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Where do | come from?

Robotics at LAAS/CNRS, Toulouse, France

- Research topics

:éﬁ Decision
4 l\

e Action

— Perception, planning and decision-making, control

— Plus: control architecture, interactions, ambient

intelligence systems, learning

Research domains
Cognitive and interactive Robotics
Aerial and Terrestrial Field Robotics
Human and anthropomorphic motion
Bio-informatics, Molecular motion

A keyword: autonomy

3 research groups :
12 full time researchers
10 university researchers
4 visitors
50 PhD students
10 post-docs

Considered applications: Planetary exploration, Service and personal
robotics, virtual worlds and animation, biochemistry, embedded systems,
transport, driver assistance, defense, civil safety



1979

Constructive and
integrative approach

1985 1990 1995 2000

Open source software tools:

2005

Robots @ LAAS

2011

Field robotics

Humanoids

Personal

robotics



What am | working on”? Field robotics

Environment perception and
modeling

Localization and SLAM

Autonomous rover navigation

Multi-Robot cooperation




Robotics

“From automatic control to autonomous control”

In [aboratories

Industrial




Robotics

“From automatic control to autonomous control”

Robots everywhere




Robotics
“From automatic control to autonomous control”

- Automatic control :
— Well defined task (“regulate variable”, “follow trajectory”...)
— “Direct” link between (simple) perception and action

- Autonomous control :
— More general task (“reach position”, “monitor area ”...)

— Calls for decisional processes
=)= Decision
W

.= Action

= “perception / Decision / Action” loop

Plus :
— Processes integration
— Learning
— Interaction with humans
— Interactions with other robots



Robotics
“From automatic control to autonomous control”

E.g. for a drone:

— Regulate heading / speed / altitude

s Action

— Follow a list ordered waypoints

— Follow a geometric trajectory

= Action

@& Perception

— Follow a road

— Follow a target B o
~-pecision

4

— Survey an area while avoiding threats
and obstacles

B8 Perception

“Decision”: notion of deliberation, planning, prediction
and evaluation of the outcomes of an action

S Action



Anatomy of a robot

stereovision
&~ cameras
R g ‘ Perception
Processing | "3
:é: Decision units IMU

Il\

Odometers

)

Motor control Chassis

electronics

= Action



Anatomy of a robot

% Action




lllustration: autonomous navigation

navsisgastion | naviga sy on

noun

1 the process or activity of accurately ascertaining one's
position and planning and following a route.

='Perception  detect obstacles, traversable areas, localize the robot

it

~B-pecision) avoid obstacles, find trajectories, itineraries

“=action) ensure the execution of the planned motions




An elementary decision: AGV obstacle avoidance

Simple instance of a perception / decision / action loop:
» Gathering data on the environment
* Structuring the data into a model
. . . ‘Perce tio
* Planning the trajectory to find the “optimal” one
 Executing the trajectory

‘ziiDecisio

4




Perception in robotics

Perception :
« Acquisition and representation of information on the environnement
and the robot itself »

Proprioceptive and exteroceptive sensors:

Prosprisoscepstive | proprea‘septiv|

adjective Physiology

relating to stimuli that are produced and perceived within
an organism, esp. those connected with the position
and movement of the body. Compare with
EXTEROCEPTIVE and INTEROCEPTIVE .

exsterso.cepstive | ekstoro'septiv|

adjective Physiology

relating to stimuli that are external to an organism.
Compare with INTEROCEPTIVE .



Why is localization so important?




Why is localization so important
In robotics?

Localization is required to:

* Ensure the spatial consistency of the built environment
models

* Ensure the achievement of the missions, most often defined

in localization tems (“goto [goal]’, “explore / monitor

[area]’, ...)
» Ensure the proper execution of paths / trajectories

» Ensure the lowest level (locomotion) controls



But... what localization?

Essential questions to answer:

1. With which precision? From cm to meters

2. In which frame? Absolute vs. local

3. At which frequency? From kHz to “sometimes”
4. Integrity of the solution?

5. Disponibility of the solution?

"« Ensure the lowest level (locomotion) controls

cm accuracy,
>100 Hz, < * Ensure the proper execution of paths / trajectories
local frame

» Ensure the spatial consistency of the built models

—

~m accuracy,  » Ensure the achievement of the missions, most often defined
“sometimes”, = in localization terms (“goto [goal]”, “explore /
global frame | monitor [areal’, ...)




QOutline

e Autonomous robots
 On the importance of localization

e Localization using dead-reckoning approaches



Odometry

Odometry: estimation of (x,y,6) by
integration of elementary motions

Photodmetteuwr

\ N\ rd Représentation signaux incrémentaux
b A, B et Z sur disque optique Photorécepteur

Wheel rotation encoders



Odometry

Linear wheel speeds:

AY . vg:rga;itg ’Ud:rdcilitd
ksl
Vet N ) O Ot do
Linear speed:
i = %(vg + va)cos(bk + %9)
j = %(vg + vq)sin(Ox + %)
Angular speed:
5. ¢ b — Vg — Ud




Odometry

Exemple: linear motion

7
———

Measured distance: di = di + d;

E(d1) =
Error model: _ -
Var(dy) = o7
For instance: He = 0
o1 = O.l'c’i\]_



Odometry

Gaussian error model: Fiomo N, 8D o

- 2
_1(d1—n
" 2 o1

~ 1
p(dy) = 3o

j-20 pu-o It He+oc p+o

Pl{l (Tl g 5 | IS 0’1} ~ 0.68
Pr{|dy —p1 |< 201} ~0.95

(this is a model) >
Pr{| dy — p1 |< 301} ~ 0.997

Odometry error model : dy = dy + dy
dy ~ N(puy,07)
py = 0

71 = 01 '411



Odometry

« Example: move 0.9m

16 R Twr, = dy
o——- 0 e
0.9m - - 0.9"?.
0.36m Orwr, = 0.09m
* Robot moves again 0.85m:  d, = 0.85m
W .
o b | —l P
d twp, = d+d+dy+d>
E(dy+d2) = pp+pz=
Var(dy + d2) = of + 03

0.1% (d + d3)



Odometry

« Example: move 0.9m

W R Twr, = dy
o — - e
0.9m o = 0.9m
0.36m a'l'“-'Rl = 0.09m
* Robot moves again 0.85m: 4, = 0.85m
W R»
P | e—l P
(12 ;l?“.'Rz — (?1 +Jl +d2+(7‘2
E(dy+d) = pp+p2=0
Var(dy + d2) = of + 03
= 0.12 (?2 +
* New estimation: ( . (7%)
R
tYT-z—.o 5‘1’32 e 1.7577?.
di 3 ‘ ~ 0.12m

Grows! 0.49m TEW Ry



Odometry

Now angular rotations come into play

Monte-Carlo simulation:




With an indoor robot

Odometry: illustration
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Localization solutions in robotics

« Odometry
 Similarly, motion / accelerations sensors (inertial navigation)

Inherently drifts over time and distances, subject to
slippages and skids

=) Develop solutions relying on the robot exteroceptive sensors



A few words on vision

Cameras : low cost, light and
power-saving
Perceive data
— In a volume

— Very far

— Very precisely

1024 x 1024 pixels
60° x 60° FOV

J

0.06 ° pixel resolution
(1.0cm at 10.0 m)

Stereovision

— 2 cameras
provide depth

Images carry a vast amount of information

A vast know-how exists in the computer vision community



Camera geometric model

Pinhole model
Plan image .
Axe optique
P(xy.z)
4 ®
/_m'ztance foca1>e U (f. ®
? plu,v)
0;"
X
)
Z
/_,(
Perspective projection "
(u,v) = f(x,y,2) oy 0C! = f
Bea,
Y
u=kyfx/z+ ug B _ e ,
v = kofy/z +vo p= TP I. : camera Intrinsic matrix



Camera geometric model

(But the real world is more complex)




Camera calibration

e Principle
1. Acquisition of images of a known calibration pattern
2. Extraction of the pattern features
3. Association between extracted features and patten features
4. Use of a minimization technique to estimate the projection

parameters

Classic
calibration
patterns

Well known techniques, available softwares on line (e.g. Matlab
calibration toolbox, openCV library)



3D data from vision

- Triangulation

o = Bsina(1/tgp + 1/tga)




3D data from vision

- Triangulation

The precision depends on the baseline



3D data from vision

« Autumn 2010 : Kinect ?




3D data from vision

e Stereovision = triangulation

Image centers

|||||||||||:||| Left image
|||||f\

NIYTTTTT] Rightimage

“Disparity”

Left o Right
camera camera

2 angles, 1 distance : d = tan(a)-ll)-tan(ﬁ)



Dense stereovision

0. Image pair
acquisition

Calibration data

e

1. Image
rectification

2. Pixel N
matching 3. 3D
process '

reconstruction



Single camera stereovision
(« Structure from Motion »)

- One moving camera

Additional difficulty: estimation of the motion parameters

(« structure and motion from motion », « SLAM »)



Localization solutions in robotics

« Odometry
 Similarly, motion / accelerations sensors (inertial navigation)

Inherently drifts over time and distances, subject to
slippages and skids

=) Develop solutions relying on the robot exteroceptive sensors



Visual odometry: principle







Visual odometry: results

 Applied on the Mars Exploration Rovers
X Graph

Visodom
Onhoard

|/
%

X %103
0.00 50.00  100.00 150.00 20000 250.00 30000  350.00

50 % slip




Visual odometry: benefits

- Contrary to wheel odometry, VO is not affected by wheel slip in
uneven terrain or other adverse conditions.

- More accurate trajectory estimates compared
to wheel odometry
(relative position error 0.1% — 2%)

In GPS-denied environments (e.g. underwater, planetary or
indoor), VO has utmost importance



Visual odometry: implied functions

Image pair sequence 1. Dense stereovision

2. Feature detection

3. Feature matching 4. Motion estimation




Visual odometry: implied functions

Image pair sequence 1. Dense stereovision

2. Feature detection

3. Feature matching 4. Motion estimation




Interest points

Harris interest points: sharp peaks of
the autocorrelation function

Auto-correlation matrix:

1,(x,50)° [,(x,50)1 (x,50)
1,(x,50)1 (x,50) I,(x,50)°
[,(x,50)=5G,(x,50)*I(x),

[, (x,50)=sG,(x,50)*(x)

G(x,0)®

Principal curvatures defined by the s 2
two eigen values of the matrix 4,4, o .

(s: scale of the detection)



Interest points

Local gray value invariants [Harris 88][Schmid 97] : local description
vector invariant to rotation

Find matches with the similarity measure of descriptors



Harris interest points




Interest points

= Numerous interest points definition available

= Scale invariant interest points (“SIFT”, [Lowe99])

= Speeded-up robust features (“SURF”, [Bay 2006])

= Binary Robust Independent Elementary Features (“BRIEF”,
[Calonder 2010])

=» The choice depends on the considered problem
context



Visual odometry: implied functions

Image pair sequence 1. Dense stereovision

2. Feature detection

3. Feature matching 4. Motion estimation




Interest points matching : principle

» |f a generated match is correct,

- Similar principal curvatures
- Applied to matching candidate selection

300.03, 81 .5%
%719.65, 112.4

265.68, 70.46) N .' N\,
618159, 105.5 : 166.57, 71.82)

48.06, 59.88

.




Interest points matching : principle

» |f a generated match is correct,

- In the vicinity of the match, neighbor matches must exist
- Local group matching : consideration a local region of image

. pivot . members



Some matching results)

Consecutive frames Small overlap

»




Visual odometry: implied functions

Image pair sequence Dense stereovision

Feature detection

Feature matching (tracking) Motion estimation




Motion estimation: problem statement

e Given two set of matched 3D points

I;,
I /
Ty

 Find the 3D transformation 7, that minimizes the point distances

_[Rrk-1 thk-1] _ aromin Y IIX — 7.
T, = 0 11T ng;H/\ Xl



Motion estimation: least square
minimization
e Given two set of matched 3D points {p.}, {p’.}
 The coordinates of matching points are linked by:
p; = Rp;+ T + N;

Where N, denotes some noise

e Least square estimation: find the 3D transform (R,T) that minimizes:

N
22 =3 |lpi — R+ T)|°
1=1



Motion estimation: least square
minimization

« Assuming a zero-mean noise on the points coordinates, the
barycenter of the transformed first set and the second set should be

equal:
pl — pll
1 N 1 N 1 N
} : / } : / /" } : > .
= —, 5 — —_— R T

e Changing the coordinat}evs: G=Di—P ; G=pi—D
thenwe have % = ) g — R.q||”
i=1

1. Find R that minimizes 2? (least square minimization)

A

2. EstimateTas 77 = p —R.p



Robust estimation

- Matched points are usually contaminated by wrong data
associations (= “outliers”)

. Possible causes of outliers are
-~ image noise
. occlusions
- blur,

- changes in view point and illumination for
which the feature detector or descriptor does not
account for

. For the camera motion to be estimated
accurately, outliers must be removed
. This is the task of robust estimation

* “RANSAC” (“Random Sample Consensus”) [Fishler & Bolles, 1981] has
been established as the standard method for motion estimation in the
presence of outliers



Results / Robust estimation

-~ Error at the loop closure: 6.5 m

y (meters)

- Error in orientation: 5 deg
- Trajectory length: 400 m
(A Soogle
s AT 1 |
R | “ Before removing the outliers
7 | : : =~ After removing the outliers
0 20 40 60 80 100 120 140
x (meters)

[D. Scaramuzza @ ETHZ]



Localization solutions in robotics

« Odometry
 Similarly, motion / accelerations sensors (inertial navigation)

Inherently drifts over time and distances, subject to
slippages and skids

=) Develop solutions relying on the robot exteroceptive sensors

* Visual odometry: akin to dead reckoning

Inherently drifts over time and distances

=) Develop solutions relying on the robot exteroceptive sensors
that memorizes stable environment features (SLAM)



SLAM
Simultaneous Localisation And Mapping



Principle of SLAM

© @

v

Landmark detection

Relative observations (measures)

« Of the landmark positions
» Of the robot motions

Observation associations

Estimation: refinement of the
landmark and robot positions




Principle of SLAM




(parenthesis: 2D Lidars)

n“]

Laser («Light Amplification by Stimulated Emission of Radiation »)
Time of flight of phase shift measures
=> LIDAR (« Light Detection And Ranging »)

 Telemetry (« measuring distances »)

In the plane: ;!"Tr_‘m‘f‘
iow o
1 Lg=~ 4 jl
‘, i o v ’IY _‘,ﬁ_ﬂl l"l crtor
8 JS |
Sy |
. it |
< -
3 % | {11 J__
-2 ,.4__{ i_ F_' =-[} E ﬁ,i 4 i
d-‘ ,; = *’f—ﬁ ~.
LLIIIB - J,,.J’d _j'
TTTTTH— e

Building map Perceived map



SLAM : illustration

Occupancy grid: on a flat plane, with odometry and “2D” LRF (S. Thrun)




SLAM : illustration

Occupancy grid: on a flat plane, with odometry and “2D” LRF (S. Thrun)




SLAM : illustration

Occupancy grid: on a flat plane, with odometry, a “2D” LRF and SLAM (S. Thrun)




SLAM : illustration

Occupancy grid: on a flat plane, with odometry, a “2D” LRF and SLAM (S. Thrun)

Sour
Facilie
Ccess




SLAM must reads

There are tons of papers on SLAM...

At least, read those:

Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms
Hugh Durrant-Whyte, Fellow, IEEE, and Tim Bailey
Simultaneous Localisation and Mapping (SLAM):
Part II State of the Art

Tim Bailey and Hugh Durrant-Whyte

(in Robotics and Automation Magazine,
Vol 13, Num 2/3, 2006)



Basics on estimation

“Estimation is the process by which we infer the value of a quantity
of interest, x, by processing data that is in some way dependent on

2

X

Zk — {Zl,ZQ"‘Zk}

Data

Estimation
Engine

x(k)

A

Prior Beliefs p(Xo)

»
|

Estimate



Basics on estimation

Maximum A Posteriori estimation:

Sensor model p(z/x): “Given x, the probability of the
sensor measurement being within Tm is....”

_ p(zx)p(x)
p(T‘Z) o p(Z)

x p(z|x) X p(x)
N—— N~
Likelihood prior

Given an observation z ,a likelihood function p(z|x) and a prior distri-
bution on x , p(x), the maximum a posteriori estimator - MAP
finds the value of x which maximises the posterior distribution p(x|z)

Xmap = arg max p(z|x)p(x) (1)
X




Basics on estimation

Example of MAP estimation
With normal prior and likelihood

8 10 12 14

6 8 QU112 14




Basics on estimation

Recursive Bayesian estimation
Z" = {21,222} Sequence of data (measurements)

We want conditional mean (mmse) of x given ZK

Can we iteratively calculate this — i.e. every time
a new measurement comes in, update our estimate?

Key idea: “one mans posterior is another’s prior”



Basics on estimation

Kalman filter

Recursive process: estimate the system state from uncertain
observations (measures) and an uncertain system model

Measurment model

/ (gaussian errors)

z=—H,x+w

Sensor H,

) Filter » Estimate )A(

Sensor H,

x(k+1)=Fx(k)+...
[ Sensor H, [Plant model ] T

Model prediction
(gausian errors)

Actual underlying state: x



Basics on estimation

Kalman filter: things to know

- A recursive process

* Asynchronous

* Prediction / update structure

* Prediction increases covariances

» Update decreases covariances

- Essential importance of correlations



Mapping and Localisation

- With perfect localisation:
Given the robot position x,, and a sensor model p(Z¥|M, x,,)
compute the map M: p(M|x,,, Z*)

-> Mapping problem « solved » (proper management of the sensors
uncertainties)

«  With a perfect known map
Given a feature map M, and a sensor model p(Z*¥|M, x,)

compute the robot position x,: p(xs| M, Zk)

-> Localisation problem « solved » (proper matching of sensor data
and the map)



Mapping and Localisation

- Without perfect localisation, nor perfect map ?
=> Simultaneous localisation and mapping (SLAM)

Given the robot controls u, and the sensor readings z,, compute
the map M and the robot position x,: p(M, x, |u,,z,)



SLAM: outline

e Simultaneous localisation and mapping
e Problem presentation

e Basics on estimation
« EKF SLAM



SLAM: EKF-based solution




SLAM: EKF-based solution

Importance of the correlations P — [g;v gvm}

vm




SLAM: EKF-based solution

Importance of the correlations P — [5;@ gvm}

vm




SLAM: EKF-based solution

Importance of the correlations P — [5;@ gvm}

vm




Kalman filter for SLAM

Classic implementation
(e.g. vehicle position tracking)

System state: x(k).withvariance P,
Control

/ input

x(k+1)=f(x(k),u(k+1)+v(k+1)

System model:

Observation model: \
noise

2(k) = h(x(k)) + w(kv)\/

Prediction (static features) :

SLAM implementation

System state:
x(k) = [xp,m1 ..... m, ], with X, = [0,0,¢ .t ,t.]

x?7y?7z

and m; = [xi,y,-,Zi]

P,k P, (k)]

PO=p w1 P,k

Motion

/ estimation

x(tk+1) = f(x(k),utk+1))+v(k+1)

System model:

Observation model: \
z(k) = h(x(k)) + w(k) noise

—

x,(k+1)]  [x(k) © u(k)
xt,1(k) o xt,1(k)
! xf,.';(k-) | | e 0 (K) _




Kalman filter for SLAM

When exploring new areas,
uncertainty grows +

N L ey o-‘,_ -~

—t—




Kalman filter for SLAM

When revisiting known areas,
uncertainty decreases and
the whole map is re-estimated




SLAM: outline

Simultaneous localisation and mapping
e Problem presentation

« Basics on estimation

e EKF SLAM

e Main issues



EKF-SLAM Issues

1. Algorithmic complexity: O(n?)



EKF-SLAM Issues

2. Non-linearities yield inconsticency

1= 640 6629

Inconsistent!

Standard data association
cannot close a 250m loop

Computational complexity
was not a problem here!

J00 -

420 A A 4 A -



EKF-SLAM Issues

3. Data associations

Within the estimation
framework:

Measurements
Predicted features

Within the estimation
framework ?

Measurements
Predicted features

N
l -Q\‘
K
%
0
j
ja
A
J 'f'c
1; /"
o o
ey N



SLAM : other estimation approaches

Stochastic approaches :

 ;

Kalman / information Ensemblist | Particles

Global minimization approaches (e.g. bundle adjustment,
scan matching)



SLAM: outline

e Simultaneous localisation and mapping
e Problem presentation
« Basics on estimation
e EKF SLAM
e Main issues

e \ision-based SLAM



Beyond estimation

Functions required by any SLAM implementation :

— Landmark detection — A perception process
— Relative observations (measures)
 Of the landmark positions — A perception process
» Of the robot motions — Control, signal processing...
— Observation associations — A perception process
— Refinement of the landmark and — An estimation process

robot positions



and power-saving

Use vision !

Micro UAVs

- Cameras : low cost, light

Perceive data
— In a volume

— Very far

— Very precisely

1024 x 1024 pixels
60° x 60° FOV
U
0.06 ° pixel resolution
(1.0cm at 10.0 m)

Loss of depth is (almost) not anymore a difficulty

Stereovision

— 2 cameras
provide depth

Images carry a vast amount of information
A vast know-how exists in the computer vision community



SLAM : what kind of landmarks ?

A good landmark:
- Should be discriminant (easy to associate)
- Should be invariant wrt. the viewpoint
- Its position (or part of it) should be observable — with
an associated error model

Some point features have these properties:
- Harris features
- SIFT features



Stereovision SLAM

Landmark detection — Vision : interest points
Relative observations (measures)

« Of the landmark positions — Stereovision
» Of the robot motions — Visual motion estimation
Observation associations — Interest points matching

Refinement of the landmark and — Extended Kalman filter
robot positions



Landmark observation : stereovision

Dense
stereovision

or

IP matching
applied on stereo
frames (even
easier)




Visual odometry: principle




Stereovision SLAM

Landmark detection — Vision : interest points «= OK
Relative observations (measures)

« Of the landmark positions — Stereovision <= OK
» Of the robot motions — Visual motion estimation <= OK
Observation associations — Interest points matching <= OK

Refinement of the landmark and — Extended Kalman filter <« OK
robot positions



On a ground rover

10

110 stereo pairs processed, 60m
loop J

E

g Ay P &
5 = — g )
= (C/
= >

=3

s

landmark uncertainty ellipses (x9)

Longitude(m)

07

—— Translation X )
ozl -6~ Translation Y |
) 8- Translation Z
£
F -

5.
e

%,

Sigma of angle uncertainty (degree)
Sigma of translation uncertainty (m)

C 20 40 80 20 100
Image step Image step



On a ground rover

110 stereo pairs processed, 60m loop

Frame 1/100 | Reference VME VME SLAM SLAM SLAM

Reference Std. Dev. result Abs.error result Std. Dev. Abs. error

®| 052° | 0.31° 2.75° 2.23° || 0.88° | 0.98° || 0.36 °

®| 036° | 0.25° | -0.11°|| 0.47° || 0.72° | 0.74°|| 0.36 °

P | —0.14° | 0.16° 1.89° 2.03° || 1.24° | 1.84° || 1.38°

tx | —0.012 | 0.010 0.057m 0.069 (|-0.077 | 0.069|| 0.065
m m m m m m

ty | —0.243 | 0.019 | =1.018}| 0.775 [|-0.284 | 0.064|| 0.041
m m m m m m m

| 0.019m 0.015 0.144m 0.125 0.018m 0.019]] 0.001
' m ' m ' m m




Latitude(m)

Latitude(m)

In Indoor environments

About 30 m long trajectory, 1300 stereo image pairs

//"' \A\I
)

. e~

(.- e = <

\ Initial

position

Latitude(m)

10 times
Cov. ellipse
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Phi (degree)

In Indoor environments

= About 30 m long trajectory, 1300 stereo image pairs

Elevation

Two rotation angles (Phi, Theta) Ph Camera
and Elevation must be zero |

Theta

—— Theta(pitch) ;
—— Theta + 3 times sigma — Elevation ‘ )
— Elevation + 3 times sigma

—— Phi(roll)

—— Phi+ 3times sigma

Elevation (m)
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With a blimp







SLAM: outline

Simultaneous localisation and mapping
e Problem presentation

« Basics on estimation

e EKF SLAM

e Main issues

Vision-based SLAM

e SLAM with stereovision
e SLAM with monocular imagery



SLAM with monocular vision

Micro UAVs

Smartphones,
wearable devices




SLAM with monocular vision

Prediction: any information on the robot motion

Landmarks: &
- interest points = 3D (x,y,z) points

Application of the « usual » SLAM steps:
— Landmark detection
— Relative observations (measures) Partial observations!

« Of the landmark positions (« bearings-only »)
« Of the robot motions

— (Observation associations

— Estimation: refinement of the landmark and
robot positions

But why is it particularily difficult?



Bearing-only SLAM

Generic SLAM

Landmark detection

Relative observations (measures)
« Of the landmark positions
« Of the robot motions
Observation associations

Refinement of the landmark and
robot positions

Stereovision SLAM

— Vision : interest points

— Stereovision
— Visual motion estimation

— Interest points matching
— Extended Kalman filter



Bearing-only SLAM

Generic SLAM

Landmark detection

Relative observations (measures)
« Of the landmark positions
« Of the robot motions
Observation associations

Refinement of the landmark and
robot positions

Monocular SLAM

— Vision : interest points

— « Multi-view stereovision »
— INS, Motion model...

— Interest points matching
— Extended Kalman filter



(Particle filtering)

[
»

0. Initialization

1. Prediction

y’ 2. Observations + weighting

(resampling)

1. Prediction
2. Observations
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Bearing-only SLAM: landmark initialisation

« Initialisation filter » = particle filter

/\/\
L aVERYAT
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One interest point
matched in the image




Bearing-only SLAM: landmark initialisation

« Initialisation filter » = particle filter

LnYARYA"
NIPANP

One interest point
matched in the image

Issues with this approach:
Complexity
Some landmarks remain
@ non-observable
 Numerous observations

are lost



Landmark initialisation

« Initialisation », 2"d approach: inverse depth parametrization
Solution established in 2006 [J. Montiel / A. Davison]:

* Direct initialization of a point the first time it is perceived
* Allows to consider points located at the infinite

O T?//

One landmark in the MAP

One interest point in
the image

Every detected landmark is directly and immediatly
observable



A closer look at the motion prediction

Constant velocity model

Robot state: R=(pq v w)”

Prediction: p™ = p + v.dt q" = q*w.dt V' =V W =W

Allows to focus the data association step:

1. Start with a descriptor of the landmark (e.g. appearance at first
observation)

2. Apply affine transformation to predict the current appearance

3. Search the landmark inside the observation uncertainty ellipse



A closer look at the motion prediction

Constant velocity model

Robot state: R=(pq v w)”

Prediction: p™ = p + v.dt q" = q*w.dt V' =V W =W

« simple (no additional sensor required)
* not precise
— bad linearization points
— large search areas
— difficulty to track very high motion
dynamics
* NO scale factor estimate possible



A closer look at the motion prediction

Constant acceleration model

Robot state: R=(pq Vv w v, Wa)T
Prediction: vt = v4v,-dt
wh = w+wy-di
Va+ — NMa
Wa+ = Wjy

* simple (no additional sensor required)
* not very precise

— bad linearization points

— large search areas
* no scale factor estimate possible



A closer look at the motion prediction

Using an inertial measurement unit

Robot state: R=(p q Vv a, wp, g)T

Prediction: p = p+v-dif
qQ° = q®v2q((wWm — wp) - dt)
vt = v+(q2R(q)-(am —ap) +g)-dt
a, = ap
W@ = Wp
g = K

» additional sensor required
* precise
— good linearization points
— small search areas
— possibility to track very high motion
dynamics
» scale factor estimate possible



A closer look at the motion prediction

Using an inertial measurement unit: results
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A closer look at the motion prediction

Using an inertial measurement unit: results
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A closer look at the motion prediction

Using an inertial measurement unit: results




A closer look at the motion prediction

Using an inertial measurement unit: results




A closer look at the motion prediction

Using an inertial measurement unit: summary

« An additional proprioceptive sensor can help if :
* high frequency
* not too noisy
 Can also be directly used in the prediction step if :
« complete
* never faulty



SLAM: outline

e Basics of simultaneous localisation and mapping

e SLAM with monocular vision
e Solutions to the landmark initialisation problem
 Importance of the motion prediction, introduction of an IMU

 What about loop-closing?



A closer look at data association

Data association relying on geometric information can
become tricky...

Blue: predicted
(mapped) features
Green: observed
features
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Large loop-closing

2 nearl n tiv
early consecutive cases case

- Better use landmark matching techniques



Overall summary

Autonomous robots, on the importance of localization

Localization using dead-reckoning approaches

SLAM

Problem presentation
e Basics on estimation

« EKF SLAM
e Main issues

Vision-based SLAM

e SLAM with stereovision
e SLAM with monocular imagery
- Solutions to the landmark initialisation problem
- lllustrations
- Importance of the motion prediction, introduction of an IMU
- (Visual loop-closing detection)



