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Laws of Returns of Financial Assets
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Returns and Rate of Returns

Return of an investment W0 : RT = WT
W0
− 1

Return of an (investment in an) asset Pt : RT = PT +Div(0,T )
P0

− 1

Different ways to define a rate of return:

monetary rate: 1 + r × T = 1 + RT

actuarial rate: (1 + r)T = 1 + RT

exponential rate: exp(r × T ) = 1 + RT

Different ways to define T : 30/360, Act/360, Act/Act, Act/365

For modelization, exponential rates make calculations simpler:

time scale properties: exp( r
λλT ) = exp(rT )

simplicity to compound interests: exp(rT1)exp(rT2) = exp(r(T1 + T2))
well suited for modelization in continuous time
dPt = rPtdt =⇒ PT = P0e

rT

enable to conserve the property of normality when assuming the
independence of the returns
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Probabilist Definitions and Empirical Statistics

Probabilist definitions for a r.v X

Expectation: E [X ]
Variance: Var [X ] = E [X 2]− E [X ]2

Standard deviation: σ[X ] =
√
Var [X ]

Skew: Skew [X ] = E
[
(X−E(X )

σ(X ) )3
]

Kurtosis: Kur [X ] = E
[
(X−E(X )

σ(X ) )4
]
(some authors substract 3 in the

definition, others call this new quantity the excess kurtosis)
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Probabilist Definitions and Empirical Statistics

Empirical definitions for a sample x = (x1, x2, · · · xn)

Sample Mean: x = Ê (x) = 1
n

i=n∑
i=1

xi

Sample Variance : V̂ar(x) = 1
n

i=n∑
i=1

(xi − x)2

Sample Standard Deviation: σ̂(x) =

√
V̂ar(x)

Sample Skew: Ŝkew(x) = 1
n

i=n∑
i=1

( xi−x
σ̂(x) )3

Sample Kurtosis: K̂ur(x) = 1
n

i=n∑
i=1

( xi−x
σ̂(x) )4

Remark: the empirical quantities can be obtained from the
probabilist definitions by taking P(Xi = xi ) = 1

n instead of PX in the
expectations, and therefore can be called ”plug-in” estimators.
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Probabilistic Definitions and Empirical Statistics

Properties skewness:

anti-symmetry: Skew(−X ) = −Skew(X )
scale invariance: if λ > 0,Skew(λX ) = Skew(X )
location invariance: ∀λ , Skew(X + λ) = Skew(X )
for X ∼ N(m, σ2), Skew(X ) = 0

Properties kurtosis:

symmetry: Kur(−X ) = Kur(X )
scale invariance: if λ 6= 0,Kur(λX ) = Kur(X )
location invariance: ∀λ , Kur(X + λ) = Kur(X )
for X ∼ N(m, σ2), Kur(X ) = 3

Definition: if Kur(X ) > 3 the distribution is leptokurtic if
Kur(X ) < 3 the distribution is platykurtic
Remark: (calculation trick): integration by parts proves that for any

integer n > 0
∫ +∞
−∞ xne−

x2

2 dx = n
∫ +∞
−∞ xn−2e−

x2

2 dx
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Probabilistic Definitions and Empirical Statistics

Remark: the properties above are true for the empirical quantities as
well

Exercise: demonstrate the properties above

Remark: for a mixture of normal distributions we have kurtosis > 3
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Goodness of Fit Tests

Theorem (admitted) and the Berra and Jarque test

Let X1,X2, · · ·Xn be i.i.d N(m, σ2) and X = (X1,X2, · · · ,Xn) then
asymptotically:

√
nŜkew(X ) ∼ N(0, 6)
√
n[K̂ur(X )− 3] ∼ N(0, 24)

Let B̂J(X ) = n
6 [Ŝkew(X )]2 + n

24 [K̂ur(X )− 3]2 then asymptotically:

B̂J(X ) ∼ χ2(2)

Let χ2
1−α(2) be such that P(χ2 > χ2

1−α(2)) = 1− α
Then for n large enough the Berra and Jarque test rejects at confidence
level α the normality hypothesis iff: B̂J(x) > χ2

1−α(2)
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Goodness of Fit Tests
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Remark: the DAX is a total return index, i.e it is calculated with dividends reinvested
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Goodness of Fit Tests

Exemple: We calculate the daily log returns of the DAX for year 2015

number of daily returns 255, x = (x1, x2, · · · x252)

x = 0.02%, σ̂(x) = 0.63%

Ŝkew(x) = −0.15, K̂ur(x) = 3.56 (fat tails)

B̂J(x) = 4.32 , χ2
5%(2) = 5.99

So we accept the normality hypothesis at confidence level 95%

Remarks: The Berra and Jarque’s test is very sensitive to outliers.

Here, n
6 [Ŝkew(X )]2 = 0.94 and n

24 [K̂ur(X )− 3]2 = 3.38
The volatility is defined as vol 1√

T
= σ̂(x). Here T = 1

260 as we have here

260 observations in a year, so the estimate of the volatility is 10%.
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Further Statistical Tests
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Tests Based on Density Function Estimates

Theorem of Parzen Rosenblatt (admitted)

Let X be a random variable of density function f (x)
Let Xi be i.i.d variables of the same law as X
Let K be positive of integral 1 and (hn)n∈N such that hn → 0 and
nhn →∞
Let fn(x) be defined by fn(x) = 1

n

n∑
i=1

1
hn
K (Xi−x

hn
) then fn(x) is a density

and
√
nhn[fn(x)− f (x)]

Law−−→ N(0, f (x)
∫ +∞
−∞ K 2(x)dx)

Exemples of Kernels

Rectangular Kernel K (u) = 1
2 1|u|<1

Gaussian Kernel K (u) = 1√
2π
exp(−u2

2 )

Remark: ”visual test” where the estimated density is usually compared to
the density of a normal distribution with the same mean and variance as
the empirical mean and variance of the sample.
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Tests Based on Density Function Estimates

DAX daily Log returns 2015 fitted normal with same mean and varianceDAX daily Log returns 2015 fitted normal with same mean and varianceDAX daily Log returns 2015 fitted normal with same mean and varianceDAX daily Log returns 2015 fitted normal with same mean and variance
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Tests Based on Cumulative Distribution Function
Estimates

Let X and (Xi )i∈[1,n] be i.i.d r.v with the same laws

Let Fn(x) = 1
n

i=n∑
i=1

1Xi≤x and ‖Fn(x)− F (x)‖∞ = sup
x
| Fn(x)− F (x) |

Law of Large Numbers and Central Limit Theorem

∀x , Fn(x)→ F (x) p.s and
√
n(Fn(x)− F (x))

Law−−→ N(0,F (x)[1− F (x)])

Glivenko Cantelli Theorem (admitted)

‖Fn(x)− F (x)‖∞ → 0 p.s (which is stronger than the Law of Large
Numbers)

Kolmogorov Smirnov Theorem (admitted)
√
n‖Fn(x)− F (x)‖∞

Law−−→ K when n is large
K is the Kolmogorov’s law and is independant from F
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Tests Based on Cumulative Distribution Function
Estimates

Several Goodness of fit tests are based on Kolmogorov Smirnov’s theorem
with F being a normal cdf with the same mean and variance as the sample
observed. Amongst these tests (available in SAS and with excel extended
libraries):

Kolmogorov Smirnov’s test

Cramer von Mises’s test

Anderson Darling’s test

Remark: The CLT result is not well adapted to test the normality
hypothesis as it is not optimal to test an hypothesis based on the value of
the empirical repartition function on one single point. The Kolmogorov
Smirnov result is much more interesting for this matter.
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Tests Based on Order Statistics

Definition:
if Z is a random variable the α quantile of Z is the smallest number qZ (α)
such that P(Z ≤ qZ (α)) ≥ α
if z = (z1, z2, · · · , zn) is a sample with frequency (f1, f2, · · · fn) the α
quantile of z , q̂z(α) is the quantile of the r.v Z defined by P(Z = zi ) = fi

Remark 1: if we have 10 observations: {zi = i}i∈[1,10]:

q̂z(1) = 10 and ∀i ∈ {1, · · · , 9} ∀α ∈] i
10 ,

i+1
10 ] q̂z(α) = i + 1

Remark 2: if Z ∼ N(0, 1): qZ (0.5) = 0 and qZ (97.5%) = 1.96
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Tests Based on Order Statistics

Exercice 1: Show that if FZ is invertible then: qZ (α) = F−1
Z (α)

Exercice 2: Show that if FZ is invertible then: FZ (Z ) ∼ U([0, 1])

Exercice 3: Show that if Z1 ∼ N(m1, σ
2
1) and Z2 ∼ N(m2, σ

2
2) then:

{(qZ1(α), qZ2(α)), α ∈ [0, 1]} is a line.

Theorem: order statistics (admitted) and QQ-Plot test

Let N ∼ N(0, 1) and z(n) = (z1, z2, · · · , zn) be a sample for the r.v Z we
want to test. Then when n is large:

q̂z(n)( i
n ) ≈ qZ ( i

n ) and

if Z is a normal Law:

The points (qN(0,1)( i
n ), q̂z(n)( i

n )) should be ”concentrated” around a
line (called the Henry’s line)
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Tests Based on Order Statistics

Remark 1: The test can be used ”visually” but can also be quantified
through the Shapiro-Wilk test
Exemple: QQ plot DAX daily returns for 2015
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Parameter Estimations and Confidence Intervals

(Reminder) Definition

if X ∼ N(0, 1) then X 2 ∼ χ2(1)

if Xi ∼ N(0, 1) i.i.d then
i=n∑
i=1

X 2
i ∼ χ2(n)

(Reminder) Theorem and Definition

If X1 ∼ N(M1, IdRd ) and X2 ∼ N(M2, IdRd ) then:
‖M1‖ = ‖M2‖ =⇒ ‖X1‖2 and ‖X1‖2 have the same law and this law is
called χ2(d , ‖M1‖2)
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Parameter Estimations and Confidence Intervals

demonstration:
‖M1‖ = ‖M2‖ =⇒ ∃ A othonormal such that AM1 = M2

Let’s consider AX1 then:

X1 has a Normal law =⇒ AX1 has a Normal law

E [AX1] = AE [X1]

Var [AX1] = Cov(AX1,AX1) = ACov(X1,X1)A
′

= AIdRdA
′

= IdRd

so, AX1 and X2 are both normal with the same mean and variance
so, AX1 ∼ X2 and consequently ‖AX1‖2 ∼ ‖X2‖2.
As ‖AX1‖2 = ‖X1‖2 (because A is orthonormal) by transitivity
‖X1‖2 ∼ ‖X2‖2. Q.E.D

Exercise: Show that cov(AX ,BY ) = Acov(X ,Y )B ′ (when A and B are
matrices with the adequate dimensions) starting from the definition
cov(X ,Y ) = E (XY ′)− E (X )E (Y )′
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Parameter Estimations and Confidence Intervals

(Reminder) Definition

if X ∼ N(m, 1) and Z ∼ χ2(d) then X√
Z
d

is called a Student Law and

is noted t(m, d). If m = 0 we simply note t(d)

Theorem: Student Law for Confidence Intervals

Let X = (X 1,X 2, · · · ,X n) with Xi ∼ N(m, σ2) i.i.d

Let X = 1
n

i=n∑
i=1

X i and σ̂(X ) =

√
1
n

i=n∑
i=1

(X i − X )2 then:

X and σ̂(X ) are independant
√
n(X−mσ )

Law−−→ N(0, 1)

n( σ̂(X )
σ )2 Law−−→ χ2(n − 1) that we can write as ‖X−X‖

2

σ2 ≈ χ2(n − 1)

X−m
σ̂(X )√
n−1

Law−−→ t(n − 1) that we can write as m ≈ X − σ̂(X )√
n−1

t(n − 1)
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Parameter Estimations and Confidence Intervals

Sketch of the proof: we just need to show the result for X i ∼ N(0, 1) i.i.d

Let h : Rn −→ Rn × Rn be defined by h :

X 1

...
X n

 −→ (
X1n

X − X1n

)
then:

X Gaussian and h linear ⇒ h(X ) is Gaussian

∀i Cov(X ,X i − X ) = 0⇒ X1n and X − X1n are independent
because for Gaussian vectors zero covariance means independence

< X − X1n, 1n >= 0⇒ X − X1n ∈ (R1n)⊥

Note that ∀u ∈ (R1n)⊥

Var(< u,X − X1n >) = Var(< u,X > −X < u, 1n, >)
= Var(< u,X >) = u

′
Var(X )u = ‖u‖2

so if we call

(
0
Z

)
the components of X − X1n in an orthonormal basis of

Rn whose first vector is in R1n we have Z ∼ N(0, IdRn−1)
and so ‖X − X1n‖2

n = ‖Z‖2
n−1 ∼ t(n − 1) Q.E.D.
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Parameter Estimations and Confidence Intervals

Exemple: GDAX returns for 2015

X = 0.02%
σ̂(X )√

n
= 0.04%

So at confidence level 95% the expected daily rate of return is in the
interval [−0.06%, 0.09%]

Remarks:

t(n − 1) is a symmetric distribution

from
√
n−1(X−m)
σ̂(X )

Law−−→ t(n− 1) and the law of large numbers and CLT

we can deduct that t(n − 1)
Law−−→ N(0, 1) (which means that when n

is large the law/shape of a student distribution is very similar to the a
normal distribution)
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Utility Functions
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Preferred investments

Definition: Utility functions

A utility function is any function u : R −→ R such that
u is continuous, strictly increasing and two times differentiable.

Remark: based on the definition u is invertible

Definition: Preferred Investment and Risk Premium

If X and Y are two random payoffs:

X � Y (X is preferred to Y for u) ⇔ E [u(X )] > E [u(Y )]

Let Cu(X ) be the constant defined by u[Cu(X )] = E [u(X )]

Cu(X ) is called the certain equivalent to X

Πu(X ) = E [X ]− Cu(X ) is called the risk premium for X
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Preferred investments
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Preferred investments

Properties (exercise)

u convex ⇔ ∀X , u(E [X ]) ≤ E [u(X )]⇔ ∀X ,Πu(X ) ≤ 0⇔ risk taker

u concave ⇔ ∀X , u(E [X ]) ≥ E [u(X )]⇔ ∀X ,Πu(X ) ≥ 0⇔ risk
adverse

u affine ⇔ ∀X , u(E [X ]) = E [u(X )]⇔ ∀X ,Πu(X ) = 0⇔ risk neutral

Theorem: Risk Aversion Measure

Let u and v be two utility functions strictly concave or convex then:

(∀X discrete r.v,Πu(X ) ≥ Πv (X ))⇔ (∀a,−u
′′

(a)

u′ (a)
≥ − v

′′
(a)

v ′ (a)
)

Remarks:

−u
′′

u′
defines the risk aversion/concavity of u

∀λ 6= 0, λu and u have the same risk aversion

the concavity measure we arrive at here differs from the geometric

definition of curvature which is given by u
′′

(1+u′2)
3
2
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Preferred investments

Demonstration theorem:
Let u be a utility function two times differentiable and strictly convex or
concave (i.e u

′′ 6= 0).

Demonstration ⇒:
Let X a

h be defined by: P(X a
h = a) = 1

2 and P(X a
h = a + h) = 1

2
Let C a

u (h) = Cu(X a
h ) i.e u(C a

u (h)) = E [u(X a
h )] = 1

2u(a) + 1
2u(a + h)

by derivation on h of u(C a
u (h)) = 1

2u(a) + 1
2u(a + h) we obtain:

C a
u (0) = a from u(C a

u (0)) = 1
2u(a) + 1

2u(a)

C a′
u (0) = 1

2 from u
′
(C a

u (0))C a′
u (0) = 1

2u
′
(a)

C a′′
u (0) = 1

4
u
′′

(a)

u′ (a)
from deriving u

′
(C a

u (h))C a′
u (h) = 1

2u
′
(a + h)
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Preferred investments

Now, Πu ≥ Πv ⇒ ∀a, ∀h,Πu(X a
h ) ≥ Πv (X a

h )
⇒ ∀h,E [X ]− C a

u (h) ≥ E [X ]− C a
v (h)

⇒ −C a′′
u (0) ≥ −C a′′

v (0) (as in 0 the value and first derivatives are equal)

⇒ −u
′′

(a)

u′ (a)
≥ − v

′′
(a)

v ′ (a)
(and this is true for all a). Q.E.D

Demonstration ⇐
Let X be a discrete variable with P(X = ai ) = pi
Πu(X ) ≥ Πv (X ) ⇔ Cv (X )− Cu(X ) ≥ 0
⇔ v−1[E (v(X ))]− u−1[E (u(X ))] ≥ 0

⇔ v−1

(
i=n∑
i=1

piv(ai )

)
− u−1

(
i=n∑
i=1

piu(ai )

)
≥ 0

⇔
i=n∑
i=1

piv(ai ) ≥ v ◦ u−1

(
i=n∑
i=1

piu(ai )

)
(as v is increasing)

which should be true if v ◦ u−1 is convex.
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Preferred investments

Let’s calculate (v ◦ u−1)
′′

to prove that v ◦ u−1 is convex
(v ◦ u−1)

′
= (v

′ ◦ u−1)(u−1)
′

(v ◦ u−1)
′′

= (v
′′ ◦ u−1)[(u−1)

′
]2 + (v

′ ◦ u−1)(u−1)
′′

Now, (u−1)
′

= 1
u′◦u−1 and

(
1

u′◦u−1

)′
= − (u

′′◦u−1)(u−1)
′

(u′◦u−1)2 = − (u
′′◦u−1)

(u′◦u−1)3

so, (v ◦ u−1)
′′ ≥ 0⇔ (v

′′◦u−1)

(u′◦u−1)2 − (v
′ ◦ u−1) (u

′′◦u−1)

(u′◦u−1)3 ≥ 0

⇔ (v
′′ ◦ u−1) ≥ (v

′ ◦ u−1) (u
′′◦u−1)

(u′◦u−1)

⇔ − (v
′′◦u−1)

(v ′◦u−1)
≤ − (u

′′◦u−1)

(u′◦u−1)
Q.E.D as we assumed here − v

′′

v ′
≤ −u

′′

u′

Remarks:
If there is aversion to risk we use u concave to modelize
For u(a) = 1− exp(−λa) (which is often used) −u

′′

u′
= λ
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Gaussian Laws and Mean Variance Implications

When investing W0 the utility function criteria picks strategies π which

maximizes: E [u(W π
T )] where

Wπ
T

W0
= 1 + RπT

If we assume RπT ∼ N(mπ, σ
2
π) then: E [u(W π

T )] = E [u(W0 + W0R
π
T )]

= E [u(W0 + mπW0 + σπW0Z )] with Z ∼ N(0, 1)
If we define U(m, σ) = E [u(W0 + mW0 + σW0Z )] then:
max
π

E [u(W π
T )] = max

π
U(mπ, σπ)

So in practice the model consists in maximizing max
π

U(mπ, σπ) where U is

derived from a utility function.

Remarks: For the DAX, if we suppose that we are in an equilibrium where
therefore investors are indifferent between investing into a 1 year zero
coupon bond which yields approx 0% or into the DAX, which is expected
to return approx 0.02%x260, then the Risk Premium is 5.20%...
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Gaussian Laws and Mean Variance Implications

From now on we will modelize directly with a function U and we will
assume that U is increasing in m and decreasing in σ which means that:

if the investor has the choice between two strategies with the same
expected returns he prefers the one with the less variance on the
returns

if the investor has the choice between two strategies with the same
variance on the returns he prefers the one with the higher expected
returns

In practice an investor will define the level of risks he accepts and based on
this will find the efficient portfolio (that maximizes the expected return.
Based on this we make the following definition
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Efficient Investment Strategies

Definition: Efficient investment strategy

An investment strategy πe is efficient iff for all π:
E [Rπ] ≥ E [Rπe ]⇒ σ(Rπ) ≥ σ(Rπe )

Proposition:

πe is a solution of

{
min
π
σ(Rπ)

E [Rπ] = E [Rπe ]

Demonstration: If the solution of the constraint minimization was less
than σ(Rπe ) then we could find π such that σ(Rπ) < σ(Rπe ) and
E [Rπ] = E [Rπe ] but the contraposition of
E [Rπ] ≥ E [Rπe ]⇒ σ(Rπ) ≥ σ(Rπe ) implies that
σ(Rπ) < σ(Rπe )⇒ E [Rπ] < E [Rπe ]
So πe is solution of the constraint problem. QED
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Efficient Investment Strategies

Remarks: Definitions and Geometric interpretation
If we note:

E = {πe efficient} and

E(σ,m) =

{(
σ(Rπe )
E (Rπe )

)
, πe ∈ E

}
Then any point

(
σ(Rπ)
E (Rπ)

)
is on the right of E(σ,m)
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Markowitz: The mean variance framework
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Notations and Definitions

We note:

S i
t : the value of asset i at time t. Here we consider only two periods

(0 and T )
qi : the number of shares i held (qi > 0) or shorted (qi < 0) at time 0

R i
T the return of asset i between 0 and T , i.e R i

T =
S i
T

S i
0
− 1

RT =

R1
T
...

Rn
T

 the vector of returns of the n shares between 0 and T .

Definition:

At inception,

An investment portfolio is a portfolio for which
i=n∑
i=1

qiS
i
0 > 0

A self financing portfolio is a portfolio for which
i=n∑
i=1

qiS
i
0 = 0
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Notations and Definitions

Theorem and Definition:

If for an investment portfolio we define: ∀i πi =
qiS

i
0

x0
and x0 =

i=n∑
i=1

qiS
i
0

then :

(x0, π1, · · · , πn) defines in a unique way the investment portfolio

x0 is the initial value of the portfolio
i=n∑
i=1

πi = 1

πi is the percentage of the value of the portfolio invested in asset i at
time 0 and (π1, · · · , πn) is called the allocation.
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Notations and Definitions

Theorem and Definition:

All self financing portfolios can be represented by a (n+1)-uplet
(x0, π1, · · · , πn) such that :

∀i qi = x0πi
S i

0

i=n∑
i=1

πi = 0

x0 > 0

The representation is not unique as ∀λ > 0 ( 1
λx0, λπ1, · · · , λπn) represents

the same self financing portfolio as (x0, π1, · · · , πn).
For any chosen representation (x0, π1, · · · , πn) of the self financing
portfolio, x0 is called the Notional and (π1, · · · , πn) the allocation.
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Notations and Definitions

Fom now on we will describe investment portfolios and self financing

portfolios by pairs (x0, π) where π =

π1
...
πn


Theorem and Definition:

We note Wt(x0, π) the value at time t of the portfolio (x0, π) and we have:

W0(x0, π) = x0

WT (x0, π) =
i=n∑
i=1

x0πi
S i
T

S i
0

Remark:
πi < 0 means that the portfolio has a short position in asset i
S i is called a risky asset iff R i

T is not determinist i.e Var(R i
T ) 6= 0
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Notations and Definitions

Example: when we consider various allocations (x0, π) between two shares
S1

0 = 100 S2
0 = 50 we get the following table:

x0 π1 π2 q1 q2 W0

100 1 -1 1 -2 0

1000 1 -1 10 -20 0

100 0.5 0.5 0.5 1 100

1000 0.5 0.5 5 10 1000
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Notations and Definitions

Theorem and Definition:

We define the return of a portfolio (x0, π) as: RT = WT (x0,π)−W0(x0,π)
x0

For an investment portfolio this definition corresponds to the
definition of the return of an asset

For a self financing portfolio this quantity equals WT (x0,π)
x0

Proposition

For any investment or self financing portfolio (x0, π) the return RT verifies:

RT =
i=n∑
i=1

πiR
i
T .

As this expression depends only on π and not on x0 we note it RπT .
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Notations and Definitions

Proposition:

For any investment or self-financing portfolio (x0, π) we have:

RπT = π
′
RT

E (RπT ) = E (π
′
RT ) = π

′
E [RT ]

Cov(Rπ1
T ,Rπ2

T ) = Cov(π
′
1RT , π

′
2RT ) = π

′
1Cov [RT ,RT ]π2

Exercise: demonstrate the proposition

Notations: from now on we note:

σπ = σ(RπT )

mπ = E (RπT )
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Markowitz’s Framework

We are going two consider two cases, each based on the existence or not
of a risk-free investment strategy:

First case:

There are n risky assets (S i )i∈[1,n] and no risk-free asset.

Second case:

There are n risky assets (S i )i∈[1,n] and one risk-free asset S0.

Remarks:
In both cases it is natural to assume that the R i

T are such as :
◦ (H1) there is no way to build a risk-free investment portfolio based on
the (S i )i∈[1,n]

◦ (H2) there is no way to build a risk-free self-financing portfolio (other
than zero) based on the (S i )i∈[1,n]
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Markowitz’s Framework

Comments:
The reason why we assume (H1) in the first case is because otherwise we
could build a risk-free asset. The reason why we assume (H1) in the
second case is because otherwise we could build a second risk-free asset
and then:

either this second risk-free asset has the same return as the risk-free
asset and in this case one risky asset could be replicated (and then
should be disregarded).

or this second risk-free asset has a different return from the risk-free
asset, in which case there would be some arbitrage opportunities.

The reason why we assume (H2) is because for a risk-free self-financing
strategy:

if the return is different from zero there are some arbitrage
opportunities

if the return is different is zero one risky asset can be replicated (and
then should be be disregarded)
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Markowitz’s Framework

We Note :

Σ = Cov [RT ,RT ]

M = E [RT ]

Proposition:

(H1) and (H2) =⇒ Σ is invertible

Demonstration:
If Σ was not invertible we could find π 6= 0 such that π

′
Σπ = 0 and then

there would be two cases:
either π

′
1n = 0 in which case we could find a self-financing portfolio made

of the risky assets without risk or
π
′
1n 6= 0 in which case we could find an investment portfolio made of the

risky assets without risk.
in both cases this would be in contradiction with (H1) or (H2).
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Markowitz: Opimization without a risk-free asset
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Opimization without a risk-free asset

From the utility framework and in the context of normal distributions
assumptions the efficient investment portfolios (x0, π) are the solutions of

(P)


min
π
π
′
Σπ

π
′
M = m

π
′
1n = 1

where 1n is the vector of Rn with components equal to 1

We define a new scalar product in Rn by < x , y >Σ−1= x
′
Σ−1y

We can write (P) as

(P)


min
π
< Σπ,Σπ >Σ−1

< Σπ,M >Σ−1= m
< Σπ, 1n >Σ−1= 1

(P) can be solved either by writing its Lagrangien or geometrically by
noticing that Σπ must be in Vect(M, 1n) in order to mimimize its <,>Σ−1

norm while satisfying the constraints. We note F all the investment
portfolios solutions of (P) for any possible value of m.
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Opimization without a risk-free asset

We note:

a =< 1n, 1n >Σ−1 and

b =< M, 1n >Σ−1

Excluding for now the case M − b
a1n = 0 and noticing that

< M − b
a1n, 1n >Σ−1= 0 we get that M − b

a1n and 1n form an orthogonal
basis of Vect(M, 1n). So we can write:
Σπe = λ1n + ν(M − b

a1n) or πe = λΣ−11n + νΣ−1(M − b
a1n)

We can now renormalize this decomposition.
We note:

πa = 1
aΣ−11n which satisfies π

′
a1n = 1 and

ωa,b =
Σ−1(M− b

a
1n)

‖M− b
a

1n‖Σ−1
which satisfies ω

′
a,b1n = 0 and var [R

ωa,b

T ] = 1
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Opimization without a risk-free asset

Proposition: Building Blocks

π
′
a1n = 1 (so πa is an investment portfolio).

mπa = b
a

σπa = 1√
a

ω
′
a,b1n = 0 (so ωa,b is a self-financing portfolio).

mωa,b = ‖M − b
a1n‖Σ−1

σωa,b = 1

cov(Rπa ,Rωa,b) = 0
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Opimization without a risk-free asset

Demonstration:
π
′
a1n = 1

′
nπa = 1

a1
′
nΣ−11n = 1

mπa = M
′
πa = 1

aM
′
Σ−11n = b

a

σπa = [πa
′
Σπa]

1
2 = [ 1

a2 1
′
nΣ−1ΣΣ−11n]

1
2 = [ a

a2 ]
1
2 = 1√

a

ω
′
a,b1n = 1

‖M− b
a

1n‖Σ−1
1
′
nΣ−1(M − b

a1n) = 0

mωa,b = M
′
ωa,b = M

′ Σ−1(M− b
a

1n)

‖M− b
a

1n‖Σ−1

using 1
′
nΣ−1(M − b

a1n) = 0 we get:

M
′
Σ−1(M − b

a1n) = (M − b
a1n)

′
Σ−1(M − b

a1n) and so

mωa,b =
‖M− b

a
1n‖2

Σ−1

‖M− b
a

1n‖Σ−1
= ‖M − b

a1n‖Σ−1

(σωa,b)2 = 1
‖M− b

a
1n‖2

Σ−1

(M − b
a1n)

′
Σ−1ΣΣ−1(M − b

a1n) = 1

cov(Rπa ,Rωa,b) = 1
a1
′
nΣ−1ΣΣ−1(M − b

a1n) 1
‖M− b

a
1n‖2

Σ−1

= 0 Q.E.D
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Opimization without a risk-free asset

Proposition

a) F = {πa + λωa,b, λ ∈ R}
b) Rπa+λωa,b = Rπa + λRωa,b

c) mπa+λωa,b = mπa + λmωa,b

d) (σπa+λωa,b)2 = (σπa)2 + λ2

e) min
π∈E

σπ = σπa

Demonstration:
a) We know that a solution of (P) is of the form απa + βωa,b as it must
be in Vect(πa, ωa,b). The condition π

′
1n = 1 implies απa

′1n = 1 which
implies α = 1. So the solutions of (P) are all of the forms πa + λωa,b.
Reciprocally the investment portfolio πa + λωa,b is the solution of (P) for
m = mπa + λmωa,b .
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Optimization without a risk-free asset

b) Rπa+λωa,b = (πa + λωa,b)
′
RT = π

′
aRT + λω

′
a,bRT = Rπa + λRωa,b .

Q.E.D

c) by definition mπa+λωa,b = E [Rπa+λωa,b ] so c) is derived from b) by
taking expectations on both side of equality b).

d) by definition (σπa+λωa,b)2 = Var [Rπa+λωa,b ] and according to b) this
quantity equals Var [Rπa + λRωa,b ]. As the covariance between these two
variables is zero, the expression is Var [Rπa ] + λ2Var [Rωa,b ] and as seen
previously Var [Rωa,b ] = 1. Q.E.D

e) this results from d)
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Optimization without a risk-free asset

Corollary

If πe ∈ F
(σπe )2 = (σπa)2 + (m

πe−mπa
m
ωa,b )2

mπe = mπa + mωa,b
√

(σπe )2 − (σπa)2 if mπe > mπa

mπe = mπa −mωa,b
√

(σπe )2 − (σπa)2 if mπe < mπa

πe = πa + mπe−mπa
m
ωa,b ωa,b

Demonstration:
Trivial when writing πe as πa + λωa,b and eliminating λ between the
equations.
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Optimization without a risk-free asset

Remarks:

The frontier F(σ,m) is an hyperbole

For all assets and investment portfolios: (σ,m) is on or inside the
hyperbole

Geometrically: the line y = a + bx is above the hyperbole
y = a + b

√
x2 − 1 and is ”asymptotically tangent” as:

a + bx − (a + b
√
x2 − 1)

x→∞−−−→ 0 (points of the curves converging)and

b/[b x√
x2−1

]
x→∞−−−→ 1 (slopes of the curves converging)

Definitions:

We note:

F+ = {πa + λωa,b, λ ≥ 0}
F− = {πa + λωa,b, λ ≤ 0}
F+(σ,m) = {(σπ,mπ), π ∈ F+} and call it the Efficient Frontier

F−(σ,m) = {(σπ,mπ), π ∈ F−} and call it the Inefficient Frontier
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Optimization without a risk-free asset

Two Funds Theorem:

All the efficient portfolios can be built from two fixed distinct efficient
investment portfolios π1 and π2.
For this reason to analyse the efficient frontier we just need to analyse a
model based on two risky assets!

Demonstration:
Let π1 = πa + λ1ωa,b and π2 = πa + λ2ωa,b be distinct on F
Let π = πa + λωa,b be on F .
For any α ∈ R, απ1 + (1− α)π2 is an investment portfolio (as
απ
′
11n + (1− α)π

′
21n = 1) and if we choose α = λ−λ2

λ1−λ2
we get

απ1 + (1− α)π2 = πa + λωa,b = π. Q.E.D
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Optimization without a risk-free asset

Exercise 1:
We consider 2 risky assets S1, S2:

m1 = 5%, σ1 = 15%

m2 = 20%, σ2 = 30%

We note ρ the correlation between R1 and R2.
a) Plot F for: ρ = −1, ρ = 0, ρ = 0.5, ρ = 1.
b) What is the portfolio of minimum standard deviation in each case?
If we consider the portfolio πα = απ1 + (1− α)π2

c) In which region of F(σ,m) is (σπα ,mπα) in the following cases:

α < 0

0 ≤ α ≤ 1

α > 1
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Optimization without a risk-free asset

0.1

0.2

0.3

0.4

0.5

(risk, return) for correl  -100%

α = 0 (Asset 2 alone)

α < 0 (Asset 1 shorted, Asset 2 Leveraged) 

0 < α < 1 (long Asset 1, long Asset 2) 

-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1 1.2

α = 1 (Asset 1 alone )

α > 1 (Asset 1 leveraged, Asset 2 shorted)

Note that Σ is not invertible here and a risk-free asset can be constructed
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Optimization without a risk-free asset

0.1

0.2

0.3

0.4

0.5

(risk, return) for correl  0%

α = 0 (Asset 2 alone)

α < 0 (Asset 1 shorted, Asset 2 Leveraged) 

0 < α < 1 (long Asset 1, long Asset 2) 

-0.2

-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α = 1 (Asset 1 alone )

α > 1 (Asset 1 leveraged, Asset 2 shorted)

Note that Σ is invertible here and we obtain the ”usual” hyperbole

Pierre Brugiere (copyrights Pierre Brugiere ) Portfolio Management September 22, 2016 59 / 115



Optimization without a risk-free asset

0.1

0.2

0.3

0.4

0.5

(risk, return) for correl  100%

α = 0 (Asset 2 alone)

α < 0 (Asset 1 shorted, Asset 2 leveraged) 

0 < α < 1 (long Asset 1, long Asset 2)

-0.2

-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6

α = 1 (Asset 1 alone )

α > 1 (Asset 1 leveraged, Asset 2 shorted)

Note that Σ is not invertible here and a risk-free asset can be constructed
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Optimization without a risk-free asset

Proposition:

F =
{

1
b−maΣ−1(M −m1n),m 6= b

a

}⋃{1
aΣ−11n

}
Demonstration:
We know that F =

{
1
aΣ−11n + λΣ−1(M − b

a1n), λ ∈ R
}

for λ = 0 we obtain the portfolio 1
aΣ−11n

for λ 6= 0 we can write λ in the form λ = 1
b−ma and by doing so we obtain

1
aΣ−11n + 1

b−maΣ−1(M − b
a1n)

= 1
b−maΣ−1(M −m1n) + 1

b−maΣ−1(m − b
a )1n + 1

aΣ−11n
= 1

b−maΣ−1(M −m1n) + 1
b−maΣ−1(am − b) 1

a1n + 1
aΣ−11n

= 1
b−maΣ−1(M −m1n) Q.E.D

Remarks: We will demonstrate later that the parameter m can be
interpreted geometrically, by showing that the tangent to F at point
(σ,m) intersects the axe {σ = 0} at point (0,m).
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Optimization without a risk-free asset

0.1

0.2

0.3

0.4

0.5

(risk, return) Frontier for the Investment Portfolios: no risk free asset and Σ invertible

λ= 0 

λ > 0 

-0.2

-0.1

0

0.1
λ= 0 

λ < 0 
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Optimization without a risk-free asset

Remarks: We have assumed so far that M − b
a1n 6= 0. We analyse here

what would happen if this was not the case.
If M − b

a1n = 0 then all portfolios would have the same returns equal to b
a .

In this case (P) would be a problem of minimizing, for an investment
portfolio,the standard deviation of the return, i.e to solve:

(P)

{
min
π
< Σπ,Σπ >Σ−1

< Σπ, 1n >Σ−1= 1
As previously, geometrically we see that the solution should verify
Σπe ∈ Vect(1n), so πe = λΣ−11n. The only πe of this form satisfying
(πe)

′
1n = 1 is πe = 1

aΣ−11n
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Markowitz: Opimization with a risk-free asset
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Optimization with a risk-free asset

We note Π =

(
π0

π

)
the allocation between the risk-free asset and the n

risky assets.

We note Π0 =

(
1
0

)
the risk-free asset of return r0.

For any investment portfolios Π we must have π0 + (π)
′
1n = 1.

Replacing π0 by 1− π′1n the problem we have to solve, to find the
efficient portfolios, can now be written as:

(Q)

{
min
π
π
′
Σπ

π
′
M + (1− π′1n)r0 = m

Which we can also write as:

(Q)

{
min
π
< Σπ,Σπ >Σ−1

< Σπ,M − r01n >Σ−1= m − r0
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Optimization with a risk-free asset

Geometrically, the solution has to be of the form Σπ = λ(M − r01n)
or equivalently π = λΣ−1(M − r01n).
Note that 1

′
nΣ−1(M − r01n) = (b − r0a).

Until the end of this section we will consider that b − r0a 6= 0
To renormalize the problem we define: πM = 1

b−r0a
Σ−1(M − r01n)

Note that ΠM =

(
0
πM

)
is an investment portfolio as π

′
M1n = 1

With these notations we now state:

Theorem: Capital Market Line

The portfolios solutions of (Q) are the portfolios: λΠM + (1− λ)Π0

with λ ∈ R. We note C = {λΠM + (1− λ)Π0, λ ∈ R}

Pierre Brugiere (copyrights Pierre Brugiere ) Portfolio Management September 22, 2016 66 / 115



Optimization with a risk-free asset

Corollaries and ”Market Portfolio”
1 The portfolios Π of C (i.e the solutions of (Q)) verify:

mΠ = λmΠM + (1− λ)mΠ0

σΠ = |λ|σΠM

so their risk parameters (σ,m) are on a cone (i.e C(σ,m) is a cone).

2 All the efficient portfolios are built by allocating money only between
Π0 and ΠM . For this reason to study optimal investments we just
need to use a model with one single risky asset!

3 CAPM/MEDAF: if all the market participants are allocating
efficiently and with the same parameters, then:

all the risky investments are in ΠM and
in ΠM the weight in risky asset i is the % of the total Market
Capitalization of risky assets that asset i represents.

For this reason ΠM should be/is called the (risky) ”Market Portfolio”.
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Optimization with a risk-free asset

Corollaries:

1 Usually in the model b
a > r0 otherwise all the efficient portfolios

would short ΠM which practically would not make sense.
2 Assuming b

a > r0 we define:

C+ = {λmΠM + (1− λ)mΠ0 , λ ≥ 0} and call it the Cone Efficient
Frontier (or Capital Market Line)
C− = {λmΠM + (1− λ)mΠ0 , λ ≤ 0} and call it the Cone Inefficient
Frontier
All the assets and portfolios we can built have their risk parameters
(σ,m) within the cone C(σ,m) and in particular F(σ,m) is included in
C(σ,m).

Demonstration:
Straightforward when writing Πe = λΠM + (1− λ)Π0

Exercise:
Draw F and C in a model where there are two risky assets and a risk free
asset and see what happens when you are changing the correlation
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Tangent Portfolio

Lemma: Tangent Portfolio

The ”Market Portfolio” ΠM , which has no allocation in the risk-free asset,
is also a solution of the mean/variance optimization problem (P) where
there was no risk-free asset. So we can write ΠM ∈ F

Demonstration:
Geometrically: it is obvious as otherwise there would be some portfolios
more efficient (above) than those on the Capital Market Line.
Algebraically:
πM = 1

b−r0a
Σ−1(M − r01n) = 1

b−r0a
Σ−1[(M − b

a1n) + (ba1n − r01n)]

= 1
b−r0a

(ba − r0)Σ−11n + Σ−1(M − b
a1n)

= 1
aΣ−11n + 1

b−r0a
Σ−1(M − b

a1n)
= πa + λωa,b which is the form of the portfolios of F . Q.E.D
Until the end of this section we assume that b

a > r0
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Tangent Portfolio

Theorem: Tangent Portfolio

C(σ,m) is tangent to F(σ,m) at the point (σΠM ,mΠM )

Demonstration:
We know that ΠM is on C and that ΠM is on F .
Geometrically: If a line and an hyperbole have a contact point either they
are tangent on this contact point or they cross each other. The situation
where they cross each other is not possible here as it would imply that
some portfolios of F are more efficient than any portfolios of C.
Remark:
Equivalently, we can say that the tangent to the Efficient Frontier F at

the point ΠM intersects the σ = 0 axis at the point

(
0
r0

)
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More Geometric Properties

Corollary: Geometry of the Efficient Frontier

For any risky efficient investment portfolio π = 1
b−maΣ−1(M −m1n)

of F , the tangent to F(σ,m) at (σπ,mπ) intersects the {σ = 0} axis

at the point

(
0
m

)
.

For the risky efficient investment portfolio π = 1
aΣ−11n of F , the

tangent to F(σ,m) at (σπ,mπ) is parallel to the {σ = 0} axis.

These results mean that there is a bijection between F − {1
aΣ−11n}

and R− {ba} and that is it the tangents to the the F(σ,m) curve
which establish the bijection between the portfolios and their
parameters m.

Demonstration:
This result for a portfolio of parameter m corresponds to the result of the
preceding corollary when taking r0 = m. Q.E.D
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More Geometric Properties
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Security Market Line
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Security Market Line

Theorem: Security Market Line

Let ΠM be the Market Portfolio as defined previously
Let ΠP be any investment portfolio composed of the risk-free and risky
assets. Then:

mP − r0 = (mM − r0)ρ(RP ,RM) σPσM (SML equation) and

RP − r0 = (RM − r0)ρ(RP ,RM) σPσM + ε with ε normal independant
from RM and centered.

Demonstration:
Let ΠP be an investment portfolio then:
cov(RM ,RP) = π

′
MΣπP = 1

b−r0a
(M − r01n)

′
πP = mP−r0

b−r0a
If we apply the same calculation to ΠP then:
cov(RM ,RM) = mM−r0

b−r0a
From this we get:
cov(RM ,RP) = mP−r0

mM−r0
cov(RM ,RM)
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Security Market Line

From which we get : mP − r0 = (mM − r0)ρ(RM ,RP) σPσM
We now want to show a relationship for the r.v and not only for their
expectations.(

(RP − r0)− (RM − r0)ρ(RM ,RP) σPσM
RM

)
is Gaussian because it is an affine

transformation of the vector of the returns of the risky assets which is
assumed to be a Gaussian vector. Thus, to show that the first variable
that we call ε is independent from the second one we just need to show
that the covariance is zero.
Indeed, cov(ε,RM) = cov(RP − RMρ(RM ,RP) σPσM ,RM)
= cov(RP ,RM)− ρ(RM ,RP) σPσM cov(RM ,RM) = 0
The fact that ε is centered i.e E (ε) = 0, results from the previous result.
Q.E.D
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Security Market Line

Definition:

The quantity ρ(RM ,RP) σPσM is noted βP,M and is called the beta of the
asset ΠP (in respect to the Market Portfolio ΠM).

Remarks:
The equation: mP − r0 = (mM − r0)βP,M (SML)

is valid for all investment portfolios and not only for efficient ones.

shows that only the risk correlated with the ”Market Portfolio/Market
Risk” is renumerated.

is used in capital budgeting / CAPM to determine the price an asset
should have based on its expected returns and beta with the sector.
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Security Market Line

Definition:

When we write RP = r0 + (RP − r0)βRP ,RM
+ ε we have

σ2
M = σ2

Pβ
2
P,M + σ2

ε

σP |βP,M | is called the systematic risk. It cannot be reduced by
diversification in the model and thus is remunerated.

σε is called the idiosyncratic risk. It can be reduced by diversification
in the model, and thus is not remunerated.
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Security Market Line
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We can read on the graph, for any portfolio, the portion of the volatility correlated with the movements of the Market Portfolio.
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Security Market Line and ”Arbitrage” Detections

Remarks: The (β,m) of the assets we consider investing it according to
the SML should be on a line.

The beta will usually be calculated in relation to a broader index to
which these stocks belong

The expected returns will be based either on some historical estimates
or some analysts predictions

In practice, the points will not be perfectly aligned and a regression line
will be calculated.

The assets over the line will look cheap

The assets below the line will look expensive

In ”pair-trading”, strategies will be considered consisting in:

Selling assets lying below the line

Buying assets lying above the line (usually in the same sector)
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Security Market Line and ”Arbitrage” Detections

Exercice: Show that if we consider an investment portfolio ΠP with risk
parameters (σP ,mP) and if we call in the {(σ,m)} plane, (x ,mP) the
intersection of the SML and the line {m = mP} then x = βP,MσM .
Conclude that we can read in the {(σ,m)} plane the decomposition
between systematic risk and idiosyncratic risk.
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Performance Indicators
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Performance Indicators

Definition: Sharp Ratio

The Sharpe Ratio of an investment portfolio P is defined as: mP−r0
σP

Remarks:
Under the Markowitz’s framework:

The Ratio should be maximal for portfolios belonging to the CML

All the portfolios belonging to the CML have the same Ratio
Wealth should be allocated:

First by determining a portfolio with the maximum Sharpe Ratio that
can be built
Then by allocating all the wealth between this portfolio and the risk
free asset

The Sharpe Ratio is independent from the leverage has
λΠP + (1− λ)Π0 has the same Sharpe Ratio as ΠP for any λ > 0. So
the indicator is really ”intrinsic to the fund”.

The Sharpe Ratio is usually estimated by: m̂P−r0
σ̂P
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Performance Indicators

Remarks: An investor choosing a mutual fund to represent a large portion
of his/her wealth should be concerned by the full risk of the fund and
should look at the Sharpe Ratio.

Exercise 1: Show that the Sharpe Ratio is independent from the leverage

Exercise 2: How do you read in a {(σ,m)} representation the Sharpe
Ratio of a fund as the slope of a particular line?
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Performance Indicators

Definition: Jensen Index

The Jensen Index of an investment portfolio P is defined as:
mP − [r0 + βM,P(mM − r0)]

Remarks:
Under the Markowitz’s framework this quantity should be zero according
to the SML
In practice all the portfolios considered for investment are represented in
the (β,m) plane where:

the beta are estimated historically

the expected returns are either historical estimates or analyst
predictions

Then a regression line is calculated and the portfolios above the line could
be considered for addition to the investment portfolio as:

their systematic risk is remunerated more than expected

their idiosyncratic risk should disappear via diversification
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Remarks:
A large pension fund which allocates money amongst many asset
managers may assume that the idiosyncratic risk is going to be
reduced/cancelled through diversification and in this case may be
concerned only by the remuneration of the non diversifiable risk and by the
Jensen Index of each Asset Manager’s funds.

Exercise 1: Show that the Jensen Ratio is dependent on leverage

Exercise 2: How do you read in a {(β,m)} representation the Jensen
Ratio of a fund as the distance above a particular line ?

Pierre Brugiere (copyrights Pierre Brugiere ) Portfolio Management September 22, 2016 85 / 115



Performance Indicators

Definition: Treynor Index

The Treynor Index of an investment portfolio P is defined as: mP−r0
βP,M

Remarks:
Under the Markowitz’s framework the Treynor Index should be constant
according to the SML.
The Treynor Index is similar to the Jensen index in its objectives to detect
funds for which there is an excess of remuneration of the systematic risk.
The excess is usually called the α !
Compared to the Jensen Index the advantage of the Treynor Index is that
it does not dependent on leverage and thus is a more intrinsic measure.

Remarks:
Show that the Treynor Index does not depend on leverage.
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Factor Model
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Factor Model

We revisit here the SML equation for risky assets and investment
portfolios: r i (t) = r0 + bi (rM(t)− r0) + εi (t) because:

in practice the εi (t) appear to be correlated and to represent a
significant portion of the variance of the assets.

by adding additional factors we aim at identifying better the common
sources of risks (even when they may not be remunerated) and to end
up with smaller non explained residual idiosyncratic risks.

we want to determine the remuneration of each individual source of
risks through a non arbitrage argument.

The factor decomposition of the returns in a K-factor model of risky assets
is expressed as:

r i (t) = ai +
j=K∑
j=1

βij f
j(t) + εi (t) for all assets i in {1, · · · ,N} and all

instants t in {1, · · · ,T}
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Factor Model

We can write matricially : R(t) = A + BF (t) + E (T )

with R(t) =

 r1(t)
...

rN(t)

 A =

a1

...
aN

 B =


β1

1

... β1
K

...
...

...

βN1
... βNK

 F (t) =

 f 1(t)
...

f K (t)



and E (t) =

ε
1(t)

...
εN(t)


We make the following assumptions:
F (t) normal centered, Var [F (t)] = ΣF def positive independent from t.
F (t) independent from F (t

′
) for t 6= t

′
.

A and B independent from t
E (t) normal centered and Var [E (t)] = diag(σ2

i ) independent from t.
E (t) independent from E (t

′
) for t 6= t

′
.

E (.) independent from F (.)
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Factor Model

Remark 1 :
We assume that ΣF is symmetric strictly positive.

If ΣF was not strictly positive we could find u =

u1

...
uN

 6= 0 such that

u
′
Var [F (t)]u = 0 and in this case we would have Var [u

′
F (t)] = 0 and so

u
′
F (t) = Cte which would mean that some of the factors would be

redundant (could be ”cointegrated”).

Remark 2:
Var(R(t)) = cov(BF (t) + E (t),BF (t) + E (t))
= cov(BF (t),BF (t)) + cov(E (t),E (t))
= Bcov(F (t),F (t))B

′
+ diag(σ2

i )
= BΣFB

′
+ diag(σ2

i )

Pierre Brugiere (copyrights Pierre Brugiere ) Portfolio Management September 22, 2016 90 / 115



Factor Model

Remark 3:
If in the SML equation the εi (t) are independent, we are in presence of a
one-factor model as it can be rewritten as:
r i (t) = r0 + bi (mM − r0) + bi (rM(t)−mM) + εi (t)
which corresponds to a one factor model with:
ai = r0 + bi (mM − r0), f 1(t) = (rM(t)−mM) and βi1 = bi .
We note that:

r i (t) represents the return of asset i over the period [t − 1, t]

f 1(t) represents the excess of the return of the factor (the market
portfolio) compared to its expectation over the period [t − 1, t]

εi (t) is a random variable relative to the period [t − 1, t].
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Factor Model

Remark 4:
With our hypothesis, a factor model is a ”Markowitz model”, i.e a model
where the returns of the risky assets follow a Gaussian law. Here the vector
of the returns R(t) over the period [t − 1, t] follows the normal law of:

• expectation R(t) =

a1

...
aN


• variance-covariance matrix Σ = BΣFB

′
+ diag(σ2

i )
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Factor Model

Remark 5:
Factor models were introduced by Charles Spearman in 1904 in
psychometrics.
Remark 6:
In financial econometrics, the factors used are either:

Macroeconomics factors: ex GDP, inflation rate, unemployment
rate..etc, in this case the F (t) are ”exogene” i.e given and observable.

Fundamental factors: ex market cap, leverage, book/price ...etc which
are as well exogene.

Statistical factors: in this case the F (t) are ”endogene” / hidden
factors and the aim is to determine these F (t) as well as the
corresponding sensibilities (i.e B).
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Factor Model

Numerical Exemple:
Consider a two-periods 3 factors model with 3 assets where:

A =

5%
4%
6%

 is the vector of expected returns for the assets

B =

1 0 0
0 1 0
1 0 1

 defines the decomposition of the returns on the factors

P =

100% 0 50%
0 100% 0

50% 0 100%

 is the matrix of correlation for the factors

σ1 = 15%, σ2 = 10%, σ3 = 10% are the standard deviations for the factors
σ(ε1) = 5% σ(ε2) = 5% σ(ε3) = 5% are the standard deviations for the
residuals in the factor model
Assuming that for the risk free rate r0 = 2%, we find after calculating the
implied law for the risky assets and applying Markowitz’s results that:
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Factor Model

a) the investment portfolio of minimum variance has a return of expected
value 3.84% and standard deviation 10.69%
b) the tangent portfolio has an allocation between the three risky assets of 0.684

0.353
−0.037

 and has a return of expected value 4.61% and standard

deviation 12.74%
c) the return of the investment portfolio follows the equation
rM = 0.046 + 0.647F1 + 0.353F2 + 0.316F3 + 0.684ε1 + 0.353ε2 − 0.037ε3

d) from c)we can derive the β of the three risky assets with the tangent
portfolio and find: β1 = 1.15, β2 = 0.77, β3 = 1.53
e) we can verify that for the three assets the SML is satisfied as:
5% = 2% + 1.15x(4.6%− 2%)
4% = 2% + 0.77x(4.6%− 2%)
6% = 2% + 1.53x(4.6%− 2%)
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Factor Model

f) the residual ei of the returns of the tree risky assets after regression on
the tangent portfolio, defined by r i = r0 + βi (rM − r0) + ei have a
variance-covariance matrix of: 0.004 −0.007 0.001
−0.007 0.013 −0.002
0.001 −0.002 0.012


the standard deviations of the residuals ei in the SML model are:
σ(e1) = 5.98% σ(e2) = 11.39% σ(e3) = 10.92%

As we can see on this example the 3-factors model enables a better
explanation of the common sources of risks than the (one factor) SML
model as the residuals have lower variances in the 3-factors model than in
the SML model and are uncorrelated (proving that all common sources of
risks have been identified).
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Factor Model - Standard Form

Reminder: Diagonalisation Theorem

If Σ is symmetric definite positive in (RK , < . >) we can find
V1,V2, · · · ,VK in RK such that:

< Vi ,Vi >= δi ,j

ΣVi = λiVi

and if we note V the matrix whose vectors columns are the Vi then:

V
′
ΣV = diag(λi )

V
′
V = IdK

Here the λi are the (positive) eigenvalues of Σ and the Vi are the
eigenvectors.
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Factor Model - Standard Form

Standard Form Theorem

We can re-write the factor model in the form:
R(t) = A + DH(t) + E (t)
with Var [H(t)] = IdK
This form is called the Standard Form of the Factor Model

demonstration:
A + BF (t) + E (t) = A + BVdiag(

√
λi )diag( 1√

λi
)V
′
F (t) + E (t)

and Var [V
′
F (t)] = V

′
ΣFV = diag(λi )

so Var [diag( 1√
λi

)V
′
F (t)] = diag( 1√

λi
)diag(λi )diag( 1√

λi
) = IdK . Q.E.D
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Factor Model - APT Theorem

Fundamental APT Theorem

Let r i (t) = ai +
j=K∑
j=1

bij f
j(t) + εi (t) or in matrix terms

R(t) = A + BF (t) + E (t) be a K -factor model.
If there is no arbitrage in the reduced model R(t) = A + BF (t) where the
”diversifiable” risk E (t) is neglected then:
there exist α0, λ1, λ2, · · · , λK such that

∀i ∈ {1, 2, · · · ,N}, ai = α0 +
K∑
j=1

bijλ
j

or matricially A = α0

1
...
1

+ B

λ1
...
λK


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Factor Model - APT Theorem

Remarks:
No arbitrage means that:

all investment portfolios with no risk (i.e fixed returns) should have
the same return. We note r0 this return.

all self financing portfolios with no risk (i.e fixed returns) should have
a return of zero.

Lemma 1

If there is no arbitrage and if we call r0 the risk free rate then:
∀π ∈ RK π

′
B = [0, 0, · · · , 0] =⇒ π

′
(A− r01K ) = 0
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Factor Model - APT Theorem

Demonstration Lemma 1:
Let π ∈ RK be such that π

′
B = [0, 0, · · · , 0].

if π
′
1K 6= 0 then π̃ = π

π′1K
is an investment portfolio which is without

risk in the reduced model as R π̃ = π̃
′
A + π̃

′
B = π̃

′
A

therefore we should have π̃
′
A = r0 that we can also write

π̃
′
(A− r01K ) = 0 as π̃

′
1K = 0

if π
′
1K = 0 then π is an self-financing portfolio without risk which

should therefore satisfy π
′
A = 0 that we can also write

π̃(A− r01K ) = 0 as π
′
1K = 0. Q.E.D
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Factor Model - APT Theorem

Lemma 2:

If
∀π ∈ RK π

′
B = [0, 0, · · · , 0] =⇒ π

′
(A− r01K ) = 0 (1)

then

∃λ1, λ2, · · ·λK , A− r01K =
i=K∑
i=1

λibi (2)

Demonstration Lemma 2:
We note B = [b1, b2, · · · , bK ] and Vect{b1, b2, · · · , bK} the vector space
generated by b1, b2, · · · , bK .
(1) ⇐⇒ Vect{b1, b2, · · · , bK}⊥ ⊂ Vect{A− r01K}⊥
=⇒ Vect{A− r01K} ⊂ Vect{b1, b2, · · · , bK}
=⇒ A− r01K ∈ Vect{b1, b2, · · · , bK}
This proves Lemma 2.
Lemma 1 and Lemma 2 together proves the theorem.
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Factor Model - APT Theorem

Remarks:
In the previous numerical example we have λ1 = 5%, λ2 = 3%, λ3 = 1%
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Factor Model - Principal Components Analysis

Lemma:

Let x =

x1

· · ·
xd

 and y =

y1

· · ·
yd

 be in Rd then x
′
y = Tr(xy

′
)

demonstration: trivial

Proposition:

Let Z =

Z1
...
Zd

 be a random variable in Rd then:

E
[
‖Z − E [Z ]‖2

]
= Tr [Var(Z )] =

i=d∑
i=1

λi where Tr is the trace operator

and the λi are the eigenvalues of Var [Z ]
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Factor Model - Principal Components Analysis

demonstration: E
[
‖Z − E [Z ]‖2

]
= E

[
(E − E [Z ])

′
(Z − E [Z ])

]
= E

[
Tr
(

(E − E [Z ])(Z − E [Z ])
′
)]

= Tr
(
E
[
(Z − E [Z ])(Z − E [Z ])

′
])

= Tr [Var(Z )] Q.E.D

Definition:

We call E
[
‖Z − E [Z ]‖2

]
the dispersion of Z and in dimension 1 this

definition corresponds to the usual definition of variance.
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Factor Model - Principal Components Analysis

Proposition:

Let Z be a random variable in Rd , we note Var(Z ) the matrix of variance
covariance of Z and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 the eigenvalues of Var(Z ).
For any k ≤ d we note Hk a sub-vector space of dimension k of Rd and
(xHk

i ) an orthonormal basis of Hk . Then for any k ∈ [1, d ]:

max
Hk

max
(x

Hk
i )

i=k∑
i=1

(xHk
i )

′
Var(Z )xHk

i =
i=k∑
i=1

λi

demonstration: we solve the maximization problem :

(P)


i=k∑
i=1

x
′
iVar(Z )xi

x
′
i xj = δi ,j
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Factor Model - Principal Components Analysis

Using the Lagrange multipliers λi ,j we obtain the following k equations:
∂L
∂xi

= 2x
′
iVar(Z ) −2λi ,ix

′
i −

∑
j 6=i

λi ,jx
′
j = 0

As the xi are independent, necessarily we must have:
2x
′
iVar(Z ) −2λi ,ix

′
i = 0 that we can write also as (Var(Z )− λi ,i Id)xi = 0

So the maximum is attained for the xi being the eigenvectors of Var(Z )
and in fact corresponding to the k largest values λ1, λ2, · · · , λk . Q.E.D
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Factor Model - Principal Components Analysis

Corollary:

Let pHk
be the orthogonal projection on Hk then:

max
Hk

E [‖pHk
(Z − EZ )‖2] =

i=k∑
i=1

λi

demonstration: Let (xi ) be an othornormal basis of Hk then

pHk
(Z − EZ ) =

i=k∑
i=1

x
′
i (Z − EZ )xi and

‖pHk
(Z − EZ )‖2 =

i=k∑
i=1

(x
′
i (Z − EZ ))2 =

i=k∑
i=1

x
′
i (Z − EZ )(Z − EZ )

′
xi so

E [‖pHk
(Z − EZ )‖2] =

i=k∑
i=1

x
′
i E [(Z − EZ )(Z − EZ )

′
]xi =

i=k∑
i=1

x
′
iVar(Z )xi

So the result follows from the previous proposition.
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Factor Model - Principal Components Analysis

Exercise 1:

Show that min
Hk

E [‖pHk
(Z − EZ )‖2] =

i=n∑
i=n−k+1

λi

Exercise 2:
Let Φ be a linear application from Rd to Rd whose matrix is symmetric
and positive, H be a sub-space of Rd of dimension k and pH be the
orthogonal projection on H.
Let Φ|H be the restriction of Φ to H defined by Φ|H(x) = pH [Φ(x)]
a) show that Φ|H is a linear application from H to H whose matrix is
symmetric and positive
b) show that maxλΦ|H ≤ maxλΦ and minλΦ|H ≥ minλΦ

c) study the case where MatΦ =

(
1 0
0 2

)
and H = Vect(e1 + e2)
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Factor Model - Principal Components Analysis - Numerical
Example

We consider an economy with two risky assets whose returns r1 and r2
follow the following one factor model:(
r1
r2

)
=

(
1 0.6 0

1.2 0 0.6

) f
e1

e2


with f , e1 and e2 being independent of variance 1.
We assume we have 800 observations of this model (that we simulate
here).

We plot on the graph below the 800 observations of

(
r1
r2

)
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in red the axis corresponding to the eigenvector of maximum eigenvalue.
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Factor Model - Principal Components Analysis - Numerical
Example

We have the following results:

the theoretical eigenvalues are 2.80 and 0.36. From our sample and
empirical variance-covariance matrix we obtain 3.06 and 0.57

the theoretical measure of dispersion is 3.16 and from our sample 3.63(
1.20
1.44

)
and

(
1.20
−1.00

)
are theoretical eigenvectors(

1.24
1.25

)
and

(
1.25
−1.24

)
are empirical eigenvectors

on the graph the red line corresponds to the axe generated by the
sample eigenvector of the highest eigenvalue
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Factor Model - Numerical Example

We have the following results:

the green ellipse on the chart represents points for which the density
function derived from the sample variance-covariance matrix is
constant

the lengths of the axis (in purple) of the ellipse are proportional to the
eigenvalues

when we project the points on the red axis, the dispersion of the
points projected is 3.06 which is what we expected, as we have
projected on an axe corresponding to the maximum eigenvalue
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The End

Pierre Brugiere (copyrights Pierre Brugiere ) Portfolio Management September 22, 2016 115 / 115


	Laws of Returns of Financial Assets
	Further Statistical Tests
	Utility Functions
	Markowitz: The mean variance framework
	Markowitz: Opimization without a risk-free asset
	Markowitz: Optimization with a risk-free asset
	Security Market Line 
	Performance Indicators
	Factor Models

