computeVolume(imOut)
   v2 = 0
   while v1 <> v2:
       v2 = v1
       for i in range(3):
           hitOrMiss(imOut, imWrk1, dse3)
           hitOrMiss(imOut, imWrk2, dse3.rotate(3))
           logic(imWrk1, imWrk2, imWrk1, "sup")
           hitOrMiss(imWrk1, imWrk2, dse0)
           diff(imOut, imWrk2, imOut)
           dse3 = dse3.rotate(1)
       v1 = computeVolume(imOut)

def geodesicCenter(imIn, imOut):
   """
   Computes the geodesic centers of the connected components of 'imIn' by using
   successive thinnings by D3, then D2 and D1 until idempotence.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   copy(imIn, imOut)
   dse1 = doubleStructuringElement(structuringElement([1, 2, 3, 4, 5], HEXAGONAL),
   structuringElement([0, 6], HEXAGONAL))
   dse2 = doubleStructuringElement(structuringElement([2, 3, 4, 5], HEXAGONAL),
   structuringElement([0, 1, 6], HEXAGONAL))
   v1 = computeVolume(imOut)
   v2 = 0
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   while v1 <> v2:
       v2 = v1
       thinByD3(imOut, imOut)
       infThin(imOut, imWrk1, dse2)
       infThin(imOut, imWrk2, dse1)
       logic(imWrk1, imWrk2, imWrk1, "inf")
       copy(imWrk1, imWrk2)
       build(imOut, imWrk2)
       diff(imOut, imWrk2, imWrk2)
       logic(imWrk1, imWrk2, imOut, "sup")
       v1 = computeVolume(imOut)

def thinThickGradient(imIn, imOut, dir):
   """
   Computes the modulus of the directional gradient in direction 'dir' of 'imIn' and
   stores the result in 'imOut'. A greyscale thickening and a greyscale thinning are
   used.
   """
   
   imWrk = imageMb(imIn)
   se = structuringElement([dir], HEXAGONAL)
   dse = doubleStructuringElement(se.transpose(), se)
   greyThick(imIn, imWrk, dse)
   greyThin(imIn, imOut, dse)
   sub(imWrk, imOut, imOut)

def roughVectorGrad(imIn, imOut1, imOut2):
   """
   Initial vectorial gradient of the 'imIn' image. 'imOut1' contains the modulus
   with some erroneous values (non zero) where the azimuth should be egal to zero.
   'imOut2' contains a first computation of the azimuth: all the directions where
   the modulus is maximal are stored in the various bit planes of 'imOut2'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   imOut1.reset()
   imOut2.reset()
   for i in range(6):
       dir = i + 1
       thinThickGradient(imIn, imWrk1, dir)
       generateSupMask(imWrk1, imOut1, imMask, True)
       convertByMask(imMask, imWrk2, 255, 0)
       logic(imOut2, imWrk2, imOut2, "inf")
       generateSupMask(imWrk1, imOut1, imMask, False)
       logic(imWrk1, imOut1, imOut1, "sup")
       copyBitPlane(imMask, i, imOut2)

def defineGradLut():
   """
   Generation of the look-up table correcting the initial coding of the azimuths
   provided by the roughVectorGrad function.
   """
   
   gradLut = [0 for i in range(256)]
   for i in range(6):
       j = (2 ** i)
       gradLut[j] = (2 * i) + 1
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       j = j + (2 ** (i + 1)) % 63
       gradLut[j] = 2 * (i + 1)
       j = j + (2 ** (i + 2)) % 63
       gradLut[j] = (2 * (i + 1) + 1) % 12
   return gradLut

def vectorialGradient(imIn, imOut1, imOut2):
   """
   Vectorial gradient of the 'imIn' image. 'imOut' contains the gradient modulus and
   'imOut2' contains the gradient azimuths coded by twelve directions.
   """
   
   imWrk = imageMb(imIn)
   imMask = imageMb(imIn, 1)
   gradLut = defineGradLut()
   roughVectorGrad(imIn, imOut1, imWrk)
   lookup(imWrk, imOut2, gradLut)
   threshold(imOut2, imMask, 0, 0)
   convertByMask(imMask, imWrk, 255, 0)
   logic(imOut1, imWrk, imOut1, "inf" )

def holesSieving(imIn, imOut, n):
   """
   Puts in imOut all the connected components of imIn which contains exactly n holes.
   """
   
   imWrk0 = imageMb(imIn, 32)
   imWrk1 = imageMb(imIn)
   imOut.reset()
   # Initial image labelling
   nParticles = label(imIn, imWrk0)
   for i in range(1, nParticles+1):
       # each particle is extracted and its connectivity number is measured
       threshold(imWrk0, imWrk1, i, i)
       nc = computeConnectivityNumber(imWrk1)
       # if the number of holes is equal to n, the particle is added to the output image
       if (n==(1 - nc)):
           logic(imWrk1, imOut, imOut, "sup")

def homotopyTreeBuild(imIn, imOut):
   """
   Builds the homotopy tree of the initial binary set imIn. The result is stored
   in image imOut. Each grey level corresponds to a hierarchy level of the homotopy
   tree. Extracting each level i of embedding of particles and holes of the initial 
   set consists simply in a [i, i] thresholding of imOut.
   """
   
   imWrk0 = imageMb(imIn)
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 8)
   copy(imIn, imWrk0)
   v = computeVolume(imIn)
   imOut.reset()
   i = 0
   # Loop performed until no connected component remains.
   while v!=0:
       i = i+1
       # Background extraction.
       closeHoles(imWrk0, imWrk1)
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       negate(imWrk1, imWrk1)
       # Connected components adjacent to the background are rebuilt.
       dilate(imWrk1, imWrk1)
       build(imWrk0, imWrk1)
       # These particles are at level i in the homotopy tree.
       # They are removed from the current set, giving access to the next level (in imWrk0).
       diff(imWrk0, imWrk1, imWrk0)
       v = computeVolume(imWrk0)
       # The level-i particles are labelled with i and added to the label image.
       convertByMask(imWrk1, imWrk2, 0, i)
       add(imOut, imWrk2, imOut)

def closeOneHole(imIn, imOut):
   """
   This procedure allows to close one and only one hole in each connected component
   of the binary image imIn. When a connected component has no hole, it remains
   unchanged in the final image stored in imOut.
   This algorithm requires a single level of homotopy in the initial image.
   """
   
   imWrk0 = imageMb(imIn, 32)
   imWrk1 = imageMb(imIn, 32)
   imWrk2 = imageMb(imIn, 32)
   imWrk3 = imageMb(imIn)
   imWrk4 = imageMb(imIn)
   # The holes are filled in imWrk3 and extracted in imWrk4.
   closeHoles(imIn, imWrk3)
   diff(imWrk3, imIn, imWrk4)
   # The holes are labelled.
   nb = label(imWrk4, imWrk0)
   # The image with filled holes is converted in 32-bit.
   convertByMask(imWrk3, imWrk1, 0, computeMaxRange(imWrk1)[1])
   # Geodesic reconstruction of the label image.
   copy(imWrk0, imWrk2)  
   build(imWrk1, imWrk2)
   # The holes with same label as the built image are extracted...
   generateSupMask(imWrk0, imWrk2, imWrk4, False)
   logic(imWrk4, imWrk3, imWrk3, "inf")
   # ... and filled.
   logic(imIn, imWrk3, imOut, "sup")

def holesLabelling(imIn, imOut):
   """
   Labels each particle in imIn with a value equal to its number of holes +1.
   The result is put in 32-bit image imOut.
   """
   
   # Working images.
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 32)
   # Structuring elements
   dse1 = doubleStructuringElement([1,6],[0],HEXAGONAL)
   dse2 =  doubleStructuringElement([1],[0,2],HEXAGONAL)
   # Initializing the label image with 2.
   convertByMask(imIn, imOut, 0, 2)
   # Determining the 2nd configurations in the connectivity number calculation.
   # and adding their number to the label image.
   hitOrMiss(imIn, imWrk1, dse2)
   measureLabelling(imIn, imWrk1, imWrk2)
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   add(imOut, imWrk2, imOut)
   # Determining the 1st configurations and subtracting them to get the
   # number of holes + 1.
   hitOrMiss(imIn, imWrk1, dse1)
   measureLabelling(imIn, imWrk1, imWrk2)
   sub(imOut, imWrk2, imOut)
   
def extremities(imIn, imOut1, imOut2, innerParticles=False):
   """
   This operation performs the computation of the extremities (maxima of a
   geodesic distance function) and puts the result in imOut.
   'imIn' must be a binary image, 'imOut1' is a 32-bit image containing the
   extremities and their geodesic distance to the centroid (allowing thus to
   sort them according to their distance to the center) and imOut2 a 32-bit
   image containing the entire geodesic distance from the geodesic centers.
   If 'innerParticles' is set to False(default), the particles touching the
   edge are considered as extending outside the image window. Therefore, no
   extremity is detected on the edge of the image. If 'innerParticles' is True,
   all the particles are supposed to be included in the image, so extremities
   may appear on the edge.    
   """
   
   imWrk1 = imageMb(imIn)
   # Computation of the geodesic centers.
   geodesicCenter(imIn, imWrk1) 
   # These centers are removed from the initial image (each particle contains
   # a hole).
   diff(imIn, imWrk1, imWrk1)
   # Computing the geodesic distance
   geodesicDistance(imWrk1, imIn, imOut2)
   # The extremities correspond to the maxima.
   maxima(imOut2, imWrk1)
   # Extremities on the edge are removed if 'innerParticles' is set to False.
   if not(innerParticles):
       removeEdgeParticles(imWrk1, imWrk1)
   # The extremities are given their corresponding distance to the center.
   convert(imWrk1, imOut1)
   logic(imOut2, imOut1, imOut1, "inf")

def extremePoints(imIn, imOut, margin=0):
   """
   This operator is a refinement of the 'extremities' operator. It determines
   points of the connected components of the binary set 'imIn' which are the
   farthest extremity points. The 32-bit image 'imOut' contains these extreme
   points valued with their distance to the geodesic center. 'margin' is a
   parameter which allows to take into account an extremity even if its distance
   to the center is not maximal, provided that it is not lower than this
   maximal value minus 'margin'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 32)
   imWrk3 = imageMb(imIn, 32)
   imWrk4 = imageMb(imIn, 32)
   geodesicCenter(imIn, imWrk1)
   diff(imIn, imWrk1, imWrk1)
   geodesicDistance(imWrk1, imIn, imWrk2)
   maxima(imWrk2, imWrk1)
   convert(imWrk1, imWrk3)
   logic(imWrk2, imWrk3, imWrk3, "inf")
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   convert(imIn, imWrk4)
   copy(imWrk3, imOut)
   hierarBuild(imWrk4, imOut)
   floorSubConst(imOut, margin, imOut)
   generateSupMask(imWrk3, imOut, imWrk1, False)
   logic(imWrk1, imIn, imWrk1, "inf")
   removeEdgeParticles(imWrk1, imWrk1)
   convert(imWrk1,imWrk3)
   logic(imWrk2, imWrk3, imOut, "inf")

def geodesicAdaptiveDilate(imIn, imMask, imOut):
   """
   This operator performs a binary adaptive dilation. The 32-bit image
   'imIn' indicates for each pixel the size of the geodesic dilation (by the 
   default structuring element) which will be applied on it. The geodesic
   mask is defined by the binary image 'imMask'. The result of the dilation is
   put in the binary image 'imOut'. It is called adaptive because its size is
   given locally for each pixel by the value of this pixel in 'imIn'.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn)
   imWrk3 = imageMb(imIn)
   convert(imMask, imWrk1)
   copy(imIn, imWrk2)
   v1 = 0
   v2 = computeVolume(imWrk2)
   # At each step, the dilated image is decreased. So each pixel value
   # indicates how many steps of dilation remain. When the image volume
   # does not change, the process is finished.
   while v2 > v1:
       v1 = v2
       geodesicDilate(imWrk2, imWrk1, imWrk3)
       floorSubConst(imWrk3, 1, imWrk3)
       logic(imWrk2, imWrk3, imWrk2, "sup")
       v2 = computeVolume(imWrk2)
   threshold(imWrk2, imOut, 1, computeMaxRange(imIn)[1])

def segmentParticles(imIn, imOut):
   """
   Segmentation of the touching particles contained in the binary image
   'imIn'. This segmentation performs the watershed of the inverted
   distance function of the image.
   The result is stored in the binary image 'imOut'.
   """

   imWrk1 = imageMb(imIn, 32)
   imWrk2 = imageMb(imIn, 32)
   imWrk3 = imageMb(imIn)
   computeDistance(imIn, imWrk1, edge=FILLED)
   maxima(imWrk1, imWrk3)
   maxVal = computeRange(imWrk1)[1]
   imWrk2.fill(maxVal)
   sub(imWrk2, imWrk1, imWrk1)
   nParticles = label(imWrk3, imWrk2)
   watershedSegment(imWrk1, imWrk2)
   copyBitPlane(imWrk2, 31, imWrk3)
   diff(imIn, imWrk3, imOut)
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def roadMarkersExtract(im1, im2):
   """
   Extraction of the road and outside markers from the segmentation obtained
   by the higher level of hierarchy of the enhanced waterfalls transform.
   'im1' contains the initial catchment basins. 'im2' is a 32-bit image containing the
   labelled markers for the road and for the outside.
   """
   
   imWrk1 = imageMb(im1)
   imWrk2 = imageMb(im1)
   imWrk3 = imageMb(im1)
   imWrk1.reset()
   imSize = im1.getSize()
   xPos = imSize[0]//2
   yPos = imSize[1]-15
   imWrk1.setPixel(1, (xPos, yPos))
   dilate(imWrk1, imWrk1, 15)
   copy(imWrk1, imWrk2)
   build(im1, imWrk2)
   closeHoles(imWrk2, imWrk2)
   erode(imWrk2, imWrk3, 10)
   build(imWrk3, imWrk1)
   diff(imWrk3, imWrk1, imWrk3)
   negate(imWrk2, imWrk2)
   erode(imWrk2, imWrk2, 10)
   logic(imWrk2, imWrk3, imWrk2, "sup")
   convertByMask(imWrk1, im2, 0, 2)
   add(im2, imWrk2, im2)

def roadSegment(im1, im2):
   """
   Segmentation of the road in image 'im1'. The result is put in
   the binary image 'im2'.
   The algortihm uses the above road markers extractor.
   """
   
   imWrk1 = imageMb(im1)
   imWrk2 = imageMb(im1)
   imWrk3 = imageMb(im1, 1)
   imWrk4 = imageMb(im1, 32)
   gradient(im1, imWrk1, 2)
   valuedWatershed(imWrk1, imWrk2)
   nbHier = enhancedWaterfalls(imWrk2, imWrk1)
   threshold(imWrk1, imWrk3, 0, nbHier -1)
   roadMarkersExtract(imWrk3, imWrk4)
   watershedSegment(imWrk1, imWrk4)
   copyBitPlane(imWrk4, 31, im2)    

def extractGridMarkers(imIn, imOut):
   """
   This procedure extracts markers of the cells of the grid printed on the
   steel sheet (image 'imIn') and puts the result in binary image 'imOut'.
   The procedure uses the extraction of the maxima of successive strong
   levellings (until size 14). At each step after the first one, the connected
   components of the maxima which touch the edge are removed.
   """
   
   imWrk1 = imageMb(imIn)
   imWrk2 = imageMb(imIn, 1)
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   # A first filtering with a strong levelling produces first seeds for the
   # markers (maxima of the filtered image).
   i = 2
   strongLevelling(imIn, imWrk1, i, eroFirst=False)
   maxima(imWrk1, imOut)
   v1 = computeVolume(imOut)
   # The same filtering is iterated for increasing sizes. Only the inner
   # maxima are preserved and added to the markers image. When no inner
   # marker is available, the process ends.
   while v1 <> 0:
       i += 2
       strongLevelling(imIn, imWrk1, i, eroFirst=False)
       maxima(imWrk1, imWrk2)
       removeEdgeParticles(imWrk2, imWrk2)
       logic(imWrk2, imOut, imOut, "sup")
       v1 = computeVolume(imWrk2)
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