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The following dialogue actually took place many years ago. It
went something like this (paraphrase)

SALAM: We then remove infinities by renormalisation theory.
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DIRAC: I don’t like this way of doing things. You should put in a
cutoff and get well defined equations. You should solve these
equations and then take limits.
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SALAM (student of Dirac at St. John’s, Cambridge): Professor
Dirac , with all due respect, we don’t do things that way any
more.
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What would Ken Wilson have said? Wilson by this time had his
own particular way of looking at this: the Renormalization
Group (his formulation). It does employ ultraviolet cutoffs
(lattice or continuum) with well defined functional integral,
analyzes the RG flow and takes limits. No infinities are ever
met. The functional integral with cutoffs of course does solve
the cutoff quantum field equations and in this sense Wilson is
closer to Dirac than to say Salam.
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Wilson also realised (and this was a revolutionary achievement)
that in a statistical system near a second order phase transition
when the correlation length approaches infinity the critical
exponents are those of a continuum (no ultraviolet cutoff limit)
scale invariant field theory. The two problems, that of
approaching criticality and that of removing ultraviolet cutoffs to
produce scale invariant field theories are related via a special
scaling limit which we may call the Wilson scaling limit which
we will explain later.
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In this talk I will try to illustrate Wilson’s way of doing things in
the light of modern developments by looking at an interesting
statistical model which near the critical point is also a full
fledged scale invariant field theory. This is the theory of the
critical ferromagnet with long range interactions when we
consider large wavelengths. The critical theory was analyzed in
[BMS] and later in [A]. A supersymmetric version is related to a
class of self-avoiding Lévy walks, [MS]. Wilson’s ideas are fully
expressed in his 1972 Princeton lectures (reference in next
frame).
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1. [BMS] : Brydges, Mitter and Scoppola: Commun.Math.Phys.
(2003) 240: 281-327

2. [BGM]: Brydges, Mitter and Guadagni: J Stat Phys (2004)
115: 415-449

3. [MS] : Mitter and Scoppola: J Stat Phys (2008) 133:
921-1011

4. [BM] : Brydges and Mitter: J Stat Phys (2012) 147: 716-727

5. [W1]: K. G. Wilson and J. Kogut: Phys. Rep. (1974) 12
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727-772

7. [D]: F.J. Dyson: Commun.Math.Phys. (1969) 12: 91, 212
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Long range ferromagnets have a long history going back to
Dyson: Commun.Math.Phys. (1969) 12: 91, 212. Dyson
considered Ising spins with long range interaction on a lattice in
d = 1:

J(x − y) =
1

|x − y |1+𝛼

where 𝛼 > 0 with Hamiltonian and partition function

H(𝜎) = −
∑︁

x ,y∈Z, x ̸=y

𝜎(x)J(x − y)𝜎(y)

Z =
∑︁

𝜎∈{−1,1},∀𝜎

e−𝛽H(𝜎̂)
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For the system to be well defined we should restrict ourselves
to a finite interval Λ ⊂ Z. Take an increasing sequence of
intervals {ΛN}. The existence of the thermodynamic limit
N → ∞ is assured because∑︁

x ̸=0

J(x) < ∞

since 𝛼 > 0 as first observed by Gallavotti and Miracle-Sole.
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Dyson then proved the existence of long range order
(spontaneous magnetization) for sufficiently high 𝛽 (inverse
temperature) provided 0 < 𝛼 < 1 and no long range order for
𝛼 > 1. I shall use the notation 𝛼 instead of the usual notation 𝜎
for the decay parameter and reserve 𝜎 for spin fields.
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More general rigorous results have been established by
Aizenman and Fernandez [AF] in higher dimensions. They
consider the long range interaction on the lattice Zd :

J(x − y) =
1

|x − y |d+𝛼

and prove the existence of a critical value 𝛽c < ∞ provided
d ≥ 2 or d = 1 and 0 < 𝛼 ≤ 1. For 𝛽 < 𝛽c the Gibbs state is
unique and the two point function has power decay with
exponent d − 𝛼. For 𝛽 > 𝛽c there is spontaneous
magnetization.
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Aizenman and Fernandez also establish rigorously the upper
critical dimension. We have mean field critical exponents if
either d ≥ 4 or d ≥ 2𝛼. For 0 < 𝛼 < 2 the upper critical
dimension is

dc = 2𝛼

We will be interested in the case d = 2,3 and d < dc = 2𝛼
where 0 < 𝛼 < 2. where we expect nontrivial critical behaviour.
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These results also go through for continuous spin ferromagnets
on Zd with Hamiltonian

H(𝜎) = −
∑︁

x ,y∈Z, x ̸=y

𝜎(x)J(x − y)𝜎(y) +
∑︁
x∈Z

(︀
g 𝜎4(x) + 𝜇 𝜎2(x)

)︀
where 𝜎(x) ∈ R, ∀x and the constant g > 0. These continuous
spin models fall in the so called Griffiths-Simon class and can
be considered as suitable limits of discrete spin ferromagnetic
models very much as in Simon and Griffiths paper [SG].

P. K. Mitter Long Range Ferromagnets: Renormalization Group Analysis



Introduction
The Lattice Field Theory and the Scaling Limit

Continuum RG analysis

The Lattice Field Theory
The Scaling Limit and the Wilson Scaling limit
The Continuum Limit and the Wilson Scaling Limit

We are interested in nontrivial behaviour for d = 2,3 near 𝛽c
below the critical dimension: d < dc = 2𝛼 and 0 < 𝛼 < 2. We
consider the Hamilonian in the long wave length (low Fourier
mode) approximation. This was first done by Michael Fisher,
Ma, and Nickel [FMN] long ago ( 1972). They considered these
systems using Wilson’s approximate recursion relation in the
𝜖 = dc − d = 2𝛼− d expansion. Many of their results can be
established by rigorous RG methods outside of the 𝜖 expansion
(but 𝜖 > 0 held very small). More later.
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The Fourier transform of J(x) in the continuum in the sense of
distributions is Ĵ(p) = −c𝛼,d |p|𝛼 where c𝛼,d is a positive
constant for 0 < 𝛼 < 2. For low Fourier modes this can be
replaced by the lattice expression

Ĵ(p) = −(−∆̂(p))
𝛼
2

where p ∈ [−𝜋, 𝜋]d , the first Brillouin zone of the dual lattice
and

∆̂(p) = 2
d∑︁

𝜇=1

(cos p𝜇 − 1)
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This leads us to the unit lattice Hamiltonian in the long wave
length approximation

H(𝜎) = −
∑︁
x∈Zd

𝜎(x)((−∆)
𝛼
2 𝜎)(x) +

∑︁
x ,Zd

(︀
g 𝜎4(x) + 𝜇 𝜎2(x)

)︀
and we have scaled away the constant c𝛼,d by redefining the
other constants.
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𝜎 is a Gaussian random variable with covariance C

C(x − y) = (−∆)−𝛼/2(x − y)

=

∫︁
[−𝜋,𝜋]d

ddp
(2𝜋)d eip.(x−y)(−∆̂(p))−𝛼/2

and 𝜇C is the corresponding Gaussian measure on the space
of fields 𝜎 : Zd → R. Let ΛN = [−LN

2 , LN

2 ]d ⊂ Zd be a large cube
with L a triadic integer (power of 3) and N a large positive
integer. The interactions will be restricted to ΛN and eventually
N → ∞.
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Corresponding to the Hamiltonian H with the local interaction in
ΛN we have the normalized probability measure

d𝜇N(𝜎) =
1

ZN
d𝜇C(𝜎)e

∑︀
x∈ΛN

(︀
g 𝜎4(x)+𝜇 𝜎2(x)

)︀
The partition function ZN is defined by requiring that 𝜇N is a
probability measure. The spin correlation functions are
moments (marginals) of 𝜇N . The temperature appears
(because we have rescaled) linearly in the mass parameter 𝜇.
It appears quadratically in the coupling constant g, but that is
not of any importance since the coupling constant will hit a fixed
point of the RG.

P. K. Mitter Long Range Ferromagnets: Renormalization Group Analysis



Introduction
The Lattice Field Theory and the Scaling Limit

Continuum RG analysis

The Lattice Field Theory
The Scaling Limit and the Wilson Scaling limit
The Continuum Limit and the Wilson Scaling Limit

Let d = 2 or 3. Define

𝜖 = dc − d = 2𝛼− d > 0

𝜂 = 2 − 𝛼

[𝜎] =
d − 𝛼

2
=

d − 2
2

+
𝜂

2
and define new fields 𝜎N by

𝜎N(x) = LN[𝜎]𝜎(LNx)
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Theorem 1
Let j be a test function of compact support which we can
restrict to the lattice. Then j depends only on a finite number of
points. Let 𝜖 = dc − d = 2𝛼− d > 0 be sufficiently small. The
thermodynamic limit

lim
N→∞

∫︁
d𝜇N(𝜎)ei𝜎(j)

exists and 𝜇N → 𝜇 exists as weak convergence of measures.
Then we have the scaling limit

lim
N→∞

∫︁
d𝜇(𝜎)𝜎N(j1)𝜎N(j2) = const.Ccont(j1, j2)) + R(j1, j2)
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Here Ccont is the continuum limit of the covariance of the
Gaussian measure 𝜇C𝜖N

on the space of spin fields on the
lattice (𝜖NZ

¯
)d as the lattice spacing 𝜖N = L−N → 0. For x ̸= y ,

Ccont(x − y) = const .
1

|x − y |d−𝛼

|R(x , y)| ≤ const.𝜖
1
2

1
|x − y |d−𝛼+𝛿

for some 𝛿 > 0. From this we can easily deduce that the
classical value 𝜂 = 2 − 𝛼 is the 2-point function critical
exponent (see next frame)
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Let 𝜆 ≥ 2 be a real parameter. Define the scale transformation
S𝜆 by

S𝜆f (x , y) = 𝜆2[𝜎]f (𝜆x , 𝜆y)

Observe that Ccont(x − y) is scale invariant whereas

|S𝜆R(x , y)| ≤ const.𝜖
1
2 𝜆−[𝜎]𝛿.

1
|x − y |d−𝛼+𝛿

and this → 0 as 𝜆 → ∞ whence our statement that 𝜂 is the
2-point function critical exponent. The 𝜖1/2 factor comes from a
non-trivial fixed point of O(𝜖) the 1/2 in the exponent being due
to a loss from (rough) estimates (formally it is O(𝜖2)).
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We will prove a simplified version of Theorem 1 in the Wilson
scaling limit. The Wilsonian scaling limit is a special way of
taking the continuum limit in finite volume. The parameters
(coupling constants, mass) are made to depend on the lattice
spacing dictated by dimensional analysis. In our case the bare
coupling constant will go to infinity at a fixed rate. This drives
the dimensionless coupling constant to the attractive RG fixed
point which in our case is the infrared fixed point (the Gaussian
fixed point being unstable). The dimensionless mass is fine
tuned to be critical. As we shall see this is the same as being
on on the unit lattice and taking the scaling limit as well as the
thermodynamic limit at the same time.
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Let (𝜖NZ)d be a fine lattice with spacing 𝜖N = L−N . Let ΛM be a
fixed cube in Rd be a fixed continuum cube with edge length
LMand ΛM,N = ΛM ∩ (𝜖NZ)d be its restriction to the lattice
(𝜖NZ)d .
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Let 𝜑 be the Gaussian spin field on (𝜖NZ)d with covariance

C𝜖N (x − y) = (−∆𝜖N )−𝛼/2(x − y)

=

∫︁
[− 𝜋

𝜖N
, 𝜋
𝜖N

]d

ddp
(2𝜋)d eip.(x−y)(−∆̂𝜖N (p))−𝛼/2

∆̂𝜖N (p) =
2
𝜖N

2

d∑︁
𝜇=1

(cos 𝜖Np𝜇 − 1)
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Our measure on the random fields 𝜑 on the 𝜖N lattice is now

d𝜇M,N(𝜑) =
1

ZM,N
d𝜇C𝜖N

(𝜑)e−V (g̃N ,𝜇̃N ,ΛM,N ,𝜑))

V (g̃N , 𝜇̃N ,ΛM,N , 𝜑)) = 𝜖d
N

∑︁
x∈ΛM,N

(︀
g̃N 𝜑4(x) + 𝜇̃N 𝜑2(x)

)︀
g̃N = 𝜖−𝜖

N g0 = LN𝜖g0

𝜇̃N = 𝜖−𝛼
N 𝜇0 = LN𝛼𝜇0

The partition function ZM,N is defined by requiring that 𝜇M,N is a
probability measure. The spin correlation functions are
moments (marginals) of 𝜇M,N .
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Dimensionless analysis gives [g] = 𝜖 and [𝜇] = 𝛼. Define unit
lattice fields 𝜎 with covariance C𝜖0 by

𝜑(x) = 𝜖
−[𝜎]
N 𝜎(𝜖−1

N x) = LN[𝜎]𝜎(LNx) = 𝜎N(x)

Then a straight forward change of variables gives for the
correlation functions

< 𝜑(x1).....𝜑(xm) >𝜇M,N ,g̃N ,𝜇̃N
=< 𝜎N(x1).....𝜎N(xm) >𝜇M+N,0,g0,𝜇0

The 𝜖N lattice points xj are restricted to the unit lattice (always
possible) and thus non-coinciding. In the following M is fixed
whereas we will take N → ∞. This gives the relation between
the continuum limit and the scaling limit.
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In the following I will give for the purposes of this exposition the
RG analysis directly in the continuum following Brydges, Mitter
and Scoppola (2003). This is much less cumbersome than the
RG analysis on the lattice but the methods are the same. The
same results however can be proved on the lattice using the
lattice Finite Range RG (instead of Kadanoff-Wilson block
spins) of Brydges, Mitter and Guadagni [BGM] very much as in
Mitter and Scoppola (2008) (or by more recent methods of
Brydges and Slade ( to be published)) where in addition
fermionic fields are also present.
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Continuum RG program:

Instead of the 𝜖N -lattice we take Rd , put in a volume (cube)
cutoff on the interaction and an ultraviolet cutoff 𝜖N directly in
the covariance as follows. We convert this to the unit cutoff (𝜖0)
problem by a change of scale employing new variables and as
before the the size of the cube becomes very large, sides being
rescaled by a factor 𝜖−1

N = LN . Then RG step : Integrate out a
high frequency slice (in a special way) and rescale fields. This
reduces the volume (side LN → LN−1). Do this N times:
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At each step the interaction evolves: we get expanding
variables (local couplings) and contracting variables (irrelevant
terms). The irrelevant terms are gathered in objects called
polymer activities. They are measured in RG stable norms.
After N steps the volume has shrunk to a cube (block) of side
length L. Then take N → ∞. We have a non-linear dynamical
system in a Banach space. This system has a non-trivial
hyperbolic fixed point and a stable (critical) manifold which
solves the mass fine tuning problem. Once the RG analysis has
been performed on the measure we obtain easily the results on
the correlation functions. This is now explained.
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The continuum covariance Ccont is given (upto constants) by

Ccont(x − y) = const.
1

|x − y |d−𝛼
= const.

1
|x − y |2[𝜎]

Let g be a smooth rotation invariant function of compact
support (in fact finite range) : g(x) = 0 : |x | ≥ 1/2. Let
u = g * g (convolution). Then u is positive definite, C∞, finite
range u(x) = 0 : |x | ≥ 1, and rotation invariant. Observe that
(upto constants)

Ccont(x − y) =

∫︁ ∞

0

dl
l

l−2[𝜎] u(
x − y

l
)
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Convergence at the upper end point since [𝜎] > 0. If x ̸= y we
also have convergence at the lower end point since l < |x − y |
is outside the support of u. Ultraviolet singularity at the lower
end point as x → y . We introduce the ultraviolet cutoff
covariance

C𝜖N (x − y) =

∫︁ ∞

𝜖N

dl
l

l−2[𝜎] u(
x − y

l
)

C𝜖N (x) is now C∞ because of the lower end point cutoff.
Observe that

C𝜖N (x − y) = 𝜖N
−2[𝜎]C𝜖0(

x − y
𝜖N

)

C𝜖0 = C1 is the unit cutoff covariance.
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Let j = (j1, ...jm) be test functions of compact support. Let
j(s) =

∑︀m
i=1 si ji , s = (s1, ..., sm) real numbers. Let 𝜑 be the

random fields with measure

d𝜇M,N(𝜑) = d𝜇C𝜖N
(𝜑) e−V (g̃N ,𝜇̃N ,C𝜖N ,ΛM ,𝜑)

Z (𝜖n,ΛM , j(s)) =

∫︁
d𝜇M,N(𝜑)ei𝜑(j(s)

Then the truncated connected correlation functions are given by

< 𝜑(x1).....𝜑(xm) >ΛM ,𝜖N

=
1

Z (𝜖n,ΛM ,0)
(−i)m

m∏︁
i=1

𝜕si log Z (𝜖n,ΛM , j(s))
⃒⃒
si=0,∀i
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Finally we pass from the 𝜖N cutoff theory to the 𝜖0 = 1 cutoff
theory with enlarged volume ΛM+N by making the substitution
𝜑(x) = 𝜎N(x) = 𝜖

−[𝜎]
N 𝜎(𝜖−1

N x). This gives

Z (𝜖n,ΛM , j(s)) =

∫︁
d𝜇C𝜖0

(𝜎) e−V (g0,𝜇0,C𝜖0 ,ΛM+N ,𝜎)+i𝜎(jN(s))

where

jN(s)(x) = 𝜖
d−[𝜎]
N j(s)(𝜖Nx)
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Hence forth we write C instead of C𝜖0 = C1 for unit cutoff
covariance. Divide up [1,∞) = [1,L] ∪ [L,∞) and define

ΓL(x − y) =

∫︁ L

1

dl
l

l−2[𝜎] u(
x − y

l
)

Then

C(x − y) = ΓL(x − y) + L−2[𝜎]C(
x − y

L
)

ΓL(x) is a smooth positive definite function (because u is
positive definite) and of finite range

ΓL(x − y) = 0 : |x − y | ≥ L
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Iterating we get a convergent (in L∞) expansion

C(x − y) =
∑︁

Γn(x − y)

Γn(x − y) = L−2n[𝜎]ΓL(
x − y

Ln )

Each Γn is positive definite, finite range Ln and C∞.
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Correspondingly we have the field 𝜎 is a sum of independent
Gaussian random fields (fluctuation fields) 𝜁n, almost surely
C∞, with covariances Γn

𝜎 =
∑︁

𝜁n

E(𝜁n(x)𝜁m(y)) = 0 : n ̸= m

E(𝜁n(x)𝜁n(y)) = Γn(x − y)

implies finite range correlations:

E(𝜁n(x)𝜁n(y)) = 0 : |x − y | ≥ Ln

This is a simple example of a finite range multi scale expansion.
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Important property:

|x − y | ≤ Ln ⇒ 𝜇C(|𝜁n(x) − 𝜁n(y)| ≥ 𝛾) ≤ const.𝛾−2

which show that the fluctuation fields 𝜁n are slowly varying on
scale Ln. This captures an essential idea of Wilson.

P. K. Mitter Long Range Ferromagnets: Renormalization Group Analysis



Introduction
The Lattice Field Theory and the Scaling Limit

Continuum RG analysis

Introduction
finite range multiscale expansion = (slicing)
Renormalization group transformation
coordinates for densities
RG map on coordinates
Banach spaces for RG coordinates
Existence of bounded RG flow and critical mass
Stable manifold and non-trivial fixed point
Correlation functions: ultraviolet cutoff removal, scaling limit

The decomposition into a sum of independent fluctuation fields
means that we have to do a multiple integral over the fluctuation
fields. Do this step by step each step. RG transformation: For
any functional F (𝜎)

(TLF )(𝜎) = SL𝜇ΓL * F (𝜎) =

∫︁
d𝜇ΓL(𝜁)F (𝜁 + SL𝜎)

where SL is the scale transformation

SL𝜎(x) = L−[𝜎]𝜎(
x
L

)
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Semigroup property:

TLTLn = TLn+1

𝜇c is the (unique) invariant measure of TL:∫︁
d𝜇C(𝜎)TLF (𝜎) =

∫︁
d𝜇CF (𝜎)
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We apply this to our problem. Put the external source j = 0. We
will put it in later. Define

𝒵0(ΛN , 𝜎) = e−V0(g0,𝜇0,ΛN ,𝜎)

Then ∫︁
d𝜇C(𝜎)𝒵0(ΛN , 𝜎) =

∫︁
d𝜇C(𝜎)𝒵1(ΛN−1, 𝜎)

where

𝒵1(ΛN−1, 𝜎) =

∫︁
d𝜇ΓL(𝜁)𝒵0(ΛN , 𝜁 + SL𝜎)
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Iterating n times we get:∫︁
d𝜇C(𝜎)𝒵0(ΛN , 𝜎) =

∫︁
d𝜇C(𝜎)𝒵n(ΛN−n, 𝜎)

where

𝒵n(ΛN−n, 𝜎) =

∫︁
d𝜇ΓL(𝜁)𝒵n−1(ΛN−n+1, 𝜁 + SL𝜎)

At the end of N steps the volume reduces to the unit cube (unit
block) and we take the N → ∞.
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We want to analyze the generic step. The first problem that we
want to take care of is nonlocality. The starting density has a
locality property which we lose after one iteration. Thus if X , Y
are two subsets with disjoint interiors then

𝒵0(X ∪ Y )) = 𝒵0(X )𝒵0(Y ))

but after one iteration this is no longer true

𝒵1(X ∪ Y )) ̸= 𝒵1(X )𝒵1(Y ))
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This is resolved by introducing a new representation for the
densities-the so called polymer gas representation- and the
finite range of the fluctuation field correlations.

Pave Rd with unit blocks (unit cubes). Then Λ ⊂ Rd has the
induced paving. A polymer X is a connected subset of blocks.
A polymer activity K is a map (X , 𝜎) → K (X , 𝜎) ∈ R. The field 𝜎
has been restricted to X .
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At any given step n of the sequence of RG transformations the
densities will be given coordinates gn, 𝜇n,Kn. Here gn, 𝜇n are
the evolved parameters of the local potential Vn. and Kn is a so
called irrelevant (contracting) term characterized as a polymer
activity. The density 𝒵n(ΛN−n, 𝜎) can be expressed in terms of
these coordinates in a polymer gas representation.
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Polymer Gas Representation

𝒵n(ΛN−n, 𝜎) =
∑︁
N≥0

1
N!

e−Vn(Xc ,𝜎)
∑︁

X1,..XN

N∏︁
j=1

Kn(Xj , 𝜎)

where Xc = ΛN−n/∪n
j=1 Xj , and the sum is over mutually disjoint

connected polymers Xj in ΛN−n.

Note that the local potential Vn depends on (evolved) coupling
gn and mass parameter 𝜇n.

This representation is stable under RG.
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The renormalization group step TL involves fluctuation
integration and then rescaling. The density depends on 𝜁 + 𝜎
and we integrate with measure d𝜇ΓL(𝜁). Replace 𝜎 by 𝜎 + 𝜁 in
Vn, Kn. We now prepare the integrand a bit before actually
doing the integral.
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Vn(Xc , 𝜁 + 𝜎) is local. We consider also an arbitrary local
potential Ṽn(Xc , 𝜎) which depends only on 𝜎. We can write

exp−Vn(Xc , 𝜁 + 𝜎) =
∏︁

Δ⊂Xc

exp−Vn(∆) =

∏︁
Δ⊂Xc

[Pn(∆, 𝜁, 𝜎) + exp−Ṽn(∆, 𝜎)]

where

Pn(∆, 𝜁, 𝜎) = exp−Vn(∆, 𝜁 + 𝜎) − exp−Ṽn(∆, 𝜎)
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Expand out and glue together the Pn(∆) with the polymer
activities Kn. This will create new polymer activities. Finally
remember that the fluctuation covariance ΓL has finite range L.
So we should glue together these new 1− polymers into disjoint
connected L− polymers built out of connected L− blocks
(cubes of side length L).
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The net result is a new representation:

𝒵n(ΛN−n, 𝜁 + 𝜎) =
∑︁
N≥0

1
N!

e−Ṽn(Yc , 𝜎)
∑︁

Y1,..YN

N∏︁
j=1

ℬKn(Yj , 𝜁, 𝜎)

The sum is now over mutually disjoint connected L- polymers in
ΛN−n . ℬKn is a non-linear functional of Kn, Ṽn which depends
on 𝜎, 𝜁. Ṽn is a yet to be chosen local potential which depends
only on 𝜎 .
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The fluctuation map SL𝜇Γn* integrates out the 𝜁 and then
rescales. The integral sails through exp−Ṽn(Yc , 𝜎) which is
independent of 𝜁. Then it factorizes over the product of polymer
activities because of the finite range property of Γn since the
connected L- polymers are separated by a distance ≥ L. Thus
the polymer representation is preserved after fluctuation
integration. Then we rescale to get back to 1− polymers.
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The fluctuation integration plus rescaling has given a map

Vn → Ṽn,L = SLṼn Ṽn,L(∆, 𝜎) = Ṽn(L∆, SL𝜎)

Kn → ℱKn ℱKn(X , 𝜎) =

∫︁
d𝜇ΓL(𝜁)ℬK (LX , 𝜁,SL𝜎)

We shall now do one more crucial step to produce our final
renormalization map .
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The representation that we have given is not unique because
Ṽn is upto us to choose. A change in Ṽn changes ℱKn. For
example choose Ṽn = Vn. Then subtract out the (localized)
expanding parts of ℱKn, and absorb them in Vn,L thus
producing a flow of parameters. The new subtracted polymer
activities have good contraction properties measured in
appropriate norms.
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This subtraction operation on ℱKn(X , 𝜎) needs only to be be
done for small sets X : |X | ≤ 2d , because large sets provide
contracting contributions measured in appropriate norms. The
new subtracted polymer activities have good contraction
properties (irrelevant terms).
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This procedure produces our final RG map fn+1

fV (Vn,Kn) = Vn+1, fK (Vn,Kn) = Kn+1

Using second order perturbation theory,

Kn = e−VnQn + Rn

Qn is a second order contribution. It is form invariant and
depends on gn, 𝜇n and a non-local kernel wn which converges
fast to a fixed point kernel w*. Rn is a remainder (formally of
third order).
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To speed things up we just set w = w*. Then un = (gn, 𝜇n,Rn)
represents a point on the RG trajectory. The RG map produces
a discrete flow:

un+1 = f (un)
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The flow map in components is:

gn+1 = fg(un) = L𝜖gn(1 − L𝜖agn) + 𝜉n(un)

𝜇n+1 = f𝜇(un) = L𝛼𝜇n − L2𝜖bg2
n + 𝜌n(un)

Rn+1 = fR(un) =: Un+1(un)

The coefficient a is positive. We have an approximate flow ḡn
obtained by ignoring the remainder 𝜉n. This approximate flow
generated by second order perturbation theory has an
attractive fixed point ḡ = O(𝜖), for 𝜖 sufficiently small.
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Let g̃n = gn − ḡ. Then vn = (g̃n, 𝜇n,Rn) are the new
coordinates. Then

g̃n+1 = fg(vn) = (2 − L𝜖)g̃n + 𝜉n(vn)

𝜇n+1 = f𝜇(vn) = L𝛼𝜇n + 𝜌n(vn)

Rn+1 = fR(vn) =: U(vn)

are the new flow equations.

𝛾(𝜖) = 2− L𝜖 = 1−O(log L)𝜖 < 1, for sufficiently small 𝜖 ( with L
fixed. 𝛾(𝜖) is a contraction factor. Also we will see that the R
evolution has a contraction factor. The 𝜇 evolution is dangerous
because of the L𝛼 factor.
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Banach spaces:

1. We endow polymer activities K (X ) with a Banach space
norm ‖K (X )‖. This norm measures large 𝜎 field growth and a
finite number of partial (Fréchet) derivatives in 𝜎 (functional
derivatives). Under this norm we have

||K (X )K (Y )|| ≤ ||K (X )|| ||K (Y )||

||ℱ(K )(X )|| ≤ c|X |||K (X )||
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Our final norm is

||K || = sup
Δ

∑︁
X⊃Δ

L(d+2)|X |||K (X )||

This norm gives us a Banach space of Polymer activities. It
says that that bigger the polymer the smaller is its contribution.

It has the important property : large sets contribute contracting
( by a factor L−(d+1)) contributions to the fluctuation map.
Hence the relevant (expanding) parts have to be only extracted
from small sets : |X | ≤ 2d .
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We introduce a second norm | · |. This is the same as the
previous norm except that we evaluate poymer activities at
𝜎 = 0, and therefore no large field growth to be measured. We
measure the polymer activity Rn in a norm ||| · |||, where

|||Rn|| = max{|Rn|, 𝜖2||Rn||}

Define a Banach space E consisting of elements v = (g̃, 𝜇, R)
with norm

||v || = max{(𝜖)−3/2|g̃|, 𝜖−(2−𝛿)|𝜇|, 𝜖−(11/4−𝜂)|||R|||}

where 𝛿, 𝜂 > 0 are very small numbers and 0 < 𝜈 < 1/2.
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Let vn = (g̃n, 𝜇n, Rn) and let E(r) ⊂ E be an open ball of radius
r centered at the origin. Then our next theorem says

Theorem 2 (stability): Let vn ∈ E(1). Then

|𝜉(vn)| ≤ CL𝜖
11/4−𝜂, |𝜌(vn)| ≤ CL𝜖

11/4−𝜂

These are estimates for the error terms in the gn, 𝜇n flow.
Moreover Rn+1 = Un+1(vn) has the bound

|||Un+1(vn)||| ≤ L−1/4𝜖11/4−𝜂

On the right hand side we have a contraction factor.
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Lipshitz continuity

Let v , v ′ ∈ E(1/4). Then we have Lipshitz continuity:

|𝜉(v) − 𝜉(v ′)| ≤ 𝜖11/4−𝜂||v − v ′||

|𝜌(v) − 𝜌(v ′)| ≤ 𝜖5/2−𝜂||v − v ′||

|||U(v) − U(v ′)||| ≤ L−1/4𝜖11/4−𝜂||v − v ′||
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Write the flow equations in integral form: after n steps of the
renormalization map we get

g̃k = 𝛾(𝜖)k g̃0 +
k−1∑︁
j=0

𝛾(𝜖)k−1−j𝜉(vj), 1 ≤ k ≤ n

and the reversed flow for 𝜇

𝜇k = L−𝛼(n−k)𝜇n −
n−1∑︁
j=k

L−𝛼(j+1−k)𝜌(vj), 0 ≤ k ≤ n − 1

We want to solve for a bounded flow. So fix 𝜇n = f and let
n → ∞ in the reversed 𝜇 flow equation. We must show that
such a flow exists.
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Therefore we have to solve

g̃k = 𝛾(𝜖)k g̃0 +
k−1∑︁
j=0

𝛾(𝜖)k−1−j𝜉(vj), 1 ≤ k ≤ n

𝜇k = −
n−1∑︁
j=k

L−𝛼(j+1−k)𝜌(vj), 0 ≤ k ≤ n − 1

Rk = U(vk−1)
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Existence of bounded RG flow

We consider a Banach space E of sequences
v = (v0, v1, v2, .....), with vn ∈ E , supplied with the norm

||v|| = sup
n≥0

||vn||

E(r) ⊂ E is an open ball of radius r . Let v0 = (g̃0, 𝜇0,0).

Theorem 3 Existence of global bounded RG trajectory: There
exists an initial mass 𝜇0 such that for v0 ∈ E(1/32),
vk = f (vk−1) ∈ E(1/4) for all k ≥ 1.
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Write the RG flow in the integral form in the space of
sequences E:

vk = Fk (v) : Fk = (F g
k ,F

𝜇
k ,F

R
k )

where the right hand side side is defined by the right hand side
of the integral flow equations. If we define the sequence

F(v) = (F0(v),F1(v), ....)

then the integral flow equation can be written as a fixed point
equation:

v = F(v)
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This fixed point equation

v = F(v)

has a unique bounded solution under the conditions of
Theorem 3 by virtue of Liphsitz continuity.
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Stable manifold and non-trivial fixed point.
Let f k be the k − fold composition of the map f . The stable
(critical) manifold of f is defined by

W s(f ) = v ∈ E(1/32) : f k (v) ∈ E(1/4) ∀k ≥ 0

Write v = (v1, v2) with v1 = (g̃,R,0) and v2 = 𝜇. Initially
v1,0 = (g̃0,0,0) and v2,0 = 𝜇0. Theorem 3 says that for
v ∈ E(1/32), there exists v2 such that f k (v) ∈ E(1/4) : ∀k ≥ 0.
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Theorem 4 (Stable manifold theorem)

W s(f ) is the graph {v1,h(v1)} of a function v2 = h(v1) with h
Lipshitz continuous. Moreover iterations of f restricted to W s(f )
contracts distances and ttherefore has a unique fixed point
which attracts all points of W s(f ).
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Corollary: The theorem has established that the critical mass
𝜇0 = h(g̃0) = 𝜇c(g0) is a Lipshitz continuous function. Moreover
vn → v* in the ball E(1/4). If g̃* = g * −ḡ is one of the
coordinates of v* then g* ̸= 0 since v* ∈ E(1/4) and therefore

|g* − ḡ| ≤ 1
4
𝜖3/2

and we know that ḡ = O(𝜖). So our fixed point is nontrivial.
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Correlation functions

We have seen the convergence of the coordinates
vn = (gn, 𝜇n,Rn of the RG trajectory to the fixed point
v* = (g*, 𝜇*,R*) in the Banach space E provided the initial
mass 𝜇0 is chosen to lie on the critical curve 𝜇0 = 𝜇c(g0) with
initial R0 = 0. This is sufficient to prove the existence of the
ultraviolet (scaling limit) for correlation functions.
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Recall: C𝜖0 = C is the unit cutoff cocariance and

Z (𝜖n,Λ0, j(s)) =

∫︁
d𝜇C(𝜎) 𝒵0(ΛN .𝜎)ei𝜎(jN(s))

where
𝒵0(ΛN .𝜎) = e−V (g0,𝜇0,C𝜖0 ,ΛN ,𝜎)

and

jN(s)(x) = 𝜖
d−[𝜎]
N j(s)(𝜖Nx) = L−N(d−[𝜎])j(s)(L−Nx)

Translating in the field 𝜎 gives
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Z (𝜖n,Λ0, j(s)) = e−1/2(jN ,C*jN)
∫︁

d𝜇C(𝜎) 𝒵0(ΛN , 𝜎 + iC * jN)

Applying the RG transformation once gives:

Z (𝜖n,Λ0, j(s)) = e−1/2(jN(s),C*jN(s))
∫︁

d𝜇C(𝜎)𝒵1(ΛN−1, 𝜎+iSL−1C*jN(s))

where

SL−1(C * jN(s))(x) = L[𝜎](C * jN(s))(Lx)
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Iterating N times gives

Z (𝜖n,Λ0, j(s)) = e−1/2(jN(s),C*jN)(s))
∫︁

d𝜇C(𝜎)𝒵N(∆, 𝜎+iSL−N C*jN(s))

where ∆ is a unit block (unit cube). Easy to check

(jN(s),C * jN)(s)) = (j(s),C𝜖N j(s))

SL−N C * jN(s)(x) = (C𝜖N * j)(x)
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We will look at the 2-point function: Let j(s) = s1j1 + s2j2. Taking
partial derivatives with respect to s1, s2 at s1 = s2 = 0 and
dividing out by the normalizing factor (vacuum energy) gives

< 𝜎(j1)𝜎(j2) >𝜖N ,Λ0= (j1,C𝜖N * j2)−

1
ZN(0)

∫︁
d𝜇C(𝜎) (D2𝒵N)(∆, 𝜎; C𝜖N * j1,C𝜖N * j2)

ZN(0) =

∫︁
d𝜇C(𝜎)𝒵N(∆, 𝜎)
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Since we are on a unit block we have simple expressions

𝒵N(∆, 𝜎) = eΩN 𝒵N(∆, 𝜎)

𝒵N(∆, 𝜎) = e−VN(Δ,𝜎) + KN(∆, 𝜎)

and ΩN is the total extracted vacuum energy which divides out
in the normalized Schwinger functions.
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As N → ∞, we have C𝜖N → Ccont the free continuum covariance
with no cutoff. Moreover VN → V* where
V*(∆, 𝜎) = V (∆, 𝜎,g*, 𝜇*) and KN → K* in an open ball in the
Banach space E . The norms are such that the two functional
derivatives of K* smeared with test functions are easily
estimated. The derivatives on V* are estimated explicitly by
integration with the Gaussian measure. The upshot is that the
ultraviolet cutoff limit N → ∞ or 𝜖N → 0 exists for the connected
truncated Schwinger functions. By arranging the supports of
the test functions appropriately one easily obtains the estimate
for the correction term.
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