Portfolio Management

Pierre Brugière

To cite this version:

Pierre Brugière. Portfolio Management. Doctoral. University Paris 9 Dauphine, France. 2016, pp.115. cel-01327673v2

HAL Id: cel-01327673 https://hal.science/cel-01327673v2

Submitted on 22 Sep 2016 (v2), last revised 4 May 2020 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Portfolio Management

Pierre Brugiere

University Paris 9 Dauphine
pierre.brugiere@dauphine.fr

September 22, 2016

Overview

(1) Laws of Returns of Financial Assets
(2) Further Statistical Tests
(3) Utility Functions
(4) Markowitz: The mean variance framework
(5) Markowitz: Opimization without a risk-free asset
(6) Markowitz: Optimization with a risk-free asset
(7) Security Market Line
(8) Performance Indicators
(9) Factor Models

Laws of Returns of Financial Assets

Returns and Rate of Returns

- Return of an investment $W_{0}: R_{T}=\frac{W_{T}}{W_{0}}-1$
- Return of an (investment in an) asset $P_{t}: R_{T}=\frac{P_{T}+\operatorname{Div}(0, T)}{P_{0}}-1$
- Different ways to define a rate of return:
- monetary rate: $1+r \times T=1+R_{T}$
- actuarial rate: $(1+r)^{T}=1+R_{T}$
- $\operatorname{exponential}$ rate: $\exp (r \times T)=1+R_{T}$
- Different ways to define $T: 30 / 360$, Act/360, Act/Act, Act/365
- For modelization, exponential rates make calculations simpler:
- time scale properties: $\exp \left(\frac{r}{\lambda} \lambda T\right)=\exp (r T)$
- simplicity to compound interests: $\exp \left(r T_{1}\right) \exp \left(r T_{2}\right)=\exp \left(r\left(T_{1}+T_{2}\right)\right)$
- well suited for modelization in continuous time $d P_{t}=r P_{t} d t \Longrightarrow P_{T}=P_{0} e^{r T}$
- enable to conserve the property of normality when assuming the independence of the returns

Probabilist Definitions and Empirical Statistics

- Probabilist definitions for a r.v X
- Expectation: $E[X]$
- Variance: $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$
- Standard deviation: $\sigma[X]=\sqrt{\operatorname{Var}[X]}$
- Skew: Skew $[X]=E\left[\left(\frac{X-E(X)}{\sigma(X)}\right)^{3}\right]$
- Kurtosis: $\operatorname{Kur}[X]=E\left[\left(\frac{X-E(X)}{\sigma(X)}\right)^{4}\right]$ (some authors substract 3 in the definition, others call this new quantity the excess kurtosis)

Probabilist Definitions and Empirical Statistics

- Empirical definitions for a sample $x=\left(x_{1}, x_{2}, \cdots x_{n}\right)$
- Sample Mean: $\bar{x}=\hat{E}(x)=\frac{1}{n} \sum_{i=1}^{i=n} x_{i}$
- Sample Variance : $\widehat{\operatorname{Var}}(x)=\frac{1}{n} \sum_{i=1}^{i=n}\left(x_{i}-\bar{x}\right)^{2}$
- Sample Standard Deviation: $\widehat{\sigma}(x)=\sqrt{\widehat{\operatorname{Var}}(x)}$
- Sample Skew: $\widehat{\operatorname{Skew}}(x)=\frac{1}{n} \sum_{i=1}^{i=n}\left(\frac{x_{i}-\bar{x}}{\hat{\sigma}(x)}\right)^{3}$
- Sample Kurtosis: $\widehat{\operatorname{Kur}}(x)=\frac{1}{n} \sum_{i=1}^{i=n}\left(\frac{x_{i}-\bar{x}}{\hat{\sigma}(x)}\right)^{4}$
- Remark: the empirical quantities can be obtained from the probabilist definitions by taking $P\left(X_{i}=x_{i}\right)=\frac{1}{n}$ instead of P_{X} in the expectations, and therefore can be called "plug-in" estimators.

Probabilistic Definitions and Empirical Statistics

- Properties skewness:
- anti-symmetry: $\operatorname{Skew}(-X)=-\operatorname{Skew}(X)$
- scale invariance: if $\lambda>0, \operatorname{Skew}(\lambda X)=\operatorname{Skew}(X)$
- location invariance: $\forall \lambda$, Skew $(X+\lambda)=\operatorname{Skew}(X)$
- for $X \sim N\left(m, \sigma^{2}\right)$, $\operatorname{Skew}(X)=0$
- Properties kurtosis:
- symmetry: $\operatorname{Kur}(-X)=\operatorname{Kur}(X)$
- scale invariance: if $\lambda \neq 0, \operatorname{Kur}(\lambda X)=\operatorname{Kur}(X)$
- location invariance: $\forall \lambda, \operatorname{Kur}(X+\lambda)=\operatorname{Kur}(X)$
- for $X \sim N\left(m, \sigma^{2}\right), \operatorname{Kur}(X)=3$
- Definition: if $\operatorname{Kur}(X)>3$ the distribution is leptokurtic if $\operatorname{Kur}(X)<3$ the distribution is platykurtic
Remark: (calculation trick): integration by parts proves that for any integer $n>0 \int_{-\infty}^{+\infty} x^{n} e^{-\frac{x^{2}}{2}} d x=n \int_{-\infty}^{+\infty} x^{n-2} e^{-\frac{x^{2}}{2}} d x$

Probabilistic Definitions and Empirical Statistics

- Remark: the properties above are true for the empirical quantities as well
- Exercise: demonstrate the properties above
- Remark: for a mixture of normal distributions we have kurtosis >3

Goodness of Fit Tests

Theorem (admitted) and the Berra and Jarque test

Let $X_{1}, X_{2}, \cdots X_{n}$ be i.i.d $N\left(m, \sigma^{2}\right)$ and $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ then asymptotically:

- $\sqrt{n} \widehat{\operatorname{Skew}}(X) \sim N(0,6)$
- $\sqrt{n}[\widehat{\operatorname{Kur}}(X)-3] \sim N(0,24)$

Let $\widehat{B J}(X)=\frac{n}{6}[\widehat{\operatorname{Skew}}(X)]^{2}+\frac{n}{24}[\widehat{\operatorname{Kur}}(X)-3]^{2}$ then asymptotically:

- $\widehat{B J}(X) \sim \chi^{2}(2)$

Let $\chi_{1-\alpha}^{2}(2)$ be such that $P\left(\chi^{2}>\chi_{1-\alpha}^{2}(2)\right)=1-\alpha$
Then for n large enough the Berra and Jarque test rejects at confidence level α the normality hypothesis iff: $\widehat{B J}(x)>\chi_{1-\alpha}^{2}(2)$

Goodness of Fit Tests

Remark: the DAX is a total return index, i.e it is calculated with dividends reinvested

Goodness of Fit Tests

Exemple: We calculate the daily log returns of the DAX for year 2015

- number of daily returns $255, x=\left(x_{1}, x_{2}, \cdots x_{252}\right)$
- $\bar{x}=0.02 \%, \widehat{\sigma}(x)=0.63 \%$
- $\widehat{\operatorname{Skew}}(x)=-0.15, \widehat{\operatorname{Kur}}(x)=3.56$ (fat tails)
- $\widehat{B J}(x)=4.32, \chi_{5 \%}^{2}(2)=5.99$

So we accept the normality hypothesis at confidence level 95%
Remarks: The Berra and Jarque's test is very sensitive to outliers. Here, $\frac{n}{6}[\widehat{S k e w}(X)]^{2}=0.94$ and $\frac{n}{24}[\widehat{\operatorname{Kur}}(X)-3]^{2}=3.38$ The volatility is defined as vol $\frac{1}{\sqrt{T}}=\widehat{\sigma}(x)$. Here $T=\frac{1}{260}$ as we have here 260 observations in a year, so the estimate of the volatility is 10%.

Further Statistical Tests

Tests Based on Density Function Estimates

Theorem of Parzen Rosenblatt (admitted)

Let X be a random variable of density function $f(x)$
Let X_{i} be i.i.d variables of the same law as X
Let K be positive of integral 1 and $\left(h_{n}\right)_{n \in N}$ such that $h_{n} \rightarrow 0$ and $n h_{n} \rightarrow \infty$
Let $f_{n}(x)$ be defined by $f_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_{n}} K\left(\frac{x_{i}-x}{h_{n}}\right)$ then $f_{n}(x)$ is a density
and $\sqrt{n h_{n}}\left[f_{n}(x)-f(x)\right] \xrightarrow{\text { Law }} N\left(0, f(x) \int_{-\infty}^{+\infty} K^{2}(x) d x\right)$

Exemples of Kernels

- Rectangular Kernel $K(u)=\frac{1}{2} 1_{|u|<1}$
- Gaussian Kernel $K(u)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right)$

Remark: "visual test" where the estimated density is usually compared to the density of a normal distribution with the same mean and variance as the empirical mean and variance of the sample.

Tests Based on Density Function Estimates

histogram for the 260 observations fitted into 10 buckets

Tests Based on Cumulative Distribution Function

Estimates

Let X and $\left(X_{i}\right)_{i \in[1, n]}$ be i.i.d r.v with the same laws
Let $F_{n}(x)=\frac{1}{n} \sum_{i=1}^{i=n} 1_{X_{i} \leq x}$ and $\left\|F_{n}(x)-F(x)\right\|_{\infty}=\sup _{x}\left|F_{n}(x)-F(x)\right|$

Law of Large Numbers and Central Limit Theorem

$\forall x, F_{n}(x) \rightarrow F(x)$ p.s and $\sqrt{n}\left(F_{n}(x)-F(x)\right) \xrightarrow{\text { Law }} N(0, F(x)[1-F(x)])$
Glivenko Cantelli Theorem (admitted)
$\left\|F_{n}(x)-F(x)\right\|_{\infty} \rightarrow 0$ p.s (which is stronger than the Law of Large Numbers)

Kolmogorov Smirnov Theorem (admitted)
$\sqrt{n}\left\|F_{n}(x)-F(x)\right\|_{\infty} \xrightarrow{\text { Law }} K$ when n is large
K is the Kolmogorov's law and is independant from F

Tests Based on Cumulative Distribution Function Estimates

Several Goodness of fit tests are based on Kolmogorov Smirnov's theorem with F being a normal cdf with the same mean and variance as the sample observed. Amongst these tests (available in SAS and with excel extended libraries):

- Kolmogorov Smirnov's test
- Cramer von Mises's test
- Anderson Darling's test

Remark: The CLT result is not well adapted to test the normality hypothesis as it is not optimal to test an hypothesis based on the value of the empirical repartition function on one single point. The Kolmogorov Smirnov result is much more interesting for this matter.

Tests Based on Order Statistics

Definition:

if Z is a random variable the α quantile of Z is the smallest number $q_{Z}(\alpha)$ such that $P\left(Z \leq q_{Z}(\alpha)\right) \geq \alpha$
if $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ is a sample with frequency $\left(f_{1}, f_{2}, \cdots f_{n}\right)$ the α quantile of $z, \hat{q}_{z}(\alpha)$ is the quantile of the r.v Z defined by $P\left(Z=z_{i}\right)=f_{i}$

Remark 1: if we have 10 observations: $\left\{z_{i}=i\right\}_{i \in[1,10]}$:
$\hat{q}_{z}(1)=10$ and $\left.\left.\forall i \in\{1, \cdots, 9\} \forall \alpha \in\right] \frac{i}{10}, \frac{i+1}{10}\right] \hat{q}_{z}(\alpha)=i+1$
Remark 2: if $Z \sim N(0,1): q_{Z}(0.5)=0$ and $q_{Z}(97.5 \%)=1.96$

Tests Based on Order Statistics

Exercice 1: Show that if F_{Z} is invertible then: $q_{Z}(\alpha)=F_{Z}^{-1}(\alpha)$
Exercice 2: Show that if F_{Z} is invertible then: $F_{Z}(Z) \sim U([0,1])$
Exercice 3: Show that if $Z_{1} \sim N\left(m_{1}, \sigma_{1}^{2}\right)$ and $Z_{2} \sim N\left(m_{2}, \sigma_{2}^{2}\right)$ then: $\left\{\left(q_{z_{1}}(\alpha), q_{z_{2}}(\alpha)\right), \alpha \in[0,1]\right\}$ is a line.

Theorem: order statistics (admitted) and QQ-Plot test
Let $N \sim N(0,1)$ and $z(n)=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ be a sample for the r.v Z we want to test. Then when n is large:

- $\hat{q}_{z(n)}\left(\frac{i}{n}\right) \approx q_{z}\left(\frac{i}{n}\right)$ and
if Z is a normal Law:
- The points $\left(q_{N(0,1)}\left(\frac{i}{n}\right), \hat{q}_{z(n)}\left(\frac{i}{n}\right)\right)$ should be "concentrated" around a line (called the Henry's line)

Tests Based on Order Statistics

Remark 1: The test can be used "visually" but can also be quantified through the Shapiro-Wilk test Exemple: QQ plot DAX daily returns for 2015

Parameter Estimations and Confidence Intervals

(Reminder) Definition

- if $X \sim N(0,1)$ then $X^{2} \sim \chi^{2}(1)$
- if $X_{i} \sim N(0,1)$ i.i.d then $\sum_{i=1}^{i=n} X_{i}^{2} \sim \chi^{2}(n)$

(Reminder) Theorem and Definition

If $X_{1} \sim N\left(M_{1}, l d_{\mathbb{R}^{d}}\right)$ and $X_{2} \sim N\left(M_{2}, I d_{\mathbb{R}^{d}}\right)$ then:
$\left\|M_{1}\right\|=\left\|M_{2}\right\| \Longrightarrow\left\|X_{1}\right\|^{2}$ and $\left\|X_{1}\right\|^{2}$ have the same law and this law is called $\chi^{2}\left(d,\left\|M_{1}\right\|^{2}\right)$

Parameter Estimations and Confidence Intervals

demonstration:

$\left\|M_{1}\right\|=\left\|M_{2}\right\| \Longrightarrow \exists \mathrm{A}$ othonormal such that $A M_{1}=M_{2}$
Let's consider $A X_{1}$ then:

- X_{1} has a Normal law $\Longrightarrow A X_{1}$ has a Normal law
- $E\left[A X_{1}\right]=A E\left[X_{1}\right]$
- $\operatorname{Var}\left[A X_{1}\right]=\operatorname{Cov}\left(A X_{1}, A X_{1}\right)=A \operatorname{Cov}\left(X_{1}, X_{1}\right) A^{\prime}=A l d_{\mathbb{R}^{d}} A^{\prime}=l d_{\mathbb{R}^{d}}$
so, $A X_{1}$ and X_{2} are both normal with the same mean and variance so, $A X_{1} \sim X_{2}$ and consequently $\left\|A X_{1}\right\|^{2} \sim\left\|X_{2}\right\|^{2}$. As $\left\|A X_{1}\right\|^{2}=\left\|X_{1}\right\|^{2}$ (because A is orthonormal) by transitivity $\left\|X_{1}\right\|^{2} \sim\left\|X_{2}\right\|^{2}$. Q.E.D

Exercise: Show that $\operatorname{cov}(A X, B Y)=A \operatorname{cov}(X, Y) B^{\prime}$ (when A and B are matrices with the adequate dimensions) starting from the definition $\operatorname{cov}(X, Y)=E\left(X Y^{\prime}\right)-E(X) E(Y)^{\prime}$

Parameter Estimations and Confidence Intervals

(Reminder) Definition

- if $X \sim N(m, 1)$ and $Z \sim \chi^{2}(d)$ then $\frac{X}{\sqrt{\frac{z}{d}}}$ is called a Student Law and is noted $t(m, d)$. If $m=0$ we simply note $t(d)$

Theorem: Student Law for Confidence Intervals

Let $X=\left(X^{1}, X^{2}, \cdots, X^{n}\right)$ with $X_{i} \sim N\left(m, \sigma^{2}\right)$ i.i.d
Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{i=n} X^{i}$ and $\hat{\sigma}(X)=\sqrt{\frac{1}{n} \sum_{i=1}^{i=n}\left(X^{i}-\bar{X}\right)^{2}}$ then:

- \bar{X} and $\hat{\sigma}(X)$ are independant
- $\sqrt{n}\left(\frac{\bar{X}-m}{\sigma}\right) \xrightarrow{\text { Law }} N(0,1)$
- $n\left(\frac{\hat{\sigma}(X)}{\sigma}\right)^{2} \xrightarrow{\text { Law }} \chi^{2}(n-1)$ that we can write as $\frac{\|X-\bar{X}\|^{2}}{\sigma^{2}} \approx \chi^{2}(n-1)$
- $\frac{\bar{X}-m}{\frac{\hat{\sigma}(X)}{\sqrt{n-1}}} \xrightarrow{\text { Law }} t(n-1)$ that we can write as $m \approx \bar{X}-\frac{\hat{\sigma}(X)}{\sqrt{n-1}} t(n-1)$

Parameter Estimations and Confidence Intervals

Sketch of the proof: we just need to show the result for $X^{i} \sim N(0,1)$ i.i.d Let $h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ be defined by $h:\left(\begin{array}{c}X^{1} \\ \vdots \\ X^{n}\end{array}\right) \longrightarrow\binom{\bar{X} 1_{n}}{X-\bar{X} 1_{n}}$ then:

- X Gaussian and h linear $\Rightarrow h(X)$ is Gaussian
- $\forall i \operatorname{Cov}\left(\bar{X}, X^{i}-\bar{X}\right)=0 \Rightarrow \bar{X} 1_{n}$ and $X-\bar{X} 1_{n}$ are independent because for Gaussian vectors zero covariance means independence
- $<X-\bar{X} 1_{n}, 1_{n}>=0 \Rightarrow X-\bar{X} 1_{n} \in\left(\mathbb{R} 1_{n}\right)^{\perp}$

Note that $\forall u \in\left(\mathbb{R} 1_{n}\right)^{\perp}$
$\operatorname{Var}\left(<u, X-\bar{X} 1_{n}>\right)=\operatorname{Var}\left(<u, X>-\bar{X}<u, 1_{n},>\right)$
$=\operatorname{Var}(<u, X>)=u^{\prime} \operatorname{Var}(X) u=\|u\|^{2}$
so if we call $\binom{0}{Z}$ the components of $X-\bar{X} 1_{n}$ in an orthonormal basis of
\mathbb{R}^{n} whose first vector is in $\mathbb{R} 1_{n}$ we have $Z \sim N\left(0, I d_{\mathbb{R}^{n-1}}\right)$
and so $\left\|X-\bar{X} 1_{n}\right\|_{n}^{2}=\|Z\|_{n-1}^{2} \sim t(n-1)$ Q.E.D.

Parameter Estimations and Confidence Intervals

Exemple: GDAX returns for 2015

- $\bar{X}=0.02 \%$
- $\frac{\hat{\sigma}(X)}{\sqrt{n}}=0.04 \%$

So at confidence level 95% the expected daily rate of return is in the interval [-0.06\%, 0.09\%]

Remarks:

- $t(n-1)$ is a symmetric distribution
- from $\frac{\sqrt{n-1}(\bar{X}-m)}{\hat{\sigma}(X)} \xrightarrow{\text { Law }} t(n-1)$ and the law of large numbers and CLT we can deduct that $t(n-1) \xrightarrow{\text { Law }} N(0,1)$ (which means that when n is large the law/shape of a student distribution is very similar to the a normal distribution)

Utility Functions

Preferred investments

Definition: Utility functions

A utility function is any function $u: \mathbb{R} \longrightarrow \mathbb{R}$ such that u is continuous, strictly increasing and two times differentiable.

Remark: based on the definition u is invertible

Definition: Preferred Investment and Risk Premium

If X and Y are two random payoffs:

- $X \succ Y(X$ is preferred to Y for $u) \Leftrightarrow E[u(X)]>E[u(Y)]$

Let $C_{u}(X)$ be the constant defined by $u\left[C_{u}(X)\right]=E[u(X)]$

- $C_{u}(X)$ is called the certain equivalent to X
- $\Pi^{u}(X)=E[X]-C_{u}(X)$ is called the risk premium for X

Preferred investments

Preferred investments

Properties (exercise)

- u convex $\Leftrightarrow \forall X, u(E[X]) \leq E[u(X)] \Leftrightarrow \forall X, \Pi^{u}(X) \leq 0 \Leftrightarrow$ risk taker
- u concave $\Leftrightarrow \forall X, u(E[X]) \geq E[u(X)] \Leftrightarrow \forall X, \Pi^{u}(X) \geq 0 \Leftrightarrow$ risk adverse
- u affine $\Leftrightarrow \forall X, u(E[X])=E[u(X)] \Leftrightarrow \forall X, \Pi^{\mu}(X)=0 \Leftrightarrow$ risk neutral

Theorem: Risk Aversion Measure

Let u and v be two utility functions strictly concave or convex then:
$\left(\forall X\right.$ discrete r.v, $\left.\Pi^{u}(X) \geq \Pi^{v}(X)\right) \Leftrightarrow\left(\forall a,-\frac{u^{\prime \prime}(a)}{u^{\prime}(a)} \geq-\frac{v^{\prime \prime}(a)}{v^{\prime}(a)}\right)$

Remarks:

- $-\frac{u^{\prime \prime}}{u^{\prime}}$ defines the risk aversion/concavity of u
- $\forall \lambda \neq 0, \lambda u$ and u have the same risk aversion
- the concavity measure we arrive at here differs from the geometric definition of curvature which is given by $\frac{u^{\prime \prime}}{\left(1+u^{\prime 2}\right)^{\frac{3}{2}}}$

Preferred investments

Demonstration theorem:

Let u be a utility function two times differentiable and strictly convex or concave (i.e $u^{\prime \prime} \neq 0$).

Demonstration \Rightarrow :
Let X_{h}^{a} be defined by: $P\left(X_{h}^{a}=a\right)=\frac{1}{2}$ and $P\left(X_{h}^{a}=a+h\right)=\frac{1}{2}$
Let $C_{u}^{a}(h)=C_{u}\left(X_{h}^{a}\right)$ i.e $u\left(C_{u}^{a}(h)\right)=E\left[u\left(X_{h}^{a}\right)\right]=\frac{1}{2} u(a)+\frac{1}{2} u(a+h)$ by derivation on h of $u\left(C_{u}^{a}(h)\right)=\frac{1}{2} u(a)+\frac{1}{2} u(a+h)$ we obtain:

- $C_{u}^{a}(0)=a$ from $u\left(C_{u}^{a}(0)\right)=\frac{1}{2} u(a)+\frac{1}{2} u(a)$
- $C_{u}^{a^{\prime}}(0)=\frac{1}{2}$ from $u^{\prime}\left(C_{u}^{a}(0)\right) C_{u}^{a^{\prime}}(0)=\frac{1}{2} u^{\prime}(a)$
- $C_{u}^{a^{\prime \prime}}(0)=\frac{1}{4} \frac{u^{\prime \prime}(a)}{u^{\prime}(a)}$ from deriving $u^{\prime}\left(C_{u}^{a}(h)\right) C_{u}^{a^{\prime}}(h)=\frac{1}{2} u^{\prime}(a+h)$

Preferred investments

Now, $\Pi^{u} \geq \Pi^{v} \Rightarrow \forall a, \forall h, \Pi^{u}\left(X_{h}^{a}\right) \geq \Pi^{v}\left(X_{h}^{a}\right)$
$\Rightarrow \forall h, E[X]-C_{u}^{a}(h) \geq E[X]-C_{v}^{a}(h)$
$\Rightarrow-C_{u}^{a^{\prime \prime}}(0) \geq-C_{v}^{a^{\prime \prime}}(0)$ (as in 0 the value and first derivatives are equal)
$\Rightarrow-\frac{u^{\prime \prime}(a)}{u^{\prime}(a)} \geq-\frac{v^{\prime \prime}(a)}{v^{\prime}(a)}$ (and this is true for all a). Q.E.D
Demonstration \Leftarrow
Let X be a discrete variable with $P\left(X=a_{i}\right)=p_{i}$
$\Pi^{u}(X) \geq \Pi^{v}(X) \Leftrightarrow C_{v}(X)-C_{u}(X) \geq 0$
$\Leftrightarrow v^{-1}[E(v(X))]-u^{-1}[E(u(X))] \geq 0$
$\Leftrightarrow v^{-1}\left(\sum_{i=1}^{i=n} p_{i} v\left(a_{i}\right)\right)-u^{-1}\left(\sum_{i=1}^{i=n} p_{i} u\left(a_{i}\right)\right) \geq 0$
$\Leftrightarrow \sum_{i=1}^{i=n} p_{i} v\left(a_{i}\right) \geq v \circ u^{-1}\left(\sum_{i=1}^{i=n} p_{i} u\left(a_{i}\right)\right)$ (as v is increasing)
which should be true if $v \circ u^{-1}$ is convex.

Preferred investments

Let's calculate $\left(v \circ u^{-1}\right)^{\prime \prime}$ to prove that $v \circ u^{-1}$ is convex $\left(v \circ u^{-1}\right)^{\prime}=\left(v^{\prime} \circ u^{-1}\right)\left(u^{-1}\right)^{\prime}$
$\left(v \circ u^{-1}\right)^{\prime \prime}=\left(v^{\prime \prime} \circ u^{-1}\right)\left[\left(u^{-1}\right)^{\prime}\right]^{2}+\left(v^{\prime} \circ u^{-1}\right)\left(u^{-1}\right)^{\prime \prime}$
Now, $\left(u^{-1}\right)^{\prime}=\frac{1}{u^{\prime} \circ u^{-1}}$ and $\left(\frac{1}{u^{\prime} \circ u^{-1}}\right)^{\prime}=-\frac{\left(u^{\prime \prime} \circ u^{-1}\right)\left(u^{-1}\right)^{\prime}}{\left(u^{\prime} \circ u^{-1}\right)^{2}}=-\frac{\left(u^{\prime \prime} \circ u^{-1}\right)}{\left(u^{\prime} \circ u^{-1}\right)^{3}}$
so, $\left(v \circ u^{-1}\right)^{\prime \prime} \geq 0 \Leftrightarrow \frac{\left(v^{\prime \prime} \circ u^{-1}\right)}{\left(u^{\prime} \circ u^{-1}\right)^{2}}-\left(v^{\prime} \circ u^{-1}\right) \frac{\left(u^{\prime \prime} \circ u^{-1}\right)}{\left(u^{\prime} \circ u^{-1}\right)^{3}} \geq 0$
$\Leftrightarrow\left(v^{\prime \prime} \circ u^{-1}\right) \geq\left(v^{\prime} \circ u^{-1}\right) \frac{\left(u^{\prime \prime} \circ u^{-1}\right)}{\left(u^{\prime} \circ u^{-1}\right)}$
$\Leftrightarrow-\frac{\left(v^{\prime \prime} \circ u^{-1}\right)}{\left(v^{\prime} \circ u^{-1}\right)} \leq-\frac{\left(u^{\prime \prime} \circ u^{-1}\right)}{\left(u^{\prime} \circ u^{-1}\right)}$ Q.E.D as we assumed here $-\frac{v^{\prime \prime}}{v^{\prime}} \leq-\frac{u^{\prime \prime}}{u^{\prime}}$

Remarks:

If there is aversion to risk we use u concave to modelize For $u(a)=1-\exp (-\lambda a)$ (which is often used) $-\frac{u^{\prime \prime}}{u^{\prime}}=\lambda$

Gaussian Laws and Mean Variance Implications

When investing W_{0} the utility function criteria picks strategies π which maximizes: $E\left[u\left(W_{T}^{\pi}\right)\right]$ where $\frac{W_{T}}{W_{0}}=1+R_{T}^{\pi}$
If we assume $R_{T}^{\pi} \sim N\left(m_{\pi}, \sigma_{\pi}^{2}\right)$ then: $E\left[u\left(W_{T}^{\pi}\right)\right]=E\left[u\left(W_{0}+W_{0} R_{T}^{\pi}\right)\right]$
$=E\left[u\left(W_{0}+m_{\pi} W_{0}+\sigma_{\pi} W_{0} Z\right)\right]$ with $Z \sim N(0,1)$
If we define $U(m, \sigma)=E\left[u\left(W_{0}+m W_{0}+\sigma W_{0} Z\right)\right]$ then:
$\max _{\pi} E\left[u\left(W_{T}^{\pi}\right)\right]=\max _{\pi} U\left(m_{\pi}, \sigma_{\pi}\right)$
So in practice the model consists in maximizing $\max _{\pi}^{\pi} U\left(m_{\pi}, \sigma_{\pi}\right)$ where U is derived from a utility function.

Remarks: For the DAX, if we suppose that we are in an equilibrium where therefore investors are indifferent between investing into a 1 year zero coupon bond which yields approx 0% or into the DAX, which is expected to return approx $0.02 \% \times 260$, then the Risk Premium is $5.20 \% \ldots$

Gaussian Laws and Mean Variance Implications

From now on we will modelize directly with a function U and we will assume that U is increasing in m and decreasing in σ which means that:

- if the investor has the choice between two strategies with the same expected returns he prefers the one with the less variance on the returns
- if the investor has the choice between two strategies with the same variance on the returns he prefers the one with the higher expected returns
In practice an investor will define the level of risks he accepts and based on this will find the efficient portfolio (that maximizes the expected return. Based on this we make the following definition

Efficient Investment Strategies

Definition: Efficient investment strategy

An investment strategy π_{e} is efficient iff for all π :
$E\left[R^{\pi}\right] \geq E\left[R^{\pi_{e}}\right] \Rightarrow \sigma\left(R^{\pi}\right) \geq \sigma\left(R_{e}^{\pi}\right)$

Proposition:

π_{e} is a solution of $\left\{\begin{array}{c}\min _{\pi} \sigma\left(R^{\pi}\right) \\ E\left[R^{\pi}\right]=E\left[R^{\pi_{e}}\right]\end{array}\right.$
Demonstration: If the solution of the constraint minimization was less than $\sigma\left(R^{\pi_{e}}\right)$ then we could find π such that $\sigma\left(R^{\pi}\right)<\sigma\left(R^{\pi_{e}}\right)$ and $E\left[R^{\pi}\right]=E\left[R^{\pi_{e}}\right]$ but the contraposition of $E\left[R^{\pi}\right] \geq E\left[R^{\pi_{e}}\right] \Rightarrow \sigma\left(R^{\pi}\right) \geq \sigma\left(R_{e}^{\pi}\right)$ implies that $\sigma\left(R^{\pi}\right)<\sigma\left(R_{e}^{\pi}\right) \Rightarrow E\left[R^{\pi}\right]<E\left[R^{\pi_{e}}\right]$
So π_{e} is solution of the constraint problem. QED

Efficient Investment Strategies

Remarks: Definitions and Geometric interpretation

If we note:

- $\mathcal{E}=\left\{\pi_{e}\right.$ efficient $\}$ and
- $\mathcal{E}(\sigma, m)=\left\{\binom{\sigma\left(R^{\pi_{e}}\right)}{E\left(R^{\pi_{e}}\right)}, \pi_{e} \in \mathcal{E}\right\}$

Then any point $\binom{\sigma\left(R^{\pi}\right)}{E\left(R^{\pi}\right)}$ is on the right of $\mathcal{E}(\sigma, m)$

Markowitz: The mean variance framework

Notations and Definitions

We note:

- S_{t}^{i} : the value of asset i at time t. Here we consider only two periods (0 and T)
- q_{i} : the number of shares i held $\left(q_{i}>0\right)$ or shorted $\left(q_{i}<0\right)$ at time 0
- R_{T}^{i} the return of asset i between 0 and T, i.e $R_{T}^{i}=\frac{S_{T}^{i}}{S_{0}^{i}}-1$
- $R_{T}=\left(\begin{array}{c}R_{T}^{1} \\ \vdots \\ R_{T}^{n}\end{array}\right)$ the vector of returns of the n shares between 0 and T.

Definition:

At inception,
An investment portfolio is a portfolio for which $\sum_{i=1}^{i=n} q_{i} S_{0}^{i}>0$
A self financing portfolio is a portfolio for which $\sum_{i=1}^{i=n} q_{i} S_{0}^{i}=0$

Notations and Definitions

Theorem and Definition:

If for an investment portfolio we define: $\forall i \pi_{i}=\frac{q_{i} S_{0}^{i}}{x_{0}}$ and $x_{0}=\sum_{i=1}^{i=n} q_{i} S_{0}^{i}$ then :

- $\left(x_{0}, \pi_{1}, \cdots, \pi_{n}\right)$ defines in a unique way the investment portfolio
- x_{0} is the initial value of the portfolio
- $\sum_{i=1}^{i=n} \pi_{i}=1$
- π_{i} is the percentage of the value of the portfolio invested in asset i at time 0 and $\left(\pi_{1}, \cdots, \pi_{n}\right)$ is called the allocation.

Notations and Definitions

Theorem and Definition:

All self financing portfolios can be represented by a ($n+1$)-uplet $\left(x_{0}, \pi_{1}, \cdots, \pi_{n}\right)$ such that :

- $\forall i q_{i}=\frac{x_{0} \pi_{i}}{S_{0}^{j}}$
- $\sum_{i=1}^{i=n} \pi_{i}=0$
- $x_{0}>0$

The representation is not unique as $\forall \lambda>0\left(\frac{1}{\lambda} x_{0}, \lambda \pi_{1}, \cdots, \lambda \pi_{n}\right)$ represents the same self financing portfolio as $\left(x_{0}, \pi_{1}, \cdots, \pi_{n}\right)$.
For any chosen representation ($x_{0}, \pi_{1}, \cdots, \pi_{n}$) of the self financing portfolio, x_{0} is called the Notional and $\left(\pi_{1}, \cdots, \pi_{n}\right)$ the allocation.

Notations and Definitions

Fom now on we will describe investment portfolios and self financing portfolios by pairs $\left(x_{0}, \pi\right)$ where $\pi=\left(\begin{array}{c}\pi_{1} \\ \vdots \\ \pi_{n}\end{array}\right)$

Theorem and Definition:

We note $W_{t}\left(x_{0}, \pi\right)$ the value at time t of the portfolio $\left(x_{0}, \pi\right)$ and we have:

- $W_{0}\left(x_{0}, \pi\right)=x_{0}$
- $W_{T}\left(x_{0}, \pi\right)=\sum_{i=1}^{i=n} x_{0} \pi_{i} \frac{S_{T}^{i}}{S_{0}^{i}}$

Remark:

$\pi^{i}<0$ means that the portfolio has a short position in asset i S^{i} is called a risky asset iff R_{T}^{i} is not determinist i.e $\operatorname{Var}\left(R_{T}^{i}\right) \neq 0$

Notations and Definitions

Example: when we consider various allocations $\left(x_{0}, \pi\right)$ between two shares $S_{0}^{1}=100 S_{0}^{2}=50$ we get the following table:

x_{0}	π_{1}	π_{2}	q^{1}	q^{2}	W_{0}
100	1	-1	1	-2	0
1000	1	-1	10	-20	0
100	0.5	0.5	0.5	1	100
1000	0.5	0.5	5	10	1000

Notations and Definitions

Theorem and Definition:

We define the return of a portfolio $\left(x_{0}, \pi\right)$ as: $R_{T}=\frac{W_{T}\left(x_{0}, \pi\right)-W_{0}\left(x_{0}, \pi\right)}{x_{0}}$

- For an investment portfolio this definition corresponds to the definition of the return of an asset
- For a self financing portfolio this quantity equals $\frac{W_{T}\left(x_{0}, \pi\right)}{x_{0}}$

Proposition

For any investment or self financing portfolio $\left(x_{0}, \pi\right)$ the return R_{T} verifies: $R_{T}=\sum_{i=1}^{i=n} \pi_{i} R_{T}^{i}$.
As this expression depends only on π and not on x_{0} we note it R_{T}^{π}.

Notations and Definitions

Proposition:

For any investment or self-financing portfolio $\left(x_{0}, \pi\right)$ we have:

- $R_{T}^{\pi}=\pi^{\prime} R_{T}$
- $E\left(R_{T}^{\pi}\right)=E\left(\pi^{\prime} R_{T}\right)=\pi^{\prime} E\left[R_{T}\right]$
- $\operatorname{Cov}\left(R_{T}^{\pi_{1}}, R_{T}^{\pi_{2}}\right)=\operatorname{Cov}\left(\pi_{1}^{\prime} R_{T}, \pi_{2}^{\prime} R_{T}\right)=\pi_{1}^{\prime} \operatorname{Cov}\left[R_{T}, R_{T}\right] \pi_{2}$

Exercise: demonstrate the proposition
Notations: from now on we note:

- $\sigma^{\pi}=\sigma\left(R_{T}^{\pi}\right)$
- $m^{\pi}=E\left(R_{T}^{\pi}\right)$

Markowitz's Framework

We are going two consider two cases, each based on the existence or not of a risk-free investment strategy:

First case:

There are n risky assets $\left(S^{i}\right)_{i \in[1, n]}$ and no risk-free asset.

Second case:

There are n risky assets $\left(S^{i}\right)_{i \in[1, n]}$ and one risk-free asset S^{0}.

Remarks:

In both cases it is natural to assume that the R_{T}^{i} are such as :

- (H1) there is no way to build a risk-free investment portfolio based on the $\left(S^{i}\right)_{i \in[1, n]}$
- (H2) there is no way to build a risk-free self-financing portfolio (other than zero) based on the $\left(S^{i}\right)_{i \in[1, n]}$

Markowitz's Framework

Comments:

The reason why we assume (H 1) in the first case is because otherwise we could build a risk-free asset. The reason why we assume (H 1) in the second case is because otherwise we could build a second risk-free asset and then:

- either this second risk-free asset has the same return as the risk-free asset and in this case one risky asset could be replicated (and then should be disregarded).
- or this second risk-free asset has a different return from the risk-free asset, in which case there would be some arbitrage opportunities.
The reason why we assume (H 2) is because for a risk-free self-financing strategy:
- if the return is different from zero there are some arbitrage opportunities
- if the return is different is zero one risky asset can be replicated (and then should be be disregarded)

Markowitz's Framework

We Note :

- $\Sigma=\operatorname{Cov}\left[R_{T}, R_{T}\right]$
- $M=E\left[R_{T}\right]$

Proposition:

$(\mathrm{H} 1)$ and $(\mathrm{H} 2) \Longrightarrow \Sigma$ is invertible

Demonstration:

If Σ was not invertible we could find $\pi \neq 0$ such that $\pi^{\prime} \Sigma \pi=0$ and then there would be two cases:
either $\pi^{\prime} 1_{n}=0$ in which case we could find a self-financing portfolio made of the risky assets without risk or
$\pi^{\prime} 1_{n} \neq 0$ in which case we could find an investment portfolio made of the risky assets without risk.
in both cases this would be in contradiction with $(\mathrm{H} 1)$ or $(\mathrm{H} 2)$.

Markowitz: Opimization without a risk-free asset

Opimization without a risk-free asset

From the utility framework and in the context of normal distributions assumptions the efficient investment portfolios $\left(x_{0}, \pi\right)$ are the solutions of
$(P)\left\{\begin{array}{l}\min _{\pi}^{\pi} \pi^{\prime} \Sigma \pi \\ \pi^{\prime} M=m \\ \pi^{\prime} 1_{n}=1\end{array}\right.$ where 1_{n} is the vector of \mathbb{R}^{n} with components equal to 1
We define a new scalar product in \mathbb{R}^{n} by $\left.<x, y\right\rangle_{\Sigma^{-1}}=x^{\prime} \Sigma^{-1} y$
We can write (P) as
$(P)\left\{\begin{array}{l}\min _{\pi}<\Sigma \pi, \Sigma \pi>_{\Sigma^{-1}} \\ <\Sigma \pi, M>_{\Sigma^{-1}}=m \\ <\Sigma \pi, 1_{n}>_{\Sigma^{-1}}=1\end{array}\right.$
(P) can be solved either by writing its Lagrangien or geometrically by noticing that $\Sigma \pi$ must be in $\operatorname{Vect}\left(M, 1_{n}\right)$ in order to mimimize its $<,>_{\Sigma^{-1}}$ norm while satisfying the constraints. We note \mathcal{F} all the investment portfolios solutions of (P) for any possible value of m.

Opimization without a risk-free asset

We note:

- $a=<1_{n}, 1_{n}>_{\Sigma^{-1}}$ and
- $b=<M, 1_{n}>_{\Sigma-1}$

Excluding for now the case $M-\frac{b}{a} 1_{n}=0$ and noticing that
$<M-\frac{b}{a} 1_{n}, 1_{n}>_{\Sigma-1}=0$ we get that $M-\frac{b}{a} 1_{n}$ and 1_{n} form an orthogonal basis of $\operatorname{Vect}\left(M, 1_{n}\right)$. So we can write:
$\Sigma \pi_{e}=\lambda 1_{n}+\nu\left(M-\frac{b}{a} 1_{n}\right)$ or $\pi_{e}=\lambda \Sigma^{-1} 1_{n}+\nu \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)$
We can now renormalize this decomposition.
We note:

- $\pi_{a}=\frac{1}{a} \Sigma^{-1} 1_{n}$ which satisfies $\pi_{a}^{\prime} 1_{n}=1$ and
- $\omega_{a, b}=\frac{\Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma^{-1}}}$ which satisfies $\omega_{a, b}^{\prime} 1_{n}=0$ and $\operatorname{var}\left[R_{T}^{\omega_{a, b}}\right]=1$

Opimization without a risk-free asset

Proposition: Building Blocks

- $\pi_{a}^{\prime} 1_{n}=1$ (so π_{a} is an investment portfolio).
- $m^{\pi_{a}}=\frac{b}{a}$
- $\sigma^{\pi_{a}}=\frac{1}{\sqrt{a}}$
- $\omega_{a, b}^{\prime} 1_{n}=0$ (so $\omega_{a, b}$ is a self-financing portfolio).
- $m^{\omega_{a, b}}=\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma^{-1}}$
- $\sigma^{\omega_{a, b}}=1$
- $\operatorname{cov}\left(R^{\pi_{a}}, R^{\omega_{a, b}}\right)=0$

Opimization without a risk-free asset

Demonstration:

$$
\begin{aligned}
& \pi_{a}^{\prime} 1_{n}=1_{n}^{\prime} \pi_{a}=\frac{1}{a} 1_{n}^{\prime} \Sigma^{-1} 1_{n}=1 \\
& m^{\pi_{a}}=M^{\prime} \pi_{a}=\frac{1}{a} M^{\prime} \Sigma^{-1} 1_{n}=\frac{b}{a} \\
& \sigma^{\pi_{a}}=\left[\pi_{a}^{\prime} \Sigma \pi_{a}\right]^{\frac{1}{2}}=\left[\frac{1}{a^{2}} 1_{n}^{\prime} \Sigma^{-1} \Sigma \Sigma^{-1} 1_{n}\right]^{\frac{1}{2}}=\left[\frac{a}{a^{2}}\right]^{\frac{1}{2}}=\frac{1}{\sqrt{a}} \\
& \omega_{a, b}^{\prime} 1_{n}=\frac{1}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}} 1_{n}^{\prime} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)=0 \\
& m^{\omega_{a, b}}=M^{\prime} \omega_{a, b}=M^{\prime} \frac{\Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}}
\end{aligned}
$$

$$
\text { using } 1_{n}^{\prime} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)=0 \text { we get: }
$$

$$
M^{\prime} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)=\left(M-\frac{b}{a} 1_{n}\right)^{\prime} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right) \text { and so }
$$

$$
m^{\omega_{a, b}}=\frac{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}^{2}}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}}=\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}
$$

$$
\left(\sigma^{\omega_{a, b}}\right)^{2}=\frac{1}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma^{-1}}^{2}}\left(M-\frac{b}{a} 1_{n}\right)^{\prime} \Sigma^{-1} \Sigma \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)=1
$$

$$
\operatorname{cov}\left(R^{\pi_{a}}, R^{\omega_{a, b}}\right)=\frac{1}{a} 1_{n}^{\prime} \Sigma^{-1} \Sigma \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right) \frac{1}{\left\|M-\frac{b}{a} 1_{n}\right\|_{\Sigma-1}^{2}}=0 \text { Q.E.D }
$$

Opimization without a risk-free asset

Proposition

a) $\mathcal{F}=\left\{\pi_{a}+\lambda \omega_{a, b}, \lambda \in \mathbb{R}\right\}$
b) $R^{\pi_{a}+\lambda \omega_{a, b}}=R^{\pi_{a}}+\lambda R^{\omega_{a, b}}$
c) $m^{\pi_{a}+\lambda \omega_{a, b}}=m^{\pi_{a}}+\lambda m^{\omega_{a, b}}$
d) $\left(\sigma^{\pi_{a}+\lambda \omega_{a, b}}\right)^{2}=\left(\sigma^{\pi_{a}}\right)^{2}+\lambda^{2}$
e) $\min \sigma^{\pi}=\sigma^{\pi_{a}}$
$\pi \in \mathcal{E}$

Demonstration:

a) We know that a solution of (P) is of the form $\alpha \pi_{a}+\beta \omega_{a, b}$ as it must be in $\operatorname{Vect}\left(\pi_{a}, \omega_{a, b}\right)$. The condition $\pi^{\prime} 1_{n}=1$ implies $\alpha \pi_{a}{ }^{\prime} 1_{n}=1$ which implies $\alpha=1$. So the solutions of (P) are all of the forms $\pi_{a}+\lambda \omega_{a, b}$. Reciprocally the investment portfolio $\pi_{a}+\lambda \omega_{a, b}$ is the solution of (P) for $m=m^{\pi_{a}}+\lambda m^{\omega_{a, b}}$.

Optimization without a risk-free asset

b) $R^{\pi_{a}+\lambda \omega_{a, b}}=\left(\pi_{a}+\lambda \omega_{a, b}\right)^{\prime} R_{T}=\pi_{a}^{\prime} R_{T}+\lambda \omega_{a, b}^{\prime} R_{T}=R^{\pi_{a}}+\lambda R^{\omega_{a, b}}$. Q.E.D
c) by definition $m^{\pi_{a}+\lambda \omega_{a, b}}=E\left[R^{\pi_{a}+\lambda \omega_{a, b}}\right]$ so c) is derived from b) by taking expectations on both side of equality b).
d) by definition $\left(\sigma^{\pi_{a}+\lambda \omega_{a, b}}\right)^{2}=\operatorname{Var}\left[R^{\pi_{a}+\lambda \omega_{a, b}}\right]$ and according to b) this quantity equals $\operatorname{Var}\left[R^{\pi_{a}}+\lambda R^{\omega_{a, b}}\right]$. As the covariance between these two variables is zero, the expression is $\operatorname{Var}\left[R^{\pi_{a}}\right]+\lambda^{2} \operatorname{Var}\left[R^{\omega_{a, b}}\right]$ and as seen previously $\operatorname{Var}\left[R^{\omega_{a, b}}\right]=1$. Q.E.D
e) this results from d)

Optimization without a risk-free asset

Corollary

If $\pi_{e} \in \mathcal{F}$

- $\left(\sigma^{\pi_{e}}\right)^{2}=\left(\sigma^{\pi_{a}}\right)^{2}+\left(\frac{m^{\pi_{e}}-m^{\pi_{a}}}{m^{\omega_{a}, b}}\right)^{2}$
- $m^{\pi_{e}}=m^{\pi_{a}}+m^{\omega_{a, b}} \sqrt{\left(\sigma^{\pi_{e}}\right)^{2}-\left(\sigma^{\pi_{a}}\right)^{2}}$ if $m^{\pi_{e}}>m^{\pi_{a}}$
- $m^{\pi_{e}}=m^{\pi_{a}}-m^{\omega_{a, b}} \sqrt{\left(\sigma^{\pi_{e}}\right)^{2}-\left(\sigma^{\pi_{a}}\right)^{2}}$ if $m^{\pi_{e}}<m^{\pi_{a}}$
- $\pi_{e}=\pi_{a}+\frac{m^{\pi_{e}}-m^{\pi_{a}}}{m^{\omega, b}} \omega_{a, b}$

Demonstration:

Trivial when writing π_{e} as $\pi_{a}+\lambda \omega_{a, b}$ and eliminating λ between the equations.

Optimization without a risk-free asset

Remarks:

- The frontier $\mathcal{F}(\sigma, m)$ is an hyperbole
- For all assets and investment portfolios: (σ, m) is on or inside the hyperbole
- Geometrically: the line $y=a+b x$ is above the hyperbole $y=a+b \sqrt{x^{2}-1}$ and is "asymptotically tangent" as:
- $a+b x-\left(a+b \sqrt{x^{2}-1}\right) \xrightarrow{x \rightarrow \infty} 0$ (points of the curves converging) and
- $b /\left[b \frac{x}{\sqrt{x^{2}-1}}\right] \xrightarrow{x \rightarrow \infty} 1$ (slopes of the curves converging)

Definitions:

We note:

- $\mathcal{F}^{+}=\left\{\pi_{a}+\lambda \omega_{a, b}, \lambda \geq 0\right\}$
- $\mathcal{F}^{-}=\left\{\pi_{a}+\lambda \omega_{a, b}, \lambda \leq 0\right\}$
- $\mathcal{F}^{+}(\sigma, m)=\left\{\left(\sigma^{\pi}, m^{\pi}\right), \pi \in \mathcal{F}^{+}\right\}$and call it the Efficient Frontier
- $\mathcal{F}^{-}(\sigma, m)=\left\{\left(\sigma^{\pi}, m^{\pi}\right), \pi \in \mathcal{F}^{-}\right\}$and call it the Inefficient Frontier

Optimization without a risk-free asset

Two Funds Theorem:

All the efficient portfolios can be built from two fixed distinct efficient investment portfolios π_{1} and π_{2}.
For this reason to analyse the efficient frontier we just need to analyse a model based on two risky assets!

Demonstration:

Let $\pi_{1}=\pi_{a}+\lambda_{1} \omega_{a, b}$ and $\pi_{2}=\pi_{a}+\lambda_{2} \omega_{a, b}$ be distinct on \mathcal{F}
Let $\pi=\pi_{a}+\lambda \omega_{a, b}$ be on \mathcal{F}.
For any $\alpha \in \mathbb{R}, \alpha \pi_{1}+(1-\alpha) \pi_{2}$ is an investment portfolio (as $\left.\alpha \pi_{1}^{\prime} 1_{n}+(1-\alpha) \pi_{2}^{\prime} 1_{n}=1\right)$ and if we choose $\alpha=\frac{\lambda-\lambda_{2}}{\lambda_{1}-\lambda_{2}}$ we get $\alpha \pi_{1}+(1-\alpha) \pi_{2}=\pi_{a}+\lambda \omega_{a, b}=\pi$. Q.E.D

Optimization without a risk-free asset

Exercise 1:

We consider 2 risky assets S^{1}, S^{2} :

- $m_{1}=5 \%, \sigma_{1}=15 \%$
- $m_{2}=20 \%, \sigma_{2}=30 \%$

We note ρ the correlation between R^{1} and R^{2}.
a) Plot \mathcal{F} for: $\rho=-1, \rho=0, \rho=0.5, \rho=1$.
b) What is the portfolio of minimum standard deviation in each case?

If we consider the portfolio $\pi_{\alpha}=\alpha \pi_{1}+(1-\alpha) \pi_{2}$
c) In which region of $\mathcal{F}(\sigma, m)$ is ($\left.\sigma^{\pi_{\alpha}}, m^{\pi_{\alpha}}\right)$ in the following cases:

- $\alpha<0$
- $0 \leq \alpha \leq 1$
- $\alpha>1$

Optimization without a risk-free asset

Note that Σ is not invertible here and a risk-free asset can be constructed

Optimization without a risk-free asset

Note that Σ is invertible here and we obtain the "usual" hyperbole

Optimization without a risk-free asset

Note that Σ is not invertible here and a risk-free asset can be constructed

Optimization without a risk-free asset

Proposition:

$\mathcal{F}=\left\{\frac{1}{b-m a} \Sigma^{-1}\left(M-m 1_{n}\right), m \neq \frac{b}{a}\right\} \bigcup\left\{\frac{1}{a} \Sigma^{-1} 1_{n}\right\}$

Demonstration:

We know that $\mathcal{F}=\left\{\frac{1}{a} \Sigma^{-1} 1_{n}+\lambda \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right), \lambda \in R\right\}$
for $\lambda=0$ we obtain the portfolio $\frac{1}{a} \Sigma^{-1} 1_{n}$
for $\lambda \neq 0$ we can write λ in the form $\lambda=\frac{1}{b-m a}$ and by doing so we obtain
$\frac{1}{a} \Sigma^{-1} 1_{n}+\frac{1}{b-m a} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)$
$=\frac{1}{b-m a} \Sigma^{-1}\left(M-m 1_{n}\right)+\frac{1}{b-m a} \Sigma^{-1}\left(m-\frac{b}{a}\right) 1_{n}+\frac{1}{a} \Sigma^{-1} 1_{n}$
$=\frac{1}{b-m a} \Sigma^{-1}\left(M-m 1_{n}\right)+\frac{1}{b-m a} \Sigma^{-1}(a m-b) \frac{1}{a} 1_{n}+\frac{1}{a} \Sigma^{-1} 1_{n}$
$=\frac{1}{b-m a} \Sigma^{-1}\left(M-m 1_{n}\right)$ Q.E.D
Remarks: We will demonstrate later that the parameter m can be interpreted geometrically, by showing that the tangent to \mathcal{F} at point (σ, m) intersects the axe $\{\sigma=0\}$ at point $(0, m)$.

Optimization without a risk-free asset

Optimization without a risk-free asset

Remarks: We have assumed so far that $M-\frac{b}{a} 1_{n} \neq 0$. We analyse here what would happen if this was not the case.
If $M-\frac{b}{a} 1_{n}=0$ then all portfolios would have the same returns equal to $\frac{b}{a}$. In this case (P) would be a problem of minimizing, for an investment portfolio, the standard deviation of the return, i.e to solve:
(P) $\left\{\begin{array}{c}\min _{\pi}<\Sigma \pi, \Sigma \pi>_{\Sigma^{-1}} \\ <\Sigma \pi, 1_{n}>_{\Sigma^{-1}}=1\end{array}\right.$

As previously, geometrically we see that the solution should verify $\Sigma \pi_{e} \in \operatorname{Vect}\left(1_{n}\right)$, so $\pi_{e}=\lambda \Sigma^{-1} 1_{n}$. The only π_{e} of this form satisfying $\left(\pi_{e}\right)^{\prime} 1_{n}=1$ is $\pi_{e}=\frac{1}{a} \Sigma^{-1} 1_{n}$

Markowitz: Opimization with a risk-free asset

Optimization with a risk-free asset

We note $\Pi=\binom{\pi^{0}}{\pi}$ the allocation between the risk-free asset and the n risky assets.
We note $\Pi_{0}=\binom{1}{0}$ the risk-free asset of return r_{0}.
For any investment portfolios Π we must have $\pi^{0}+(\pi)^{\prime} 1_{n}=1$. Replacing π^{0} by $1-\pi^{\prime} 1_{n}$ the problem we have to solve, to find the efficient portfolios, can now be written as:
$(Q)\left\{\begin{array}{c}\min _{\pi} \pi^{\prime} \Sigma \pi \\ \pi^{\prime} M+\left(1-\pi^{\prime} 1_{n}\right) r_{0}=m\end{array}\right.$
Which we can also write as:
$(Q)\left\{\begin{array}{c}\min _{\pi}<\Sigma \pi, \Sigma \pi>_{\Sigma^{-1}} \\ <\Sigma \pi, M-r_{0} 1_{n}>_{\Sigma^{-1}}=m-r_{0}\end{array}\right.$

Optimization with a risk-free asset

Geometrically, the solution has to be of the form $\Sigma \pi=\lambda\left(M-r_{0} 1_{n}\right)$ or equivalently $\pi=\lambda \Sigma^{-1}\left(M-r_{0} 1_{n}\right)$.
Note that $1_{n}^{\prime} \Sigma^{-1}\left(M-r_{0} 1_{n}\right)=\left(b-r_{0} a\right)$.
Until the end of this section we will consider that $b-r_{0} a \neq 0$
To renormalize the problem we define: $\pi_{M}=\frac{1}{b-r_{0} a} \Sigma^{-1}\left(M-r_{0} 1_{n}\right)$
Note that $\Pi_{M}=\binom{0}{\pi_{M}}$ is an investment portfolio as $\pi_{M}^{\prime} 1_{n}=1$
With these notations we now state:

Theorem: Capital Market Line

The portfolios solutions of (Q) are the portfolios: $\lambda \Pi_{M}+(1-\lambda) \Pi_{0}$ with $\lambda \in \mathbb{R}$. We note $\mathcal{C}=\left\{\lambda \Pi_{M}+(1-\lambda) \Pi_{0}, \lambda \in \mathbb{R}\right\}$

Optimization with a risk-free asset

Corollaries and "Market Portfolio"

(1) The portfolios Π of \mathcal{C} (i.e the solutions of (Q)) verify:

$$
\begin{aligned}
& \text { - } m^{\Pi}=\lambda m^{\Pi_{M}}+(1-\lambda) m^{\Pi_{0}} \\
& \text { - } \sigma^{\Pi}=|\lambda| \sigma^{\Pi_{M}}
\end{aligned}
$$

so their risk parameters (σ, m) are on a cone (i.e $\mathcal{C}(\sigma, m)$ is a cone).
(2) All the efficient portfolios are built by allocating money only between Π_{0} and Π_{M}. For this reason to study optimal investments we just need to use a model with one single risky asset!
(3) CAPM/MEDAF: if all the market participants are allocating efficiently and with the same parameters, then:

- all the risky investments are in Π^{M} and
- in Π^{M} the weight in risky asset i is the $\%$ of the total Market Capitalization of risky assets that asset i represents.
For this reason Π^{M} should be/is called the (risky) "Market Portfolio".

Optimization with a risk-free asset

Corollaries:

(1) Usually in the model $\frac{b}{a}>r_{0}$ otherwise all the efficient portfolios would short Π_{M} which practically would not make sense.
(2) Assuming $\frac{b}{a}>r_{0}$ we define:

- $\mathcal{C}^{+}=\left\{\lambda m^{\Pi_{M}}+(1-\lambda) m^{\Pi_{0}}, \lambda \geq 0\right\}$ and call it the Cone Efficient Frontier (or Capital Market Line)
- $\mathcal{C}^{-}=\left\{\lambda m^{\Pi_{M}}+(1-\lambda) m^{\Pi_{0}}, \lambda \leq 0\right\}$ and call it the Cone Inefficient Frontier
- All the assets and portfolios we can built have their risk parameters (σ, m) within the cone $\mathcal{C}(\sigma, m)$ and in particular $\mathcal{F}(\sigma, m)$ is included in $\mathcal{C}(\sigma, m)$.

Demonstration:

Straightforward when writing $\Pi_{e}=\lambda \Pi_{M}+(1-\lambda) \Pi_{0}$

Exercise:

Draw \mathcal{F} and \mathcal{C} in a model where there are two risky assets and a risk free asset and see what happens when you are changing the correlation

Tangent Portfolio

Lemma: Tangent Portfolio

The "Market Portfolio" Π_{M}, which has no allocation in the risk-free asset, is also a solution of the mean/variance optimization problem (P) where there was no risk-free asset. So we can write $\Pi_{M} \in \mathcal{F}$

Demonstration:

Geometrically: it is obvious as otherwise there would be some portfolios more efficient (above) than those on the Capital Market Line.
Algebraically:
$\pi_{M}=\frac{1}{b-r_{0} \mathrm{a}} \Sigma^{-1}\left(M-r_{0} 1_{n}\right)=\frac{1}{b-r_{0} \mathrm{a}} \Sigma^{-1}\left[\left(M-\frac{b}{a} 1_{n}\right)+\left(\frac{b}{a} 1_{n}-r_{0} 1_{n}\right)\right]$
$=\frac{1}{b-r_{0} a}\left(\frac{b}{a}-r_{0}\right) \Sigma^{-1} 1_{n}+\Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)$
$=\frac{1}{a} \Sigma^{-1} 1_{n}+\frac{1}{b-r_{0} a} \Sigma^{-1}\left(M-\frac{b}{a} 1_{n}\right)$
$=\pi_{a}+\lambda \omega_{a, b}$ which is the form of the portfolios of \mathcal{F}. Q.E.D
Until the end of this section we assume that $\frac{b}{a}>r_{0}$

Tangent Portfolio

Theorem: Tangent Portfolio

$\mathcal{C}(\sigma, m)$ is tangent to $\mathcal{F}(\sigma, m)$ at the point $\left(\sigma^{\Pi_{M}}, m^{\Pi_{M}}\right)$

Demonstration:

We know that Π_{M} is on \mathcal{C} and that Π_{M} is on \mathcal{F}.
Geometrically: If a line and an hyperbole have a contact point either they are tangent on this contact point or they cross each other. The situation where they cross each other is not possible here as it would imply that some portfolios of \mathcal{F} are more efficient than any portfolios of \mathcal{C}.

Remark:

Equivalently, we can say that the tangent to the Efficient Frontier \mathcal{F} at the point Π_{M} intersects the $\sigma=0$ axis at the point $\binom{0}{r_{0}}$

More Geometric Properties

Corollary: Geometry of the Efficient Frontier

- For any risky efficient investment portfolio $\pi=\frac{1}{b-m a} \Sigma^{-1}\left(M-m 1_{n}\right)$ of \mathcal{F}, the tangent to $\mathcal{F}(\sigma, m)$ at $\left(\sigma^{\pi}, m^{\pi}\right)$ intersects the $\{\sigma=0\}$ axis at the point $\binom{0}{m}$.
- For the risky efficient investment portfolio $\pi=\frac{1}{a} \Sigma^{-1} 1_{n}$ of \mathcal{F}, the tangent to $\mathcal{F}(\sigma, m)$ at $\left(\sigma^{\pi}, m^{\pi}\right)$ is parallel to the $\{\sigma=0\}$ axis.

These results mean that there is a bijection between $\mathcal{F}-\left\{\frac{1}{a} \Sigma^{-1} 1_{n}\right\}$ and $\mathbb{R}-\left\{\frac{b}{a}\right\}$ and that is it the tangents to the the $\mathcal{F}(\sigma, m)$ curve which establish the bijection between the portfolios and their parameters m.

Demonstration:

This result for a portfolio of parameter m corresponds to the result of the preceding corollary when taking $r_{0}=m$. Q.E.D

More Geometric Properties

Security Market Line

Security Market Line

Theorem: Security Market Line

Let Π_{M} be the Market Portfolio as defined previously
Let Π_{P} be any investment portfolio composed of the risk-free and risky assets. Then:

- $m_{P}-r_{0}=\left(m_{M}-r_{0}\right) \rho\left(R_{P}, R_{M}\right) \frac{\sigma_{P}}{\sigma_{M}}$ (SML equation) and
- $R_{P}-r_{0}=\left(R_{M}-r_{0}\right) \rho\left(R_{P}, R_{M}\right) \frac{\sigma_{P}}{\sigma_{M}}+\epsilon$ with ϵ normal independant from R_{M} and centered.

Demonstration:

Let Π_{P} be an investment portfolio then:
$\operatorname{cov}\left(R_{M}, R_{P}\right)=\pi_{M}^{\prime} \Sigma \pi_{P}=\frac{1}{b-r_{0} a}\left(M-r_{0} 1_{n}\right)^{\prime} \pi_{P}=\frac{m_{P}-r_{0}}{b-r_{0} a}$
If we apply the same calculation to Π_{P} then:
$\operatorname{cov}\left(R_{M}, R_{M}\right)=\frac{m_{M}-r_{0}}{b-r_{0} a}$
From this we get:
$\operatorname{cov}\left(R_{M}, R_{P}\right)=\frac{m_{P}-r_{0}}{m_{M}-r_{0}} \operatorname{cov}\left(R_{M}, R_{M}\right)$

Security Market Line

From which we get : $m_{P}-r_{0}=\left(m_{M}-r_{0}\right) \rho\left(R_{M}, R_{P}\right) \frac{\sigma_{P}}{\sigma_{M}}$
We now want to show a relationship for the r.v and not only for their expectations.
$\binom{\left(R_{P}-r_{0}\right)-\left(R_{M}-r_{0}\right) \rho\left(R_{M}, R_{P}\right) \frac{\sigma_{P}}{\sigma_{M}}}{R_{M}}$ is Gaussian because it is an affine
transformation of the vector of the returns of the risky assets which is assumed to be a Gaussian vector. Thus, to show that the first variable that we call ϵ is independent from the second one we just need to show that the covariance is zero.
Indeed, $\operatorname{cov}\left(\epsilon, R_{M}\right)=\operatorname{cov}\left(R_{P}-R_{M} \rho\left(R_{M}, R_{P}\right) \frac{\sigma_{P}}{\sigma_{M}}, R_{M}\right)$
$=\operatorname{cov}\left(R_{P}, R_{M}\right)-\rho\left(R_{M}, R_{P}\right) \frac{\sigma_{P}}{\sigma_{M}} \operatorname{cov}\left(R_{M}, R_{M}\right)=0$
The fact that ϵ is centered i.e $E(\epsilon)=0$, results from the previous result. Q.E.D

Security Market Line

Definition:

The quantity $\rho\left(R_{M}, R_{P}\right) \frac{\sigma_{P}}{\sigma_{M}}$ is noted $\beta_{P, M}$ and is called the beta of the asset Π_{P} (in respect to the Market Portfolio Π_{M}).

Remarks:

The equation: $m_{P}-r_{0}=\left(m_{M}-r_{0}\right) \beta_{P, M}(\mathrm{SML})$

- is valid for all investment portfolios and not only for efficient ones.
- shows that only the risk correlated with the "Market Portfolio/Market Risk" is renumerated.
- is used in capital budgeting / CAPM to determine the price an asset should have based on its expected returns and beta with the sector.

Security Market Line

Definition:

When we write $R_{P}=r_{0}+\left(R_{P}-r_{0}\right) \beta_{R_{P}, R_{M}}+\epsilon$ we have $\sigma_{M}^{2}=\sigma_{P}^{2} \beta_{P, M}^{2}+\sigma_{\epsilon}^{2}$

- $\sigma_{P}\left|\beta_{P, M}\right|$ is called the systematic risk. It cannot be reduced by diversification in the model and thus is remunerated.
- σ_{ϵ} is called the idiosyncratic risk. It can be reduced by diversification in the model, and thus is not remunerated.

Security Market Line

We can read on the graph, for any portfolio, the portion of the volatility correlated with the movements of the Market Portfolio.

Security Market Line and "Arbitrage" Detections

Remarks: The (β, m) of the assets we consider investing it according to the SML should be on a line.

- The beta will usually be calculated in relation to a broader index to which these stocks belong
- The expected returns will be based either on some historical estimates or some analysts predictions
In practice, the points will not be perfectly aligned and a regression line will be calculated.
- The assets over the line will look cheap
- The assets below the line will look expensive In "pair-trading", strategies will be considered consisting in:
- Selling assets lying below the line
- Buying assets lying above the line (usually in the same sector)

Security Market Line and "Arbitrage" Detections

Exercice: Show that if we consider an investment portfolio Π_{P} with risk parameters $\left(\sigma_{P}, m_{P}\right)$ and if we call in the $\{(\sigma, m)\}$ plane, $\left(x, m_{P}\right)$ the intersection of the SML and the line $\left\{m=m_{P}\right\}$ then $x=\beta_{P, M} \sigma_{M}$. Conclude that we can read in the $\{(\sigma, m)\}$ plane the decomposition between systematic risk and idiosyncratic risk.

Performance Indicators

Performance Indicators

Definition: Sharp Ratio

The Sharpe Ratio of an investment portfolio P is defined as: $\frac{m_{P}-r_{0}}{\sigma_{P}}$

Remarks:

Under the Markowitz's framework:

- The Ratio should be maximal for portfolios belonging to the CML
- All the portfolios belonging to the CML have the same Ratio
- Wealth should be allocated:
- First by determining a portfolio with the maximum Sharpe Ratio that can be built
- Then by allocating all the wealth between this portfolio and the risk free asset
- The Sharpe Ratio is independent from the leverage has $\lambda \Pi_{P}+(1-\lambda) \Pi_{0}$ has the same Sharpe Ratio as Π_{P} for any $\lambda>0$. So the indicator is really "intrinsic to the fund".
- The Sharpe Ratio is usually estimated by: $\frac{\hat{m}_{P}-r_{0}}{\hat{\sigma}_{P}}$

Performance Indicators

Remarks: An investor choosing a mutual fund to represent a large portion of his/her wealth should be concerned by the full risk of the fund and should look at the Sharpe Ratio.

Exercise 1: Show that the Sharpe Ratio is independent from the leverage
Exercise 2: How do you read in a $\{(\sigma, m)\}$ representation the Sharpe Ratio of a fund as the slope of a particular line?

Performance Indicators

Definition: Jensen Index

The Jensen Index of an investment portfolio P is defined as:
$m_{P}-\left[r_{0}+\beta_{M, P}\left(m_{M}-r_{0}\right)\right]$

Remarks:

Under the Markowitz's framework this quantity should be zero according to the SML
In practice all the portfolios considered for investment are represented in the (β, m) plane where:

- the beta are estimated historically
- the expected returns are either historical estimates or analyst predictions
Then a regression line is calculated and the portfolios above the line could be considered for addition to the investment portfolio as:
- their systematic risk is remunerated more than expected
- their idiosyncratic risk should disappear via diversification

Remarks:

A large pension fund which allocates money amongst many asset managers may assume that the idiosyncratic risk is going to be reduced/cancelled through diversification and in this case may be concerned only by the remuneration of the non diversifiable risk and by the Jensen Index of each Asset Manager's funds.

Exercise 1: Show that the Jensen Ratio is dependent on leverage
Exercise 2: How do you read in a $\{(\beta, m)\}$ representation the Jensen Ratio of a fund as the distance above a particular line ?

Performance Indicators

Definition: Treynor Index

The Treynor Index of an investment portfolio P is defined as: $\frac{m_{P}-r_{0}}{\beta_{P, M}}$

Remarks:

Under the Markowitz's framework the Treynor Index should be constant according to the SML.
The Treynor Index is similar to the Jensen index in its objectives to detect funds for which there is an excess of remuneration of the systematic risk.
The excess is usually called the α !
Compared to the Jensen Index the advantage of the Treynor Index is that it does not dependent on leverage and thus is a more intrinsic measure.

Remarks:

Show that the Treynor Index does not depend on leverage.

Factor Model

Factor Model

We revisit here the SML equation for risky assets and investment portfolios: $r^{i}(t)=r_{0}+b^{i}\left(r_{M}(t)-r_{0}\right)+\epsilon^{i}(t)$ because:

- in practice the $\epsilon^{i}(t)$ appear to be correlated and to represent a significant portion of the variance of the assets.
- by adding additional factors we aim at identifying better the common sources of risks (even when they may not be remunerated) and to end up with smaller non explained residual idiosyncratic risks.
- we want to determine the remuneration of each individual source of risks through a non arbitrage argument.

The factor decomposition of the returns in a K-factor model of risky assets is expressed as:
$r^{i}(t)=a^{i}+\sum_{j=1}^{j=K} \beta_{j}^{i} f^{j}(t)+\epsilon^{i}(t)$ for all assets i in $\{1, \cdots, N\}$ and all instants t in $\{1, \cdots, T\}$

Factor Model

We can write matricially: $R(t)=A+B F(t)+E(T)$
with $R(t)=\left(\begin{array}{c}r^{1}(t) \\ \vdots \\ r^{N}(t)\end{array}\right) \quad A=\left(\begin{array}{c}a^{1} \\ \vdots \\ a^{N}\end{array}\right) \quad B=\left(\begin{array}{ccc}\beta_{1}^{1} & \vdots & \beta_{K}^{1} \\ \vdots & \vdots & \vdots \\ \beta_{1}^{N} & \vdots & \beta_{K}^{N}\end{array}\right) \quad F(t)=\left(\begin{array}{c}f^{1}(t) \\ \vdots \\ f^{K}(t)\end{array}\right)$
and $E(t)=\left(\begin{array}{c}\epsilon^{1}(t) \\ \vdots \\ \epsilon^{N}(t)\end{array}\right)$
We make the following assumptions:
$F(t)$ normal centered, $\operatorname{Var}[F(t)]=\Sigma_{F}$ def positive independent from t.
$F(t)$ independent from $F\left(t^{\prime}\right)$ for $t \neq t^{\prime}$.
A and B independent from t
$E(t)$ normal centered and $\operatorname{Var}[E(t)]=\operatorname{diag}\left(\sigma_{i}^{2}\right)$ independent from t.
$E(t)$ independent from $E\left(t^{\prime}\right)$ for $t \neq t^{\prime}$.
$E($.$) independent from F($.

Factor Model

Remark 1 :

We assume that Σ_{F} is symmetric strictly positive.
If Σ_{F} was not strictly positive we could find $u=\left(\begin{array}{c}u^{1} \\ \vdots \\ u^{N}\end{array}\right) \neq 0$ such that
$u^{\prime} \operatorname{Var}[F(t)] u=0$ and in this case we would have $\operatorname{Var}\left[u^{\prime} F(t)\right]=0$ and so $u^{\prime} F(t)=$ Cte which would mean that some of the factors would be redundant (could be "cointegrated").

Remark 2:
$\operatorname{Var}(R(t))=\operatorname{cov}(B F(t)+E(t), B F(t)+E(t))$
$=\operatorname{cov}(B F(t), B F(t))+\operatorname{cov}(E(t), E(t))$
$=\operatorname{Bcov}(F(t), F(t)) B^{\prime}+\operatorname{diag}\left(\sigma_{i}^{2}\right)$
$=B \Sigma_{F} B^{\prime}+\operatorname{diag}\left(\sigma_{i}^{2}\right)$

Factor Model

Remark 3:

If in the SML equation the $\epsilon^{i}(t)$ are independent, we are in presence of a one-factor model as it can be rewritten as:
$r^{i}(t)=r_{0}+b^{i}\left(m_{M}-r_{0}\right)+b^{i}\left(r_{M}(t)-m_{M}\right)+\epsilon^{i}(t)$
which corresponds to a one factor model with:
$a^{i}=r_{0}+b^{i}\left(m_{M}-r_{0}\right), f^{1}(t)=\left(r_{M}(t)-m_{M}\right)$ and $\beta_{1}^{i}=b^{i}$.
We note that:

- $r^{i}(t)$ represents the return of asset i over the period $[t-1, t]$
- $f^{1}(t)$ represents the excess of the return of the factor (the market portfolio) compared to its expectation over the period $[t-1, t]$
- $\epsilon^{i}(t)$ is a random variable relative to the period $[t-1, t]$.

Factor Model

Remark 4:

With our hypothesis, a factor model is a "Markowitz model", i.e a model where the returns of the risky assets follow a Gaussian law. Here the vector of the returns $R(t)$ over the period $[t-1, t]$ follows the normal law of:

- expectation $R(t)=\left(\begin{array}{c}a^{1} \\ \vdots \\ a^{N}\end{array}\right)$
- variance-covariance matrix $\Sigma=B \Sigma_{F} B^{\prime}+\operatorname{diag}\left(\sigma_{i}^{2}\right)$

Factor Model

Remark 5:

Factor models were introduced by Charles Spearman in 1904 in psychometrics.

Remark 6:

In financial econometrics, the factors used are either:

- Macroeconomics factors: ex GDP, inflation rate, unemployment rate..etc, in this case the $F(t)$ are "exogene" i.e given and observable.
- Fundamental factors: ex market cap, leverage, book/price ...etc which are as well exogene.
- Statistical factors: in this case the $F(t)$ are "endogene" / hidden factors and the aim is to determine these $F(t)$ as well as the corresponding sensibilities (i.e B).

Factor Model

Numerical Exemple:

Consider a two-periods 3 factors model with 3 assets where:
$A=\left(\begin{array}{l}5 \% \\ 4 \% \\ 6 \%\end{array}\right)$ is the vector of expected returns for the assets
$B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ defines the decomposition of the returns on the factors
$P=\left(\begin{array}{ccc}100 \% & 0 & 50 \% \\ 0 & 100 \% & 0 \\ 50 \% & 0 & 100 \%\end{array}\right)$ is the matrix of correlation for the factors
$\sigma_{1}=15 \%, \sigma_{2}=10 \%, \sigma_{3}=10 \%$ are the standard deviations for the factors
$\sigma\left(\epsilon_{1}\right)=5 \% \sigma\left(\epsilon_{2}\right)=5 \% \sigma\left(\epsilon_{3}\right)=5 \%$ are the standard deviations for the residuals in the factor model
Assuming that for the risk free rate $r_{0}=2 \%$, we find after calculating the implied law for the risky assets and applying Markowitz's results that:

Factor Model

a) the investment portfolio of minimum variance has a return of expected value 3.84% and standard deviation 10.69%
b) the tangent portfolio has an allocation between the three risky assets of
$\left(\begin{array}{c}0.684 \\ 0.353 \\ -0.037\end{array}\right)$ and has a return of expected value 4.61% and standard
deviation 12.74\%
c) the return of the investment portfolio follows the equation
$r_{M}=0.046+0.647 F_{1}+0.353 F_{2}+0.316 F_{3}+0.684 \epsilon_{1}+0.353 \epsilon_{2}-0.037 \epsilon_{3}$
d) from c)we can derive the β of the three risky assets with the tangent portfolio and find: $\beta_{1}=1.15, \beta_{2}=0.77, \beta_{3}=1.53$
e) we can verify that for the three assets the SML is satisfied as:
$5 \%=2 \%+1.15 \times(4.6 \%-2 \%)$
$4 \%=2 \%+0.77 \times(4.6 \%-2 \%)$
$6 \%=2 \%+1.53 \times(4.6 \%-2 \%)$

Factor Model

f) the residual e_{i} of the returns of the tree risky assets after regression on the tangent portfolio, defined by $r^{i}=r_{0}+\beta_{i}\left(r_{M}-r_{0}\right)+e_{i}$ have a variance-covariance matrix of:
$\left(\begin{array}{ccc}0.004 & -0.007 & 0.001 \\ -0.007 & 0.013 & -0.002 \\ 0.001 & -0.002 & 0.012\end{array}\right)$
the standard deviations of the residuals e_{i} in the SML model are:
$\sigma\left(e_{1}\right)=5.98 \% \sigma\left(e_{2}\right)=11.39 \% \sigma\left(e_{3}\right)=10.92 \%$
As we can see on this example the 3-factors model enables a better explanation of the common sources of risks than the (one factor) SML model as the residuals have lower variances in the 3-factors model than in the SML model and are uncorrelated (proving that all common sources of risks have been identified).

Factor Model - Standard Form

Reminder: Diagonalisation Theorem

If Σ is symmetric definite positive in $\left.\left(\mathbb{R}^{K},<.\right\rangle\right)$ we can find
$V_{1}, V_{2}, \cdots, V_{K}$ in \mathbb{R}^{K} such that:

- $\left\langle V_{i}, V_{i}\right\rangle=\delta_{i, j}$
- $\Sigma V_{i}=\lambda_{i} V_{i}$
and if we note V the matrix whose vectors columns are the V_{i} then:
- $V^{\prime} \Sigma V=\operatorname{diag}\left(\lambda_{i}\right)$
- $V^{\prime} V=I d_{K}$

Here the λ_{i} are the (positive) eigenvalues of Σ and the V_{i} are the eigenvectors.

Factor Model - Standard Form

Standard Form Theorem

We can re-write the factor model in the form:
$R(t)=A+D H(t)+E(t)$
with $\operatorname{Var}[H(t)]=I d_{K}$
This form is called the Standard Form of the Factor Model
demonstration:
$A+B F(t)+E(t)=A+B V \operatorname{diag}\left(\sqrt{\lambda_{i}}\right) \operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right) V^{\prime} F(t)+E(t)$
and $\operatorname{Var}\left[V^{\prime} F(t)\right]=V^{\prime} \Sigma_{F} V=\operatorname{diag}\left(\lambda_{i}\right)$
so $\operatorname{Var}\left[\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right) V^{\prime} F(t)\right]=\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right) \operatorname{diag}\left(\lambda_{i}\right) \operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right)=I d_{K}$. Q.E.D

Factor Model - APT Theorem

Fundamental APT Theorem

Let $r^{i}(t)=a^{i}+\sum_{j=1}^{j=K} b_{j}^{i} f j(t)+\epsilon^{i}(t)$ or in matrix terms
$R(t)=A+B F(t)+E(t)$ be a K-factor model.
If there is no arbitrage in the reduced model $R(t)=A+B F(t)$ where the "diversifiable" risk $E(t)$ is neglected then:
there exist $\alpha^{0}, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{K}$ such that
$\forall i \in\{1,2, \cdots, N\}, a^{i}=\alpha^{0}+\sum_{j=1}^{K} b_{j}^{i} \lambda^{j}$
or matricially $A=\alpha^{0}\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)+B\left(\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{K}\end{array}\right)$

Factor Model - APT Theorem

Remarks:

No arbitrage means that:

- all investment portfolios with no risk (i.e fixed returns) should have the same return. We note r_{0} this return.
- all self financing portfolios with no risk (i.e fixed returns) should have a return of zero.

Lemma 1

If there is no arbitrage and if we call r_{0} the risk free rate then:
$\forall \pi \in \mathbb{R}^{K} \pi^{\prime} B=[0,0, \cdots, 0] \Longrightarrow \pi^{\prime}\left(A-r_{0} 1_{K}\right)=0$

Factor Model - APT Theorem

Demonstration Lemma 1:

Let $\pi \in \mathbb{R}^{K}$ be such that $\pi^{\prime} B=[0,0, \cdots, 0]$.

- if $\pi^{\prime} 1_{K} \neq 0$ then $\tilde{\pi}=\frac{\pi}{\pi^{\prime} 1_{K}}$ is an investment portfolio which is without risk in the reduced model as $R^{\tilde{\pi}}=\tilde{\pi}^{\prime} A+\tilde{\pi}^{\prime} B=\tilde{\pi}^{\prime} A$ therefore we should have $\tilde{\pi}^{\prime} A=r_{0}$ that we can also write $\tilde{\pi}^{\prime}\left(A-r_{0} 1_{K}\right)=0$ as $\tilde{\pi}^{\prime} 1_{K}=0$
- if $\pi^{\prime} 1_{K}=0$ then π is an self-financing portfolio without risk which should therefore satisfy $\pi^{\prime} A=0$ that we can also write $\tilde{\pi}\left(A-r_{0} 1_{K}\right)=0$ as $\pi^{\prime} 1_{K}=0$. Q.E.D

Factor Model - APT Theorem

Lemma 2:

If
$\forall \pi \in \mathbb{R}^{K} \pi^{\prime} B=[0,0, \cdots, 0] \Longrightarrow \pi^{\prime}\left(A-r_{0} 1_{K}\right)=0(1)$ then
$\exists \lambda_{1}, \lambda_{2}, \cdots \lambda_{K}, A-r_{0} 1_{K}=\sum_{i=1}^{i=K} \lambda_{i} b_{i}$ (2)

Demonstration Lemma 2:

We note $B=\left[b_{1}, b_{2}, \cdots, b_{K}\right]$ and $\operatorname{Vect}\left\{b_{1}, b_{2}, \cdots, b_{K}\right\}$ the vector space generated by $b_{1}, b_{2}, \cdots, b_{K}$.
$(1) \Longleftrightarrow \operatorname{Vect}\left\{b_{1}, b_{2}, \cdots, b_{K}\right\}^{\perp} \subset \operatorname{Vect}\left\{A-r_{0} 1_{K}\right\}^{\perp}$
$\Longrightarrow \operatorname{Vect}\left\{A-r_{0} 1_{K}\right\} \subset \operatorname{Vect}\left\{b_{1}, b_{2}, \cdots, b_{K}\right\}$
$\Longrightarrow A-r_{0} 1_{K} \in \operatorname{Vect}\left\{b_{1}, b_{2}, \cdots, b_{K}\right\}$
This proves Lemma 2.
Lemma 1 and Lemma 2 together proves the theorem.

Factor Model - APT Theorem

Remarks:

In the previous numerical example we have $\lambda_{1}=5 \%, \lambda_{2}=3 \%, \lambda_{3}=1 \%$

Factor Model - Principal Components Analysis

Lemma:

Let $x=\left(\begin{array}{c}x_{1} \\ \cdots \\ x_{d}\end{array}\right)$ and $y=\left(\begin{array}{c}y_{1} \\ \cdots \\ y_{d}\end{array}\right)$ be in R^{d} then $x^{\prime} y=\operatorname{Tr}\left(x y^{\prime}\right)$
demonstration: trivial

Proposition:

Let $Z=\left(\begin{array}{c}Z_{1} \\ \vdots \\ Z_{d}\end{array}\right)$ be a random variable in R^{d} then:
$E\left[\|Z-E[Z]\|^{2}\right]=\operatorname{Tr}[\operatorname{Var}(Z)]=\sum_{i=1}^{i=d} \lambda_{i}$ where Tr is the trace operator and the λ_{i} are the eigenvalues of $\operatorname{Var}[Z]$

Factor Model - Principal Components Analysis

demonstration: $E\left[\|Z-E[Z]\|^{2}\right]=E\left[(E-E[Z])^{\prime}(Z-E[Z)]\right.$
$=E\left[\operatorname{Tr}\left((E-E[Z])(Z-E[Z])^{\prime}\right)\right]=\operatorname{Tr}\left(E\left[(Z-E[Z])(Z-E[Z])^{\prime}\right]\right)$
$=\operatorname{Tr}[\operatorname{Var}(Z)]$ Q.E.D

Definition:

We call $E\left[\|Z-E[Z]\|^{2}\right]$ the dispersion of Z and in dimension 1 this definition corresponds to the usual definition of variance.

Factor Model - Principal Components Analysis

Proposition:

Let Z be a random variable in R^{d}, we note $\operatorname{Var}(Z)$ the matrix of variance covariance of Z and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ the eigenvalues of $\operatorname{Var}(Z)$. For any $k \leq d$ we note H_{k} a sub-vector space of dimension k of R^{d} and $\left(x_{i}^{H_{k}}\right)$ an orthonormal basis of H_{k}. Then for any $k \in[1, d]$:
$\max _{H_{k}} \max _{\left(x_{i}^{H_{k}}\right)} \sum_{i=1}^{i=k}\left(x_{i}^{H_{k}}\right)^{\prime} \operatorname{Var}(Z) x_{i}^{H_{k}}=\sum_{i=1}^{i=k} \lambda_{i}$
demonstration: we solve the maximization problem :
$(P)\left\{\begin{array}{c}\sum_{i=1}^{i=k} x_{i}^{\prime} \operatorname{Var}(Z) x_{i} \\ x_{i}^{\prime} x_{j}=\delta_{i, j}\end{array}\right.$

Factor Model - Principal Components Analysis

Using the Lagrange multipliers $\lambda_{i, j}$ we obtain the following k equations:
$\frac{\partial L}{\partial x_{i}}=2 x_{i}^{\prime} \operatorname{Var}(Z)-2 \lambda_{i, i} x_{i}^{\prime}-\sum_{j \neq i} \lambda_{i, j} x_{j}^{\prime}=0$
As the x_{i} are independent, necessarily we must have:
$2 x_{i}^{\prime} \operatorname{Var}(Z)-2 \lambda_{i, i} x_{i}^{\prime}=0$ that we can write also as $\left(\operatorname{Var}(Z)-\lambda_{i, i} I d\right) x_{i}=0$
So the maximum is attained for the x_{i} being the eigenvectors of $\operatorname{Var}(Z)$ and in fact corresponding to the k largest values $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$. Q.E.D

Factor Model - Principal Components Analysis

Corollary:

Let $p_{H_{k}}$ be the orthogonal projection on H_{k} then:
$\max _{H_{k}} E\left[\left\|p_{H_{k}}(Z-E Z)\right\|^{2}\right]=\sum_{i=1}^{i=k} \lambda_{i}$
demonstration: Let $\left(x_{i}\right)$ be an othornormal basis of H_{k} then
$p_{H_{k}}(Z-E Z)=\sum_{i=1}^{i=k} x_{i}^{\prime}(Z-E Z) x_{i}$ and
$\left\|p_{H_{k}}(Z-E Z)\right\|^{2}=\sum_{i=1}^{i=k}\left(x_{i}^{\prime}(Z-E Z)\right)^{2}=\sum_{i=1}^{i=k} x_{i}^{\prime}(Z-E Z)(Z-E Z)^{\prime} x_{i}$ so
$E\left[\left\|p_{H_{k}}(Z-E Z)\right\|^{2}\right]=\sum_{i=1}^{i=k} x_{i}^{\prime} E\left[(Z-E Z)(Z-E Z)^{\prime}\right] x_{i}=\sum_{i=1}^{i=k} x_{i}^{\prime} \operatorname{Var}(Z) x_{i}$
So the result follows from the previous proposition.

Factor Model - Principal Components Analysis

Exercise 1:

Show that $\min _{H_{k}} E\left[\left\|p_{H_{k}}(Z-E Z)\right\|^{2}\right]=\sum_{i=n-k+1}^{i=n} \lambda_{i}$

Exercise 2:

Let Φ be a linear application from R^{d} to R^{d} whose matrix is symmetric and positive, H be a sub-space of R^{d} of dimension k and p_{H} be the orthogonal projection on H.
Let $\Phi_{\mid H}$ be the restriction of Φ to H defined by $\Phi_{\mid H}(x)=p_{H}[\Phi(x)]$ a) show that $\Phi_{\mid H}$ is a linear application from H to H whose matrix is symmetric and positive
b) show that $\max \lambda_{\Phi_{\mid H}} \leq \max \lambda_{\Phi}$ and $\min \lambda_{\Phi_{\mid H}} \geq \min \lambda_{\Phi}$
c) study the case where $M a t_{\Phi}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ and $H=\operatorname{Vect}\left(e_{1}+e_{2}\right)$

Factor Model - Principal Components Analysis - Numerical Example

We consider an economy with two risky assets whose returns r_{1} and r_{2} follow the following one factor model:
$\binom{r_{1}}{r_{2}}=\left(\begin{array}{ccc}1 & 0.6 & 0 \\ 1.2 & 0 & 0.6\end{array}\right)\left(\begin{array}{l}f \\ e_{1} \\ e_{2}\end{array}\right)$
with f, e_{1} and e_{2} being independent of variance 1 .
We assume we have 800 observations of this model (that we simulate here).
We plot on the graph below the 800 observations of $\binom{r_{1}}{r_{2}}$

Factor Model - Numerical Example

in red the axis corresponding to the eigenvector of maximum eigenvalue.

Factor Model - Principal Components Analysis - Numerical Example

We have the following results:

- the theoretical eigenvalues are 2.80 and 0.36 . From our sample and empirical variance-covariance matrix we obtain 3.06 and 0.57
- the theoretical measure of dispersion is 3.16 and from our sample 3.63
- $\binom{1.20}{1.44}$ and $\binom{1.20}{-1.00}$ are theoretical eigenvectors
- $\binom{1.24}{1.25}$ and $\binom{1.25}{-1.24}$ are empirical eigenvectors
- on the graph the red line corresponds to the axe generated by the sample eigenvector of the highest eigenvalue

Factor Model - Numerical Example

We have the following results:

- the green ellipse on the chart represents points for which the density function derived from the sample variance-covariance matrix is constant
- the lengths of the axis (in purple) of the ellipse are proportional to the eigenvalues
- when we project the points on the red axis, the dispersion of the points projected is 3.06 which is what we expected, as we have projected on an axe corresponding to the maximum eigenvalue

References

眉 Idris Kharroubi, Imen Ben Tahar $(2014,2013)$
Gestion de Portefeuilles
Course Manual University Paris 9 Dauphine 1-76
R
David Ruppert (2004)
Statistics and Finance, an introduction
Springer Texts in Statistics

The End

