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This talk is about : surrogates AND mono-objective optimization
but not about : surrogates, optimization without surrogates

Pre-requisite : basics of optimization algorithms & surrogate modeling

Language elements : 

Scope of the presentation

● surrogates = metamodels = response surfaces = function 
approximation = proxy = emulator = specific surrogate name

● specific surrogate names : polynomial (e.g., quadratic ...) 
response surface, Gaussian process or kriging, artificial neural 
networks, radial basis functions, splines, support vector 
machines, high-dimensional model reduction (HDMR), 
generalized additive model (GAM), ...

Surrogates and (mono-objective) optimization have had a long-term 
relationship because most optimization methods can be seen as 
having a surrogate inside.



  

Mono-objective optimization problem formulation

x , n  optimization variables
S , search space , x∈S , mainly a compact [xLB , xUB

] in ℝn

but many concepts apply to ℕn

f , objective or cost function to minimize,  f : S→ℝ

min
x∈S

f (x)

g(x)>0g(x)≤0

h(x)=0

x* (continuous)

x* (discrete)



  

Optimizing expensive functions

Optimization algorithms generate points x∈S  in order to 
   approximate the solution to min

x∈S
f ( x)

min
x∈S

f (x)

O

f (M (x t))

M

model

many

many

xt

but M (e.g.,                                         ,                                      )

 is typically computationally intensive

computing sub-task data exchange, flow 
proportional to line thickness



  

Idea 1 : replace expensive functions by surrogates

f is too expensive (to do optimization, or more generally computer 
experiments). Let's replace it with a cheaper metamodel or surrogate 
= a statistical model of the physical model f(M(x)).

original function (Branin) a surrogate (kriging)

f (M (x )) ≡ f (x)

min
x∈S

f (x )

s(x ) ≈ f (x )

min
x∈S

s(x ) min
x∈S

s( x)

O

s(x t)

s

surrogate

many

many

xt

The computing cost of 
solving this problem is 
considered negligible 
(compared to M ).

How to build s() ? 
To be partly discussed.



  

Optimization has relied on surrogates for a long time

1740

E.g., Newton's method

true function

xt

x*

xt+1

Step according to a local model (surrogate) of the function 
(quadratic on this example, corresponding to Newton method,

May fail : cf. trust region methods

surrogate

∇2f (xt) (x t+1−xt )=−∇ f (xt)



  

Idea 2 : surrogate criterion

f  is too expensive (to do optimization, or more generally computer 
experiments). Let's replace the original problem (the function) with a problem 
that leads to the same solution. It includes idea 1.

f (M (x )) ≡ f (x)

min
x∈S

f (x)

c (x) not necessarily ≈ f ( x)

min
x∈S

c ( x , s(x))

ok as long as the best of the iterates xt  leads to arg min
x∈S

f (x)

min
x∈S

c(x , s(x ))

O

c(xt )

c

criterion

many

many

xt

The cost of calculating c(.) is negligible w.r.t. f(.). 
c(.) often based on s(.)
To be discussed : how to build c(.) ?



  

A first (naive) algorithm

► Use a quadratic polynomial surrogate

s(x ;θ)= θ1+θ1 x1+…+θn+1 xn+θn+2 x1 x2+…+θ(n+1)(n+2)/2 xn
2

= ∑
i=1

(n+1)(n+2)/2

Φi( x)θi =Φ( x)θ

Φ(x )=[1 , x1 , … , xn , x1 x2 , … , xn−1 xn , x1
2 , … , xn

2]

► Create a "design of experiments" (DoE) :
E.g., t≥(n+1)(n+2)/2  points randomly chosen in S

⇒ X≡{xi
} , F≡{f ( xi

)} , i=1, t

► Fit the surrogate to the DoE by minimizing its "empirical 
     risk" (sum of squares error)

θ
*
= arg min

θ
∑
i=1

t

( f (x i
)−s(xi ;θ))

2

≡ arg min
θ

E (θ , X , F )

► Minimize the surrogate xt+1
= arg min

x∈S
s(x ;θ*

)

(closed form solution exist 
for linear models)

( linear in θ )



  

A first (naive) algorithm : 1D expl  (1)

xt+1 is not a minimizer of f()

not enough points ?



  

A first (naive) algorithm : 1D expl  (2)

xt+1 is still not a minimizer of f()

s( ;θ ) too rigid (does not have the right 
functional form), cannot learn f( ) ?



  

A first (naive) algorithm : 1D expl (3)

Surrogate = cubic spline (a piece-wise 3rd degree polynomial with 
interpolation and smoothness properties )

Ok in 1 or 2D for a rough approximation (no convergence accuracy), but an 
a priori space filling DoE is very expensive.  
Expl : a grid has a geometrically growing number of evaluations, stepn .

→Need a more greedy strategy, putting new evaluation points in the 
good regions of S (where  f  is low).



  

A second (naive) algorithm

► Use a flexible surrogate (interpolating, or neural net with 
universal approximation property)

► Create an initial DoE, ( X, F ), with not too many points (at 
most linear in n , t ≈ 3n )

► While ( t < budget ) do

● Minimize the surrogate xt+1
= arg min

x∈S
s(x ;θ*

)

► End while

● Fit surrogate to current DoE θ
*
= arg min

θ
Error(θ , X , F )

● Calculate f & update DoE X = {X∪xt+1} , F = {F∪f (xt+1)}

t = t+1● 



  

A second (naive) algorithm : 1D Expl 

( cubic spline surrogate )

Converges to a local optimum, at best ...



  

A second (naive) algorithm

... because it can stall at non stationary points, when 

s(x t+1 ,θ*
) = f (x t+1

)



  

Progress report  (1)

We have replaced the costly

min
x∈S

f (x )

O

f (M (x t))

M

model

many

many

xt

by the less costly yet not converging to stationary points

xt

min
x∈S

s( x ;θt )
O

s(x ' ;θt)

S
surrogate

many

many

x '

errormin
θ

E(θ , X , F )
O'

E(θ , X , F )

Emany

many

θ

θt

M
model f (M (x t))

(X , F ) = (X , F )∪(xt , f (x t))



  

Progress report  (2)

We miss a control that the surrogate S is leading the optimizer 
O towards better regions of the design space. 

Minimizing the surrogate is not a good enough criterion in itself to 
ensure that the DoE created by the iterations allows convergence 
to local or global optima.

xt

min
x∈S

s( x ;θt )
O

s(x ' ;θt)

S
surrogate

many

many

x '

errormin
θ

E(θ , X , F )
O'

E(θ , X , F )

Emany

many

θ

θt

M
model f (M (x t))

(X , F ) = (X , F )∪(xt , f (x t))



  

Outline of the talk

● Context and introduction

● Surrogates and trust regions for local optimization
- quadratic surrogates
- any surrogates

● Stochastic optimization using surrogates

● Surrogates with embedded error estimates : kriging

● Ensembles of surrogates
- unstructured
- structured 

The type of strategies that ensure that the surrogate is not 
misleading will shape this presentation :



  

Quadratic surrogates and trust regions  (1)

Conn et al., Introduction to derivative free optimization, SIAM Publ., 
2009.

xt

x*

xt+1

Basic idea

● Quadratic surrogates are rigid but may 
always approximate a twice differentiable 
function in a neighborhood (order 2 
Taylor). 

● The minimum of quadratic surrogates is 
analytically tractable.

Build a quadratic surrogate and monitor its validity in a ball around 
the current iterate. Define iterates by solving a minimization problem 
in the ball.

Motivations
● In high dimensions (say > 100), it may not be possible to learn flexible 

surrogates because of the needed number of points.



  

Quadratic surrogates and trust regions  (2)

► Create an initial DoE ( X, F ) of m points,  n+2 ≤ m ≤ (n+1)(n+2)/2  ...

► While ( not stop ) do

● Minimize the surrogate within the trust region

x ' = arg min
x∈S

s(x ;θt)  such that  ∥x−xt∥≤ Δt

► End while

● Fit quadratic surrogate s() to current DoE

● Update trust region radius, current iterate and DoE

θt = arg min
θ
∥∇ x

2s(x ;θ)−∇ x
2s(x ;θt−1)∥F   s.t.  s( xi ;θ)= f (x i) , i=1,m

● Calculate f & check validity of surrogate
ρ = ( f (x t

)−f (x ' ))/ (s(x t ;θt
)−s(x ' ;θt

))

If (ρ ≥ μ > 0) { ↑Δt , x t+1=x ' }  else { ↓Δt , x t+1=xt }

Add x '  and remove a point from (X , F ) depending on
   dist. to xt+1  and identifiability of θ , t=t+1

( 
a  

s i
m

p l
i f

ie
d  

B O
B Y

QA
*  

)

* M.J.D. Powell, The BOBYQA algorithm for bound constrained 
optimization without derivatives, TR Cambridge, 2009



  

Quadratic surrogates and trust regions  (3)

Surrogate usefulness controlled through trust region

The regularization scheme (minimization of Hessian distances) 
makes (n+1)(n+2)/2 points to determine the parameters of the 
quadratic surrogate not necessary and allows an O(n) optimization 
cost.

Identifiability of θ : conditioning of the linear system that comes from 
1st order optimality conditions of the surrogate fitting sub-problem.

Because the surrogate is local, trust region methods are local 
optimization methods.

The BOBYQA algorithm is a state-of-the-art derivative free method 
for bound constrained minimization. It has been tested up to 
dimension n=320.



  

General surrogates and trust regions

Optimization with any surrogate converges to a stationary point if a 
trust region strategy is used and the gradient of the true function is 
fitted at data points.

Alexandrov et al., A trust region framework for managing the use of approximation models in 
optimization, Structural Optimization, 1998.
Giunta and Eldred, Implementation of a trust region model management strategy in the DAKOTA 
optimization toolkit, AIAA-2000-4935, 2000.



  

Outline of the talk

● Context and introduction

● Surrogates and trust regions for local optimization
- quadratic surrogates
- any surrogates

● Stochastic optimization using surrogates

● Surrogates with embedded error estimates : kriging

● Ensembles of surrogates
- unstructured
- structured 



  

Surrogates and stochastic optimization

- (rank x 's  according to their f 's)
-  update internal state αt  of optimizer
-  sample λ  new x 's according
     to a pdf d (x ;αt)

O

f (M (x t)) ,…,

f (M (x t+λ
))

M

model

many

many

{x t ,…, xt+λ}

For expl., in CMA-ES αt ≡ (mt ,Ct ) where d (x ;α t) is N(mt ,C t)

Two main implementations of surrogates in stochastic optimization :
a) as a sampling filter mechanism
b) as a generation-wise surrogate

following I.G. Loshchilov, (Surrogate-assisted evolutionary 
algorithms, PhD, 2013) but many other implementations, e.g., 
● Kern et al., 2006, local Meta-model CMA-ES
● Runarsson 2004 & 2006, approx. ranking & ordinal regression
...



  

Surrogates and stochastic optimization
Filtered sampling  (1)

many

simplified ACM-ES algorithm

O

M

model

many
{x t ,…, xt+ν}

…
- sample ν > λ  new x 's
 according to d (x ;α t

)

- keep the best and λ−1
 other x 's with proba. 
 ~ (rank) s(x ;θt)

S
ranked x1: ν  and 

(λ−1) x I 's

f (M (x1: ν))  & 

(λ '−1)  f (M (x I
))'s

x1 : ν  & 
(λ '−1) random in I           

- update data-base (X , F )
- update surrogate,
  θt

= arg min
θ

E(θ , X , F )

E

ν > λ > λ '

θt



  

Surrogates and stochastic optimization
Filtered sampling  (2)

many

Implementation issues 

Ordinal regression (ranking SVM, Herbrich et al., 1999)  surrogates for rank 
based optimizers in order to preserve invariance property w.r.t. any monotonous 
transformation of f().

Do not mistake the data-base and the population. In ACM-ES, the data-base is 
made of the 30×sqrt(n) to 70×sqrt(n) most recently evaluated points. 

Having a probabilistic choice of the x's for CMA population and for the data-
base is necessary to preserve points diversity. Otherwise, think of ν →∞ , all 
the points would tend to the surrogate optimum, as strategy we have criticized.

Performance 

Speed-ups going from 2 to 4 were observed for dimensions 2 to 40 except for the 
(difficult) Rastrigin function <-- exploration / intensification trade-off and there is no 
surrogate usefulness control in ACM-ES (ν is fixed).

Herbrich, Graepel, Obermayer, Support Vector Learning for Ordinal Regression, ICANN 99. 



  

Surrogates and stochastic optimization
Generation-wise surrogate  (1)

Principle : optimize on the surrogate for g iterations and then for 1 
iteration on the true function. Adjust g according to the surrogate error.

manyO f (x t) ,…, f (x t+λ)

M

modelxt ,… , xt+λ

s(x t ;θt ) ,…, s(xt +λ ;θt)

S

surrogate

xt ,…, xt+λ
stateαt

1 time

g times

E
X = {x t ,…, xt +λ }

F={f (x t
) ,…, f (x t+λ

)}

update θt

Calculate Error(θ , X , F )
update g  inversely to Error

f (x t) ,…, f (x t+λ)

θt



  

Surrogates and stochastic optimization
Generation-wise surrogate  (2)

● g known as surrogate life-length in Y. Jin, A comprehensive survey 
of fitness approximation in EC, Soft Comp., 2005. 

● Points diversity is automatically guaranteed by the use of the 
stochastic optimizer.

● This algorithm uses surrogate error to adjust some parameters (the 
surrgate life-length).

Performance :
~ saACM-ES , Loshchilov 2012, which has speed-ups of 2 to 3 for n=2 
to 20 over CMA-ES (in a version where other surrogate hyper-
parameters* are optimized by minimizing surrogate error). 

* the difference between surrogate parameters and hyper-parameters is that the hyper-
parameters are typically set outside of the surrogate specific functions. Expl: regularization 
constants C in Support Vector Machines.



  

Outline of the talk

● Context and introduction

● Surrogates and trust regions for local optimization
- quadratic surrogates
- any surrogates

● Stochastic optimization using surrogates

● Surrogates with embedded error estimates : kriging

● Ensembles of surrogates
- unstructured
- structured 



  

A very short introduction to kriging  (1)

Kriging = conditional Gaussian processes
Random process are the function pendant to random variables
A sample = a function of x
conditional = the samples are forced to go through the data points X,F

[see Rasmussen & Williams, GPML, 2006 for more explanations]



  

A very short introduction to kriging  (2)

Statistical model of f ( x) : F (x) ∼ N (m( x), s2(x ))

( m(x )±1.96 s(x )  mean and 95% confidence interval  )

m (x)±s(x)

m (x)

x



  

A very short Introduction to kriging  (3)

Kriging average  : m(x ) = μ+cT (x)C−1(f−μ1)
Kriging variance  : s2

(x) = σ2
−cT

( x)C−1 c (x)

c (x ) = [Cov (F (x) , F (x i))]i=1, M

C = [Cov (F (xi
), F ( x j

))] i , j

and F is correlated in space,

Assumptions : f(x) is a sample of 
Gaussian process with a given 
parameterized (stationary) kernel  

Cov (F (x ), F (x ')) = a function of ∣x−x '∣
and parameters θ  (length scale)

( not all functions are kernel functions )

(left)  squared exponential , Cor (F ( x), F (x ' )) = exp(−1/2∗(∣x−x '∣/θ)2) ,
(right)  exponential , Cor (F (x), F (x ' )) = exp(−(∣x−x '∣/θ)) , θ=0.2



  

Surrogates with embedded error criteria

The kriging prediction variance, s2(x), opens the way to a large family of 
criteria for controlling the quality of the surrogate during optimization.

Optimizing with surrogate has
● a main goal  :  provide an iterate xi with a low f(xi)
● a secondary goal  :  have the DoE of iterates (X,F) allow a surrogate that is 

accurate in high performance regions of the design space.

but since we don't know a priori where are the good regions of the design 
space, this amounts to an intensification / exploration compromise.

Mise en abyme (multi-crit for mono-crit) : can be seen as the two criteria 
problem,

[cf. D.R. Jones, A Taxonomy of Global Optimization Methods based on 
Response Surfaces, JOGO, 2001]

min
x∈S

m(x )

max
x∈S

s(x )
although the next single criteria may 
be more meaningful ...



  

kriging-based approaches

Expected Improvement criterion

x

f min

i(x)

A natural measure of progress : the improvement,

I (x) = [ f min−F (x) ]
+
∣ F (x)=f (x) , where [.]+ ≡ max (0, .)

●  The expected improvement is known analytically. 
●  It is a parameter free measure of the exploration-intensification 

compromise. 
●  Its maximization defines the EGO deterministic global optimization 

algorithm. 

EI (x ) = s(x )× ( u(x)Φ(u(x))+ϕ(u(x )) ) ,  where u( x) =
f min−m( x)

s( x)
[ Jones et al., Efficient Global Optimization of expensive black-box functions, JOGO, 1998 ]



  

kriging-based approaches

EI criterion, one EGO iteration

At each iteration, EGO adds to the t known points the one that 
maximizes EI,

xt+1= arg maxx EI (x )

then, the kriging model is updated ...



  

kriging-based approaches

EI criterion : example



  

kriging-based approaches

EI criterion : 6D example
Hartman function, f(x*)=-3.32 , 10 points in initial DoE

(DiceOptim, D. Ginsbourger et al., 2009)



  

kriging-based approaches

EI criterion : comments
Our first example of surrogate criterion, including progress on f and 
construction of the DoE

Computational complexity : for kriging, the error is typically minus 
the likelihood or the cross-validation error --> a (t * t) covariance 
matrix need to be inverted many times, O(t3).

xt

max
x∈S

EI( x)
O

EI(x ' ;θt )

EI
criterion

many

many

x '

errormin
θ

E(θ , X , F )
O'

E(θ , X , F )

Emany

many

θ

θt

M
model f (M (x t))

(X , F ) = (X , F )∪(xt , f (x t))



  

kriging-based approaches

A one-stage approach  (1)

So far, optimization of the surrogate criterion and construction of the 
surrogate (as another optimization problem) have been separated. 

One stage approach : maximize the likelihood of the data points 
conditional on an hypothetical optimum (x,ftarget) :

Jones, 2001 (cf. earlier).
A. I. J. Forrester and D.R. Jones, Global Optimization of Deceptive Functions 
with Sparse Sampling, 2010.

CL ( x ,θ )= Prob (X , F ∣(x , f target
) ,θ) ( closed form from the 

multivariate normal law family )



  

kriging-based approaches

A one-stage approach  (2)

xt

max
x ,θ

CL(x ,θ)
O

CL(x ,θ)

CL
criterion

many

many

x ,θ

(X , F )

M
model

f (M (x t))

add x t , f ( xt )

to (X , F )

Pros : x and the surrogate are chosen together, which partly 
removes the initial guess on the surrogate that decides which x is 
sampled.

Cons : guess on ftarget, the optimization problem is of larger 
dimension ( n + dim(θ) ).



  

Some other kriging-based criteria

● Probability of Improvement : Stuckmann 1988, Chaudhuri et al. 2012

● Statistical lower bound m(x) - α s(x) : Cox and John 1997

● Quantile improvement (for noisy functions) : Picheny et al. 2013

● Multi-points EI : Ginsbourger et al., 2010

● Multi-points PI (many targets), statistical lower bounds (many α's) : 
Jones 2001  

A. Chaudhuri, R. T. Haftka, F. Viana, Efficient Global Optimization with Moving Target for Probability of 
Improvement, 2012.

D.D. Cox and S. John, SDO: a statistical method for global optimization, Multidisciplinary Design 
Optimization: State of the Art, SIAM, 1997.

Ginsbourger, D., Le Riche, R. and Carraro, L., Kriging is well-suited to parallelize optimization, 
Computational Intelligence in Expensive Optimization Problems, Springer, 2010.

V. Picheny, D. Ginsbourger, Y. Richet, G. Caplin, Quantile-based optimization of noisy computer 
experiments with tunable precision, Technometrics, 2013



  

Outline of the talk

● Context and introduction

● Surrogates and trust regions for local optimization
- quadratic surrogates
- any surrogates

● Stochastic optimization using surrogates

● Surrogates with embedded error estimates : kriging

● Ensembles of surrogates
- unstructured
- structured 



  

Structured ensemble of surrogates

Each of the kriging samples is seen as a possible surrogate (a set of 
surrogates indexed by the random event ω).

p(x * ∣X , F )

There is a distribution of optima knowing (X,F) of density p(x* ∣ X , F )



  

Structured ensemble of surrogates
An informational approach

Principle : the next iterate is the one that provides the most 
information on the location of optima

J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the global 
optimization of expensive-to-evaluate functions, JOGO, 2006.

⇒The next iterate, x t+1 , is the point that reduces the most the

conditional entropy of  p ( x * ∣(X , F )∪(x t+1 , F (x t+1
)) )≡ pt+1

(x* ∣ xt+1
)

xt+1
= arg min

x∈S
∫
S

−pt+1
(u∣ x) log( pt +1

(u ∣ x)) du

Pros : a nice way to summarize the contribution of a lot of 
surrogates.

Cons : high computational complexity.



  

Unstructured ensemble of surrogates
Multiple points generation

F.A.C. Viana, R.T. Haftka, L.T. Watson, Efficient Global Optimization algorithm 
assisted by multiple surrogate techniques, JOGO, 2013.

The simplest way to use many (say m) surrogates is to generate 
one iterate per surrogate (with your favorite surrogate 
optimization technique) and keep them all.

For i=1, m  do
       update i -th surrogate , si

(x ) , with (X , F )
     x i

= arg min
x∈S

c ( x , si
(x ))

     (X , F ) = (X , F )∪(x i , f (xi
))

End



  

Unstructured ensemble of surrogates
Synthesizing many surrogates

E. Acar and M. Rais-Rohani, Ensemble of metamodels with optimized weight factors, SMO, 
2008.

A. Chaudhuri, R. Le Riche and M. Meunier, Estimating Feasibility Using Multiple Surrogates 
and ROC Curves, AIAA/SDM conf., 2013

One can make one (hopefully better) surrogate of many 

surrogates by linear combination, ŝ(x ) =∑
i=1

m

wi
* si(x )

The simplest way to choose the weights w
i
 is to optimize them to 

minimize the squared error (matrix notation),

                                               w*
= arg min

w∈ℝm

∥f (X )−s(X )w∥2

           (normal equations)  ⇒ w * = [s(X )T s(X )]
−1

s(X )T f (X )

optim. weighted prediction : ŝ(x) = ( f (X )T s(X )) [s(X )T s(X )]
−1

(s
1
(x)…

sm(x ))
( compare to the kriging average formula : this is an interpolation in 
the space of surrogates instead of S )



  

Conclusions : what about multi-objective 
optimization

many

Surrogates and optimization have had long-term, yet increasingly 
intricated relationships. And we just discussed mono-objective 
optimization. With multi-objective optimization, the range of 
possibilities still grows ...

● What does it change to go from mono-objective optimization to 
multi-objective optimization ?

● Should one build one surrogate per objective function 
independently ? Not independently ? Or a unique surrogate to 
learn something about Pareto optimality in the space of 
optimization variables ?

● Multi-objective problems are more difficult than mono-objective 
ones, so they need more points to be sampled : are there any 
computational limitations that will be hit ?
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