
HAL Id: cel-01263287
https://hal.science/cel-01263287

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coding and Allocation for Distributed Data Storage:
Fundamental Tradeoffs, Coding Schemes and Allocation

Patterns
Iryna Andriyanova

To cite this version:
Iryna Andriyanova. Coding and Allocation for Distributed Data Storage: Fundamental Tradeoffs,
Coding Schemes and Allocation Patterns. Doctoral. Tutorial at the Swedish Communications Tech-
nologies Workshop 2013, Gothenburg, Sweden. 2013. �cel-01263287�

https://hal.science/cel-01263287
https://hal.archives-ouvertes.fr

Coding and Allocation

for Distributed Data Storage
Fundamental Tradeoffs, Coding Schemes and Allocation Patterns

Iryna Andriyanova

ETIS Lab, ENSEA/ University of Cergy-Pontoise/ CNRS

Cergy-Pontoise, France

August 21, 2013

1

Coding for Distributed Storage: Why Do We Care

1) Shift of technology from expensive, high-end centralized

NAS/SAN to a network of cheap storage devices

Issue: to provide a fault tolerance solution

 (storage-efficient)
2

Coding for Distributed Storage: Why Do We Care

2) Arrival of big data

Issue: to provide low cost solutions for data storing,

accessing, repairing, updating
3

When It Started

A3

A2

A1

RAID 1

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

A3

A2

A1

D4C4B4
B4 XOR C4

XOR D4

A3 XOR C3

XOR D3

B2

B1

RAID 5

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

C3

A2 XOR B2

XOR D2

C1

D3

D2

A1 XOR B1

XOR C1

DISQUE 4

D4C4RS4
C4 XOR D4

XOR E4

A3 XOR D3

XOR E3

B2

B1

RAID 6

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

RS3

A2 XOR B2

XOR E2

C1

D3

RS2

A1 XOR B1

XOR C1

DISQUE 4

E4

E3

E2

RS1

DISQUE 5

e

T

p

t

En

st

t

d

so

Si

e

A8

A5

A2

RAID 0

DISQUE 1 DISQUE 2

A7

A4

A1

DISQUE 3

A9

A6

A3

RAIDs:

Decentralized solutions:

p2p storage process

local data

storage

peer data

storage

 2: peers realize a distributed storage facility on the Internet, where every node redu

Redundant Array of Independent Disks

1987: RAID by Patterson, Gibson, Katz

4

When It Started

1987: by Patterson, Gibson, Katz

A3

A2

A1

RAID 1

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

A3

A2

A1

D4C4B4
B4 XOR C4

XOR D4

A3 XOR C3

XOR D3

B2

B1

RAID 5

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

C3

A2 XOR B2

XOR D2

C1

D3

D2

A1 XOR B1

XOR C1

DISQUE 4

D4C4RS4
C4 XOR D4

XOR E4

A3 XOR D3

XOR E3

B2

B1

RAID 6

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

RS3

A2 XOR B2

XOR E2

C1

D3

RS2

A1 XOR B1

XOR C1

DISQUE 4

E4

E3

E2

RS1

DISQUE 5

Redundant

Decentralized solutions:

p2p storage process

local data

storage

peer data

storage

 2: peers realize a distributed storage facility on the Internet, where every node redu

e

T

p

t

En

st

t

d

so

Si

e

A8

A5

A2

RAID 0

DISQUE 1 DISQUE 2

A7

A4

A1

DISQUE 3

A9

A6

A3

no coding

RAIDs:

5

When It Started

1987: by Patterson, Gibson, Katz

D4C4B4
B4 XOR C4

XOR D4

A3 XOR C3

XOR D3

B2

B1

RAID 5

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

C3

A2 XOR B2

XOR D2

C1

D3

D2

A1 XOR B1

XOR C1

DISQUE 4

D4C4RS4
C4 XOR D4

XOR E4

A3 XOR D3

XOR E3

B2

B1

RAID 6

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

RS3

A2 XOR B2

XOR E2

C1

D3

RS2

A1 XOR B1

XOR C1

DISQUE 4

E4

E3

E2

RS1

DISQUE 5

e

T

p

t

En

st

t

d

so

Si

e

A8

A5

A2

RAID 0

DISQUE 1 DISQUE 2

A7

A4

A1

DISQUE 3

A9

A6

A3

Redundant

Decentralized solutions:

p2p storage process

local data

storage

peer data

storage

 2: peers realize a distributed storage facility on the Internet, where every node redu

A3

A2

A1

RAID 1

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

A3

A2

A1

replication

RAIDs:

6

When It Started

1987: by Patterson, Gibson, Katz

A3

A2

A1

RAID 1

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

A3

A2

A1

e

T

p

t

En

st

t

d

so

Si

e

A8

A5

A2

RAID 0

DISQUE 1 DISQUE 2

A7

A4

A1

DISQUE 3

A9

A6

A3

Redundant

Decentralized solutions:

p2p storage process

local data

storage

peer data

storage

 2: peers realize a distributed storage facility on the Internet, where every node redu

D4C4B4
B4 XOR C4

XOR D4

A3 XOR C3

XOR D3

B2

B1

RAID 5

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

C3

A2 XOR B2

XOR D2

C1

D3

D2

A1 XOR B1

XOR C1

DISQUE 4

D4C4RS4
C4 XOR D4

XOR E4

A3 XOR D3

XOR E3

B2

B1

RAID 6

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

RS3

A2 XOR B2

XOR E2

C1

D3

RS2

A1 XOR B1

XOR C1

DISQUE 4

E4

E3

E2

RS1

DISQUE 5

erasure-correction coding

RAIDs:

7

When It Started

1987: by Patterson, Gibson, Katz

A3

A2

A1

RAID 1

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

A3

A2

A1

D4C4B4
B4 XOR C4

XOR D4

A3 XOR C3

XOR D3

B2

B1

RAID 5

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

C3

A2 XOR B2

XOR D2

C1

D3

D2

A1 XOR B1

XOR C1

DISQUE 4

D4C4RS4
C4 XOR D4

XOR E4

A3 XOR D3

XOR E3

B2

B1

RAID 6

DISQUE 1 DISQUE 2

A3

A2

A1

DISQUE 3

RS3

A2 XOR B2

XOR E2

C1

D3

RS2

A1 XOR B1

XOR C1

DISQUE 4

E4

E3

E2

RS1

DISQUE 5

e

T

p

t

En

st

t

d

so

Si

e

A8

A5

A2

RAID 0

DISQUE 1 DISQUE 2

A7

A4

A1

DISQUE 3

A9

A6

A3

RAIDs: Redundant

p2p storage process

local data

storage

peer data

storage

 2: peers realize a distributed storage facility on the Internet, where every node redu

Decentralized solutions:

erasure-correction coding

8

Distributed Storage (DS) Plateforms and Services

Plateforms of distributed file systems (DFSs):
GFS, Hadoop HDFS, Azure, ...

DS products:
Google’s Drive, Apple’s Icloud, Dropbox, Microsoft’s

SkyDrive, SugarSync, Amazon Cloud Drive, OVH’s Hubic,

Canonical’s Ubuntu One, Carbonite, Symform, ADrive,

EMC’s Mozy, Wuala,...

“Giants of storage”:
Google, Facebook, Amazon,

9

Open Issues

✽ Storing large amounts of data in an efficient way

✽ Design of efficient network protocols, reducing the total

network load

✽ Dealing with the data already stored

✽ Flexibility of storage parameters

✽ Efficient data update

✽ Security issues

✽ Queueing, quality of service
10

About This Tutorial

 Most of open problems can be rewritten in terms of parameters of

 underlying erasure-correction code and allocation protocol.

Hence, we focus on:

● coding for distributed storage

● allocation in DS networks

 P.S. Credits to Alan Julé (ETIS Lab) for his help.

11

Plan

1. Data storage models and parameters

2. Coding for distributed storage (DS)

3. Allocation problem

4. Some new problems in DS

Discussion

12

Part 1: Data Storage Models

13

111001 001100 101001

101001001100111001

010101 100101 001101

Data Upload to the DS Network (DSN)

010101

100101

001101

111001

001100

101001

010101 100101 001101

010101 100101 001101

1. file fragmentation into k segments

2. encoding operation

3. allocation operation

14

111001 001100 101001

101001001100111001

010101 100101 001101

Data Upload to the DS Network (DSN)

010101

100101

001101

111001

001100

101001

010101 100101 001101

010101 100101 001101

1. file fragmentation into k segments

2. encoding operation

3. allocation operation

Q: difference in sharing operations

for centralized and

decentralized DS systems?

14

111001 001100 101001

101001001100111001

010101 100101 001101

Data Download from the DSN

010101

100101

001101

111001

010101 100101 001101

010101 100101 001101

3. file assembly

2. decoding operation

1. data collection

15

Upload/Download

"Alloca*on:"Nonsymmetric,(link(between(source(and(data(colle

Disks

.

.

Server

Allocation

Collector

User

centralized: Data Center Network (DCN)

Disks

.

.

Server

Allocation

Collector

User

decentralized: P2P DSN

Server

16

Upload/Download in DSNs: Access Models

Type of allocation/collection:

deterministic/deterministic

random/deterministic

deterministic/random

random/random

centralized DSNs

(DCNs)

decentralized DSNs

?

17

Upload/Download in DSNs: Access Models

Type of allocation/collection:

deterministic/deterministic

random/deterministic

deterministic/random

random/random

centralized DSNs

(DCNs)

decentralized DSNs

17

Data Loss Models, Failure Repair

● independent failure model:

 a storage node fails with some probability p (DCNs) or

 a storage node is not accessible with some probability p (P2P)

● dependent failure model:

 a storage node i, given a set of failes nodes S, fails with

 probability p(i|S)

18

Data Loss Models, Failure Repair

Repair:

(local) decoding/ linear combination of available data

segments (code symbols)

● exact repair:

 recovered data segment = lost one

● functional repair:

 recovered data segment ≠ lost one

19

Data Update Model

re-calculation of data segments (code symbols)

depending on the changed data

● Useful for:

 frequently modified data

20

Parameters of DSNs

● Number of disks n f

21

Parameters of DSNs

● Number of disks

● Fault tolerance = maximum number of failed disks with no data loss/

 that one can always repair

n f

n f

21

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency = user data/ total stored data

n f

n f

R

21

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency

● Encoding/decoding complexity

n f

n f

R

21

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency

● Encoding/decoding complexity

● Repair access / bandwidth = #disks/ amount of data to

 access/download in order

 to repair t failures

n f

n f

R

R(t) BR(t)

21

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency

● Encoding/decoding complexity

● Repair access / bandwidth

● Download access / bandwidth = #disks/ amount of data

 to access/download

 in order to decode

 the data

n f

n f

R

R(t) BR(t)

D(t) BD(t)

21

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency

● Encoding/decoding complexity

● Repair access / bandwidth

● Download access / bandwidth

● Update access

n f

n f

R

R(t) BR(t)

D(t) BD(t)

21

(Fundamental storage tradeoff, code parameters)

Parameters of DSNs

● Number of disks

● Fault tolerance

● Storage efficiency

● Encoding/decoding complexity

● Repair access / bandwidth

● Download access / bandwidth

● Update access

(code-allocation parameters)

n f

n f

R

R(t) BR(t)

D(t) BD(t)

21

On Code-Allocation Dependence

Code and allocation are dependent in general.

Code : storage and network parameters of the scheme

Allocation : “channel model” of the “storage communication”

22

On Code-Allocation Dependence

Code and allocation are dependent in general.

Code : storage and network parameters of the scheme

Allocation : “channel model” of the “storage communication”

To simplify the design task,

- code can be made independent of allocation

- allocation can be made independent of code (ex. RAID)

22

On Code-Allocation Dependence

Code and allocation are dependent in general.

Code : storage and network parameters of the scheme

Allocation : “channel model” of the “storage communication”

To simplify the design task,

- code can be made independent of allocation

- allocation can be made independent of code (ex. RAID)

 in a real DSN, allocation is always dependent on code (#users)

22

Our Toy Data Storage Model for the Next Part

segments =

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks =

independent loss model, failure probability =

1 segment → 1 separate disk

n f

k p

k p

23

Our Toy Data Storage Model for the Next Part

segments =

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks =

independent loss model, failure probability =

1 segment → 1 separate disk

n f

k p

k p

(i) segment of size m = symbol over GF (2m)

23

Our Toy Data Storage Model for the Next Part

segments =

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks =

independent loss model, failure probability =

1 segment → 1 separate disk

n f

k p

k p

(i) segment of size m = symbol over GF (2m)

(ii) gives us the channel model, which is

symbol erasure channel (binary erasure

channel) with probabilityk p

23

Part 2: Codes for DSNs and Storage Tradeoffs

24

Our Toy Data Storage Model for the Next Part

segments =

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks =

independent loss model, failure probability =

1 segment → 1 separate disk

n f

k p

k p

(i) segment of size m = symbol over GF (2m)

(ii) gives us the channel model, which is

symbol erasure channel (binary erasure

channel) with probabilityk p

25

SEC()

Our Toy Data Storage Model for the Next Part

segments =

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks = n f

k p

k p

(i) segment of size m = symbol over GF (2m)

26

Our Toy Data Storage Model for the Next Part

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

SEC()k p

}

c = (c1, c2, . . . , cn) ∈ GF (2m)n

∈

u = (u1, u2, . . . , uk) ∈ GF (2m)k

27

Our Toy Data Storage Model for the Next Part

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

SEC()k p

} [n, k] code over GF (2m)
c = (c1, c2, . . . , cn) ∈ GF (2m)n

∈

u = (u1, u2, . . . , uk) ∈ GF (2m)k

27

Our Toy Data Storage Model for the Next Part

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

SEC()k p

} [n, k] code over GF (2m)

(~BEC())k p

c = (c1, c2, . . . , cn) ∈ GF (2m)n

∈

u = (u1, u2, . . . , uk) ∈ GF (2m)k

27

Some Coding Facts

For a code C over :[n, k] GF (2m)

d

Definition

Hamming minimum distance = minimum number of differences between any

two codewords from C (there are 2^k in total).

28

Some Coding Facts

For a code C over :[n, k] GF (2m)

d

Definition

Hamming minimum distance = minimum number of differences between any

two codewords from C (there are 2^k in total).

Definition

Erasure-correcting capability = maximum number of erased symbols that

can always be corrected by decoding

(t)

28

Some Coding Facts

For a code C over :[n, k] GF (2m)

d

Definition

Hamming minimum distance = minimum number of differences between any

two codewords from C (there are 2^k in total).

Definition

Erasure-correcting capability = maximum number of erased symbols that

can always be corrected by decoding

(t)

Simple important fact
t = d− 1

28

Some Coding Facts

For a code C over :[n, k] GF (2m)

d

Definition

Hamming minimum distance = minimum number of differences between any

two codewords from C (there are 2^k in total).

Definition

Erasure-correcting capability = maximum number of erased symbols that

can always be corrected by decoding

(t)

Simple important fact
t = d− 1

Definition

Code rate:

−

RC = k

n
(0 ≤ RC ≤ 1)

28

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

Parity matrix = (n-k) x n matrix such that
Definition

H Hc
T = 0

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

Parity matrix = (n-k) x n matrix such that
Definition

H Hc
T = 0

Q: What is the form of H for the systematic code?

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

Parity matrix = (n-k) x n matrix such that
Definition

H Hc
T = 0

Q: What is the form of H for the systematic code? H =
(

−PT In−k

)

−1

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

Parity matrix = (n-k) x n matrix such that
Definition

H Hc
T = 0

Q: What is the form of H for the systematic code?

Q: What is the decoding operation to recover erased symbols?

H =
(

−PT In−k

)

−1

29

Some Coding Facts

For a code C over :[n, k] GF (2m)

Generator matrix = k x n matrix, the lines of which are base vectors, spanning

 the vector subspace of C.

Definition
C

G

Encoding operation:
c = uG

Systematic code = code for which the generator matrix is of form

Definition

G = (Ik P)
c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

Parity matrix = (n-k) x n matrix such that
Definition

H Hc
T = 0

Q: What is the form of H for the systematic code?

Q: What is the decoding operation to recover erased symbols?

H =
(

−PT In−k

)

−1

Herased (cerased)
T
= Hknown (cknown)

T

(

− n−k

)

u = (Gknown)
−1

cknownor

29

Link Between DSN and Code Parameters

DSN Code

Fault tolerance Erasure-correcting capability

Storage efficiency Code rate

Repair access

Download access s. t. the solution exists

Encoding/decoding complexity Encoding/decoding complexity

n f

R

t = d− 1

RC

R(1)

D(k) min |cknown|

=
1

n− k

n−k
X

i=1

(weightH(hi)− 1)

30

Link Between DSN and Code Parameters

DSN Code

Fault tolerance Erasure-correcting capability

Storage efficiency Code rate

Repair access

Download access s. t. the solution exists

Encoding/decoding complexity Encoding/decoding complexity

n f

R

t = d− 1

RC

R(1)

D(k) min |cknown|

Is it possible? f(d) ↑ R(RC) ↑ R(1) ↓ D(k) ↓ complexity ↓

=
1

n− k

n−k
X

i=1

(weightH(hi)− 1)

30

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code? D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Q: What is the code having the lowest decoding complexity?

D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Q: What is the code having the lowest decoding complexity? A systematic one.

D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Examples of used systematic MDS codes:

Repetition code (RAID1)
≤ − − C

(c1, c2, . . . , cn) = (u1, u1, . . . , u1)

Q: What is the code having the lowest decoding complexity? A systematic one.

D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Examples of used systematic MDS codes:

Repetition code (RAID1)
≤ − − C

(c1, c2, . . . , cn) = (u1, u1, . . . , u1)

R = 1

n
, d = n

Q: What is the code having the lowest decoding complexity? A systematic one.

D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Examples of used systematic MDS codes:

Repetition code (RAID1)
≤ − − C

(c1, c2, . . . , cn) = (u1, u1, . . . , u1)

R = 1

n
, d = n

Parity [3,2] code (RAID5)

(c1, c2, . . . , cn) = (u1, u2, . . . , un−2,⊕
n−1

i=1
ui)

R = n−1

n
, d = 2

Q: What is the code having the lowest decoding complexity? A systematic one.

D(k)=k.

31

A Storage Tradeoff: f, R and D(k)

Singleton bound: ↑ C ↑ ↓

d ≤ n− k + 1 = n(1−RC) + 1

Maximum distance separable (MDS) code = code that achieves the Singleton

bound.

Definition

Q: What is D(k) for an MDS code?

Examples of used systematic MDS codes:

Q: What is the code having the lowest decoding complexity? A systematic one.

D(k)=k.

Reed-Solomon (RS) codes (RAID6)

c = u (Ik P) = (u1, u1, . . . , uk, ck+1, . . . , cn)

All elements of P are non-zero. n ≤ field size.

31

Distributed Storage with MDS Codes

✽ Achieving the tradeoff between the fault tolerance,

storage efficiency and download access

✽ Decoding complexity . For systematic codes and

deterministic collection - 0.

But:

≤ O(k3)

— Encoding complexity:

— Repair access:

— Maximum codelength n

≤

O(n2)

cannot be high

R(1) = k ∼ O(k)

32

Distributed Storage with MDS Codes

✽ Achieving the tradeoff between the fault tolerance,

storage efficiency and download access

✽ Decoding complexity . For systematic codes and

deterministic collection - 0.

But:

≤ O(k3)

— Encoding complexity:

— Repair access:

— Maximum codelength n

HIgh repair cost - inevitable price for erasure coding?

≤

O(n2)

cannot be high

R(1) = k ∼ O(k)

32

Distributed Storage with Non-MDS Codes

Code constructions based on modifications of

MDS codes:

- pyramid codes, generalized pyramid codes

- local reconstruction codes

Other code constructions:

- regenerating codes (based on network coding)

- LDPC codes (graph codes)

33

H =

0

B

B

B



p11 p12 p13 p14 p15 p16 1 0 0

p21 p22 p23 p24 p25 p26 0 1 0

p31 p32 p33 p34 p35 p36 0 0 1











Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

Idea: construct “pyramids”

R(1) = 6

P1 P2 P3

34

P2 P3

H =

















p11 p12 p13 0 0 0 1 1 0 0

0 0 0 p14 p15 p16 0 1 0 0

p21 p22 p23 p24 p25 p26 0 0 1 0

p31 p32 p33 p34 p35 p36 0 0 0 1

















Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

Idea: construct “pyramids” (“check-node splitting”)
{

R(1) = 4 · 3

9
+ 3 · 4

9
+ 6 · 2

9
= 4

P1

35

Idea: construct “pyramids” (“check-node splitting”, applied

recursively within subgroups until the target R(1) is achieved)

Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

36

Idea: construct “pyramids” (“check-node splitting”, applied

recursively within subgroups until the target R(1) is achieved)

Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

0.2 0.4 0.6 0.8

4

6

8

10

12

R(1)

R =

−

k

n

1

n

k

·

1

36

Idea: construct “pyramids” (“check-node splitting”, applied

recursively within subgroups until the target R(1) is achieved)

Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

✽ Pyramid codes achieve the tradeoff between the storage efficiency

and repair access, if the repair of information symbols is only taken

into account [GHSY12]

But:
—Pyramid codes are non-MDS, except for two extreme points (R is not

optimal for given n and d)

— decoding access ↑

— encoding/decoding complexity ↑

[GHSY12] P. Gopalan, Cheng Huang, H. Simitci, and S. Yekhanin. On the locality of codeword symbols. Information Theory, IEEE Transactions

on, 58(11):6925–6934, 2012.

37

Modifications of MDS Codes: Pyramid Codes

Remark: for the repetition code, R(1)=1.

Idea: construct “pyramids” (“check-node splitting”, applied

recursively within subgroups until the target R(1) is achieved)

✽ Pyramid codes achieve the tradeoff between the storage efficiency

and repair access, if the repair of information symbols is only taken

into account [GHSY12]

✽ Close to the concept of locally decodable codes [Yek]

✽ Generalized pyramid codes are based on “overlapped pyramids”,

where the overlapping should be done to satisfy the recoverability

condition (guarantee to recover up to some number of erasures)

[GHSY12] P. Gopalan, Cheng Huang, H. Simitci, and S. Yekhanin. On the locality of codeword symbols. Information Theory, IEEE Transactions

on, 58(11):6925–6934, 2012.

[Yek] S. Yekhanin. Locally decodable codes.

38

H =











p11 p12 p13 p14 p15 p16 1 0 0

p21 p22 p23 p24 p25 p26 0 1 0

p31 p32 p33 p34 p35 p36 0 0 1











Modifications of MDS Codes: Local

Reconstruction Codes

Idea: add “local” parity for groups of information symbols

R(1) = 6

P1 P2 P3

39

H =























q11 q12 q13 0 0 0 0 0 0 1 0

0 0 0 q14 q15 q16 0 0 0 0 1

p11 p12 p13 p14 p15 p16 1 0 0 0 0

p21 p22 p23 p24 p25 p26 0 1 0 0 0

p31 p32 p33 p34 p35 p36 0 0 1 0 0























Modifications of MDS Codes: Local

Reconstruction Codes

Idea: add “local” parity for groups of information symbols

P1 P2 P3 P4 P5

R(1) = 3

40

Modifications of MDS Codes: Local

Reconstruction Codes

Particular example [HSX12, Hua13] for Windows Azure:

[Hua13] C. Huang. Erasure coding for storage applications (part ii). presented at the USENIX FAST’13, 2013.

0.2 0.4 0.6 0.8

4

6

8

10

12

R(1)

R =

LRC

[HSX+12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in windows azure storage.

USENIX ATC’12, 2012.

41

Modifications of MDS Codes: Local Regeneration

Codes

✽ LRC codes are what is the best example by now in terms of R(1) for

information symbols

R(1) = O(k/t) with t - number of groups

✽ Possibility to deal with the already stored data

✽ Decoding complexity does not grow

But:

—LRC codes have low R (R is not optimal for given n and d)

— upload access ↑

— encoding complexity ↑

42

What about Large DCNs?

Existing solutions: concatenations of smaller codes (many variants)

—Examples of

 MDS codes: [9,6] (Google GFS II), [14,10] (HDFS Facebook)

 LRC codes: [16,12], [18,12]

— What about larger n?

• large encoding/decoding complexity

and

• NP-hard problem of the code design

Example: Partial MDS codes

Product codes: two MDS codes:

local [m+r,m] and global [n+s,n]

(possibility to use local codes with

different parameters) [Hua13]

d0 d1 d2 d3 d4 d5 p0

d6 d7 d8 d9 d10 d11

d12 d13 d14 d15 d16 d17

d18 d19 d20 d21 y4 y5

p1

p2

p3q0 q1

m = 4

n = 7

s = 2 r = 1

43

Network Codes for DSNs: Regenerating Codes

[DGW+10] A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright, and K. Ramchandran. Network coding for distributed storage systems.

Information Theory, IEEE Transactions on, 56(9):4539 –4551, sept. 2010.

✽ Designed for a general class of DSNs

✽ Repair problem: optimization of the used network

bandwidth

✽ More adapted to P2P wireless DSNs? ...

44

Network Codes for DSNs: Regenerating Codes

Idea: 1) translate the upload/download problem in terms of

network information flows

[DR13] A. Dimakis and K. Ramchandran. A (very long) tutorial on coding for distributed storage. presented at the IEEE ISIT’13, Istanbul,

Turkey, 2013.

data

collector 2
S

data

collector 1

Hence, one can use the well’known cut-set bound in order to determine the

amount information available at the collector

45

Network Codes for DSNs: Regenerating Codes

Idea: 1) translate the upload/download problem in terms of

network information flows

 2) use network coding to multicast

[DR13] A. Dimakis and K. Ramchandran. A (very long) tutorial on coding for distributed storage. presented at the IEEE ISIT’13, Istanbul,

Turkey, 2013.

Example [DR13]: [4,2] MDS code seen as a network code

data

collector

α

data

collector∞

data

collector∞

data

collector∞

a

b

a+b

a+2b

b

a+b

a+2b

a

S

∞
∞

∞
∞

α

α

α

46

Network Codes for DSNs: Regenerating Codes

Idea: 1) translate the upload/download problem in terms of

network information flows

 2) use network coding to multicast

 3) formulate the repair optimisation problem

 to minimize the repair bandwidth

[DR13] A. Dimakis and K. Ramchandran. A (very long) tutorial on coding for distributed storage. presented at the IEEE ISIT’13, Istanbul,

Turkey, 2013.

a

b

a+b

a+2b

b

a+b

a+2b

a

b b

β

β

β

data

collector

∞

∞

S

∞
∞

∞
∞

α

=2GB

BR(t)

47

Network Codes for DSNs: Regenerating Codes

Idea: 1) translate the upload/download problem in terms of

network information flows

 2) use network coding to multicast

 3) formulate the repair optimisation problem

 to minimize the repair bandwidth BR(t)

Functional repair = repair operation where it is allowed to reconstruct a linear

 combination containing the erased symbol

Definition

Exact repair = repair operation where each erased symbol is reconstructed exactly.

48

Network Codes for DSNs: Regenerating Codes

Idea: 1) translate the upload/download problem in terms of

network information flows

 2) use network coding to multicast

 3) formulate the repair optimisation problem

 to minimize the repair bandwidth BR(t)

Functional repair = repair operation where it is allowed to reconstruct a linear

 combination containing the erased symbol

Definition

Exact repair = repair operation where each erased symbol is reconstructed exactly.

Functional repair bound = Cut-set bound

Main tradeoff on the repair bandwidth vs. rate R:

48

Network Codes for DSNs: Regenerating Codes

In literature, the functional repair region is usually plotted for some given R.

The bound is tight for two extreme points.

49

Network Codes for DSNs: Regenerating Codes

In literature, the functional repair region is usually plotted for some given R.

The bound is tight for two extreme points.

Exact repair region?

49

Network Codes for DSNs: Regenerating Codes

In literature, the functional repair region is usually plotted for some given R.

Exact repair region? Strictly included into the functional repair region [Tia13]
[Tia13] C. Tian. Rate region of the (4,3,3) exact-repair regenerating code. In Proceedings of ISIT’2013, Istanbul, Turkey, July 2013.

50

Network Codes for DSNs: Regenerating Codes

Some code constructions:

• Functional repair

For one (or both) extreme points, based on product-matrices [RSK11], on

local parities search [HLS13], on the theory of invariant subspaces [KK12], ...

• Exact repair

Based on the analysis of the network information flow [WZ13], by local

parities search [PLD12], on geometric constructions [PNERR11],...

[RSK11] K. V. Rashmi, N.B. Shah, and P.V. Kumar. Optimal exact-regenerating codes for distributed storage at the msr and mbr points via

a product-matrix construction. Information Theory, IEEE Transactions on, 57(8):5227–5239, 2011.

[HLS13] Yuchong Hu, Patrick P.C. Lee, and Kenneth W. Shum. Analysis and construction of functional regenerating codes with uncoded

repair for distributed storage systems. In INFOCOM, 2013 Proceedings IEEE, pages 2355–2363, 2013.

[KK12] G.M. Kamath and P.V. Kumar. Regenerating codes: A reformulated storage-bandwidth trade-off and a new construction. In

Communications (NCC), 2012 National Conference on, pages 1–5, 2012.

[WZ13] Anyu Wang and Zhifang Zhang. Exact cooperative regenerating codes with minimum-repair-bandwidth for distributed storage. In

INFOCOM, 2013 Proceedings IEEE, pages 400–404, 2013.

[PLD+12] D.S. Papailiopoulos, Jianqiang Luo, A.G. Dimakis, Cheng Huang, and Jin Li. Simple regenerating codes: Network coding for

cloud storage. In INFOCOM, 2012 Proceedings IEEE, pages 2801–2805, 2012.

[PNERR11] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran. Dress codes for the storage cloud: Simple randomized constructions.

In Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pages 2338–2342, 2011.

51

Network Codes for DSNs: Regenerating Codes

✽ Regenerating codes: well-developed theory of network coding,

allowing to obtain bounds on performance of DSNs

✽ Good performance in terms of repair bandwidth

✽ Exemples of designed systems: NCCloud, CORE

✽ Such a design may be useful for DSNs with low-capacity links

52

Network Codes for DSNs: Regenerating Codes

— Decoding access ↑

— Code rates ↓

— Encoding/decoding complexity ↑

— For the functional repair, one should keep track of used code instances

— The optimisation problem cannot be formulated in terms of the repair

access

But:

52

Network Codes for DSNs: Regenerating Codes

— Decoding access ↑

— Code rates ↓

— Encoding/decoding complexity ↑

— For the functional repair, one should keep track of used code instances

— The optimisation problem cannot be formulated in terms of the repair

access

But:

[JKLS+13] Steve Jiekak, Anne-Marie Kermarrec, Nicolas Le Scouarnec, Gilles Straub, and Alexandre Van Kempen. Regenerating codes: a

system perspective. SIGOPS Oper. Syst. Rev., 47(2):23–32, July 2013.

0

30

60

90

120

150

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(a) Time for encoding a file in seconds

0

2

4

6

8

10

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(b) Time for repairing a lost device in seconds

0

30

60

90

120

150

0 5 10 15 20 25 30 35

k

RS
PM
EL
RL

(c) Time for decoding a file in seconds

Illustration from [JKLS13]: comparison of various regenerating codes with RS codes

52

Sparse-Graph Coding for DSNs

Remark: in contrast to the codes, presented before, sparse-graph codes

have encoding/decoding complexity ∼ O(n).

Also, the iterative decoding algorithm can correct erasures beyond the

erasure-correcting capability

53

Sparse-Graph Coding for DSNs

Remark: in contrast to the codes, presented before, sparse-graph codes

have encoding/decoding complexity ∼ O(n).

Also, the iterative decoding algorithm can correct erasures beyond the

erasure-correcting capability

Particularity: the parity matrix H has a

small number of non-zero elements

per row/column, of order o(n).

53

Sparse-Graph Coding for DSNs

Remark: in contrast to the codes, presented before, sparse-graph codes

have encoding/decoding complexity ∼ O(n).

Also, the iterative decoding algorithm can correct erasures beyond the

erasure-correcting capability

Particularity: the parity matrix H has a

small number of non-zero elements

per row/column, of order o(n).

Q: What is the repair access R(1)?

53

Sparse-Graph Coding for DSNs

Remark: in contrast to the codes, presented before, sparse-graph codes

have encoding/decoding complexity ∼ O(n).

Also, the iterative decoding algorithm can correct erasures beyond the

erasure-correcting capability

Particularity: the parity matrix H has a

small number of non-zero elements

per row/column, of order o(n).

Q: What is the repair access R(1)?

R(1)=c-1 if the rows have weight c.

0.2 0.4 0.6 0.8

4

6

8

10

12

R(1)

R =

−

k

n

1

n

k

·

1

53

Sparse-Graph Coding for DSNs

Remark: in contrast to the codes, presented before, sparse-graph codes

have encoding/decoding complexity ∼ O(n).

Also, the iterative decoding algorithm can correct erasures beyond the

erasure-correcting capability

Particularity: the parity matrix H has a

small number of non-zero elements

per row/column, of order o(n).

Q: What is the repair access R(1)?

R(1)=c-1 if the rows have weight c.

Moreover, sparse-graph codes are

scalable in n.

0.2 0.4 0.6 0.8

4

6

8

10

12

R(1)

R =

−

k

n

1

n

k

·

1

53

Sparse-Graph Coding for DSNs

But... disadvantages are also serious:

— Sparse-graph codes are efficient starting from some sufficiently large n

(several hundreds)

— To obtain a good performance, some additional constraints on

minimum distance should be verified

—A sparse-graph code is not MDS and erasure-correction capability is

not guaranteed in general, but only in some very particular cases. This

makes the code allocation-dependent.

— Systematic sparse-graph codes are bad. Hence, non-systematic

constructions should be used ⇒ non-zero decoding complexity

54

Sparse-Graph Coding for DSNs

Some sparse-graph code constructions:

• LDPC codes: first test of simple codes [Pla03], LDPC codes tested in

CERN [GKS07], SpreadStore prototype based on projective geometry codes

[HJC10]

• Tornado: prototype for archival storage [WT06]

• LT codes: [XC05]

[GKS07] Benjamin Gaidioz, Birger Koblitz, and Nuno Santos. Exploring high performance distributed file storage using ldpc codes. Parallel

Comput., 33(4-5):264–274, May 2007.

[HJC+10] Subramanyam G. Harihara, Balaji Janakiram, M. Girish Chandra, Aravind Kota Gopalakrishna, Swanand Kadhe, P. Balamuralidhar,

and B. S. Adiga. Spreadstore: A ldpc erasure code scheme for distributed storage system. In DSDE, pages 154–158. IEEE Computer

Society, 2010.

[Pla03] James S. Plank. On the practical use of ldpc erasure codes for distributed storage applications. Technical report, 2003.

[WT06] M. Woitaszek and H.M. Tufo. Fault tolerance of tornado codes for archival storage. High-Performance Distributed Computing,

International Symposium on, 0:83–92, 2006.

[XC05] Huaxia Xia and Andrew A. Chien. Robustore: Robust performance for distributed storage systems. Technical report, 2005.

55

Sparse-Graph Coding for DSNs

Our prototype:

• based on structured LDPC codes

• erasure-correction guarantee

• quasi-systematic structure

• joint allocation protocol

[JA13] A. Jule and I. Andriyanova. An efficient family of sparse-graph codes for use in data centers. 2013.

Solution Number of disjoint networks Maximum guaranteed protection Cost

RAID 1 5 4 31

RAID 5 4 1 4

RAID 6 3 2 6

Our solution 1 4 4

TABLE IV

COMPARISON OF DIFFERENT SOLUTIONS IN THE CASE OF 36 DISKS

56

Sparse-Graph Coding for DSNs

Our prototype:

• based on structured LDPC codes

• erasure-correction guarantee

• quasi-systematic structure

• joint allocation protocol

[JA13] A. Jule and I. Andriyanova. An efficient family of sparse-graph codes for use in data centers. 2013.

Operation Time (ms) Throughput (MBytes/s)

Encoding 0.346 33.74

Repair of 1 disk 215/ 0.011 1111

Repair of 3 disks 281/ 0.022 546.4

TABLE I

NECESSARY TIME AND THROUGHPUT OF ENCODING, DECODING OPERATIONS OVER IN THE NETWORK OF 12 DISKS AND ALLOWING UP

TO 3 SIMULTANEOUS FAILURES

57

Coding for DSNs: Important Points

✽ Common basis of comparison is needed (at least for similar

applications)

✽ In many cases, fundamental tradeoffs should still be derived

✽ General code constructions, both algebraic and probabilisitic are

welcome!

58

Part 3: Allocation Problem in DSNs

1

111001 001100 101001

101001001100111001

010101 100101 001101

010101

100101

001101

111001

001100

101001
010101 100101 001101

010101 100101 001101

111001 001100 101001

010101

100101

001101

010101 100101 001101

010101 100101 001101

encoded segments = # disks =

independent loss model, failure probability =

1 segment → 1 separate disk

n f

k p

 gives us the channel model, which is

symbol erasure channel (binary erasure

channel) with probabilityk p

Our Previous Example: BEC Model

2

data disks parity disks

Therefore, if one uses a MDS code, one has the scheme below?

New Example 1

3

data disks parity disks

Therefore, if one uses a MDS code, one has the scheme below?

New Example 1

Practical RAID DCN:

Q: What is the

 reason?

3

data disks parity disks

Therefore, if one uses a MDS code, one has the scheme below?

New Example 1

Practical RAID DCN:

Q: What is the

 reason?

1. rebalancing

upload and repair

loads over the disks

2. dealing with

multiple files/users

3

New Example 2

server

4

New Example 2

Q: The allocation, is it network-

dependent?

No if:

Yes if:

server

4

New Example 2

Q: The allocation, is it network-

dependent?

No if:

Yes if:

all the disks fal independently

from each other

and

the network bandwidth is large

enough

otherwise

server

4

More Questions to Ask

 Is the allocation:

• code-dependent? (see the part on coding)

• channel- or bandwidth-dependent?

...

Consequence: a change in the failure or access model change the

model of the equivalent “communication channel”.

Hence, a new allocation protocol is needed (and possibly, an allocation-

aware code design)

5

Allocation Problems

Optimal allocation of data segments (code symbols) in a DSN:

- to maximize reliability

- to provide better quality of service

- to balance stored data in the network

- to balance network load from each of the nodes

6

Allocation Problems

Optimal allocation of data segments (code symbols) in a DSN:

- to maximize reliability

- to provide better quality of service

- to balance stored data in the network

- to balance network load from each of the nodes

Possible considerations to take into account in order to build

the equivalent channel model:

• network topology

• single user/multiple users

• correlated disk failures

• heterogenous links

• codelength n ≠ #disks

6

Allocation Problems

Optimal allocation of data segments (code symbols) in a DSN:

- to maximize reliability

- to provide better quality of service

- to balance stored data in the network

- to balance network load from each of the nodes

Moreover, one has to deal with the re-allocation if there is a change:

- in network topology

- in user access models

Possible considerations to take into account in order to build

the equivalent channel model:

• network topology

• single user/multiple users

• correlated disk failures

• heterogenous links

• codelength n ≠ #disks

6

Equivalent Channel Models and a Particular

Allocation Example

Considering allocation problems or joint code-allocation design for

DSNs is new in the coding/information theory community.

7

Equivalent Channel Models and a Particular

Allocation Example

Considering allocation problems or joint code-allocation design for

DSNs is new in the coding/information theory community.

Two examples:

- Markov reliability model (“erasure channel with memory”)
[FLP10], [NYGS06]

- Block erasure channel [JA13]

[FLP+10] Daniel Ford, Francois Labelle, Florentina Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean

Quinlan. Availability in globally distributed storage systems. In Proceedings of the 9th USENIX Symposium on Operating Systems

Design and Implementation, 2010.

[NYGS06] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan. Subtleties in tolerating correlated failures in wide-area

storage systems. In Proceedings of the 3rd conference on Networked Systems Design & Implementation - Volume 3, NSDI’06,

pages 17–17, Berkeley, CA, USA, 2006. USENIX Association.

[JA13] A. Jule and I. Andriyanova. An efficient family of sparse-graph codes for use in data centers. 2013.

7

Equivalent Channel Models and a Particular

Allocation Example

Considering allocation problems or joint code-allocation design for

DSNs is new in the coding/information theory community.

Two examples:

- Markov reliability model (“erasure channel with memory”)
[FLP10], [NYGS06]

- Block erasure channel [JA13]

[FLP+10] Daniel Ford, Francois Labelle, Florentina Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean

Quinlan. Availability in globally distributed storage systems. In Proceedings of the 9th USENIX Symposium on Operating Systems

Design and Implementation, 2010.

[NYGS06] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan. Subtleties in tolerating correlated failures in wide-area

storage systems. In Proceedings of the 3rd conference on Networked Systems Design & Implementation - Volume 3, NSDI’06,

pages 17–17, Berkeley, CA, USA, 2006. USENIX Association.

[JA13] A. Jule and I. Andriyanova. An efficient family of sparse-graph codes for use in data centers. 2013.

One more interesting work (P2P DSNs with MDS coding): [LDH12]

[LDH12] D. Leong, A.G. Dimakis, and Tracey Ho. Distributed storage allocations. Information Theory, IEEE Transactions on, 58(7):4733–

4752, 2012.

7

Erasure Channel with Memory

Modelling disk failures in a DCN:

- can a single disk failure imply the

failure of others?

8

Erasure Channel with Memory

Modelling disk failures in a DCN:

- can a single disk failure imply the

failure of others?

[FLP10]: models based on measurements

made over Google DCNs:

- a disk (chunk) failure is probable to cause

the failure of the whole cluster (stripe)

2 0

Chunk recovery

1

Chunk failure

Stripe unavailable

Note: such a model can be used to design a convenient allocation protocol or

an erasure code (e.g. Partial MDS)

8

Erasure Channel with Memory

Modelling disk failures in a DCN:

- can a single disk failure imply the

failure of others?

[NYGS06]: bi-exponential failure model

with parameters

and

Prob(i failures) = αf1(i; p1) + (1− α)f2(i; p2)

α, p1, p2
f(i; p) ∝ pi.

9

Block Erasure Channel

[JA13]: we propose to consider the block erasure channel model to

deal with the following scenarios:

— cluster erasures in DCNs

— codelength > #disks

Our model:

n coded symbols are divided into t disjoint packets (not necessarily of

the same size), each packet is erased with some probability p

packet 1 packet 3 ...
✏1 = 0 ✏2 = 1 ✏3 = 0

∝

Prob(✏i = 1) = p

10

Block Erasure Channel

Our concern:

Given the channel model, to find an efficient code-allocation scheme,

in terms of repair, storage efficiency and complexity.

11

Block Erasure Channel

Our concern:

Given the channel model, to find an efficient code-allocation scheme,

in terms of repair, storage efficiency and complexity.

Example of a block code (e.g. LDPC):

the allocation should maximally spread the symbols from small uncorrectable

sets (stopping sets);

the code should be designed to have a sufficiently large size of these sets.

A B C D E F G H I J

A

B

C

D

E F

GH

Disk 1 Disk 2 Disk 3 Disk 4

Note: a similar approach has been proposed to design full-diversity codes over

 block-erasure channels.

the code should be designed to have a sufficiently large size of these sets. 11

Block Erasure Channel

Our concern:

Given the channel model, to find an efficient code-allocation scheme,

in terms of repair, storage efficiency and complexity.

Example of a block code (e.g. LDPC):

the allocation should maximally spread the symbols from small uncorrectable

sets (stopping sets);

the code should be designed to have a sufficiently large size of these sets.

Example of a code with memory (e.g. convolutional code):

there is a tradeoff between the encoding/decoding complexity, performance

and allocation

- maximum spread allocation ⇒ best performance ⇒highest complexity

- minimum spread allocation ⇒ worst performance ⇒ lowest complexity

11

Distributed Storage Allocations with MDS Codes

DSN model:

(a) collector has a random (uniform) access to each node

(b) collector accesses to a random, fixed-size subset of nodes

(c) source does a probabilitic allocation

[LDH12]: a particular P2P DSN model with a fixed coding scheme

(MDS) and given access model

Goal:

To find the optimal data allocation over all nodes that maximized the

download success probability

Main result:

Minimum spread allocation - for codes of high rates

Maximum spread allocation - for codes of low rates

12

Important Points on the Allocation

✽ Some equivalent channel models have been proposed, but more is

needed.

Some of models are very close to those existing in the

communications theory

✽ An allocation-based constraint can be incorporated into the code

design

✽ In (almost) all examples of existing DSNs, the allocation is an issue,

so it should be taken into account

... especially if one wants to design new efficient storage systems (see

the example of flexible storage)

13

Part 4: New Problems in Distributed Storage

 (... for new-generation DSNs?)

14

Two Problems

1. Storage-flexible DCN

2. Distributed Storage with Data Update

15

1. Storage-Flexible Systems

Existing data centers have fixed storage (code)

parameters.

Stored data may be subject to changes, e.g:

✽ the stored file became more ‘hot’ → more accesses

to deal with

✽ the stored file became less ‘hot’ → into the archive

✽ data centers grow/merge

✽ ...

How to design a storage-flexible system? Its cost?

16

Storage-Flexible Systems: are those changes

indeed needed?

[3, 2, 2] MDS code over GF (8) + 3 new positions

Assume the example of the extension of the data center netwok (DCN):

a

b

a+b

+

?

?

?

17

Storage-Flexible Systems: are those changes

indeed needed?

[3, 2, 2] MDS code over GF (8) + 3 new positions

Assume the example of the extension of the data center netwok (DCN):

a

b

a+b

+

?

?

?

Let’s use the same code over 6 disks. Where is the problem?

? c

? d

? c+d

17

Storage-Flexible Systems: are those changes

indeed needed?

[3, 2, 2] MDS code over GF (8) + 3 new positions

Assume the example of the extension of the data center netwok (DCN):

a

b

a+b

+

?

?

?

Let’s use the same code over 6 disks. Where is the problem?

? c

? d

? c+d

[6,4,2] code is not optimal. One can obtain either [6,4,3] or [6,5,2].

17

Possible extensions:

1) keep the rate constant

2) increase the storage

volume

3) improve the reliability

Example of the DCN Extension cont’d

a

b

a+b

+

a

b

2a+4b

+7c+3d

c

d

2a+5b

+6c+2d

a

b

a+b+c

+d+e

c

d

a

b

4a+2b

e a+b

7a+3b

7a+5b

1

2
3

[3, 2, 2] MDS code over GF (8) + 3 new positions

18

Possible extensions:

1) keep the rate constant

2) increase the storage

volume

3) improve the reliability

Example of the DCN Extension cont’d

a

b

a+b

+

a

b

2a+4b

+7c+3d

c

d

2a+5b

+6c+2d

a

b

a+b+c

+d+e

c

d

a

b

4a+2b

e a+b

7a+3b

7a+5b

1

2
3

[3, 2, 2] MDS code over GF (8) + 3 new positions

the [6, 4, 3]

18

Possible extensions:

1) keep the rate constant

2) increase the storage

volume

3) improve the reliability

Example of the DCN Extension cont’d

a

b

a+b

+

a

b

2a+4b

+7c+3d

c

d

2a+5b

+6c+2d

a

b

a+b+c

+d+e

c

d

a

b

4a+2b

e a+b

7a+3b

7a+5b

1

2
3

[3, 2, 2] MDS code over GF (8) + 3 new positions

the [6, 4, 3]

the [6, 5, 2]

18

Possible extensions:

1) keep the rate constant

2) increase the storage

volume

3) improve the reliability

Example of the DCN Extension cont’d

a

b

a+b

+

a

b

2a+4b

+7c+3d

c

d

2a+5b

+6c+2d

a

b

a+b+c

+d+e

c

d

a

b

4a+2b

e a+b

7a+3b

7a+5b

1

2
3

[3, 2, 2] MDS code over GF (8) + 3 new positions

the [6, 4, 3]

the [6, 5, 2]

the [6, 2, 5] MDS

18

Possible extensions:

1) keep the rate constant

2) increase the storage

volume

3) improve the reliability

Example of the DCN Extension cont’d

a

b

a+b

+

a

b

2a+4b

+7c+3d

c

d

2a+5b

+6c+2d

a

b

a+b+c

+d+e

c

d

a

b

4a+2b

e a+b

7a+3b

7a+5b

1

2
3

[3, 2, 2] MDS code over GF (8) + 3 new positions

the [6, 4, 3]

the [6, 5, 2]

the [6, 2, 5] MDS

Thus, one recovers from 1 to 4

failed disks, and has from 2 to 5

information disks in the DCN.

18

DCN Extension with MDS Codes: General

Framework

[MS] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.

General result from [MS]:

There exist s information and r redundancy columns to add to the parity matrix H , so that

one obtains a [n+ s+ r, k + s, d+ r] MDS code from a a [n, k, d] MDS code by lengthening.

Here one assumes that n+ s+ r ≤ q (cardinality).

19

DCN Extension with MDS Codes: General

Framework

[MS] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.

General result from [MS]:

There exist s information and r redundancy columns to add to the parity matrix H , so that

one obtains a [n+ s+ r, k + s, d+ r] MDS code from a a [n, k, d] MDS code by lengthening.

Here one assumes that n+ s+ r ≤ q (cardinality).

Our data storage example:

≤

[n1, k1, d1] systematic MDS code + n2 new positions

G1 = (Ik1
P)

[n1+n2, k1+R1n2, d1+n2(1−R1)]Case 1

(no change of rate)
:

G =





Ik1
0 | P |

0 IRn2
| P2 |

Q





19

DCN Extension with MDS Codes: General

Framework

Our data storage example:

≤

[n1, k1, d1] systematic MDS code + n2 new positions

G1 = (Ik1
P)

Case 2

(better storage)
:

[n1+n2, k1+n2, d1]

G =





Ik1
0 P

0 In2
P2





Case 3

(better reliability)
:

[n1+n2, k1, d1+n2]

G=

⇣

Ik1
P P2

⌘

20

DCN Extension with MDS Codes :

Practical Example

In (most) existing distributed storage systems, the DCN extension is known

as RAID scaling.

The DCN size is changed without changing the code parameters:

1) parity symbols are calculated using old parameters n and k

2) a block placement algorithm moves blocks (symbols) around in order to

ensure load balancing and reliability

Advantage: — no need to re-code the data already stored

Drawbacks: — important network load due of load rebalancing

 — loss of reliability/storage space compared to optimal

21

DCN Extension with MDS Codes:

Network Load due to Extension

Let the network maximum bandwidth be

Assume the uploading process of constant rate
1

B1

neglected).

be Bmax,

have been

B1

Bmax

tt0 t

practical example

22

DCN Extension with MDS Codes:

Network Load due to Extension

Let the network maximum bandwidth be

Assume the uploading process of constant rate
1

B1

neglected).

be Bmax,

have been

practical example

B1

B

B
(T)
1

Bmax

B
(S)
1 = B1

tt0 t1 t

case 1

23

DCN Extension with MDS Codes:

Network Load due to Extension

Let the network maximum bandwidth be

Assume the uploading process of constant rate
1

B1

neglected).

be Bmax,

have been

case 1

B1

B

B
(T)
1

Bmax

B
(S)
1 = B1

tt0 t1

case 3

case 2

24

B1

B

B
(T)
1

Bmax

B
(S)
3

B
(S)
3 = B1

tt0 t3 t1

DCN Extension with MDS Codes:

Network Load due to Extension

Let the network maximum bandwidth be

Assume the uploading process of constant rate
1

B1

neglected).

be Bmax,

have been

case 1

case 3

case 2

25

B
(T)
2

B1

B

B
(T)
1

Bmax

B
(S)
3

B
(S)
2

B
(S)
1 = B1

tt0 t3 t1 t2

DCN Extension with MDS Codes:

Network Load due to Extension

Let the network maximum bandwidth be

Assume the uploading process of constant rate
1

B1

neglected).

be Bmax,

have been

case 1

case 3

case 2

26

DCN Extension with MDS Codes:

Network Load due to Extension

Theorem [AJS13]

B1 =











B1, t < t0;

B
(T)
1 t0 ≤ t < t1;

B1, t1 ≤ t;

B2 =











B1, t < t0;

B
(T)
2 t0 ≤ t < t2;

B
(S)
2 , t2 ≤ t;

Bd =











B1, t < t0;

Bmax t0 ≤ t < t3;

B
(S)
3 , t3 ≤ t;





≤

where

B
(T)
1 = B1 +

1−R1

R1

n1

n2
> B1

B
(T)
2 = T

n1 − k1 + n2

n2
= B1R1 + (1−R1)

n1

n2

B
(S)
2 = T

n

k1 + n2
< B1

B
(S)
3 = T

n

k1
> B1

t1 = t0 +∆t1 = t0 +
R1n2m1l

T

t2 = t0 +∆t2 = t0 +
n2m1l

T

t3 = t0 +∆t3 = t0 +
k1n2 ·m1l

(k1 + n2)(Bmax −B
(S)
3)

⇣ ⌘

Let the data be uploaded to the DCN with the network load of constant rate B1 = T

R1

.

Assume the use of [n1, k1, d1] systematic MDS code.

Let t0 denote the time instant when the DCN has been extended by n2 disks.

Then,

[AJS13] I. Andriyanova, A. Jule, and E. Soljanin. The code rebalancing problem for a storage-flexible data center network. to appeat at IEEE

BigData Conference, 2013.

27

DCN Extension with MDS Codes:

Network Load due to Extension

Downloading and repair stationary processes:

Parameters C1 C3 C2

Rate R R1
k1+n2

n
> R1

k1

n
< R1

Minimum distance d d1 + n1(1−R1) d1 d1 + n2

Downloading load D(k) k k k

Repair load R(1) k1 +R1n2 k1 + n2 k1

28

DCN Extension with MDS Codes :

Remarks

Change of n and k impact on:

Storage parameters

✽ Failure protection: ↓ when R ↑

✽ Storage efficiency: ↑ when R ↑

Network parameters

✽ Stationary network loads: ↓ when R ↑

✽ Transition network loads:

- the smallest for the optimal code solution

- rebalancing load ↓ when R ↑

- transition time ↑ when R ↑

- in general, the total load ↓ when R ↑

29

Storage-Flexible Systems: Beyond MDS?

Is it possible to get better better network parameters?

[AJS13] I. Andriyanova, A. Jule, and E. Soljanin. The code rebalancing problem for a storage-flexible data center network. to appeat at IEEE

BigData Conference, 2013.

30

Storage-Flexible Systems: Beyond MDS?

Is it possible to get better better network parameters?

[AJS13] I. Andriyanova, A. Jule, and E. Soljanin. The code rebalancing problem for a storage-flexible data center network. to appeat at IEEE

BigData Conference, 2013.

Yes.

Use codes with a good locality → less operations/network accesses

related to parity symbols
Example:

staircase quasi-cyclic non-binary LDPC codes [AJS13]

piggyback construction ...

Advantage: — improvement of network loads for lower code rates

 (cases 1 and 3)

Drawback: — careful design of the code (non-MDS)

 — possible loss of coding-allocation independence, hence

 design of an allocation scheme

30

Storage-Flexible Systems: Important Points

✽ Load rebalancing process should be also considered (in

addition to upload, download, repair)

✽ In practical DCNs, the impact of the allocation protocol is

huge (even for MDS codes!)

✽ Network loads are code-dependent
new code structure = new calculation?

✽ Efficient code schemes are needed
non-MDS but with some local MDS properties?

31

2. Distributed Storage with Data Update

Existing DSNs do not allow the update of the data

already stored.

Dynamical DS system:

✽ the rewrites of the stored data are allowed

✽ one wants to minimize the update repair: tradeoff

between update repair and other DSN parameters

Is it possible to design an update-efficient DSN?

32

Illustration on the Data Update

DISC 1

REDU

2

REDU

1

DATA 8

MY_FILE.DAT

DISC 2

DATA 1

DATA 6DATA 5
REDU

3

DATA 2

DISC 3

REDU

 4

DATA 4

DATA 7

DATA 3

DATA 9

DATA 1 DATA 2 DATA 3

DATA 5 DATA 6

DATA 7 DATA 8 DATA 9

MY_FILE.DAT

1 - DISTRIBUTED STORAGE

2 - UPDATE OF DATA 1

DATA 4

DATA 1 DATA 2 DATA 3

DATA 5 DATA 6

DATA 7 DATA 8 DATA 9

DATA 4

REDU

1

REDU

2

REDU

3

REDU

4

=

=

=

=

DATA

1

DATA

1

DATA

2

DATA

2

DATA

3

DATA

3

DATA

4

DATA

4

DATA

5

DATA

5

DATA

6

DATA

6

DATA

7

DATA

8

DATA

9

DATA

9

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

DATA

8⊕

DISC 1

REDU

2

REDU

1

DATA 8

DISC 2

DATA 1

DATA 6DATA 5
REDU

3

DATA 2

DISC 3

REDU

 4

DATA 4

DATA 7

DATA 3

DATA 9

REDU

1

REDU

2

REDU

3

REDU

4

=

=

=

=

DATA

1

DATA

1

DATA

2

DATA

2

DATA

3

DATA

3

DATA

4

DATA

4

DATA

5

DATA

5

DATA

6

DATA

6

DATA

7

DATA

8

DATA

9

DATA

9

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

DATA

8⊕

* REDU : REDUNDANCY

ENCODING

UPDATE

STORAGE

STORAGE

33

Update Complexity

An update-efficient DSN should be based on an

update-efficient code.

Definitions:

The average update complexity γavg is the average number of symbol updates (rewrites),

made when one information symbol is changed.

The maximum update complexity γmax is the maximum number of symbol updates,

made when one information symbol is changed.

κ

[ASV10] N.P. Anthapadmanabhan, E. Soljanin, and S Vishwanath. Update-efficient codes for erasure correction. In Proceedings of

Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, 2010.

34

Update Complexity

An update-efficient DSN should be based on an

update-efficient code.

Definitions:

The average update complexity γavg is the average number of symbol updates (rewrites),

made when one information symbol is changed.

The maximum update complexity γmax is the maximum number of symbol updates,

made when one information symbol is changed.

κ

A code is update-efficient if its update complexity is o(n).

Definition

Main tradeoff:

update complexity versus fault tolerance (minimum distance)

[ASV10] N.P. Anthapadmanabhan, E. Soljanin, and S Vishwanath. Update-efficient codes for erasure correction. In Proceedings of

Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, 2010.

34

Update Complexity vs Minimum Distance

Case Examples of codes Lower bound on γ Upper bound on γ Update efficient ?

dmin = O(n) Reed-Solomon, (3, 6) LDPC O(n) O(n) no

dmin = O(nα)* Repeat-Accumulate O(nα) O(n) ?

dmin = O(log n) Turbocodes, (2, 4) LDPC O(log n) O(n) ?

dmin = O(1) LDGM codes O(1) O(1) yes

* α < 1

35

Update Complexity vs Minimum Distance

Theorem 1: [Tight lower bound] :

If there exists w1 such that
w1P

i=dmin

A(i) ≤ k, then

γmax ≥ w1

γavg ≥ 1
k

w1P

i=dmin

iA(i)

κ

) ⇒ Codes with dmin = O(nα) are not update efficient

)

κ

w

n

A

(

w

n

)

w1

n

0

dmin

n

)

κ

 Average weight distribution {A(i)} is used to prove:

 ...and more generally, a code is update efficient if d=O(log n)

(and under some supplementary conditions)

[JA11] A. Jule and I. Andriyanova. Some results on update complexity of a linear code ensemble. In Proceedings of Netcod’11, 2011.

36

Update-Efficient DS Systems: Important Points

✽ Update-efficiency is incompatible with a good fault

tolerance (of order O(n))

✽ Clearly, the storage of frequently modified data will take

more storage space than the storage of archival data

✽ Example of good storage-efficient codes: Reed-Solomon,

example of good update-efficient codes: LDGM,

a tradeoff between the two: codes with logarithmic minimum distance,

e.g. some LDPC

37

Final Discussion

✽ Storage-repair tradeoff
— for modified MDS codes via the generalisation of the Singleton bound

(access tradeoff)

— can be studied for some P2P DSNs by using the information-theoric

approach (bandwidth tradeoff)

✽ Repair access tradeoff is only known for some particular codes.
— LRC codes are a good example

— sparse-graph codes: efficient but very carefull design

✽ Modelling failures and collector accesses in DSNs
— design of allocation patterns/codes robust to burst erasures

— optimal asymptotic allocations for P2P DSNs

✽ Storage-flexible DCNs
— load rebalancing parameter

✽ Update-efficiency

— tradeoff vs. fault tolerance

38

Final Discussion

✽ New efficient code-allocation schemes are needed for

present and future DSNs
— good performance and of low complexity

— flexible in parameters k, d and n

— for use to store large amounts of data

— for some cases, compatible with already deployed codes

✽ Fundamental performance tradeoffs should be better

understood:
— unfortunately, they are usually code-, network- or data dependent:

is it possible to formulate a general framework? several separate models?

— good approximations of difficult cases

— use of already existing tools in combinatorics, information theory,

communications, coding

39

