

Equations aux dérivées partielles

Thierry Gallouët, Raphaele Herbin

▶ To cite this version:

Thierry Gallouët, Raphaele Herbin. Equations aux dérivées partielles: Cours de Master 2 de mathématiques Université Aix Marseille. Master. France. 2015. cel-01196782v5

HAL Id: cel-01196782 https://hal.science/cel-01196782v5

Submitted on 8 Jul 2023 (v5), last revised 9 Mar 2024 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université Aix Marseille

Master 2 de mathématiques

Solutions faibles des équations aux dérivées partielles

Thierry Gallouët, Raphaèle Herbin 8 juillet 2023

Table des matières

1	Espaces de Sobolev 6							
	1.1	Dérivée faible, dérivée par transposition	6					
	1.2	Définition et propriétés	9					
	1.3		11					
	1.4	Théorèmes de densité	12					
	1.5	Théorèmes de trace	14					
	1.6	Théorèmes de compacité	15					
	1.7	Injections de Sobolev	17					
	1.8	Exercices	18					
	1.9	Corrigés des exercices	29					
2	Prol	blèmes elliptiques linéaires	58					
	2.1	• •	58					
	2.2		53					
	2.3	Régularité des solutions	57					
	2.4	Positivité de la solution faible	70					
	2.5	Conditions de Dirichlet non homogènes	72					
	2.6	Exercices	74					
	2.7	Corrigés des exercices	99					
3	Prol	Problèmes elliptiques non linéaires 138						
	3.1	Méthodes de compacité	38					
		3.1.1 Degré topologique et théorème de Schauder	38					
		3.1.2 Existence par le théorème de Schauder						
		3.1.3 Existence par degré topologique						
	3.2	Méthodes de monotonie	52					
		3.2.1 Introduction	52					
		3.2.2 Opérateurs de Leray–Lions	52					
	3.3	Méthode par minimisation d'une fonctionnelle	53					
	3.4	Exercices	54					
	3.5	Corrigés des exercices	15					
4	Problèmes paraboliques 189							
	4.1	Solutions classiques, solutions <i>mild</i> , solutions faibles) 0					
	4.2	Intégration à valeur vectorielle						
	4.3	Étude de l'équation de la chaleur						

		4.3.1	Preuve du théorème d'existence et unicité par la méthode de Faedo-Galerkine	208		
		4.3.2	Preuve du théorème d'existence et unicité par coercivité généralisée	215		
		4.3.3	Autres propriétés de la solution de l'équation de la chaleur			
	4.4	Problè	mes paraboliques non linéaires			
		4.4.1	Premier exemple : diffusion non linéaire			
		4.4.2	Deuxième exemple : diffusion convection non linéaire			
	4.5	Compa	acité en temps			
	4.6	_	ces			
	4.7		és des exercices			
				275		
5	Problèmes hyperboliques					
	5.1		unidimensionnel			
		5.1.1	Solutions classiques et courbes caractéristiques			
		5.1.2	Solutions faibles			
		5.1.3	Solution entropique			
		5.1.4	Conditions limites	288		
5.2		Cas m	ultidimensionnel	290		
		5.2.1	Cas sans condition limite	290		
		5.2.2	Cas des conditions aux limites	297		
	5.3	Systèn	nes hyperboliques	299		
		5.3.1	Définitions			
		5.3.2	Solutions faibles, solutions entropiques	300		
		5.3.3	Résolution du problème de Riemann			
	5.4	Exerci	ces			
	5.5		és des exercices			
Abréviations						
Notations						

Introduction

Ce cours décrit quelques outils pour l'étude mathématique des équations aux dérivées partielles (EDP). Une équation aux dérivées partielles est une équation mathématique dont l'inconnue est une fonction de plusieurs variables qui fait intervenir les dérivées partielles de cette fonction par rapport à ces variables. On peut par exemple vouloir calculer la température en un point de l'espace et au cours du temps. La fonction inconnue est alors la température, et l'EDP fait intervenir les dérivées partielles de celle-ci par rapporta au temps et aux variables d'espace.

Les équations aux dérivées partielles interviennent de fait dans de nombreux modèles de physique, d'ingénierie ou de biologie, comme la propagation de la chaleur ou du son, l'écoulement des fluides, l'électrodynamique, la propagation des épidémies. Elles sont utilisées également pour les modèles de prévision météorologique et pour les modèles de climat. Les EDP ont vu le jour après les travaux de Leibniz et Newton sur les infinitésimaux au début du 18ème siècle; c'est Euler qui formula en 1757 le premier système d'EDP (dites équations d'Euler) pour décrire le mouvement d'un fluide incompressible. Les EDP peuvent être linéaires, c'est le cas de l'équation de la chaleur par exemple, ou non linéaires, comme les équations d'Euler ou Navier-Stokes qui décrivent le mouvement d'un fluide. Plusieurs exemples de problèmes non linéaires sont étudiés, avec des outils récents permettant de montrer l'existence et éventuellement l'unicité de la solution.

Au cours des chapitres seront évoquées les EDP *elliptiques*, *paraboliques* ou *hyperboliques*. Cette dénomination fait référence à une classification des EDP linéaires du second ordre qu'on pourra trouver dans la plupart des livres sur les EDP (voir par exemple [17]) et dans l'introduction de chacun des chapitres afférents.

Les outils que nous développons dans ce livre ont comme objectif d'obtenir des résultats d'existence (et souvent d'unicité) pour quelques exemples de problèmes d'EDP de natures diverses. Il n'est pas en général possible d'obtenir des solutions explicites d'une EDP; les EDP et modèles précédemment cités sont résolus par des méthodes numériques qui permettent d'obtenir des solutions approchées. Le développement de ces méthodes et l'augmentation de puissance des ordinateurs ont permis une amélioration constante de la précision des solutions approchées ces dernières décennies. De fait, certains des outils présentés seront également utiles pour le développement et l'analyse aux méthodes numériques de résolution approchée.

Le contenu de ce livre est issu de plusieurs cours de 2ème année de master que les auteurs ont enseignés à l'université d'Aix-Marseille, à l'ENS Lyon et à l'université de Savoie; nous tenons à remercier nos étudiants pour leur intérêt et leurs remarques. Nous n'avons pas ici la prétention de couvrir la totalité du champ des EDP; notre but est plutôt de transmettre une certaine culture des EDP que nous avons eu la chance d'acquérir de par nos nombreuses années d'étude et de recherche, et qui est certainement très influencée par notre connaissance des méthodes numériques pour leur résolution. Même si nous rappelons la plupart des notions avancées que nous utilisons, il va de soi qu'une lecture profitable de ce livre nécessite de bonnes connaissances d'analyse réelle, de théorie d'intégration de Lebesgue et d'analyse fonctionnelle. Nous conseillons à ce sujet les ouvrages [20] et [10] (ou ([9] pour une version française).

L'ouvrage comporte de très nombreux exercices et problèmes résolus. Certains de ces problèmes ont pour objet la

TABLE DES MATIÈRES TABLE DES MATIÈRES

démonstration de résultats relativement récents.

Nous rappelons au chapitre 1 la définition des espaces fonctionnels de Sobolev nécessaires pour écrire les équations considérées, à partir des notions de *dérivée faible*, introduite par Jean Leray en 1934 [25] et de la généralisation que nous avons appelée *dérivée par transposition*. Cette dernière permet d'introduire tous les outils nécessaires en se passant de la notion de distribution qui est communément employée dans la plupart des ouvrages et qui nous parait plus compliquée et non nécessaire dans le cadre de notre étude. Quelques résultats d'analyse fonctionnelle sont ensuite énoncés, ainsi que des théorèmes classiques de densité, de trace et de compacité, et les fameuses injections de Sobolev.

Le chapitre 2 est consacré aux opérateurs elliptiques linéaires, dont un exemple est l'équation de la chaleur en régime stationnaire, qui fait intervenir les dérivées partielles d'ordre 2 de la fonction inconnue (la température) par rapport aux variables d'espace. On étudie leur formulation faible ou variationnelle, ainsi que la régularité de leurs solutions. Les exercices de ce chapitre permettent d'approfondir des résultats d'analyse spectrale, d'introduire les espaces de Sobolev à poids, ou encore de prouver l'existence des solutions au problème de Stokes ou aux équations de Schrödinger.

Les opérateurs elliptiques non linéaires sont étudiés au chapitre 3. On distingue deux types de méthodes pour montrer l'existence des solutions : les méthodes de compacité, soit par point fixe, soit par degré topologique, et les méthodes de monotonie. On donne des exemples d'application de ces méthodes sur plusieurs problèmes non linéaires, dans le texte de cours et dans les exercices : en particulier par point fixe de Schauder pour un opérateur de diffusion semi-linéaire, par degré topologique pour un opérateur de diffusion convection réaction non linéaire, et par monotonie pour des opérateurs de type Leray-Lions.

Le chapitre 4 est consacré aux équations de type parabolique, dont un exemple type est l'équation de la chaleur en régime transitoire, qui fait intervenir la dérivée partielle d'ordre 1 de la fonction inconnue par rapport au temps et les dérivées partielles d'ordre 2 par rapport aux variables d'espace. On commence par un aperçu des méthodes utilisées pour leur étude théorique. Elles nécessitent l'intégration à valeurs dans un espace de Banach, dont les principes sont rappelés au second paragraphe, ainsi que l'extension des notions de dérivée faible et par transposition dans ces espaces. L'existence, unicité et régularité des solutions de l'équation de la chaleur est ensuite abordée. On donne également la démonstration de l'équivalence de deux formulations faibles classiquement utilisées en analyse et analyse numérique. Les méthodes de point fixe, de degré topologique et de monotonie sont appliquées à plusieurs exemples d'équations paraboliques non linéaires dans le texte du cours (diffusion, convection-diffusion-réaction, opérateurs de Leray–Lions) et dans les exercices (problème de Stefan). Les résultats de compacité de type Aubin-Simon sont généralisés à des suites d'espaces, pour permettre leur utilisation dans le cadre de l'étude de convergence de schémas numériques.

Enfin, le dernier chapitre s'intéresse aux lois de conservation hyperboliques (équations et systèmes), qui font intervenir les dérivées d'ordre 1 de la fonction inconnue. Les solutions de ces équations ont un comportement très différent de celui des solutions des équations paraboliques, car, même en partant de données initiales régulières, les solutions peuvent devenir discontinues et donc ne pas avoir de sens classique. On étudie d'abord le cas scalaire, avec un problème de Cauchy unidimensionnel, c'est-à-dire d'une équation hyperbolique faisant intervenir une fonction inconnue d'une variable d'espace et de la variable temps, avec une condition initiale et posée sur tout IR. On introduit la notion de solution entropique, qui permet de déterminer une solution unique. Le cas des conditions limites est exposé succinctement et repris plus en détails dans le cadre multidimensionnel. On étudie ensuite le cas des systèmes hyperboliques dans le cas unidimensionnel avec la variable spatiale dans IR tout entier. Le cas des systèmes hyperboliques avec conditions aux limites et le cas multidimensionnel ne sont pas abordés dans ce cours, la théorie mathématique des systèmes hyperboliques étant d'ailleurs encore très incomplète. Les systèmes hyperboliques interviennent souvent en mécanique des fluides, et leur résolution numérique fait intervenir le problème

de Riemann (problème de Cauchy avec donnée initiale constante de part et d'autre de l'origine). Nous donnons une étude approfondie du problème de Riemann, avec, en particulier en exercice, la solution complète du problème de Riemann pour les équations de Barré de Saint-Venant.

Nous donnons en fin de ce livre une bibliographie des articles phares relatifs aux résultats exposés, ainsi que de quelques ouvrages de référence. Il va de soi que cette bibliographie est loin d'être exhaustive.

Chapitre 1

Espaces de Sobolev

Les espaces de Sobolev 1 sont des espaces fonctionnels, c'est-à-dire des espaces dont les éléments sont des fonctions, plus précisément des "classes de fonctions", d'un ouvert de \mathbb{R}^N ($N \geq 1$) à valeurs dans \mathbb{R} (ou \mathbb{C} mais, sauf indication contraire, nous considérerons que l'espace d'arrivée est \mathbb{R}), et ces fonctions sont telles que leurs puissances et les puissances de leurs dérivées (au sens de la transposition, ou au sens faible, que nous allons préciser) sont intégrables au sens de Lebesgue 2 . Tout comme les espaces de Lebesgue, ces espaces sont des espaces de Banach 3 4 . Le fait que les espaces de Sobolev sont complets est très important pour démontrer l'existence de solutions à de nombreuses équations aux dérivées partielles et c'est pour avoir cette complétude que l'on considère des classes de fonctions et non des fonctions d'un ouvert de \mathbb{R}^N dans \mathbb{R} .

Les résultats concernant les espaces de Sobolev ainsi que les rappels d'analyse fonctionnelle et de théorie de l'intégration ne sont, pour la plupart, qu'énoncés dans ce chapitre. On pourra trouver les démonstrations et approfondir le sujet dans les ouvrages [1],[10] et [20] par exemple.

1.1 Dérivée faible, dérivée par transposition

La notion de *dérivée faible* apparaît déjà dans un article célebre de Jean Leray ⁵ paru en 1934, sur les équations de Navier ⁶-Stokes ⁷; dans cet article, elle apparaît sous le nom de "quasi-dérivée" ([25] page 205). Cette notion est fondamentale pour l'étude de l'existence des solutions d'équations aux dérivées partielles. Dans cet ouvrage, nous introduisons la notion de *dérivée par transposition*, qui généralise la notion de dérivée faible.

Dans toute la suite, Ω désigne un ouvert de ${\rm I\!R}^N$, $N\geq 1$, et on note $\mathcal{D}(\Omega)$ l'ensemble des fonctions de Ω à valeurs dans ${\rm I\!R}$, de classe C^∞ et à support compact dans Ω c'est-à-dire

$$\mathcal{D}(\Omega) = \{ u \in C^{\infty}(\Omega); \exists K \subset \Omega, \ K \text{ compact } ; u = 0 \text{ sur } K^c \}.$$

De plus, l'ouvert Ω sera toujours muni de la tribu de Borel (ou tribu borélienne), notée $\mathcal{B}(\Omega)$, et de la mesure de Lebesgue, notée λ si N=1 et λ_N si N>1. Les intégrales seront toujours par rapport à cette mesure de

- 1. Sergueï Lvovitch Sobolev (1908-1989), mathématicien et physicien russe.
- 2. Henri-Léon Lebesgue (1875-1941), mathématicien français, reconnu pour sa théorie d'intégration.
- 3. Un espace de Banach est un espace vectoriel normé complet.
- 4. Stefan Banach (1892–1945), mathématicien polonais, fondateur de l'analyse fonctionnelle moderne.
- 5. Jean Leray (1906–1998), mathématicien français; il a travaillé sur les équations aux dérivées partielles et sur la topologie algébrique.
- 6. Claude Louis Marie Henri Navier (1785–1836), ingénieur, mathématicien et économiste français du XIXe siècle, qui établit les équations décrivant le mouvement des fluides.
 - 7. George Gabriel Stokes (1819-1903) physicien et mathématicien irlandais, professeur à l'Université de Cambridge, Angleterre.

Lebesgue, sauf indication contraire. Les espaces de Lebesgue obtenus avec l'espace mesurable $(\Omega, \mathcal{B}(\Omega), \lambda_N)$ (ou λ si N=1) seront notés $L^p(\Omega)$ ($p\in[1,+\infty]$). Pour ce cours, on suppose connue la théorie de l'intégrale de Lebesgue (en particulier on rappelle la confusion systématique qui est faite entre un élément de $L^p(\Omega)$ et l'un de ses représentants).

Le lemme suivant est absolument fondamental, car il permet de confondre une fonction localement intégrable $f \in L^1_{\mathrm{loc}}(\Omega)$ avec l'application linéaire $T_f : \mathcal{D}(\Omega) \to \mathbb{R}$ définie pour $\varphi \in \mathcal{D}(\Omega)$, $T_f(\varphi) = \int_{\Omega} f(x)\varphi(x) \, \mathrm{d}x$. On rappelle que $f \in L^1_{\mathrm{loc}}(\Omega)$ si, pour tout sous—ensemble compact K de Ω , la restriction de f à K prolongée par 0 appartient à $L^1(\Omega)$.

Lemme 1.1 (Lemme fondamental : égalité p.p. et égalité dans \mathcal{D}^*) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$, et soient f et $g \in L^1_{loc}(\Omega)$. Alors :

$$\left[\forall \varphi \in \mathcal{D}(\Omega), \int_{\Omega} f(x)\varphi(x) \, \mathrm{d}x = \int_{\Omega} g(x)\varphi(x) \, \mathrm{d}x\right] \Longleftrightarrow [f = g \; \text{ p.p..}].$$

Démonstration : La démonstration de ce lemme utilise la régularisation d'une fonction intégrable par la convolution avec une suite de noyaux régularisants : voir [20, Exercice 8.7 page 480]. □

On note $\mathcal{D}^{\star}(\Omega)$ l'ensemble des formes linéaires sur $\mathcal{D}(\Omega)$: on dit que $\mathcal{D}^{\star}(\Omega)$ est le dual algébrique de $\mathcal{D}(\Omega)$. Si $T \in \mathcal{D}^{\star}(\Omega)$ et $\varphi \in \mathcal{D}(\Omega)$, on appelle action de T sur φ le réel $T(\varphi)$ (c'est donc l'image par T de φ , qu'on note $\langle T, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)}$). Soit $f \in L^1_{loc}$, alors l'application T_f définie par

$$\langle T_f, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = \int_{\Omega} f \varphi \, \mathrm{d}x$$

est une forme linéaire sur $\mathcal{D}(\Omega)$. Si f et $g \in L^1_{\mathrm{loc}}$, alors, grâce au lemme 1.1, f = g p.p. si et seulement si $T_f = T_g$. Ceci nous permet d'identifier toute fonction $f \in L^1_{\mathrm{loc}}$ avec la forme linéaire associée T_f , ce que nous ferons systématiquement par la suite.

Il s'ensuit qu'on peut définir la dérivée par transposition d'une fonction L^1_{loc} de la manière suivante :

Définition 1.2 (Dérivée par transposition, dérivée faible) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$; soit $\mathcal{D}(\Omega) = \mathcal{D}(\Omega)$ et $\mathcal{D}^{\star}(\Omega)$ son dual algébrique, c'est-à-dire l'ensemble des formes linéaires sur $\mathcal{D}(\Omega)$;

• Soit $f \in L^1_{loc}(\Omega)$, on appelle dérivée par transposition de f par rapport à sa i-ème variable la forme linéaire $D_i f$ sur $\mathcal{D}(\Omega)$ définie par :

$$\langle D_i f, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = - \int_{\Omega} f \, \partial_i \varphi \, \mathrm{d}x.$$

où $\partial_i \varphi$ désigne la dérivée partielle classique de φ par rapport à sa i-ème variable. Donc $D_i f$ est un élément de $\mathcal{D}^*(\Omega)$. Noter que si $f \in C^1(\Omega)$, alors $D_i f$ n'est autre que $\partial_i f$ car on confond $\partial_i f$ et $T_{\partial_i f}$ (qui est l'élément de $\mathcal{D}^*(\Omega)$ induit par $\partial_i f$). Il s'agit donc bien d'une généralisation de la notion de dérivée. Si la forme linéaire $D_i f$ peut être confondue avec une fonction localement intégrable, alors grâce au lemme 1.1, cette fonction est unique à un ensemble de mesure nulle près, et on dit que cette fonction est la dérivée faible de f dans la direction f.

• Soit $T \in \mathcal{D}^*(\Omega)$; on définit la dérivée par transposition D_iT de T par :

$$\langle D_i T, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\langle T, \partial_i \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)}, \ \forall \varphi \in \mathcal{D}(\Omega).$$

La notion de dérivée par transposition est proche de celle de dérivée au sens des distributions, mais cette dernière demande de plus la définition d'une topologie sur $\mathcal{D}(\Omega)$; l'espace dual topologique de $\mathcal{D}(\Omega)$ est le sous-espace de $\mathcal{D}^{\star}(\Omega)$ constitué des formes linéaires continues pour cette topologie, on le note $\mathcal{D}'(\Omega)$. Ici et dans toute la suite de ce cours, nous n'utiliserons pas les distributions, et donc nous ne munissons pas $\mathcal{D}(\Omega)$ d'une topologie.

Notons toutefois que lorsque $\mathcal{D}(\Omega)$ est muni de cette topologie, les deux définitions coïncident.

Voici un exemple de dérivée par transposition. La fonction de Heaviside ⁸, définie par

$$H(x) = \begin{cases} 1 \text{ si } x \ge 0, \\ 0 \text{ si } x < 0, \end{cases}$$
 (1.1)

est localement intégrable. Elle admet donc une dérivée par transposition. Pour calculer cette dérivée, notée DH, on remarque que pour $\varphi \in \mathcal{D}(\mathbb{R})$, on a :

$$-\int_{\mathbb{R}} H(x)\varphi'(x) dx = -\int_{0}^{+\infty} \varphi'(x) dx = \varphi(0),$$

et donc DH est la forme linéaire qui à φ associe sa valeur en 0, qu'on appelle aussi "mesure de Dirac en 0": $DH = \delta_0$. Par contre, cette dérivée n'est pas une dérivée faible, car δ_0 ne peut pas être assimilée à une fonction de L^1_{loc} , au sens où il n'existe pas de fonction $g \in L^1_{\mathrm{loc}}(\mathbb{R})$ telle que $\delta_0(\varphi) = \int_{\mathbb{R}} g\varphi \, \mathrm{d}x$ pour tout $\varphi \in \mathcal{D}(\mathbb{R})$ (voir exercice [20, Exercice 5.1] et exercice 1.1 de ce chapitre).

La définition 1.2 permet de définir des dérivées par transposition d'une fonction L^1_{loc} (ou d'un élément de $\mathcal{D}^*(\Omega)$) à tous les ordres. Par l'identification d'une fonction L^1_{loc} avec l'élément de $\mathcal{D}^*(\Omega)$ qu'elle représente, on peut aussi définir la notion de dérivée faible à tous les ordres.

Définition 1.3 (Dérivée d'ordre supérieur) Pour $\alpha = (\alpha_1, \dots \alpha_N) \in \mathbb{N}^N$, et $u \in L^1_{loc}(\mathbb{R}^N)$, on note $|\alpha| = \alpha_1 + \dots + \alpha_N$ et on définit la dérivée faible $D^{\alpha} = D_1^{\alpha_1} \dots D_N^{\alpha_N} u \in L^1_{loc}(\mathbb{R}^N)$ (d'ordre $|\alpha|$), si elle existe, par

$$\int_{\mathbb{R}^N} D^{\alpha}u(x) \varphi(x) dx = \int_{\mathbb{R}^N} D_1^{\alpha_1} \dots D_N^{\alpha_N} u(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\mathbb{R}^N} u(x) \partial_1^{\alpha_1} \dots \partial_N^{\alpha_N} \varphi(x) dx, \forall \varphi \in \mathcal{D}(\mathbb{R}^N),$$

où $\partial_i^{\alpha_i} \varphi$ désigne la dérivée partielle (classique) d'ordre α_i par rapport à la i-ème variable.

Définition 1.4 (Convergence dans \mathcal{D}^* , positivité d'un élément de \mathcal{D}^*)

Soit Ω un ouvert de \mathbb{R}^N $(N \ge 1)$.

1. Soient $(T_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{D}^*(\Omega)$ et $T\in\mathcal{D}^*(\Omega)$. On dit que $T_n\to T$ dans $\mathcal{D}^*(\Omega)$, quand $n\to +\infty$, si

$$\langle T_n, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} \to \langle T, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} \text{ pour tout } \varphi \in \mathcal{D}(\Omega).$$
 (1.2)

2. Soit $T \in \mathcal{D}^{\star}(\Omega)$, on dit que $T \geq 0$ si pour tout $\varphi \in \mathcal{D}(\Omega)$ $\varphi \geq 0$ (c'est-à-dire $\varphi(x) \geq 0$ pour tout $x \in \Omega$) implique $\langle T, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} \geq 0$. (Bien sûr, T < 0 si -T > 0.)

Remarque 1.5 (Et les distributions?) On vient de voir que la convergence dans \mathcal{D}^* est la convergence simple dans l'ensemble des applications de $\mathcal{D}(\Omega)$ dans \mathbb{R} .

Lorsque l'on s'intéresse aux distributions, on ajoute une structure topologique à l'espace $\mathcal{D}(\Omega)$ (non décrite dans ce livre) et, au lieu de travailler avec $\mathcal{D}^*(\Omega)$, on travaille avec l'espace strictement plus petit des applications linéaires continues de $\mathcal{D}(\Omega)$ dans \mathbb{R} , espace qu'on note $\mathcal{D}'(\Omega)$. Toutefois, même lorsque l'on travaille avec l'espace $\mathcal{D}'(\Omega)$, la notion de convergence est toujours donnée par (1.2).

Par ailleurs, tous les éléments de $\mathcal{D}^{\star}(\Omega)$ que nous aurons à considérer dans ce livre sont en fait des éléments de $\mathcal{D}'(\Omega)$, mais cela n'apporte rien de plus de le savoir.

^{8.} Oliver Heaviside (1850 - 1925), physicien britannique autodidacte.

1.2 Définition et propriétés

Définition 1.6 (Espaces de Sobolev) Soit Ω un ouvert de \mathbb{R}^N , N > 1.

1. L'espace $H^1(\Omega)$ est défini par :

$$H^{1}(\Omega) = \{ u \in L^{2}(\Omega) ; D_{i}u \in L^{2}(\Omega), \forall i = 1, ..., N \}.$$

Dans cette définition, lorsqu'on écrit $D_i u \in L^2(\Omega)$, on sous-entend

$$\exists g \in L^2(\Omega); \langle D_i f, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int_{\Omega} g\varphi \, \mathrm{d}x, \ \forall \varphi \in \mathcal{D}(\Omega).$$

2. L'espace $H^m(\Omega)$ est défini pour $m \in \mathbb{N}$ par :

$$H^{m}(\Omega) = \{ u \in L^{2}(\Omega); D^{\alpha}u \in L^{2}(\Omega) \, \forall \alpha \in \mathbb{N}^{N}; |\alpha| \leq m \}.$$

3. L'espace $W^{m,p}(\Omega)$ est défini pour $1 \leq p \leq \infty$ et $m \in \mathbb{N}$, par

$$W^{m,p}(\Omega) = \{ u \in L^p(\Omega); D^{\alpha}u \in L^p(\Omega), \ \forall \alpha \in \mathbb{N}^N \ ; \ |\alpha| \le m. \}$$

4. Noter que pour m=0, l'espace $W^{m,p}(\Omega)$ est l'espace de Lebesgue L^p .

On note $(\cdot|\cdot)_{L^2}$ le produit scalaire dans $L^2(\Omega)$, *i.*e.

$$(u|v)_{L^2} = \int_{\Omega} uv \, \mathrm{d}x,$$

et $\|\cdot\|_{L^p}$ la norme dans $L^p(\Omega)$, *i*.e.

$$||u||_{L^p} = \left(\int_{\Omega} |u|^p \, \mathrm{d}x\right)^{\frac{1}{p}}.$$

Nous considérons ici (comme dans l'essentiel de ce livre) des fonctions à valeurs dans ${\rm I\!R}$. La généralisation à des fonctions à valeurs dans ${\rm I\!R}$ demande peu de modifications. L'une de ces modifications consiste à remplacer $\int_\Omega uv \, {\rm d}x$ par $\int_\Omega u\bar v \, {\rm d}x$ dans la définition du produit scalaire dans $L^2(\Omega)$.

Proposition 1.7 (Normes et produits scalaires sur les espaces de Sobolev)

Les espaces $H^m(\Omega)$ sont des espaces de Hilbert ^{9 10} lorsqu'on les munit du produit scalaire

$$(u|v)_{H^m} = \sum_{|\alpha| \le m} (D^{\alpha}u|D^{\alpha}v)_{L^2}.$$

Noter que $W^{m,2}(\Omega) = H^m(\Omega)$.

Une norme naturelle sur $W^{m,p}(\Omega)$ est définie par :

$$||u||_{W^{m,p}} = \begin{cases} \left(\sum_{0 \leqslant |\alpha| \leqslant m} ||D^{\alpha}u||_{L^{p}}^{p}\right)^{1/p}, & \text{si } 1 \leqslant p < +\infty; \\ \max_{0 \leqslant |\alpha| \leqslant m} ||D^{\alpha}u||_{L^{\infty}}, & \text{si } p = +\infty. \end{cases}$$
(1.3)

^{9.} David Hilbert (1862-1943), mathématicien allemand, connu pour ses travaux dans de nombreuses branches des mathématiques. Il énonça en 1900 23 problèmes, dont certains ne sont toujours pas résolus.

^{10.} On rappelle qu'un espace de Hilbert est un espace vectoriel normé complet dont la norme est induite par un produit scalaire.

Muni de cette norme $W^{m,p}(\Omega)$ est un **espace de Banach**. On peut montrer que la norme :

$$||u||_{m,p} = \begin{cases} \sum_{0 \le |\alpha| \le m} ||D^{\alpha}u||_{L^{p}}, & 1 \le p < +\infty; \\ \sum_{0 \le |\alpha| \le m} ||D^{\alpha}u||_{L^{\infty}}, & p = +\infty. \end{cases}$$
(1.4)

est une norme équivalente à la norme définie par (1.3): ceci est une conséquence de l'équivalence entre les normes dans \mathbb{R}^q où $q = card(\{\alpha \in \mathbb{N}^N \mid \alpha | \leq m\})$. Les deux normes sont notées indifféremment $\|\cdot\|_{m,p}$ ou $\|\cdot\|_{W^{m,p}}$. L'intérêt principal de la norme (1.3) est que dans le cas p=2 elle confère à H^m une structure hilbertienne, ce qui n'est pas le cas avec la norme définie par (1.4)

Remarque 1.8 (Espaces de Sobolev et continuité) En une dimension d'espace (N=1), avec $a,b \in \mathbb{R}$, a < b, $1 \le p \le +\infty$, tout élément de $W^{1,p}(]a,b[)$ (qui est donc une classe de fonctions) peut être assimilé à une fonction continue, au sens où il existe un représentant de la classe qui est continu (ce représentant continu est unique, voir à ce propos l'exercice 1.3). Ceci tient au fait qu'en dimension 1, toute (classe de) fonction(s) de $W^{1,p}(]a,b[)$ peut s'écrire comme l'intégrale de sa dérivée.

$$u \in W^{1,p}(]a,b[) \Longleftrightarrow \left\{ \exists \tilde{u} \in C([a,b]) \text{ et } v \in L^p(]a,b[); u = \tilde{u} \text{ p.p. et } \tilde{u}(x) = \tilde{u}(a) + \int_a^x v(s) \ ds \right\}.$$

En dimension strictement supérieure à 1, ceci est faux. En particulier $H^1(\Omega) \not\subset C(\overline{\Omega})$, comme le prouve l'exemple suivant : soit $\Omega = \{x = (x_1, x_2)^t \in \mathbb{R}^2, |x_i| < \frac{1}{2}, i = 1, 2\}$, et u la fonction définie sur Ω par $u(x) = (-\ln(|x|))^{\gamma}$, avec $\gamma \in]0, \frac{1}{2}[$. Alors $u \in H^1(\Omega)$ mais $u \not\in L^{\infty}(\Omega)$ (voir exercice 1.5), et donc en particulier, $u \not\in C(\overline{\Omega})$.

Proposition 1.9 (Séparabilité) Soit Ω un ouvert de \mathbb{R}^N $(N \ge 1)$, $m \in \mathbb{N}$ et $1 \le p < +\infty$; l'espace $W^{m,p}(\Omega)$ est un espace séparable (c'est-à-dire un espace vectoriel normé qui contient une partie dénombrable dense).

La preuve de cette proposition fait l'objet de l'exercice 1.11, où l'on montre aussi par un contre-exemple que le résultat de séparabilité n'est pas vrai pour $p = +\infty$.

La notion de séparabilité est importante, car elle permet d'approcher aussi près que l'on veut n'importe quel élément de l'espace par un élément d'une famille dénombrable : dans le cadre d'un espace de Hilbert, on peut montrer que cette propriété est équivalente à l'existence d'une base hilbertienne dénombrable (voir par exemple [20, Proposition 6.62]).

Nous rappelons maintenant la notion importante d'espace réflexif.

Définition 1.10 (Espace réflexif) Soit E un espace vectoriel normé réel. On note E' son dual topologique, c'està-dire l'ensemble des formes linéaires continues de E dans \mathbb{R} muni de sa norme naturelle (E' est un espace de Banach). Pour tout $x \in E$, on définit l'application J_x de E' dans \mathbb{R} par $J_x(T) = T(x)$ pour tout $T \in E'$. On a

$$|J_x(T)| = |T(x)| < ||T||_{E'} ||x||_E$$

et donc J_x est une forme linéaire continue sur E', ce qu'on note $J_x \in E''$ où E'' est le bidual de E, c'est-à-dire le dual topologique de E'. On peut montrer par le théorème de Hahn ¹¹-Banach qu'on rappelle dans le paragraphe suivant, que $||J_x||_{E''} = ||x||_E$.

L'application J, définie de E dans E'' par $J(x) = J_x$ pour tout $x \in E$, est donc une isométrie linéaire de E sur son image, notée $\operatorname{Im}(J)$, et on a évidemment $\operatorname{Im}(J) \subset E''$.

^{11.} Hans Hahn (1879–1934), mathématicien et philosophe autrichien, connu pour ses contributions en analyse fonctionnelle, topologie, théorie des ensembles et analyse réelle.

On dit que E est un espace **réflexif** si $\operatorname{Im}(J) = E''$, ce qui revient à dire que J est surjective. Notons que tout espace réflexif E est forcément complet puisque le dual d'un espace vectoriel normé quelconque est toujours complet.

Proposition 1.11 (Réflexivité) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$, et $m \in \mathbb{N}$. Pour tout p tel que $1 , l'espace <math>W^{m,p}(\Omega)$ est un espace réflexif.

On pourra consulter par exemple [20, Proposition 6.73] pour la preuve de ce résultat.

1.3 Rappels d'analyse fonctionnelle

Commençons par un théorème fondamental (voir par exemple [10]):

Théorème 1.12 (Hahn–Banach) Soit E un espace vectoriel sur $\mathbb R$ et p une fonction convexe définie de E dans $\mathbb R$. Soit F un sous-espace vectoriel de E, et T une forme linéaire sur F qui vérifie $T(x) \leq p(x)$ pour tout $x \in F$. Il existe alors un une forme linéaire de E dans $\mathbb R$, encore notée T, qui est égale à T sur F, qui prolonge T sur I'espace E tout entier, et qui vérifie encore la condition : $T(x) \leq p(x)$ pour tout $x \in E$.

Le corollaire suivant est essentiel :

Corollaire 1.13 (Prolongement d'une application linéaire) Soit E un espace normé, F un sous-espace de E et T une forme linéaire continue sur F. On peut alors prolonger T en une application continue définie sur E, de même norme que T.

Un résultat bien connu sur les espaces de dimension finie est donné dans le théorème suivant :

Théorème 1.14 (CNS sur la dimension) Un espace de Banach E est de dimension finie si et seulement si sa boule unité fermée est compacte.

Les notions de convergence faible et faible-* seront fondamentales pour la suite.

Définition 1.15 (Convergences faible et faible-★) *Soit E un espace de Banach.*

- 1. Convergence faible Soient $(u_n)_{n\in\mathbb{N}}\subset E$ et $u\in E$. On dit que $u_n\to u$ faiblement dans E lorsque $n\to +\infty$ si $T(u_n)\to T(u)$ pour tout $T\in E'$.
- 2. Convergence faible-* Soient $(T_n)_{n\in\mathbb{N}}\subset E'$ et $T\in E'$. On dit que $T_n\to T$ dans E' faible-* si $T_n(u)\to T(u)$ pour tout $u\in E$.

Remarque 1.16 (Sur la convergence dans un espace vectoriel normé) Dans toute la suite de ce livre, si E est un espace vectoriel normé, $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $u\in E$, on dira que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers u dans E lorsque $n\to +\infty$ si $||u_n-u||_E\to 0$ lorsque $n\to +\infty$. Cette notion classique de convergence est parfois appelée "convergence forte" dans la littérature, par opposition à la notion de convergence faible.

Exemple 1.17 (Convergence faible dans L^1 et faible- \star dans L^{∞})

La convergence faible- \star est intéressante pour le cas des espaces non réflexifs. Par exemple, les espaces $L^1(\mathbb{R})$ (des fonctions intégrables sur \mathbb{R} pour la mesure de Lebesque) et $L^{\infty}(\mathbb{R})$ (des fonctions essentiellement bornées sur \mathbb{R} pour la mesure de Lebesque) ne sont pas réflexifs. Il est classique d'identifier le dual de $L^1(\mathbb{R})$ avec $L^{\infty}(\mathbb{R})$ mais le dual de $L^{\infty}(\mathbb{R})$ n'est pas identifiable à $L^1(\mathbb{R})$, voir par exemple [20, Remarque 6.71].

Compte tenu de cette identification de $(L^1(\mathbb{R}))'$ avec $L^{\infty}(\mathbb{R})$, une suite $(u_n)_{n\in\mathbb{N}}\subset L^1(\mathbb{R})$ converge faiblement vers $u\in L^1(\mathbb{R})$ si pour tout $v\in L^{\infty}(\mathbb{R})$,

$$\int u_n v \, dx \to \int uv \, dx \text{ lorsque } n \to +\infty.$$

Une suite $(v_n)_{n\in\mathbb{N}}\subset L^\infty(\mathbb{R})$ converge \star -faiblement vers $v\in L^\infty(\mathbb{R})$ si pour tout $u\in L^1(\mathbb{R})$,

$$\int v_n u \, dx \to \int v u \, dx \text{ lorsque } n \to +\infty.$$

Remarque 1.18 (Convergence faible et limite inf) Soit E un espace de Banach; l est intéressant de remarquer que si une suite $(u_n)_{n\in\mathbb{N}}\subset E$ converge faiblement dans $u\in E$, alors

$$||u||_E \le \liminf_{n \to +\infty} ||u_n||_E.$$

La preuve de ce résultat est l'objet de la question 4b de l'exercice 1.8.

Le théorème suivant est une version séquentielle, suffisante dans le cadre de ce cours, du théorème de Banach-Alaoglu ¹² (voir [10]).

Ici et dans toute la suite de ce livre \mathbb{R}_+ désigne l'ensemble des réels positifs et \mathbb{R}_+^* désigne l'ensemble des réels strictement positifs.

Théorème 1.19 (Compacité faible- \star des bornés du dual d'un espace séparable) Soit E un espace de Banach séparable, et soit $(T_n)_{n\in\mathbb{N}}$ une suite bornée de E', c'est-à-dire telle qu'il existe $C\in\mathbb{R}_+$ tel que $(\|T_n\|_{E'}\leq C$ pour tout $n\in\mathbb{N}$. Alors il existe une sous-suite, encore notée $(T_n)_{n\in\mathbb{N}}$, et $T\in E'$ telle que $T_n\to T$ dans E' faible- \star .

Une application importante de ce théorème est la suivante : si Ω est un ouvert de \mathbb{R}^N et $(u_n)_{n\in\mathbb{N}}$ est une suite bornée de $L^\infty(\Omega)$, alors il existe une sous-suite encore notée $(u_n)_{n\in\mathbb{N}}$ et $u\in L^\infty(\Omega)$ tels que $\int_\Omega u_n\varphi\ \mathrm{d}x\to\int_\Omega u\varphi\ \mathrm{d}x$ pour tout $\varphi\in L^1(\Omega)$. Ceci découle du fait qu'il existe une isométrie naturelle entre $L^\infty(\Omega)$ et le dual de $L^1(\Omega)$ et que $L^1(\Omega)$ est séparable.

Théorème 1.20 (Compacité faible des bornés d'un espace réflexif) Soit E un espace de Banach réflexif, et soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de E (c'est-à-dire telle qu'il existe $C\in\mathbb{R}_+$ tel que $(\|u_n\|_E\leq C$ pour tout $n\in\mathbb{N}$). Alors il existe une sous-suite, encore notée $(u_n)_{n\in\mathbb{N}}$, et $u\in E$ telle que $u_n\to u$ dans E faiblement.

Noter qu'un espace de Hilbert est toujours un espace de Banach réflexif.

1.4 Théorèmes de densité

Définition 1.21 (Frontière lipschitzienne) Un ouvert borné Ω de \mathbb{R}^N est dit à frontière lipschitzienne s'il existe $n \in \mathbb{N}$ et des ouverts $(\Omega_0, \Omega_1, \dots, \Omega_n)$ de \mathbb{R}^N ainsi que des applications $(\phi_0, \phi_1, \dots, \phi_n)$ telles que :

- 1. $\overline{\Omega} \subset \bigcup_{i=0}^n \Omega_i \text{ et } \Omega_0 \subset \Omega$.
- 2. $\phi_0: \Omega_0 \to B_{1,N} = \{x \in \mathbb{R}^N ; ||x|| < 1\}$ est bijective et ϕ_0 et ϕ_0^{-1} sont lipschitziennes,
- 3. Pour tout $i \geq 1$, $\phi_i : \Omega_i \to B_{1,N}$ est bijective et ϕ_i et ϕ_i^{-1} sont lipschitziennes, et $\phi_i(\Omega_i \cap \Omega) = B_{1,N} \cap \mathbb{R}_+^N$ et $\phi_i(\Omega_i \cap \partial \Omega) = B_{1,N} \cap \{(0,y), y \in \mathbb{R}^{N-1}\}$ (où $\mathbb{R}_+^N = \{(x,y) \in \mathbb{R}^N; x \in \mathbb{R}, x > 0 \text{ et } y \in \mathbb{R}^{N-1}\}$.)

^{12.} Leonidas Alaoglu (1914-1981), mathématicien canadien, célèbre pour son résultat d'analyse fonctionnelle appelé théorème d'Alaoglu (aussi appelé théorème de Banach-Alaoglu).

Remarque 1.22 (Frontière fortement lipschitzienne) Un ouvert borné Ω de \mathbb{R}^N est dit à frontière fortement lipschitzienne si le bord de Ω est localement le graphe d'une fonction lipschitzienne et que Ω est (localement) d'un seul côté de ce graphe. Un ouvert (borné) à frontière fortement lipschitzienne est un ouvert à frontière lipschitzienne mais la réciproque est fausse comme le montre l'exercice 1.16, voir aussi [15].

Théorème 1.23 (Densité et prolongement) Soient $N \geq 1$, $\Omega = \mathbb{R}^N$ ou $\Omega = \mathbb{R}^N_+$ ou Ω ouvert borné (de \mathbb{R}^N_-) à frontière lipschitzienne et $1 \leq p \leq +\infty$. On note $C_c^{\infty}(\overline{\Omega})$ l'ensemble des restrictions des fonctions $\mathcal{D}(\mathbb{R}^N_-)$ à Ω .

- 1. Si $p < +\infty$, $C_c^{\infty}(\overline{\Omega})$ est dense dans $W^{1,p}(\Omega)$.
- 2. Il existe une application linéaire continue $P:W^{1,p}(\Omega)\to W^{1,p}(\mathbb{R}^N)$ telle que

$$\forall u \in W^{1,p}(\Omega), P(u) = u \text{ p.p. dans } \Omega.$$

Des résultats analogues sont vrais avec $W^{m,p}(\Omega)$ (m>1) au lieu de $W^{1,p}(\Omega)$ mais demandent plus de régularité sur Ω (voir [1]).

On donne brièvement la démonstration des deux propriétés du théorème 1.23. La première propriété se démontre d'abord avec $\Omega = \mathbb{R}^N$ en deux étapes :

Etape 1, troncature On montre la densité dans $W^{1,p}(\mathbb{R}^N)$ des éléments de $W^{1,p}(\mathbb{R}^N)$ à support compact (l'élément u de $W^{1,p}(\mathbb{R}^N)$) est à support compact si il existe K compact tel que u=0 p.p. sur K^c).

Pour cela, on choisit $\psi \in \mathcal{D}(\mathbbm{R}^N)$ telle que $0 \le \psi(x) \le 1$ pour tout $x, \psi(x) = 1$ si $|x| \le 1, \psi(x) = 0$ si $|x| \ge 2$ (|x|)= désigne toujours la norme euclidienne de $x \in \mathbbm{R}^N$). On définit u_n pour $n \in \mathbbm{N}^\star$ par $u_n(x) = u(x)\psi(x/n)$ et on montre que $u_n \to u$ dans $W^{1,p}(\mathbbm{R}^N)$ quand $n \to +\infty$.

Etape 2, régularisation On choisit une fonction $\rho \in \mathcal{D}(\mathbb{R}^N)$ telle que $\rho(x) = 0$ si $|x| \ge 1$ et $\int_{\mathbb{R}^N} \rho(x) = 1$. Pour $n \in \mathbb{N}^*$, on définit ρ_n par $\rho_n(x) = n^N \rho(nx)$.

Soit $u \in W^{1,p}(\mathbb{R}^N)$, u à support compact. On pose $u_n = u \star \rho_n$. On démontre alors que $u_n \in \mathcal{D}(\mathbb{R}^N)$ et $u_n \to u$ dans $W^{1,p}(\mathbb{R}^N)$ quand $n \to +\infty$.

On a bien ainsi prouvé $C_c^\infty(\overline{\Omega})$ est dense dans $W^{1,p}(\Omega)$. (Notre que ce résultat est faux si $p=+\infty$.)

Dans le cas $\Omega=\mathbb{R}^N_+$, la première étape est identique à celle du cas $\Omega=\mathbb{R}^N$ mais il faut légèrement modifier la seconde étape. On commence par prolonger u par 0 hors de \mathbb{R}^N_+ . Puis, on choisit encore une fonction $\rho\in\mathcal{D}(\mathbb{R}^N)$ telle que $\rho(x)=0$ si $|x|\geq 1$ et $\int_{\mathbb{R}^N}\rho(x)=1$ mais on ajoute que $\rho(x_1,y)=0$ si $x_1\geq 0$ (et $y\in\mathbb{R}^{N-1}$). On pose $u_n=u\star\rho_n$ (toujours avec $\rho_n=n^N\rho(n\cdot)$). On démontre alors que $u_n\in\mathcal{D}(\mathbb{R}^N)$ et $u_n\to u$ dans $W^{1,p}(\mathbb{R}^N_+)$ quand $n\to+\infty$ (plus précisément il s'agit de la restriction à \mathbb{R}^N_+ de u_n). Pour montrer que $u_n\to u$ dans $W^{1,p}(\mathbb{R}^N_+)$ il est important de remarquer que $\partial_i u_n=\tilde{D_i}u\star\rho_n$ sur \mathbb{R}^N_+ où $=\tilde{D_i}u$ est égale à D_iu prolongée par 0 hors de \mathbb{R}^N_+ et donc $\partial_i u_n\to D_iu$ dans $L^p(\mathbb{R}^N_+)$ quand $n\to+\infty$.

Enfin, dans le cas où Ω est un ouvert borné (de \mathbb{R}^N) à frontière lipschitzienne, on se ramène au cas $\Omega = \mathbb{R}^N_+$ en utilisant les fonctions ϕ_i de la définition 1.21 et une partition de l'unité (exercice 1.25).

On indique maintenant comment on démontre la seconde propriété du théorème 1.23 si $p<\infty$. Cette seconde propriété se démontre grâce à la première (le cas $p=\infty$ est différent car la première propriété du théorème 1.23 est alors fausse mais on peut dans ce cas construire directement le prolongement demandé et remarquant que $W^{1,\infty}(\Omega)$ est l'espace des fonctions lipschitziennes sur $\bar{\Omega}$, exercice 1.15).

Pour montrer cette seconde propriété, on commence par le cas $\Omega=\mathbb{R}^N_+$. Si $u\in C^\infty_c(\overline{\mathbb{R}^N}_+)$ (c'est-à-dire u restriction à \mathbb{R}^N_+ d'un élement de $\mathcal{D}(\mathbb{R}^N)$ encore noté u), on définit \tilde{u} par $\tilde{u}(x)=u(x)$ si $x=(x_1,y)^t$ avec $x_1\geq 0$ et $\tilde{u}(x)=u(-x_1,y)$ si $x=(x_1,y)^t$ si $x_1<0$. La fonction \tilde{u} n'est pas de classe C^∞ , ni même de classe C^1 mais elle est continue et on montre (en utilisant des intégrations par parties classiques) que les dérivées par transposition de \tilde{u} sont représentées par les dérivées classiques de \tilde{u} . On en déduit que $\tilde{u}\in W^{1,p}(\mathbb{R}^N)$ et que

 $\|\tilde{u}\|_{W^{1,p}(\mathbb{R}^N)}=2\|u\|_{W^{1,p}(\mathbb{R}^N_+)}. \text{ L' opérateur } u\mapsto \tilde{u} \text{ est donc linéaire continu de } C_c^\infty(\overline{\mathbb{R}^N}_+)\subset W^{1,p}(\mathbb{R}^N_+) \text{ dans } W^{1,p}(\mathbb{R}^N_+) \text{ et de norme égale à 2. Par densité de } C_c^\infty(\overline{\mathbb{R}^N}_+) \text{ dans } W^{1,p}(\mathbb{R}^N_+), \text{ il se prolonge donc (de manière unique) en un opérateur P linéaire continu de $W^{1,p}(\mathbb{R}^N_+)$ dans $W^{1,p}(\mathbb{R}^N_+)$ et de norme égale à 2. On a, bien sûr, $P(u)=u$ p.p. dans \mathbb{R}^N_+.}$

Enfin, ici encore, dans le cas où Ω est un ouvert borné (de \mathbb{R}^N) à frontière lipschitzienne, on se ramène au cas $\Omega = \mathbb{R}^N_+$.

On peut montrer aussi que $C_c^{\infty}(\overline{\Omega})$ est dense dans $W^{m,p}(\Omega)$ si $N \geq 1, m \in \mathbb{N}$ et $1 \leq p < +\infty$, avec $\Omega = \mathbb{R}^N$ ou $\Omega = \mathbb{R}^N$ ou Ω ouvert borné (de \mathbb{R}^N) à frontière "suffisamment régulière" (par exemple si les ϕ_i de la définition 1.21 sont de classe C^{∞} , voir, par exemple, [1]).

On peut aussi construire des opérateurs de prolongement comme dans la seconde propriété du théorème 1.23. Un cas particulier fait l'objet de l'exercice 1.21.

Enfin, il est important de noter que si, par exemple, Ω est un ouvert borné, l'espace $\mathcal{D}(\Omega)$ n'est pas dense dans $H^1(\Omega)$. Son adhérence est un sous espace strict de $H^1(\Omega)$, qu'on note $H^1_0(\Omega)$.

Définition 1.24 (Les espaces $W_0^{m,p}(\Omega)$ et leurs duaux) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$.

- 1. On appelle $H^1_0(\Omega)$ l'adhérence de $\mathcal{D}(\Omega)$ dans $H^1(\Omega)$, ce qu'on note aussi : $H^1_0(\Omega) = \overline{\mathcal{D}(\Omega)}^{H^1(\Omega)}$.
- 2. Pour m>0 et $1\leq p<+\infty$, on définit le sous espace $W_0^{m,p}(\Omega)$ de $W^{m,p}(\Omega)$ comme l'adhérence de $\mathcal{D}(\Omega)$ dans $W^{m,p}(\Omega)$:

$$W_0^{m,p}(\Omega) = \overline{\mathcal{D}(\Omega)}^{W^{m,p}(\Omega)}$$

- 3. Pour $1 \leq p < +\infty$, et $q = \frac{p}{p-1}$; le dual de $W_0^{1,p}(\Omega)$ est noté $W^{-1,q}(\Omega)$.
- 4. pour q=2, l'espace $W^{-1,2}(\Omega)$ est aussi noté $H^{-1}(\Omega)$.

Comme cela a été dit précédemment, si $\Omega = \mathbb{R}^N$ on a $H_0^1(\Omega) = H^1(\Omega)$ alors que l'inclusion est stricte si Ω est un ouvert borné.

Remarque 1.25 (Espace $C^k(\bar{\Omega})$) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$, et $k \in \mathbb{N}^* \cup \{+\infty\}$. Soit φ une fonction de Ω dans \mathbb{R} . On dit que $\varphi \in C^k(\bar{\Omega})$ s'il existe une fonction ψ de \mathbb{R}^N dans \mathbb{R} , de classe C^k telle que $\psi = \varphi$ dans Ω . Si Ω est borné, il est bien sûr possible de demander que la fonction ψ soit à support compact dans \mathbb{R}^N , comme cela a été fait dans le théorème 1.23 (et donc $C^k(\bar{\Omega}) = C^k_c(\bar{\Omega})$). Il est intéressant de noter qu'il est possible de prendre la même définition pour k=0. En effet, si φ est continue de $\bar{\Omega}$ dans \mathbb{R} , il existe alors ψ continue de \mathbb{R}^N dans \mathbb{R} telle que $\psi = \varphi$ dans $\bar{\Omega}$, voir l'exercice 1.17.

1.5 Théorèmes de trace

Nous énonçons ici quelques résultats fondamentaux sur l'opérateur trace, d'abord dans le demi-espace puis pour un ouvert Ω borné à frontière (faiblement) lipschitzienne. Nous renvoyons à [15, chapitre 4] pour un exposé clair et précis sur ces questions, avec démonstrations.

Définition 1.26 (Demi-espace) On appelle demi-espace de \mathbb{R}^N , $N \geq 1$, l'ensemble $\{(x,y) \in \mathbb{R}^N; x \in \mathbb{R}, x > 0 \text{ et } y \in \mathbb{R}^{N-1}\}$, qu'on note \mathbb{R}^N_+ .

Théorème 1.27 (Trace, demi-espace) Soit $\Omega = \mathbb{R}_+^N$; pour tout p tel que $1 \le p < +\infty$, il existe une unique application linéaire continue γ de $W^{1,p}(\Omega)$ dans $L^p(\mathbb{R}^{N-1})$ telle que $\gamma u = u(0,\cdot)$ p.p sur \mathbb{R}^{N-1} , si $u \in C_c^\infty(\overline{\mathbb{R}_+^N})$. Noter que l'égalité $\gamma u = u(0,\cdot)$ p.p sur \mathbb{R}^{N-1} est à prendre au sens de la mesure de Lebesgue N-1 dimensionnelle,

Remarque 1.28 (Lien avec la trace classique) On suppose que $\Omega = \mathbb{R}^N_+$. Alors :

- 1. Si $u \in H^1(\Omega) \cap C(\overline{\Omega})$, on a alors $\gamma u = u$ p.p sur $\partial \Omega$ (au sens de la mesure de Lebesgue N-1 dimensionnelle).
- 2. Ker $\gamma = W_0^{1,p}(\mathbb{R}^N_+)$.

Voir à ce propos l'exercice 1.20.

Théorème 1.29 (Trace, ouvert borné) Soit Ω un ouvert borné à frontière lipschitzienne et $1 \leq p < +\infty$. Alors, il existe une unique application γ (linéaire continue) définie de $W^{1,p}(\Omega)$ dans $L^p(\partial\Omega)$ et telle que

$$\gamma u = u \ p.p. \ sur \ \partial \Omega \ si \ u \in W^{1,p}(\Omega) \cap C(\overline{\Omega}).$$

Ici encore, p.p. est à prendre au sens de la mesure de Lebesgue N-1 dimensionnelle sur $\partial\Omega$.

De plus Ker
$$\gamma = W_0^{1,p}(\Omega)$$
.

Remarquons que si p>N, on peut montrer (voir théorème 1.38) que $W^{1,p}(\Omega)\subset C(\overline{\Omega})$ et γu est alors la valeur de u au bord au sens classique.

Le théorème suivant généralise la propriété d'intégration par parties des fonctions régulières.

Théorème 1.30 (Intégration par parties)

• $Si \Omega = \mathbb{R}^N_+$, alors

$$\begin{cases} \operatorname{Si} 2 \leq i \leq N, \int_{\Omega} u \, D_i v \, \mathrm{d}x = -\int_{\Omega} D_i u \, v \, \mathrm{d}x, \ \forall (u,v) \in (H^1(\Omega))^2, \\ \operatorname{Si} i = 1, \int_{\Omega} u \, D_1 v \, \mathrm{d}x = -\int_{\Omega} D_1 u \, v \, \mathrm{d}x + \int_{\partial \Omega} \gamma u(y) \, \gamma v(y) \, \mathrm{d}\gamma(y), \ \forall (u,v) \in (H^1(\Omega))^2, \end{cases}$$

• $si \Omega$ est un ouvert borné à frontière lipschitzienne, alors, pour tout $i=1,\ldots,N$,

$$\int_{\Omega} u \, D_i v \, dx = -\int_{\Omega} D_i u \, v \, dx + \int_{\partial \Omega} \gamma u(y) \, \gamma v(y) n_i(y) \, d\gamma(y), \, \forall (u, v) \in (H^1(\Omega))^2,$$

où γu désigne la trace de u sur la frontière $\partial\Omega$ et $d\gamma(y)$ désigne l'intégration par rapport à la mesure adéquate sur $\partial\Omega$ (qu'on peut voir comme une mesure de Lebesque (N-1) dimensionnelle, voir remarque suivante), et $\mathbf{n}=(n_1,\ldots,n_N)^t$ est la normale à $\partial\Omega$ extérieure à Ω .

Remarque 1.31 (Mesure sur $\partial\Omega$) La mesure utilisée sur $\partial\Omega$ est définie de manière très précise dans le polycopié de Jérôme Droniou [15, paragraphe 2.2.1]. On pourra aussi y trouver la démonstration du théorème de trace précédent, voir [ibid., théorème 4.2.1].

1.6 Théorèmes de compacité

Le théorème de compacité de Rellich ¹³ et ses généralisations sont une conséquence du théorème de compacité de Kolmogorov ¹⁴. On pourra consulter [20, chapitre 8]) pour le théorème de Kolmogorov général (appelé aussi

^{13.} Franz Rellich (1906–1955), mathématicien autrichien-allemand, spécialiste de physique mathématique et d'équations aux dérivées partielles.

^{14.} Andreï Nikolaïevitch Kolmogorov (1903–1987), mathématicien soviétique connu pour ses contributions en probabilités, topologie, logique, turbulence, mécanique, théorie de l'information et complexité.

parfois Fréchet Kolmogorov). Le théorème de Kolmogorov est adapté dans le cas espace temps au chapitre 4 (voir théorèmes 4.42 et 4.43).

Le théorème de Kolmogorov est lui même une conséquence du théorème d'Ascoli ¹⁵, que nous rappelons car il sera utilisé plusieurs fois dans la suite.

Théorème 1.32 (Ascoli (ou Arzela-Ascoli)) Soient (K,d) un espace métrique compact et (E,d') un espace métrique complet. L'espace C(K,E) des fonctions continues de K dans E, muni de la distance de la convergence uniforme, est un espace métrique complet. On rappelle que la distance de la convergence uniforme est définie par

$$d(f,g) = \sup_{x \in K} d'(f(x), g(x)).$$

Une partie A de C(K,E) est relativement compacte (c'est-à-dire incluse dans un compact) si et seulement si, pour tout point x de K:

- A est équicontinue en x, c'est-à-dire que pour tout $\varepsilon > 0$, il existe δ tel que pour tout $f \in A$ et pour tout y tel que $d(x,y) < \delta$, $d'(f(x),f(y)) < \varepsilon$;
- l'ensemble $\{f(x)|f\in A\}$ est relativement compact.

Théorème 1.33 (Rellich) Soit Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$ et $1 \le p < +\infty$. Toute partie bornée de $W_0^{1,p}(\Omega)$ est relativement compacte dans $L^p(\Omega)$. Ceci revient à dire que de toute suite bornée de $W_0^{1,p}(\Omega)$, on peut extraire une sous-suite qui converge dans $L^p(\Omega)$.

Le théorème précédent reste vrai avec $W^{1,p}(\Omega)$ à condition de supposer la frontière lipschitzienne.

Théorème 1.34 (Compacité des bornés de W^{1,p}(Ω) dans $L^p(\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$), à frontière lipschitzienne, et $1 \leq p < +\infty$. Toute partie bornée de $W^{1,p}(\Omega)$ est relativement compacte dans $L^p(\Omega)$. Ceci revient à dire que de toute suite bornée de $W^{1,p}(\Omega)$, on peut extraire une sous-suite qui converge dans $L^p(\Omega)$.

Nous aurons aussi besoin d'une version du théorème 1.33 dans les espaces duaux de L^p et $W_0^{1,p}$. On rappelle que pour $p<+\infty$, le dual de L^p est identifié à l'espace L^q avec $q=\frac{p}{p-1}$, et le dual de $W_0^{1,p}$ est noté $W^{-1,q}$, on obtient le théorème 1.35.

Théorème 1.35 (Compacité des bornés de $L^q(\Omega)$ dans $W^{-1,q}(\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$) et $1 < q < +\infty$. Toute partie bornée de $L^q(\Omega)$ est relativement compacte dans $W^{-1,q}(\Omega)$. En particulier, pour q=2, l'espace $W^{-1,2}(\Omega)$ est aussi noté $H^{-1}(\Omega)$. Toute partie bornée de $L^2(\Omega)$ est donc relativement compacte dans $H^{-1}(\Omega)$.

Démonstration Ce résultat est une conséquence du théorème de Rellich 1.33, voir l'exercice 1.26.

Remarque 1.36 (Sur la compatibilité des identifications) Soit Ω un ouvert de \mathbb{R}^d , $d \geq 1$.

Si $f \in L^1_{loc}(\Omega)$, on confond f avec l'élément de $\mathcal{D}^*(\Omega)$ qu'elle représente.

Soit $1 \leq p \leq +\infty$. Si $f \in L^p(\Omega)$ (et donc $f \in L^1_{\mathrm{loc}}(\Omega)$) il est habituel de confondre f avec l'élément de $(L^q(\Omega))'$, avec $q = \frac{p}{p-1} \in [1,+\infty]$, qu'elle représente.

Ces deux identifications sont compatibles au sens que si $f \in L^p(\Omega)$ et $\varphi \in \mathcal{D}(\Omega)$ (et donc $\varphi \in L^q(\Omega)$),

$$\langle f, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = \langle f, \varphi \rangle_{L^q(\Omega)', L^q(\Omega)} = \int_{\Omega} f(x) \varphi(x) \, \mathrm{d}x,$$

où dx représente l'intégration par rapport à l mesure de Lebesgue.

^{15.} Giulio Ascoli (1843-1896), mathématicien italien du 19e siècle.

Si maintenant on a, par exemple, $f \in H = H^1(\Omega)$ (et donc aussi $f \in L^1_{\mathrm{loc}}(\Omega)$). Comme il existe un isomorphisme naturel entre un espace de Hilbert et son dual, on peut être tenté de confondre f avec l'élément de H' donné par cet isomorphisme. Cette confusion n'est pas vraiment compatible avec la confusion de f avec l'élément de $\mathcal{D}^*(\Omega)$ qu'elle représente. En effet, ces deux confusions donnent

$$\langle f, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} = \int_{\Omega} f(x)\varphi(x) \, dx \, \text{et} \, \langle f, \varphi \rangle_{H', H} = \int_{\Omega} \nabla f(x) \cdot \nabla \varphi(x) \, dx + \int_{\Omega} f(x) \cdot \nabla \varphi(x) \, dx,$$

et donc, $\langle f, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} \neq \langle f, \varphi \rangle_{H', H}$ (sauf cas très particuliers!).

1.7 Injections de Sobolev

Les injections de Sobolev sont des outils très utiles pour l'analyse de EDP; ces injections établissent le fait qu'une fonction dont une certaine puissance d'elle-même et de sa dérivée est intégrable (c'est-à-dire $u \in W^{1,p}$) est en fait dans un "meilleur" espace (en termes d'intégration ou de régularité). On distingue trois cas différents, selon que la puissance est inférieure strictement, égale, ou supérieure strictement à la dimension de l'espace N. Le troisième cas fait intervenir les fonctions hölderiennes, dont la définition est la suivante.

Définition 1.37 (Fonctions hölderiennes) Pour $\alpha > 0$ et $K \subset \mathbb{R}^N$, l'ensemble des fonctions de K dans \mathbb{R} höldériennes d'exposant α , noté $C^{0,\alpha}(K)$, est défini par

$$C^{0,\alpha}(K) = \{ u \in C(K, \mathbb{R}) \mid \exists k \in \mathbb{R}; |u(x) - u(y)| \le k ||x - y||^{\alpha}, \forall (x, y) \in K^2 \}.$$
 (1.5)

Théorème 1.38 (Injections de Sobolev) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$ qui est soit borné à frontière lipschitzienne, soit égal à \mathbb{R}^N .

1. Si $1 \leq p < N$, alors $W^{1,p}(\Omega) \subset L^{p^*}(\Omega)$, avec $p^* = \frac{Np}{N-p}$. On appelle injection de $W^{1,p}(\Omega)$ dans $L^{p^*}(\Omega)$ l'application $u \in W^{1,p}(\Omega) \mapsto u \in L^{p^*}(\Omega)$. Cette injection est continue, c'est-à-dire qu'il existe $C \in \mathbb{R}_+$ (ne dépendant que de p, N et Ω) tel que

$$\forall u \in W^{1,p}(\Omega), \|u\|_{L^{p^*}} \le C\|u\|_{W^{1,p}}$$

On dit aussi que $W^{1,p}(\Omega)$ s'injecte continûment dans $L^{p^*}(\Omega)$. En particulier, $W^{1,1}(\Omega)$ s'injecte continûment dans $L^{\frac{N}{N-1}}(\Omega)$.

- 2. Dans le cas N=1, le choix p=N est autorisé et on a donc injection continue de $W^{1,1}(\Omega)$ dans $L^{\infty}(\Omega)$
- 3. Si p > N, alors on écrit, avec un certain abus de notation,

$$W^{1,p}(\Omega) \subset C^{0,1-\frac{N}{p}}(\bar{\Omega})$$

au sens où pour toute classe de fonctions $u \in W^{1,p}(\Omega)$, il existe une fontion $v \in C^{0,1-\frac{N}{p}}(\bar{\Omega})$ telle que v=u p.p. où la classe u est ici confondue avec l'un de ses représentants.

On peut en fait montrer que l'injection de $W^{1,p}(\Omega)$ dans $C^{0,1-\frac{N}{p}}(\bar{\Omega})$ est continue, pour une norme à définir, voir exercice 1.18.

4. Dans le cas où Ω est borné à frontière lipschitzienne, l'espace $W^{1,N}(\Omega)$ s'injecte continûment dans l'espace $L^q(\Omega)$, pour tout q tel que $1 \leq q < +\infty$ (et le cas $q = \infty$ est autorisé si N = 1). Ce résultat est faux dans le cas où $\Omega = \mathbb{R}^N$, voir un contre exemple à l'exercice 1.5.

Si Ω est un ouvert borné sans hypothèse de régularité sur la frontière, les quatre assertions précédentes restent vraies si l'on remplace l'espace $W^{1,p}(\Omega)$ par l'espace $W^{1,p}_0(\Omega)$.

Remarque 1.39 (Injection de Sobolev pour les espaces duaux) Soient E, F deux espaces de Banach (réels) et $T \in \mathcal{L}(E, F)$. Pour $g \in F'$ on définit $T^t g \in E'$ par $\langle T^t g, u \rangle_{E',E} = \langle g, Tu \rangle_{F',F}$ Il est clair que $T^t g$ est bien un élément de E' pour tout $g \in F'$ et on montre que $T^t \in \mathcal{L}(F',E')$ (exercice 1.26). Une conséquence de ce résultat est que F' s'injecte continûment dans E' is E s'injecte continûment dans E'. On en déduit par exemple que si E0 est un ouvert borné de E1 E2 E3 injecte continûment dans E'4 is frontière lipschitzienne et E4 E5 E6 injecte continûment dans E'6 exposant conjugué de E7, l'espace E'8 s'injecte continûment dans E'9 exposant conjugué de E9, l'espace E'9 s'injecte continûment dans E'9.

Remarque 1.40 (Compacité de l'injection de $W_0^{1,p}(\Omega)$ dans $L^q(\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N . Une conséquence du théorème d'injection de Sobolev (théorème 1.38) et du théorème de compacité de Rellich (théorème 1.33) est que l'injection est compacte de $W_0^{1,p}(\Omega)$ dans $L^q(\Omega)$ si $1 \leq p \leq N$ et $q < p^* = \frac{pN}{N-p}$. Il suffit pour démontrer cette propriété de remarquer que la convergence dans L^p donne la convergence dans L^1 (car Ω est borné) puis d'utiliser l'inégalité de Hölder qui donne (pour $1 < q < p^*$ et $u \in L^{p^*}(\Omega)$) $\|u\|_{L^q} \leq \|u\|_{L^p}^{\theta}\|u\|_{L^p}^{1-\theta}$ (avec $\theta = (p^*-q)/(p^*-1)$) d'où l'on déduit que $u_n \to u$ dans L^1 et $(u_n)_{n \in \mathbb{N}}$ bornée dans L^p implique $u_n \to u$ dans L^q quand $n \to +\infty$.

Si p > N, une conséquence du théorème d'injection de Sobolev (théorème 1.38) et du théorème d'Ascoli (théorème 1.32)

1.8 Exercices

Exercice 1.1 (Exemple de dérivée (* * *)) Corrigé en page 29.

Soient $N \geq 1$, $\Omega = \{x = (x_1, \dots, x_N)^t \in \mathbb{R}^N, |x_i| < 1, i = 1, \dots, N\}$ et $u : \mathbb{R}^N \to \mathbb{R}$ définie par u(x) = 1 si $x \in \Omega$ et u(x) = 0 si $x \notin \Omega$.

- 1. Pour $i=\{1,\ldots,N\}$ et $\varphi\in\mathcal{D}({\rm I\!R}^N)$, montrer que $\int_{{\rm I\!R}^N}u(x)\partial_i\varphi(x)\,\mathrm{d}x$ ne dépend que des valeurs prises par φ sur le bord de Ω .
- 2. Montrer que $u \notin W^{1,1}(\mathbb{R}^N)$.

Exercice 1.2 (Une fonction à dérivée nulle est constante p.p. (**)) Corrigé en page 30.

Soit $u \in L^1_{loc}(]0,1[)$ telle que Du = 0. Montrer que

$$\exists a \in \mathbb{R}; u = a \text{ p.p.}.$$

Exercice 1.3 (Espace de Sobolev en une dimension (* * *)) Corrigé en page 30.

Soit $1 \le p \le \infty$.

- 1. Soit $u \in W^{1,p}(]0,1[)$.
 - (a) Montrer qu'il existe $C \in \mathbb{R}$ tel que $u(x) = C + \int_0^x Du(t)dt$, pour presque tout $x \in]0,1[$. En déduire que $u \in C([0,1],\mathbb{R})$ (au sens où il existe $v \in C([0,1],\mathbb{R})$ telle que u=v p.p. sur]0,1[; en identifiant u et v, on peut donc dire que $W^{1,p}([0,1]) \subset C([0,1],\mathbb{R})$).
 - (b) Montrer que $||u||_{\infty} \leq ||u||_{W^{1,p}(]0,1[)}$.
 - (c) Si p > 1, Montrer que u est une fonction höldérienne d'exposant $1 \frac{1}{p}$.
- 2. Soit $u \in C([0,1],\mathbb{R})$. On suppose qu'il existe une fonction $w \in L^p(]0,1[)$ telle que $u(x)=u(0)+\int_0^x w(t)dt$, pour tout $x \in]0,1[$. Montrer que $u \in W^{1,p}(]0,1[)$ et Du=w.

Exercice 1.4 (Une fonction à gradient nul est constante p.p. (* * **)) Corrigé en page 32.

Soient $N \ge 1$, $B = \{x \in \mathbb{R}^N, |x| < 1\}$ et $u \in L^1_{loc}(B)$.

On suppose que D_iu = 0 pour tout i ∈ {1,..., N}. Montrer qu'il existe a ∈ ℝ tel que u = a p.p.. (u est donc la fonction constante égale à a.) [On pourra, par exemple, raisonner ainsi : Soit ε ∈ |0, ½ [et (ρ_n)_{n∈ℕ*} une suite de noyaux régularisants, c'est-à-dire :

$$\begin{split} &\rho\in\mathcal{D}({\rm I\!R}^N),\,\int_{{\rm I\!R}^N}\rho\,\mathrm{d}x=1,\;\rho\geq0,\,\rho(x)=0\;\mathrm{si}\;|x|\geq1,\\ &\text{et, pour }n\in{\rm I\!N}^\star,\,x\in{\rm I\!R}^N,\,\rho_n(x)=n^N\rho(nx). \end{split}$$

On pose $u_{\varepsilon}(x)=u$ si $|x|\leq 1-\varepsilon$ et $u_{\varepsilon}=0$ sinon. Puis, on pose $u_{\varepsilon,n}=u_{\varepsilon}\star \rho_n$.

Montrer que $u_{\varepsilon,n} \in \mathcal{D}(\mathbb{R}^N)$ et que, si $\frac{1}{n} < \varepsilon$, $u_{\varepsilon,n}$ est constante sur la boule de centre 0 et de rayon $1 - 2\varepsilon$. Puis, conclure....]

2. On suppose que $D_i u$ est une fonction continue, pour tout $i \in \{1, ..., N\}$. Montrer que $u \in C^1(B, \mathbb{R})$ (au sens "il existe $v \in C^1(B, \mathbb{R})$ telle que u = v p.p."). [On pourra, par exemple, reprendre l'indication de la 1ère question et raisonner ainsi : Montrer que pour tout $x, y \in \mathbb{R}^N$ on a

$$u_{\varepsilon,n}(y) - u_{\varepsilon,n}(x) = \int_0^1 \nabla u_{\varepsilon,n}(ty + (1-t)x) \cdot (y-x) dt,$$

et que pour z dans la boule de centre 0 et de rayon $1-2\varepsilon$ et $i\in\{1,\dots,N\}$ on a

$$\partial_i u_{\varepsilon,n}(z) = \int_B D_i u(\overline{z}) \rho_n(z - \overline{z}) d\overline{z}.$$

(On rappelle que $\partial_i u$ désigne la dérivée partielle de u par rapport à la i-ème variable. En déduire que pour presque tout $x, y \in B$, on a, avec $Du = \{D_1 u, \dots, D_N u\}^t$,

$$u(y) - u(x) = \int_0^1 Du(ty + (1-t)x) \cdot (y-x) dt.$$

Montrer alors que u est continue et que la formule précédente est vraie pour tout $x, y \in B$. Conclure enfin que $u \in C^1(B, \mathbb{R})$.]

3. On reprend ici la 1ère question en remplaçant B par un ouvert quelconque de \mathbb{R}^N . Montrer que u est constante sur chaque composante connexe de B. (Comme d'habitude, dire que u est constante signifie qu'il existe $a \in \mathbb{R}$ tel que u = a p.p..)

Exercice 1.5 (Une fonction appartenant à H^1 n'est pas forcément continue si d>1 (**) Corrigé en page 33. Soit $\Omega=\{x=(x_1,x_2)^t\in\mathbb{R}^2, |x_i|<\frac{1}{2},\ i=1,2\},\ \gamma\in]0,\frac{1}{2}[$. Soit $u:\Omega\to\mathbb{R}$ définie par $u(x)=(-\ln(|x|))^{\gamma}$. Montrer que $u\in H^1(\Omega)$. En déduire que $H^1(\Omega)\not\subset C(\overline{\Omega})$.

Corrigé en page 34

Exercice 1.6 (Laplacien d'un élément de $H^1_0(\Omega)$ (*)) Corrigé en page 34.

Soit Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$ et $u \in H^1_0(\Omega)$. Pour $u \in H^1(\Omega)$, on définit $\Delta u = \sum_{i=1}^N D_i^2 u$, où $D_i^2 u$ est la dérivée par transposition d'ordre 2 de u par rapport à la variable x_i (voir Définition 1.3).

1. Montrer que, pour tout $\varphi \in \mathcal{D}(\Omega)$, on a

$$\langle \Delta u, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} = \int u(x) \Delta \varphi(x) \, dx = -\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx.$$

2. On rappelle que $H^1_0(\Omega)$ est un s.e.v. fermé de $H^1(\Omega)$. Muni de la norme de $H^1(\Omega)$, l'espace $H^1_0(\Omega)$ est donc un espace de Hilbert. On note $H^{-1}(\Omega)$ le dual (topologique) de $H^1_0(\Omega)$. Déduire de la question précédente que $\Delta u \in H^{-1}(\Omega)$ (c'est-à-dire que l'élément de $\mathcal{D}^*(\Omega)$, noté Δu , se prolonge de manière unique en un élément de $H^{-1}(\Omega)$, encore notée Δu) et que

$$\|\Delta u\|_{H^{-1}(\Omega)} \le \||\nabla u||_{L^2(\Omega)}.$$

NB. En fait, on montrera au chapitre 2 que sur $H_0^1(\Omega)$ la norme $H^1(\Omega)$ est équivalente à la norme notée $\|\cdot\|_{H_0^1(\Omega)}$ définie par $\|u\|_{H_0^1(\Omega)} = \||\nabla u||_{L^2(\Omega)}$. Avec ce choix de norme sur $H_0^1(\Omega)$ on obtient $\|\Delta u\|_{H^{-1}(\Omega)} = \|u\|_{H_0^1(\Omega)}$.

Exercice 1.7 (Singularité ponctuelle (* * *)) Corrigé en page 35. Pour $x \in \mathbb{R}^2 \setminus \{0\}$, on pose $G(x) = \ln(|x|)$.

- 1. Montrer que $G \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ et $\Delta G = 0$ (au sens classique) dans $\mathbb{R}^2 \setminus \{0\}$. En déduire que $\Delta G = 0$ dans $\mathcal{D}^{\star}(\mathbb{R}^2 \setminus \{0\})$. Que vaut ΔG dans $\mathcal{D}^{\star}(\mathbb{R}^2)$?
- 2. Montrer que $G \in L^p_{loc}(\mathbb{R}^2)$ pour tout $1 \le p < +\infty$ et $\nabla G \in L^p_{loc}(\mathbb{R}^2)$ pour $1 \le p < 2$.
- 3. On prend dans cette question $\Omega =]0,1[^2$. Montrer que $u \in L^2(\Omega)$, $\Delta u = 0 \not\Rightarrow u \in H^1(\Omega)$. Montrer ensuite que $v \in (H^1(\Omega)')^2$, divv = 0 dans $\mathcal{D}^*(\Omega)$ et rotv = 0 dans $\mathcal{D}^*(\Omega) \not\Rightarrow v \in (L^2(\Omega))^2$. (On rappelle que rot $v = \partial_1 v_2 \partial_2 v_1$, avec $v = (v_1, v_2)$.)
- 4. (Singularité éliminable) Soit Ω un ouvert de \mathbb{R}^2 contenant 0. On suppose que $u \in H^1(\Omega)$ et que $\Delta u = 0$ dans $\mathcal{D}^*(\Omega \setminus \{0\})$. Montrer que $\Delta u = 0$ dans $\mathcal{D}^*(\Omega)$.

Exercice 1.8 (Quelques conséquences du théorème de Hahn-Banach $(\star\star)$) Corrigé en page 37. Soit E un espace de Banach réel.

1. Soit $x \in E$, $x \neq 0$. Montrer qu'il existe $T \in E'$ t.q. $T(x) = ||x||_E$ et $||T||_{E'} = 1$. En déduire que

$$||x||_E = \max\{S(x), S \in E'; ||S||_{E'} = 1\}.$$

- 2. Soient F un s.e.v de E et $x \in E$. Montrer que $x \notin \overline{F}$ si et seulement si il existe $T \in E'$ t.q. $T(x) \neq 0$ et T(y) = 0 pour tout $y \in F$.
- 3. Pour $x \in E$, on définit J(x) de E' dans ${\rm I\!R}$ par J(x)(T) = T(x) pour tout $T \in E'$. Montrer que $J(x) \in E''$ pour tout $x \in E$ et que l'application $J: x \mapsto J(x)$ est une isométrie de E sur ${\rm Im}(J) \subset E''$. (Définition : On dit que E est réflexif si ${\rm Im}(J) = E''$.)
- 4. Soit E un espace de Banach.
 - (a) Soient $(T_n)_{n\in\mathbb{N}}$ une suite de E' et $T\in E'$ tels que $T_n\to T$ *-faiblement dans E' quand $n\to +\infty$. Montrer que $\|T\|_{E'}\leq \liminf_{n\to +\infty}\|T_n\|_{E'}$.
 - (b) Soient $(x_n)_{n\in\mathbb{N}}$ une suite de E et $x\in E$ tels que $x_n\to x$ faiblement dans E quand $n\to +\infty$. Montrer que $\|x\|_E\le \liminf_{n\to +\infty}\|x_n\|_E$. Ceci démontre le résultat énoncé à la remarque 1.18.

Exercice 1.9 (Comparaison $\ell^p(\mathbb{N})$ - $\ell^q(\mathbb{N})$ (\star)) Corrigé en page 38.

Pour $1 \le p < +\infty$, on définit l'espace $\ell^p = \ell^p(\mathbb{N}) = \{x = (x_n)_{n \in \mathbb{N}}; x_n \in \mathbb{R} \text{ pour tout } n \in \mathbb{N}, \sum_{n=0}^{\infty} |x_n|^p < \infty \}$ qu'on munit d'une norme définie par $\|x\|_p = (\sum_{n=0}^{+\infty} |x_n|^p)^{\frac{1}{p}}$ pour $x = (x_n)_{n \in \mathbb{N}} \in \ell^p$.

On définit aussi, pour $p=\infty$, l'espace $\ell^{\infty}=\ell^{\infty}(\mathbb{N})=\{x=(x_n)_{n\in\mathbb{N}};\,x_n\in\mathbb{R}\text{ pour tout }n\in\mathbb{N},\,\sup\{|x_n|,\,n\in\mathbb{N}\}<\infty\}$ qu'on munit de la norme définie par $\|x\|_{\infty}=\sup_{n\in\mathbb{N}}|x_n|$ pour $x=(x_n)_{n\in\mathbb{N}}\in\ell^{\infty}$.

Avec cette norme, ℓ^p est un espace de Banach pour tout $1 \le p \le +\infty$ (voir par exemple [20, Exercice 6.27]).

1. Soit $1 \le p < q \le +\infty$. Montrer que $\ell^p \subset \ell^q$ et que, pour tout $x \in \ell^p$,

$$||x||_q \leq ||x||_p$$
.

- 2. Soit $1 \le p \le q < +\infty$. Montrer que ℓ^p est dense dans ℓ^q .
- 3. Soit $1 \leq p < +\infty$. Montrer que l'adhérence de ℓ^p dans ℓ^∞ est l'ensemble A défini par

$$A = \{x = (x_n)_{n \in \mathbb{N}}; \lim_{n \to +\infty} x_n = 0\}.$$

En déduire que ℓ^p n'est pas dense dans ℓ^{∞} .

NB: Lorsque (X, \mathcal{T}, m) est une espace de mesure finie, on a toujours l'inégalité inverse, c'est-à-dire $L^p(X, \mathcal{T}, m) \subset L^q(X, \mathcal{T}, m)$ si $1 \leq q \leq p \leq +\infty$.

Exercice 1.10 (Caractérisation de la densité d'un s.e.v. d'un espace de Banach (\star)) Corrigé en page 38. Soient E un espace de Banach réel et G un s.e.v. de E.

1. Montrer que $\bar{G} = E$ si et seulement si

$$(f \in E', \langle f, u \rangle_{E', E} = 0 \text{ pour tout } u \in G) \Rightarrow f = 0.$$
 (1.6)

[Utiliser l'exercice 1.8.]

- 2. On suppose maintenant que E = F' (où F est un espace de Banach réel).
 - (a) On suppose F réflexif, Montrer que $\bar{G} = F'$ si et seulement si

$$(v \in F, \langle g, v \rangle_{F', F} = 0 \text{ pour tout } g \in G) \Rightarrow v = 0.$$
 (1.7)

(b) On ne suppose plus que F est réflexif. Donner un exemple pour lequel $\bar{G} \neq F'$ et pourtant (1.7) est vérifié, c'est-à-dire

$$(v \in F, \langle q, v \rangle_{F' \mid F} = 0 \text{ pour tout } q \in G) \Rightarrow v = 0.$$

[On pourra prendre $F = \ell^1$ et, en identifiant $(\ell^1)'$ avec ℓ^{∞} , $G = \ell^1$.]

Exercice 1.11 (Séparabilité de L^p ($\star \star \star$)) Corrigé en page 39.

On désigne par L^p l'espace $L^p_{\mathbb{R}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

- 1. Soit $1 \le p < \infty$. Montrer que L^p est séparable.
- 2. Montrer que $L^{\infty}(\mathbb{R})$ n'est pas séparable.

Exercice 1.12 (Séparabilité d'une partie d'un espace séparable (*)) Corrigé en page 40

Soit E un espace vectoriel normé séparable et A une partie E dénombrable dense dans E. Soit F une partie E. Soit $n \in \mathbb{N}^*$, Pour tout $x \in A$, si il existe au moins un point y de F tel que $\|x - y\|_E \le \frac{1}{n}$, on choisit un tel point et on le note $a_{x,n}$ (on a donc $a_{x,n} \in F$ et $\|x - a_{x,n}\|_E \le \frac{1}{n}$).

On note B_n l'ensemble des points obtenus ainsi (noter que $B_n \subset F$).

- 1. Soit $n \in \mathbb{N}^*$. Construire une injection de B_n dans A (ce qui prouve que B_n est dénombrable).
- 2. A l'aide des ensembles B_n $(n \in \mathbb{N}^*)$, construire une partie de F dénombrable et dense dans F (ce qui prouve que F est séparable).

Exercice 1.13 (Sous-espace vectoriel fermé d'un espace de Banach réflexif (**)) Corrigé en page 40

Soit E est un espace de Banach (réel) réflexif et F un sous espace vectoriel fermé de E. L'espace F (muni de la norme de E) est donc aussi un espace de Banach.

Pour G=E ou G=F On note J_G l'injection de G dans $G^{\prime\prime}$ (voir exercice 1.8). Soit $u\in F^{\prime\prime}$.

- 1. Si $f \in E'$, on désigne par $f_{|_F}$ la restriction de f à F (et donc $f_{|_F} \in F'$). Montrer que l'application $f \mapsto \langle u, f_{|_F} \rangle_{F'',F'}$ est linéaire continue de E' dans IR. C'est donc un élément de E'' que l'on note v dans la suite (de sorte que $\langle v, f \rangle_{E'',E'} = \langle u, f_{|_F} \rangle_{F'',F'}$). Montrer que $\|v\|_{E''} \leq \|u\|_{F''}$.
- 2. (Question inutile pour la suite de l'exercice) A-t-on $||v||_{E''} = ||u||_{F''}$?
- 3. Montrer qu'il existe $x \in E$ tel que $\langle v, f \rangle_{E'',E'} = \langle f, x \rangle_{E',E}$ pour tout $f \in E'$. [Utiliser le fait que E est réflexif.]
- 4. On considère l'élément x de E trouvé à la question 3.
 - (a) Montrer que $x \in F$. [Utiliser une conséquence du théorème de Hahn-Banach, exercice 1.8.]
 - (b) Montrer que $J_F(x) = u$.
- 5. Déduire des questions précédentes que F est réflexif.

Exercice 1.14 (Continuité d'une application de L^p dans L^q ($\star \star \star$)) Corrigé en page 41

Soit (E,T,m) un espace mesuré fini, $p,q \in [1,\infty[$ et g une application continue de $\mathbb R$ dans $\mathbb R$ telle que :

$$\exists C \in \mathbb{R}_{+}^{\star}; |g(s)| \le C|s|^{\frac{p}{q}} + C, \forall s \in \mathbb{R}. \tag{1.8}$$

1. Soit $u \in \mathcal{L}^p_{\mathbb{R}}(E,T,m)$. Montrer que $g \circ u \in \mathcal{L}^q_{\mathbb{R}}(E,T,m)$.

On pose $L^r = L^r_{\rm I\!R}(E,T,m)$, pour r=p et r=q. Pour $u\in L^p$, on pose $G(u)=\{h\in \mathcal{L}^q_{\rm I\!R}(E,T,m); h=g\circ v \text{ p.p.}\}$, avec $v\in u$, c'est-à-dire que $v\in \mathcal{L}^p_{\rm I\!R}(E,T,m)$ et v est l'une des fonctions appartenant à l'ensemble u. Dans cet exercice, nous faisons bien la distinction entre L^p et \mathcal{L}^p , distinction qui, en général, n'est pas faite, y compris dans ce livre. Noter que $G(u)\in L^q$.

- 2. Montrer que la définition précédente a bien un sens, c'est-à-dire que G(u) ne dépend pas du choix de v dans u.
- 3. Soit $(u_n)_{n\in\mathbb{N}}\subset L^p$. On suppose que $u_n\to u$ p.p., quand $n\to +\infty$, et qu'il existe $F\in L^p$ telle que $|u_n|\leq F$ p.p., pour tout $n\in\mathbb{N}$. Montrer que $G(u_n)\to G(u)$ dans L^q .
- 4. Montrer que G est continue de L^p dans L^q .
- 5. On considère ici $(E,T,m)=([0,1],\mathcal{B}([0,1]),\lambda)$ et on prend p=q=1. On suppose que g ne vérifie pas (1.8). On va construire $u\in L^1$ telle que $G(u)\not\in L^1$.
 - (a) Soit $n \in \mathbb{N}^*$, montrer qu'il existe $\alpha_n \in \mathbb{R}$ tel que : $|g(\alpha_n)| \ge n |\alpha_n|$ et $|\alpha_n| \ge n$.
 - (b) On choisit une suite $(\alpha_n)_{n\in\mathbb{N}^*}$ vérifiant les conditions données à la question précédente. Montrer qu'il existe $\alpha>0$ t.q.

$$\sum_{n=1}^{+\infty} \frac{\alpha}{|\alpha_n| n^2} = 1.$$

(c) Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite définie par : $a_1=1$ et $a_{n+1}=a_n-\frac{\alpha}{|\alpha_n|n^2}$ (où α_n et α sont définies dans les 2 questions précédentes). On pose $u=\sum_{n=1}^{+\infty}\alpha_n1_{[a_{n+1},a_n[}$. Montrer que $u\in L^1$ et $G(u)\not\in L^1$.

Exercice 1.15 (Fonctions lipschitziennes ($\star \star \star$)) Corrigé en page 42 Soit Ω un ouvert de \mathbb{R}^N .

1. Soit $u:\Omega\to\mathbb{R}$ une fonction bornée lipschitzienne. Montrer que $u\in W^{1,\infty}(\Omega)$. (Noter que si Ω est borné et u lipschitzienne de $\Omega\to\mathbb{R}$, alors u est continue sur Ω et même se prolonge en une fonction continue sur $\bar{\Omega}$, la fonction u est donc bornée.)

2. Soit $u \in W^{1,\infty}(\mathbb{R}^N)$. Montrer que u est lipschitzienne (au sens : il existe $v : \mathbb{R}^N \to \mathbb{R}$ lipschitzienne telle que u = v p.p.).

Le résultat démontré dans la question 2 permet de montrer que si Ω est un ouvert borné à frontière lipschitzienne et u est une fonction de Ω dans ${\rm I\!R}$, alors $u \in W^{1,\infty}(\Omega)$ si et seulement si u est lipschitzienne (au sens : il existe v : $\Omega \to {\rm I\!R}$ lipschitzienne telle que u=v p.p.. On peut d'ailleurs remarquer que v se prolonge alors en une fonction lipschitzienne sur Ω .)

Exercice 1.16 (Exemple d'ouvert lipschitzien non fortement lipschitzien ($\star \star \star$)) Corrigé en page 44.

On appelle ouvert lipschitzien un ouvert à frontière lipschitzienne (définition 1.21) et ouvert fortement lipschitzien un ouvert à frontière fortement lipschitzienne (remarque 1.22).

Pour construire un exemple d'ouvert lipschitzien non fortement lipschitzien, l'idée est de construire un ouvert qui ne vérifie pas la propriété du segment.

Définition 1.41 (Propriété du segment) On dit qu'un ouvert Ω de \mathbb{R}^N satisfait la propriété du segment si pour tout $z \in \partial \Omega$, il existe $d \in \mathbb{R}^N$, $d \neq 0$ et $t \in \mathbb{R}^*_+$ tel que $\{z + sd, s \in]0, t]\} \subset \Omega$.

Un ouvert fortement lipschitzien de \mathbb{R}^N vérifie la propriété du segment : il suffit pour s'en convaincre de considérer (sans restriction de généralité) que la frontière est localement alignée avec l'axe x_1 en coordonnées cartésiennes et de choisir $d=(0,\dots,0,1)$ Pour construire un ouvert qui ne vérifie pas la propriété du segment, l'idée utilisée ici (due, semble-t-il à Zerner, voir [22]) est de prendre pour ouvert une "route" allant vers le point (0,0) avec une infinité de virages, sans changer le rayon de courbure des virages (ce qui donne que l'ouvert est lipschitzien) mais (bien sûr) en faisant en sorte que la largeur des virages tende vers 0 quand on se rapproche de (0,0). A cause des virages, l'ouvert ne vérifie pas la propriété du segment et donc n'est pas fortement lipschitzien.

Construction de l'ouvert Ω - Soit $\bar{\varphi}$ une fonction continue de [0,1] dans \mathbb{R} , nulle en 0 et 1. On suppose que

$$\bar{\varphi}(\frac{1}{4}) \ge 1. \tag{1.9}$$

La fonction $\bar{\varphi}$ peut être, par exemple, une fonction "chapeau" ou une fonction de classe C^{∞} à support compact dans]0,1[. On pose $a_n=\frac{1}{2}^n$ pour $n\in\mathbb{N}$ et et on définit φ de [0,1] dans \mathbb{R} en posant

$$\varphi(x)=a_{n-1}\bar{\varphi}(\frac{x-a_n}{a_{n-1}}) \text{ si } x\in]a_n,a_{n-1}] \text{ et } n\geq 1.$$

La fonction φ est donc lipschitzienne de [0,1] dans \mathbb{R} (en ajoutant $\varphi(0)=0$). On remarque aussi que $\varphi(a_n)=0$. On pose alors $\Omega=\{(x,y)\in\mathbb{R}^2\,;\,x\in]0,1[,\varphi(x)-x< y<\varphi(x)\}.$

- 1. L'ouvert Ω n'est pas fortement lipschitzien Montrer que la propriété du segment n'est pas vérifiée pour Ω et z=0 et en déduire que Ω n'est pas fortement lipschitzien.
- 2. L'ouvert Ω est faiblement lipschitzien On pose $T = \{(x,y), x \in]0,1[,-x < y < x\}$. On définit une bijection ψ de Ω dans le triangle T en posant

$$\psi(x,y) = (x, x + 2(y - \varphi(x))).$$

Montrer que ψ est lipschitzienne ainsi que son inverse et en déduire que Ω est un ouvert lipschitzien.

Exercice 1.17 (Prolongement d'une fonction continue (*)) Corrigé en page 44

Soient Ω un ouvert de \mathbb{R}^N , $N \geq 1$, et f une fonction continue de $\bar{\Omega}$ dans \mathbb{R} . Le but de l'exercice est de montrer qu'il existe g continue de \mathbb{R}^N dans \mathbb{R} telle que g = f dans $\bar{\Omega}$.

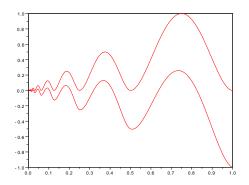


FIGURE 1.1 – L'ouvert Ω

Si $x \in \overline{\Omega}$, on pose g(x) = f(x). Si $x \notin \overline{\Omega}$, on pose $d_x = \inf\{|x - y|, y \in \Omega\}$ (on a donc $d_x > 0$), $B_x = \{z \in \mathbb{R}^N, |x - z| < 2d_x\}$ et

$$g(x) = \frac{\int_{\Omega \cap B_x} f(z) \, \mathrm{d}z}{\int_{\Omega \cap B_x} \, \mathrm{d}z}.$$

Montrer que g est bien définie et est continue de ${\rm I\!R}^N$ dans ${\rm I\!R}$.

Exercice 1.18 (Inégalités de Sobolev pour p > N ($\star \star \star \star$)) Corrigé en page 45 L'objet de cet exercice est de démontrer l'injection de Sobolev pour p > N.

Si $x \in \mathbb{R}^N$ $(N \ge 1)$, on note $x = (x_1, \bar{x})$, avec $x_1 \in \mathbb{R}$ et $\bar{x} \in \mathbb{R}^{N-1}$. On note $H = \{(t, (1-|t|)a), t \in]-1, 1[$, $a \in B_{N-1}\}$, où $B_{N-1} = \{x \in \mathbb{R}^{N-1}, |x| < 1\}$. (On rappelle que $|\cdot|$ désigne toujours la norme euclidienne.) Soit N .

1. Soit $u \in C^1(\mathbb{R}^N, \mathbb{R})$. Montrer qu'il existe $C_1 \in \mathbb{R}$, ne dépendant que de N et p, tel que

$$|u(1,0) - u(-1,0)| \le C_1 ||(|\nabla u|)||_{L^p(H)}.$$
(1.10)

[On pourra commencer par écrire u(1,0)-u(0,a) comme une intégrale utilisant convenablement $\nabla u(t,(1-t)a)$ pour $t\in]0,1[$, et intégrer pour $a\in B_{N-1}$ pour comparer u(1,0) et sa moyenne sur B_{N-1} . On pourra se limiter au cas N=2, pour éviter des complications inutiles.]

2. Soit $u \in C_c^1(\mathbb{R}^N, \mathbb{R})$. Montrer qu'il existe $C_2 \in \mathbb{R}$, ne dépendant que de N et p, t.q.

$$|u(x) - u(y)| \le C_2 \|(|\nabla u|)\|_{L^p(\mathbb{R}^N)} |x - y|^{1 - \frac{N}{p}}. \tag{1.11}$$

[Après, éventuellement, une rotation et une translation, on peut supposer que x=(b,0) et y=(-b,0). Se ramener alors à (1.10).]

Pour $\alpha \in]0,1]$ et K sous ensemble fermé de ${\rm I\!R}^N$, on note

$$C^{0,\alpha}(K) = \{ u \in C(K, \mathbb{R}), \|u\|_{L^{\infty}(K)} < \infty \text{ et } \sup_{x,y \in K, \, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty \},$$

et, si $u \in C^{0,\alpha}(K)$,

$$||u||_{0,\alpha} = ||u||_{L^{\infty}(K)} + \sup_{x,y \in K, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

Noter que $C^{0,\alpha}(K)$, muni de cette norme, est un espace de Banach.

3. Soit $u \in C^1_c(\mathbb{R}^N, \mathbb{R})$. Montrer qu'il existe $C_3 \in \mathbb{R}$, ne dépendant que de N et p, t.q.

$$||u||_{L^{\infty}(\mathbb{R}^N)} \le C_3 ||u||_{W^{1,p}(\mathbb{R}^N)}. \tag{1.12}$$

[Cette question est plus délicate... Il faut utiliser (1.11) et le fait que $u \in L^p(\mathbb{R}^N)$.]

4. (Injection de Sobolev dans \mathbb{R}^N .) Montrer que $W^{1,p}(\mathbb{R}^N) \subset C^{0,\alpha}(\mathbb{R}^N)$, avec $\alpha = 1 - \frac{N}{p}$, et qu'il existe $C_4 \in \mathbb{R}$, ne dépendant que de N et p, tel que

$$||u||_{C^{0,\alpha}(\mathbb{R}^N)} \le C_4 ||u||_{W^{1,p}(\mathbb{R}^N)}. \tag{1.13}$$

5. (Injection de Sobolev dans Ω .) Soient Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$), à frontière lipschitzienne. Montrer que $W^{1,p}(\Omega) \subset C^{0,\alpha}(\bar{\Omega})$, avec $\alpha = 1 - \frac{N}{p}$, et qu'il existe $C_5 \in \mathbb{R}$, ne dépendant que de Ω , N et p, tel que

$$||u||_{C^{0,\alpha}(\bar{\Omega})} \le C_5 ||u||_{W^{1,p}(\Omega)}. \tag{1.14}$$

Exercice 1.19 (Inégalités de Sobolev pour $p \le N$ ($\star \star \star \star$)) Corrigé en page 47 L'objet de cet exercice est de démontrer l'injection de Sobolev pour $1 \le p \le N$.

La démonstration proposée ici est due à L. Nirenberg ¹⁶. Elle consiste à faire d'abord le cas p=1, puis à en déduire le cas 1 à été démontré avant le cas <math>p=1 (et le cas p=1 est longtemps resté un problème ouvert).

- 1. Soit $u \in C_c^1(\mathbb{R}^N)$.
 - (a) On suppose ici N=1. Montrer que $||u||_{\infty} \leq ||u'||_{1}$. On rappelle que u' désigne la dérivée classique de u.
 - (b) Par récurrence sur N, montrer que $\|u\|_{\frac{N}{N-1}} \leq \|\frac{\partial u}{\partial x_1}\|_1^{\frac{1}{N}} \dots \|\frac{\partial u}{\partial x_N}\|_1^{\frac{1}{N}}$.
 - (c) Montrer que $||u||_{\frac{N}{N-1}} \leq ||\nabla u||_{1}$.
 - (d) Soit $1 \le p < N$. Montrer qu'il existe $C_{N,p}$ ne dépendant que N et p tel que $||u||_{p^*} \le C_{N,p} || |\nabla u| ||_p$, avec $p^* = (Np)/(N-p)$.
- 2. Soit $1 \leq p < N$. Montrer que $||u||_{p^*} \leq C_{N,p}|||\nabla u|||_p$, pour tout $u \in W^{1,p}(\mathbb{R}^N)$ ($C_{N,p}$ et p^* sont donnés à la question précédente). En déduire que l'injection de $W^{1,p}(\mathbb{R}^N)$ dans $L^q(\mathbb{R}^N)$ est continue pour tout $q \in [p, p^*]$.

^{16.} Louis Nirenberg (1925-2020), mathématicien canadien, spécialiste de l'analyse des équations aux dérivées partielles

- 3. Soit p=N. Montrer que l'injection de $W^{1,N}(\mathbb{R}^N)$ dans $L^q(\mathbb{R}^N)$ est continue pour tout $q\in [N,\infty[$ (Pour N=1, le cas $q=\infty$ est autorisé).
- 4. On suppose maintenant que Ω est un ouvert borné à frontière lipschitzienne. Pour $1 \leq p < N$, Montrer que l'injection de $W^{1,p}(\Omega)$ dans $L^q(\Omega)$ est continue pour tout $q \in [p,p^*]$ ($p^* = (Np)/(N-p)$). Montrer que l'injection de $W^{1,N}(\Omega)$ dans $L^q(\Omega)$ est continue pour tout $q \in [N,\infty[$ (Pour N=1, le cas $q=\infty$ est autorisé).

Exercice 1.20 (Noyau de l'opérateur trace (* * **)) Corrigé en page 50 Soient $\Omega = \mathbb{R}^N_+, N > 1, 1 \le p < \infty$ et $\gamma : W^{1,p}(\Omega) \to L^p(\partial\Omega)$ l'opérateur trace défini au théorème 1.27.

- 1. Montrer que $\operatorname{Ker} \gamma = W_0^{1,p}(\Omega)$.
- 2. Soit $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$. Montrer que $\gamma u = u$ p.p. (pour la mesure de lebesgue N-1-dimensionnelle sur $\partial\Omega$).

Exercice 1.21 (Prolongement d'une fonction appartenant à H^2 (**)) Corrigé en page 51 Soient $N \geq 1$, $\Omega = \mathbb{R}^N_+$ et $p \in [1, \infty[$.

- 1. Montrer que $C_c^{\infty}(\overline{\Omega})$ est dense dans $W^{2,p}(\Omega)$. [On pourra s'inspirer de la démonstration de la densité de $C_c^{\infty}(\overline{\Omega})$ dans $W^{1,p}(\Omega)$, théorème 1.23].
- 2. Montrer qu'il existe un opérateur P linéaire continu de $W^{2,p}(\Omega)$ dans $W^{2,p}(\mathbb{R}^N)$ tel que Pu=u p.p. dans Ω , pour tout $u\in W^{2,p}(\Omega)$. [On pourra chercher, pour $u\in C_c^\infty(\bar\Omega)$, P sous la forme $Pu(x_1,y)=\alpha u(-x_1,y)+\beta u(-2x_1,y)$, pour $x_1\in\mathbb{R}_-$ et $y\in\mathbb{R}^{N-1}$, avec α et β bien choisis dans \mathbb{R} .]
- 3. On prend maintenant $p=\infty$. A-t-on $C_c^\infty(\overline{\Omega})$ est dense dans $W^{2,\infty}(\Omega)$? Existe-t-il un opérateur P linéaire continu de $W^{2,\infty}(\Omega)$ dans $W^{2,\infty}(\mathbb{R}^N)$ tel que Pu=u p.p. dans Ω , pour tout $u\in W^{2,\infty}(\Omega)$?

Exercice 1.22 (Convergence faible et opérateur continu (\star)) Corrigé en page 51. Soient E et F deux espaces de Banach.

- 1. Soit $T \in \mathcal{L}(E,F)$, c'est-à-dire que T est une application linéaire continue de E dans F. Soit $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E et u dans E. On suppose que $u_n \to u$ faiblement dans E quand $n \to +\infty$. Montrer que $T(u_n) \to T(u)$ faiblement dans F.
- 2. On suppose que E s'injecte continûment dans F, c'est-à-dire que $E \subset F$ et que l'application $u \mapsto u$ est continue de E dans F. Soit $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E et u dans E. On suppose que $u_n \to u$ faiblement dans E quand $n \to +\infty$. Montrer que $u_n \to u$ faiblement dans F.
- 3. Soit Ω est un ouvert borné de \mathbb{R}^N , $N \geq 1$, $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de $H^1_0(\Omega)$ et u dans $H^1_0(\Omega)$. On suppose que $u_n \to u$ faiblement dans $H^1_0(\Omega)$ quand $n \to +\infty$. Soit $i \in \{1, \dots, N\}$. Montrer que $D_i u_n \to D_i u$ faiblement dans $L^2(\Omega)$ quand $n \to +\infty$.

Exercice 1.23 (Fonction non continue appartenant à $H^1(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)(\star \star \star)$) Corrigé en page 52. Dans cet exercice, on construit v telle que $v \in H^1(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)$ et $v \notin C(\mathbb{R}^2, \mathbb{R})$ (c'est-à-dire qu'il n'existe pas $w \in C(\mathbb{R}^2, \mathbb{R})$ telle que v = w p.p.). On reprend dans ce but la fonction de l'exercice 1.5. Soit $\gamma \in]0, \frac{1}{2}[$ et u définie par

$$u(x) = \begin{cases} (-\ln(|x|))^{\gamma} \text{ si } 0 < |x| < 1, \\ 0 \text{ si } |x| \ge 1, \end{cases}$$

et, par exemple, u(x) = 0.

Pour chaque $n \in \mathbb{N}^*$, on définit la fonction u_n par $u_n(x) = 1 - (1 - \bar{u}_n(x))^+$ avec $\bar{u}_n(x) = (u_n(x) - n)^+$ (ce qui peut aussi s'écrire $u_n(x) = u(x) - n$ si $n \le u(x) \le n + 1$, $u_n(x) = 0$ si u(x) < n et $u_n(x) = 1$ si u(x) < n + 1).

1. Montrer que $u_n \in H^1(\mathbb{R}^2)$ pour tout $n \in \mathbb{N}^*$ et que

$$\sum_{n=1}^{\infty} \| |\nabla u_n| \|_{L^2(\mathbb{R}^2)}^2 < +\infty.$$

[Utiliser l'exercice 1.5 et la généralisation donnée dans la remarque 2.25 du lemme 2.24.]

2. Soit $n \in \mathbb{N}^*$. Montrer que u_n prend ses valeurs entre 0 et 1 et que le support de u_n est une boule de centre 0 et dont le rayon tend vers 0 quand $n \to +\infty$.

Pour $n \in \mathbb{N}^{\star}$, on pose $x_n = (\frac{1}{n},0)^t \in \mathbb{R}^2$ et on choisit m_n tel que le support de u_{m_n} soit une boule de centre 0 et de rayon, noté r_n , plus petit que $(\frac{1}{2})(\frac{1}{n}-\frac{1}{n+1})$ et tel que la suite $(m_n)_{n\in\mathbb{N}^{\star}}$ soit strictement croissante. Puis on pose, pour $x\in\mathbb{R}^2$, $v_n(x)=u_{m_n}(x-x_n)$.

- 3. Montrer que toutes les fonctions v_n ont des supports disjoints.
- 4. Montrer que la série $\sum_{n\in\mathbb{N}^{+}}v_{n}$ est convergente dans $H^{1}(\mathbb{R}^{2})$. On note v la somme de cette série. Montrer que v appartient à $H^{1}(\mathbb{R}^{2})\cap L^{\infty}(\mathbb{R}^{2})$ mais que $v\not\in C(\mathbb{R}^{2},\mathbb{R})$, c'est-à-dire qu'il existe pas $w\in C(\mathbb{R}^{2},\mathbb{R})$ telle que v=w p.p..

Exercice 1.24 (Sur l'injection de $W^{1,1}$ dans $L^{1^{\star}}(\star\star)$) Corrigé en page 53 Soit Ω un ouvert borné connexe de \mathbb{R}^N ($N\geq 1$) à frontière lipschitzienne et soit ω une partie borélienne de Ω de mesure de Lebesgue strictement positive, c'est-à-dire $\lambda_N(\omega)>0$ en désignant par λ_N la mesure de Lebesgue sur les boréliens de \mathbb{R}^N . On définit l'ensemble W_{ω} par

$$W_{\omega} = \{u \in W^{1,1}(\Omega) \text{ tel que } u = 0 \text{ p.p. dans } \omega\}.$$

Le but de cet exercice est de montrer, par deux méthodes différentes, qu'il existe C, dépendant seulement de Ω et ω , tel que

$$||u||_{L^p(\Omega)} \le C||\nabla u||_{L^1(\Omega)} \text{ pour tout } u \in W_\omega \text{ et pour tout } 1 \le p \le \frac{N}{N-1}. \tag{1.15}$$

I- Première méthode (méthode directe)

1. On suppose qu'il existe une suite $(u_n)_{n\in\mathbb{N}^*}$ d'éléments de W_ω telle que $\|u_n\|_{L^1(\Omega)}=1$ pour tout $n\in\mathbb{N}^*$ et

$$||u_n||_{L^1(\Omega)} > n|||\nabla u_n|||_{L^1(\Omega)}$$
 pour tout $n \in \mathbb{N}^*$.

En utilisant un théorème de compacité du cours (chapitre 1), montrer qu'on peut supposer, après extraction d'une sous-suite, que $u_n \to u$ dans $L^1(\Omega)$ quand $n \to +\infty$. Montrer alors que u=0 p.p. et que $\|u\|_{L^1(\Omega)}=1$ (ce qui est impossible...).

2. Déduire de la question précédente qu'il existe C_1 , dépendant seulement de Ω et ω , tel que

$$||u||_{L^1(\Omega)} \le C_1 ||\nabla u||_{L^1(\Omega)} \text{ pour tout } u \in W_\omega.$$
 (1.16)

3. On rappelle (théorème 1.38) qu'il existe C_2 , dépendant seulement de Ω , tel que, en posant $1^* = \frac{N}{N-1}$, on a $\|u\|_{L^{1^*}(\Omega)} \le C_2 \|u\|_{W^{1,1}(\Omega)}$ pour tout $u \in W^{1,1}(\Omega)$. Avec la question précédente, en déduire qu'il existe C, dépendant seulement de Ω et ω , vérifiant (1.15).

II- Deuxième méthode (en passant par la moyenne de u)

1. Soit $H = \{u \in W^{1,1}(\Omega) ; \int_{\Omega} u(x) dx = 0\}$. Montrer qu'il existe C_3 ne dépendant que de Ω t.q. $\|u\|_{L^1(\Omega)} \le C_3 \| |\nabla u| \|_{L^1(\Omega)}$ pour tout $u \in H$.

En utilisant le rappel de la question 3 de la première partie, en déduire qu'il existe C_4 ne dépendant que de Ω t.q.

$$||u - m||_{L^{1^*}(\Omega)} \le C_4 ||\nabla u||_{L^1(\Omega)} \text{ pour tout } u \in W^{1,1}(\Omega),$$
 (1.17)

avec $m\lambda_N(\Omega)=\int_\Omega u(x)\;\mathrm{d}x.$ [On pourra remarquer que $u-m\in H.$]

2. Soit $u \in W_{\omega}$ et m tel que $m\lambda_N(\Omega) = \int_{\Omega} u(x) dx$. Montrer que

$$|m| \le \frac{C_4}{\lambda_N(\omega)^{\frac{1}{1^*}}} \| |\nabla u| \|_{L^1(\Omega)}$$

et en déduire que

$$||u||_{L^{1^{\star}}(\Omega)} \leq C_4 \left(1 + \left(\frac{\lambda_N(\Omega)}{\lambda_N(\omega)}\right)^{\frac{1}{1^{\star}}}\right) |||\nabla u|||_{L^1(\Omega)}.$$

Exercice 1.25 (Partition de l'unité (**)) Corrigé en page 55

Soit K un compact de \mathbb{R}^N $(N \ge 1)$ et $\Omega_1, \ldots, \Omega_n, n \in \mathbb{N}^*$, une famille finie d'ouverts tels que $K \subset \bigcup_{i=1}^n \Omega_i$. On va montrer ici qu'il existe des fonctions $\varphi_1, \ldots, \varphi_n$ telles que

- (p1) Pour tout $i \in \{1, ..., n\}$, $\varphi_i \in \mathcal{D}(\mathbb{R}^N)$, $\bar{S}_i \subset \Omega_i$ avec $S_i = \{x \in \mathbb{R}^N, \varphi_i(x) \neq 0\}$,
- (p2) $\sum_{i=1}^{n} \varphi_i = 1 \text{ sur } K.$

 $\text{Pour } \varepsilon > 0 \text{ et } i \in \{1,\dots,n\}, \text{ on pose } \Omega_{i,\varepsilon} = \{x \in \Omega_i, d(x,\Omega_i^c) > \varepsilon\} \text{ où } d(x,\Omega_i^c) = \inf\{|x-y|, y \not\in \Omega_i\}.$

1. Montrer qu'il existe $\varepsilon > 0$ tel que $K \subset \bigcup_{i=1}^n \Omega_{i,\varepsilon}$.

Soit maintenant ε donné par la question 1.

- 2. Montrer qu'il existe n fonctions f_1, \ldots, f_n telles que, pour tout $i, f_i = 0$ sur $\Omega_{i,\varepsilon}^c$ et $\sum_{i=1}^n f_i = 1$ sur $\bigcup_{i=1}^n \Omega_{i,\varepsilon}$.
- 3. Par une méthode de regularisation, montrer l'existence de n functions $\varphi_1, \ldots, \varphi_n$ satisfaisant (p1) et (p2).

Exercice 1.26 (Opérateur transposé, continuité et compacité (* * **)) Corrigé en page 55

Soient E, F deux espaces de Banach (réels) et $T \in \mathcal{L}(E, F)$, et soit T^t l'opérateur transposé de T défini par (voir Définition 2.11)

$$q \in F' \mapsto T^t q \in E'$$
 avec $\langle T^t q, u \rangle_{E' E} = \langle q, Tu \rangle_{F' E}$.

- 1. Vérifier que $T^t g$ est bien un élément de E' pour tout $g \in F'$ et que $T^t \in \mathcal{L}(F', E')$.
- 2. Montrer que $||T^t||_{\mathcal{L}(F',E')} = ||T||_{\mathcal{L}(E,F)}$.

On suppose maintenant que T est un opérateur compact, c'est-à-dire que de toute suite bornée de E on peut extraire une sous-suite dont l'image par T converge dans F.

On note $B_E = \{u \in E, ||u||_E \le 1\}.$

3. Montrer que $T(B_E)$ est précompacte, c.à.d. que pour tout $\varepsilon > 0$, il existe $I \subset B_E$ tel que $\operatorname{card}(I) < +\infty$ et

$$T(B_E) = \{T(u), u \in B_E\} \subset \bigcup_{u \in I} B_F(Tu, \varepsilon),$$

où
$$B_F(Tu, \varepsilon) = \{v \in F, ||v - Tu||_F < \varepsilon\}.$$

4. Montrer qu'il existe une sous-suite de la suite $(g_n)_{n\in\mathbb{N}}$ telle que pour cette sous-suite, encore notée $(g_n)_{n\in\mathbb{N}}$, la suite $(\langle T^tg_n,u\rangle_{E',E})_{n\in\mathbb{N}}$ converge pour tout $u\in I$. [Utiliser le procédé diagonal.] Pour les deux questions suivantes on considère cette sous-suite.

- 5. Montrer que la suite $(\langle T^t g_n, u \rangle_{E', E})_{n \in \mathbb{N}}$ converge pour tout $u \in E$.
- 6. Montrer qu'il existe $f \in E'$ tel que $T^t g_n \to f$ dans E'.
- 7. Déduire des questions précédentes que T^t est un opérateur compact.
- 8. Démontrer le résultat de compacité des bornés de $L^q(\Omega)$ dans $W^{-1,q}(\Omega)$ énoncé dans le théorème 1.35.

Exercice 1.27 (Transposée d'une injection continue (*)) Corrigé en page 57

Soient E et F deux espaces de Banach, tels que E s'injecte continûment dans F, c'est-à-dire que $E \subset F$ et que l'application $u \mapsto u$ est continue de E dans F. Montrer que F' s'injecte continûment dans E'.

1.9 Corrigés des exercices

Exercice 1.1 (Exemple de dérivée)

1. On prend, par exemple, i=1 (les autres valeurs de i se traitent de manière similaire). Pour tout $\varphi\in\mathcal{D}(\mathbb{R}^N)$ on a

$$\int_{\mathbb{R}^N} u(x) \partial_1 \varphi(x) \, \mathrm{d}x = \int_{]-1,1[^N} \partial_1 \varphi(x) \, \mathrm{d}x = \int_{]-1,1[^{N-1}} \left(\int_{-1}^1 \partial_1 \varphi(x_1,y) \, \mathrm{d}x_1 \right) \mathrm{d}y$$

et donc

$$\int_{\mathbb{R}^N} u(x) \partial_1 \varphi(x) \, dx = \int_{]-1,1[^{N-1}} \varphi(1,y) \, dy - \int_{]-1,1[^{N-1}} \varphi(-1,y) \, dy.$$

Ceci montre bien que $\int_{\mathbb{R}^N} u(x) \partial_1 \varphi(x) \, dx$ ne dépend que des valeurs prises par φ sur le bord de Ω .

2. On raisonne par l'absurde : on suppose que $u \in W^{1,1}(\mathbb{R}^N)$. Il existe alors (en particulier) $g \in L^1(\mathbb{R}^N)$ t.q.

$$\int_{\mathbb{R}^N} u(x) \partial_1 \varphi(x) \, \mathrm{d}x = \int_{\mathbb{R}^N} g(x) \varphi(x) \, \mathrm{d}x \text{ pour tout } \varphi \in \mathcal{D}(\mathbb{R}^N).$$

Pour $n \in \mathbb{N}^*$, on pose $A_n = |1 - \frac{1}{n}, 1 + \frac{1}{n} |x| - 1, 1|^{N-1}$.

On choisit une fonction $\varphi \in \mathcal{D}(\mathbb{R}^N)$ telle que $0 \le \varphi(x) \le 1$ pour tout $x \in \mathbb{R}^N$, $\varphi(x) = 0$ si $x \notin A_1$ et $\varphi(x) = 1$ si x = (1,y) avec $y \in]-\frac{1}{2},\frac{1}{2}[^{N-1}$ (une telle fonction φ existe). Pour $n \in \mathbb{N}^{\star}$, on définit alors φ_n par $\varphi_n(1+x_1,y) = \varphi(1+nx_1,y)$ pour tout $x_1 \in \mathbb{R}$ et $y \in \mathbb{R}^{N-1}$ (de sorte que $\varphi_n = 0$ hors de A_n).

Pour $n \in \mathbb{N}^*$, on a bien $\varphi_n \in \mathcal{D}(\mathbb{R}^N)$ et le choix de φ_n donne

$$\int_{\mathbb{R}^N} u(x) \partial_1 \varphi_n(x) \, dx = \int_{]-1,1[^{N-1}} \varphi_n(1,y) \, dy - \int_{]-1,1[^{N-1}} \varphi_n(-1,y) \, dy \ge 1$$

et

$$\left| \int_{\mathbb{R}^N} g(x) \varphi_n(x) \, \mathrm{d}x \right| \le \int_{A_n} |g(x)| \, \mathrm{d}x.$$

On a donc $\int_{A_n} |g(x)| dx \ge 1$ pour tout $n \in \mathbb{N}^*$, ce qui est impossible car la mesure de Lebesgue (N-dimensionnelle) de A_n tend vers 0 quand $n \to +\infty$, et donc $\int_{A_n} |g(x)| dx \to 0$ lorsque $n \to +\infty$ (voir par exemple [20, proposition 4.50]).

Exercice 1.2(Une fonction à dérivée nulle est constante p.p.)

On se donne $\varphi_0 \in \mathcal{D}(]0,1[)$ t.q. $\int_0^1 \varphi_0(x) dx = 1$.

Pour $\psi \in \mathcal{D}(]0,1[)$, on définit la fonction φ par

$$\varphi(x) = \int_0^x \psi(t) \, \mathrm{d}t - \left(\int_0^1 \psi(t) dt \right) \int_0^x \varphi_0(t) dt \text{ pour } x \in]0, 1[.$$

Avec ce choix de φ on a $\varphi \in \mathcal{D}(]0,1[)$ et donc, comme Du=0,

$$0 = \langle Du, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\int_0^1 u(x)\varphi'(x) \, \mathrm{d}x.$$

Comme $\varphi' = \psi - (\int_0^1 \psi(t)dt)\varphi_0$, on a donc

$$\int_0^1 u(x)\psi(x) dx - \left(\int_0^1 \psi(t)dt\right) \left(\int_0^1 u(x)\varphi_0(x) dx\right) = 0.$$

On pose $a = \int_0^1 u(x)\varphi_0(x) dx$, on a ainsi

$$\int_0^1 u(x)\psi(x) \, \mathrm{d}x = \int_0^1 a\psi(x) \, \mathrm{d}x \text{ pour tout } \psi \in \mathcal{D}(]0,1[).$$

Le lemme 1.1 donne alors u = a p.p..

Une autre méthode consiste à considérer d'abord le cas $u \in L^1(]0,1[)$ et procéder, par exemple, par densité. La fonction u peut être approchée par convolution par des noyaux régularisants ρ_n qu'on prend à support dans $]-\frac{1}{n},\frac{1}{n}[$. En prolongeant u par 0 en dehors de [0,1], on pose $u_n=u\star\rho_n$. On a alors $u'_n=u\star\rho'_n$. On montre alors que $u'_n(x)=-\langle Du,\rho_n(x-\cdot)\rangle_{\mathcal{D}^\star,\mathcal{D}}$ pour tout $x\in]\frac{1}{n},1-\frac{1}{n}[$, et on conclut que $u'_n(x)=0$ pour tout $x\in]\frac{1}{n},1-\frac{1}{n}[$. On termine le raisonnement en utilisant le fait que $u_n\mathbb{1}_{]\frac{1}{n},1-\frac{1}{n}[}$ tend vers u dans L^1 .

Dans le cas $u \in L^1_{loc}(]0,1[)$ on considère d'abord la fonction $u_{\varepsilon} = u\mathbb{1}_{[\varepsilon,1-\varepsilon]}$ avec $\varepsilon > 0$.

L'intérêt de cette deuxième méthode est qu'elle se généralise au cas multidimensionnel (voir l'exercice 1.4).

Exercice 1.3(Espace de Sobolev en une dimension)

1. (a) Pour $x \in [0,1]$, on pose $F(x) = \int_0^x Du(t)dt$. Comme $Du \in L^1(]0,1[)$, on a $F \in C([0,1],\mathbb{R})$. On peut aussi montrer que F est dérivable p.p. et que F' = Du p.p. mais cela est inutile ici. On s'intéresse plutôt à la dérivée par transposition de F, c'est-à-dire à DF et on va montrer que DF = Du. Soit $\varphi \in \mathcal{D}(]0,1[)$, on a

$$\langle DF, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\int_0^1 F(x) \varphi'(x) \, \mathrm{d}x = -\int_0^1 \Big(\int_0^1 \mathbb{1}_{]0, x[}(t) Du(t) \, \mathrm{d}t \Big) \varphi'(x) \, \mathrm{d}x.$$

En remarquant que $1_{]0,x[}(t)=1_{]t,1[}(x)$ pour tout $t,x\in]0,1[$ et en utilisant le théorème de Fubini, on a donc

$$\langle DF, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\int_0^1 \left(\int_0^1 \mathbb{1}_{]t, 1[}(x) \varphi'(t) \, \mathrm{d}x \right) Du(t) \, \mathrm{d}t = \int_0^1 \varphi(t) Du(t) \, \mathrm{d}t,$$

ce qui prouve que DF = Du.

On a donc D(u-F)=0 et l'exercice 1.2 donne alors l'existence de $C\in\mathbb{R}$ tel que u-F=C p.p. c'est-à-dire

$$u(x) = C + \int_0^x Du(t)dt$$
 pour presque tout $x \in]0,1[$.

(b) On choisit maintenant pour u (qui est une classe de fonctions) son représentant continu ; on a alors pour tout $x \in [0,1]$

$$u(x) = u(0) + \int_0^x Du(t)dt.$$

On a alors aussi pour tout $x,y\in[0,1],$ $u(x)=u(y)+\int_y^x Du(t)dt,$ et on en déduit que

$$|u(x)| \le |u(y)| + \int_0^1 |Du(t)| dt.$$

En intégrant cette inégalité sur [0,1] (par rapport à y), on obtient pour tout $x\in[0,1]$

$$|u(x)| \le ||u||_{L^1} + ||Du||_{L^1} = ||u||_{W^{1,1}}$$

et donc, en prenant le max sur x et en utilisant l'inégalité de Hölder,

$$||u||_{L^{\infty}} \le ||u||_{L^{1}} + ||Du||_{L^{1}} \le ||u||_{L^{p}} + ||Du||_{L^{p}} = ||u||_{W^{1,p}}.$$

(c) On choisit toujours pour u son représentant continu. Soient $x, y \in [0, 1], y > x$, on a

$$u(y) - u(x) = \int_{x}^{y} Du(t)dt$$

et donc, en utilisant l'inégalité de Hölder,

$$|u(y) - u(x)| \le \left(\int_{x}^{y} |Du(t)|^{p} dt\right)^{\frac{1}{p}} |y - x|^{1 - \frac{1}{p}} \le ||u||_{W^{1,p}} |y - x|^{1 - \frac{1}{p}}.$$

2. Il est clair que $u \in L^p(]0,1[)$. Pour montrer que $u \in W^{1,p}(]0,1[)$ il suffit de montrer que Du = w c'est-à-dire que $\langle Du, \varphi \rangle_{\mathcal{D}^\star,\mathcal{D}} = \int_0^1 w(t)\varphi(t)dt$ pour tout $\varphi \in \mathcal{D}(]0,1[)$.

Soit $\varphi \in \mathcal{D}(]0,1[)$, on a

$$\langle Du, \varphi \rangle_{\mathcal{D}^{\star}, \mathcal{D}} = -\int_{0}^{1} u(t)\varphi'(t)dt = -\int_{0}^{1} \left(\int_{0}^{t} w(x) \, \mathrm{d}x \right) \varphi'(t)dt = -\int_{0}^{1} \left(\int_{0}^{1} 1_{]0, t[}(x)w(x) \, \mathrm{d}x \right) \varphi'(t)dt.$$

En utilisant une nouvelle fois le théorème de Fubini et le fait que $1_{]0,t[}(x)=1_{]x,1[}(t)$ (pour tout $x,t\in]0,1[$), on obtient

$$\langle Du, \varphi \rangle_{\mathcal{D}^{\star}, \mathcal{D}} = -\int_{0}^{1} \left(\int_{0}^{1} 1_{]x,1[}(t)\varphi'(t)dt \right) w(x) dx = -\int_{0}^{1} \left(\int_{x}^{1} \varphi'(t)dt \right) w(x) dx = \int_{0}^{1} \varphi(x)w(x) dx,$$

ce qui donne bien Du = w.

Exercice 1.4(Une fonction à gradient nul est constante p.p.)

1. On a $u_{\varepsilon} \in L^1(\mathbb{R}^N)$. Pour tout $n \in \mathbb{N}^*$, la fonction $u_{\varepsilon,n}$ est donc bien définie sur tout \mathbb{R}^N . Le fait que $u_{\varepsilon,n}$ soit de classe C^{∞} est classique et les dérivées de $u_{\varepsilon,n}$ sont égales à la convolution de u_{ε} avec les dérivées de ρ_n . Il est facile aussi de voir que $u_{\varepsilon,n}$ est une fonction à support compact car u_{ε} et ρ_n sont des fonctions à support compact.

On note B_r la boule de centre 0 et de rayon r. On montre maintenant que pour tout i, la fonction $\partial_i u_{\varepsilon,n}$ est nulle sur $B_{1-2\varepsilon}$ si $\frac{1}{n} < \varepsilon$..

Soit $i \in \{1, ..., N\}$ et $x \in \mathbb{R}^N$, on a

$$\partial_i u_{\varepsilon,n}(x) = \left(u_\varepsilon \star \partial_i \rho_n\right)(x) = \int_{\mathbb{R}^N} u_\varepsilon(y) \partial_i \rho_n(x-y) dy.$$

Si $\frac{1}{n} < \varepsilon$ et $x \in B_{1-2\varepsilon}$, la fonction $\rho_n(x-\cdot)$ appartient à $\mathcal{D}(B)$ et est nulle hors de $B_{1-\varepsilon}$. On remarque aussi que

$$\partial_i \rho_n(x - \cdot) = -\partial_i \rho_n(x - \cdot).$$

On obtient ainsi

$$\partial_i u_{\varepsilon,n}(x) = \int_B u(y)\partial_i \rho_n(x-y)dy = \langle D_i u, \rho_n(x-\cdot) \rangle_{\mathcal{D}^*(B), \mathcal{D}(B)} = 0.$$

On a ainsi montré que pour $\frac{1}{n} < \varepsilon$, la fonction $\partial_i u_{\varepsilon,n}$ est, pour tout i, nulle sur $B_{1-2\varepsilon}$. On en déduit que la fonction $u_{\varepsilon,n}$ est constante sur $B_{1-2\varepsilon}$. En effet, il suffit de remarquer que pour tout $x \in B_{1-2\varepsilon}$ on a

$$u_{\varepsilon,n}(x) - u_{\varepsilon,n}(0) = \int_0^1 \nabla u_{\varepsilon,n}(tx) \cdot x \, dt = 0.$$

Comme $u_{\varepsilon}\in L^1(\mathbb{R}^N)$, la suite $(u_{\varepsilon,n})_{n\in\mathbb{N}}$ converge dans $L^1(\mathbb{R}^N)$ vers u_{ε} . En considérant les restrictions de ces fonctions à la boule $B_{1-2\varepsilon}$ (sur la laquelle $u_{\varepsilon}=u$), la suite $(u_{\varepsilon,n})_{n\in\mathbb{N}}$ converge dans $L^1(B_{1-2\varepsilon})$ vers u. Comme $u_{\varepsilon,n}$ est une fonction constante sur $B_{1-2\varepsilon}$ (pour $\frac{1}{n}<\varepsilon$) sa limite (dans L^1) est donc aussi une fonction constante. Ceci montre que la fonction u est constante sur $B_{1-2\varepsilon}$, c'est-à-dire qu'il existe $a_{\varepsilon}\in\mathbb{R}$ tel que $u=a_{\varepsilon}$ p.p. sur $B_{1-2\varepsilon}$. Comme $\varepsilon>0$ est arbitraire, on en déduit que a_{ε} ne dépend pas de ε et que u est constante sur u.

2. Soit $\varepsilon > 0$. La fonction $u_{\varepsilon,n}$ est de classe C^{∞} . On a donc bien, pour tout $x,y \in \mathbb{R}^N$,

$$u_{\varepsilon,n}(y) - u_{\varepsilon,n}(x) = \int_0^1 \nabla u_{\varepsilon,n}(ty + (1-t)x) \cdot (y-x) \, \mathrm{d}t. \tag{1.18}$$

Dans cette formule $\nabla u_{\varepsilon,n}$ désigne la fonction vectorielle définie par les dérivées classiques de $u_{\varepsilon,n}$. Pour $z\in \mathbb{R}^N$ et $i\in\{1,\ldots,N\}$ on a

$$\partial_i u_{\varepsilon,n}(z) = \int_{\mathbb{R}^N} u_{\varepsilon}(\overline{z}) \partial_i \rho_n(z - \overline{z}) d\overline{z}.$$

Si $z\in B_{1-2\varepsilon}$ et $\frac{1}{n}<\varepsilon$, la fonction $\rho_n(z-\cdot)$ appartient à $\mathcal{D}(B)$ et est nulle hors de $B_{1-\varepsilon}$ (et sur $B_{1-\varepsilon}$ on a $u_\varepsilon=u$). On en déduit

$$\partial_i u_{\varepsilon,n}(z) = \langle D_i u, \rho_n(z - \cdot) \rangle_{\mathcal{D}^*(B), \mathcal{D}(B)} = \int_B D_i u(\bar{z}) \rho_n(z - \bar{z}) d\bar{z}.$$

Comme $D_i(u)$ est uniformément continue sur $B_{1-\varepsilon}$, on déduit de la formule précédente que $\partial_i u_{\varepsilon,n}$ converge vers $D_i u$ uniformément sur $B_{1-2\varepsilon}$. On a donc, pour tout $x,y \in B_{1-2\varepsilon}$

$$\lim_{n \to +\infty} \int_0^1 \nabla u_{\varepsilon,n}(ty + (1-t)x) \cdot (y-x) \, \mathrm{d}t. = \int_0^1 Du(ty + (1-t)x) \cdot (y-x) \, \mathrm{d}t.$$

La suite $(u_{\varepsilon,n})_{n\in\mathbb{N}^*}$ converge dans $L^1(\mathbb{R}^N)$ vers u_{ε} . Après extraction éventuelle d'une sous-suite, on peut donc supposer que cette suite converge p.p. vers u_{ε} et donc p.p. vers u sur la boule $B_{1-\varepsilon}$. En passant à la limite quand $n\to +\infty$ dans l'égalité (1.18), on obtient pour presque tout x,y dans $B_{1-2\varepsilon}$

$$u(y) - u(x) = \int_0^1 Du(ty + (1-t)x) \cdot (y-x) \, dt. \tag{1.19}$$

Comme $\varepsilon > 0$ est arbitraire, la formule (1.19) est valable pour presque tout $x, y \in B$.

Pour conclure, on fixe un point $x \in B$ pour lequel (1.19) est vraie pour presque tout $y \in B$ et on pose

$$v(y) = u(x) + \int_0^1 Du(ty + (1-t)x) \cdot (y-x) dt \text{ pour tout } y \in B.$$

La fonction v est de classe C^1 (car Du est une fonction continue et donc v est dérivable sur tout B et $\nabla v = Du$). Comme u = v p.p., ceci termine la question.

3. On note Ω l'ouvert remplaçant B. Le raisonnement précédent montre que sur toute boule incluse dans Ω , u est p.p. égale à une constante. Pour que l'égalité soit vraie sur toute la boule (et non seulement p.p.), il suffit de définir v sur Ω par

$$v(x) = \lim_{h \to 0, \, h > 0} \frac{1}{\lambda_d(B_{x,h})} \int_{B(x,h)} u(y) dy \quad \text{pour tout } x \in \Omega,$$

où B(x,h) désigne la boule de centre x et de rayon h et $\lambda_d(B(x,h))$ la mesure de Lebesgue d-dimensionnelle de cette boule. On a alors u=v p.p. (v est donc un représentant de la classe u) et sur toute boule incluse dans Ω , v est égale à une constante.

La fonction v est donc localement constante. On en déduit que v est constante sur chaque composante connexe de Ω . En effet, soit $x \in \Omega$ et U la composante connexe de Ω contenant x. On pose a = v(x). L'ensemble $\{y \in U; v(y) = a\}$ est un ouvert non vide de U et l'ensemble $\{y \in U; v(y) \neq a\}$ est aussi un ouvert de U disjoint du précédent. Par connexité de U ce dernier ensemble est donc vide, ce qui prouve que v = a sur tout U.

Exercice 1.5 (Une fonction H^1 n'est pas forcément continue si d>1) La fonction u est de classe C^∞ sur $\bar{\Omega}\setminus\{0\}$ (en remarquant que $|x|\leq \sqrt{2}/2<1$ pour tout $x\in\bar{\Omega}$). Les dérivées classiques de u sont pour $x=(x_1,x_2)^t\neq 0$

$$\partial_i u(x) = -\gamma (-\ln(|x|))^{\gamma - 1} \frac{x_i}{|x|^2}, \ i = 1, 2.$$

Il est facile de voir que $u \in L^2(\Omega)$ (et même $u \in L^p(\Omega)$ pour tout $1 \le p < +\infty$). Comme $\gamma < \frac{1}{2}$, on peut aussi montrer que les dérivées classiques de u sont dans $L^2(\Omega)$. Il suffit pour cela de remarquer que, pour a > 0,

$$\int_0^a \frac{1}{r|\ln(r)|^{2(1-\gamma)}} \, dr < +\infty.$$

Pour montrer que $u \in H^1(\Omega)$, il suffit donc de montrer que les dérivées par transposition de u sont représentées par les dérivées classiques, c'est-à-dire que pour tout $\varphi \in \mathcal{D}(\Omega)$ et pour i = 1, 2, on a

$$\int_{\Omega} u(x)\partial_i \varphi(x) \, dx = -\int_{\Omega} \partial_i u(x)\varphi(x) \, dx. \tag{1.20}$$

On montre maintenant (1.20) pour i=1 (bien sûr, i=2 se traite de manière semblable). Soit $\varphi\in\mathcal{D}(\Omega)$ et $0<\varepsilon<\frac{1}{2}$. On pose $L_{\varepsilon}=[-\varepsilon,\varepsilon]\times[-\frac{1}{2},\frac{1}{2}]$. En intégrant par parties, on a

$$\int_{\Omega \setminus L_{\varepsilon}} u(x) \partial_1 \varphi(x) \, dx = -\int_{\Omega \setminus L_{\varepsilon}} \frac{\partial u}{\partial x_1}(x) \varphi(x) \, dx - \int_{-\frac{1}{2}}^{\frac{1}{2}} u(\varepsilon, x_2) (\varphi(\varepsilon, x_2) - \varphi(-\varepsilon, x_2)) \, dx_2. \tag{1.21}$$

(On a utilisé ici le fait que $u(\varepsilon, x_2) = u(-\varepsilon, x_2)$.) Par convergence dominée, on a

$$\lim_{\varepsilon \to 0} \int_{\Omega \backslash L_\varepsilon} u(x) \partial_1 \varphi(x) \; \mathrm{d}x = \int_\Omega u(x) \partial_1 \varphi(x) \; \mathrm{d}x \; \; \text{et} \; \; \lim_{\varepsilon \to 0} \int_{\Omega \backslash L_\varepsilon} \frac{\partial u}{\partial x_1}(x) \varphi(x) \; \mathrm{d}x = \int_\Omega \frac{\partial u}{\partial x_1}(x) \varphi(x) \; \mathrm{d}x$$

Il reste à montrer que le deuxième terme du membre de droite de (1.21) tend vers 0. Ceci se fait en remarquant que la fonction φ est régulière, il existe donc $C \in \mathbb{R}_+$ ne dépendant que de φ tel que

$$\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} u(\varepsilon, x_2) (\varphi(\varepsilon, x_2) - \varphi(-\varepsilon, x_2)) \, \mathrm{d}x_2 \right| \le |\ln(\varepsilon)|^{\gamma} C \varepsilon.$$

On en déduit bien que

$$\lim_{\varepsilon \to 0} \int_{-\frac{1}{2}}^{\frac{1}{2}} u(\varepsilon, x_2) (\varphi(\varepsilon, x_2) - \varphi(-\varepsilon, x_2)) dx_2 = 0,$$

ce qui termine la démonstration de (1.20) pour i=1. Finalement, on a bien ainsi montré que les dérivées par transposition de u sont représentées par les dérivées classiques et que $u \in H^1(\Omega)$. Corrigé en page 34

Exercice 1.6 (Laplacien d'un élément de $H_0^1(\Omega)$)

1. Par définition de la dérivée par transposition, on a

$$\langle \Delta u, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} = \sum_{i=1}^{N} \langle D_{i} D_{i} u, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} = \sum_{i=1}^{N} \int_{\Omega} u(x) \partial_{i}^{2} \varphi(x) dx.$$

Puis, comme $u \in H_0^1(\Omega)$, la forme linéaire (sur $\mathcal{D}(\Omega)$) $D_i u$ est représentée par un élément de $L^2(\Omega)$ encore noté $D_i u$ et on a, pour tout $i \in \{1, \ldots, N\}$,

$$\int_{\Omega} u(x)\partial_i^2 \varphi(x) \, dx = -\langle D_i u, \partial_i \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int_{\Omega} D_i u(x) \partial_i \varphi(x) \, dx.$$

Comme ∇u est l'élément de $L^2(\Omega)^N$ dont les composantes sont les $D_i u$, on obtient bien

$$\langle \Delta u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx.$$

2. Pour tout $\varphi \in \mathcal{D}(\Omega)$ on a, en utilisant l'inégalité de Cauchy ¹⁷-Schwarz ¹⁸,

$$|\langle \Delta u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)}| \leq \int_{\Omega} |\nabla u(x)| |\nabla \varphi(x)| \, \mathrm{d}x \leq ||\nabla u||_{L^2(\Omega)} ||\nabla \varphi||_{L^2(\Omega)} \leq ||u||_{H^1(\Omega)} ||\varphi||_{H^1(\Omega)}.$$

Ceci montre que l'application $\varphi\mapsto \langle \Delta u, \varphi\rangle_{\mathcal{D}^*(\Omega),\mathcal{D}(\Omega)}$ est linéaire continue de $\mathcal{D}(\Omega)$, muni de la norme $H^1(\Omega)$, dans \mathbb{R} . Comme $\mathcal{D}(\Omega)$ est dense dans $H^1_0(\Omega)$ cette application se prolonge donc, par densité, de manière unique en une application linéaire continue de $H^1_0(\Omega)$ dans \mathbb{R} (c'est-à-dire en un élément de $H^{-1}(\Omega)$). Cet élément de $H^{-1}(\Omega)$ est encore noté Δu et le prolongement par densité donne, pour tout $v\in H^1_0(\Omega)$,

$$\langle \Delta u, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = -\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x.$$

On a donc, pour tout $v \in H_0^1(\Omega)$,

$$|\langle \Delta u, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}| \le \int_{\Omega} |\nabla u(x)| |\nabla v(x)| \, \mathrm{d}x \le ||u||_{H^1(\Omega)} ||v||_{H^1(\Omega)}. \tag{1.22}$$

L'espace $H_0^1(\Omega)$ est muni de la norme $H^1(\Omega)$, ce qui donne

$$\|\Delta u\|_{H^{-1}(\Omega)} = \sup_{v \in H_0^1(\Omega), v \neq 0} \frac{|\langle \Delta u, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}|}{\|v\|_{H^1(\Omega)}}.$$

on déduit alors de (1.22) que

$$\|\Delta u\|_{H^{-1}(\Omega)} \le \|u\|_{H^{1}(\Omega)}.$$

Exercice 1.7 (Singularité ponctuelle)

1. On rappelle que, pour $x=(x_1,x_2)^t$, |x| est défini par $|x|^2=x_1^2+x_2^2$. L'application $x\mapsto |x|$ est de classe C^∞ sur $\mathbb{R}^2\setminus\{0\}$ et à valeurs strictement positives. Par composition avec la fonction \mathbb{N} , on obtient $G\in C^\infty(\mathbb{R}^2\setminus\{0\})$. On calcule maintenant $\Delta G(x)$ pour $x\in\mathbb{R}^2\setminus\{0\}$.

$$\partial_i G(x) = \frac{x_i}{|x|^2}, \ \ \partial_i^2 G(x) = \frac{1}{|x|^2} - 2 \frac{x_i^2}{|x|^4} \ \text{pour} \ i = 1, 2,$$

et donc $\Delta G(x) = \partial_1^2 G(x) + \partial_2^2 G(x) = 0$ pour tout $x \in \mathbb{R}^2 \setminus \{0\}$.

Comme $G \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$, les dérivées par transposition de G dans $\mathbb{R}^2 \setminus \{0\}$ sont données (à tous ordres) par les dérivées classiques et donc $\Delta G = 0$ dans $\mathcal{D}^{\star}(\mathbb{R}^2 \setminus \{0\})$.

Pour $\varepsilon > 0$, on note $C_{\varepsilon} = \{x \in \mathbb{R}^2, |x| = \varepsilon\}$ et $A_{\varepsilon} = \{x \in \mathbb{R}^2, |x| > \varepsilon\}$. Soit $\varphi \in \mathcal{D}(\mathbb{R}^2)$; comme $G \in L^p_{loc}(\mathbb{R}^2)$,

$$\langle \Delta G, \varphi \rangle_{\mathcal{D}^{\star}(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} = \int_{\mathbb{R}^{2}} G(x) \Delta \varphi(x) \; \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{A_{\varepsilon}} G(x) \Delta \varphi(x) \; \mathrm{d}x.$$

^{17.} Augustin Louis, baron Cauchy (1789–1857), mathématicien français à qui l'on doit en particulier de nombreux résultats en analyse. Il a malheureusement négligé, en tant que membre de l'Académie des sciences, les travaux d'Evariste Galois et Niels Abel, redécouverts plus tard, et qui ont profondément marqué les mathématiques du 20ème siècle.

^{18.} Hermann Schwarz (1843–1921), mathématicien allemand, connu pour ses travaux en analyse complexe. (À ne pas confondre avec Laurent Schwartz, mathématicien français du 20ème siècle).

Pour $\varepsilon > 0$, les formules d'intégration par parties (théorème 1.30, mais ici dans un cas simple car les fonctions G et φ sont de classe C^{∞} sur $\mathbb{R}^2 \setminus \{0\}$) donnent, en notant n(x) le vecteur normal à C_{ε} au point x, extérieur à A_{ε} ,

$$\begin{split} \int_{A_{\varepsilon}} G(x) \Delta \varphi(x) \; \mathrm{d}x &= \int_{A_{\varepsilon}} \Delta G(x) \varphi(x) \; \mathrm{d}x + \int_{C_{\varepsilon}} (\nabla \varphi(x) \cdot n(x) G(x) - \nabla G(x) \cdot n(x) \varphi(x)) \; \mathrm{d}\gamma(x) \\ &= \int_{C_{\varepsilon}} \nabla \varphi(x) \cdot n(x) G(x) \; \mathrm{d}\gamma(x) - \int_{C_{\varepsilon}} \nabla G(x) \cdot n(x) \varphi(x)) \; \mathrm{d}\gamma(x). \end{split}$$

La mesure γ sur C_{ε} est de masse totale $2\pi\varepsilon$ et donc

$$|\int_{C_\varepsilon} \nabla \varphi(x) \cdot n(x) G(x) \; \mathrm{d}\gamma(x)| \leq \sup_{x \in \mathbb{R}^2} |\nabla \varphi(x)| \ln(\varepsilon) 2\pi\varepsilon \to 0 \text{ quand } \varepsilon \to 0.$$

Pour $x \in C_{\varepsilon}$, $\nabla G(x) \cdot n(x) = -\frac{1}{\varepsilon}$, car $\nabla G(x) = \frac{x}{\varepsilon^2}$ et $n(x) = -\frac{x}{\varepsilon}$ et donc

$$\int_{C_{\varepsilon}} \nabla G(x) \cdot n(x) \varphi(x)) \; \mathrm{d}\gamma(x) = -\frac{1}{\varepsilon} \int_{C_{\varepsilon}} \varphi(x)) \; \mathrm{d}\gamma(x) \to -2\pi \varphi(0) \; \mathrm{quand} \; \varepsilon \to 0.$$

On en déduit que $\langle \Delta G, \varphi \rangle_{\mathcal{D}^{\star}(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} = 2\pi \varphi(0)$ et donc $\Delta G = 2\pi \delta_{0}$.

2. Soit $1 \le p < +\infty$: pour montrer que $G \in L^p_{loc}(\mathbb{R}^2)$, il suffit de remarquer que l'application $x \mapsto |x|(-\ln(|x|)^p)$ est bornée sur $\{x \in \mathbb{R}^2, |x| < 1\}$.

Soit $1 \le p < 2$. Pour $x \in \mathbb{R}^2$, $|\nabla G(x)|^2 = \frac{1}{|x|^2}$. Ceci donne $|\nabla G(x)|^p = \frac{1}{|x|^p}$. On en déduit que $\nabla G \in L^p_{\text{loc}}(\mathbb{R}^2)$.

Par contre $\nabla G \notin L^2_{loc}(\mathbb{R}^2)$. En effet, en notant que le jacobien du passage en coordonnés polaire est |x|, voir par exemple [20, paragraphe 7.6];

on a donc

$$\int_{|x| < 1} |\nabla G(x)|^2 dx = \int_0^{2\pi} \int_0^1 r \frac{1}{r^2} dr = +\infty.$$

3. Il suffit de prendre u=G, on a bien $u\in L^2(\Omega)$, $\Delta u=0$ et $u\not\in H^1(\Omega)$ (car $\int_{\Omega} |\nabla u(x)|^2 dx=\int_{0}^{\pi/2} \int_{0}^{1} \frac{1}{\pi} dr=+\infty$).

On prend maintenant $v=\nabla G$. La question 2 donne $v\in (L^p(\Omega))^2$ pour tout p<2, i=1, 2. Or, le théorème sur les injections de Sobolev (théorème 1.38) donne que pour $1\leq q<+\infty$, $H^1(\Omega)=W^{1,2}(\Omega)$ s'injecte continûment dans $L^q(\Omega)$; par dualité (voir la remarque 1.39), pour r>1, $L^r(\Omega)$ s'injecte continûment dans $H^1(\Omega)'$. On en déduit que $v\in (H^1(\Omega)')^2$. On remarque ensuite que ${\rm div} v=\Delta G=0$ dans $\mathcal{D}^\star(\Omega)$ (et même au sens classique) et ${\rm rot} v=0$ dans Ω au sens des dérivées classiques (car v est le gradient d'une fonction de classe C^2) et donc ${\rm rot} v=0$ dans $\mathcal{D}^\star(\Omega)$. Enfin, on a montré à la question 2 que $v\not\in (L^2(\Omega))^2$.

4. On choisit une fonction $\psi_0 \in \mathcal{D}(\mathbb{R}^2)$ telle que $\psi_0(x) = 1$ si $|x| \le 1$ et $\psi_0(x) = 0$ si $|x| \ge 2$. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^2$, on pose $\psi_n(x) = \psi_0(nx)$. Comme $0 \in \Omega$ et que Ω est ouvert, il existe n_0 tel que $\{x \in \mathbb{R}^2, |x| < 2/n_0\} \subset \Omega\}$.

Soit $\varphi \in \mathcal{D}(\Omega)$; l'objectif est de montrer que $\langle \Delta u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = 0$. On utilise pour cela ψ_n avec $n \geq n_0$ et le fait que $(1 - \psi_n)\varphi \in \mathcal{D}(\Omega \setminus \{0\})$,

$$\begin{split} \langle \Delta u, \varphi \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} &= \langle \Delta u, \varphi \psi_n \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} + \langle \Delta u, \varphi (1 - \psi_n) \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} \\ &= \langle \Delta u, \varphi \psi_n \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)} + \langle \Delta u, \varphi (1 - \psi_n) \rangle_{\mathcal{D}^{\star}(\Omega \setminus \{0\}), \mathcal{D}(\Omega \setminus \{0\})} = \langle \Delta u, \varphi \psi_n \rangle_{\mathcal{D}^{\star}(\Omega), \mathcal{D}(\Omega)}. \end{split}$$

On utilise maintenant le fait que $u \in H^1(\Omega)$,

$$\langle \Delta u, \varphi \psi_n \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = \int_{\Omega} \nabla u(x) \cdot \nabla (\varphi \psi_n)(x) \, \mathrm{d}x = \int_{\Omega} (\nabla u(x) \cdot \nabla \varphi(x)) \psi_n(x) \, \mathrm{d}x + \int_{\Omega} (\nabla u(x) \cdot \nabla \psi_n(x)) \varphi(x) \, \mathrm{d}x.$$

Le fait que $\lim_{n\to+\infty}\int_{\Omega}(\nabla u(x)\cdot\nabla\varphi(x))\psi_n(x)\,\mathrm{d}x=0$ est donné par le théorème de convergence dominée car $|\nabla u|\in L^1(\{x,\,|x|<2/n_0\})$. Pour le dernier terme, on remarque que $\nabla\psi_n(x)=n\nabla\psi_0(nx)$ et donc par l'inégalité de Cauchy-Schwarz, il existe $C\in\mathbb{R}_+$ ne dépendant que de ψ_0 et de φ tel que

$$\left| \int_{\Omega} (\nabla u(x) \cdot \nabla \varphi_n(x)) \varphi(x) \, dx \right| \leq Cn \int_{\{x, |x| < 2/n\}} |\nabla u(x)| \, dx
\leq Cn (\lambda_2(\{x, |x| < 2/n\}))^{\frac{1}{2}} (\int_{\{x, |x| < 2/n\}} |\nabla u(x)|^2 \, dx)^{\frac{1}{2}},$$

où λ_2 désigne la mesure de Lebesgue dans \mathbb{R}^2 . Comme $n(\lambda_2(\{x,|x|<2/n\}))^{\frac{1}{2}}$ est indépendant de n et $|\nabla u|\in L^2(\Omega)$, on en déduit que $\lim_{n\to+\infty}\int_{\Omega}(\nabla u(x)\cdot\nabla\varphi_n(x))\varphi(x)\;\mathrm{d}x=0$ et donc finalement que $(\Delta u,\varphi)_{\mathcal{D}^\star(\Omega),\mathcal{D}(\Omega)}=0$. On a bien montré que $\Delta u=0$ dans $\mathcal{D}^\star(\Omega)$.

Exercice 1.8 (Quelques conséquences du théorème de Hahn-Banach)

1. On pose $F = \text{Vect}\{x\}$ et on définit l'application T_1 linéaire continue de F dans \mathbb{R} par

$$T_1(\alpha x) = \alpha ||x||_E$$
 pour tout $\alpha \in \mathbb{R}$.

L'application T_1 appartient à F' (F étant muni de la norme de E) et $||T_1||_{F'} = 1$. Par le corollaire 1.13, T_1 se prolonge en $T \in E'$ avec $||T||_{E'} = ||T_1||_{F'}$.

L'application T vérifie les conditions demandées.

Puis, comme $|S(x)| \le ||x||_E$ pour tout $S \in E'$ tel que $||S||_{E'} = 1$, on en déduit bien

$$||x||_E = \max\{S(x), S \in E'; ||S||_{E'} = 1\}.$$

2. Si $x \in \overline{F}$, T(y) = 0 pour tout $y \in F$ implique T(x) = 0 (il suffit de considérer une suite $(x_n)_{n \in \mathbb{N}}$ d'élements de T telle que $\lim_{n \to +\infty} x_n = x$).

Si $x \notin \overline{F}$, il existe $\varepsilon > 0$ tel que $||x - y||_E \ge \varepsilon$ pour tout $y \in F$.

On considère alors $G = F \oplus \operatorname{Vect}\{x\}$ et on définit l'application S linéaire de G dans ${\rm I\!R}$ par

$$S(y + \alpha x) = \alpha$$
 pour tout $\alpha \in \mathbb{R}$ et pour tout $y \in F$.

L'application S appartient à G' car pour tout $\alpha \in \mathbb{R}^*$ et pour tout $y \in F$,

$$||y + \alpha x||_E = |\alpha| ||x - \frac{y}{-\alpha}||_E \ge |\alpha| \varepsilon \operatorname{car} \frac{y}{-\alpha} \in F,$$

et donc

$$|S(y + \alpha x)| = |\alpha| \le \frac{1}{\varepsilon} ||y + \alpha x||_E.$$

Ceci donne $||S||_{G'} \leq \frac{1}{\epsilon}$.

Par le corollaire 1.13, S se prolonge en $T \in E'$ et on a bien T(y) = 0 pour tout $y \in F$ et $T(x) \neq 0$.

3. Soit $x \in E$; l'application J(x) est bien linéaire de E' dans \mathbb{R} . Elle est aussi continue car $|J(x)(T)| \le ||T||_{E'}||x||_E$ et donc $J(x) \in E''$ et $||J(x)||_{E''} \le ||x||_E$.

D'autre part, la question 1 montre qu'il existe une forme linéaire $T \in E'$ telle que $T(x) = \|x\|_E$ et $\|T\|_{E'} = 1$. On en déduit que $\|J(x)\|_{E''} = \|x\|_E$ et donc que l'application J (qui est, bien sûr, linéaire) est une isométrie de E sur son image.

4. (a) Soit $x \in E$; pour tout $n \in \mathbb{N}^*$, $T_n(x) \leq ||T_n||_{E'} ||x||_E$. On en déduit

$$T(x) = \lim_{n \to +\infty} T_n(x) = \liminf_{n \to +\infty} T_n(x) \le \liminf_{n \to +\infty} ||T_n||_{E'} ||x||_E = (\liminf_{n \to +\infty} ||T_n||_{E'}) ||x||_E.$$

Ceci donne bien $||T||_{E'} \le \liminf_{n \to +\infty} ||T_n||_{E'}$.

(b) En prenant les notations de la question 3, $x_n \to x$ faiblement dans E signifie $J(x_n) \to J(x) \star$ -faiblement dans E''. La question 4a donne donc $\|J(x)\|_{E''} \le \liminf_{n \to +\infty} \|J(x_n)\|_{E''}$. Comme J est une isométrie de E sur son image, ceci donne $\|x\|_E \le \liminf_{n \to +\infty} \|x_n\|_E$.

Exercice 1.9 (Comparaison $\ell^p(\mathbb{N})$ - $\ell^q(\mathbb{N})$)

1. On considère d'abord le cas $q < +\infty$.

Soit $x = (x_n)_{n \in \mathbb{N}} \in \ell^p$. On suppose $||x||_p = 1$, on a alors, pour tout $n \in \mathbb{N}$, $|x_n| \le 1$ et donc $|x_n|^q \le |x_n|^p$. En sommant sur n, on en déduit

$$\sum_{n \in \mathbb{N}} |x_n|^q \le \sum_{n \in \mathbb{N}} |x_n|^p = 1,$$

et donc $x \in \ell^q$ et $||x||_q \le 1$.

Soit maintenant $x \in \ell^p$, $x \neq 0$. Comme $\|\frac{x}{\|x\|_p}\|_p = 1$, on déduit du résultat précédent que $\frac{x}{\|x\|_p} \in \ell^q$ et $\|\frac{x}{\|x\|_p}\|_q \leq 1$. Ceci donne $x \in \ell^q$ et $\|x\|_q \leq \|x\|_p$.

On considère maintenant le cas $q = +\infty$.

Soit $x = (x_n)_{n \in \mathbb{N}} \in \ell^p$. Pour tout $m \in \mathbb{N}$, $|x_m| \leq (\sum_{n \in \mathbb{N}} |x_n|^p)^{\frac{1}{p}} = ||x||_p$ et donc $x \in \ell^{\infty}$ et $||x||_{\infty} \leq ||x||_p$.

- 2. On note B l'ensemble des suites réelles ayant seulement un nombre fini de termes non nuls. Il suffit alors de remarquer que $B \subset \ell^p$ et que B est dense dans ℓ^q (car si $x = (x_n)_{n \in \mathbb{N}} \in \ell^q$, $\lim_{n \to +\infty} \sum_{i>n} |x_i|^q = 0$).
- 3. L'ensemble A est une partie fermée de ℓ^{∞} et c'est l'adhérence dans ℓ^{∞} de la partie B introduite dans la question 2. Comme $B \subset \ell^p \subset A$, l'ensemble A est aussi l'adhérence de ℓ^p dans ℓ^{∞} .

Comme $A \neq \ell^{\infty}$, ℓ^p n'est pas dense dans ℓ^{∞} .

Exercice 1.10 (Caractérisation de la densité d'un s.e.v. d'un espace de Banach)

1. La condition (1.6) peut sécrire " $G \subset \operatorname{Ker}(f) \Rightarrow \operatorname{Ker}(f) = E$ " Si $\bar{G} = E$, comme, pour tout $f \in E'$, $\operatorname{Ker}(f)$ est fermé, on a bien $\operatorname{Ker}(f) = E$.

Réciproquement, on suppose que, pour tout $f \in E'$, " $G \subset \operatorname{Ker}(f) \Rightarrow \operatorname{Ker}(f) = E$ "

On raisonne par l'absurde. Si $\bar{G} \neq E$, il existe $x \notin \bar{G}$. L'exercice 1.8 (deuxième point) montre alors qu'il existe $f \in E'$ tel que $\langle f, u \rangle_{E', E} \neq 0$ et $G \subset \mathrm{Ker}(f)$, en contradiction avec l'hypothèse (car $u \notin \mathrm{Ker}(f)$).

2.

(a) On suppose F réflexif, Montrer que $\bar{G} = F'$ si et seulement si

$$(v \in F, \langle g, v \rangle_{F', F} = 0 \text{ pour tout } g \in G) \Rightarrow v = 0.$$
 (1.23)

(b) On ne suppose plus que F est réflexif. Donner un exemple pour lequel $\bar{G} \neq F'$ et pourtant (1.23) est vérifié, c'est-à-dire

$$(v \in F, \langle g, v \rangle_{F', F} = 0 \text{ pour tout } g \in G) \Rightarrow v = 0.$$

[On pourra prendre $F = \ell^1$ et, en identifiant $(\ell^1)'$ avec ℓ^∞ , $G = \ell^1$.]

Exercice 1.11 (Séparabilité de L^p)

1. On décompose la preuve en deux étapes.

Etape 1. Densité de $C_c(\mathbb{R}, \mathbb{R})$ dans L^p .

Le point clé de cette étape consiste à approcher d'aussi près que l'on veut (en norme L^p) la fonction $f=1_A$, avec $A\in \mathcal{B}(\mathbb{R})$ et $\lambda(A)<+\infty$, par une fonction continue à support compact. Pour montrer cette propriété, on commence par remarquer qu'il suffit de considérer le cas où A est borné. Pour A borné, on utilise alors la régularité de la mesure de Lebesque qui donne pour tout $\varepsilon>0$ l'existence d'un ouvert O et d'un compact K tels que $K\subset A\subset O$ et $\lambda(O\setminus K)\leq \varepsilon$ (pour approcher 1_A , on construit alors un élément $\varphi\in C_c(\mathbb{R},[0,1])$ tel que $\varphi=1$ sur K et $\varphi=0$ sur $O^c=\mathbb{R}\setminus O$).

On considére ensuite le cas où f est une fonction étagée positive et dans L^p (c'est alors une combinaison linéaire finie de fonctions du type 1_A), puis le cas f mesurable positive et dans L^p (c'est une suite croissante de fonctions étagées positives) et enfin le cas $f \in L^p$ en décomposant $f = f^+ - f^-$.

Etape 2. Pour $N \in \mathbb{N}$ et $n \in \mathbb{N}$, on note $A_{N,n}$ l'ensemble des fonctions f qui ne prennent que des valeurs rationnelles, sont nulles hors de]-N,N[et constantes sur chaque intervalle]i/n,(i+1)n[, $i \in \mathbb{Z}$, et on pose $B_N = \bigcup_{n \in \mathbb{N}} A_{N,n}$ et $A = \bigcup_{N \in \mathbb{N}} B_N$.

Pour tout $N \in \mathbb{N}$ et $n \in \mathbb{N}$, l'ensemble $A_{N,n}$ est dénombrable (car en bijection avec \mathbb{Q}^{2nN}). L'ensemble A est donc aussi dénombrable. Le fait que l'on puisse approcher $f \in C_c(\mathbb{R}, \mathbb{R})$ en norme L^p d'aussi près que l'on veut par un élément de A découle alors de la continuité uniforme de f et de la densité de Q dans \mathbb{R}

2. On note B l'ensemble des fonctions qui ne prennent (presque partout) que les valeurs 1 ou 0 et qui sont (presque partout) constantes sur chaque intervalle $]n,n+1[,n\in\mathbb{N}.$ L'ensemble B est une partie de $L^{\infty}.$ On décompose encore la preuve en deux étapes.

Etape 1 On montre dans cette étape que B est non dénombrable.

Soit $f \in B$. On définit $\psi(f) = \{n \in \mathbb{N}; f = 1 \text{ p.p. dans }]n, n+1[\}.$

L'application ψ est une bijection entre B et $\mathcal{P}(\mathbb{N})$. Comme $\operatorname{card}(\mathcal{P}(\mathbb{N})) > \operatorname{card}(\mathbb{N})$, l'ensemble B est non dénombrable.

Etape 2 On montre maintenant que L^{∞} est non séparable.

Soit $A \subset L^{\infty}$, A dense dans L^{∞} . Pour montrer que A est non dénombrable (on en déduit que L^{∞} est non séparable) on va construire une injection ψ de B dans A (cela donnera $\operatorname{card}(A) \geq \operatorname{card}(B)$ et donc A non dénombrable).

Comme A est dense dans L^{∞} , on peut choisir, pour tout $f \in B$, un élément φ_f de A tel que $||f - \varphi_f||_{L^{\infty}} < \frac{1}{2}$. On définit alors ϕ en posant $\phi(f) = \varphi_f$.

alors que

L'application ϕ est une application de B dans A. On va montrer qu'elle est injective.

Soit $f, g \in B$ tel que $\varphi_f = \phi(f) = \phi(g) = \varphi_g$. On en déduit

$$||f - g||_{L^{\infty}} \le ||f - \varphi_f||_{L^{\infty}} + ||\varphi_f - \varphi_g||_{L^{\infty}} + ||\varphi_g - g||_{L^{\infty}} < (\frac{1}{2}) + (\frac{1}{2}) = 1.$$
 (1.24)

Or, pour tout $f, g \in B, f \neq g$ (dans L^{∞}) implique $||f - g||_{L^{\infty}} = 1$ (car il existe $n \in \mathbb{N}$ tel que |f - g| = 1 p.p. dans |n, n + 1|). L'inégalité (1.24) donne donc f = g. L'application ϕ est injective.

Finalement $\operatorname{card}(A) \geq \operatorname{card}(B) > \operatorname{card}(N)$ et donc tout ensemble A dense dans L^{∞} est non dénombrable. L'espace L^{∞} est non séparable.

Exercice 1.12 (Séparabilité d'une partie d'un espace séparable)

- 1. Pour tout $y \in B_n$, on choisit un point $x_y \in A$ tel que $y = a_{x_y,n}$ (un tel x_y existe mais n'est pas nécessairement unique). On a ainsi construit une application $y \mapsto x_y$ de B_n dans A. Cette application est injective, car si $x_y = x_z$ (avec $y, z \in B_n$) on a $y = a_{x_y,n} = a_{x_z,n} = z$.
- Il suffit de prendre B = ∪_{n∈N*}B_n. On a bien B ⊂ F et B dénombrable (comme union dénombrable d'ensembles dénombrables). On montre maintenant que B est dense dans F.
 Soit y ∈ F et n ∈ N*. Comme A est dense dans E, il existe x ∈ A tel que ||x y||_E ≤ ½. On remarque

$$||y - a_{x,n}||_E \le ||y - x||_E + ||x - a_{x,n}||_E \le \frac{2}{n}$$

Comme $a_{x,n} \in B$, ceci prouve la densité de B dans F.

Exercice 1.13 (Sous-espace vectoriel fermé d'un espace de Banach réflexif)

1. L'application v est bien linéaire. Elle est continue car, pour tout $f \in E'$, $||f||_{F'} \le ||f||_{E'}$ et donc

$$|\langle u, f_{|_F} \rangle_{F'', F'}| \le ||u||_{F''} ||f_{|_F}||_{F'} \le ||u||_{F''} ||f||_{E'}.$$

Ceci montre que $v \in E''$ et $||v||_{E''} \le ||u||_{F''}$.

2. La réponse est "oui". En effet, soit $\varepsilon > 0$, il existe $g \in F'$ tel que $\|g\|_{F'} = 1$ et $\langle u, g \rangle_{F'', F'} \geq \|u\|_{F''} - \varepsilon$. Le théorème de Hahn-Banach donne l'existence de $f \in E'$ tel que $f_{|F|} = g$ et $\|f\|_{E'} = \|g\|_{F'}$. On en déduit que

$$||v||_{E''} \ge \langle v, f \rangle_{E'', E'} = \langle u, g \rangle_{F'', F'} \ge ||u||_{F''} - \varepsilon.$$

Comme ε est arbitraire, ceci donne $||v||_{E''} \ge ||u||_{F''}$ et donc finalement $||v||_{E''} = ||u||_{F''}$.

3. Comme E est réflexif, $\text{Im} J_E = E''$ et donc il existe $x \in E$ tel que $v = J_E(x)$ et donc

$$\langle v, f \rangle_{E'', E'} = \langle J_E(x), f \rangle_{E'', E'} = \langle f, x \rangle_{E', E}$$
 pour tout $f \in E'$.

- 4. On considère l'élément x de E trouvé à la question 3.
 - (a) Si $x \notin F$. Le théorème de Hahn-Banach donne qu'il existe $f \in E'$ t.q. $f_{|F} = 0$ et $\langle f, x \rangle_{E',E} \neq 0$, ce qui est impossible car

$$0 \neq \langle f, x \rangle_{E', E} = \langle v, f \rangle_{E'', E'} = \langle u, f \rangle_{F'', F'} = 0.$$

(b) Soit $g \in F'$. Par Hahn-Banach, il existe $f \in E'$ tel que $f_{|_F} = g$. On a donc, comme $x \in F$,

$$\langle J_F(x), g \rangle_{F'', F'} = \langle g, x \rangle_{F', F} = \langle f, x \rangle_{E', E} = \langle J_E(x), f \rangle_{E'', E'} = \langle v, f \rangle_{E'', E'} = \langle u, f \rangle_{F'', F'} = \langle u, g \rangle_{F'', F'}.$$

On a bien montré que $J_F(x) = u$.

5. Les questions précédentes montrent que $\text{Im}J_F = F''$ et donc que F est réflexif.

Exercice 1.14 (Continuité d'une application de L^p dans L^q]

1. La fonction u est mesurable de E (muni de la tribu T) dans \mathbb{R} (muni de la tribu $\mathcal{B}(\mathbb{R})$) et g est borélienne (c'est-à-dire mesurable de \mathbb{R} dans \mathbb{R} , muni de la tribu $\mathcal{B}(\mathbb{R})$). On en déduit, par composition, que $g \circ u$ est mesurable (de E dans \mathbb{R}).

Pour $s \in [-1, 1]$, on a $|g(s)| \le 2C$ et donc $|g(s)|^q \le 2^q C^q$. Pour $s \in \mathbb{R} \setminus [-1, 1]$, on a $|g(s)| \le 2C |s|^{\frac{p}{q}}$ et donc $|g(s)|^q \le 2^q C^q |s|^p$. On a donc, pour tout $s \in \mathbb{R}$, $|g(s)|^q \le 2^q C^q + 2^q C^q |s|^p$. On en déduit que, pour tout $x \in E$, $|g \circ u(x)|^q = |g(u(x))|^q \le 2^q C^q + 2^q C^q |u(x)|^p$, et donc:

$$\int |g \circ u|^q \, dm \le 2^q C^q ||u||_p^p + 2^q C^q m(E),$$

ce qui donne $g \circ u \in \mathcal{L}^q_{\mathbb{R}}(E, T, m)$.

2. Soient $v,w\in u$. Il existe $A\in T$ tel que m(A)=0 et v=w sur A^c . On a donc aussi $g\circ v=g\circ w$ sur A^c et donc $g\circ v=g\circ w$ p.p.. On en déduit que $\{h\in\mathcal{L}^q_\mathbb{R}(E,T,m);h=g\circ v$ p.p. $\}=\{h\in\mathcal{L}^q_\mathbb{R}(E,T,m);h=g\circ w$ p.p. $\}$.

G(u) ne dépend donc pas du choix de v dans u.

3. Pour tout $n \in \mathbb{N}$, on choisit un représentant de u_n , encore notée u_n . On choisit aussi des représentants de u et F, notés toujours u et F. Comme $u_n \to u$ p.p. quand $n \to +\infty$ et que g est continu, il est facile de voir que $g \circ u_n \to g \circ u$ p.p.. On a donc $G(u_n) \to G(u)$ p.p..

On remarque aussi que $|g \circ u_n| \le C|u_n|^{\frac{p}{q}} + C \le C|F|^{\frac{p}{q}} + C$ p.p. et donc $|G(u_n)| \le C|F|^{\frac{p}{q}} + C$ p.p., pour tout $n \in \mathbb{N}$.

Comme $F \in L^p$, on a $|F|^{\frac{p}{q}} \in L^q$. Les fonctions constantes sont aussi dans L^q (car $m(E) < \infty$). On a donc $C|F|^{\frac{p}{q}} + C \in L^q$. On peut alors appliquer le théorème de convergence dominée dans L^q , il donne que $G(u_n) \to G(u)$ dans L^q quand $n \to +\infty$.

4. On raisonne par l'absurde : on suppose que G n'est pas continue de L^p dans L^q . Il existe donc $u \in L^p$ et $(u_n)_{n \in \mathbb{N}} \subset L^p$ t.q. $u_n \to u$ dans L^p et $G(u_n) \not\to G(u)$ dans L^q quand $n \to +\infty$.

Comme $G(u_n) \not\to G(u)$, il existe $\varepsilon > 0$ et $\varphi : \mathbb{N} \to \mathbb{N}$ t.g. $\varphi(n) \to \infty$ quand $n \to \infty$ et :

$$||G(u_{\varphi(n)}) - G(u)||_q \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (1.25)

(La suite $(G(u_{\varphi(n)}))_{n\in\mathbb{N}}$ est une sous-suite de la suite $(G(u_n))_{n\in\mathbb{N}}$.)

Comme $u_{\varphi(n)} \to u$ dans L^p , il existe une fonction $\psi: \mathbb{N} \to \mathbb{N}$ et $F \in L^p$ telles que $\psi(n) \to \infty$ quand $n \to \infty$, $u_{\varphi \circ \psi(n)} \to u$ p.p. et $|u_{\varphi \circ \psi(n)}| \le F$ p.p., pour tout $n \in \mathbb{N}$ (voir [20, Théorème 6.11]). La suite $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de la suite $(u_{\varphi(n)})_{n \in \mathbb{N}}$.

On peut maintenant appliquer la question 2 à la suite $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$. Elle donne que $G(u_{\varphi \circ \psi(n)}) \to G(u)$ dans L^q quand $n \to +\infty$, ce qui est en contradiction avec (1.25).

5. (a) On raisonne par l'absurde : on suppose que |g(s)| < n|s| pour tout s tel que $|s| \ge n$. On pose $M = \max\{|g(s)|, s \in [-n, n]\}$. On a $M < \infty$ car g est continue sur le compact [-n, n] (noter que n est fixé). en posant $C = \max\{n, M\}$, on a donc :

$$|g(s)| \le C|s| + C$$
, pour tout $s \in \mathbb{R}$,

en contradiction avec l'hypothèse que g ne vérifie pas (1.8).

Il existe donc s, tel que $|s| \ge n$ et $|g(s)| \ge n|s|$. Ceci prouve l'existence de α_n .

(b) Comme $\alpha_n \geq n$, on a $\frac{1}{|\alpha_n|n^2} \leq \frac{1}{n^3}$ et donc :

$$0 < \beta = \sum_{n \in \mathbb{N}^{\star}} \frac{1}{|\alpha_n| n^2} < \infty.$$

On choisit alors $\alpha = \frac{1}{\beta}$.

(c) Pour $n \ge 2$, on a $a_n = 1 - \sum_{p=1}^{n-1} \frac{\alpha}{|\alpha_p| p^2}$.

Grâce au choix de α , on a donc $a_n > 0$ pour tout $n \in \mathbb{N}^*$, et $a_n \downarrow 0$, quand $n \to +\infty$.

La fonction u est bien mesurable et, par le théorème de convergence monotone, on obtient :

$$\int |u|d\lambda = \sum_{n \in \mathbb{N}^*} |\alpha_n|(a_n - a_{n+1}) = \sum_{n \in \mathbb{N}^*} \frac{\alpha}{n^2} < \infty.$$

Donc, $u \in \mathcal{L}^1$ et aussi $u \in L^1$ en confondant, comme d'habitude, u avec sa classe.

On remarque ensuite que $g \circ u = \sum_{n=1}^{+\infty} g(\alpha_n) 1_{[a_{n+1}, a_n[}$. On a donc :

$$\int |g \circ u| d\lambda = \sum_{n \in \mathbb{N}^*} |g(\alpha_n)| (a_n - a_{n+1}) \ge \sum_{n \in \mathbb{N}^*} \frac{\alpha}{n} = \infty.$$

Ceci montre que $g \circ u \not\in \mathcal{L}^1$ et donc $G(u) \not\in L^1$.

Exercice 1.15 (Fonctions lipschitziennes) Soit Ω un ouvert de \mathbb{R}^N .

1. La fonction est bornée et donc $u \in L^{\infty}(\Omega)$. Soit L une constante de Lipschitz de u, c'est-à-dire telle que $|u(x) - u(y)| \le L|x-y|$ pour tout $x,y \in \Omega$.

On va montrer que $D_1u \in L^{\infty}(\Omega)$ et $||D_1u||_{L^{\infty}(\Omega)} \leq L$. (Un raisonnement analogue donne $D_iu \in L^{\infty}(\Omega)$ et $||D_iu||_{L^{\infty}(\Omega)} \leq L$ pour i > 1.)

Soit $\varphi \in \mathcal{D}(\Omega)$ (que l'on prolonge par 0 hors de Ω). Pour $n \in \mathbb{N}^*$, on définit la fonction φ_n par $\varphi_n(x) = \varphi(x_1 + \frac{1}{n}, y)$ où $x = (x_1, y)^t$, $x_1 \in \mathbb{R}$, $y \in \mathbb{R}^{n-1}$. Comme φ est à support compact dans Ω , il existe n_0 tel que $\varphi_n \in \mathcal{D}(\Omega)$ si $n \geq n_0$. Pour $n \geq n_0$, un changement de variable dans $\int_{\Omega} u(x) \varphi_n(x) \, dx$ donne

$$\left| \int_{\Omega} u(x)(\varphi_n(x) - \varphi(x)) \, dx \right| = \left| \int_{\Omega} u(x)\varphi_n(x) \, dx - \int_{\Omega} u(x)\varphi(x) \, dx \right|$$

$$= \left| \int_{\Omega} (u(x_1 - \frac{1}{n}, y) - u(x_1, y)) \varphi(x) \, dx \right|$$

$$\leq \int_{\Omega} \left| u(x_1 - \frac{1}{n}, y) - u(x_1, y) \right| |\varphi(x)| \, dx$$

$$\leq \frac{L}{n} \|\varphi\|_{L^1(\Omega)}.$$

Comme $n(\varphi_n-\varphi)\to\partial_1\varphi$ uniformément quand $n\to+\infty$ et que $u\in L^1_{\mathrm{loc}}(\Omega)$ on en déduit

$$\left| \langle D_1 u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} \right| = \left| \int_{\Omega} u(x) \partial_1 \varphi(x) \, \mathrm{d}x \right| \le L \|\varphi\|_{L^1(\Omega)}. \tag{1.26}$$

Par densité de $\mathcal{D}(\Omega)$ dans $L^1(\Omega)$, l'application $u \mapsto \langle D_i u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)}$ se prolonge donc en un élément de $L^1(\Omega)'$. Il existe donc $v \in L^{\infty}(\Omega)$ tel que

$$\langle D_1 u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int u(x)v(x) dx,$$

c'est-à-dire que D_1u est representée par la fonction v, ce que l'on écrit $D_1u=v$. On a bien montré que $u\in W^{1,\infty}(\Omega)$. L'inégalité (1.26) donne aussi $\|v\|_{L^\infty}\leq L$.

2. Pour tout ouvert Ω borné et $1 \leq p < \infty$, la fonction u (ou plutôt sa restriction à Ω) appartient à $W^{1,p}(\Omega)$. En prenant p > N, le théorème d'injection de Sobolev 1.38 donne alors $u \in C(\bar{\Omega}, \mathbb{R})$. Comme Ω est arbitraire, on en déduit que $u \in C(\mathbb{R}^N, \mathbb{R})$.

On va montrer maintenant u est lipschitzienne avec la constante de Lipschitz $L = \sum_{i=1}^{N} \|D_i u\|_{L^{\infty}(\mathbb{R}^N)}$.

On choisit une fonction $\varphi_0 \in \mathcal{D}(\mathbb{R}^N)$ telle que $\varphi_0(x) \geq 0$ pour tout x, $\varphi_0(x) = 0$ si $|x| \geq 1$ et $\int_{\mathbb{R}^N} \varphi_0(x) \, \mathrm{d}x = 1$. Pour $n \in \mathbb{N}^\star$ et $x \in \mathbb{R}^N$, on pose $\varphi_n(x) = n^N$ $\operatorname{varphi}_0(nx)$ de sorte que $\varphi_n(x) = 0$ si $|x| \geq \frac{1}{n}$ et $\int_{\mathbb{R}^N} \varphi_n(x) \, \mathrm{d}x = 1$.

Pour $n \in \mathbb{N}^{\star}$ et $x \in \mathbb{R}^{N}$, on pose $u_{n}(x) = \int_{\mathbb{R}^{N}} u(x+z)\varphi_{n}(z) \, \mathrm{d}z$. Comme u est continue $\lim_{n \to +\infty} u_{n}(x) = u(x)$ (pour tout $x \in \mathbb{R}^{N}$). Soient $x, y \in \mathbb{R}^{N}$; un changement de variable simple donne

$$u_n(x) - u_n(y) = \int_{\mathbb{R}^N} u(x+z)\varphi_n(z) dz - \int_{\mathbb{R}^N} u(y+z)\varphi_n(z) dz$$
$$= \int_{\mathbb{R}^N} u(z)\varphi_n(z-x) dz - \int_{\mathbb{R}^N} u(z)\varphi_n(z-y) dz.$$

Comme $\varphi_n(z-x)-\varphi_n(z-y)=\int_0^1\nabla\varphi_n(z-y+t(y-x))\cdot(y-x)dt$, on a, grâce au théorème de Fubini,

$$u_n(x) - u_n(y) = \int_{\mathbb{R}^N} u(z) \left(\int_0^1 \nabla \varphi_n(z - y + t(y - x)) \cdot (y - x) dt \right) dz$$
$$= \int_0^1 \left(\int_{\mathbb{R}^N} u(z) \nabla \varphi_n(z - y + t(y - x)) \cdot (y - x) dz \right) dt. \tag{1.27}$$

Mais, en notant $(y-x)_i$ les composantes de y-x, comme la fonction $z \mapsto \varphi_n(z-y+t(y-x))$ appartient à $\mathcal{D}(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} u(z) \nabla \varphi_n(z - y + t(y - x)) \cdot (y - x) \, dz = \sum_{i=1}^N \left(\int_{\mathbb{R}^N} u(z) \partial_i \varphi_n(z - y + t(y - x)) \, dz \right) (y - x)_i$$

$$= -\sum_{i=1}^N \left(\int_{\mathbb{R}^N} D_i u(z) \varphi_n(z - y + t(y - x)) \right) (y - x)_i.$$

Comme $\|\varphi_n\|_{L^1(\mathbb{R}^N)}=1$, on en déduit

$$\left| \int_{\mathbb{R}^N} u(z) \nabla \varphi_n(z - y + t(y - x)) \cdot (y - x) \, \mathrm{d}z \right| \le \sum_{i=1}^N ||D_i u||_{L^{\infty}(\mathbb{R}^N)} |y - x|.$$

Ceci donne, en revenant à (1.27), $|u_n(x)-u_n(y)| \leq \sum_{i=1}^N \|D_i u\|_{L^\infty(\mathbb{R}^N)} |y-x|$. Quand $n\to +\infty$, on obtient $|u(x)-u(y)| \leq L|y-x|$, avec $L=\sum_{i=1}^N \|D_i u\|_{L^\infty(\mathbb{R}^N)}$.

Exercice 1.16 (Exemple d'ouvert lipschitzien non fortement lipschitzien)

1. Soit $d=(d_1,d_2)\in\mathbb{R}^2, d\neq 0$ et $t\in\mathbb{R}^*_+$. On va montrer que le segment $\{sd,s\in]0,t]\}$ rencontre le complémentaire de Ω . On pose $S=\{sd,s\in]0,t]\}$. Comme $\Omega\subset\mathbb{R}^*_+\times\mathbb{R}$, on a, bien sûr, $S\subset\Omega^c$ si $d_1\leq 0$. On suppose donc $d_1>0$ et (comme t est arbitraire) il suffit de considérer le cas $d_1=1$.

Si $d_2 \ge 0$, on a $a_n d \in S$ pour n tel que $a_n \le t$ et $a_n d \notin \Omega$ car $a_n d_2 \ge \varphi(a_n) = 0$. Donc, S rencontre Ω^c .

Si $d_2<0$, on a $(a_n+\frac{a_n}{2})d\in S$ pour n tel que $a_n+\frac{a_n}{2}\leq t$. Mais en utilisant (1.9), on a

$$\varphi(a_n + \frac{a_n}{2}) = a_{n-1}\bar{\varphi}(\frac{1}{4}) \ge a_{n-1} \ge a_n + \frac{a_n}{2}.$$

On a donc $\varphi(a_n+\frac{a_n}{2})-(a_n+\frac{a_n}{2})\geq 0$ et, comme $(a_n+\frac{a_n}{2})d_2<0$, ceci montre que $(a_n+\frac{a_n}{2})d\not\in\Omega$. On a ainsi montré que S rencontre Ω^c .

Finalement, on a bien montré que Ω n'est pas fortement lipschitzien.

2. La fonction ψ est lipschitzienne (car φ l'est) et son inverse aussi car son inverse est l'application $\bar{\psi}$ définie par

$$\bar{\psi}(x,y) = (x,\varphi(x) + \frac{1}{2}(y - \varphi(x))).$$

Comme le triangle T est fortement lipschitzien, on en déduit (assez facilement) que Ω est lipschitzien.

Exercice 1.17 (Prolongement d'une fonction continue) La fonction g est bien définie car si $x \notin \Omega$, comme Ω est ouvert, B_x contient un ouvert inclus dans Ω et donc $\int_{\Omega \cap B_x} \mathrm{d}z > 0$. D'autre part, f est intégrable sur $\Omega \cap B_x$ et donc $\int_{\Omega \cap B_x} f(z) \, \mathrm{d}z \in \mathbb{R}$. Ceci donne bien $g(x) \in \mathbb{R}$.

Bien sûr, g est continue en tout point de Ω car Ω est ouvert (et f=g dans Ω). Il s'agit de montrer que g est continue si $x \notin \Omega$. On va distinguer les cas $x \in \overline{\Omega} \setminus \Omega$ et $x \notin \overline{\Omega}$.

Premier cas On suppose que $x\in \bar{\Omega}\setminus \Omega$. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} telle que $x_n\to x$ quand $n\to +\infty$. Soit $n\in\mathbb{N}$, si $x_n\not\in \Omega$, comme $d_{x_n}\le |x-x_n|$ (car $x\in \bar{O}$), $z\in B_{x_n}$ implique $|z-x|<2d_{x_n}+|x-x_n|\le 3|x-x_n|$ et donc

$$|f(x) - g(x_n)| \le \max_{z \in C_n} |f(x) - f(z)| \text{ avec } C_n = \Omega \cap \{z; |z - x| \le 3|x - x_n|\}.$$

Cette inégalité est aussi vraie si $x_n \in \Omega$ (car alors $g(x_n) = f(x_n)$). Comme f est continue au point x et que g(x) = f(x) (car $x \in \overline{\Omega}$), on en déduit que $\lim_{n \to +\infty} g(x_n) = f(x) = g(x)$. On a bien montré la continuité de g au point x.

Second cas On suppose que $x \notin \bar{\Omega}$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de \mathbb{R} telle que $x_n \to x$ quand $n \to +\infty$; comme $\in \bar{\Omega} \setminus \Omega$, on peut supposer (quitte à enlever quelques premiers termes) que $x_n \notin \bar{\Omega}$ pour tout $n \in \mathbb{N}$. Il suffit maintenant de remarquer que $1_{B_{x_n}} \to 1_{B_x}$ p.p. quand $n \to +\infty$ (en effet $1_{B_{x_n}}(z) \to 1_{B_x}(z)$ quand $z \in B_x$ et $z \notin \bar{B}_x$ et la mesure de Lebesgue N-dimensionnelle de $\bar{B}_x \setminus B_x$ est nulle). Comme f est intégrable sur tout compact de $\bar{\Omega}$, on en déduit, avec le théorème de convergence dominée que, quand $n \to +\infty$,

$$\int_{\Omega} f(z) 1_{B_{x_n}}(z) \;\mathrm{d}z \to \int_{\Omega} f(z) 1_{B_{x_n}}(z) \;\mathrm{d}z \;\mathrm{et} \; \int_{\Omega} 1_{B_{x_n}}(z) \;\mathrm{d}z \to \int_{\Omega} 1_{B_{x_n}}(z).$$

Ceci nous donne bien $\lim_{n\to+\infty} g(x_n) = g(x)$ et donc la continuité de g au point x.

Exercice 1.18 (Inégalités de Sobolev pour p > N)

1. On donne ici la démontration dans le cas $N \ge 2$ (le cas N = 1 est plus simple, voir l'exercice 1.3).

Soit $a \in B_{N-1}$. On définit $\varphi \in C^1(\mathbb{R}, \mathbb{R})$ par $\varphi(t) = u(t, (1-t)a)$ de sorte que

$$u(1,0) - u(0,a) = \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t)dt = \int_0^1 \nabla u(t,(1-t)a) \cdot (1,-a)^t dt.$$

On intègre cette égalité sur la boule B_{N-1} . On obtient, en notant m_N la mesure (N-1-dimensionnelle) de B_{N-1} et m la moyenne de u sur B_{N-1} ,

$$m_N(u(1,0)-m) = \int_{B_{N-1}} \left(\int_0^1 \nabla u(t,(1-t)a) \cdot (1,-a)^t dt \right) da.$$

Un calcul similaire avec $\varphi(t) = u(t, (1+t)a)$ donne

$$m_N(u(-1,0)-m) = \int_{B_{N-1}} (\int_{-1}^0 (\nabla u(t,(1+t)a) \cdot (1,a)^t dt) da.$$

En majorant la valeur absolue de la différence de ces deux équations, on obtient, avec le théorème de Fubini-Tonelli (pour la dernière égalité)

$$m_N|u(1,0) - u(-1,0)| \le 2 \int_{B_{N-1}} \left(\int_{-1}^1 |\nabla u(t,(1-t)a)| dt \right) da = 2 \int_{-1}^1 \left(\int_{B_{N-1}} |\nabla u(t,(1-|t|)a)| da \right) dt.$$

Dans l'intégrale par rapport à a (t est fixé), on fait le changement de variables $(1-|t|)a=\bar{x}$ et on note $A_t=\{(1-|t|)a, a\in B_{N-1}\}$. Ce changement de variables donne

$$m_N|u(1,0)-u(-1,0)| \leq 2\int_{-1}^1 \left(\int_{A_t} |\nabla u(t,\bar{x})| d\bar{x}\right) \frac{1}{(1-|t|)^{N-1}} dt = 2\int_{H} |\nabla u(t,\bar{x})| \frac{1}{(1-|t|)^{N-1}} d(t,\bar{x}).$$

On utilise maintenant l'inégalité de Hölder p et $\frac{p}{p-1}$.

$$m_N|u(1,0)-u(-1,0)| \leq \left(\int_H |\nabla u(t,\bar{x})|^p d(t,\bar{x})\right)^{\frac{1}{p}} \left(\int_H (1-|t|)^{\frac{p(1-N)}{p-1}} d(t,\bar{x})\right)^{1-\frac{1}{p}}.$$

Enfin, en remarquant que la mesure (N-1)— dimensionnelle de A_t est $(1-t)^{N-1}m_N$,

$$\int_{H} (1-|t|)^{\frac{p(1-N)}{p-1}} d(t,\bar{x}) = 2 \int_{0}^{1} (1-t)^{\frac{p(1-N)}{p-1}} (1-t)^{N-1} m_N dt = 2 \int_{0}^{1} (1-t)^{\frac{1-N}{p-1}} m_N dt.$$

Cette dernière intégrale est finie si et seulement si $\frac{N-1}{p-1} < 1$, c'est-à-dire N < p.

Pour p > N, on obtient bien l'inégalité demandée avec C_1 qui ne dépend que de N et p par l'intermédiaire de m_N et $\int_0^1 (1-t)^{\frac{1-N}{p-1}} dt$.

2. Comme cela est suggéré on suppose que x=(b,0) et y=(-b,0) avec b>0. Pour se ramener à (1.10) on définit la fonction v par v(x)=u(bx). L'inégalité (1.10) donne

$$|u(b,0) - u(-b,0) \le C_1 |||\nabla v|||_{L^p(\mathbb{R}^N)}.$$

Puis comme $\nabla v(x) = b\nabla u(bx)$,

$$\int_{\mathbb{R}^N} |\nabla v(x)|^p dx = b^p \int_{\mathbb{R}^N} |\nabla u(bx)|^p dx = b^p \int_{\mathbb{R}^N} |\nabla u(x)|^p b^{-N} dx,$$

ce qui donne

$$|u(b,0) - u(-b,0) \le C_1 b^{1-\frac{N}{p}} |||\nabla u|||_{L^p(\mathbb{R}^N)}.$$

On conclut en remarquant que, pour $|(b,0)^t - (-b,0)^t| = \sqrt{2}b$. On peut donc choisit $C_2 = C_1$.

N.B. Le fait que l'on puisse se ramener au cas x=(b,0) et y=(-b,0) est dû au fait que le jacobien de la transformation $x\mapsto Ax+c$, avec pour A une matrice de d'éterminant ± 1 et $c\in {\rm I\!R}^N$ est ± 1 .

3. Soit $u \in W^{1,p}(\mathbb{R}^N)$ tel que $\|u\|_{W^{1,p}}(\mathbb{R}^N)=1$. Soit $x \in \mathbb{R}^N$ On va montrer que $|u(x)| \leq C_3=NC_2+\frac{1}{M_N}$, où M_N^p est la mesure de la boule unité de \mathbb{R}^N .

En effet, supposons que $|u(x)| > C_3$. On a alors, grâce à (1.11), $|u(y)| \geq C_3 - NC_2$ pour tout $y \in B(x,1)$ où B(x,1) désigne la boule de centre x et rayon 1 (car $\|(|\nabla u|)\|_{L^p(\mathbb{R}^N)} \leq N\|u\|_{W^{1,p}}(\mathbb{R}^N) = N$ avec la norme $W^{1,p}$ de la proposition 1.7). On en déduit

$$||u||_{L^p(\mathbb{R}^N)}^p = \int_{\mathbb{R}^N} |u(y)|^p \, dy \ge \int_{B(x,1)} |u(y)|^p \, dy \ge (C_3 - NC_2)^p M_N^p,$$

et donc $\|u\|_{L^p(\mathbb{R}^N)} \ge (C_3 - NC_2)M_N$. Or $\|u\|_{L^p(\mathbb{R}^N)} \le \|u\|_{W^{1,p}}(\mathbb{R}^N) = 1$. On a donc $(C_3 - NC_2)M_N \le 1$, c'est-à-dire $C_3 < NC_2 + \frac{1}{M_N}$, en contradiction avec le choix de C_3 . On a donc montré (1.12) si $\|u\|_{W^{1,p}(\mathbb{R}^N)} = 1$.

Si maintenant $u \in W^{1,p}(\mathbb{R}^N)$, u non nulle, on obtient (1.12) en se ramenant au cas précédent avec $v = u/\|u\|_{W^{1,p}(\mathbb{R}^N)}$.

4. (Injection de Sobolev dans \mathbb{R}^N .)

Grâce aux deux questions précédentes, on obtient (1.13) avec $C_4 = C_3 + NC2$.

5. (Injection de Sobolev dans Ω .)

Il suffit d'appliquer le théorème de prolongement 1.23. On appelle C_P la norme de l'opérateur linéaire continu (de $W^{1,p}(\Omega)$ dans $W^{1,p}(\mathbb{R}^N)$) P donné dans le théorème de prolongement 1.23. On obtient

$$||u||_{C^{0,\alpha}(\bar{\Omega})} \le ||Pu||_{C^{0,\alpha}(\mathbb{R}^N)} \le C_4 ||Pu||_{W^{1,p}(\mathbb{R}^N)} \le C_4 C_P ||u||_{W^{1,p}(\Omega)}.$$

Il suffit donc de prendre $C_5 = C_4 C_P$.

Exercice 1.19 (Inégalités de Sobolev pour $p \leq N$)

1.

(a) Comme $u \in C_c^1(\mathbb{R})$ on a, pour $x \in \mathbb{R}$, $u(x) = \int_{-\infty}^x u'(t)dt$ et donc

$$|u(x)| \le \int_{-\infty}^{x} |u'(t)| dt \le ||u'||_1.$$

On en déduit bien $||u||_{\infty} \leq ||u'||_1$.

(b) La question précédente permet d'initialiser la récurrence, on a pour tout toute fonction u appartenant à $C_c^1(\mathbb{R}), \|u\|_{\infty} \leq \|u'\|_1$.

Soit maintenant $N \geq 1$. On suppose que pour toute fonction u appartenant à $C_c^1(\mathbb{R}^N)$, on a

$$||u||_{\frac{N}{N-1}} \leq ||\frac{\partial u}{\partial x_1}||_1^{\frac{1}{N}} \dots ||\frac{\partial u}{\partial x_N}||_1^{\frac{1}{N}}.$$

Soit $u \in C_c^1(\mathbb{R}^{N+1})$. Pour $x \in \mathbb{R}^{N+1}$ on note $x = (x_1, y)^t$ avec $x_1 \in \mathbb{R}$ et $y \in \mathbb{R}^N$. Pour $x_1 \in \mathbb{R}$, l'inégalité de Hölder donne

$$\int_{\mathbb{R}^{N}} |u(x_{1}, y)|^{\frac{N+1}{N}} dy = \int_{\mathbb{R}^{N}} |u(x_{1}, y)| |u(x_{1}, y)|^{\frac{1}{N}} dy
\leq \left(\int_{\mathbb{R}^{N}} |u(x_{1}, y)|^{\frac{N}{N-1}} dy \right)^{\frac{N}{N}} \left(\int_{\mathbb{R}^{N}} |u(x_{1}, y)| dy \right)^{\frac{1}{N}}.$$
(1.28)

On applique l'hypothèse de récurrence à la fonction $y\mapsto u(x_1,y)$ (qui est bien dans $C_c^1(\mathbb{R}^N)$), on obtient

$$||u(x_1,\cdot)||_{L^{\frac{N}{N-1}}(\mathbb{R}^N)} \le ||\frac{\partial u}{\partial x_2}(x_1,\cdot)||_{L^1(\mathbb{R}^N)}^{\frac{1}{N}} \dots ||\partial_{N+1}u(x_1,\cdot)||_{L^1(\mathbb{R}^N)}^{\frac{1}{N}}.$$

D'autre part, en appliquant le cas N=1 (démontré à la question (a)) à la fonction $z\mapsto u(z,y)$ (qui est bien dans $C^1_c(\mathbb{R})$), on a pour tout $y\in\mathbb{R}^N$

$$|u(x_1,y)| \le \|\frac{\partial u}{\partial x_1}(\cdot,y)\|_{L^1(\mathbb{R})}.$$

Et donc, en intégrant par rapport à y,

$$\int_{\mathbb{R}^N} |u(x_1, y)| \, \mathrm{d}y \le \left\| \frac{\partial u}{\partial x_1} \right\|_{L^1(\mathbb{R}^{N+1})}.$$

En reportant ces majorations dans (1.28) on obtient pour tout $x_1 \in \mathbb{R}$

$$\int_{\mathbb{R}^{N}} |u(x_{1},y)|^{\frac{N+1}{N}} dy \leq \|\frac{\partial u}{\partial x_{2}}(x_{1},\cdot)\|_{L^{1}(\mathbb{R}^{N})}^{\frac{1}{N}} \dots \|\partial_{N+1}u(x_{1},\cdot)\|_{L^{1}(\mathbb{R}^{N})}^{\frac{1}{N}} \|\frac{\partial u}{\partial x_{1}}(x_{1},\cdot)\|_{L^{1}(\mathbb{R}^{N+1})}^{\frac{1}{N}}.$$

En intégrant cette inégalité par rapport à x_1 et en utilisant une nouvelle fois l'inégalité de Hölder (avec le produit de N fonctions dans L^N), on obtient bien l'inégalité désirée, c'est-à-dire

$$||u||_{\frac{N+1}{N}}^{\frac{N}{N+1}} \le ||\frac{\partial u}{\partial x_1}||_1^{\frac{1}{N}} \dots ||\frac{\partial u}{\partial x_{N+1}}||_1^{\frac{1}{N}},$$

ou encore

$$||u||_{\frac{N+1}{N}} \le ||\frac{\partial u}{\partial x_1}||_1^{\frac{1}{N+1}} \dots ||\frac{\partial u}{\partial x_{N+1}}||_1^{\frac{1}{N+1}}.$$

Ce qui termine la récurrence.

(c) La moyenne géométrique de N nombres positifs est plus petite que la moyenne arithmétique de ces mêmes nombres. (Ceci peut se démontrer en utilisant, par exemple, la convexité de la fonction exponentielle.)

On en déduit que

$$||u||_{\frac{N}{N-1}} \leq ||\frac{\partial u}{\partial x_1}||_1^{\frac{1}{N}} \dots ||\frac{\partial u}{\partial x_N}||_1^{\frac{1}{N}} \leq \frac{1}{N} \sum_{i=1}^N ||\frac{\partial u}{\partial x_i}||_1.$$

Comme $\|\frac{\partial u}{\partial x_i}\|_1 \leq \||\nabla u|\|_1$ pour tout i, on a bien

$$||u||_{\frac{N}{N-1}} \le |||\nabla u|||_1.$$

(d) Pour p = 1, on a vu que $C_{N,p} = 1$ convient. On suppose maintenant 1 .

On pose
$$\alpha=\frac{p(N-1)}{N-p}$$
 (de sorte que $\alpha\frac{N}{N-1}=p^\star$) et $v=|u|^{\alpha-1}u$.

Comme $\alpha>1$ et $u\in C^1_c(\mathbb{R}^N)$, on a aussi $v\in C^1_c(\mathbb{R}^N)$. On peut donc appliquer le résultat de la question (c) à la fonction v. On obtient

$$\left(\int_{\mathbb{R}^{N}} |u(x)|^{p^{\star}}\right)^{\frac{N-1}{N}} = \left(\int_{\mathbb{R}^{N}} |u(x)|^{\alpha \frac{N}{N-1}}\right)^{\frac{N-1}{N}} \le \| |\nabla v| \|_{1}.$$

Comme $|\nabla v| = \alpha |u|^{\alpha-1} |\nabla u|$, l'inégalité de Hölder (avec p et $q = \frac{p}{p-1}$) donne

$$\| |\nabla v| \|_1 = \alpha \| |u|^{\alpha - 1} |\nabla u| \|_1 \le \alpha \| |u|^{\alpha - 1} \|_q \| |\nabla u| \|_p.$$

Comme $(\alpha - 1)q = (\alpha - 1)\frac{p}{p-1} = p^*$, on a donc

$$||u||_{p^{\star}}^{\frac{p^{\star}(N-1)}{N}} = \left(\int_{\mathbb{R}^{N}} |u(x)|^{p^{\star}}\right)^{\frac{N-1}{N}} \le \alpha ||u||_{p^{\star}}^{\frac{p^{\star}(p-1)}{p}} |||\nabla u|||_{p}.$$

Ce qui donne, avec $C_{N,p} = \alpha = \frac{p(N-1)}{N-n}$,

$$||u||_{p^*} \le C_{N,p} |||\nabla u|||_p.$$

2. Soit $u \in W^{1,p}(\mathbb{R}^N)$, il existe une suite $(u_n)_{n \in \mathbb{N}}$ de fonctions appartenant à $C^1_c(\mathbb{R}^N)$ t.q. $u_n \to u$ dans $W^{1,p}(\mathbb{R}^N)$ quand $n \to +\infty$. Par la question précédente, cette suite est de Cauchy dans L^{p^*} . Par unicité de la limite (par exemple dans $L^1_{loc}(\mathbb{R}^N)$) cette limite est nécessairement égale à u. On peut alors passer à la limite quand $n \to +\infty$ dans l'inégalité $\|u_n\|_{p^*} \leq C_{N,p} \||\nabla u_n||_p$ et on obtient ainsi

$$||u||_{p^*} \le C_{N,p} ||\nabla u||_p$$
 pour tout $u \in W^{1,p}(\mathbb{R}^N)$.

Ceci donne l'injection continue de $W^{1,p}({\rm I\!R}^N)$ dans $L^{p^\star}({\rm I\!R}^N).$

L'injection continue de $W^{1,p}(\mathbb{R}^N)$ dans $L^p(\mathbb{R}^N)$ est immédiate car $||u||_p \leq ||u||_{W^{1,p}}$ pour tout $u \in W^{1,p}(\mathbb{R}^N)$.

Soit maintenant $q \in]p, p^*[$. Pour montrer que $W^{1,p}(\mathbb{R}^N)$ s'injecte continûment dans $L^q(\mathbb{R}^N)$ il suffit d'utiliser l'inégalité classique suivante (qui se démontre avec l'inégalité de Hölder) avec $p < q < r = p^*$.

$$||u||_{q} \le ||u||_{p}^{\theta} ||u||_{r}^{1-\theta},\tag{1.29}$$

avec $\theta = \frac{p(r-q)}{q(r-p)} \in]0,1[.$

3. Le cas N=1 est facile. La question 2 donne l'injection continue de $W^{1,1}(\mathbb{R})$ dans $L^{\infty}(\mathbb{R})$. Comme $W^{1,1}(\mathbb{R})$ s'injecte aussi continûment dans $L^1(\mathbb{R})$, on obtient aussi une injection continue de $W^{1,1}(\mathbb{R})$ dans $L^q(\mathbb{R})$ pour tout $q \in]1, +\infty[$ (en utilisant (1.29) avec $r=+\infty, p=1$ et $\theta=\frac{1}{q}$).

On suppose maintenant N>1. On a bien une injection continue de $W^{1,N}(\mathbb{R})$ dans $L^N(\mathbb{R})$. Le seul cas à considérer est donc $N< q<+\infty$. Plusieurs démonstrations sont possibles. Une première démonstration consiste à utiliser pour $|u|^\alpha$, avec $u\in C^1_c(\mathbb{R}^N)$, l'inégalité démontrée à la question 1 (c), puis à utiliser l'inégalité de Hölder (pour faire apparître $|\nabla u|^N$) et l'inégalité (1.29). Enfin, on conclut avec la densité de $C^1_c(\mathbb{R}^N)$ dans $W^{1,N}(\mathbb{R}^N)$. On donne ci-dessous une démonstration probablement plus longue mais qui utilise de manière intéressante le caractère homogène de la norme.

Soit $N < q < +\infty$. Il existe alors $p \in]1, N[$ tel que $p^* = Np/(N-p) = q$. On va utiliser la question 1 avec cette valeur de p.

On définit φ de IR dans IR, de classe C^1 , par :

$$\begin{aligned} \varphi(s) &= 0 \text{ si } |s| \leq 1, \\ \varphi(s) &= \frac{1}{2} (|s| - 1)^2 \text{ si } 1 < |s| \leq 2, \\ \varphi(s) &= |s| - \frac{3}{2} \text{ si } 2 < |s|. \end{aligned}$$

On a $|\varphi(u)| \leq 1$ et $|\varphi'(s)| \leq 1$ pour tout $s \in \mathbb{R}$. Soit $u \in C_c^1(\mathbb{R}^N)$ telle que $||u||_{W^{1,N}} = 1$. On a $\varphi(u) \in C_c^1(\mathbb{R}^N)$. Par la question 1 (et la définition de φ) on obtient

$$\|\varphi(u)\|_{q} \leq C_{N,p} \||\nabla\varphi(u)|\|_{p}$$

$$\leq C_{N,p} \int_{\{|u|\geq 1\}} |\nabla u(x)|^{p} dx$$

$$\leq C_{N,p} \left(\int_{\mathbb{R}^{N}} |\nabla u(x)|^{N} dx\right)^{\frac{p}{N}} \lambda_{d} (\{|u|\geq 1\}^{1-\frac{p}{N}}.$$

On a $\lambda_d(\{|u|\geq 1\}) \leq \int_{\mathbb{R}^N} |u(x)|^N \,\mathrm{d}x \leq 1$ et $\int_{\mathbb{R}^N} |\nabla u(x)|^N \,\mathrm{d}x \leq 1$ et on en déduit que $\|\varphi(u)\|_q \leq C_{N,v}$. Comme $|u|^q \leq 2^q \varphi(u)^q + 2^q$, on a donc

$$\int_{\mathbb{R}^{N}} |u(x)|^{q} dx = \int_{\{|u| \leq 1\}} |u(x)|^{q} dx + \int_{\{|u| > 1\}} |u(x)|^{q} dx
\leq \int_{\mathbb{R}^{N}} |u(x)|^{N} dx + 2^{q} \int_{\mathbb{R}^{N}} |\varphi(u(x))|^{q} dx + 2^{q} \lambda_{d}(\{|u| > 1\})
\leq D_{N,q} := 1 + 2^{q} C_{N,p}^{\frac{q}{p}} + 2^{q}.$$
(1.30)

Il est clair que $D_{N,q}$ ne dépend que de N et de qet on a bien $\|u\|_q \leq D_{N,q}$ si $u \in C^1_c(\mathbb{R}^N)$ et $\|u\|_{W^{1,N}} = 1$. Grâce au caractère homogène de la norme, on a en déduit que $\|u\|_q \leq D_{N,q} \|u\|_{W^{1,N}(\mathbb{R}^N)}$ pour tout $u \in C^1_c(\mathbb{R}^N)$. Enfin, par densité de $C^1_c(\mathbb{R}^N)$ dans $W^{1,N}(\mathbb{R}^N)$ on obtient que $W^{1,N}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N)$ et

$$||u||_q \le D_{N,q} ||u||_{W^{1,N}(\mathbb{R}^N)}$$
 pour tout $u \in W^{1,N}(\mathbb{R}^N)$,

ce qui montre bien qu'il y a une injection continue de $W^{1,N}({\rm I\!R}^N)$ dans $L^q({\rm I\!R}^N)$.

4. Cette question consiste seulement à utiliser l'existence d'un opérateur P linéaire continu de $W^{1,p}(\Omega)$ dans $W^{1,p}(\mathbb{R}^N)$ tel que Pu=u p.p. dans Ω (opérateur dit de "prolongement" dont l'existence est donnée par le théorème 1.23). En effet, grâce à cette opérateur, la question 4 est une conséquence des questions précédentes (et de l'inégalité (1.29)).

Exercice 1.20 (Noyau de l'opérateur trace)

1. On montre tout d'abord que $W_0^{1,p}(\Omega) \subset \operatorname{Ker} \gamma$.

Soit $u \in W_0^{1,p}(\Omega)$; par la définition 1.24 de $W_0^{1,p}(\Omega)$, il existe une suite $(u_n)_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega)$ telle que $u_n \to u$ dans $W^{1,p}(\Omega)$ quand $n \to +\infty$. On a donc (théorème 1.27) $\gamma(u_n) \to \gamma(u)$ dans $L^p(\partial\Omega)$ quand $n \to +\infty$ (les fonctions u_n sont, bien sûr, prolongées par 0 hors de Ω). Comme, pour tout $n \in \mathbb{N}$, $\gamma(u_n)$ p.p. sur $\partial\Omega$, on en déduit $\gamma(u) = 0$ p.p. sur $\partial\Omega$ (pour la mesure (N-1)-dimensionnelle), c'est-à-dire $u \in \mathrm{Ker}\gamma$.

On montre maintenant que $\operatorname{Ker} \gamma \subset W_0^{1,p}(\Omega)$.

Soit $u \in \operatorname{Ker}\gamma$; pour montrer que $u \in W^{1,p}_0(\Omega)$ on va raisonner en deux étapes. En notant \tilde{u} la fonction u prolongée par 0 hors de Ω , on montre $\tilde{u} \in W^{1,p}(\mathbb{R}^N)$ dans une première étape, et on en déduit $u \in W^{1,p}_0(\Omega)$ dans une deuxième étape.

Etape 1 On a bien sûr $\tilde{u} \in L^p(\mathbb{R}^N)$ et $\|\tilde{u}\|_{L^p(\mathbb{R}^N)} = \|u\|_{L^p(\Omega)}$. Il s'agit maintenant de montrer la même égalité avec $D_i\tilde{u}$ et D_iu (au lieu de \tilde{u} et u).

Il existe une suite $(u_n) \in \mathcal{D}(\mathbb{R}^N)$ telle que $u_n \to u$ dans $W^{1,p}(\Omega)$ quand $n \to +\infty$ (il s'agit plutôt de la restriction de u_n à Ω). Soit $\varphi \in \mathcal{D}(\mathbb{R}^N)$ et $i \in \{1, \dots, N\}$,

$$\langle D_i \tilde{u}, \varphi \rangle_{\mathcal{D}^{\star}(\mathbb{R}^N), \mathcal{D}(\mathbb{R}^N)} = -\int_{\mathbb{R}^N} \tilde{u}(x) \partial_i \varphi(x) dx = -\int_{\Omega} u(x) \partial_i \varphi(x) dx.$$

Mais, comme $u_n, \varphi \in \mathcal{D}(\mathbb{R}^N)$,

$$-\int_{\Omega} u_n(x)\partial_i \varphi(x)dx = \int_{\Omega} \partial_i u_n(x)\varphi(x)dx + \int_{\mathbb{R}^{N-1}} u_n(0,y)\varphi(0,y)n_i \, dy,$$

avec $n_1=1$ et $n_i=0$ pour i>1. En passant à la limite dans cette égalité quand $n\to +\infty$, comme $u_n\to u$ dans $W^{1,p}(\Omega)$, $u_n\to \gamma u$ dans $L^p(\mathbb{R}^{N-1},\varphi)$ à support compact et $\gamma u=0$ p.p. sur \mathbb{R}^{N-1} (car $u\in \mathrm{Ker}\gamma$) on obtient

$$\langle D_i \tilde{u}, \varphi \rangle_{\mathcal{D}^*(\mathbb{R}^N), \mathcal{D}(\mathbb{R}^N)} = \int_{\Omega} D_i u(x) \varphi(x) dx,$$
 (1.31)

c'est-à-dire que $D_i\tilde{u}$ est la fonction égale à D_iu sur Ω et 0 hors de Ω . On bien montré finalement que $\tilde{u} \in W^{1,p}(\mathbb{R}^N)$ et $\|\tilde{u}\|_{W^{1,p}(\mathbb{R}^N)} = \|u\|_{W^{1,p}(\Omega)}$.

Etape 2 On choisit une fonction $\varphi_0 \in \mathcal{D}(\mathbb{R}^N)$ telle que $\varphi_0(x) \geq 0$ pour tout x, $\varphi_0(x) = 0$ si $|x| \geq 2$, $\varphi_0(x_1,y) = 0$ si $x_1 \geq 1$ (et $y \in \mathbb{R}^{N-1}$) et $\int_{\mathbb{R}^N} \varphi(x) \, \mathrm{d}x = 1$. Pour $n \in \mathbb{N}^*$, on définit φ_n par $\varphi_n(x) = n^N \varphi_0(nx)$.

On pose $u_n = \tilde{u} \star \varphi_n$ de sorte que $u_n \in \mathcal{D}(\mathbb{R}^N)$ et la restriction de u_n à Ω , encore notée u_n , appartient à $\mathcal{D}(\Omega)$ (car $u_n(x_1, y)$ si $x_1 < \frac{1}{n}$).

Enfin, comme cela a été vu dans le preuve du théorème 1.23, $u_n \to \tilde{u}$ dans $W^{1,p}(\mathbb{R}^N)$ lorsque $n \to +\infty$, et donc, en prenant les restrictions à Ω , $u_n \to \tilde{u}$ dans $W^{1,p}(\Omega)$, ce qui prouve que $u \in W^{1,p}_0(\Omega)$.

2. On reprend la méthode utilisée pour démontrer la première propriété du théorème 1.23. Avec les notations de la preuve de la première propriété du théorème 1.23, $u_n = u \star \varphi$ (la fonction u a été prolongée par 0 hors de Ω et on a vu que $u_n \to u$ dans $W^{1,p}(\Omega)$ et donc aussi $u_n \to \gamma(u)$ dans $L^p(\partial\Omega)$ quand $n \to +\infty$. Mais, comme $u \in C(\overline{\Omega})$, on remarque que $u_n \to u$ uniformément sur $\overline{\Omega}$ (cela est dû au fait que $\varphi_0(x_1,y) = 0$ pour $x_1 \geq 0$). On a donc $\gamma(u) = u$ p.p. sur $\partial\Omega$.

Exercice 1.21 (Prolongement d'une fonction appartenant à H^2)

1. On reprend la preuve de la première propriété du théorème 1.23.

Dans une première étape, on montre la densité dans $W^{2,p}(\mathbb{R}^N_+)$ des éléments de $W^{2,p}(\mathbb{R}^N_+)$ à support compact. Pour cela, on choisit $\psi \in \mathcal{D}(\mathbb{R}^N)$ telle que $0 \le \psi(x) \le 1$ pour tout $x, \psi(x) = 1$ si $|x| \le 1$, $\psi(x) = 0$ si $|x| \ge 2$.

On définit u_n pour $n \in \mathbb{N}^*$ par $u_n(x) = u(x)\psi(x/n)$ et on montre que $u_n \to u$ dans $W^{2,p}(\mathbb{R}^N+)$ quand $n \to +\infty$. Cette étape ne pose pas de difficultés.

Dans la deuxième étape, on considère $u\in W^{2,p}(\mathbb{R}^N_+)$ à support compact. On commence par prolonger u par 0 hors de \mathbb{R}^N_+ . Puis, on choisit (comme dans le théorème 1.23 pour le cas \mathbb{R}^N_+) une fonction $\rho\in\mathcal{D}(\mathbb{R}^N)$ telle que $\rho(x)=0$ si $|x|\geq 1$, $\int_{\mathbb{R}^N}\rho(x)=1$ et $\rho(x_1,y)=0$ si $x_1\geq 0$ (et $y\in\mathbb{R}^{N-1}$). On pose $u_n=u\star\rho_n$. On démontre alors que $u_n\in\mathcal{D}(\mathbb{R}^N)$ et, grâce au fait que $\rho(x_1,y)=0$ si $x_1\geq 0$, comme dans le théorème 1.23 pour le cas \mathbb{R}^N_+ , $u_n\to u$ dans $W^{2,p}(\mathbb{R}^N_+)$ quand $n\to+\infty$ (plus précisément il s'agit de la restriction à \mathbb{R}^N_+ de u_n).

2. On prend α et β tels que $\alpha + \beta = 1$ et $-\alpha - 2\beta = 1$, c'est-à-dire $\beta = -2$ et $\alpha = 3$. Si $u \in C_c^{\infty}(\bar{\Omega})$ (c'est-à-dire u restriction à Ω d'un élement de $\mathcal{D}(\mathbb{R}^N)$ encore noté u), on définit Pu par

$$Pu(x) = u(x) \text{ si } x = (x_1, y)^t \text{ avec } x_1 \ge 0,$$

 $Pu(x) = \alpha u(-x_1, y) + \beta u(-2x_1, y) \text{ si } x = (x_1, y)^t \text{ avec } x_1 < 0.$

La fonction Pu est de classe C^1 et les dérivées premières et secondes de Pu sont représentées par les dérivées classiques. On en déduit que $Pu \in W^{2,p}(\mathbb{R}^N)$ et que $\|\tilde{u}\|_{W^{2,p}(\mathbb{R}^N)} = C\|u\|_{W^{1,p}(\Omega)}$ avec un nombre C qui peut se calculer explicitement avec α et β (mais ce calcul est inutile ici). L'opérateur P est donc linéaire continu de $C_c^\infty(\bar{\Omega}) \subset W^{2,p}(\bar{\Omega})$ dans $W^{2,p}(\mathbb{R}^N)$ (et de norme égale à C). Par densité de $C_c^\infty(\bar{\Omega})$ dans $W^{2,p}(\bar{\Omega})$, il se prolonge donc (de manière unique) en un opérateur P linéaire continu de $W^{2,p}(\Omega)$ dans $W^{2,p}(\mathbb{R}^N)$ et de norme égale à C. On a, bien sûr, P(u) = u p.p. dans Ω .

3. L'ensemble $C_c^\infty(\overline{\Omega})$ n'est pas dense dans $W^{2,\infty}(\Omega)$. Une limite dans $L^\infty(\Omega)$ de fonctions continues sur $\overline{\Omega}$ est nécessairement continue. Pour montrer que $C_c^\infty(\overline{\Omega})$ n'est pas dense dans $W^{2,\infty}(\Omega)$, il suffit donc de trouver un élément de $W^{2,\infty}(\Omega)$ dont (au moins) une dérivée seconde n'est pas continue. Un exemple possible consiste à prendre, par exemple, $u(x) = \varphi(x_1)\psi(x)$ pour $x = (x_1,y)^t, x_1 > 0$ et $y \in \mathbb{R}$ avec $\varphi(x_1) = ((1-x_1)^+)^2$ et $\psi \in \mathcal{D}(\mathbb{R}^N), \psi(x) = 1$ si |x| < 1. On a bien $u \in W^{2,\infty}(\Omega)$ mais la fonction D_1D_1u est discontinue, ce qui suffit pour affirmer que u n'est pas dans l'adhérence de $C_c^\infty(\overline{\Omega})$ dans $W^{2,\infty}(\Omega)$.

Par contre, il existe bien un opérateur P linéaire continu de $W^{2,\infty}(\Omega)$ dans $W^{2,\infty}(\mathbb{R}^N)$ tel que Pu=u p.p. dans Ω pour tout $u\in W^{2,\infty}(\Omega)$. Cela est dû au fait qu'une fonction de $W^{2,\infty}(\Omega)$ appartient à $C^1(\bar{O},\mathbb{R})$ (voir l'exercice 1.15). Un choix possible de Pu (pour $u\in W^{2,\infty}(\Omega)$), est alors celui de la question 2 avec les mêmes valeurs de α et β :

$$\begin{split} Pu(x) &= u(x) \text{ si } x = (x_1,y)^t \text{ avec } x_1 \geq 0, \\ Pu(x) &= \alpha u(-x_1,y) + \beta u(-2x_1,y) \text{ si } x = (x_1,y)^t \text{ avec } x_1 < 0. \end{split}$$

Exercice 1.22 (Convergence faible et opérateur continu)

1. On utilise ici l'opérateur T^t , transposé de l'opérateur T donné par la définition 2.11) : $\langle T^t g, u \rangle_{E',E} = \langle g, Tu \rangle_{F',F}$. Il est facile de voir que $T^t \in \mathcal{L}(F',E')$ (voir par exemple l'exercice 1.26).

Pour tout $f \in F'$ et tout $n \in \mathbb{N}$, $\langle f, T(u_n) \rangle_{F',F} = \langle T^t(f), u_n \rangle_{E',E}$. Comme $T^(f) \in E'$ et $u_n \to u$ faiblement dans E quand $n \to +\infty$,

$$\lim_{n \to +\infty} \langle f, T(u_n) \rangle_{F',F} = \lim_{n \to +\infty} \langle T^t(f), u_n \rangle_{E',E} = \langle T^t(f), u \rangle_{E',E} = \langle f, T(u) \rangle_{F',F}.$$

Ceci prouve que $T(u_n) \to T(u)$ faiblement dans F.

- 2. C'est une application immédiate de la question 1 appliquée à $T \in \mathcal{L}(E, F)$ défini par Tu = u.
- 3. C'est encore une application immédiate de la question 1 en prenant $E = H_0^1(\Omega)$, $F = L^2(\Omega)$ et T défini par $T(u) = D_i u$.

Exercice 1.23 (Fonction non continue appartenant à $H^1(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)$)

1. On note B la boule de centre 0 et rayon 1 (pour le norme euclidienne). L'exercice 1.5 donne que la restriction de u à B appartient à $H^1(B)$. Puis comme u est continue au voisinage du bord de B et u=0 sur le bord de B, $u\in H^1_0(B)$ (il suffit pour le montrer de reprendre la démonstration de la question 2 de l'exercice 1.20). Enfin la fonction u consiste à prolonger par 0 sa restriction à B, la démonstration de la question 1 de l'exercice 1.20 donne alors $u\in H^1(\mathbb{R}^2)$.

La remarque 2.25 du lemme 2.24 donne maintenant que la restriction de u_n à B appartient à $H_0^1(B)$ (et donc que $u_n \in H^1(\mathbb{R}^2)$) et que

$$\| |\nabla u_n| \|_{L^2(\mathbb{R}^2)}^2 = \int_{\{n < |u(x)| < n+1\}} |\nabla u(x)|^2 dx.$$

On en déduit que $\sum_{n=1}^\infty \|\,|\nabla u_n|\,\|_{L^2({\rm I\!R}^2)}^2 \leq \|u\|_{H^1(B)}^2 < +\infty.$

2. Pour $x \in \mathbb{R}^2$, $u_n(x) = 0$ ou 1 ou u(x) - n si n < u(x) < n + 1. Ceci montre bien que u_n prend ses valeurs entre 0 et 1.

Puis, toujours pour $x \in \mathbb{R}^2$, $u_n(x) \neq 0$ si et seulement si u(x) > n c'est-à-dire $(-\ln|x|)^{\gamma} > n$ et donc $|x| < \exp(-n^{1/\gamma})$. le support de u_n est donc la boule (fermée) de centre 0 et rayon $\exp(-n^{1/\gamma})$. Le rayon de cette boule tend bien vers 0 quand $n \to +\infty$.

3. Pour tout $n \in \mathbb{N}^*$, le support de v_n est inclus dans la boule $B_n = \{z \in \mathbb{R}^2, |z - x_n| \le r_n\}$. Soit $p > n \ge 1$. Supposons qu'il existe $x \in \mathbb{R}^2$ tel que $x \in B_n$ et $x \in B_p$. Comme $|x - x_n| \le r_n$ et $|x - x_p| \le r_p$,

$$\frac{1}{n} - \frac{1}{n+1} \le |x_n - x_p| \le r_n + r_p \le \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \frac{1}{2} \left(\frac{1}{p} - \frac{1}{p+1} \right) < \frac{1}{n} - \frac{1}{n+1},$$

ce qui est impossible. Les fonctions v_n ont donc des supports disjoints.

4. Pour tout $n \in \mathbb{N}^*$, la restriction de v_n appartient à $H_0^1(B_n)$ (avec B_n définie à la question précédente). On en déduit que v_n (qui consiste à prolonger par 0 sa restriction à B_n) appartient à $H^1(\mathbb{R}^2)$ et que, pour $i \in \{1,2\}$, $D_i v_n$ est égal à D_i de la restriction de v_n à B_n prolongée par 0 hors de B_n (voir l'égalité (1.31)). On a donc

$$\langle D_i v_n, \varphi \rangle_{\mathcal{D}^*(\mathbb{R}^2), \mathcal{D}(\mathbb{R}^2)} = \int_{B_n} \partial_i v_n(x) \varphi(x) dx.$$

Comme les supports des fonctions v_n sont disjoints, on en déduit que pour $p > n \ge 1$,

$$\langle D_i \sum_{q=n}^p v_q, \varphi \rangle_{\mathcal{D}^{\star}(\mathbb{R}^N), \mathcal{D}(\mathbb{R}^N)} = \sum_{q=n}^p \int_{B_q} \partial_i v_q(x) \varphi(x) dx,$$

et donc $D_i(\sum_{q=n}^p v_q) \in L^2(\mathbb{R}^2)$ et

$$||D_i(\sum_{q=n}^p v_q)||_{L^2(\mathbb{R}^2)}^2 = \sum_{q=n}^p \int_{\{m_q < |u(x)| < m_q + 1\}} |\nabla u(x)|^2 dx \le \int_{\{m_n < |u(x)|\}} |\nabla u(x)|^2 dx.$$

On a aussi (en notant λ_2 la mesure de Lebesgue dans \mathbb{R}^2)

$$\|\sum_{q=n}^{p} v_q\|_{L^2(\mathbb{R}^2)} \le \sum_{q=n}^{p} \lambda_2(B_q).$$

Comme $u \in H^1(\mathbb{R}^2)$ et que toutes les boules B_n sont disjointes et incluses dans la boule B de centre 0 et rayon 2, on déduit de ces deux dernières inégalité que la série $\sum_{n \in \mathbb{N}^*} v_n$ est convergente dans $H^1(\mathbb{R}^2)$. On note v la somme de cette série (et donc $v \in H^1(\mathbb{R}^2)$).

On remarque maintenant que pour tout $x \in \mathbb{R}^2$ la série $\sum_{n \in \mathbb{N}^*} v_n(x)$ est convergente dans \mathbb{R} (il y au plus un terme non nul dans cette série), on note $\bar{v}(x)$ sa limite. Comme une suite convergente dans $L^2(\mathbb{R}^2)$ admet toujours une sous-suite convergente p.p., on a $v = \bar{v}$ p.p.. Comme $0 \le \bar{v}(x) \le 1$ pour tout x, on a donc $v \in L^{\infty}(\mathbb{R}^2)$.

On suppose maintenant qu'il existe $w \in C(\mathbb{R}^2, \mathbb{R})$ telle que w = v p.p. On a donc aussi $w = \bar{v}$ p.p., on en déduit que $w(x) = \bar{v}(x)$ pour tout $x \neq 0$ (on rappelle en effet que deux fonctions continues sur un ouvert et égale p.p. sont égales partout sur cet ouvert). Mais ceci contredit la continuité de w en 0 car cela donne en notant $y_n = x_n + (r_n, 0)^t$,

$$w(0) = \lim_{n \to +\infty} \bar{v}(x_n) = 1 \text{ et } w(0) = \lim_{n \to +\infty} \bar{v}(y_n) = 0.$$

Exercice 1.24 (Sur l'injection de $W^{1,1}$ dans $L^{1^{\star}}$)

I- Première méthode (méthode directe)

1. Comme $\|u_n\|_{L^1(\Omega)}=1$ et $\||\nabla u_n|\|_{L^1(\Omega)}<\frac{1}{n}$, la suite $(u_n)_{n\in\mathbb{N}^*}$ est bornée dans $W^{1,1}(\Omega)$. Le théorème 1.34 donne alors qu'on peut supposer, après extraction d'une sous-suite, que $u_n\to u$ dans $L^1(\Omega)$ quand $n\to+\infty$. On a donc $\|u\|_{L^1(\Omega)}=\lim_{n\to+\infty}\|u_n\|_{L^1(\Omega)}=1$.

Puis $\||\nabla u_n|\|_{L^1(\Omega)} \to 0$ quand $n \to +\infty$, et donc $D_i u_n \to 0$ dans $L^1(\Omega)$ et donc aussi dans $\mathcal{D}^*(\Omega)$. Comme $D_i u_n \to D_i u$ dans $\mathcal{D}^*(\Omega)$ (car $u_n \to u$ dans $L^1(\Omega)$ et donc dans $\mathcal{D}^*(\Omega)$), on a donc $D_i u = 0$ (dans $\mathcal{D}^*(\Omega)$). La question 3 de l'exercice 1.4 donne qu'il existe $a \in \mathbb{R}$ tel que u = a p.p..

On remarque maintenant que, quitte à extraire encore une sous-suite, $u_n \to u$ p.p. quand $n \to +\infty$ et donc u=0 p.p. sur ω . Comme $\lambda_N(\omega)>0$ et u=a p.p. sur ω , on a donc a=0, ce qui est en contradiction avec $\|u\|_{L^1(\Omega)}=1$.

2. En raisonnant par l'absurde, on se ramène à la question précédente. Si C_1 n'existe pas, il existe alors une suite $(u_n)_{n\in\mathbb{N}^*}$ d'éléments de W_ω telle que, pour tout $n\in\mathbb{N}^*$,

$$||u_n||_{L^1(\Omega)} > n|| |\nabla u_n|||_{L^1(\Omega)}$$
 pour tout $n \in \mathbb{N}^*$.

Par homogénéité on peut supposer que $||u_n||_{L^1(\Omega)}=1$ mais la question précédente a montré qu'une telle suite n'existait pas.

3. On considère d'abord le cas $p=1^*=\frac{N}{N-1}$ (et donc $p=\infty$ si N=1). Soit $u\in W_\omega$. Avec la question précédente,

$$||u||_{L^{1^{\star}}(\Omega)} \leq C_2 ||u||_{W^{1,1}(\Omega)} = C_2 (||u||_{L^1(\Omega)} + \sum_{i=1}^N ||D_i u||_{L^1(\Omega)})$$

$$\leq C_2 (C_1 |||\nabla u|||_{L^1(\Omega)} + N |||\nabla u|||_{L^1(\Omega)}) = C_2 (C_1 + N) |||\nabla u|||_{L^1(\Omega)}.$$

On obtient donc (1.15) pour p = 1 et pour $p = 1^*$ en prenant $C = \max\{C_1, C_2(C_1 + N)\}$. En utilisant l'inégalité de Hölder, l'inégalité (1.15) est alors vraie pour $1 \le p \le 1^*$.

II- Deuxième méthode (en passant par la moyenne de u)

1. On raisonne encore une fois par l'absurde. Si C_3 n'existe pas, il existe alors une suite $(u_n)_{n\in\mathbb{N}^*}$ d'éléments de H telle que, pour tout $n\in\mathbb{N}^*$,

$$||u_n||_{L^1(\Omega)} > n|| |\nabla u_n||_{L^1(\Omega)}$$
 pour tout $n \in \mathbb{N}^*$.

Par homogénéité on peut supposer que $\|u_n\|_{L^1(\Omega)}=1$. La preuve est alors très voisine de celle de la question 1 de la première méthode. La suite $(u_n)_{n\in\mathbb{N}^\star}$ est bornée dans $W^{1,1}(\Omega)$ et on peut donc supposer, après extraction d'une sous-suite, que $u_n\to u$ dans $L^1(\Omega)$ quand $n\to+\infty$. On a donc $\|u\|_{L^1(\Omega)}=\lim_{n\to+\infty}\|u_n\|_{L^1(\Omega)}=1$.

Puis $\| |\nabla u_n| \|_{L^1(\Omega)} \to 0$ quand $n \to +\infty$, et donc $D_i u_n \to 0$ dans $\mathcal{D}^\star(\Omega)$ (pour tout i). On en déduit que $D_i u = 0$ (dans $\mathcal{D}^\star(\Omega)$) et la question 3 de l'exercice 1.4 donne qu'il existe $a \in \mathbb{R}$ tel que u = a p.p.. On remarque maintenant que $\int_\Omega u(x) \ \mathrm{d}x = \lim_{n \to +\infty} \int_\Omega u_n(x) \ \mathrm{d}x = 0$ (car $u_n \to u$ dans $L^1(\Omega)$ et $u_n \in H$). Ceci montre que a = 0, ce qui est en contradiction avec $\|u\|_{L^1(\Omega)} = 1$.

On utilise maintenant le rappel de la question 3 de la première partie et le fait que $u-m \in H$ (et $\nabla(u-m) = \nabla u$ p.p.).

$$||u - m||_{L^{1^{\star}}(\Omega)} \le C_2 ||u - m||_{W^{1,1}(\Omega)} = C_2 (||u - m||_{L^1(\Omega)} + \sum_{i=1}^N ||D_i u||_{L^1(\Omega)})$$

$$\le C_2 (C_3 |||\nabla u|||_{L^1(\Omega)} + N ||||\nabla u|||_{L^1(\Omega)}) = C_2 (C_3 + N) ||||\nabla u|||_{L^1(\Omega)}.$$

On obtient donc (1.17) en prenant $C_4 = C_2(C_3 + N)$.

2. On utilise u=0 p.p. sur ω et la question précédente,

$$|m|\lambda_N(\omega)^{1/1^*} = \left(\int_{\omega} |u(x) - m|^{1^*}\right)^{1/1^*} dx \le ||u - m||_{L^{1^*}(\Omega)} \le C_4 ||\nabla u|||_{L^1(\Omega)},$$

et donc

$$|m| \le \frac{C_4}{\lambda_N(\omega)^{\frac{1}{1^*}}} \| |\nabla u| \|_{L^1(\Omega)}.$$

Puis,

$$||u||_{L^{1^{\star}}(\Omega)} \leq ||u - m||_{L^{1^{\star}}(\Omega)} + |m|\lambda_{N}(\Omega))^{1/1^{\star}} \leq C_{4} \left(1 + \left(\frac{\lambda_{N}(\Omega)}{\lambda_{N}(\omega)}\right)^{\frac{1}{1^{\star}}}\right) ||\nabla u||_{L^{1}(\Omega)}.$$

Exercice 1.25 (Partition de l'unité)

- 1. Pour $i \in \{1, \ldots, n\}$, on a $\Omega_i = \cup_{\varepsilon > 0} \Omega_{i,\varepsilon}$ et donc $K \subset \bigcup_{i=1}^n \cup_{\varepsilon > 0} \Omega_{i,\varepsilon}$. Comme K est compact et $\Omega_{i,\varepsilon}$ est ouvert (pour tout i et ε), il existe $\varepsilon_1, \ldots, \varepsilon_n$ tels que $\varepsilon_i > 0$ pour tout i et $K \subset \bigcup_{i=1}^n \Omega_{i,\varepsilon_i}$. En prenant $\varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_n\}$, on a $K \subset \bigcup_{i=1}^n \Omega_{i,\varepsilon}$.
- 2. Pour tout $i \in \{1, \ldots, n\}$, on pose

$$f_i(x) = 1 \text{ si } x \in (\Omega_{i,\varepsilon} \setminus \bigcup_{j < i} \Omega_{j,\varepsilon}),$$

$$f_i(x) = 0 \text{ si } x \notin (\Omega_{i,\varepsilon} \setminus \bigcup_{j < i} \Omega_{j,\varepsilon}).$$

Avec cette définition, on obtient $f_i = 0$ on $\Omega_{i,\varepsilon}^c$. De plus, si $x \in \bigcup_{i=1}^n \Omega_{i,\varepsilon}$. et $i = \min\{j; x \in \Omega_{j,\varepsilon}$, on a $f_i(x) = 1$ et $f_j(x) = 0$ si $j \neq i$. Donc $\sum_{i=1}^n f_i(x) = 1$.

3. Comme K est compact et $(\bigcup_{i=1}^n \Omega_{i,\varepsilon})^c$ est fermé, on a $d(K,(\bigcup_{i=1}^n \Omega_{i,\varepsilon})^c)=\delta>0$.

On prend η tel que $0 < \eta < \min\{\delta, \varepsilon\}$. Soit $\rho \in \mathcal{D}(\mathbbm{R}^n, \mathbbm{R})$ tel que $\rho(x) = 0$ si $|x| \geq \eta$ et tel que $\int_{\mathbbm{R}^n} \rho(x) \, \mathrm{d}x = 1$. Pour $i \in \{1, \dots, n\}$ on prend $\varphi_i = f_i \star \rho$. On a $\varphi_i \in \mathcal{D}(\mathbbm{R}^n)$ et comme $f_i = 0$ sur $\Omega^c_{i, \varepsilon}$ et $\eta < \varepsilon$, la fonction φ_i satisfait (p1).

Comme $\sum_{i=1}^{n} \varphi_i = (\sum_{i=1}^{n} f_i) \star \rho$ et $\eta < \delta$, les fonctions φ_i satisfont (p2).

Exercice 1.26 (Opérateur transposé, continuité et compacité)

1. Soit $g \in F'$, l'application $u \mapsto \langle g, Tu \rangle_{F', F}$ est linéaire et

$$|\langle g, Tu \rangle_{F',F}| \le ||T||_{\mathcal{L}(E,F)} ||g||_{F'} ||u||_E.$$

Ceci prouve que T^tg est un élément de E' et que $\|T^tg\|_{E'} \leq \|T\|_{\mathcal{L}(E,F)}\|g\|_{F'}$. On a donc aussi $T^t \in \mathcal{L}(F',E')$ et $\|T^t\|_{\mathcal{L}(F',E')} \leq \|T\|_{\mathcal{L}(E,F)}$.

2. Soit $u \in E$. Une conséquence du théorème de Hahn-Banach (voir exercice 1.8, question 1) donne l'existence de $g \in F'$ tel que $\|g\|_{F'} = 1$ et $\|Tu\|_F = \langle g, Tu\rangle_{F',F}$. En effet, en posant $v = Tu \in F$ et en supposant $v \neq 0$ (le cas v = 0 est trivial), on choisit $\widetilde{g} : \mathbb{R}v \to \mathbb{R}$ linéaire et telle que $\widetilde{g}(v) = \|v\|$. On a donc $\|\widetilde{g}\| = 1$. Par le théorème de Hahn-Banach, on peut prolonger \widetilde{g} en $g \in F'$ avec $\|g\|_{F'} = 1$ et $\langle g, v \rangle_{F',F} = \|v\|_F$, ou encore $\|Tu\|_F = \langle g, Tu \rangle_{F',F}$.

On a donc $||Tu||_F \le ||T^t||_{\mathcal{L}(F',E')}||u||_E$. Ceci prouve que $||T||_{\mathcal{L}(E,F)} \le ||T^t||_{\mathcal{L}(F',E')}$ et donc finalement $||T||_{\mathcal{L}(E,F)} = ||T^t||_{\mathcal{L}(F',E')}$.

- 3. Par hypothèse, la boule $T(B_E)$ est relativement compacte donc précompacte. En effet, soit $\varepsilon>0$, supposons par l'absurde qu'il n'existe pas de recouvrement fini de $T(B_E)$ par des boules de la forme $B_F(Tu,\varepsilon)$. Soit $u_0\in B_E$, on a donc $T(B_E)\not\subset B_F(Tu_0,\varepsilon)$ Puis, par récurrence, on suppose u_0,\ldots,u_n choisis dans B_E . Comme $T(B_E)\not\subset \cup_{i=0}^n B_F(Tu_i,\varepsilon)$, on choisit $u_{n+1}\in B_E$ tel que $T(u_{n+1})\not\in \cup_{i=0}^n B_F(Tu_i,\varepsilon)$. On construit ainsi une suite $(u_n)_{n\in\mathbb{N}}$ de B_E telle que la suite $(T(u_n))_{n\in\mathbb{N}}$ n'admet aucune sous-suite convergente (car $\|T(u_n)-T(u_m)\|_F\geq \varepsilon$ si $n\neq m$), ce qui est en contradiction avec l'hypothèse de compacité de T.
- 4. Pour tout $u \in I$, la suite $(\langle T^t g_n, u \rangle_{E',E})_{n \in \mathbb{N}}$ est bornée dans \mathbb{R} . Elle admet donc une sous-suite convergente. Comme I est dénombrable, le procédé diagonal, décrit par exemple dans la preuve de la proposition 8.19 de [20], permet d'extraire une sous-suite telle que la suite $(\langle T^t g_n, u \rangle_{E',E})_{n \in \mathbb{N}}$ est convergente pour tout $u \in I$. Dans la suite on note f_u cette limite.

Noter que, pour cette question, il suffit que I_p soit fini ou dénombrable.

5. Soit $u \in B_E$. On remarque alors que la suite $(\langle T^t g_n, u \rangle_{E', E})_{n \in \mathbb{N}}$ est de Cauchy. En effet, Soit $\varepsilon > 0$. On choisit $p \in \mathbb{N}^*$ tel que $\frac{1}{p} \leq \varepsilon$. Il existe $v \in I_p$ tel que $||Tv - Tu||_F \leq \varepsilon$. On a alors, pour tout $n, m \in \mathbb{N}$, avec $C = \sup_{n} ||g_n||_{F'}$,

$$\begin{aligned} |\langle T^t g_n, u \rangle_{E',E} - \langle T^t g_m, u \rangle_{E',E}| &\leq |\langle T^t g_n, v \rangle_{E',E} - \langle T^t g_m, v \rangle_{E',E}| \\ &+ |\langle g_n, Tv - Tu \rangle_{F',F}| + |\langle g_m, Tv - Tu \rangle_{F',F}| \\ &\leq |\langle T^t g_n, v \rangle_{E',E} - \langle T^t g_m, v \rangle_{E',E}| + 2C\varepsilon. \end{aligned}$$

Puis, comme $v \in I_p \subset I$, il existe n_0 tel que $|\langle T^t g_n, v \rangle_{E',E} - \langle T^t g_m, v \rangle_{E',E}| \leq \varepsilon$ pour $n, m \geq n_0$. On a donc, pour $n, m \geq n_0$,

$$|\langle T^t g_n, u \rangle_{E', E} - \langle T^t g_m, u \rangle_{E', E}| \le (2C + 1)\varepsilon. \tag{1.32}$$

Ceci montre bien que la suite $(\langle T^t g_n, u \rangle_{E', E})_{n \in \mathbb{N}}$ est de Cauchy.

Si $u \in E$, $u \neq 0$, on se ramène au cas précédent en divisant u par sa norme. On obtient bien ainsi la convergence de la suite $(\langle T^t g_n, u \rangle_{E', E})_{n \in \mathbb{N}}$ pour tout $u \in E$ et nous notons encore f_u cette limite.

L'application $u \mapsto f_u$ est trivialement linéaire (de E dans \mathbb{R}) car limite d'applications linéraires. Mais elle est aussi continue car $|f_u| \leq C \|T\|_{\mathcal{L}(E,F)} \|u\|_E$. Il existe donc $f \in E'$ tel que $f_u = \langle f, u \rangle_{E',E}$ pour tout $u \in E$.

Cette question montre que $T^t g_n \to f$ *-faiblement dans E' quand $n \to +\infty$.

C'est pour cette question que l'on va utiliser que I_p est fini. On reprend la méthode de la question précédente

Soit $\varepsilon > 0$. On choisit $p \in \mathbb{N}^*$ tel que $\frac{1}{p} \leq \varepsilon$.

Soit $u \in B_E$. Il existe $v \in I_p$ tel que $||Tv - Tu||_F \le \varepsilon$. L'inégalité (1.32) donne alors

$$|\langle T^t g_n, u \rangle_{E', E} - \langle T^t g_m, u \rangle_{E', E}| \le (2C + 1)\varepsilon, \tag{1.33}$$

pour $n, m \ge n_0$. Mais, comme I_p est fini, n_0 peut être choisit inépendamment de v (et donc de u). On obtient ainsi, quand $m \to +\infty$ dans (1.33), pour tout $n \ge n_0$ et tout $u \in B_E$,

$$|\langle T^t g_n, u \rangle_{E', E} - \langle f, u \rangle_{E', E}| \le (2C + 1)\varepsilon,$$

et donc, pour tout $n \ge n_0$, $||T^t g_n - f||_{E'} \le (2C+1)\varepsilon$.

On a bien montré que $T^tg_n \to f$ dans E'.

- 7. On a montré que de toute suite bornée de F' on peut extraire une sous-suite dont l'image par T^t converge dans E'. Ceci montre bien que T^t est un opérateur compact.
- 8. Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ et $1 < q < +\infty$. Le théorème 1.33 montre que l'application $T: u \mapsto u$ de $W_0^{1,p}(\Omega)$ dans $L^p(\Omega)$ est compacte. L'opérateur T^t de $L^p(\Omega)'$ dans $W_0^{1,p}(\Omega)'$ est donc compact. L'espace $L^p(\Omega)'$ est identifié à $L^q(\Omega)$ avec $q = \frac{p}{p-1}$ et $W_0^{1,p}(\Omega)'$ est noté $W^{-1,q}(\Omega)$.

Pour $u \in (L^p)'(\Omega)$ et $v \in W_0^{1,p}(\Omega)$, comme $L^p(\Omega)'$ est identifié à $L^q(\Omega)$,

$$\langle T^t u, v \rangle_{W^{-1,q}, W_0^{1,p}} = \langle u, Tv \rangle_{(L^p)', L^p} = \int_{\Omega} u(x) v(x) \, \mathrm{d}x,$$

c'est-à-dire que $T^t u$ est identifié à u. L'application $u \mapsto u$ est donc compacte de $L^q(\Omega)$ dans $W^{-1,q}(\Omega)$.

Exercice 1.27 (Transposée d'une injection continue) On note T l'opérateur de E dans F défini par T(u) = u. L'opérateur transposé T^t (défini dans l'exercice 1.26) appartient à $\mathcal{L}(F', E')$. Pour tout $f \in F'$, $T^t f$ est défini par

$$\langle T^t f, u \rangle_{E',E} = \langle f, Tu \rangle_{F',F} = \langle f, u \rangle_{F',F}$$
 pour tout $u \in E$.

L'élément T^tf de E' est donc simplement la restriction de f à E. L'opérateur T^t est donc l'opérateur qui à f (élément de E') associe sa restriction à E (élément de E'). On note encore f la restriction de f à E. L'application $f \mapsto f$ est donc continue de E' dans E' c'est-à-dire que E' s'injecte continûment dans E'.

Chapitre 2

Problèmes elliptiques linéaires

2.1 Formulation faible

Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ de frontière $\partial \Omega = \overline{\Omega} \setminus \Omega$. Soient $a_{i,j} \in L^\infty(\Omega)$, pour $i,j=1,\dots,N$. On suppose que les fonctions $a_{i,j}$ vérifient l'hypothèse d'ellipticité uniforme, c'est-à-dire :

$$\exists \alpha > 0; \ \forall \xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^N, \sum_{i,j=1}^N a_{i,j} \xi_i \xi_j \ge \alpha |\xi|^2 \text{ p.p. dans } \Omega.$$
 (2.1)

On se donne $f \in L^2(\Omega)$ et $g : \partial \Omega \to \mathbb{R}$, et on cherche une solution au problème :

$$-\sum_{i=1}^{N}\sum_{j=1}^{N}\partial_{i}(a_{i,j}(x)\partial_{j}u)(x) = f(x), \ x \in \Omega,$$
(2.2a)

$$u(x) = g(x), \ x \in \partial\Omega,$$
 (2.2b)

où $\partial_i u$ désigne la dérivée partielle de u par rapport à sa i-ème variable.

Exemple 2.1 (Le laplacien) Si on prend $a_{i,j} = \delta_{i,j}$ (c'est-à-dire 1 si i = j, 0 si $i \neq j$), alors le problème (2.2) devient

$$-\Delta u = f \operatorname{sur} \Omega,$$

$$u = g \operatorname{sur} \partial \Omega,$$

où Δ est l'opérateur de Laplace ¹, aussi nommé laplacien, défini par

$$\Delta u = \sum_{i=1}^{N} \partial_i^2 u,\tag{2.3}$$

où $\partial_i^2 u$ désigne la dérivée partielle seconde de u par rapport à la i-ème variable d'espace x_i .

Définition 2.2 (Solution classique) On suppose que $a_{i,j} \in C^1(\bar{\Omega})$ pour tout i, j = 1, ..., N. On suppose que $f \in C(\bar{\Omega})$ et $g \in C(\partial\Omega)$. On appelle alors solution classique de (2.2) une fonction $u \in C^2(\bar{\Omega})$ vérifiant (2.2).

^{1.} Pierre-Simon de Laplace (1749–1827), mathématicien, astronome, physicien et homme politique français, très influent en sciences et politique à l'époque napoléonienne.

On rappelle que pour tout $k \in \mathbb{N} \cup \{+\infty\}$, $C^k(\bar{\Omega})$ désigne l'ensemble des restrictions à Ω des fonctions appartenant à $C^k(\mathbb{R}^N)$.

Il n'existe pas forcément de solution classique à (2.2). Mais il existe des solutions en un sens plus faible que l'on va définir ci-après. Pour comprendre leur nature, considérons d'abord le cas g=0, avec $a_{i,j}\in C^1(\bar{\Omega})$ et $f\in C(\bar{\Omega})$, et supposons qu'il existe une solution classique $u\in C^2(\bar{\Omega})$. Par définition, celle ci vérifie :

$$-\sum_{i=1}^{N}\sum_{j=1}^{N}\partial_{i}(a_{i,j}(x)\partial_{j}u)(x) = f(x), \ \forall x \in \Omega.$$

Soit $\varphi \in \mathcal{D}(\Omega)$; multiplions l'équation précédente par $\varphi(x)$ et intégrons sur Ω :

$$-\int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \partial_{i} (a_{i,j}(x) \partial_{j} u)(x) \right) \varphi(x) dx = \int_{\Omega} f(x) \varphi(x) dx, \ \forall \varphi \in \mathcal{D}(\Omega).$$

Une intégration par parties donne alors :

$$\int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) \partial_{j} u(x) \partial_{i} \varphi(x) \right) dx = \int_{\Omega} f(x) \varphi(x) dx, \ \forall \varphi \in \mathcal{D}(\Omega).$$
 (2.4)

Comme $u \in C^2(\overline{\Omega})$, on a $\partial_j u \in C^1(\overline{\Omega}) \subset C(\overline{\Omega}) \subset L^2(\Omega)$, et $D_j u = \partial_j u$ p.p (comme cela a été vu au Chapitre 1). De plus $u \in C(\overline{\Omega}) \subset L^2(\Omega)$ et donc $u \in H^1(\Omega)$. Enfin, comme u = 0 sur $\partial\Omega$, on a finalement $u \in H^1_0(\Omega)$ (voir l'exercice 1.20).

Soit $v \in H^1_0(\Omega)$, par densité de $\mathcal{D}(\Omega)$ dans $H^1_0(\Omega)$, il existe une suite $(\varphi_n)_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega)$ telle que $\varphi_n \to v$ dans $H^1(\Omega)$, c'est-à-dire $\varphi_n \to v$ dans $L^2(\Omega)$ et $\partial_i \varphi_n \to D_i v$ dans $L^2(\Omega)$ pour $i=1,\ldots,N$. En écrivant (2.4) avec $\varphi = \varphi_n$, on obtient :

$$\int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) \partial_{j} u(x) \partial_{i} \varphi_{n}(x) \right) dx = \int_{\Omega} f(x) \varphi_{n}(x) dx,$$

et en passant à la limite, on obtient que u satisfait le problème suivant, qu'on appelle <u>formulation faible</u> du problème (2.2) (on rappelle que l'on considère ici le cas g=0)

$$u \in H_0^1(\Omega),$$

$$\int_{\Omega} \left(\sum_{i=1}^N \sum_{j=1}^N a_{i,j}(x) D_j u(x) D_i v(x) \right) dx = \int_{\Omega} f(x) v(x) dx, \forall v \in H_0^1(\Omega).$$

$$(2.5)$$

On vient ainsi de montrer que toute solution classique du problème (2.2) (lorsque g=0) est solution faible, c'est-à-dire vérifie (2.5).

L'existence et l'unicité de la solution au problème (2.5) découle du théorème de Lax ²-Milgram ³, qu'on rappelle ci-après. Dans le cas où la forme bilinéaire a est symétrique, c'est-à-dire $a_{i,j} = a_{j,i}$ p.p. pour $i \neq j$, il découle du

^{2.} Peter Lax, mathématicien comtemporain américain d'origine hongroise

^{3.} Arthur Norton Milgram (1912–1961), mathématicien américain, qui a travaillé en analyse fonctionnelle, en combinatoire, en géométrie différentielle, en topologie générale, en théorie des équations aux dérivées partielles et en théorie de Galois.

théorème de Lax Milgram que u est solution de (2.5) si et seulement si u est solution du problème suivant, qu'on appelle <u>formulation variationnelle</u>:

$$u \in H_0^1(\Omega),$$

$$J(u) \le J(v), \forall v \in H_0^1(\Omega),$$
(2.6)

où la fonctionnelle
$$J$$
 est définie par : $J(v) = \frac{1}{2} \int_{\Omega} \left(\sum_{i=1}^N \sum_{j=1}^N a_{i,j} D_i v D_j v \right) \, \mathrm{d}x - \int_{\Omega} f(x) v(x) \, \mathrm{d}x.$

Théorème 2.3 (Lax-Milgram) Soient H un espace de Hilbert réel muni du produit scalaire noté $(\cdot|\cdot)$, de norme associée notée $\|\cdot\|$, et $a(\cdot,\cdot)$ une application bilinéaire de $H\times H$ dans $\mathbb R$ qui est

- continue, ce qui équivaut à dire qu'il existe c>0 t.q., pour tout $(u,v)\in H^2$, on a $|a(u,v)|\leq c||u|||v||$,
- coercive sur H (certains auteurs disent plutôt H-elliptique), c'est-à-dire qu'il existe $\alpha > 0$, t.q., pour tout $u \in H$, $a(u,u) \ge \alpha ||u||^2$,

et soit T une forme linéaire continue sur H.

Alors il existe un unique u de H tel que l'équation a(u,v) = T(v) soit vérifiée pour tout v de H:

$$\exists ! \ u \in H, \ \forall v \in H, \quad a(u, v) = T(v).$$

Si de plus la forme bilinéaire a est symétrique, alors u est l'unique élément de H qui minimise la fonctionnelle $J: H \to \mathbb{R}$ définie par $J(v) = \frac{1}{2}a(v,v) - T(v)$ pour tout v de H, c'est-à-dire :

$$J(u) = \min_{v \in H} \ J(v) \ \ \textit{et} \ \ J(u) < J(v) \ \textit{si} \ u \neq v.$$

Remarque 2.4 (Cas symétrique) Sous les hypothèses du théorème de Lax-Milgram, si la forme bilinéaire a est symétrique, elle définit un produit scalaire sur H équivalent au produit scalaire initial (c'est une conséquence immédiate de la continuité et de la coercivité de a). Dans ce cas, le théorème de Lax-Milgram est une conséquence directe du théorème de représentation 4 de Riesz 5 dans un espace de Hilbert.

Pour appliquer le théorème de Lax-Milgram au problème (2.5), nous aurons besoin de l'inégalité de Poincaré ⁶ :

Lemme 2.5 (Inégalité de Poincaré) Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 1$ (ou qui est au moins borné dans une direction), alors il existe C_{Ω} ne dépendant que de Ω tel que

$$||u||_{L^{2}(\Omega)} \le C_{\Omega} ||\nabla u||_{L^{2}(\Omega)}, \ \forall u \in H_{0}^{1}(\Omega).$$
 (2.7)

N.B. On désigne toujours par $|\cdot|$ la norme euclidienne dans ${\rm I\!R}^N$. On a donc

$$\| |\nabla u| \|_{L^2(\Omega)}^2 = \int_{\Omega} |\nabla u(x)|^2 dx = \sum_{i=1}^N \int_{\Omega} D_i u(x)^2 dx.$$

Démonstration Par hypothèse sur Ω , il existe a>0 tel que $\Omega\subset]-a,a[\times\mathbb{R}^{N-1}.$ Soit $u\in\mathcal{D}(\Omega),$ on prolonge u par 0 en dehors de Ω , on a donc :

$$u \in \mathcal{D}(\mathbb{R}^N), u = 0 \text{ sur } \Omega^c.$$

^{4.} Théorème de représentation de Riesz : Soient H un espace de Hilbert muni de son produit scalaire noté $(\cdot|\cdot)$ et $T\in H$ une forme linéaire continue sur H. Alors il existe un unique $y\in H$ tel que pour tout $x\in H$ on ait T(x)=(y|x).

^{5.} Frigyes Riesz (1880–1956), mathématicien hongrois. Il est l'un des fondateurs de l'analyse fonctionnelle.

^{6.} Henri Poincaré (1854–1912), mathématicien, physicien théoricien et philosophe des sciences français, auteur de résultats importants en optique et en calcul infinitésimal, et précurseur de la théorie des systèmes dynamiques.

Soit $x = (x_1, ..., x_N)^t = (x_1, y)^t \in \Omega$, avec $x_1 \in]-a, a[$ et $y = (x_2, ..., x_N) \in \mathbb{R}^{N-1}$. On a:

$$u(x_1, y) = \int_{0}^{x_1} \partial_1 u(t, y) dt,$$

et donc, par l'inégalité de Cauchy-Schwarz,

$$|u(x_1,y)|^2 \le \left(\int_{-a}^a |\partial_1 u(t,y)| \, dt\right)^2 \le 2a \int_{-a}^a (\partial_1 u(t,y))^2 \, dt.$$

En intégrant entre -a et a, on obtient :

$$\int_{-a}^{a} |u(x_1, y)|^2 dx_1 \le 4a^2 \int_{-a}^{a} (\partial_1 u(t, y))^2 dt,$$

et donc, en intégrant par rapport à y,

$$\int_{\Omega} |u(x)|^2 dx \le 4a^2 \int_{\Omega} (\partial_1 u(x))^2 dx, \ \forall u \in \mathcal{D}(\Omega)$$
(2.8)

On procède ensuite par densité; pour $u \in H^1_0(\Omega)$, il existe une suite $(u_n)_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega)$ telle que $u_n \to u$ dans $H^1_0(\Omega)$. On a donc $u_n \to u$ dans $L^2(\Omega)$ et $\partial_i u \to D_i u$ dans $L^2(\Omega)$. On écrit alors (2.8) pour u_n et en passant à la limite lorsque $n \to +\infty$, on obtient :

$$||u||_{L^{2}(\Omega)}^{2} \le 4a^{2}||D_{1}u||_{L^{2}(\Omega)}^{2} \le 4a^{2} \sum_{i=1}^{N} ||D_{i}u||_{L^{2}(\Omega)}^{2} = 4a^{2}||\nabla u|||_{L^{2}(\Omega)}^{2}.$$

Théorème 2.6 (Existence et unicité de la solution de (2.5)) Soit Ω un ouvert borné de \mathbb{R}^N , $f \in L^2(\Omega)$, et soient $(a_{i,j})_{i,j=1,\dots,N} \subset L^\infty(\Omega)$ et $\alpha > 0$ tels que (2.1) soit vérifiée. Alors il existe une unique solution de (2.5).

Démonstration Pour appliquer le théorème de Lax-Milgram (lemme 2.3), on écrit le problème (2.5) sous la forme : $u \in H$; a(u,v) = T(v) pour tout $v \in H$, avec $H = H_0^1(\Omega)$ (qui est bien un espace de Hilbert, muni de la norme définie par $\|u\|_{H^1(\Omega)} = (\|u\|_{L^2(\Omega)}^2 + \||\nabla u|\|_{L^2(\Omega)}^2)^{\frac{1}{2}}$), et avec a et T définies par

$$a(u,v) = \int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) D_j u(x) D_i v(x) \right) dx \text{ et } T(v) = \int_{\Omega} f(x) v(x) dx.$$

On remarque tout d'abord que la forme linéaire T est bien continue. En effet,

$$|T(v)| \le ||v||_{L^2(\Omega)} ||f||_{L^2(\Omega)} \le ||v||_{H^1(\Omega)} ||f||_{L^2(\Omega)}.$$

Quant à la forme a, elle est évidemment bilinéaire, et elle vérifie :

$$|a(u,v)| \le \sum_{i,j=1}^{N} ||a_{i,j}||_{L^{\infty}(\Omega)} ||D_i u||_{L^2(\Omega)} ||D_j v||_{L^2(\Omega)} \le C ||u||_{H^1(\Omega)} ||v||_{H^1(\Omega)},$$

avec $C = \sum_{i,j=1}^{N} \|a_{i,j}\|_{L^{\infty}(\Omega)}$. Elle est donc continue.

Voyons si a est coercive : il faut montrer qu'il existe $\beta \in \mathbb{R}_+$ tel que $a(u,u) \ge \beta \|u\|_{H^1(\Omega)}^2$, pour tout $u \in H^1_0(\Omega)$. Par hypothèse sur a, on a :

$$a(u,u) = \int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) D_j u(x) D_i u(x) \right) dx \ge \alpha \int_{\Omega} \left(\sum_{i=1}^{N} |D_i u(x)|^2 \right) dx = \alpha \int_{\Omega} |\nabla u(x)|^2 dx.$$

On applique alors l'inégalité de Poincaré (2.7) :

$$||u||_{H^{1}(\Omega)}^{2} = ||u||_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{N} ||D_{i}u||_{L^{2}(\Omega)}^{2} \le (C_{\Omega}^{2} + 1) \sum_{i=1}^{N} ||D_{i}u||_{L^{2}(\Omega)}^{2},$$

d'où on obtient que :

$$\sum_{i=1}^{N} \|D_i u\|_{L^2(\Omega)}^2 \ge \frac{1}{C_{\Omega}^2 + 1} \|u\|_{H^1(\Omega)}^2,$$

et donc

$$a(u, u) \ge \alpha \sum_{i=1}^{N} \|D_i u\|_{L^2(\Omega)}^2 \ge \frac{\alpha}{C_{\Omega}^2 + 1} \|u\|_{H^1(\Omega)}^2,$$

ce qui démontre la coercivité de a. Par le lemme 2.3 de Lax-Milgram, on a donc bien existence et unicité de la solution du problème (2.5).

Remarque 2.7 Le lemme 2.5 est encore vrai avec $1 \le p \le +\infty$ au lieu de p = 2. Si Ω est un ouvert borné de \mathbb{R}^N , $N \ge 1$, et $1 \le p \le +\infty$, il existe $C_{p,\Omega}$ ne dépendant que de p et Ω tel que

$$||u||_{L^p(\Omega)} \le C_{\Omega} ||\nabla u||_{L^p(\Omega)}, \ \forall u \in W_0^{1,p}(\Omega).$$

Ceci permet de définir une norme sur $W^{1,p}_0(\Omega)$ équivalente à la norme $W^{1,p}(\Omega)$, voir la définition 2.8. (Pour p=2, cette équivalence de norme est en fait démontrée dans la démonstration du théorème 2.6.)

Définition 2.8 (Norme sur $W_0^{1,p}(\Omega)$ **)** Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ et $1 \leq p \leq +\infty$. Pour $u \in W_0^{1,p}(\Omega)$, on pose

$$\|u\|_{W_0^{1,p}(\Omega)} = \left(\int_{\Omega} |\nabla u(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}}.$$

Selon la remarque 2.7, c'est donc, sur $W_0^{1,p}(\Omega)$, une norme équivalente à la norme de $W^{1,p}(\Omega)$. Pour p=2, l'espace $W_0^{1,2}(\Omega)$ est aussi noté $H_0^1(\Omega)$ et la norme $\|\cdot\|_{W_0^{1,2}(\Omega)}$ est la norme $\|\cdot\|_{H_0^1(\Omega)}$.

Par le théorème de Lax-Milgram, on démontre de manière similaire l'existence et l'unicité dans le cas où le second membre de (2.5) est donné par un élément de $H^{-1}(\Omega)$ (dual de $H^1_0(\Omega)$, c'est-à-dire l'ensemble des formes linéaires continues sur $H^1_0(\Omega)$).

Théorème 2.9 (Existence et unicité, $T \in H^{-1}$) Soient Ω un ouvert borné de \mathbb{R}^N , $(a_{i,j})_{i,j=1,\dots,N} \subset L^{\infty}(\Omega)$ et $\alpha > 0$ tels que (2.1) soit vérifiée. Soit $T \in H^{-1}(\Omega)$, il existe alors une unique solution u de :

$$u \in H_0^1(\Omega),$$

$$\int_{\Omega} \left(\sum_{i=1}^N \sum_{j=1}^N a_{i,j}(x) D_j u(x) D_i v(x) \right) dx = T(v), \forall v \in H_0^1(\Omega).$$
(2.9)

Soit Ω un ouvert borné de ${\rm I\!R}^N$ et $f\in L^1(\Omega)$. Il est intéressant de savoir si l'application $\varphi\mapsto \int_\Omega f(x)\varphi(x)\,{\rm d} x$ (définie, par exemple, pour $\varphi\in \mathcal{D}(\Omega)$) se prolonge en un élément de $H^{-1}(\Omega)$ (et dans ce cas, le prolongement sera unique par densité de $\mathcal{D}(\Omega)$ dans $H^1_0(\Omega)$). En dimension N=1, l'hypothèse $f\in L^1(\Omega)$ est suffisante. En dimension $N\geq 3$, l'hypothèse $f\in L^q(\Omega)$, avec $q=\frac{2N}{N+2}$ est suffisante. En dimension N=2, l'hypothèse $f\in L^q(\Omega)$, avec q>1 est suffisante. Un résultat plus précis (pour N=2) est donné dans l'exercice 2.14.

Nous n'avons traité ici que le cas des conditions aux limites de Dirichlet homogène (c'est-à-dire g=0 dans le problème 2.2). Le cas des conditions aux limites de Dirichlet non homogènes est traité dans la section 2.5.

L'existence et l'unicité de solutions faibles est possible avec d'autres conditions aux limites. L'exercice 2.8 traite le cas des conditions de Neumann 8 et l'exercice 2.12 les conditions dites de Fourier 9 (ou de Robin 10 , selon les auteurs). La résolution du problème de Neumann permet d'ailleurs de montrer une décomposition utile d'un élément de $L^2(\Omega)^N$, appelée décomposition de Hodge 11 , voir l'exercice 2.15. L'exercice 2.11 s'intéresse à des conditions aux limites apparaissant en mécanique du solide. Il est possible aussi de coupler un problème elliptique sur un ouvert Ω de \mathbb{R}^2 avec un problème elliptique unidimensionnel sur le frontière de Ω , ceci est l'objet de l'exercice 2.17.

Les exercices 2.16, 2.18 et 2.13 montrent l'existence (et l'unicité ou une "unicité partielle") pour des systèmes elliptiques (problème de Stokes et équation de Schrödinger ¹²).

Enfin, il est possible de traiter des problèmes elliptiques avec des coefficients $a_{i,j}$ non bornés. On introduit alors des espaces de Sobolev dits "à poids", voir l'exercice 2.6.

2.2 Analyse spectrale

Soit E un espace de Banach réel, et T une application linéaire continue de E dans E. On note :

- $\rho(T) = \{\lambda \in \mathbb{R}; T \lambda \text{ Id est bijective}\}$. C'est l'ensemble des valeurs régulières de T,
- $\sigma(T) = \{\lambda \in \mathbb{R}; T \lambda \text{ Id est non bijective}\} = \mathbb{R} \setminus \sigma(T)$. C'est l'ensemble des valeurs non régulières de T,
- $\mathcal{VP}(T) = \{\lambda \in \mathbb{R}; T \lambda \text{ Id est non injective}\}$. C'est l'ensemble des valeurs propres de T.

Ici et dans toute la suite de cet ouvrage, Id désigne l'application identité d'un ensemble dans lui-même. Noter que si $\lambda \in \rho(T)$, l'application $T - \lambda Id$ est continue; ceci découle du théorème de Banach, que l'on rappelle.

Théorème 2.10 (Banach) Soient E et F des espaces de Banach et T une application linéaire continue de E dans F. Si T est bijective et continue, alors T^{-1} est continue.

Il est souvent important de généraliser les définitions de $\rho(T)$, $\sigma(T)$ et $\mathcal{VP}(T)$ en prenant $\lambda \in \mathbb{C}$ au lieu de $\lambda \in \mathbb{R}$. Cela est inutile dans cette section car nous allons nous limiter dans la suite à des opérateurs autoadjoints dans des espaces de Hilbert.

^{7.} Johann Peter Gustav Lejeune Dirichlet (1805–1859), mathématicien prussien spécialiste en particulier de théorie des nombres et d'analyse mathématique

^{8.} Carl Gottfried Neumann (1832-1925), mathématicien allemand qui a notamment travaillé sur le principe de Dirichlet et sur la théorie des équations intégrales.

^{9.} Jean-Baptiste Joseph Fourier (1768–1830), mathématicien et physicien français, connu en particulier pour avoir déterminé, par le calcul, la diffusion de la chaleur en utilisant la décomposition d'une fonction quelconque en une série trigonométrique convergente (série de Fourier).

^{10.} Victor Gustave Robin (1855-1897), mathématicien français, spécialiste de thermodynamique et en théorie du potentiel

^{11.} William Vallance Douglas Hodge (1903 –1975), mathématicien britannique spécialisé en géometrie.

^{12.} Erwin Rudolf Josef Alexander Schrödinger (1887–1961), physicien austro-irlandais à qui l'on doit de nombreux résultats de mécanique quantique.

Définition 2.11 (Opérateur transposé, opérateur adjoint et autoadjoint) Soient E et F des espaces de Banach et T une application linéaire continue de E dans F. L'opérateur T^t , transposé de l'opérateur T, défini par $\langle T^t g, u \rangle_{E',E} = \langle g, Tu \rangle_{F',F}$ est une application linéaire continue de F' dans E' (voir exercice 1.26).

Dans le cas où E=F est un espace de Hilbert, muni du produit scalaire $(\cdot|\cdot)_E$, l'opérateur transposé est appelé opérateur adjoint et noté T^* ; il est donc défini par $(T^*x|y)_E=(x|Ty)_E$. On dit que l'opérateur T est autoadjoint s'il est identique à son opérateur adjoint T^* , et on a alors $(Tx|y)_E=(x|Ty)_E$. Dans le cas d'un espace de Hilbert E réel, on dit aussi que l'opérateur est symétrique.

Si E une espace de Hilbert de dimension finie et T un opérateur autoadjoint de E dans E, alors on a $\mathcal{VP}(T) = \sigma(T)$. On a un résultat similaire en dimension infinie, à condition que l'opérateur T soit linéaire continu et compact. Plus précisément, dans ce cas on a : $\mathcal{VP}(T) \setminus \{0\} = \sigma(T) \setminus \{0\}$. Une conséquence de ce résultat est la proposition 2.12. Elle donne une propriété de décomposition spectrale pour les espaces de Hilbert séparables et pour un opérateur autoadjoint.

Proposition 2.12 (Opérateur linéaire continu compact autoajoint) Soit E un espace de Hilbert séparable muni du produit scalaire $(\cdot, \cdot)_E$, et soit T un opérateur linéaire continu compact autoadjoint. Alors

- 1. $\mathcal{VP}(T) \setminus \{0\} = \sigma(T) \setminus \{0\}.$
- 2. Si $\mathcal{VP}(T) \setminus \{0\}$ est de cardinal infini, $\mathcal{VP}(T) \setminus \{0\} = \{\lambda_n, n \in \mathbb{N}^*\}$ avec $\lambda_n \to 0$ lorsque $n \to +\infty$.
- 3. Il existe une base hilbertienne de E formée de vecteurs propres de T, c'est-à-dire d'éléments de E, notés e_n , $n \in \mathbb{N}$, vérifiant $T(e_n)$ colinéaire à e_n , $(e_n \mid e_m)_E = \delta_{n,m}$ et tels que si $u \in E$, alors u peut s'écrire $u = \sum_{n \in \mathbb{N}} (u \mid e_n)_E e_n$ (cette série étant convergente dans E).

Dans la proposition précédente, les sous-espace propres associés aux valeurs propres non nulles sont tous de dimension finie. Dans le cas d'un espace de Hilbert non séparable et d'un opérateur T linéaire continu compact autoadjoint, le noyau de T est de dimension infinie et non séparable.

On va maintenant considérer, pour simplifier, le cas du laplacien. Soit Ω un ouvert borné de \mathbb{R}^N . On rappelle que $\Delta u = \sum_{i=1}^N \partial_i^2 u$ si u est une fonction régulière. Pour étendre cette définition aux fonctions seulement localement intégrables, on pose, si $u \in L^1_{\mathrm{loc}}(\Omega)$, $\Delta u = \sum_{i=1}^N D_i^2 u$. On définit maintenant un opérateur A d'une partie de $L^2(\Omega)$ dans $L^2(\Omega)$ en définissant d'abord son **domaine** D(A):

$$D(A) = \{ u \in H_0^1(\Omega) ; \Delta u \in L^2(\Omega) \},$$

Puis on pose $Au = -\Delta u$ si $u \in D(A)$. On a ainsi définit un opérateur linéaire $A: D(A) \subset L^2(\Omega) \to L^2(\Omega)$.

On a vu dans les paragraphes précédents que si $f \in L^2(\Omega)$, il existe une unique solution au problème (2.5) qui s'écrit, pour le laplacien, c'est-à-dire avec les valeurs $a_{i,j} = \delta_{i,j}$, $i,j = 1,\ldots,N$:

$$u \in H_0^1(\Omega),$$

$$\int_{\Omega} \nabla u(x) \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x, \forall v \in H_0^1(\Omega).$$
(2.10)

Grâce à la densité de $\mathcal{D}(\Omega)$ dans $H^1_0(\Omega)$, la fonction u est solution de (2.10) si et seulement si $u \in D(A)$ et $-\Delta u = f$ p.p. (c'est-à-dire $-\Delta u = f$ dans $L^2(\Omega)$). L'opérateur A est donc inversible. Son inverse, l'opérateur A^{-1} , est défini de $L^2(\Omega)$ dans $L^2(\Omega)$ par $A^{-1}f = u$ où u est solution de (2.10). Cet opérateur est injectif mais non surjectif. Les deux opérateurs sont linéaires.

Pour montrer qu'il existe une base hilbertienne formée des vecteurs propres de A^{-1} , on va démontrer le théorème suivant :

Théorème 2.13 Soit Ω un ouvert borné de \mathbb{R}^N . Pour $f \in L^2(\Omega)$, on note Tf l'unique solution de (2.10). L'opérateur T est linéaire continu compact et autoadjoint de $L^2(\Omega)$ dans $L^2(\Omega)$. De plus $N(T) = \{f \in L^2(\Omega), Tf = 0 p.p.\} = \{0\}$.

Démonstration Il est immédiat de voir que T est linéaire. On remarque tout d'abord que $N(T)=\{f\in E, Tf=0 \text{ p.p.}\}=\{0\}$. En effet, soit $f\in L^2(\Omega)$ telle que Tf=0 p.p.. On a donc, d'après (2.10),

$$\int_{\Omega} fv \, dx = 0 \text{ pour tout } v \in H_0^1(\Omega).$$

Comme $H_0^1(\Omega)$ est dense dans $L^2(\Omega)$ (on a même $\mathcal{D}(\Omega)$ dense dans $L^2(\Omega)$), on en déduit f=0 p.p..

On montre maintenant la continuité de T. Soit $f \in L^2(\Omega)$ et u = Tf. En prenant v = u dans (2.10), on obtient

$$||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} \nabla u \cdot \nabla u \, dx = \int_{\Omega} f u \, dx \le ||f||_{L^2(\Omega)} ||u||_{L^2(\Omega)}.$$

Par l'inégalité de Poincaré, il existe $C_{\Omega} \in \mathbb{R}_+$ ne dépendant que de Ω tel que $\|u\|_{L^2(\Omega)}^2 \leq C_{\Omega} \|u\|_{H^1_0(\Omega)}^2$, et donc :

$$||u||_{H_0^1(\Omega)}^2 = \sum_{i=1}^N ||D_i u||_{L^2(\Omega)}^2 \le ||f||_{L^2(\Omega)} ||u||_{L^2(\Omega)} \le C_{\Omega} ||f||_{L^2(\Omega)} ||u||_{H_0^1(\Omega)}.$$

On en déduit que $||u||_{H^1_0(\Omega)} \leq C_{\Omega} ||f||_{L^2(\Omega)}$ et donc :

$$\|Tf\|_{L^2(\Omega)}^2 = \|u\|_{L^2(\Omega)}^2 \leq C_\Omega \|u\|_{H^1_0(\Omega)}^2 \leq C_\Omega^2 \|f\|_{L^2(\Omega)}^2,$$

ce qui démontre la continuité de T.

Montrons maintenant que l'opérateur T est compact, c'est-à-dire que l'image par T d'un ensemble B borné de $L^2(\Omega)$ est relativement compact dans $L^2(\Omega)$. On peut écrire T sous la forme $T=I\circ T_0$ où I est l'injection canonique de $H^1_0(\Omega)$ dans $L^2(\Omega)$, définie par $I:v\in H^1_0(\Omega)\mapsto v\in L^2(\Omega)$, et T_0 est l'application qui à $f\in L^2(\Omega)$ associe $u=Tf\in H^1_0(\Omega)$. L'application T_0 est continue de $L^2(\Omega)$ dans $H^1_0(\Omega)$ (car $\|Tf\|_{H^1_0(\Omega)}\leq C_\Omega\|f\|_{L^2(\Omega)}$) et l'injection I est compacte par le théorème de Rellich (théorème 1.33 page 16), et donc l'opérateur T est compact.

Montrons maintenant que l'opérateur T est auto-adjoint, c'est-à-dire que

$$(Tf \mid g)_{L^{2}(\Omega)} = (f \mid Tg)_{L^{2}(\Omega)}, \ \forall f, g \in L^{2}(\Omega).$$
 (2.11)

Soient donc f et $g \in L^2(\Omega)$, u l'unique solution de (2.10), et v l'unique solution de (2.10) où on a remplacé f par g dans le second membre. On a, comme v est solution de (2.10) où on a remplacé f par g:

$$(Tf \mid g)_{L^2(\Omega)} = \int_{\Omega} Tf \ g \ dx = \int_{\Omega} u \ g \ dx = \int_{\Omega} \nabla u \cdot \nabla v \ dx.$$

On montre de même que $(f \mid Tg)_{L^2(\Omega)} = \int_{\Omega} \nabla u \cdot \nabla v \, dx$, ce qui démontre (2.11).

Voici maintenant la conséquence du théorème 2.13 et de la proposition 2.12 pour l'opérateur "laplacien" avec condition de Dirichlet homogène.

Théorème 2.14 (Base hilbertienne de $L^2(\Omega)$ formée de fonctions propres de $-\Delta$)

Soit Ω un ouvert borné de \mathbb{R}^N , $Au = -\Delta u$ avec $D(A) = \{u \in H^1_0(\Omega); \Delta u \in L^2(\Omega)\}$. Il existe alors une base hilbertienne (dénombrable) de $L^2(\Omega)$, notée $(e_n)_{n \in \mathbb{N}^*}$, formée de vecteurs propres de A, associés aux valeurs propres $(\mu_n)_{n \in \mathbb{N}^*}$. On peut ordonner les μ_n dans l'ordre croissant (c'est-à-dire $\mu_n \leq \mu_{n+1}$ pour tout $n \in \mathbb{N}^*$) et l'on a $\mu_1 > 0$ et $\lim_{n \to +\infty} \mu_n = +\infty$.

Démonstration Pour $f \in L^2(\Omega)$, on note Tf l'unique solution de (2.10). D'après le théorème 2.13 et la proposition 2.12, il existe donc une base hilbertienne $(e_n)_{n\in\mathbb{N}^*}$ de $L^2(\Omega)$ formées de fonctions propres de T. Les valeurs propres associées sont toutes strictement positives. En effet, si $f \in L^2(\Omega)$ et $f \neq 0$, alors $u = Tf \neq 0$ et

$$(Tf \mid f)_{L^2(\Omega)} = (u \mid f)_{L^2(\Omega)} = \int_{\Omega} \nabla u \cdot \nabla u \, dx = ||u||_{H_0^1(\Omega)}^2 > 0.$$

Si λ_n est une valeur propre de T est associée au vecteur propre $e_n \neq 0$, on a $Te_n = \lambda_n e_n$, et donc, comme $e_n \neq 0$,

$$\lambda_n(e_n | e_n)_{L^2(\Omega)} = (\lambda_n e_n | e_n)_{L^2(\Omega)} = (Te_n | e_n)_{L^2(\Omega)} > 0.$$

La suite $(\lambda_n)_{n\in\mathbb{N}}$ est donc formée de nombres strictement positifs. Quitte à changer l'ordre des λ_n , on peut supposer que cette suite est décroissance. Enfin, la proposition 2.12 donne que $\lim_{n\to+\infty}\lambda_n=0$.

Remarquons que les valeurs propres de A sont donc les valeurs $\mu_n = \frac{1}{\lambda_n}$ pour tout $n \in \mathbb{N}^*$, avec $\mu_n > 0$ pour tout $n \in \mathbb{N}^*$ et $\mu_n \to +\infty$ lorsque $n \to +\infty$.

En reprenant les notations du théorème 2.14, on peut alors caractériser le domaine de l'opérateur laplacien (avec condition de Dirichlet homogène) D(A) de la façon suivante :

Soit
$$u \in L^2(\Omega)$$
, $[u \in D(A)] \iff \left[\sum_{n \in \mathbb{N}} \mu_n^2 (u \mid e_n)_{L^2(\Omega)}^2 < +\infty. \right]$

De plus si $u \in D(A)$, alors $Au = \sum_{n=1}^{+\infty} \mu_n(u \mid e_n)_{L^2(\Omega)} e_n$. On peut ainsi définir les puissances de l'opérateur A:

Définition 2.15 (Puissance de l'opérateur) Soit Ω un ouvert borné de \mathbb{R}^N , $Au = -\Delta u$ avec $D(A) = \{u \in \mathbb{R}^N \mid Au = -\Delta u\}$ $H^1_0(\Omega); \Delta u \in L^2(\Omega)$. On note $(e_n)_{n \in \mathbb{N}^*}$ une base hilbertienne de $L^2(\Omega)$ formée de vecteurs propres de A, associés aux valeurs propres $(\mu_n)_{n\in\mathbb{N}^*}$. Soit $s\geq 0$. On définit

$$D(A^s) = \{ u \in L^2(\Omega) : \sum_{n=1}^{+\infty} \mu_n^{2s} (u \mid e_n)_{L^2(\Omega)}^2 < +\infty \}.$$

Et pour $u \in D(A^s)$, on peut alors définir $A^s u$ par :

$$A^{s}u = \sum_{n=1}^{+\infty} \mu_{n}^{s}(u \mid e_{n})_{L^{2}(\Omega)}e_{n}.$$

Cette série étant convergente dans $L^2(\Omega)$.

Pour s=0, on a $D(A^0)=L^2(\Omega)$ et $A^0u=u$: A^0 est l'opérateur identité.

Pour s=1, on retrouve l'opérateur A. Pour $s=\frac{1}{2}$, on a $D(A^{\frac{1}{2}})=\{u\in L^2(\Omega); \sum_{n=1}^{+\infty}\mu_n(u\,|\,e_n)_{L^2(\Omega)}^2<+\infty\}$. On peut montrer que $D(A^{\frac{1}{2}})=H^1_0(\Omega)$, et on a $A^{\frac{1}{2}}u = \sum_{n=1}^{+\infty} \sqrt{\mu_n} (u | e_n)_{L^2(\Omega)} e_n$.

Pour le cas $N=1, \Omega=0,1$, Le théorème de décomposition spectrale est détaillé dans l'exercice 2.2.

2.3 Régularité des solutions faibles

Soit Ω un ouvert borné de \mathbb{R}^N et $f \in L^2(\Omega)$. Sous les hypothèses (2.1), on sait par les résultats précédents qu'il existe une unique solution au problème (2.5), et on se demande quelle est la régularité de cette solution en fonction des données du problème. Le problème est assez simple en dimension N=1, voir l'exercice 2.1, mais beaucoup plus difficile en dimension N>1. La réponse dépend de la régularité des coefficients de l'opérateur et de la régularité de la frontière de l'ouvert (on dit que la frontière de Ω est de classe C^k si elle est localement le graphe d'une fonction de classe C^k).

Théorème 2.16 (Régularité de la solution du problème de Dirichlet)

Soit Ω un ouvert borné de \mathbb{R}^N et $f \in L^2(\Omega)$. Sous les hypothèses (2.1), soit $u \in H^1_0(\Omega)$ la solution de (2.5).

- 1. Si $a_{i,j} \in C^1(\overline{\Omega})$ pour i, j = 1, ..., N et Ω est à frontière C^2 , alors, pour tout $f \in L^2(\Omega)$, on a $u \in H^2(\Omega)$.
- 2. Si $a_{i,j} \in C^{\infty}(\overline{\Omega})$ pour i, j = 1, ..., N, si Ω est à frontière C^{∞} , et si $f \in H^m(\Omega)$ avec $m \geq 0$, alors $u \in H^{m+2}(\Omega)$.

En conséquence, si $f \in C^{\infty}(\overline{\Omega})$, alors $u \in C^{\infty}(\overline{\Omega})$ et donc u est solution classique. De même, si $f \in H^m(\Omega)$ avec $m > \frac{N}{2}$, alors $u \in C^2(\overline{\Omega})$ et donc u est encore solution classique.

Remarque 2.17 (Optimalité des hypothèses) Notons que la partie 1. du théorème précédent est fausse sans les hypothèses $a_{i,j} \in C^1(\overline{\Omega})$ et Ω est à frontière C^2 .

Par contre dans le cas du laplacien, c'est-à-dire $a_{i,j}=\delta_{i,j}$, si Ω est convexe, alors $u\in H^2(\Omega)$ dès que $f\in L^2(\Omega)$.

Idée de démonstration du théorème 2.16, première partie

On se ramène par la technique dite des "cartes locales" au cas $\Omega = \mathbb{R}^N_+ = \{(x_1,y),y \in \mathbb{R}^{N-1},x_1>0\}$ et u solution de (2.5) avec $a_{i,j} \in C^1(\overline{\Omega})$ pour $i,j=1,\ldots,N$ vérifiant (2.1), c'est-à-dire, dans le cas plus simple où $a_{i,j} = \delta_{i,j}$, au problème suivant :

$$\begin{split} u &\in H^1_0(\Omega), \\ &\int_{\Omega} \nabla u \cdot \nabla v \; \mathrm{d}x = \int_{\Omega} f v \; \mathrm{d}x, \forall v \in H^1_0(\Omega). \end{split}$$

et on applique ensuite le théorème 2.20 (qui se généralise au cas $a_{i,j} \in C^1(\overline{\Omega})$ pour $i,j=1,\ldots,N$ vérifiant (2.1)). Ce théorème montre que la solution de ce problème appartient à $H^2(\mathbb{R}^N_+)$.

La démonstration du théorème 2.20, due à Nirenberg est présentée un peu plus loin; elle nécessite les lemmes techniques suivants, que nous énonçons pour N=2, dans un souci de simplicité :

Lemme 2.18 Soit $\Omega = \mathbb{R}_+ \times \mathbb{R} = \{(x_1, y), x_1 > 0, y \in \mathbb{R}\}$. Soit $g \in L^2(\Omega)$ et, pour h > 0, $\Psi_h g$ défini $par : \Psi_h g = \frac{1}{h}(g_h - g)$, où $g_h \in L^2(\Omega)$ est définie $par g_h(x) = g(x_1, x_2 + h)$. Alors $\|\Psi_h g\|_{H^{-1}(\Omega)} \leq \|g\|_{L^2(\Omega)}$.

Démonstration Soit $g \in L^2(\Omega)$, par définition,

$$\|\Psi_h g\|_{H^{-1}(\Omega)} = \sup\{\int_{\Omega} \Psi_h g \ v \ dx, \ v \in H^1_0(\Omega), \ \|v\|_{H^1(\Omega)} \le 1\},$$

et donc, par densité de $\mathcal{D}(\Omega)$ dans $H_0^1(\Omega)$,

$$\|\Psi_h g\|_{H^{-1}(\Omega)} = \sup\{\int_{\Omega} \Psi_h g \ v \ dx, \ v \in \mathcal{D}(\Omega), \ \|v\|_{H^1(\Omega)} \le 1\}.$$

Soit $v \in \mathcal{D}(\Omega)$ tel que $||v||_{H^1(\Omega)} \leq 1$.

$$\int_{\Omega} \Psi_h g \, v \, dx = \frac{1}{h} \int_{\mathbb{R}_+} \int_{\mathbb{R}} \left(g(x_1, x_2 + h) - g(x_1, x_2) \right) v(x_1, x_2) \, dx_1 \, dx_2
= \frac{1}{h} \int_{\mathbb{R}_+} \int_{\mathbb{R}} g(x_1, \tilde{x}_2) v(x_1, \tilde{x}_2 - h) \, dx_1 \, d\tilde{x}_2 - \int_{\mathbb{R}_+} \int_{\mathbb{R}} g(x_1, x_2) v(x_1, x_2) \, dx_1 \, dx_2
= -\int_{\mathbb{R}_+} \int_{\mathbb{R}} g(x_1, x_2) \frac{v(x_1, x_2 - h) - v(x_1, x_2)}{-h} \, dx_1 \, dx_2.$$

Par l'inégalité de Cauchy-Schwarz, on obtient que

$$\left| \int_{\Omega} \Psi_h g \ v \ dx \right| \le \|g\|_{L^2(\Omega)} \| \frac{v(\cdot, \cdot) - v(\cdot, \cdot - h)}{h} \|_{L^2(\Omega)}$$

En écrivant que

$$v(x_1, x_2) - v(x_1, x_2 - h) = \int_{x_2 - h}^{x_2} \partial_2 v(x_1, s) ds$$

on a

$$\left\| \frac{v(\cdot, \cdot) - v(\cdot, \cdot - h)}{h} \right\|_{L^{2}(\Omega)}^{2} = \frac{1}{h^{2}} \int_{\mathbb{R}^{+}} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathbb{1}_{[x_{2} - h, x_{2}]} \partial_{2} v(x_{1}, s) \, ds \right)^{2} \, dx_{1} \, dx_{2}.$$

Et en appliquant une fois de plus l'inégalité de Cauchy-Schwarz puis le théorème de Fubini, on obtient que

$$\left\|\frac{v(\cdot,\cdot)-v(\cdot,\cdot-h)}{h}\right\|_{L^2(\Omega)} \le \|\partial_2 v\|_{L^2(\Omega)} \le \|\partial_2 v\|_{H^1(\Omega)}.$$

On a donc bien

$$|\int_{\Omega} \Psi_h g \ v \ \mathrm{d}x| \leq \|g\|_{L^2(\Omega)} \ \|\frac{v(\cdot, \cdot) - v(\cdot, \cdot - h)}{h}\|_{L^2(\Omega)} \leq \|g\|_{L^2(\Omega)} \|v\|_{H^1(\Omega)} \leq \|g\|_{L^2(\Omega)}.$$

Finalement, on a donc bien $\|\Psi_h g\|_{H^{-1}(\Omega)} \leq \|g\|_{L^2(\Omega)}$.

Lemme 2.19 Sous les hypothèses du lemme 2.18, soit $u \in L^1_{loc}(\Omega)$, alors $\Psi_h u \to D_2 u$ dans $\mathcal{D}^*(\Omega)$ lorsque $h \to 0$.

Démonstration Soit $\varphi \in \mathcal{D}(\Omega)$; on veut montrer que

$$\int_{\Omega} \Psi_h u \varphi \, dx \to -\int_{\Omega} u \partial_2 \varphi \, dx = \langle D_2 u, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} \text{ lorsque } h \to 0.$$

Or

$$\int_{\Omega} \Psi_h u \varphi \, dx = \int_{\mathbb{R}_+} \int_{\mathbb{R}} \frac{u(x_1, x_2 + h) - u(x_1, x_2)}{h} \varphi(x_1, x_2) \, dx_1 \, dx_2$$
$$= -\int_{\mathbb{R}_+} \int_{\mathbb{R}} u(x_1, x_2) \frac{\varphi(x_1, x_2 - h) - \varphi(x_1, x_2)}{-h} \, dx_1 \, dx_2.$$

Mais $\frac{\varphi(x_1,x_2-h)-\varphi(x_1,x_2)}{-h} \to \partial_2 \varphi$ uniformément lorsque $h \to 0$, et le support de cette fonction est inclus dans un compact K de Ω , indépendant de h si |h| < 1. Donc $\lim_{h \to 0} \int_{\Omega} \Psi_h u \ \varphi \ \mathrm{d}x = -\int_{\Omega} u \partial_2 \varphi \ \mathrm{d}x$.

Théorème 2.20 (Nirenberg) Soit $\Omega = \mathbb{R}^N_+ = \{(x_1,y), y \in \mathbb{R}^{N-1}, x_1 > 0\}$ et $f \in L^2(\Omega)$, et soit $u \in H^1_0(\Omega)$ solution du problème suivant :

$$u \in H_0^1(\Omega),$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \forall v \in H_0^1(\Omega). \tag{2.12}$$

Alors $u \in H^2(\mathbb{R}^N_+)$.

Démonstration On va effectuer la démonstration dans le cas N=2. Soit $u\in H^1_0(\Omega)$ solution de (2.12), u vérifie donc :

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x + \int_{\Omega} u \, v \, \mathrm{d}x = \int_{\Omega} g v \, \mathrm{d}x, \forall v \in H^1_0(\Omega), \text{ où } g = u + f \in L^2(\Omega).$$

On a donc

$$(u \mid v)_{H^{1}(\Omega)} = \int_{\mathbb{R}^{2}_{+}} g \, v \, dx \le \|g\|_{H^{-1}(\Omega)} \|v\|_{H^{1}(\Omega)}, \tag{2.13}$$

puisque, par définition, $\|g\|_{H^{-1}(\Omega)}=\sup\{\int_{\mathbb{R}^2_+}g\ v\ \mathrm{d}x,\ v\in H^1_0(\Omega), \|v\|_{H^1(\Omega)}\leq 1\}$, où, comme d'habitude, on confond l'application T_g qui à $v\in H^1_0(\Omega)$ associe $\int gv\ \mathrm{d}x$, qui est donc un élement de $H^{-1}(\Omega)$, avec la (classe de) fonction(s) $g\in L^2(\Omega)$. On prend v=u dans (2.13). On obtient $\|u\|_{H^1(\Omega)}\leq \|g\|_{H^{-1}(\Omega)}$.

Pour montrer la régularité sur D_2u , on introduit la fonction $\Psi_hu=\frac{1}{h}(u_h-u)$ où $u_h\in H^1_0(\Omega)$ est définie par $u_h(x)=u(x_1,x_2+h)$. Comme u vérifie (2.12), u_h vérifie $\int_{\Omega}\nabla u_h\cdot\nabla v\,\mathrm{d}x=\int_{\Omega}f_hv\,\mathrm{d}x$ où $f_h(x)=f(x_1,x_2+h)$, et donc $\Psi_hu=\frac{1}{h}(u_h-u)$ appartient à $H^1_0(\Omega)$ et vérifie

$$\int_{\Omega} \nabla \Psi_h u \cdot \nabla v \, dx = \int_{\Omega} \Psi_h f v \, dx \text{ pour tout } v \in H_0^1(\Omega).$$

On en déduit que $(\Psi_h u, v)_{H^1(\Omega)} = \int_{\Omega} \Psi_h g v \, dx$, et donc que $\|\Psi_h u\|_{H^1(\Omega)} \leq \|\Psi_h g\|_{H^{-1}(\Omega)}$. Par le lemme 2.18, comme $g \in L^2(\Omega)$, on a donc

$$\|\Psi_h u\|_{H^1(\Omega)} \le \|g\|_{L^2(\Omega)}$$
.

Prenons maintenant $h=\frac{1}{n}$ et faisons tendre n vers $+\infty$. Par ce qui précéde, la suite $(\Psi_{\frac{1}{n}}u)_{n\in\mathbb{N}^*}$ est bornée dans $H^1_0(\Omega)$, il existe donc une sous-suite encore notée $(\Psi_{\frac{1}{n}}u)_{n\in\mathbb{N}^*}$, et $w\in H^1_0(\Omega)$ telle que $\Psi_{\frac{1}{n}}u\to w$ dans $H^1_0(\Omega)$ faible (c'est-à-dire $S(\Psi_{\frac{1}{n}}u)\to S(w)$ pour tout $S\in H^{-1}(\Omega)$). Donc $\Psi_{\frac{1}{n}}u\to w$ dans $\mathcal{D}^*(\Omega)$. Mais par le lemme 2.19, $\Psi_{\frac{1}{n}}u\to D_2u$ dans \mathcal{D}^* . Donc $D_2u=w\in H^1_0(\Omega)$, et par conséquent, $D_1D_2u\in L^2(\Omega)$ et $D_2D_2u\in L^2(\Omega)$. Pour conclure, il ne reste plus qu'à montrer que $D_1D_1u\in L^2(\Omega)$. Pour cela, on utilise l'équation satisfaite par u. En effet, comme u est solution faible de (2.5), on a $-\Delta u=f$ dans \mathcal{D}^* , et donc $D_1D_1u=-f-D_2D_2u$ ce qui prouve que $D_1D_1u\in L^2(\Omega)$. Ceci termine la preuve.

Remarque 2.21 (Plus de régularité...)

Soit Ω un ouvert borné de \mathbb{R}^N et $f \in L^2(\Omega)$. Sous les hypothèses (2.1), soit $u \in H_0^1(\Omega)$ la solution de (2.5).

- 1. Supposons que $a_{i,j} \in C^1(\overline{\Omega})$ et que Ω est à frontière C^2 . On a déjé vu que si $f \in L^2(\Omega)$ alors $u \in H^2(\Omega)$. On peut montrer que si $f \in L^p(\Omega)$ alors $u \in W^{2,p}(\Omega)$ $(2 \le p < +\infty)$.
- 2. Supposons maintenant qu'on ait seulement $a_{i,j} \in L^{\infty}(\Omega)$. On peut montrer [28] qu'il existe $p^* > 2$ tel que si $f \in L^p(\Omega)$ avec $2 \le p \le p^*$, alors $u \in W_0^{1,p}(\Omega)$.

- 3. Toujours dans le cas $a_{i,j} \in L^{\infty}(\Omega)$, on peut montrer (ce résultat est dû à Stampacchia ¹³) que si $f \in L^p(\Omega)$, avec $p > \frac{N}{2}$, alors $u \in L^{\infty}(\Omega)$.
- 4. Il est possible aussi de démontrer des résultat de régularité pour d'autres conditions aux limites. L'exercice 2.8 donne un exemple avec les conditions de Neumann, l'exercice 2.12 un exemple avec conditions de Fourier et l'exercice 2.13 traite l'exemple du système elliptique induit par l'équation de Schrödinger (qui est d'habitude présenté comme une équation dont l'inconnue prend ses valeurs dans ℂ).

2.4 Positivité de la solution faible

Question. (Positivité de la solution faible.) Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 1$, $a_{i,j} \in L^{\infty}(\Omega)$, pour $i,j = 1, \ldots, N$. On suppose que les fonctions $a_{i,j}$ vérifient (2.1). Soit $f \in L^2(\Omega)$ et u la solution de (2.5). On suppose que $f \geq 0$ p.p.. A-t-on $u \geq 0$ p.p.?

Remarque 2.22 Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 1$. On suppose que $u \in C^2(\bar{\Omega})$, $-\Delta u = f$ dans Ω et u = 0 sur le bord de Ω (la fonction u est donc une solution classique avec $a_{i,j} = 0$ si $i \neq j$ et $a_{i,j} = 1$ si i = j). On suppose aussi que f > 0 dans Ω . On va montrer que $u \geq 0$ dans Ω . Pour cela, on raisonne par l'absurde. On suppose qu'il existe $a \in \Omega$ tel que u(a) < 0. On choisit alors $x \in \Omega$ tel que $u(x) = \min\{u(y), y \in \bar{\Omega}\}$ (un tel x existe car $\bar{\Omega}$ est compact, u continue et u = 0 sur le bord de u). On a alors

$$\partial_i u(x) = 0$$
 et $\partial_i^2 u(x) \ge 0$ pour tout $i \in \{1, \dots, N\}$.

Ceci donne $\Delta u(x) \geq 0$ en contradiction avec $\Delta u(x) = -f(x) < 0$. On obtient donc finalement que $u(x) \geq 0$ pour tout $x \in \Omega$. Un argument supplémentaire permet de remplacer l'hypothèse f > 0 par $f \geq 0$. En effet, supposons seulement $f \geq 0$. Pour $\varepsilon > 0$, on pose $u_{\varepsilon}(x) = u(x) - \varepsilon x_1^2$ de sorte que $-\Delta u_{\varepsilon} = f + 2\varepsilon > 0$ dans Ω . Soit $x \in \overline{\Omega}$ tel que $u(x) = \min\{u_{\varepsilon}(y), y \in \overline{\Omega}\}$. Si $x \in \Omega$, le raisonnement précédent montre que $\Delta u_{\varepsilon}(x) \geq 0$ en contraction avec $-\Delta u_{\varepsilon}(x) = f(x) + 2\varepsilon > 0$. On a donc $x \in \partial \Omega$. On en déduit que

$$u_{\varepsilon}(y) \ge u_{\varepsilon}(x) \ge -\varepsilon \max_{x \in \partial\Omega} x_1^2 \text{ pour tout } y \in \bar{\Omega}.$$

En faisant $\varepsilon \to 0$, on obtient le résultat désiré, c'est-à-dire $u \ge 0$ dans $\bar{\Omega}$.

La question posée au début de ce paragraphe consiste donc à étendre cette propriété de positivité aux solutions faibles.

Nous donnons maintenant deux petits lemmes, dûs à G. Stampacchia.

Lemme 2.23 Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ et $\varphi \in C^1(\mathbb{R},\mathbb{R})$. On suppose que φ' est bornée et $\varphi(0) = 0$. Soit $u \in H^1_0(\Omega)$, alors $\varphi(u) \in H^1_0(\Omega)$ et $D_i\varphi(u) = \varphi'(u)D_iu$ p.p. (pour tout $i \in \{1,\ldots,N\}$). (La notation $\varphi(u)$ désigne la fonction $\varphi \circ u$.)

Démonstration Il existe une suite $(u_n)_{n\in\mathbb{N}}$ de fonctions appartenant à $\mathcal{D}(\Omega)$ t.q. $u_n\to u$ dans $H^1_0(\Omega)$ (quand $n\to +\infty$), c'est-à-dire

$$u_n \to u$$
 dans $L^2(\Omega)$, $D_i u_n \to D_i u$ dans $L^2(\Omega)$, pour tout $i \in \{1, \dots, N\}$.

Après extraction éventuelle d'une sous-suite, on peut même supposer qu'il existe $F \in L^2(\Omega)$ et, pour tout $i \in \{1, \dots, N\}, F_i \in L^2(\Omega)$ t.q.

$$\begin{array}{l} u_n \to u \text{ p.p. et } |u_n| \leq F \text{ p.p. et pour tout } n \in \mathbb{N}, \\ D_i u_n \to D_i u \text{ p.p. et } |D_i u_n| \leq F_i \text{ p.p. et pour tout } n \in \mathbb{N}, \ i \in \{1, \dots, N\}. \end{array}$$

^{13.} Guido Stampacchia, mathématicien italien (1922–1978), spécialiste de calcul des variations et des équations aux dérivées partielles, entre autres.

On a alors $\varphi(u_n) \in C_c^1(\Omega)$ et pour tout $n \in \mathbb{N}$ et tout $i \in \{1, \dots, N\}$,

$$D_i\varphi(u_n) = \partial_i\varphi(u_n) = \varphi'(u_n)\partial_i u_n.$$

On pose $M=\sup\{|\varphi'(s)|,\,s\in\mathbb{R}\}$, de sorte que $|\varphi(s)|\leq M|s|$, pour tout $s\in\mathbb{R}$. On a donc

$$\varphi(u_n) \to \varphi(u)$$
 p.p. et $|\varphi(u_n)| \leq MF$ p.p. et pour tout $n \in \mathbb{N}$.

Comme $MF \in L^2(\Omega)$, le théorème de convergence dominée (dans $L^2(\Omega)$) donne $\varphi(u_n) \to \varphi(u)$ dans $L^2(\Omega)$. On a donc aussi $D_i \varphi(u_n) \to D_i \varphi(u)$ dans $\mathcal{D}^*(\Omega)$. On rappelle maintenant que $D_i \varphi(u_n) = \varphi'(u_n) \partial_i u_n$. Comme

$$\begin{split} &\varphi'(u_n)\to\varphi'(u) \text{ p.p.,}\\ &\partial_i u_n\to D_i u \text{ p.p.,}\\ &|\varphi'(u_n)\partial_i u_n|\leq MF_i \text{ p.p. et pour tout }n\in\mathbb{N}. \end{split}$$

Le théorème de convergence dominée donne $\varphi'(u_n)\partial_i u_n \to \varphi'(u)D_i u$ dans $L^2(\Omega)$ et donc aussi dans $\mathcal{D}^\star(\Omega)$. Par unicité de la limite dans $\mathcal{D}^\star(\Omega)$ on a donc $D_i\varphi(u)=\varphi'(u)D_i u$ p.p. (et pour tout i). Finalement, on obtient donc que $\varphi(u)\in H^1_0(\Omega)$ (comme limite, pour la norme de $H^1(\Omega)$, de fonctions de $H^1_0(\Omega)$) et $D_i\varphi(u)=\varphi'(u)D_i u$ p.p., pour tout i.

Lemme 2.24 Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$. Soit $u \in H^1_0(\Omega)$. On définit u^+ par $u^+(x) = \max\{u(x), 0\}$ Pour $x \in \Omega$. Alors, $u^+ \in H^1_0(\Omega)$ et $D_i u^+ = \mathbb{1}_{u \geq 0} D_i u = \mathbb{1}_{u > 0} D_i u$ p.p. (pour tout $i \in \{1, \dots, N\}$). En particulier on a $D_i u = 0$ p.p. (pour tout i) sur l'ensemble $\{u = 0\}$.

Démonstration Pour $n \in \mathbb{N}^*$, on définit $\varphi_n \in C^1(\mathbb{R}, \mathbb{R})$ par

$$\begin{aligned} \varphi_n(s) &= 0 \text{ si } s \leq 0, \\ \varphi_n(s) &= \frac{n}{2} s^2 \text{ si } 0 < s < \frac{1}{n}, \\ \varphi_n(s) &= s - \frac{1}{2n} \text{ si } \frac{1}{n} \leq s. \end{aligned}$$

On a donc $\varphi_n(s) \to s^+$ pour tout $s \in \mathbb{R}$ (quand $n \to +\infty$) et $|\varphi_n'(s)| \le 1$ pour tout s et pour tout $n \in \mathbb{N}^*$. Le lemme 2.23 donne $\varphi_n(u) \in H^1_0(\Omega)$ et $D_i(\varphi_n(u)) = \varphi_n'(u)D_iu$ p.p. (et pour tout $i \in \{1, \dots, N\}$). D'autre part, on a

$$\varphi_n(u) \to u^+$$
 p.p., $|\varphi_n(u)| < |u|$ p.p. et pour tout $n \in \mathbb{N}$.

Le théorème de convergence dominée donne donc $\varphi_n(u) \to u^+$ dans $L^2(\Omega)$ (et donc que $D_i \varphi_n(u) \to D_i u^+$ dans $\mathcal{D}^\star(\Omega)$). Puis, on remarque que $\varphi_n'(u) \to \mathbb{1}_{\{u>0\}}$ p.p. et donc

$$\varphi'_n(u)D_iu \to \mathbb{1}_{\{u>0\}}D_iu$$
 p.p., $|\varphi'_n(u)D_iu| \le |D_iu|$ p.p. et pour tout $n \in \mathbb{N}$,

ce qui (toujours par le théorème de convergence dominée) donne $\varphi_n'(u)D_iu \to \mathbb{1}_{\{u>0\}}D_iu$ dans $L^2(\Omega)$ (et donc dans $\mathcal{D}^\star(\Omega)$). Comme $D_i(\varphi_n(u)) = \varphi_n'(u)D_iu$ on en déduit (par unicité de la limite dans $\mathcal{D}^\star(\Omega)$) que $D_iu^+ = \mathbb{1}_{\{u>0\}}D_iu$ p.p.. La suite $(\varphi_n(u))_{n\in\mathbb{N}}$ est donc une suite de $H^1_0(\Omega)$, elle converge dans $H^1(\Omega)$ vers u^+ . On a bien montré, finalement, que $u^+ \in H^1_0(\Omega)$ et $D_iu^+ = \mathbb{1}_{\{u>0\}}D_iu$ p.p. (et pour tout i).

En considérant la suite $(\psi_n(u))_{n\in\mathbb{N}}$ avec ψ_n définie par $\psi_n(s)=\varphi(s+\frac{1}{n})-1/(2n)$, un raisonnement analogue montre que $D_iu^+=1_{\{u>0\}}D_iu$ (la différence essentielle entre φ_n et ψ_n est que $\varphi_n'(0)=0$ alors que $\psi_n'(0)=1$).

Remarque 2.25 Le lemme 2.24 peut se généraliser à toute fonction lipschitzienne s'annulant en 0, on obtient ainsi le résultat suivant : Soit Ω un ouvert borné de \mathbb{R}^N ($N \ge 1$) et φ de \mathbb{R} dans \mathbb{R} , s'annulant en 0. Soit $u \in H^1_0(\Omega)$. On a alors $\varphi(u) \in H^1_0(\Omega)$ et $D_i \varphi(u) = \varphi'(u) D_i u$ p.p. (pour tout $i \in \{1, \ldots, N\}$).

Cette généralisation est assez facile (et peut être faite en exercice) si φ n'a qu'un nombre fini de points de discontinuité. Elle est difficile pour le cas général d'une fonction lipschitzienne.

Un exemple important consiste à prendre $\varphi(s)=(s-k)^+$ pour tout $s\in\mathbb{R}$, avec k donné dans \mathbb{R}_+ . On obtient ainsi, pour $u\in H^1_0(\Omega)$, $(u-k)^+\in H^1_0(\Omega)$ et $D_i\varphi(u)=1_{\{u>k\}}D_iu=1_{\{u\geq k\}}D_iu$ p.p..

On peut maintenant répondre à la question posée au début de ce paragraphe.

Théorème 2.26 (Positivité de la solution faible) Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 1$, $a_{i,j} \in L^{\infty}(\Omega)$, pour $i, j = 1, \ldots, N$. On suppose que les $a_{i,j}$ vérifient (2.1). Soit $f \in L^2(\Omega)$ et u la solution de (2.5). On suppose que $f \geq 0$ p.p.. On a alors $u \geq 0$ p.p..

Démonstration On suppose que $f \le 0$ p.p. et on va montrer que $u \le 0$ p.p. (en changeant f en -f et u et -u on obtient le résultat désiré). Comme u est solution de (2.5), on a

$$\int_{\Omega} \sum_{i,j=1}^{n} a_{i,j}(x) D_j u(x) D_i v(x) dx = \int_{\Omega} f(x) v(x) dx \text{ pour tout } v \in H_0^1(\Omega).$$

On choisit, dans cette égalité, $v=u^+$ et on obtient

$$\alpha \int_{\Omega} |\nabla u(x)|^2 \mathbb{1}_{\{u \ge 0\}}(x) \, dx \le \int_{\Omega} \sum_{i,j=1}^n a_{i,j}(x) D_j u(x) D_i u^+(x) \, dx = \int_{\Omega} f(x) u^+(x) \, dx \le 0.$$

On en déduit que $\alpha\|u^+\|_{H^1_0(\Omega)}^2=\alpha\int_\Omega|\nabla u^+(x)|^2dx\leq\int_\Omega f(x)u^+(x)~\mathrm{d} x\leq 0,$ et donc $u^+=0$ p.p., c'est-à-dire $u\leq 0$ p.p..

2.5 Conditions de Dirichlet non homogènes

Nous n'avons considéré jusqu'ici que les problèmes elliptiques (linéaires) avec conditions aux limites homogènes (c.à.d que la solution est nulle au bord du domaine). On souhaite maintenant remplacer la condition "u=0" sur le bord de Ω par "u=g" sur le bord de Ω . Ceci va être possible en se ramenant au problème de Dirichlet avec conditions aux limites homogènes (c'est-à-dire en se ramenant aux théorèmes 2.6 et 2.9) à condition que Ω soit assez régulier pour que l'opérateur trace, noté γ et introduit au chapitre 1, voir théorème 1.29, soit bien défini et que g soit dans l'image de γ (c'est-à-dire $g=\gamma(G)$ avec $G\in H^1(\Omega)$).

Plus précisément, soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$) à frontière lipschitzienne. On note $\partial\Omega$ cette frontière. Soient $a_{i,j} \in L^\infty(\Omega)$, pour $i,j=1,\ldots,N$, vérifiant l'hypothèse d'ellipticité uniforme (2.1). Soit f une fonction de Ω dans \mathbb{R} et g une fonction de $\partial\Omega$ dans \mathbb{R} . On cherche une solution au problème (2.2). Le théorème 2.6 permet de démontrer le théorème suivant, où (2.14) est la formulation faible du problème (2.2).

Théorème 2.27 (Condition de Dirichlet non homogène (1)) Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$) à frontière lipschitzienne, $f \in L^2(\Omega)$, $g \in \operatorname{Im}(\gamma)$ (où γ désigne l'opérateur trace de $H^1(\Omega)$ dans $L^2(\Omega)$ introduit au théorème 1.29). Soient $(a_{i,j})_{i,j=1,\ldots,N} \subset L^\infty(\Omega)$ et $\alpha > 0$ tels que (2.1) soit vérifiée. Alors il existe une unique solution de (2.14).

$$u \in H^{1}(\Omega), \gamma(u) = g,$$

$$\int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) D_{j} u(x) D_{i} v(x) \right) dx = \int_{\Omega} f(x) v(x) dx, \forall v \in H_{0}^{1}(\Omega).$$

$$(2.14)$$

La démonstration fait partie de l'exercice 2.24. Elle consiste à chercher u-G comme solution faible d'un problème elliptique posé dans $H^1_0(\Omega)$ avec un second membre dans $H^{-1}(\Omega)$ et $G \in H^1(\Omega)$ t.q. $\gamma(G) = g$. Il est possible aussi de remplacer le second membre de (2.14) par T(v) où $T \in H^{-1}(\Omega)$. On obtient alors le théorème 2.28 qui se démontre aussi en cherchant u-G comme solution faible d'un problème elliptique posé dans $H^1_0(\Omega)$ avec un second membre dans $H^{-1}(\Omega)$ (voir l'exercice 2.24).

Théorème 2.28 (Condition de Dirichlet non homogène (2)) Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$) à frontière lipschitzienne, $T \in H^{-1}(\Omega)$, $g \in \operatorname{Im}(\gamma)$ (où γ désigne l'opérateur trace de $H^1(\Omega)$ dans $L^2(\Omega)$ vu au théorème 1.29). Soient $(a_{i,j})_{i,j=1,\ldots,N} \subset L^{\infty}(\Omega)$ et $\alpha > 0$ tels que (2.1) soit vérifiée. Alors il existe une unique solution de (2.15).

$$u \in H^{1}(\Omega), \gamma(u) = g,$$

$$\int_{\Omega} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j}(x) D_{j} u(x) D_{i} v(x) \right) dx = T(v), \forall v \in H_{0}^{1}(\Omega).$$
(2.15)

Remarque 2.29 (Principe du maximum) Sous les hypothèses du théorème 2.27, on peut aussi montrer, par une méthode voisine de celle donnée dans le théorème 2.26, que, si f=0 et $A\leq g\leq B$ p.p., avec $A,B\in\mathbb{R}$ (p.p. est à prendre ici au sens de la mesure de Lebesgue N-1 dimensionnelle sur $\partial\Omega$), on a alors $A\leq u\leq B$ p.p., où u est la solution de (2.14). C'est ce résultat que l'on appelle "principe du maximum".

La suite de cette section donne quelques compléments sur l'image de l'opérateur trace (noté γ) défini sur $H^1(\Omega)$ lorsque Ω est un ouvert borné de \mathbb{R}^N à frontière lipschitzienne.

Définition 2.30 (Espace $H^{\frac{1}{2}}(\partial\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$) à frontière lipschitzienne. On note $H^{\frac{1}{2}}(\partial\Omega)$ l'ensemble des traces des fonctions $H^1(\Omega)$, c'est-à-dire $H^{\frac{1}{2}}(\partial\Omega) = \operatorname{Im}\gamma$ où γ est l'opérateur trace de $H^1(\Omega)$ dans $L^2(\partial\Omega)$ vu au théorème 1.29. On définit sur $H^{\frac{1}{2}}(\partial\Omega)$ une norme en posant

$$\|u\|_{H^{\frac{1}{2}}(\partial\Omega)}=\inf\{\|\overline{u}\|_{H^1(\Omega)},\ \gamma(\overline{u})=u\}.$$

La proposition 2.32 montre que $H^{\frac{1}{2}}(\partial\Omega)$ est alors un espace de Hilbert et que l'application $u\mapsto u$ est continue de $H^{\frac{1}{2}}(\partial\Omega)$ dans $L^2(\partial\Omega)$. (On dit alors que $H^{\frac{1}{2}}(\partial\Omega)$ s'injecte continûment dans $L^2(\partial\Omega)$.) On note $H^{-\frac{1}{2}}(\partial\Omega)$ l'espace dual de $H^{\frac{1}{2}}(\partial\Omega)$ (c'est donc aussi un espace de Hilbert).

Remarque 2.31 (Compacité de $H^{\frac{1}{2}}(\partial\Omega)$ dans $L^{2}(\partial\Omega)$) Dans le cadre de la définition 2.30, on peut montrer (mais ceci n'est pas fait dans ce cours) la compacité de l'application $u\mapsto u$ de $H^{\frac{1}{2}}(\partial\Omega)$ dans $L^{2}(\partial\Omega)$.

Proposition 2.32 (Propriétés de l'espace $H^{\frac{1}{2}}(\partial\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ à frontière lipschitzienne. On note γ l'opérateur trace défini sur $H^1(\Omega)$.

1. Soit $u \in H^{\frac{1}{2}}(\partial\Omega)$. Alors $\|u\|_{H^{\frac{1}{2}}(\partial\Omega)} = \|\overline{u}\|_{H^1(\Omega)}$ où \overline{u} est l'unique solution faible de $-\Delta \overline{u} + \overline{u} = 0$ dans Ω avec $\gamma(\overline{u}) = u$, c'est-à-dire l'unique solution de

$$\begin{split} \bar{u} &\in H^1(\Omega), \gamma(\bar{u}) = u, \\ &\int_{\Omega} (\nabla \bar{u}(x) \nabla v(x) + u(x) v(x)) \; \mathrm{d}x = 0, \forall v \in H^1_0(\Omega). \end{split}$$

- 2. L'espace $H^{\frac{1}{2}}(\partial\Omega)$ est un espace de Hilbert.
- 3. L'espace $H^{\frac{1}{2}}(\partial\Omega)$ s'injecte continûment dans $L^2(\partial\Omega)$.

La démonstration de cette proposition fait l'objet de l'exercice 2.25.

Soit Ω un ouvert borné de ${\rm I\!R}^N$ $(N\geq 1)$ à frontière lipschitzienne. Avec la définition 2.30 (et la proposition 2.32), on voit que l'opérateur trace défini sur $H^1(\Omega)$ est un opérateur linéaire continu de $H^1(\Omega)$ dans $H^{\frac{1}{2}}(\partial\Omega)$ (et sa norme est égale à 1). Si maintenant $u\in H^1(\Omega)^N$, on peut définir la trace de u encore notée $\gamma(u)$ en prenant la trace de chacune des composantes de u. On a donc $\gamma(u)\in H^{\frac{1}{2}}(\partial\Omega)^N\subset L^2(\partial\Omega)^N$. On note n(x) le vecteur normal à $\partial\Omega$, extérieur à Ω . Comme Ω est à frontière lipschitzienne, le vecteur n(x) est défini p.p. en $x\in\partial\Omega$ (p.p. signifie ici, comme d'habitude, p.p. pour la mesure de Lebesgue (N-1)-dimensionnelle sur $\partial\Omega$) et la fonction $x\mapsto n(x)$ définit un élément de $L^\infty(\partial\Omega)$. On obtient ainsi $\gamma(u)\cdot n\in L^2(\partial\Omega)$. Cette (classe de) fonction(s) $\gamma(u)\cdot n$ est appelée "trace normale de u sur $\partial\Omega$ ".

L'exercice 2.26 montre qu'on peut définir $\gamma(u) \cdot n$ comme un élément de $H^{-\frac{1}{2}}(\Omega)$ sous l'hypothèse $u \in L^2(\Omega)^N$ avec $\operatorname{div}(u) \in L^2(\Omega)$ (cette hypothèse est donc plus faible que $u \in H^1(\Omega)^N$). Il est toutefois intéressant de noter que, sous cette hypothèse, $\gamma(u) \cdot n$ n'est pas toujours représenté par une fonction sur $\partial\Omega$ et ceci induit une difficulté lorsque l'on souhaite considérer la restriction de $\gamma(u) \cdot n$ à une partie du bord de Ω , voir à ce propos l'exercice 2.27.

2.6 Exercices

Exercice 2.1 (Régularité en dimension 1 (*)) Corrigé en page 99

Soit $f \in L^2(]0,1[)$; on rappelle (cf. cours) qu'il existe une et une seule solution u de

$$u \in H_0^1(]0,1[),$$

$$\int_0^1 Du(t)Dv(t) dt = \int_0^1 f(t)v(t) dt, \ \forall v \in H_0^1(]0,1[).$$
(2.16)

On suppose maintenant que $f \in C([0,1],\mathbb{R})$ ($\subset L^2([0,1[)$. On pose $F(x) = \int_0^x f(t) \, \mathrm{d}t$, pour tout $x \in [0,1]$. Soit u la solution de (2.16); montrer que, pour tout $\varphi \in C([0,1],\mathbb{R})$, on a

$$\int_0^1 (Du(t) + F(t))\varphi(t) dt = \int_0^1 c\varphi(t) dt$$

avec $c \in \mathbb{R}$ convenablement choisi (et indépendant de φ).

En déduire que Du = -F + c p.p., puis que u est deux fois continûment dérivable sur]0,1[et -u''(x) = f(x) pour tout $x \in]0,1[$ (et que u(0) = u(1) = 0).

Exercice 2.2 (Décomposition spectrale en dimension 1 (**)) Corrigé en page 100

On reprend l'exercice précédent. On pose $E = L^2(]0,1[)$ (muni de la norme $\|\cdot\|_2$). Pour $f \in E$, on rappelle qu'il existe une et une seule solution u de (2.16).

On note T l'application de E dans E qui à f associe u (solution de (2.16), noter que $H_0^1(]0,1[) \subset E$). On rappelle que T est un opérateur linéaire compact autoadjoint de E dans E.

- 1. Soit $\lambda \in \mathcal{VP}(T)$. Montrer qu'il existe $u \in C([0,1],\mathbb{R}) \cap C^2(]0,1[,\mathbb{R}), u \neq 0$, tel que $-\lambda u'' = u$, sur]0,1[et u(0)=u(1)=0.
- 2. Montrer que $\mathcal{VP}(T) = \{\frac{1}{k^2\pi^2}, k \in \mathbb{N}^*\}$ et $\sigma(T) = \mathcal{VP}(T) \cup \{0\}$.
- 3. Soit $f \in E$. Pour $n \in \mathbb{N}^*$, on pose $c_n = 2 \int_0^1 f(t) \sin(n\pi t) dt$. Montrer que:

$$||f - \sum_{p=1}^{n} c_p \sin(p\pi \cdot)||_2 \to 0$$
, quand $n \to \infty$.

(Comparer avec les séries de Fourier.)

4. Soit $\mu \in \mathbb{R}^*$. En utilisant le fait que T est compact, donner une C.N.S. sur $f \in E$ pour que le problème suivant ait une solution :

$$u \in H_0^1(]0,1[),$$

$$\int_0^1 Du(t)Dv(t)dt + \mu \int_0^1 u(t)v(t)dt = \int_0^1 f(t)v(t)dt, \ \forall v \in H_0^1(]0,1[).$$

Exercice 2.3 (Première valeur propre de $-\Delta$ (* **)) Corrigé en page 101 Soit Ω un ouvert borné de \mathbb{R}^N ($N \ge 1$). Pour $u \in H_0^1(\Omega) \setminus \{0\}$, on pose

$$Q(u) = \frac{\int_{\Omega} |\nabla u(x)|^2 dx}{\int_{\Omega} u^2(x) dx}.$$

On pose $\mu = \inf_{v \in H_0^1(\Omega) \setminus \{0\}} Q(v)$.

- 1. Montrer que $\mu > 0$ et qu'il existe $u \in H^1_0(\Omega) \setminus \{0\}$ tel que $Q(u) = \mu$. [Indication : considérer une suite minimisante et utiliser le théorème de Rellich]
- 2. Soit $u \in H_0^1(\Omega) \setminus \{0\}$ tel que $Q(u) = \mu$, montrer que $u \in D(A)$ et $Au = \mu u$ p.p.. En déduire que μ est la plus petite valeur propre de A.
- 3. Soit $u \in H_0^1(\Omega) \setminus \{0\}$ tel que $Q(u) = \mu$, montrer que $u^+, u^- \in D(A)$ et $Au^\pm = \mu u^\pm$ p.p.). [On rappelle que si $u \in H_0^1(\Omega)$ on a aussi $u^+, u^- \in H_0^1(\Omega)$, lemme 2.24. On pourra alors comparer Q(u) avec $Q(u^+)$ et $Q(u^-)$ si u^+ et u^- sont des fonctions non nulles.]

Exercice 2.4 (Inégalité de Poincaré "moyenne sur le bord" (**)) Corrigé en page 103

Soit Ω un ouvert borné de \mathbb{R}^N , qu'on suppose de plus connexe et de frontière lipschitzienne, et soit $A \subset \partial \Omega$ de mesure non nulle au sens de la mesure de Lebesgue N-1 dimensionnelle sur $\partial \Omega$. On suppose que $u \in H^1(\Omega)$ et que $\int_A u(x) \ \mathrm{d}\gamma(x) = 0$. Montrer qu'il existe $C \in \mathbb{R}_+$ ne dépendant que de Ω et A tel que $\|u\|_{L^2(\Omega)} \le C\|\nabla u\|_{L^2(\Omega)}$.

Exercice 2.5 (Une généralisation du théorème de Lax-Milgram) Corrigé en page 103

L'objet de cet exercice est de démontrer la généralisation suivante du théorème de Lax-Milgram.

Théorème 2.33 Soient H un espace de Hilbert réel muni du produit scalaire noté $(\cdot|\cdot)$, de norme associée notée $\|\cdot\|$, et $A \in \mathcal{L}(H)$ un opérateur linéaire continu de H dans H. On note A^* l'opérateur adjoint de A (voir définition 2.11). Sous les hypothèses suivantes :

- A et A* sont injectifs,
- $si(w_n)_{n\in\mathbb{N}}\subset H$ est une suite bornée telle que Aw_n converge vers 0, alors w_n converge vers 0 (dans H), l'opérateur A est bijectif.

On se place sous les hypothèses du théorème 2.33.

- 1. Montrer que $\overline{\operatorname{Im}(A)} = H$
- 2. L'objet de cette question est de montrer que Im(A) est fermé (et donc avec la question 1 que A est surjectif et donc bijectif car A est injectif par hypothèse).

Soit $(w_n)_{n\in\mathbb{N}}\subset H$; on pose $f_n=Aw_n$ et on suppose que $f_n\to f\in H$ lorsque $n\to +\infty$.

(a) Montrer que la suite $(w_n)_{n\in\mathbb{N}}$ est bornée.

(b) Montrer qu'il existe $w \in H$ tel que Aw = f.

Exercice 2.6 (Problème elliptique à coefficients non bornés) Corrigé en page 103

Soit Ω un ouvert borné de \mathbb{R}^N , $N \ge 1$, et $p: \Omega \to \mathbb{R}$ une fonction mesurable t.q. $\inf\{p(x), x \in \Omega\} = \alpha > 0$. On pose $H^1(p,\Omega) = \{u \in L^2(\Omega) \text{ t.q. } D_i u \in L^1_{loc}(\Omega) \text{ et } p \, D_i u \in L^2(\Omega) \text{ pour tout } i \in \{1,\ldots,N\}\}.$

On rappelle que $D_i u$ désigne la dérivée, au sens des dérivées par transposition, de u dans la direction x_i , la variable de \mathbb{R}^N étant notée $x=(x_1,\ldots,x_N)^t$.

Pour
$$u \in H^1(p,\Omega)$$
, on définit $||u||$ par $||u||^2 = ||u||_2^2 + \sum_{i=1}^N ||p D_i u||_2^2$, avec $||\cdot||_2 = ||\cdot||_{L^2(\Omega)}$.

- 1. (Etude de l'espace fonctionnel.)
 - (a) Montrer que $H^1(p,\Omega) \subset H^1(\Omega)$.
 - (b) Montrer que $H^1(p,\Omega)$, muni de la norme $\|\cdot\|$, est un espace de Hilbert. [On pourra remarquer qu'une suite de Cauchy dans $H^1(p,\Omega)$ est aussi de Cauchy dans $H^1(\Omega)$.]

On pose $H_0^1(p,\Omega) = H^1(p,\Omega) \cap H_0^1(\Omega)$.

- 2. (Espace fonctionnel, suite.) Montrer que $H_0^1(p,\Omega)$ est un s.e.v. fermé de $H^1(p,\Omega)$.
- 3. (solution faible.) Soit $h \in L^2(\Omega)$, montrer qu'il existe un et un seul u t.q.

$$u \in H_0^1(p,\Omega), \tag{2.17}$$

$$\int_{\Omega} p^{2}(x) \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} h(x) v(x) \, dx, \, \forall v \in H_{0}^{1}(p, \Omega).$$
 (2.18)

- 4. (Précisions...)
 - (a) On suppose ici que $p^2 \in L^1_{loc}(\Omega)$. Montrer que $C_c^{\infty}(\Omega) \subset H^1_0(p,\Omega)$.
 - (b) On prend maintenant N=1 et $\Omega=]0,1[$. Donner un exemple de fonction p (avec $p:\Omega\to {\rm I\!R}$ mesurable et t.q. $\inf\{p(x),\,x\in\Omega\}>0$) pour lequel $C_c^\infty(\Omega)\cap H_0^1(p,\Omega)=\{0\}$ (cette question est plus difficile).

Exercice 2.7 (Deux problèmes elliptiques emboités) Corrigé en page 105

Soit Ω un ouvert borné de \mathbb{R}^d , $d \geq 1$, et M et N deux matrices de taille $d \times d$ à coefficients dans $L^{\infty}(\Omega)$. On suppose qu'il existe $\alpha > 0$ tel que pour presque tout $x \in \Omega$ et pour tout $\xi \in \mathbb{R}^d$, on a

$$M(x)\xi \cdot \xi \ge \alpha |\xi|^2$$
 et $N(x)\xi \cdot \xi \ge \alpha |\xi|^2$.

1. Soit $f \in L^2(\Omega)$. Montrer qu'il existe un unique u t.q.

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} N(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} (M(x) + N(x)) \nabla w(x) \cdot \nabla v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega), \end{cases}$$
(2.19)

avec w solution de

$$\begin{cases} w \in H_0^1(\Omega), \\ \int_{\Omega} M(x) \nabla w(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (2.20)

pour les questions suivantes, on note T(f) cette unique solution de (2.19) avec w solution de (2.20).

- 2. Montrer que T est une application linéaire compacte de $L^2(\Omega)$ dans $L^2(\Omega)$ (c'est-à-dire que T est linéaire, continue et transforme les parties bornées de $L^2(\Omega)$ en parties relativement compactes de $L^2(\Omega)$).
- 3. On suppose dans cette question (et seulement dans cette question) qu'il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda N$. Montrer qu'il existe une matrice A, ne dépendant que de M et λ , tel que, si u = T(f),

$$\int_{\Omega} A(x)\nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x)v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \tag{2.21}$$

Donner l'expression de A en fonction de M et λ .

4. On suppose dans cette question que d=2 et $1 . Montrer que pour tout <math>f \in L^p(\Omega)$ il existe une unique solution u de (2.19) avec w solution de (2.20).

Montrer que l'application qui à f associe u (solution de (2.19) avec w solution de (2.20)) est compacte de $L^p(\Omega)$ dans $L^q(\Omega)$ pour $1 \le q < +\infty$

5. On suppose dans cette question que d=3 et p=6/5. Montrer que pour tout $f\in L^p(\Omega)$ il existe une unique solution u de (2.19) avec w solution de (2.20).

Montrer que l'application qui à f associe u (solution de (2.19) avec w solution de (2.20)) est continue de $L^p(\Omega)$ dans $L^6(\Omega)$ et compacte de $L^p(\Omega)$ dans $L^q(\Omega)$ pour $1 \le q < 6$.

Exercice 2.8 (Problème de Neumann) Corrigé en page 107

Soient Ω un ouvert borné connexe de \mathbb{R}^N $(N \geq 1)$, à frontière lipschitzienne. On pose $H = \{u \in H^1(\Omega), \int_{\Omega} u(x) \, \mathrm{d}x = 0\}$. On rappelle que sur un tel ouvert, une fonction L^1_{loc} dont les dérivées (au sens des dérivées par transposition) sont nulles est nécessairement constante (c'est-à-dire qu'il existe $C \in \mathbb{R}$ tel que cette fonction soit égale à C p.p.), voir l'exercice 1.4.

- 1. (Inégalité de "Poincaré moyenne".) Montrer que H est un s.e.v. fermé de $H^1(\Omega)$ et que, sur H, la norme H^1 est équivalente à la norme $\|\cdot\|_m$ définie par $\|u\|_m = \|(|\nabla u|)\|_{L^2(\Omega)}$. [On pourra montrer, en raisonnant par l'absurde, qu'il existe C, ne dépendant que Ω , tel que $\|u\|_{L^2(\Omega)} \le C\|u\|_m$, pour tout $u \in H$.]
- 2. (Caractérisation de $(H^1(\Omega))'$.) Soit $T \in (H^1(\Omega))'$, Montrer qu'il existe $a \in \mathbb{R}$ et $F \in (L^2(\Omega))^N$ t.q.

$$\langle T, u \rangle_{(H^1(\Omega))', H^1(\Omega)} = a \int_{\Omega} u(x) \, \mathrm{d}x + \int_{\Omega} F(x) \cdot \nabla u(x) \, \mathrm{d}x, \ \forall u \in H^1(\Omega).$$
 (2.22)

[On pourra considérer T_H et utiliser une injection convenable de H dans $L^2(\Omega)^N$.]

Pour tout $x \in \Omega$, on se donne une matrice, notée A(x), dont les coefficients sont notés $a_{i,j}(x)$, $i,j=1,\ldots,N$. On suppose que $a_{i,j} \in L^{\infty}(\Omega)$ pour tout $i,j=1,\ldots,N$ et qu'il existe $\alpha>0$ t.q $A(x)\xi\cdot\xi\geq \alpha|\xi|^2$, pour tout $\xi\in\mathbb{R}^N$ et p.p. en $x\in\Omega$. Soient $a\in\mathbb{R}$ et $F\in(L^2(\Omega))^N$. On cherche u solution de

$$u \in H^1(\Omega),$$

$$\int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = a \int_{\Omega} v(x) \, \mathrm{d}x + \int_{\Omega} F(x) \cdot \nabla v(x) \, \mathrm{d}x, \ \forall v \in H^1(\Omega).$$
(2.23)

- 3. (Existence et unicité.)
 - (a) Si $a \neq 0$, montrer que (2.23) n'a pas de solution.

- (b) Si a = 0, montrer que (2.23) a une solution et que cette solution est unique si l'on demande qu'elle
- (c) Dans cette question, on suppose que $a=0, a_{i,j} \in C^{\infty}(\bar{\Omega}, \mathbb{R})$ pour tout $i,j=1,\ldots,N, F \in$ $C^{\infty}(\bar{\Omega}, \mathbb{R}^N)$, Ω est de classe C^{∞} et que la solution (appartenant à H) de (2.23) est aussi dans $C^{\infty}(\bar{\Omega}, \mathbb{R})$, montrer que $-\text{div}(A\nabla u) = -\text{div}F$, dans Ω , et que $A\nabla u \cdot n = F \cdot n$ sur $\partial\Omega$, où n est la normale à $\partial\Omega$, extérieure à Ω .
- 4. (Dépendance par rapport aux paramètres.) On suppose a=0 et on note u la solution (appartenant à H) de (2.23). On suppose que, pour tout $n \in \mathbb{N}$, $u_n \in H$ est la solution de (2.23) avec A_n au lieu de A et F_n au lieu de F (et a=0). On suppose que
 - $A_n = (a_{i,j}^{(n)})_{i,j=1,\ldots,N}$ vérifie, pour tout n, les mêmes hypothèses que A avec un α indépendant de n,

 - $\begin{array}{l} (a_{i,j}^{(n)})_{n \in \mathbb{N}} \text{ est bornée dans } L^{\infty}(\Omega), \text{ pour tout } i,j=1,\ldots,N, \\ a_{i,j}^{(n)} \to a_{i,j} \ p.p., \text{ quand } n \to \infty, \text{ pour tout } i,j=1,\ldots,N, \end{array}$
 - $F_n \to F$ dans $L^2(\Omega)^N$, quand $n \to \infty$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée dans H, puis que $u_n\to u$ faiblement dans $H^1(\Omega)$ (quand $n\to\infty$) et enfin que $u_n \to u$ dans $H^1(\Omega)$.

5. (Régularité H^2 par la technique des réflexions, cette question est indépendante de la précédente.) On suppose que a=0 et qu'il existe $f\in L^2(\Omega)$ t.q. $\int_{\Omega}F(x)\cdot\nabla v(x)\,\mathrm{d}x=\int_{\Omega}f(x)\cdot v(x)\,\mathrm{d}x$, pour tout $v\in H^1(\Omega)$. On note u la solution (appartenant à H) de (2.23) et on suppose que N=2 et que $\Omega=]0,1[\times]0,1[$. On pose $\Omega_s =]-1,1[\times]0,1[$. On définit A, f et u sur Ω_s en posant $a_{i,j}(x_1,x_2) = a_{i,j}(-x_1,x_2)$ $\mathrm{si}\ (x_1,x_2)\ \in]-1,0[\times]0,1[\ \mathrm{et}\ i\ =\ j,\ a_{i,j}(x_1,x_2)\ =\ -a_{i,j}(-x_1,x_2)\ \mathrm{si}\ (x_1,x_2)\ \in]-1,0[\times]0,1[\ \mathrm{et}\ x_1,x_2)$ $i \neq j, f(x_1, x_2) = f(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ si } (x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ et } u(x_1, x_2) \in]-1, 0[\times]0, 1[\text{ et } u(x_1, x_2) = u(-x_1, x_2) \text{ et } u(x_1, x_2) \in]-1, 0[\times]0, 1[\times]0, 1$]-1,0[imes]0,1[. Montrer que u est solution de (2.23), avec Ω_s au lieu de Ω .

En utilisant ainsi plusieurs réflexions, montrer que $u \in H^2(\Omega)$ dans le cas $A(x) = \operatorname{Id}$ pour tout $x \in \Omega$.

Exercice 2.9 (Un exemple dans $H^1(\mathbb{R}^N)$) Corrigé en page 109 Soit $f \in L^2(\mathbb{R}^N)$, N > 1.

1. Soit $u \in H^1(\mathbb{R}^N)$ et $i \in \{1, \dots, N\}$. Montrer que $\Delta u - u = D_i f$ dans $\mathcal{D}^*(\mathbb{R}^N)$ si et seulement si u

$$\int \nabla u(x) \cdot \nabla v(x) \, dx + \int u(x)v(x) \, dx = \int f(x)D_iv(x) \, dx \text{ pour tout } v \in H^1(\mathbb{R}^N). \tag{2.24}$$

2. Montrer qu'il existe un et un seul $u \in H^1(\mathbb{R}^N)$ solution de (2.24) et que $||u||_{H^1(\mathbb{R}^N)} \le ||f||_{L^2(\mathbb{R}^N)}$.

Exercice 2.10 (Norme H^2 sur \mathbb{R}^N) Corrigé en page 109

Soit $N \geq 1$. Cet exercice montre que dans \mathbb{R}^N la norme H^2 est équivalente à la somme de la norme L^2 de la fonction et de la norme L^2 de son laplacien. Cette équivalence est utilisée pour étudier un problème avec le bilaplacien.

1. Soit $u \in H^2(\mathbb{R}^N)$. Montrer qu'il existe C_1 et C_2 strictement positifs, ne dépendant (éventuellement) que de N, tels que

$$C_1(\|u\|_{L^2}^2 + \|\Delta u\|_{L^2}^2) \le \|u\|_{H^2}^2 \le C_2(\|u\|_{L^2}^2 + \|\Delta u\|_{L^2}^2).$$

(Bien sûr, L^2 désigne $L^2(\mathbb{R}^N)$ et H^2 désigne $H^2(\mathbb{R}^N)$.)

2. On note $H^{-2}(\mathbb{R}^N)$ le dual (topologique) de $H^2(\mathbb{R}^N)$. Soit $f \in H^{-2}(\mathbb{R}^N)$ et $\lambda > 0$.

(a) Soit $u \in H^2(\mathbb{R}^N)$. Montrer que $\Delta(\Delta u) + \lambda u = f$ dans $\mathcal{D}^*(\mathbb{R}^N)$ si et seulement si u est vérifie

$$\int \Delta u(x)\Delta v(x) \, dx + \lambda \int u(x)v(x) \, dx = \langle f, v \rangle_{H^{-2}, H^2}.$$
 (2.25)

(b) Montrer qu'il existe un et un seul $u \in H^2(\mathbb{R}^N)$ solution de (2.25).

Exercice 2.11 (Modélisation d'un problème de contact) Corrigé en page 111

On pose $B = \{x \in \mathbb{R}^2, |x| < 2\}, I =]-1, 1[$, et $\Omega = B \setminus ([-1, 1] \times \{0\})$ (Ω est donc un ouvert connexe de \mathbb{R}^2). On note $\partial B = \overline{B} - B$. On rappelle que |x| désigne la norme euclidienne de $x \in \mathbb{R}^2$ et $x \cdot y$ le produit scalaire correspondant de x et $y \in \mathbb{R}^2$).

Soient $f \in L^2(\Omega)$ et $g \in L^\infty(I)$ t.g. g > 0 p.p. (sur I). On s'intéresse au problème suivant.

$$-\Delta u(x) = f(x), x \in \Omega, \tag{2.26}$$

$$u(x) = 0, x \in \partial B, \tag{2.27}$$

$$u(x) = 0, x \in \partial B,$$

$$\frac{\partial u}{\partial y}(x, 0^{+}) = \frac{\partial u}{\partial y}(x, 0^{-}), x \in I,$$
(2.27)

$$\frac{\partial u}{\partial y}(x,0^+) = g(x)(u(x,0^+) - u(x,0^-)), x \in I.$$
 (2.29)

1. (Recherche d'une formulation faible)

On suppose, dans cette question, que f est une fonction continue sur $\overline{\Omega}$ et g une fonction continue sur \bar{I} . On note $\Omega_+ = \Omega \cap \{(x,y), y > 0\}$ et $\Omega_- = \Omega \cap \{(x,y), y < 0\}$. Soit $u \in C^2(\Omega,\mathbb{R})$ telle que $u_{|_{\Omega_+}} \in C^2(\overline{\Omega_+}), \text{ c'est-\`a-dire que } u_{|_{\Omega_+}} \text{ est la trace sur } \Omega_+ \text{ d'un \'el\'ement de } C^2(\mathbb{R}^2), \text{ et } u_{|_{\Omega_-}} \in C^2(\overline{\Omega_-}).$ Noter alors que toutes les expressions dans (2.26)-(2.29) ont bien un sens. On a, par exemple, $u(x, 0^+) =$ $\lim_{y\to 0, y>0} u(x,y).$

Montrer que u est solution "classique" de (2.26)-(2.29) (c'est-à-dire vérifie (2.26) pour tout $x \in \Omega$, (2.27) pour tout $x \in \partial B$ et (2.28),(2.29) pour tout $x \in I$) si et seulement si u vérifie :

$$u(x) = 0, \forall x \in \partial B,$$

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx +$$

$$\int_{I} g(x)(u(x, 0^{+}) - u(x, 0^{-}))(v(x, 0^{+}) - v(x, 0^{-})) \, dx = \int_{\Omega} f(x)v(x) \, dx,$$
(2.30)

pour toute fonction $v\in C^2(\Omega,\mathbb{R})$ telle que $v_{|\Omega_+}\in C^2(\overline{\Omega_+}),\,v_{|\Omega_-}\in C^2(\overline{\Omega_-})$ et v(x)=0 pour tout

2. (Traces et espace fonctionnel) En admettant l'existence de l'opérateur trace (théorème 1.29), montrer qu'il existe un opérateur linéaire continu γ_0 de $H^1(\Omega)$ dans $L^2(\partial B)$ t.q. $\gamma_0(u)(x) = u(x)$ p.p. (pour la mesure de Lebesgue 1-dimensionnelle sur ∂B) si $u \in H^1(\Omega)$ et u est continue sur $\overline{B} \setminus [-1,1] \times \{0\}$.

Montrer également qu'il existe γ_+ [resp. γ_-] linéaire continu de $H^1(\Omega)$ dans $L^2(I)$ t.q. $\gamma_+(u)(x) =$ u(x,0+) [resp. $\gamma_-(u)(x)=u(x,0-)$] p.p. pour $x\in I$ si $u\in H^1(\Omega)$ et $u_{|\Omega_+}$ est continue sur $\overline{\Omega_+}$ [resp. $u_{\mid_{\Omega}}$ est continue sur $\overline{\Omega_{-}}$].

Pour la suite on considère l'espace $H=\mathrm{Ker}\gamma_0$ (où γ_0 est défini à la question 2). L'espace H est donc un sous espace vectoriel fermé de $H^1(\Omega)$.

3. (Coerci(ti)vité)

Montrer qu'il existe C tel que $||u||_{L^2(\Omega)} \leq C|||\nabla u|||_{L^2(\Omega)}$ pour tout $u \in H$. [On pourra, par exemple, remarquer que $u_{|_{\Omega_{\perp}}} \in H^1(\Omega_+)$ et $u_{|_{\Omega_{\perp}}} \in H^1(\Omega_-)$.]

4. (Existence et unicité de solutions faibles) Montrer qu'il existe une et une seule solution u de (2.31).

$$\begin{cases}
 u \in H, \\
 \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx + \int_{I} g(x)(\gamma_{+}u(x) - \gamma_{-}u(x))(\gamma_{+}v(x) - \gamma_{-}v(x)) \, dx \\
 = \int_{\Omega} f(x)v(x) \, dx, \, \forall v \in H.
\end{cases}$$
(2.31)

5. Pour $n \in \mathbb{N}$, on note u_n la solution de (2.31) avec g telle que g(x) = n, pour tout $x \in I$. Montrer que $u_n \to u$ (en un sens à préciser) quand $n \to \infty$, où u est la (unique) solution (faible) de $-\Delta u = f$ dans B, $u=0 \text{ sur } \partial B.$

Exercice 2.12 (De Fourier à Dirichlet...) Corrigé en page 112 Soient $\sigma \geq 0, f \in L^2(\mathbb{R}^N_+)$ et $g \in L^2(\mathbb{R}^{N-1}_+)$. On s'intéresse au problème suivant :

$$-\Delta u(x) + u(x) = f(x), \ x \in \mathbb{R}_{+}^{N}, -\partial_{1} u(0, y) + \sigma u(0, y) = g(y), \ y \in \mathbb{R}^{N-1}.$$
(2.32)

(On désigne par $\partial_1 u$ la dérivée partielle de u par rapport à son premier argument.)

- 1. Donner une définition de solution "classique" de (2.32) et de solution "faible" de (2.32).
- 2. Montrer l'existence et l'unicité de la solution faible de (2.32).

Pour les questions suivantes, on suppose que g=0 p.p. (pour la mesure de Lebesgue 1-dimensionnelle).

- 3. Montrer que la solution faible de (2.32) (trouvée à la question précédente) appartient à $H^2(\mathbb{R}^N_\perp)$. [On pourra se limiter au cas N=2, comme dans le théorème 2.20, la généralisation à tout $N\geq 2$ est alors assez facile.]
- 4. Pour $n \in \mathbb{N}$, on note u_n la solution (faible) de (2.32) correspondant à $\sigma = n$. Montrer que $u_n \to u$ dans $H^1(\mathbb{R}^N_+)$ où u est la solution faible de :

$$-\Delta u(x) + u(x) = f(x), \ x \in \mathbb{R}_{+}^{N},$$

$$u(0, y) = 0, \ y \in \mathbb{R}^{N-1}.$$
 (2.33)

Exercice 2.13 (Equation de Schrödinger) Corrigé en page 114 Soit $N \ge 1$; on note Ω la boule unité de \mathbb{R}^N (en fait, les résultats de cet exercice restent vrais si pour des ouverts bornés suffisamment réguliers de \mathbb{R}^N , mais nous ne détaillons pas cette généralisation ici).

Pour $f_1, f_2 \in L^2(\Omega)$, on s'intéresse au système :

$$-\Delta u_1 + u_2 = f_1 \operatorname{dans} \Omega,$$

$$-\Delta u_2 - u_1 = f_2 \operatorname{dans} \Omega,$$
(2.34)

avec diverses conditions aux limites données par la suite.

1. Conditions de Dirichlet - On considère dans cette première question les conditions aux limites :

$$u_1 = 0, u_2 = 0 \operatorname{sur} \partial \Omega. \tag{2.35}$$

Soit $f_1, f_2 \in L^2(\Omega)$, on dit que (u_1, u_2) est solution faible du problème (2.34)-(2.35) si

$$u_{1} \in H_{0}^{1}(\Omega), \ u_{2} \in H_{0}^{1}(\Omega),$$

$$\int_{\Omega} \nabla u_{1}(x) \cdot \nabla \varphi(x) \, dx + \int_{\Omega} u_{2}(x)\varphi(x) \, dx = \int_{\Omega} f_{1}(x)\varphi(x) \, dx, \ \forall \varphi \in H_{0}^{1}(\Omega),$$

$$\int_{\Omega} \nabla u_{2}(x) \cdot \nabla \varphi(x) \, dx - \int_{\Omega} u_{1}(x)\varphi(x) \, dx = \int_{\Omega} f_{2}(x)\varphi(x) \, dx, \ \forall \varphi \in H_{0}^{1}(\Omega).$$

$$(2.36)$$

- (a) Montrer que le problème (2.36) admet une et une seule solution. [Utiliser l'espace $V=H^1_0(\Omega)\times H^1_0(\Omega)$.]
- (b) Montrer que le problème (2.34)-(2.35) admet une et une seule solution au sens suivant : $u_1 \in H^2(\Omega) \cap H^1_0(\Omega)$, $u_2 \in H^2(\Omega) \cap H^1_0(\Omega)$ et les équations (2.34) sont satisfaites p.p. sur Ω . [Utiliser, en particulier, la question précédente et le théorème de régularité 2.16.]
- (c) On suppose dans cette question que $f_1, f_2 \in C^{\infty}(\bar{\Omega})$. Montrer que la solution de (2.36), notée u_1, u_2 appartient à $H^m(\Omega)(=W^{m,2}(\Omega))$ pour tout $m \in \mathbb{N}$ (grâce aux théorèmes d'injection de Sobolev, ceci donne $u_1, u_2 \in C^{\infty}(\bar{\Omega})$).
- (d) Pour $f=(f_1,f_2)\in L^2(\Omega)\times L^2(\Omega)$, soit $u=(u_1,u_2)$ la solution de (2.36), on note u=T(f). Montrer que l'opérateur $T:f\mapsto u$ est un opérateur linéaire continu et compact de $L^2(\Omega)\times L^2(\Omega)$ dans lui-même.
- 2. Conditions aux limites de Neumann On considère dans cette deuxième question les conditions aux limites :

$$\frac{\partial u_1}{\partial n} = 0, \, \frac{\partial u_2}{\partial n} = 0 \, \text{sur} \, \partial \Omega, \tag{2.37}$$

où n désigne le vecteur normal à $\partial\Omega$, extérieure à Ω .

Pour résoudre le problème (2.34)-(2.37), on va introduire un paramètre, $n \in \mathbb{N}^*$, destiné à tendre vers l'infini.

Soient $f_1, f_2 \in L^2(\Omega)$; pour $n \in \mathbb{N}^*$, on s'intéresse au système :

$$\begin{split} -\Delta u_1 + u_2 + \frac{1}{n} u_1 &= f_1 \text{ dans } \Omega, \\ -\Delta u_2 - u_1 + \frac{1}{n} u_2 &= f_2 \text{ dans } \Omega, \end{split} \tag{2.38}$$

avec les conditions aux limites (2.37). On dit que (u_1, u_2) est solution faible du problème (2.38)-(2.37) si

$$u_{1} \in H^{1}(\Omega), \ u_{2} \in H^{1}(\Omega),$$

$$\int_{\Omega} \nabla u_{1}(x) \cdot \nabla \varphi(x) \, dx + \int_{\Omega} (u_{2}(x) + \frac{1}{n}u_{1}(x))\varphi(x) \, dx = \int_{\Omega} f_{1}(x)\varphi(x) \, dx, \ \forall \varphi \in H^{1}(\Omega),$$

$$\int_{\Omega} \nabla u_{2}(x) \cdot \nabla \varphi(x) \, dx + \int_{\Omega} (\frac{1}{n}u_{2}(x) - u_{1}(x))\varphi(x) \, dx = \int_{\Omega} f_{2}(x)\varphi(x) \, dx, \ \forall \varphi \in H^{1}(\Omega).$$

$$(2.39)$$

Noter aussi que (u_1, u_2) est solution faible du problème (2.34)-(2.37) si (u_1, u_2) est solution de (2.39) en remplaçant $\frac{1}{n}$ par 0.

(a) Soit $n \in \mathbb{N}^{\star}$. Montrer que le problème (2.39) admet une et une seule solution, que l'on note $(u_1^{(n)}, u_2^{(n)})$ dans la suite.

(b) Montrer que:

$$||u_1^{(n)}||_{L^2(\Omega)}^2 + ||u_2^{(n)}||_{L^2(\Omega)}^2 \le ||f_1||_{L^2(\Omega)}^2 + ||f_2||_{L^2(\Omega)}^2.$$

En déduire que les suites $(u_1^{(n)})_{n\in\mathbb{N}^*}$ et $(u_2^{(n)})_{n\in\mathbb{N}^*}$ sont bornées dans $H^1(\Omega)$.

- (c) Montrer qu'il existe une et une seule solution au problème (2.39) obtenu en remplaçant $\frac{1}{n}$ par 0, c'est-à-dire une et une solution faible au problème (2.34)-(2.37). [Pour l'existence, utiliser les suites $(u_1^{(n)})_{n\in\mathbb{N}^*}$, et $(u_2^{(n)})_{n\in\mathbb{N}^*}$ de la question précédente et faire tendre n vers $+\infty$. Montrer ensuite l'unicité.]
- (d) Montrer que le problème (2.34)-(2.37) admet une et une seule solution au sens suivant : $u_1 \in H^2(\Omega)$, $u_2 \in H^2(\Omega)$, les équations (2.34) sont satisfaites p.p. sur Ω et les équations (2.37) sont satisfaites p.p. (pour la mesure de lebesgue N-1-dimensionnelle) sur $\partial\Omega$ en utilisant l'opérateur trace de $H^1(\Omega)$ dans $L^2(\partial\Omega)$ pour donner un sens à $\frac{\partial u_1}{\partial n}$ et $\frac{\partial u_2}{\partial n}$. [On admettra ici que le premier point du théorème de régularité 2.16 est encore valable si u est solution de (2.5) avec $H^1(\Omega)$ au lieu de $H^1_0(\Omega)$.]
- (e) Pour $f=(f_1,f_2)\in L^2(\Omega)\times L^2(\Omega)$, soit $u=(u_1,u_2)$ la solution faible de (2.34)-(2.37), on note u=T(f). Montrer que l'opérateur $T:f\mapsto u$ est un opérateur linéaire continu et compact de $L^2(\Omega)\times L^2(\Omega)$ dans lui-même.
- 3. *Conditions au limites mixtes* De manière similaire, indiquer brièvement comment résoudre le problème (2.34) avec les conditions aux limites :

$$u_1 = 0, \frac{\partial u_2}{\partial n} = 0 \operatorname{sur} \partial \Omega.$$

Exercice 2.14 (Inégalité de Trudinger-Moser et $L^1(\sqrt{\ln(L^1)}) \subset H^{-1}, N=2$) Corrigé en page 118

Partie I, décomposition dans $H^1_0(\Omega)$

Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$; on définit φ de \mathbb{R} dans \mathbb{R} par

$$\begin{array}{l} \varphi(s) = s, \ \mathrm{pour} \ 0 \leq s \leq 1, \\ \varphi(s) = -\frac{s^2}{2} + 2s - \frac{1}{2}, \ \mathrm{pour} \ 1 < s \leq 2, \\ \varphi(s) = \frac{3}{2}, \ \mathrm{pour} \ 2 < s, \\ \varphi(s) = -\varphi(-s), \ \mathrm{pour} \ s < 0. \end{array}$$

Pour $k \in \mathbb{N}^*$, on définit φ_k de \mathbb{R} dans \mathbb{R} par $\varphi_k(s) = k\varphi(\frac{s}{k})$ pour $s \in \mathbb{R}$.

- 1. Montrer que, pour tout $s \in \mathbb{R}$, $\varphi_k(s) \to s$ et $\varphi_k'(s) \to 1$ quand $k \to \infty$ et que $|\varphi_k(s)| \le |s|$, $\varphi_k'(s) \le 1$.
- 2. Soit $u \in H_0^1(\Omega)$; montrer que $\varphi_k(u) \in H_0^1(\Omega)$, pour tout $k \in N^*$, et que $\varphi_k(u) \to u$ dans $H_0^1(\Omega)$ quand $k \to \infty$. [Utiliser le lemme 2.23.]
- 3. En déduire que, pour tout $u \in H^1_0(\Omega)$ et pour tout $\varepsilon > 0$, il existe $u_1 \in L^\infty(\Omega)$ et $u_2 \in H^1_0(\Omega)$ telles que $u = u_1 + u_2$ et $\|u_2\|_{H^1_0} \le \varepsilon$.

Partie II, Inégalité de Trudinger-Möser

Soit Ω un ouvert borné de \mathbb{R}^2 .

1. Montrer qu'il existe D > 0 tel que

$$||u||_{L^q(\mathbb{R}^2)} \le D\sqrt{q}||u||_{H_0^1(\mathbb{R}^2)}, \ \forall u \in H_0^1(\mathbb{R}^2), \ \forall q \in [2, \infty[.$$
 (2.40)

En déduire qu'il existe C > 0, ne dépendant que de Ω tel que

$$||u||_{L^{q}(\Omega)} \le C\sqrt{q}||u||_{H_{0}^{1}(\Omega)}, \ \forall u \in H_{0}^{1}(\Omega), \ \forall q \in [1, \infty[.$$
 (2.41)

[On suggère d'expliciter la valeur de $D_{N,q}$ donné par (1.30) dans le corrigé de la troisième question de l'exercice 1.9.]

- 2. Soit $u \in H^1_0(\Omega)$, $u \neq 0$, tel que $\|u\|_{H^1_0(\Omega)} \leq 1$. Montrer qu'il existe $\sigma > 0$ et a > 0, ne dépendant que de Ω , tels que $e^{\sigma u^2} \in L^1(\Omega)$ et $\|e^{\sigma u^2}\|_{L^1(\Omega)} \leq a$. [Développer e^s en puissances de $s \dots$]
- 3. En utilisant la partie I (et la question 2) montrer que $e^{\sigma u^2} \in L^p(\Omega)$ pour tout $u \in H^1_0(\Omega)$, tout $\sigma > 0$ et tout $p \in [1, \infty[$.

Partie III, sur la résolution du problème de Dirichlet

Soit Ω un ouvert borné de \mathbb{R}^2 . Soit $f \in L^1(\Omega)$ telle que $f\sqrt{|\ln(|f|)|} \in L^1(\Omega)$.

1. (Préliminaire.) Soit $\sigma > 0$. Montrer qu'il existe $\beta, \gamma \in \mathbb{R}_+^*$, ne dépendant que de σ , tels que

$$st \leq e^{\sigma s^2} + \beta t \sqrt{|\ln t|} + \gamma t, \ \forall s, t \in \mathbb{R}_+^*.$$

[On pourra, par exemple, remarquer que $st \leq \max\{\beta t \sqrt{|\ln t|}, se^{\frac{s^2}{\beta^2}}\}$ pour tout $\beta > 0$ (et tous s, t > 0), puis choisir β (en fonction de σ) et conclure.]

- 2. Montrer que $fu \in L^1(\Omega)$ pour tout $u \in H^1_0(\Omega)$ et que l'application $T: u \mapsto \int_{\Omega} f(x)u(x) dx$ est un élément de $H^{-1}(\Omega)$.
- 3. Montrer qu'il existe un et un seul $u \in H_0^1(\Omega)$ tel que $-\Delta u = f$ dans $\mathcal{D}^*(\Omega)$.

Partie IV, contre-exemple

Soit Ω un ouvert borné de \mathbb{R}^2 et $\theta \in]0, \frac{1}{2}[$. On suppose que $0 \in \Omega$ et on se donne $\delta \in]0, \frac{1}{2}[$ tel que $B_{2\delta} = \{x \in \mathbb{R}^2, |x| < 2\delta\} \subset \Omega$.

- 1. Soit $\gamma \in]0, \frac{1}{2}[$. Montrer qu'il existe une fonction $u \in H_0^1(\Omega)$ telle que $u(x) = (-\ln|x|)^{\gamma} \ p.p.$ sur B_{δ} . [On pourra considérer la fonction $v \in H^1(B_{2\delta})$ définie par $v(x) = (-\ln|x|)^{\gamma}$, voir exercice 1.5)].
- 2. Montrer qu'il existe une fonction $f \in L^1(\Omega)$ telle que $f(|\ln |f||)^{\theta} \in L^1(\Omega)$ et $fu \notin L^1(\Omega)$ pour certains $u \in H^1_0(\Omega)$.
- 3. Montrer qu'il existe une fonction $f \in L^1(\Omega)$ telle que $f(\ln |f|)^\theta \in L^1(\Omega)$ et telle qu'il n'existe pas $u \in H^1_0(\Omega)$ vérifiant $-\Delta u = f$ dans $\mathcal{D}^\star(\Omega)$.

Exercice 2.15 (Décomposition de Hodge) Corrigé en page 121

Soient Ω un ouvert borné connexe à frontière lipschitzienne de \mathbb{R}^N $(N \ge 1)$ et $f \in (L^2(\Omega))^N$.

Montrer qu'il existe une fonction $u \in H^1(\Omega)$ telle que

$$\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx = \int_{\Omega} f(x) \cdot \nabla \varphi(x) \, dx, \ \forall \varphi \in H^{1}(\Omega).$$

En déduire qu'il existe $u \in H^1(\Omega)$ et $g \in (L^2(\Omega))^N$ telle que $f = \nabla u + g$, p.p. dans Ω et $\int_{\Omega} g(x) \cdot \nabla \varphi(x) \, \mathrm{d}x = 0$ pour tout $\varphi \in H^1(\Omega)$.

On suppose maintenant que $g \in C^1(\bar{\Omega})$ et que $\Omega = (]0,1[)^N$. Montrer que $\operatorname{div} g = 0$ sur Ω et que $g \cdot \boldsymbol{n} = 0$ p.p. (pour la mesure de Lebesgue (N-1)-dimensionnelle) sur $\partial\Omega$, où \boldsymbol{n} est un vecteur normal à $\partial\Omega$.

Exercice 2.16 (Problème de Stokes, vitesse) Corrigé en page 121

Soient Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$ et $f = (f_1, \dots, f_N)^t \in (L^2(\Omega))^N$. On pose $H = \{u \in (H_0^1(\Omega))^N : \text{div } u = 0 \text{ p.p. dans } \Omega\}$. On rappelle que u est solution du problème de Stokes si :

$$u = (u_1, \dots, u_N)^t \in H, \ \sum_{i=1}^N \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, dx = \int_{\Omega} f(x) \cdot v(x) \, dx, \ \forall v = (v_1, \dots, v_N)^t \in H.$$
 (2.42)

On se propose ici de montrer qu'il existe une et une seule solution de (2.42) et que cette solution peut être obtenue par une méthode de pénalisation. Soit $n \in \mathbb{N}^*$, on considère le problème suivant :

$$u = (u_1, \dots, u_N)^t \in (H_0^1(\Omega))^N,$$

$$\int_{\Omega} (\nabla u_i(x) \cdot \nabla v(x) + n \operatorname{div} u(x) D_i v(x) \, \mathrm{d}x = \int_{\Omega} f_i(x) v(x) \, \mathrm{d}x, \ \forall v = H_0^1(\Omega), \ \forall i \in \{1, \dots, N\}.$$
(2.43)

- 1. Montrer qu'il existe une et une seule solution à (2.42). [Utiliser le théorème de représentation de Riesz ou le théorème Lax-Milgram sur *H*.]
- 2. Soit $n \in \mathbb{N}^*$. Montrer qu'il existe une et une seule solution à (2.43). [Utiliser le théorème de représentation de Riesz ou le théorème Lax-Milgram sur $(H_0^1(\Omega))^N$.] On note, dans la suite, $u^{(n)}$ cette solution.
- 3. Montrer que la suite $(u^{(n)})_{n\in\mathbb{N}}$ est bornée dans $(H_0^1(\Omega))^N$ et que la suite $(\sqrt{n}\operatorname{div} u^{(n)})_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$.
- 4. Montrer que $u^{(n)} \to u$ faiblement dans $(H_0^1(\Omega))^N$, quand $n \to +\infty$, où u est la solution de (2.42).

Exercice 2.17 (Conditions aux limites de Wentzel) Corrigé en page 122 Notations et Rappels du cours

On note $H_p^1(0,2\pi)=\{u\in H^1(]0,2\pi[);u(0)=u(2\pi)\}$ (on rappelle que, si $u\in H^1(]0,2\pi[),u$ admet toujours un représentant continu sur $[0,2\pi]$ et on identifie u avec ce représentant continu).

Soit $B=\{(x,y)^t\in {\rm I\!R}^2, x^2+y^2<1\}$. On rappelle qu'il existe une application $\gamma:H^1(B)\to L^2(\partial B)$, linéaire, continue et telle que $\gamma(u)=u$ p.p. sur ∂B si $u\in H^1(B)\cap C(\overline{B},{\rm I\!R})$.

Si $w \in L^2(\partial B)$, on définit $j(w) \in L^2(]0, 2\pi[)$ par $j(w)(\theta) = w(\cos\theta, \sin\theta)$, pour $\theta \in [0, 2\pi[$. L'application j est une isométrie de $L^2(\partial B)$ sur $L^2(]0, 2\pi[)$, de sorte que $\bar{\gamma} = jo\gamma$ est linéaire continue de $H^1(B)$ dans $L^2(]0, 2\pi[)$. On pose $H = \{u \in H^1(B) \; ; \; \bar{\gamma}(u) \in H^1_p(0, 2\pi)\}$. On munit H du produit scalaire

$$(u | v)_H = (u | v)_{H^1(B)} + (\bar{\gamma}(u) | \bar{\gamma}(v))_{H^1_n(0,2\pi)}.$$

Partie I (Préliminaire d'analyse fontionnelle)

- 1. Montrer que $H^1_p(0,2\pi)$ est un espace de Hilbert.
- 2. Montrer que H est un espace de Hilbert.

Partie II (Conditions aux limites de Wentzel)

Pour $(x,y) \in \mathbb{R}^2$, $(x,y) \neq (0,0)$, on définit r et θ par $r = (x^2 + y^2)^{\frac{1}{2}}$ et $\theta \in [0,2\pi[$ tels que $x = r\cos\theta$ et $y = r\sin\theta$. Pour $u \in C^1(\mathbb{R}^N \setminus (0,0),\mathbb{R})$, on pose $\bar{u}(r,\theta) = u(r\cos\theta,r\sin\theta)$ de sorte que

$$\frac{\partial \bar{u}}{\partial r}(r,\theta) = \cos\theta \frac{\partial u}{\partial x}(r\cos\theta,r\sin\theta) + \sin\theta \frac{\partial u}{\partial y}(r\cos\theta,r\sin\theta)$$

$$\frac{\partial \bar{u}}{\partial \theta}(r,\theta) = -r \sin \theta \frac{\partial u}{\partial x}(x,y) + r \cos \theta \frac{\partial u}{\partial y}(x,y).$$

Pour f et g données, on s'intéresse au problème :

$$-\Delta u(x,y) + u(x,y) = f(x,y), (x,y) \in B, \tag{2.44}$$

$$\frac{\partial \bar{u}}{\partial r}(1,\theta) - \frac{\partial^2 \bar{u}}{\partial \theta^2}(1,\theta) + \bar{u}(1,\theta) = g(\cos\theta,\sin\theta), \ \theta \in [0,2\pi[, \text{ c'est-\`a-dire } (x,y) \in \partial B. \eqno(2.45)$$

Soient $f \in L^2(B)$ et $g \in L^2(\partial B)$, on appelle "solution faible" de (2.44)-(2.45) une solution du problème suivant :

$$u \in H, \tag{2.46}$$

$$\int_{B} \left(\sum_{i} D_{i} u(z) D_{i} v(z) + u(z) v(z)\right) dz + \int_{0}^{2\pi} \left(D \bar{\gamma}(u)(\theta) D \bar{\gamma}(v)(\theta) + \bar{\gamma}(u)(\theta) \bar{\gamma}(v)(\theta)\right) d\theta$$

$$= \int_{B} f(z) v(z) dz + \int_{0}^{2\pi} j(g)(\theta) j(\gamma(v))(\theta) d\theta, \ \forall v \in H.$$
(2.47)

- 1. Soient $f \in L^2(B)$ et $g \in L^2(\partial B)$. Montrer qu'il existe une et une seule solution de (2.46)-(2.47).
- 2. (Question plus difficile) On retire, dans cette question, "uv" dans la 1ère intégrale de (2.47). Soient $f \in L^2(B)$ et $g \in L^2(\partial B)$. Montrer qu'il existe encore une et une seule solution de (2.46)-(2.47).
- 3. Soient $f \in C(\overline{B}, \mathbb{R}), g \in C(\partial B, \mathbb{R})$ et soit $u \in C^2(\overline{B}, \mathbb{R})$. Montrer que u est solution au sens "classique" de (2.44)-(2.45) (c.a.d. vérifie (2.44) pour tout $(x,y) \in \overline{B}$ et (2.45) pour tout $(x,y) \in \partial B$) si et seulement si u est solution faible de (2.44)-(2.45).

[On pourra admettre que $C^2(\overline{B}, \mathbb{R})$ est dense dans H.]

4. Pour $f \in L^2(B)$ et $g \in L^2(\partial B)$, on note $T(f,g) = (u,\gamma(u)) \in L^2(B) \times L^2(\partial B)$, où u est l'unique solution faible de (2.44)-(2.45). On définit le produit scalaire dans $L^2(B) \times L^2(\partial B)$ par

$$((f,g) \mid (\varphi,\psi))_{L^2(B) \times L^2(\partial B)} = \int_B f(x)\varphi(x) \, \mathrm{d}x + \int_0^{2\pi} j(g)(\theta)j(\psi)(\theta)d\theta.$$

Montrer que T est un opérateur linéaire compact autoadjoint de $L^2(B) \times L^2(\partial B)$ dans lui-même.

Exercice 2.18 (Problème de Stokes, vitesse et pression) Corrigé en page 125

Soient Ω un ouvert borné connexe de \mathbb{R}^N ($N \ge 1$) à frontière lipschitzienne et $f = (f_1, \dots, f_N)^t \in (L^2(\Omega))^N$. On s'intéresse ici au problème de Stokes, c'est-à-dire à trouver $u = (u_1, \dots, u_N)^t$ et p solution de

$$\begin{split} -\Delta u + \nabla p &= f \text{ dans } \Omega, \\ \operatorname{div}(u) &= 0 \text{ dans } \Omega, \\ u &= 0 \text{ sur } \partial \Omega. \end{split} \tag{2.48}$$

Noter que la première équation de (2.48) est vectorielle.

On pose $H=\{u\in (H^1_0(\Omega))^N; \operatorname{div} u=0 \text{ p.p. dans } \Omega\}$. On appelle solution faible de (2.48) un couple (u,p) solution de

$$u = (u_1, \dots, u_N)^t \in H, \ p \in L^2(\Omega),$$

$$\sum_{i=1}^N \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, \mathrm{d}x - \int_{\Omega} p(x) \mathrm{div} \, v(x) \, \mathrm{d}x = \int_{\Omega} f(x) \cdot v(x) \, \mathrm{d}x$$

$$pour \text{ tout } v = (v_1, \dots, v_N)^t \in (H_0^1(\Omega))^N.$$
(2.49)

On pourra remarquer qu'une solution classique (u, p) de (2.48) est solution de (2.49).

Partie I, existence et unicité de u

Montrer que, si (u, p) est une solution classique de (2.48), u est alors solution de

$$u = (u_1, \dots, u_N)^t \in H, \ \sum_{i=1}^N \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, dx = \int_{\Omega} f(x) \cdot v(x) \, dx, \ \forall v = (v_1, \dots, v_N)^t \in H.$$
 (2.50)

On montre dans cette pemière partie que (2.50) a une et une seule solution et que si (u, p) est solution de (2.49), u est alors l'unique solution de (2.50).

- 1. Montrer que H est un s.e.v. fermé de $(H_0^1(\Omega))^N$.
- 2. Montrer que (2.50) admet une et une seule solution. [Utiliser le théorème de Lax-Milgram.]
- 3. Soit (u, p) une solution de (2.49). Montrer que u est l'unique solution de (2.50).

Soit u la solution de (2.50). La suite de l'exercice consiste à trouver p pour que (u, p) soit solution de (2.49).

Partie II, préliminaire d'analyse fonctionnelle

Soit E et F deux espaces de Hilbert (réels). On note $(\cdot|\cdot)_E$ (resp. $(\cdot|\cdot)_F$) le produit scalaire dans E (resp. F). Soit A un opérateur linéaire continu de E dans F. On note A^* l'opérateur adjoint de A. L'opérateur A^* est un opérateur linéaire continu de F dans F. Pour tout F0 est l'unique élément de F1 défini par

$$(A^*g|u)_E = (g|Au)_F$$
 pour tout $u \in E$.

(Noter que l'existence et l'unicité de A^*g est donnée par le théorème de représentation de Riesz.)

- 1. Montrer que $\operatorname{Ker} A=(\operatorname{Im} A^\star)^\perp.$ (On rappelle que si $G\subset E,$ $G^\perp=\{u\in E,$ $(u|v)_E=0$ pour tout $v\in G\}.$)
- 2. Montrer que $(\operatorname{Ker} A)^{\perp} = \overline{\operatorname{Im} A^{\star}}$.

Partie III, Existence et unicité partielle de p

Dans cette partie, on va utiliser le lemme suivant (souvent attribué à J. Nečas ¹⁴, 1965) que nous admettons.

Lemme 2.34 Soient Ω un ouvert borné connexe de \mathbb{R}^N $(N \ge 1)$ à frontière lipschitzienne et $q \in L^2(\Omega)$ telle que $\int_{\Omega} q(x) \, \mathrm{d}x = 0$. Il existe alors $v \in (H^1_0(\Omega))^N$ telle que $\mathrm{div}(v) = q$ p.p. dans Ω et

$$||v||_{H^1_o(\Omega)^N} \le C||q||_{L^2(\Omega)},$$

où C ne dépend que de Ω .

On prend ici $E = H_0^1(\Omega)^N$ et $F = L^2(\Omega)$. Pour $u \in E$ on pose $Au = \operatorname{div} u$, de sorte que A est un opérateur linéaire continu de E dans F.

- 1. Soit $(p_n)_{n\in\mathbb{N}}$ une suite de F et $v\in E$ telle que $A^\star p_n\to v$ dans E quand $n\to +\infty$. Pour $n\in\mathbb{N}$, on pose $q_n=p_n-a_n$, où a_n est la moyenne de p_n dans Ω .
 - (a) Montrer que $A^*p_n = A^*q_n$.

^{14.} Jindřich Nečas (1929–2002), mathématicien tchèque, spécialiste des EDP.

- (b) Montrer que la suite $(q_n)_{n\in\mathbb{N}}$ est bornée dans F. [Utiliser le lemme 2.34.]
- (c) Montrer que $v \in \text{Im} A^*$.
- 2. Montrer que $(Ker A)^{\perp} = Im A^{\star}$ et que Ker A = H.
- 3. On rappelle que le produit scalaire dans E est défini par

$$(u|v_E = \sum_{i=1}^{N} \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, dx.$$

On définit $T_f \in E$ par $(T_f|v)_E = \int_{\Omega} f(x) \cdot v(x) dx$ pour tout $v \in E$. Soit u la solution de (2.50).

- (a) Montrer que $u T_f \in H^{\perp}$. En déduire que $u T_f \in \operatorname{Im} A^{\star}$.
- (b) Montrer qu'il existe une fonction $p \in F$ telle que (u, p) est solution de (2.49).
- 4. Soit (u_1, p_1) et (u_2, p_2) deux solutions de (2.49). Montrer que $u_1 = u_2 = u$ (où u est l'unique solution de (2.50)) et qu'il existe $a \in \mathbb{R}$ tel que $p_1 p_2 = a$ p.p..

Exercice 2.19 (Continuité séquentielle de L^2 -faible dans H_0^1) Corrigé en page 127

Soit Ω un ouvert borné de \mathbb{R}^N (N>1). Pour tout $x\in\Omega$, on se donne une matrice, notée A(x), dont les coefficients sont notés $a_{i,j}(x), i,j=1,\ldots,N$. On suppose que $a_{i,j}\in L^\infty(\Omega)$ pour tout $i,j=1,\ldots,N$ et qu'il existe $\alpha>0$ t.q $A(x)\xi\cdot\xi\geq\alpha|\xi|^2$, pour tout $\xi\in\mathbb{R}^N$ et p.p. en $x\in\Omega$.

Pour $f \in L^2(\Omega)$, on sait qu'il existe une unique solution au problème suivant :

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (2.51)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite bornée de $L^2(\Omega)$ et $f\in L^2(\Omega)$. On note u la solution de (2.51) et, pour $n\in\mathbb{N}$, on note u_n la solution de (2.51) avec f_n au lieu de f. On suppose que $f_n\to f$ faiblement dans $L^2(\Omega)$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H_0^1(\Omega)$.
- 2. Montrer que $u_n \to u$ faiblement dans $H_0^1(\Omega)$ et que $u_n \to u$ dans $L^2(\Omega)$ (quand $n \to +\infty$).
- 3. Montrer que, quand $n \to +\infty$,

$$\int_{\Omega} A(x) \nabla u_n(x) \cdot \nabla u_n(x) \, dx \to \int_{\Omega} A(x) \nabla u(x) \cdot \nabla u(x) \, dx.$$

[Utiliser le fait que $\int_{\Omega} A(x) \nabla u_n(x) \cdot \nabla u_n(x) dx = \int_{\Omega} f_n(x) u_n(x) dx$ et passer à la limite sur le terme de droite de cette égalité.]

4. Montrer que $u_n \to u$ dans $H_0^1(\Omega)$. [On pourra considérer $\int_{\Omega} A(x) \nabla (u_n - u)(x) \cdot \nabla (u_n - u)(x) dx$.]

Exercice 2.20 (Exercice liminaire à l'exercice 2.21)

Soit φ une fonction décroissante de \mathbb{R}_+ dans \mathbb{R}_+ . On suppose qu'il existe C>0 et $\beta>1$ tels que

$$0 \le x < y \Rightarrow \varphi(y) \le C \frac{\varphi(x)^{\beta}}{y - x}.$$
 (2.52)

Montrer qu'il existe $a\in\mathbb{R}_+$ tel que $\varphi(a)=0$. [On pourra montrer l'existence d'une suite strictement croissante $(a_k)_{k\in\mathbb{N}^\star}$ telle que $\varphi(a_k)\leq \frac{1}{2^k}$ pour tout $k\in\mathbb{N}^\star$ et $\lim_{k\to\infty}a_k<+\infty$. Pour cela, on pourra montrer qu'il existe a_0 t.q. $\varphi(a_0)\leq 1$ puis, par récurrence, définir a_{k+1} par $\frac{C}{a_{k+1}-a_k}\frac{1}{2^{k\beta}}=\frac{1}{2^{k+1}}$.]

Exercice 2.21 (Solutions bornées d'un problème elliptique) Corrigé en page 129

Soit Ω un ouvert borné de \mathbb{R}^N (N>1). Pour tout $x\in\Omega$, on se donne une matrice, notée A(x), dont les coefficients sont notés $a_{i,j}(x), i, j=1,\ldots,N$. On suppose que $a_{i,j}\in L^\infty(\Omega)$ pour tout $i,j=1,\ldots,N$ et qu'il existe $\alpha>0$ t.q $A(x)\xi\cdot\xi\geq\alpha|\xi|^2$, pour tout $\xi\in\mathbb{R}^N$ et p.p. en $x\in\Omega$.

Si B est une partie borélienne de \mathbb{R}^N , on note $\lambda_N(B)$ le mesure de Lebesgue N-dimensionnelle de B (c'est-à-dire son aire si N=2 et son volume si N=3).

1. Soit $F \in L^2(\Omega)^N$. Montrer qu'il existe une et une seule solution u de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} F(x) \cdot \nabla v(x) \, \mathrm{d}x, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (2.53)

Soit p > N: on suppose pour la suite de l'exercice que $F \in L^p(\Omega)^N$ (On rappelle que $L^p(\Omega)^N \subset L^2(\Omega)^N$ car p > 2) et on note u l'unique solution de (2.53).

Pour $k \in \mathbb{R}_+$, on définit la fonction S_k de \mathbb{R} dans \mathbb{R} par

$$\begin{cases} S_k(s) = 0 \text{ si } -k \le s \le k, \\ S_k(s) = s - k \text{ si } s > k, \\ S_k(s) = s + k \text{ si } s < -k. \end{cases}$$

On rappelle que si $v \in H_0^1(\Omega)$ on a $S_k(v) \in H_0^1(\Omega)$ et $\nabla S_k(v) = 1_{A_k} \nabla v$ p.p., avec $A_k = \{|v| > k\}$ (voir la remarque 2.25).

2. Soit $k \in \mathbb{R}_+$, Montrer que

$$\alpha \| |\nabla S_k(u)| \|_{L^2(\Omega)} = \alpha \left(\int_{A_k} \nabla u(x) \cdot \nabla u(x) \, dx \right)^{\frac{1}{2}} \le \lambda_N(A_k)^{\frac{1}{2} - \frac{1}{p}} \| |F| \|_{L^p(\Omega)}.$$

[On pourra prendre $v = S_k(u)$ dans (2.53) et utiliser l'inégalité de Hölder.]

3. On pose $1^* = \frac{N}{N-1}$. On rappelle qu'il existe C_1 ne dépendant que de N t.q.

$$\|w\|_{L^{1^{\star}}(\Omega)} \leq C_1 \|w\|_{W_0^{1,1}(\Omega)} = C_1 \||\nabla w||_{L^1(\Omega)} \text{ pour tout } w \in W_0^{1,1}(\Omega).$$

Soit $k, h \in \mathbb{R}_+$ t.q. k < h. Montrer que

$$(h-k)\lambda_N(A_h)^{\frac{N-1}{N}} \leq \left(\int_{A_h} |S_k(u(x)|^{1^*} dx\right)^{\frac{1}{1^*}} \leq C_1 \||\nabla S_k(u)|\|_{L^1(\Omega)} \leq C_1 \||\nabla S_k(u)|\|_{L^2(\Omega)} \lambda_N(A_k)^{\frac{1}{2}}.$$

En déduire qu'il existe C_2 ne dépendant que de C_1 , α , F et p t.q.

$$(h-k)\lambda_N(A_h)^{\frac{N-1}{N}} \le C_2\lambda_N(A_k)^{1-\frac{1}{p}}.$$

- 4. Montrer que $u \in L^{\infty}(\Omega)$ (c'est-à-dire qu'il existe $a \in \mathbb{R}_+$ tel que $\lambda_N(A_a) = 0$). [On pourra poser $\varphi(k) = \lambda_N(A_k)^{\frac{N-1}{N}}$ et utiliser l'exercice 2.20.]
- 5. Montrer qu'il existe C_3 ne dépendant que de Ω , α et p t.q.

$$||u||_{L^{\infty}(\Omega)} \le C_3 |||F|||_{L^p(\Omega)}.$$

Exercice 2.22 (Solutions bornées d'un problème elliptique, suite) Corrigé en page 129 On reprend les premières hypothèses de l'exercice 2.21.

Soit Ω un ouvert borné de \mathbb{R}^N (N>1). Pour tout $x\in\Omega$, on se donne une matrice, notée A(x), dont les coefficients sont notés $a_{i,j}(x), i,j=1,\ldots,N$. On suppose que $a_{i,j}\in L^\infty(\Omega)$ pour tout $i,j=1,\ldots,N$ et qu'il existe $\alpha>0$ t.q $A(x)\xi\cdot\xi\geq\alpha|\xi|^2$, pour tout $\xi\in\mathbb{R}^N$ et p.p. en $x\in\Omega$.

1. Soit $f \in L^p(\Omega)$ avec p > 1 si N = 2 et $p = \frac{2N}{N+2}$ si $N \ge 3$. Montrer qu'il existe une et une seule solution u de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} A(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (2.54)

2. Soit p > N/2 et $f \in L^p(\Omega)$. Montrer qu'il existe une unique solution u de (2.54). [Se ramener à la question précédente.]

Montrer que $u \in L^{\infty}(\Omega)$ et qu'il existe C ne dépendant que de Ω , α et p t.q.

$$||u||_{L^{\infty}(\Omega)} \le C||f||_{L^{p}(\Omega)}.$$

[Se ramener à l'exercice 2.21.]

Exercice 2.23 (Diffusion évanescente et convection) Corrigé en page 131

Partie I

Soient Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$ et $w = (w_1, \dots, w_N)^t \in (L^\infty(\Omega))^N$ telle que $\operatorname{div}(w) = 0$ dans $\mathcal{D}^\star(\Omega)$ (On rappelle que $\operatorname{div}(w) = \sum_{i=1}^N D_i w_i$). Soit $u \in H_0^1(\Omega)$.

- 1. Montrer que $u^2 \in W^{1,1}_0(\Omega)$ et que $D_i(u^2) = 2uD_iu$, pour tout $i \in 1, \ldots, N$. [Utiliser la densité de $\mathcal{D}(\Omega)$ dans $H^1_0(\Omega)$.]
- 2. Montrer que $\int_{\Omega} w(x) \cdot \nabla \varphi(x) \, \mathrm{d}x = 0$, pour tout $\varphi \in W_0^{1,1}(\Omega)$. [Utiliser la densité de $\mathcal{D}(\Omega)$ dans $W_0^{1,1}(\Omega)$.]
- 3. Montrer que $\int_{\Omega} w(x) \cdot \nabla(u^2)(x) dx = 2 \int_{\Omega} u(x)w(x) \cdot \nabla u(x) dx = 0$ (on rappelle que $w \cdot \nabla(u^2) = \sum_{i=1}^{N} w_i D_i(u^2)$).

Partie II

Soit Ω un ouvert borné de \mathbb{R}^N , à frontière lipschiztienne (cette hypothèse donne l'existence de l'opérateur trace, noté γ , linéaire continu de $H^1(\Omega)$ dans $L^2(\partial\Omega)$ et tel que $\gamma(u)=u$ sur $\partial\Omega$ si $u\in C(\bar\Omega)\cap H^1(\Omega)$ et $\mathrm{Ker}(\gamma)=H^1_0(\Omega)$). Soient $a\in\mathbb{R}^\star_+$ et $w\in(L^\infty(\Omega))^N$ telle que $\mathrm{div}(w)=0$ dans $\mathcal{D}^\star(\Omega)$. Soient $f\in L^2(\Omega)$ et $g\in\mathrm{Im}\,\gamma$. On cherche u solution du problème suivant :

$$\begin{split} u &\in H^1(\Omega), \ \gamma(u) = g \ (\mathrm{dans} \ L^2(\partial\Omega)), \\ &\int_{\Omega} a \nabla u(x) \cdot \nabla v(x) \ \mathrm{d}x + \int_{\Omega} u(x) w(x) \cdot \nabla v(x) \ \mathrm{d}x = \int_{\Omega} f(x) v(x) \ \mathrm{d}x, \ \forall v \in H^1_0(\Omega). \end{split} \tag{2.55}$$

1. Soit $G \in H^1(\Omega)$ telle que $\gamma(G) = g$ (dans $L^2(\partial\Omega)$). Montrer que u est solution de (2.55) si et seulement si $u = G + \overline{u}$ avec \overline{u} solution de (2.56).

$$\overline{u} \in H_0^1(\Omega),
\int_{\Omega} a \nabla \overline{u}(x) \cdot \nabla v(x) \, dx + \int_{\Omega} \overline{u}(x) w(x) \cdot \nabla v(x) \, dx =
\int_{\Omega} f(x) v(x) \, dx - \int_{\Omega} a \nabla G(x) \cdot \nabla v(x) \, dx - \int_{\Omega} G(x) w(x) \cdot \nabla v(x) \, dx, \ \forall v \in H_0^1(\Omega).$$
(2.56)

2. Montrer que (2.55) admet une et une seule solution.

On note u cette solution dans la suite de cette partie.

- 3. On suppose, dans cette question, que g=0 (de sorte que $u\in H^1_0(\Omega)$). Montrer que $a\|u\|_{H^1_0}^2\leq \int_{\Omega}f(x)u(x)\,\mathrm{d}x$.
- 4. Soit $b \in \mathbb{R}$. On suppose, dans cette question, que $f \leq 0$ p.p. dans Ω et que $g \leq b$ p.p. sur $\partial\Omega$ (pour la mesure N-1-dimensionnelle sur $\partial\Omega$). Montrer que $u \leq b$ p.p. dans Ω . [On pourra admettre que $(u-b)^+ \in H^1_0(\Omega)$ et que $\nabla (u-b)^+ = 1_{u>b} \nabla u$ p.p. (ce résultat est semblable à celui du lemme 2.24), utiliser (2.55) et la partie I.]

Partie III

Dans cette partie on prend N=2, $\Omega=]0,1[^2,w=(-1,0)$ et g=0. On suppose aussi que $f\in L^\infty(\Omega)$ et que $f\geq 0$ p.p. sur Ω . On note u_n la solution de (2.55) pour $a=\frac{1}{n},n\in\mathbb{N}^\star$, et on s'intéresse à la limite de u_n quand $n\to+\infty$.

- 1. Soit $n \in \mathbb{N}^*$. Montrer que $u_n \geq 0$ p.p..[Utiliser la Partie II, question 4.]
- 2. Soit $n \in \mathbb{N}^*$. Montrer qu'il existe C_1 , ne dépendant que de f, tel que $||u_n||_{L^{\infty}(\Omega)} \leq C_1$. [On pourra, par exemple, chercher de quel problème de type (2.55) est solution la fonction $u_n + \beta \psi$, avec $\psi(x) = x_1$ et β convenablement choisi, et utiliser la Partie II, question 4.]
- 3. Soit $n \in \mathbb{N}^*$, montrer qu'il existe C_2 , ne dépendant que de f, tel que $\|u_n\|_{H_0^1(\Omega)} \leq C_2 \sqrt{n}$.
- 4. En utilisant la remarque 2.17, montrer que $u_n \in H^2(\Omega)$ pour tout $n \in \mathbb{N}^*$.
- 5. Soit $n \in \mathbb{N}^{\star}$. Si $u_n \in C^1(\overline{\Omega})$, déduire de la question 1 de la partie III que $\frac{\partial u_n}{\partial x_1}(0,x_2) \geq 0$ et $\frac{\partial u_n}{\partial x_1}(1,x_2) \leq 0$ pour tout $x_2 \in]0,1[$ (de même, $\frac{\partial u_n}{\partial x_2}(x_1,0) \geq 0$ et $\frac{\partial u_n}{\partial x_2}(x_1,1) \leq 0$ pour tout $x_1 \in]0,1[$). On admettra, dans la suite, que ce résultat est encore vrai, avec seulement $u_n \in H^2(\Omega)$, au sens $\gamma(D_1u_n)(0,x_2) \geq 0$ et $\gamma(D_1u_n)(1,x_2) \leq 0$ p.p. en $x_2 \in]0,1[$ (de même $\gamma(D_2u_n)(x_1,0) \geq 0$ et $\gamma(D_2u_n)(x_1,1) \leq 0$ p.p. en $x_1 \in]0,1[$).
- 6. En utilisant la question 2 de la partie III, montrer qu'on peut supposer (à une sous suite près) que $u_n \to u$ *-faiblement dans $L^{\infty}(\Omega)$ quand $n \to +\infty$, c'est-à-dire:

$$\int_{\Omega} u_n(x)\varphi(x) \, \mathrm{d}x \to \int_{\Omega} u(x)\varphi(x) \, \mathrm{d}x, \text{ pour tout } \varphi \in L^1(\Omega).$$

Montrer que $u \geq 0$ p.p..

On cherche, dans la suite, l'équation et les conditions aux limites satisfaites par u.

7. Montrer que $D_1 u = f$ dans $\mathcal{D}^*(\Omega)$.

8. Soit $n \in \mathbb{N}^*$ et $\varphi \in C^1(\overline{\Omega})$, montrer que

$$\frac{1}{n} \int_{\Omega} \nabla u_n(x) \nabla \varphi(x) \, dx + \frac{1}{n} \int_{0}^{1} \gamma(D_1 u_n)(0, x_2) \varphi(0, x_2) \, dx_2 - \frac{1}{n} \int_{0}^{1} \gamma(D_1 u_n)(1, x_2) \varphi(1, x_2) \, dx_2 \\
+ \frac{1}{n} \int_{0}^{1} \gamma(D_2 u_n)(x_1, 0) \varphi(x_1, 0) \, dx_1 - \frac{1}{n} \int_{0}^{1} \gamma(D_2 u_n)(x_1, 1) \varphi(x_1, 1) \, dx_1 \\
- \int_{\Omega} u_n(x) \frac{\partial \varphi}{\partial x_1}(x) \, dx = \int_{\Omega} f(x) \varphi(x) \, dx.$$

9. Soit $\varphi \in C^1(\overline{\Omega})$ telle que $\varphi \geq 0$ sur $\partial \Omega$. Montrer que

$$-\int_{\Omega} u(x) \frac{\partial \varphi}{\partial x_1}(x) \, \mathrm{d}x \le \int_{\Omega} f(x) \varphi(x) \, \mathrm{d}x. \tag{2.57}$$

10. On suppose, dans cette question, que $u \in C^1(\overline{\Omega})$ et que $f \in C(\overline{\Omega})$. Montrer que $\frac{\partial u}{\partial x_1} = f$ partout dans Ω et que $u(0,x_2) = 0$ pour tout $x_2 \in]0,1[$.

La fonction u est-elle alors entièrement déterminée par f?

11. On remplaçe w = (-1,0) par $w \in \mathbb{R}^2 \setminus \{0\}$ De quel problème, dépendant de w, u est elle solution? [distinguer les signes des 2 composantes de w.]

Exercice 2.24 (Condition de Dirichlet non homogène) Corrigé en page 137

Soit Ω un ouvert borné de \mathbb{R}^N à frontière lipschitzienne et $g \in \operatorname{Im}(\gamma)$ (où γ désigne l'opérateur trace vu au théorème 1.29). Soient $(a_{i,j})_{i,j=1,\dots,N} \subset L^{\infty}(\Omega)$ et $\alpha > 0$ tels que (2.1) soit vérifiée.

- 1. Soit $f \in L^2(\Omega)$; montrer que le problème (2.14) admet une unique solution.
- 2. Soit $T \in H^{-1}(\Omega)$; montrer que le problème (2.15) admet une unique solution.
- 3. On suppose dans cette question que N=2 et $1. Montrer que pour tout <math>f\in L^p(\Omega)$ il existe une unique solution au problème (2.14).
- 4. On suppose dans cette question que $N \geq 3$ et $p = \frac{2N}{N+2}$. Montrer que pour tout $f \in L^p(\Omega)$ il existe une unique solution au problème (2.14).

Exercice 2.25 (Espace $H^{\frac{1}{2}}(\partial\Omega)$) Soit Ω un ouvert borné de \mathbb{R}^N $(N \geq 1)$ à frontière lipschitzienne. On note γ l'opérateur trace défini sur $H^1(\Omega)$.

On rappelle que $H^{\frac{1}{2}}(\partial\Omega)=\operatorname{Im}\gamma$ et que $\|u\|_{H^{\frac{1}{2}}(\partial\Omega)}=\inf\{\|v\|_{H^1(\Omega)},\ v\in H^1(\Omega),\ \gamma(v)=u\}.$

1. Soit $u\in H^{\frac{1}{2}}(\partial\Omega)$. Montrer que $\|u\|_{H^{\frac{1}{2}}(\partial\Omega)}=\|\overline{u}\|_{H^1(\Omega)}$ où \overline{u} est l'unique solution faible de $-\Delta \overline{u}+\overline{u}=0$ dans Ω avec $\gamma(\overline{u})=u$, c'est-à-dire l'unique solution de

$$\bar{u} \in H^1(\Omega), \gamma(\bar{u}) = u,$$
 (2.58)

$$\int_{\Omega} (\nabla \overline{u}(x) \cdot \nabla v(x) + \overline{u}(x)v(x)) \, dx = 0, \ \forall v \in H_0^1(\Omega).$$
 (2.59)

 $\begin{aligned} & \textit{Corrig\'e} - \quad \textit{On montre tout d'abord l'existence de } \overline{u} \in H^1(\Omega) \; \textit{tel que } \gamma(\overline{u}) = u \; \textit{et } \|u\|_{H^{\frac{1}{2}}(\partial\Omega)} = \|\overline{u}\|_{H^1(\Omega)}. \end{aligned}$ $& \textit{Soit } (v_n)_{n \in \mathbb{N}} \; \textit{une suite de } H^1(\Omega) \; \textit{telle que } \gamma(v_n) = u \; \textit{(pour tout n) et } \|v_n\|_{H^1(\Omega)} \to \|u\|_{H^{\frac{1}{2}}(\partial\Omega)} \; \textit{quand } n \to +\infty. \; \textit{La suite } (v_n)_{n \in \mathbb{N}} \; \textit{est donc born\'ee dans } H^1(\Omega) \; \textit{et on peut supposer (en extrayant une sous-suite) que } v_n \to v \; \textit{faiblement dans } H^1(\Omega) \; \textit{et } \|v\|_{H^1(\Omega)} \leq \liminf_{n \to +\infty} \|v_n\|_{H^1(\Omega)} = \|u\|_{H^{\frac{1}{2}}(\partial\Omega)}. \end{aligned}$

Comme $\gamma(v_n)=u$ dans $L^2(\partial\Omega)$ (pour tout n), on a aussi $\gamma(v)=u$ (dans $L^2(\partial\Omega)$). Ceci peut se démontrer en utilisant la compacité de l'opérateur γ de $H^1(\Omega)$ dans $L^2(\partial\Omega)$ (remarque 2.31) mais aussi en utilisant seulement la continuité de l'opérateur γ de $H^1(\Omega)$ dans $L^2(\partial\Omega)$ et le lemme de Mazur S^1 ; en effet, par ce lemme, il existe une suite $(w_n)_{n\in\mathbb{N}}$ de $H^1(\Omega)$, où pour chaque $n\in\mathbb{N}$, w_n est combinaison convexe de l'ensemble $\{v_m, m\geq n\}$, et telle que $w_n\to v$ dans $H^1(\Omega)$; on a donc $\gamma(w_n)=u$ dans $L^2(\partial\Omega)$.

Comme $\gamma(v) = u$ et comme

$$||v||_{H^{1}(\Omega)} \leq \liminf_{n \to +\infty} ||v_{n}||_{H^{1}(\Omega)} = ||u||_{H^{\frac{1}{2}}(\partial\Omega)} = \inf\{||w||_{H^{1}(\Omega)} : \gamma(w) = u\} \leq ||v||_{H^{1}(\Omega)},$$

on a $\|v\|_{H^1(\Omega)} = \|u\|_{H^{\frac{1}{2}}(\partial\Omega)}$ et $v_n \to v$ dans $H^1(\Omega)$ quand $n \to +\infty$.

On note maintenant \overline{u} cette fonction v. Pour tout $\varphi \in H_0^1(\Omega)$ et t > 0, $\gamma(\overline{u} + t\varphi) = u$, on a donc

$$\|\overline{u}\|_{H^1(\Omega)}^2 \le \|\overline{u} + t\varphi\|_{H^1(\Omega)}^2,$$

c'est-à-dire

$$\int_{\Omega} (\nabla \overline{u}(x) \cdot \nabla \overline{u}(x) + \overline{u}(x)^{2}) dx \le \int_{\Omega} (\nabla (\overline{u} + t\varphi)(x) \cdot \nabla (\overline{u} + t\varphi)(x) + (\overline{u} + t\varphi)(x)^{2}) dx.$$

On en déduit

$$\int_{\Omega} (\nabla \overline{u}(x) \cdot \nabla \varphi(x) + \overline{u}(x)\varphi(x)) \, dx \ge 0,$$

et, donc (en changeant φ et $-\varphi$),

$$\int_{\Omega} (\nabla \overline{u}(x) \cdot \nabla \varphi(x) + \overline{u}(x)\varphi(x)) \, dx = 0.$$

La fonction \overline{u} *est donc solution de* (2.58)-(2.59).

L'unicité de la solution de (2.58)-(2.59) est une conséquence immédiate de l'unicité pour le problème homogène (c'est-à-dire le problème (2.58)-(2.59) avec u=0).

2. Montrer que l'espace $H^{\frac{1}{2}}(\partial\Omega)$ est un espace de Hilbert.

 $\begin{aligned} & \textit{Corrig\'e} - \quad \textit{L'application } u \mapsto \|u\|_{H^{\frac{1}{2}}(\partial\Omega)} \text{ est bien une norme. Elle est induite par un produit scalaire. En effet,} \\ & \textit{si } u, v \in H^{\frac{1}{2}}(\partial\Omega), \textit{ on note } \overline{u}, \overline{v} \text{ les \'el\'ements de } H^1(\Omega) \text{ associ\'es (donn\'es par la question pr\'ec\'edente) et on d\'efinit le produit scalaire de u avec v par } (u \mid v)_{H^{\frac{1}{2}}(\partial\Omega)} = (\overline{u} \mid \overline{v})_{H^1(\Omega)}. \end{aligned}$

Il reste à montrer que $H^{\frac{1}{2}}(\partial\Omega)$ est complet. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $H^{\frac{1}{2}}(\partial\Omega)$. On note $(\bar{u}_n)_{n\in\mathbb{N}}$ la suite de $H^1(\Omega)$ associée. Cette suite est de Cauchy dans $H^1(\Omega)$, elle est donc convergente (dans $H^1(\Omega)$). On note w sa limite. Comme l'opérateur trace est continu de $H^1(\Omega)$ dans $L^2(\partial\Omega)$, on a $u_n=\gamma(\bar{u}_n)\to\gamma(w)$ dans $L^2(\partial\Omega)$. Ce qui prouve que $\gamma(w)\in H^{\frac{1}{2}}(\partial\Omega)$ car $w\in H^1(\Omega)$.

Enfin, on rermarque que $\|u_n - \gamma(w)\|_{H^{\frac{1}{2}}(\partial\Omega)} \le \|\bar{u}_n - w\|_{H^1(\Omega)} \to 0$ quand $n \to +\infty$. On a ainsi montré que $u_n \to \gamma(w)$ dans $H^{\frac{1}{2}}(\partial\Omega)$. L'espace $H^{\frac{1}{2}}(\partial\Omega)$ est donc complet.

3. Montrer que l'espace $H^{\frac{1}{2}}(\partial\Omega)$ s'injecte continûment dans $L^2(\partial\Omega)$.

Corrigé – Cette question est immédiate. Si $u_n \to u$ dans $H^{\frac{1}{2}}(\partial\Omega)$, on a (avec les notations précédentes) $\bar{u}_n \to \bar{u}$ dans $H^1(\Omega)$ et donc, par continuité de l'opérateur trace de $H^1(\Omega)$ dans $L^2(\partial\Omega)$, $u_n \to u$ dans $L^2(\partial\Omega)$.

Exercice 2.26 (Trace normale d'un élément de H_{div}) Soit Ω un ouvert borné de \mathbb{R}^2 à frontière lipschitzienne. On pose $H_{\text{div}}(\Omega) = \{v = (v_1, v_2) \in L^2(\Omega)^2 \text{ telle que } \operatorname{div}(v) \in L^2(\Omega)\}$ et, pour $v \in H_{\text{div}}(\Omega)$,

$$||v||_{H_{\operatorname{div}}(\Omega)} = (||v||_{L^{2}(\Omega)}^{2} + ||\operatorname{div}(v)||_{L^{2}(\Omega)}^{2})^{\frac{1}{2}}.$$
(2.60)

^{15.} Lemme de Mazur : Soient X un espace vectoriel normé et $(x_n)_{n\in\mathbb{N}}$ une suite convergeant faiblement vers $x\in X$, alors il existe une suite $(y_n)_{n\in\mathbb{N}}$ telle pour tout $n\in\mathbb{N}$, le terme y_n soit de la forme $y_n=\sum_{k=n}^{p_n}\lambda_k$, avec $p_n\geq n$, $\lambda_k\geq 0$ pour tout $k=n,\ldots,p_n$ et $\sum_{k=n}^{p_n}\lambda_k=1$, et telle que $\|y_n-x\|=0$ lorsque $n\to+\infty$.

1. Montrer que $H_{\rm div}(\Omega)$, muni de la norme définie par (2.60), est un espace de Hilbert.

Corrigé – L'application $v \mapsto \|u\|_{H_{\operatorname{div}}(\Omega)}$ est bien une norme. Elle est induite par un produit scalaire. Le produit scalaire induisant cette norme est l'application de $H_{\operatorname{div}}(\Omega)^2$ dans $\mathbb R$ définit par, pour $u=(u_1,u_2)$ et $v=(v_1,v_2)$,

$$(u \mid v)_{H_{\operatorname{div}}(\Omega)} = (u_1 \mid v_1)_{L^2(\Omega)} + (u_2 \mid v_2)_{L^2(\Omega)} + (\operatorname{div}(u) \mid \operatorname{div}(v))_{L^2(\Omega)}.$$

Il reste à montrer que $H_{\mathrm{div}}(\Omega)$ est complet. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $H_{\mathrm{div}}(\Omega)$. Les suites $(u_n)_{n\in\mathbb{N}}$ et $(\mathrm{div}(u_n))_{n\in\mathbb{N}}$ sont de Cauchy dans $(L^2(\Omega))^2$ et $L^2(\Omega)$. Elles convergent dans $L^2(\Omega)^2$ et $L^2(\Omega)$ vers u et ξ . Pour tout $\varphi \in \mathcal{D}(\Omega) = \mathcal{D}$,

$$\begin{split} \int_{\Omega} \operatorname{div}(u_n)(x) \varphi(x) \, \mathrm{d}x &= \langle \operatorname{div}(u_n), \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\langle (u_n)_1, \partial_1 \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} - \langle (u_n)_2, \partial_2 \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} \\ &= -\int_{\Omega} (u_n)_1(x) \partial_1 \varphi(x) \, \mathrm{d}x - \int_{\Omega} (u_n)_2(x) \partial_2 \varphi(x) \, \mathrm{d}x = -\int_{\Omega} u_n(x) \cdot \nabla \varphi(x) \, \mathrm{d}x. \end{split}$$

Quand $n \to +\infty$ on obtient $\int_{\Omega} \xi(x) \varphi(x) dx = -\int_{\Omega} u(x) \cdot \nabla \varphi(x) dx$. Comme $-\int_{\Omega} u(x) \cdot \nabla \varphi(x) dx = \langle \operatorname{div}(u), \varphi \rangle_{\mathcal{D}^*, \mathcal{D}}$, ceci prouve que $\operatorname{div}(u) = \xi$ et donc $u \in H_{\operatorname{div}}(\Omega)$.

Enfin, on a bien $u_n \to u$ dans $H_{\rm div}(\Omega)$ et donc $H_{\rm div}(\Omega)$ est complet.

- 2. Soit $v \in H_{\mathrm{div}}(\Omega)$.
 - (a) Montrer que

$$\int_{\Omega} \nabla \varphi \cdot v \, dx + \int_{\Omega} \varphi \operatorname{div}(v) \, dx = 0,$$

Pour tout $\varphi \in \mathcal{D}(\Omega)$, puis pour tout $\varphi \in H_0^1(\Omega)$.

Corrigé – Comme cela a été vu à la question précédente (avec u_n au lieu de v), pour tout $\varphi \in \mathcal{D}(\Omega)$,

$$\int_{\Omega} \operatorname{div}(v)(x)\varphi(x) \, \mathrm{d}x = \langle \operatorname{div}(v), \varphi \rangle_{\mathcal{D}^{\star}, \mathcal{D}} = -\int_{\Omega} v(x) \cdot \nabla \varphi(x) \, \mathrm{d}x.$$

Puis comme $\mathcal{D}(\Omega)$ est dense dans $H_0^1(\Omega)$ cette égalité est encore pour tout $\varphi \in H_0^1(\Omega)$.

(b) Soit $u_1, u_2 \in H^1(\Omega)$ t.q. $\gamma(u_1) = \gamma(u_2)$ (où γ est l'opérateur trace défini sur $H^1(\Omega)$). Montrer que

$$\int_{\Omega} \nabla u_1 \cdot v \, dx + \int_{\Omega} u_1 \operatorname{div}(v) \, dx = \int_{\Omega} \nabla u_2 \cdot v \, dx + \int_{\Omega} u_2 \operatorname{div}(v) \, dx.$$

Corrigé – Il suffit de remarquer que $(u_1 - u_2) \in \text{Ker}(\gamma)$ et donc $(u_1 - u_2) \in H_0^1(\Omega)$ (car $\text{Ker}(\gamma) = H_0^1(\Omega)$, voir le théorème 1.29). On applique alors la question précédente avec $\varphi = u_1 - u_2$.

On rappelle que $H^{\frac{1}{2}}(\partial\Omega)=\mathrm{Im}\gamma$ et que $H^{\frac{1}{2}}(\partial\Omega)$ est un espace de Hilbert avec la norme définie dans l'exercice 2.25. On note $H^{-\frac{1}{2}}(\partial\Omega)$ l'espace dual de $H^{\frac{1}{2}}(\partial\Omega)$ (c'est-à-dire l'ensemble des applications linéaires continues de $H^{\frac{1}{2}}(\partial\Omega)$ dans \mathbb{R}).

3. Soit $v \in H_{\text{div}}(\Omega)$. Montrer que l'on peut définir un élément de $H^{-\frac{1}{2}}(\partial\Omega)$, noté T(v), en posant, pour $u \in H^{\frac{1}{2}}(\Omega)$,

$$\langle T(v), u \rangle_{H^{-\frac{1}{2}}(\partial\Omega), H^{\frac{1}{2}}(\partial\Omega)} = \int_{\Omega} \nabla \overline{u} \cdot v \, dx + \int_{\Omega} \overline{u} \operatorname{div}(v) \, dx, \tag{2.61}$$

avec $\overline{u} \in H^1(\Omega)$ telle que $\gamma(\overline{u}) = u$. (En particulier, le terme de droite de (2.61) est bien défini et ne dépend pas de \overline{u} si $\overline{u} \in H^1(\Omega)$ et $\gamma(\overline{u}) = u$.)

Corrigé – Grâce à la question 2 le terme de droite de (2.61) ne dépend pas du choix de \overline{u} . L'application T est donc bien défini sur $H^{\frac{1}{2}}(\partial\Omega)$. C'est clairement une application linéaire. Pour montrer qu'elle est continue (et donc que $T(v) \in H^{-\frac{1}{2}}(\partial\Omega)$) il suffit de remarquer que, pour tout $\overline{u} \in H^1(\Omega)$ telle que $\gamma(\overline{u}) = u$,

$$|\int_{\Omega} \nabla \overline{u} \cdot v \, \mathrm{d}x + \int_{\Omega} \overline{u} \, \mathrm{div}(v) \, \mathrm{d}x| \leq \| \left| \nabla \overline{u} \right| \|_{L^{2}(\Omega)} \| \left| v \right| \|_{L^{2}(\Omega)} + \| \left| \overline{u} \right| \|_{L^{2}(\Omega)} \| \mathrm{div}(v) \|_{L^{2}(\Omega)} \leq 2 \| \overline{u} \|_{H^{1}(\Omega)} \| v \|_{H_{\mathrm{div}}(\Omega)}.$$

En prenant la borne inférieure pour l'ensemble des \overline{u} de $H^1(\Omega)$ vérifiant $\gamma(\overline{u})=u$, on obtient $T(v)\in H^{-\frac{1}{2}}(\partial\Omega)$ et $\|T(v)\|_{H^{-\frac{1}{2}}(\partial\Omega)}\leq 2\|v\|_{H_{\mathrm{div}}(\Omega)}$.

On a ainsi défini une application T de $H_{\text{div}}(\Omega)$ dans $H^{-\frac{1}{2}}(\partial\Omega)$.

- 4. Montrer que l'application T est linéaire continue de $H_{\rm div}(\Omega)$ dans $H^{-\frac{1}{2}}(\partial\Omega)$.
 - Corrigé L'application T est clairement linéaire de $H_{\mathrm{div}}(\Omega)$ dans $H^{-\frac{1}{2}}(\partial\Omega)$. Elle est continue car la question précédente donne $\|T(v)\|_{H^{-\frac{1}{2}}(\partial\Omega)} \leq 2\|v\|_{H_{\mathrm{div}}(\Omega)}$.
- 5. On suppose dans cette question que $v \in H^1(\Omega)^2$ (on a donc aussi $v \in H_{\mathrm{div}}(\Omega)$). On note $\gamma(v)$ la fonction obtenue sur $\partial\Omega$ en prenant la trace de chacune des composantes de v. (On a donc $\gamma(v) \in H^{\frac{1}{2}}(\partial\Omega)^2 \subset L^2(\partial\Omega)^2$.) On note n(x) le vecteur normal à $\partial\Omega$, extérieur à Ω . Comme Ω est à frontière lipschitzienne, le vecteur n(x) est défini p.p. en $x \in \partial\Omega$ (p.p. signifie ici, comme d'habitude, p.p. pour la mesure de Lebesgue 1-dimensionnelle sur $\partial\Omega$) et la fonction $x \mapsto n(x)$ définit un élément de $L^\infty(\partial\Omega)$, voir [15, Paragraphe 4.2]). On obtient ainsi $\gamma(v) \cdot n \in L^2(\partial\Omega)$. Cette (classe de) fonction(s) $\gamma(u) \cdot n$ est appelée "trace normale de u sur $\partial\Omega$ ". Montrer que, en notant $d\lambda$ l'intégration par rapport à mesure de Lebesgue 1-dimensionnelle sur $\partial\Omega$,

$$\left\langle T(v),u\right\rangle _{H^{-\frac{1}{2}}(\partial\Omega),H^{\frac{1}{2}}(\partial\Omega)}=\int_{\partial\Omega}u\,\gamma(v)\cdot n\,\mathrm{d}\lambda \text{ pour tout }u\in H^{\frac{1}{2}}(\partial\Omega). \tag{2.62}$$

N.B. Cette question explique pourquoi l'application T(v) est souvent notée $v \cdot n$ même si $v \in H_{\text{div}(\Omega)}$ (et non à $H^1(\Omega)^2$). On peut aussi montrer que $H^{\frac{1}{2}}(\partial\Omega)$ est dense dans $L^2(\partial\Omega)$. Ceci permet de montrer que, lorsque $v \in H^1(\Omega)^2$, $\gamma(v) \cdot n$ est l'unique élément de $L^2(\partial\Omega)$ vérifiant (2.62).

Corrigé – On applique ici le théorème d'intégration par parties pour des éléments de $H^1(\Omega)$ (théorème 1.30). Il donne, pour $u \in H^{\frac{1}{2}}(\partial\Omega)$ et $\overline{u} \in H^1(\Omega)$ telle que $\gamma(\overline{u}) = u$,

$$\left\langle T(v),u\right\rangle _{H^{-\frac{1}{2}}(\partial\Omega),H^{\frac{1}{2}}(\partial\Omega)}=\int_{\Omega}\nabla\overline{u}\cdot v\;\mathrm{d}x+\int_{\Omega}\overline{u}\,\mathrm{div}(v)\;\mathrm{d}x=\int_{\partial\Omega}\gamma(\overline{u})\gamma(v)\cdot n\;\mathrm{d}\lambda=\int_{\partial\Omega}u\gamma(v)\cdot n\;\mathrm{d}\lambda.$$

Exercice 2.27 (Pas de trace normale sur une partie du bord)

On reprend ici les notations de l'exercice 2.26. Dans l'exercice 2.26, on a construit pour tout $v \in H_{\mathrm{div}}(\Omega)$, un élément de $H^{-\frac{1}{2}}(\Omega)$ c'est-à-dire une application linéaire continue de $H^{\frac{1}{2}}(\Omega)$ dans \mathbb{R} . On a noté T(v) cet élément de $H^{-\frac{1}{2}}(\Omega)$. L'application T Il vérifie les deux propriétés suivantes :

1. (Question 5 de l'exercice 2.26, T généralise la notion"classique" de trace normale) Si $u \in C^1(\bar{\Omega})$,

$$\left\langle T(v), u \right\rangle_{H^{-\frac{1}{2}}(\partial\Omega), H^{\frac{1}{2}}(\partial\Omega)} = \int_{\partial\Omega} u \, v \cdot n \, \mathrm{d}\lambda \text{ pour tout } u \in H^{\frac{1}{2}}(\partial\Omega)$$

2. (Question 4 de l'exercice 2.26, continuité de la trace normale) T est continu de $H_{\rm div}(\Omega)$ dans $H^{-\frac{1}{2}}(\Omega)$ et donc, en particulier,

$$\langle T(v_n),u\rangle_{H^{-\frac{1}{2}}(\partial\Omega),H^{\frac{1}{2}}(\partial\Omega)} \to \langle T(v),u\rangle_{H^{-\frac{1}{2}}(\partial\Omega),H^{\frac{1}{2}}(\partial\Omega)} \text{ si } v_n \to v \text{ dans } H_{\mathrm{div}}(\Omega) \text{ et } u \in H^{\frac{1}{2}}(\partial\Omega).$$

Soit maintenant I une partie du bord de Ω . On suppose que la mesure de Lebesgue 1-dimensionnelles de I est non nulle. Il semble naturel de poser noter $H^{\frac{1}{2}}(I)$ l'ensemble des restriction à I des éléments de $H^{\frac{1}{2}}(\Omega)$ (on rappelle de $H^{\frac{1}{2}}(\Omega) \subset L^2(\partial\Omega)$). Ce qui est équivalent à écrire

$$H^{\frac{1}{2}}(I) = \{ u \text{ telle que } u = \gamma(\overline{u}) \text{ p.p. sur } I \text{ avec } \overline{u} \in H^{1}(\Omega) \}. \tag{2.63}$$

(où p.p. signifie p.p. pour λ .) On se demande alors si il est possible de construire pour tout $v \in H_{\mathrm{div}}(\Omega)$ une application linéaire de $H^{\frac{1}{2}}(I)$ de \mathbb{R} , que nous noterons S_v , telle que l'application $v \mapsto S_v$ (de $H_{\mathrm{div}}(\Omega)$ dans le dual algébrique de $H^{\frac{1}{2}}(I)$) vérifie un analogue des deux propriétés de T citées ci dessus c'est-à-dire

1. (S généralise la notion"classique" de trace normale) Si $u \in C^1(\bar{\Omega})$,

$$S_v(u) = \int_I u \, v \cdot n \, \mathrm{d}\lambda \text{ pour tout } u \in H^{\frac{1}{2}}(I). \tag{2.64}$$

2. (Continuité "simple" de la trace normale)

$$S_{v_n}(u) \to S_v(u) \text{ si } v_n \to v \text{ dans } H_{\text{div}}(\Omega) \text{ et } u \in H^{\frac{1}{2}}(I).$$
 (2.65)

(Dans un souci de simplication des notations on a noté $S_v(u)$ la quantité $\langle S_v, u \rangle_{(H^{\frac{1}{2}}(I))^{\star}, H^{\frac{1}{2}}(I)}$, cette dernière notation étant cependant plus conforme aux notations habituelles de ce livre.)

Dans cet exercice on donne un exemple simple pour lequel il est impossible de construire une telle application S. On prend $\Omega=]0,a[^2,$ avec a>0 tel que $a\sqrt{2}<1,$ et $I=]0,a[\times\{0\}.$ L'objectif est de montrer qu'il n'existe pas d'application S (de $H_{\rm div}(\Omega)$ dans le dual algébrique de $H^{\frac{1}{2}}(I)$) vérifiant (2.64)-(2.65) Pour cela, on va raisonner par l'absurde. On suppose qu'il existe S vérifiant (2.64)-(2.65)

Soit $0 < \beta < \frac{1}{2}$. Pour $x \in]0, \sqrt{2}[^2]$, on pose ($|\cdot|$ désignant la norme euclidienne classique de \mathbb{R}^2)

$$u(x) = (-\ln(|x|))^{\beta}.$$

On a $u \in C^{\infty}(\Omega)$ (plus précisément, la restriction de u à Ω appartient à $C^{\infty}(\Omega)$) et on sait que $u \in H^1(\Omega)$ (voir exercice 1.5). La trace de u sur I est égale (p.p. pour λ) à la trace classique. On note x_1, x_2 les composantes de $x \in \mathbb{R}^2$. On prend maintenant $v = (v_1, v_2)$ avec

$$v_1 = -\frac{\partial u}{\partial x_2}, \ v_2 = \frac{\partial u}{\partial x_1}.$$

1. Montrer que $\operatorname{div}(v) = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} = 0$ et donc que $v \in H_{\operatorname{div}}(\Omega)$.

Corrigé – Comme
$$u \in C^{\infty}(\Omega)$$
, $\operatorname{div}(v) = -\frac{\partial^2 u}{\partial x_1 \partial x_2} + \frac{\partial^2 u}{\partial x_2 \partial x_1} = 0$. Comme $u \in H^1(\Omega)$, on a aussi v_1 , $v_2 \in L^2(\Omega)$, et donc $v \in H_{\operatorname{div}}(\Omega)$.

On définit $v^{(n)}$, pour n tel que $(a+\frac{1}{n})\sqrt{2} < 1$, par

$$v^{(n)}(x_1, x_2) = v(x_1 + \frac{1}{n}, x_2).$$

2. Montrer que $v^{(n)} \in C^{\infty}(\bar{\Omega})$ et $v^{(n)} \to v$ dans $H_{\text{div}}(\Omega)$ quand $n \to +\infty$.

Corrigé – La condition $(a+\frac{1}{n})\sqrt{2} < 1$ permet d'assurer que $v^{(n)}$ est bien définie et que $\operatorname{div}(v^{(n)}) = 0$. Puis le théorème de continuité en moyenne dans $L^2(\Omega)$ donne $v^{(n)} \to v$ dans $L^2(\Omega)^2$ et donc $v^{(n)} \to v$ dans $H_{\operatorname{div}}(\Omega)$ quand $n \to +\infty$.

Plus précisément, on choisit $n_0 > 0$ tel que $(a + \frac{1}{n_0})\sqrt{2} < 1$ et on définit, pour $i = 1, 2, g_i$ par $g_i = v_i$ dans $]0, a + \frac{1}{n_0}[^2$ et $g_i = 0$ hors de $]0, a + \frac{1}{n_0}[^2$ comme $g_i \in L^2(\mathbb{R}^2)$, le théorème de continuité en moyenne dans $L^2(\Omega)$ donne $\lim_{n \to +\infty} \|g_i(\cdot + \frac{1}{n}, \cdot) - g_i\|_{L^2(\mathbb{R}^2)} = 0$. Mais, pour $n \ge n_0$,

$$||v_i^{(n)} - v_i||_{L^2(\Omega)} = ||g_i(\cdot + \frac{1}{n}, \cdot) - g_i||_{L^2(\Omega)} \le ||g_i(\cdot + \frac{1}{n}, \cdot) - g_i||_{L^2(\mathbb{R}^2)}$$

et donc $v^{(n)} \to v$ dans $L^2(\Omega)^2$ quand $n \to +\infty$.

On note χ la fonction identiquement égale à 1 sur $\partial\Omega$ (cette fonction est bien dans $H^{\frac{1}{2}}(I)$ car c'est la trace de la fonction qui vaut 1 sur tout Ω).

3. Comme $v^{(n)} \cdot n = -v_2^{(n)}$ sur I, montrer que

$$S_{v^{(n)}}(\chi) = \int_{I} \chi \, v^{(n)} \cdot n \, d\lambda(x) = \int_{0}^{a} \beta \frac{\left(-\ln(x_{1} + \frac{1}{n})\right)^{\beta - 1}}{x_{1} + \frac{1}{n}} \, \mathrm{d}x_{1}.$$

Montrer que le terme de gauche de cette égalité tend vers $S_v(\chi)$ et que le terme de droite tend vers $+\infty$ (car $\beta > 0$). En déduire la contradiction souhaitée.

Corrigé – La condition (2.65) donne que $S_{v^{(n)}}(\chi) \to S_v(\chi)$. L'égalité avec le terme de droite s'obtient en calculant $\frac{\partial u}{\partial x_1}$. Comme $\beta>0$ le terme de droite tend vers $+\infty$ par convergence monotone. En effet, il suffit de remarquer que

$$\int_0^a \frac{\left(-\ln(x_1+\frac{1}{n})\right)^{\beta-1}}{x_1+\frac{1}{n}} \, \mathrm{d}x_1 \ge \int_{\frac{1}{n}}^a \frac{\left(-\ln(x_1)\right)^{\beta-1}}{x_1} \, \mathrm{d}x_1,$$

et d'appliquer le théorème de convergence monotone à la fonction g_n définie par

$$g_n(x_1) = \frac{(-\ln(x_1))^{\beta - 1}}{x_1} \text{ si } \frac{1}{n} < x_1 < a \text{ et } g_n(x_1) = 0 \text{ si } 0 < \frac{1}{n}.$$

On a donc $S_v(\chi) = +\infty$ ce qui est impossible car $v \in H_{\mathrm{div}}(\Omega)$ et donc S_v est une application de $H^{\frac{1}{2}}(I)$ dans \mathbb{R} et $\chi \in H^{\frac{1}{2}}(I)$.

4. Montrer que $\langle T(v), \chi \rangle_{H^{-\frac{1}{2}}(\partial\Omega), H^{\frac{1}{2}}(\partial\Omega)} = 0$ où T est l'application de l'exercice 2.26.

Montrer que $\lim_{n\to+\infty} \int_{\partial\Omega} \chi \, v^{(n)} \cdot n \, d\lambda(x) = 0$.

Corrigé – Le fait que $\langle T(v), \chi \rangle_{H^{-\frac{1}{2}}(\partial\Omega), H^{\frac{1}{2}}(\partial\Omega)} = 0$ est dû au fait que χ est trace d'une fonction constante et que $\operatorname{div}(v) = 0$. Le fait que $\lim_{n \to +\infty} \int_{\partial\Omega} \chi \, v^{(n)} \cdot n \, d\lambda(x) = 0$ est alors une conséquence de la continuité de T et de la question 5 de l'exercice 2.26.

Exercice 2.28 (Petite généralisation du théorème de Liouville)

Le théorème de Liouville 16 s'énonce ainsi :

Théorème 2.35 (Liouville) Si f est une fonction définie et holomorphe 17 sur tout le plan complexe, alors f est constante dès lors qu'elle est bornée.

^{16.} Joseph Liouville (1809-1882), mathématicien français, connu pour ses travaux en théorie des nombres et analyse complexe, et fondateur du Journal de Mathématiques Pures et Appliquées.

^{17.} Une fonction holomorphe est une fonction d'une variable complexe à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C.

La démonstration de ce théorème se fait en général en utilisant les estimées de Cauchy d'une fonction holomorphe définie sur un voisinage d'un disque fermé, qui fournissent des bornes pour chacune des dérivées de cette fonction au centre du disque.

On rappelle que si $f = \Re e(f) + i \mathcal{I} m(f)$ est une fonction holomorphe de $\mathbb C$ dans $\mathbb R$, alors ses parties réelle $\Re e(f)$ et imaginaire $\mathcal{I}m(f)$ sont harmoniques. On montre ici le résultat suivant, qui généralise ce théorème au fonctions localement intégrables et bornées inférieurement de \mathbb{R}^d dans $\mathbb{R}: f$ est constante dès lors qu'elle est bornée.

Théorème 2.36 (Liouville généralisé) Soient $d \geq 1$ et $u \in L^1_{loc}(\mathbb{R}^d)$ une fonction harmonique, c'est-à-dire telle que $\Delta u = 0$ dans $\mathcal{D}^{\star}\mathbb{R}^d$, bornée inférieurement, c'est-à-dire telle qu'il existe $c \in \mathbb{R}$ tel que $u \geq c$ p.p., alors uest constante, au sens où il existe $C \in \mathbb{R}$ tel que u = C p.p..

1. Montrer qu'il suffit de prouver le théorème avec c=0. Puis, en régularisant u avec une suite de noyaux régularisants, montrer qu'il suffit de prouver le théorème dans le cas $u \in C^{\infty}(\mathbb{R}^d)$,

Corrigé – Si le théorème est vrai avec dans le cas $u \ge 0$ p.p., il est aussi vrai si il existe $c \in \mathbb{R}$ tel que $u \ge c$ p.p.. En effet, en considérant la fonction u-c on est ramené au cas u>0.

Soit $(\rho_n)_{n\in\mathbb{N}^*}$ une suite de noyaux régularisants, c'est-à-dire :

$$\rho \in \mathcal{D}(\mathbb{R}^d), \ \int_{\mathbb{R}^d} \rho \ \mathrm{d}x = 1, \ \rho \ge 0, \ \rho(x) = 0 \ si \ |x| \ge 1,$$
 et, pour $n \in \mathbb{N}^*, \ x \in \mathbb{R}^d, \ \rho_n(x) = n^d \rho(nx).$

Pour $p \in \mathbb{N}^*$, on note B_p la boule (pour la norme euclidienne) de \mathbb{R}^d de centre 0 et rayon p et 1_{B_p} la fonction caractéristique de B_p .

Pour $n \in \mathbb{N}^*$, on définit la fonction u_n par $u_n = u \star \rho_n$. La fonction u_n est bien définie. Sur la boule B_p , on remarque que, pour tout $n \in \mathbb{N}^*$, $u_n = (u1_{B_{p+1}}) \star \rho_n$. Le théorème de continuité en moyenne dans $L^1(\mathbb{R}^N)$ donne $u1_{B_{p+1}} \star \rho_n \to u1_{B_{p+1}}$ dans $L^1(\mathbb{R}^N)$ quand $n \to +\infty$ (voir [20] théorème 5.21). On en déduit que $u_n \to u$ dans $L^1(B_p)$. Comme p est arbitraire, ceci est noté " $u_n \to u$ dans $L^1_{loc}(\mathbb{R}^d)$ ".

Les théorèmes de continuité et dérivabilité sous le signe intégrale donne que $f_n \in C^{\infty}(\mathbb{R}^d)$ (voir par exemple, [20] exercice 7.22).

On remarque maintenant que pour $x \in \mathbb{R}^d$ et tout $n \in \mathbb{N}^*$, comme $\Delta u = 0$ dans $\mathcal{D}^*(\mathbb{R}^d)$ et $\rho_n(x - \cdot) \in$ $\mathcal{D}(\mathbb{R}^d)$, en notant dy l'élément d'intégration dans \mathbb{R}^d (pour la mesure de Lebesgue),

$$0 = \langle \Delta u, \rho_n(x - \cdot) \rangle_{\mathcal{D}^*(\mathbb{R}^d), \mathcal{D}(\mathbb{R}^d)} = \int_{\mathbb{R}^d} u(y) \Delta \rho_n(x - y) \, dy = \Delta u_n(x).$$

Enfin, il est clair que $u_n \geq 0$.

On a donc, $u_n \in C^{\infty}(\mathbb{R}^d)$, $\Delta u_n = 0$ dans \mathbb{R}^n et $u_n \geq 0$.

si le théorème est montré pour une telle fonction u_n , il existe alors $C_n \in \mathbb{R}$ telle que $u_n = C_n$. Mais, comme $u_n \to u$ dans $L^1_{loc}(\mathbb{R}^d)$, La suite $(C_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} . On note C sa limite (par exemple, $C = \int_{B_1} u(x)dx$) et on obtient u = C p.p..

On suppose donc maintenant que $u \in C^{\infty}(\mathbb{R}^d)$ et $u \geq 0$. Pour r > 0, on note $B_r = \{x \in \mathbb{R}^d; |x| < r\}$ et $C_r = \{x \in \mathbb{R}^d; |x| = r\}$ et pour tout $a \in \mathbb{R}^d$, on note $B_{a,r} = \{ x \in \mathbb{R}^d; |x - a| < r \}.$

2. Soit r > 0. Montrer que l'intégration de Δu sur B_r donne

$$\int_{C_r} \nabla u(x) \cdot n(x) \, \mathrm{d}\gamma(x) = 0,$$

où n(x) est la normale extérieure à B_r et γ la mesure de Lebesgue d-1 dimensionnelle sur C_r (voir remarque 1.31, la notation est un peu incorrecte car cette mesure dépend de r).

En se ramenant à C_1 et en utilisant une dérivation sous le signe \int , en déduire que la quantité

$$\frac{1}{r^{d-1}} \int_{C_r} u(x) \, \mathrm{d}\gamma(x)$$

est indépendante de r.

Corrigé – On utilise ici la formule de Green pour une fonction $u \in C^2(\overline{B}_r)$, elle donne, comme $\Delta u = 0$,

$$0 = \int_{B_r} \Delta u(x) \, \mathrm{d}x = \int_{C_r} \nabla u(x) \cdot n(x) \, \mathrm{d}\gamma(x).$$

Soit r > 0, le changement de variable x = ry donne (en notant que le jacobien du changement de variable est constant)

$$h(r) = \frac{1}{r^{d-1}} \int_{C_r} u(x) \,\mathrm{d}\gamma(x) = \int_{C_1} u(ry) \,\mathrm{d}\gamma(y).$$

En dérivant le terme de droite sous le signe intégrale et faisant le changement de variable ry = x (noter que n(x) = x/r = y),

$$h'(r) = \int_{C_1} \nabla u(ry) \cdot y \, d\gamma(y) = \frac{1}{r^{d-1}} \int_{C_r} \nabla u(x) \cdot n(x) \, d\gamma(y).$$

La fonction h est donc constante sur \mathbb{R}_+ . On note H cette constante dans la suite.

3. Soit r>0. En utilisant le changement de variables $x\mapsto (r,y)$ avec r=|x| et $y\in C_1$, montrer que la quantité

$$\frac{1}{r^d} \int_{B_r} u(x) \, \mathrm{d}x$$

est indépendante de r. En déduire que, pour tout r > 0,

$$\frac{1}{|B_r|} \int_{B_r} u(x) \, \mathrm{d}x = u(0).$$

De manière analogue, montrer que, pour tout $a \in \mathbb{R}^d$ et tout r > 0,

$$\frac{1}{|B_r|} \int_{B_{a,r}} u(x) \, \mathrm{d}x = u(a).$$

Corrigé – Le changement de variables $x \mapsto (r, y)$ avec r = |x| et $y \in C_1$ on obtient (voir par exemple [20] exercice 7.28)

$$\int_{B_r} u(x) \, dx = \int_0^r \rho^{d-1} \left(\int_{C_1} u(\rho y) \, d\gamma(y) \right) d\rho = \int_0^r \left(\int_{C_\rho} u(z) \, d\gamma(z) \right) d\rho = \int_0^r \rho^{d-1} H \, d\rho = \frac{r^d}{d-1}.$$

Il suffit maintenant d'utiliser la continuité de u en 0,

$$\left|\frac{1}{|B_r|}\int_{B_r} u(x) \, \mathrm{d}x - u(0)\right| \le \sup_{x \in B_r} |u(x) - u(0)| \to 0 \text{ quand } r \to 0.$$

On en déduit que, pour tout r > 0,

$$\frac{1}{|B_r|} \int_{B_r} u(x) \, \mathrm{d}x = u(0).$$

Bien sûr, 0 ne joue au aucun rôle particulier, on peut translater la fonction u et on obtient alors, pour tout $a \in \mathbb{R}^d$ et tout r > 0,

$$\frac{1}{|B_r|} \int_{B_{a,r}} u(x) \, \mathrm{d}x = u(a).$$

Noter que jusqu'à maintenant, seul le fait que $u \in L^1_{loc}(\mathbb{R}^d)$ a été utilisé. Le fait que u est bornée inférieurement n'est utile que pour la dernière question.

4. Soit $a \in \mathbb{R}^d$. Comme u > 0, on a pour tout $r > \alpha = |a|$,

$$\int_{B_{r-\alpha}} u(x) \, \mathrm{d}x \le \int_{B_{n,r}} u(x) \, \mathrm{d}x \le \int_{B_{r+\alpha}} u(x) \, \mathrm{d}x.$$

En déduire que u(a) = u(0) et donc que u est constante.

Corrigé – La double inégalité proposée vient de $B_{r-\alpha} \subset B_{a,r} \subset B_{r+\alpha}$ et $u \ge 0$. On en déduit

$$\frac{|B_{r-\alpha}|}{|B_r|}\frac{1}{|B_{r-\alpha}|}\int_{B_{r-\alpha}}u(x)\;\mathrm{d}x\leq \frac{1}{|B_r|}\int_{B_{a,r}}u(x)\;\mathrm{d}x\leq \frac{|B_{r+\alpha}|}{|B_r|}\frac{1}{|B_{r+\alpha}|}\int_{B_{r+\alpha}}u(x)\;\mathrm{d}x,$$
 Quand $r\to\infty$, on obtient (noter que α est fixe) $u(a)=u(0)$. On a donc bien montré que u est constante.

Corrigés des exercices 2.7

Exercice 2.1 (Régularité en dimension 1) Soit $\varphi \in C([0,1],\mathbb{R})$. Pour $x \in [0,1]$ on pose

$$\psi(x) = \int_0^x \varphi(t)dt - x \int_0^1 \varphi(t)dt.$$

On a donc $\psi \in C^1([0,1]), \psi(0) = \psi(1) = 0$ et la dérivée faible de ψ est égale p.p. à sa dérivée classique (voir la Définition 1.2), c'est-à-dire

$$D\psi(x) = \psi'(x) = \varphi(x) - \int_0^1 \varphi(s)ds$$
 pour presque tout $x \in]0,1[$.

On a donc $\psi \in L^2(\Omega)$ et $D\psi \in L^2(\Omega)$, ce qui prouve que $\psi \in H^1(]0,1[)$. Comme $\psi(0)=\psi(1)=0$, on a même $\psi \in H_0^1(\Omega)$ (voir la section 1.5). On peut donc prendre $v = \psi$ dans (2.16), on obtient

$$\int_0^1 Du(t)\varphi(t) dt - \int_0^1 \varphi(t)dt \int_0^1 Du(t)dt = \int_0^1 f(x)\psi(x) dx.$$

Comme F est de classe C^1 et F'=f, on a (en utilisant aussi $\psi(0)=\psi(1)=0$)

$$\int_0^1 f(x)\psi(x) \, \mathrm{d}x = \int_0^1 F'(x)\psi(x) \, \mathrm{d}x = -\int_0^1 F(x)\psi'(x) \, \mathrm{d}x = -\int_0^1 F(x)\varphi(x) \, \mathrm{d}x + \int_0^1 F(x) \, \mathrm{d}x \int_0^1 \varphi(t) \, \mathrm{d}t.$$

En posant $c=\int_0^1 Du(t)dt+\int_0^1 F(t)dt$, on a donc

$$\int_0^1 (Du(t) + F(t))\varphi(t) dt = c \int_0^1 \varphi(t)dt \text{ pour tout } \varphi \in C([0,1]).$$

Comme $Du + F - c \in L^2(]0,1[)$ et que C([0,1]) est dense dans $L^2(]0,1[)$, on en déduit

$$Du = -F + c \text{ p.p. dans }]0,1[.$$

On pose maintenant

$$w(x) = \int_0^x (-F(t) + c)dt \text{ pour } x \in [0, 1].$$

Comme w est de classe C^1 (la fonction w est même de classe C^2) la dérivée par transposition de w est une dérivée faible et est égale p.p. à la dérivée classique de w. On a donc Dw = w' = -F + c p.p.. On a donc Dw = Du p.p. et on en déduit que w - u est une fonction presque partout égale à une constante (voir l'exercice 1.2). En identifiant la (classe de) fonction(s) u a son représentant continu, on a donc u de classe C^2 , u' = -F + c et u'' = -F' = f. On a aussi u(0) = u(1) (car $u \in H_0^1([0,1])$) et donc le représentant continu de u vérifie u(0) = u(1) = 0).

Exercice 2.2 (Décomposition spectrale en dimension 1)

1. On a vu au théorème 2.13 que $N(T)=\{f\in E, Tf=0 \text{ p.p.}\}=\{0\}$, que les valeurs propres de T sont toutes strictement positives et qu'il existe une base hilbertienne de $L^2(]0,1[)$ formée de fonctions propres de T (théorème 2.14). On cherche ici une telle base hilbertienne. Pour cela, on trouve tout d'abord les valeurs propres de T.

On rappelle que, pour $f \in E$, on a $Tf \in H_0^1([0,1])$ et, en posant u = Tf,

$$\int_0^1 Du(t)Dv(t) dt = \int_0^1 f(t)v(t)dt \text{ pour tout } v \in H_0^1(]0,1[).$$

Soit λ une valeur propre de T. On sait déjà que $\lambda > 0$. Il existe $f \in E$, $f \neq 0$ telle que $Tf = \lambda f$. En posant u = Tf, on a donc $u \in H^1_0(]0,1[)$, $u \neq 0$ et $f = u/\lambda$, ce qui donne

$$\int_{0}^{1} Du(t)Dv(t) dt = \frac{1}{\lambda} \int_{0}^{1} u(t)v(t)dt \text{ pour tout } v \in H_{0}^{1}(]0,1[).$$

Comme $u \in H_0^1(]0,1[)$, on a u continu sur [0,1] (plus précisément, u admet un représentant continu et on identifie u à ce représentant) et u(0) = u(1) = 0. L'exercice 2.1 montre alors que u est de classe C^2 et que

$$-\lambda u''(x) = u(x) \text{ pour tout } x \in]0,1[. \tag{2.66}$$

2. Pour chercher les valeurs propres, la question précédente nous a ramené à la résolution d'une équation différentielle linéaire classique. Il est bien connu (c'est, par exemple, une conséquence du théorème d'existence et d'unicité de Cauchy-Lipschitz ¹⁸) que l'ensemble de solutions de (2.66) est un espace vectoriel de dimension 2, engendré par le fonctions x → sin(x/√λ) et x → cos(x/√λ).

Si λ est valeur propre de T, il existe donc (par la question précédente) $u \neq 0$ telle que $Tu = \lambda u$, u de classe C^2 , u continu sur [0,1], u(0) = u(1) = 0 et u solution de (2.66). Il existe donc $A, B \in \mathbb{R}$ t.q.

$$u(x) = A\sin(\frac{x}{\sqrt{\lambda}}) + B\cos(\frac{x}{\sqrt{\lambda}})$$
 pour tout $x \in [0, 1]$.

Comme u(0)=0, on a nécessairement B=0. Puis, comme $u\neq 0$, on a nécessairement $A\neq 0$. Enfin, comme u(1)=0, on a nécessairement $\sin(1/\sqrt{\lambda})=0$, ce qui donne l'existence de $k\in \mathbb{Z}$ tel que $1/\sqrt{\lambda}=k\pi$. Comme $\lambda>0$, on a donc $k\in \mathbb{N}^{\star}$, $1/\lambda=k^2\pi^2$ et $u(x)=A\sin(k\pi x)$ pour tout $x\in [0,1]$ avec $A\neq 0$ (la fonction u vérifie bien $Tu=\lambda u$, ce qu'on peut vérifier facilement en remarquant qu'il suffit d'écrire la formulation faible en prenant des fonctions v dans $\mathcal{D}(]0,1[)$, car $\mathcal{D}(]0,1[)$ est dense dans $H_0^1(]0,1[)$).

On a ainsi trouvé toutes les valeurs propres de T, $\mathcal{VP}(T) = \{\frac{1}{k^2\pi^2}, k \in \mathbb{N}^*\}$. La section 2.2 donne alors que $\sigma(T) \setminus \{0\} = \mathcal{VP}(T) \setminus \{0\}$. Enfin comme T n'est pas surjectif (ce qui est toujours le cas pour un opérateur linéaire compact en dimension infinie), on a $0 \in \sigma(T)$ et donc $\sigma(T) = \mathcal{VP}(T) \cup \{0\}$.

^{18.} Rudolph Otto Sigismund Lipschitz (1832-1903), mathématicien allemand connu en particulier pour ses travaux en analyse, équations différentielles et théorie des nombres.

3. La question précédente nous a donné les valeurs propres de T mais aussi les sous espaces propres correspondants. Cette question est alors une application immédiate des résultats de la section 2.2. Pour $n \in \mathbb{N}^*$, on pose $e_n(x) = \sqrt{2}\sin(p\pi x)$ pour tout $x \in [0,1]$. La famille $\{e_n, n \in \mathbb{N}^*\}$ est une base hilbertienne de $L^2(]0,1[)$. On a donc, pour tout $f \in L^2(]0,1[)$,

$$||f - \sum_{p=1}^{n} c_p \sin(p\pi \cdot)||_2 \to 0$$
, quand $n \to \infty$,

c'est-à-dire $f=\sum_{p=1}^{\infty}c_{p}\sin(p\pi\cdot)$, la convergence de la série étant à prendre dans l'espace $L^{2}(]0,1[)$.

Cette série n'est pas la série de Fourier de f. En effet, la série de Fourier de f est obtenue avec les fonctions $\sin(2p\pi\cdot)$ et $\cos(2p\pi\cdot)$ ($p\in \mathbb{Z}$). La décomposition de f en série de Fourier correspond aussi à l'opérateur $u\mapsto u''$, mais avec des conditions périodiques (u(0)=u(1) et u'(0)=u'(1)) au lieu des conditions de Dirichlet (u(0)=u(1)=0).

4. Soit $f \in E$. La fonction u est solution du problème (2.67) si et seulement si $T(f - \mu u) = u$, c'est-à-dire

$$T(u) + \frac{1}{\mu}u = \frac{T(f)}{\mu}. (2.67)$$

Comme T est compact, ce problème a une solution si et seulement si f est orthogonal (dans E) au sous espace propre de T associé à $(-1/\mu)$.

Ceci peut se redémontrer à partir des questions précédentes. En effet, on pose $b_n=(f/e_n)_E$ (la famille $\{e_n,\,n\in\mathbb{N}^\star\}$ étant la base hilbertienne de E donnée la question 3), de sorte que $f=\sum_{p=1}^\infty b_n e_n$ (cette série étant convergente dans E). On a alors aussi

$$T(f) = \sum_{n=1}^{+\infty} \frac{b_n}{n^2 \pi^2} e_n,$$

cette série étant aussi convergente dans E.

Soit $u \in E$. On pose $a_n = (u/e_n)_E$, on a ainsi

$$T(u) + \frac{1}{\mu}u = \sum_{n=1}^{+\infty} a_n \frac{\mu + n^2 \pi^2}{\mu n^2 \pi^2} e_n,$$

cette série étant également convergente dans E. La fonction u est donc solution de (2.67) si et seulement si

$$a_n(\mu + n^2\pi^2) = \mu b_n$$
 pour tout $n \in \mathbb{N}^*$.

Si $\mu \neq -n^2\pi^2$ pour tout $n \in \mathbb{N}^*$, il existe une et une seule solution à (2.67).

Si il existe $p \in \mathbb{N}^*$ tel que $\mu = p^2 \pi^2$, l'équation (2.67) a une solution si et seulement si $b_p = 0$, c'est-à-dire si et seulement si f est orthogonal (dans E) à e_p . Ce qui est équivalent à dire que f est orthogonal au sous espace propre de T associé à la valeur propre $(-1/\mu)$.

Exercice 2.3 (Première valeur propre de $-\Delta$)

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite $\det H^1_0(\Omega)\setminus\{0\}$ telle que $\lim_{n\to+\infty}Q(u_n)=\mu$. Par homogénéité on peut supposer que $\|u_n\|_{L^2(\Omega)}=1$. La suite $(u_n)_{n\in\mathbb{N}}$ est donc bornée dans $H^1_0(\Omega)$ et on peut supposer (quitte à extraire une sous-suite) qu'elle converge faiblement dans $H^1_0(\Omega)$. On note u cette limite. Par le théorème de Rellich (théorème 1.33) la suite $(u_n)_{n\to+\infty}$ converge vers u dans $L^2(\Omega)$ et donc $\|u\|_{L^2(\Omega)}=1$. Comme $u\neq 0$, Q(u)>0 (on rappelle en effet que $\nabla u=0$ p.p. implique u=0 p.p. car $u\in H^1_0(\Omega)$). De plus, grâce à la convergence faible dans $H^1_0(\Omega)$ de u_n vers u et l'inégalité de Cauchy-Schwarz,

$$Q(u) = \lim_{n \to +\infty} \int_{\Omega} \nabla u_n(x) \cdot \nabla u(x) \, dx \le \lim_{n \to +\infty} \sqrt{Q(u_n)} \sqrt{Q(u)} = \sqrt{\mu} \sqrt{Q(u)}$$

On en déduit que $0 < Q(u) \le \mu$ et donc par définition de $\mu = \inf\{Q(v), v \in H_0^1(\Omega) \setminus \{0\}\}$, on obtient que $Q(u) = \mu$.

2. Soit $\varphi \in \mathcal{D}(\Omega)$, $\varphi \neq 0$. Pour $0 < t < \frac{\|u\|_{H^1_0(\Omega)}}{\|\varphi\|_{H^1_0(\Omega)}}$, $u + t\varphi \neq 0$ et donc $Q(u + t\varphi) \geq Q(u) = \mu$. On en déduit

$$Q(u) + 2t \int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, \mathrm{d}x + t^2 \int_{\Omega} \nabla \varphi(x) \cdot \nabla \varphi(x) \, \mathrm{d}x \leq \mu (1 + 2t \int_{\Omega} u(x) \varphi(x) \, \mathrm{d}x + t^2 \int_{\Omega} \varphi(x)^2 \, \mathrm{d}x),$$

et donc, comme $Q(u) = \mu$, en divisant par 2t et faisant $t \to 0$,

$$\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx \le \mu \int_{\Omega} u(x) \varphi(x) \, dx.$$

En changeant φ en $-\varphi$,

$$\langle -\Delta u, \varphi \rangle_{\mathcal{D}^*(0), \mathcal{D}(\Omega)} = \int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx = \mu \int_{\Omega} u(x) \varphi(x) \, dx.$$

Cela signifie que $-\Delta u$ (élément de $\mathcal{D}^*(\Omega)$) est representé par la fonction μu (élément de $L^2(\Omega)$) et donc identifié avec μu . On a bien montré que $u \in D(A)$ et $Au = \mu u$ (dans $L^2(\Omega)$, ce que l'on note $Au = \mu u$ p.p.).

Montrons que μ est bien la la plus petite valeur propre de A. En effet, Soit ν une valeur propre de A. Il existe alors $v \in H_0^1(\Omega), v \neq 0$, tel que $Av = \nu v$. On a donc, pour tout $w \in \mathcal{D}(\Omega)$ et donc aussi (par densité) pour tout $w \in H_0^1(\Omega)$,

$$\int_{\Omega} \nabla v(x) \cdot \nabla w(x) \, dx = \nu \int_{\Omega} v(x) w(x) \, dx.$$

En prenant w = v, ceci donne $Q(v) = \nu$ et donc $\nu \ge \mu$.

3. Si u est de signe constant, c'est-à-dire $u \ge 0$ p.p. ou $u \le 0$ p.p., le résultat est immédiat. On suppose donc que u n'est pas de signe constant.

On utilise alors le lemme suivant facile à démontrer :

Lemme 2.37 *Soient a, b, c, d* $\subset \mathbb{R}_{+}^{*}$.

$$\min\{\frac{a}{b}, \frac{c}{d}\} \le \frac{a+c}{b+d} \le \max\{\frac{a}{b}, \frac{c}{d}\}.$$

De plus les inégalités sont strictes sauf si $\min\{\frac{a}{b}, \frac{c}{d}\} = \max\{\frac{a}{b}, \frac{c}{d}\}$.

En appliquant ce lemme avec $a=\int_{\Omega}|\nabla u^+(x)|^2\,\mathrm{d}x$, $b=\int_{\Omega}u^+(x)^2\,\mathrm{d}x$ et l'équivalent pour c et d avec - au lieu de +, on obtient que Q(u) est entre $Q(u^+)$ et $Q(u^-)$. Comme $Q(u^\pm)\leq Q(u)$, on en déduit $Q(u^+)=Q(u^-)=Q(u)=\mu$. On a d'ailleurs aussi $Q(|u|)=\mu$.

Exercice 2.4 (Inégalité de Poincaré "moyenne sur le bord") Le plus facile est probablement de raisonner par contradiction. Si C n'existe pas, il existe une suite $(u_n)_{n\in\mathbb{N}}$ de $H^1(\Omega)$ telle que, pour tout $n\in\mathbb{N}$

$$||u_n||_{L^2(\Omega)} \ge n|||\nabla u_n|||_{L^2(\Omega)}.$$

Par homogénéité, on peut supposer $\|u_n\|_{L^2(\Omega)}=1$. La suite $(u_n)_{n\in\mathbb{N}}$ est alors bornée dans $H^1(\Omega)$. Elle converge donc (après extraction d'une sous-suite) faiblement dans $H^1(\Omega)$. On note u la limite. Par le théorème 1.34, $u_n\to u$ dans $L^2(\Omega)$ et donc $\|u\|_{L^2(\Omega)}=1$. D'autre part $\nabla u_n\to \nabla u$ faiblement dans $L^2(\Omega)^N$ et comme $\nabla u_n\to 0$ dans $L^2(\Omega)^N$ on a donc $\nabla u=0$ (dans $L^2(\Omega)^N$). Comme Ω est connexe, ceci prouve que u est constante, c'est-à-dire qu'il existe $a\in\mathbb{R}$ tel que u=a p.p. dans Ω (exercice 1.4). Mais, dans ce cas, la trace de u sur $\partial\Omega$ est aussi égale à a p.p. (pour la mesure de Lebesgue N-1 dimensionnelle sur $\partial\Omega$), et donc $0=\int_A u(x) \,\mathrm{d}\gamma(x)=\int_A a\,\mathrm{d}\gamma(x)$. Ceci implique que a=0, ce qui est en contradiction avec $\|u\|_{L^2(\Omega)}=1$.

Exercice 2.5 (Une généralisation du théorème de Lax-Milgram)

1. Si F est un s.e.v. fermé d'un espace de Hilbert H, on a toujours $H=F\oplus F^{\perp}$. D'autre part, si $G\subset H$, on a $G^{\perp}=\bar{G}^{\perp}$.

En prenant $F = \operatorname{Im}(A)$, on a donc $H = \overline{\operatorname{Im}(A)} \oplus \operatorname{Im}(A)^{\perp}$.

On remarque maintenant que $\operatorname{Im}(A)^{\perp} \subset \operatorname{Ker}(A^{\star})$.

En effet, soit $u \in (\operatorname{Im} A)^{\perp}$. On a alors, en posant $f = A^*u$, $(A^*u \mid A^*u)_H = (f \mid A^*u)_H = (Af \mid u)_H = 0$, car $Af \in \operatorname{Im} A$. Donc, $A^*u = 0$, c'est-à-dire $u \in \operatorname{Ker} A^*$.

Comme A^* est injectif, on en déduit que $\operatorname{Im}(A)^{\perp} = \{0\}$ et donc $\overline{\operatorname{Im}(A)} = H$.

N.B.: En fait, on montrera à l'exercice 2.18 que l'on a toujours $\overline{\text{Im}(A)} = \text{Ker}(A^{\star})^{\perp}$ si $A \in \mathcal{L}(H)$ avec H espace de Hilbert.

2. (a) On raisonne par l'absurde. On suppose donc (quitte à extraire une sous-suite) que $\lim_{n\to+\infty} \|w_n\|_H = +\infty$ et on pose $\overline{w_n} = w_n/\|w_n\|_H$ de sorte que $\|\overline{w_n}\|_H = 1$.

La suite $(\overline{w_n})_{n\in\mathbb{N}}$ est donc bornée et comme $A\overline{w_n}=\frac{f_n}{\|w_n\|_H}\to 0$, la deuxième hypothèse du théorème donne que $\overline{w_n}\to 0$, ce qui impossible car $\|\overline{w_n}\|_H=1$ pour tout $n\in\mathbb{N}$.

(b) Comme la suite $(w_n)_{n\in\mathbb{N}}$ est bornée, on peut supposer (toujours quitte à extraire une sous-suite) que $w_n \to w$ faiblement dans H quand $n \to +\infty$.

On a alors $Aw_n \to Aw$ faiblement dans H. En effet, il suffit de remarquer que, pour tout $v \in H$,

$$(Aw_n | v)_H = (w_n | A^*v)_H \to (w | A^*v)_H = (Aw | v)_H.$$

Comme $Aw_n = f_n \to f$ quand $n \to +\infty$, on a donc Aw = f.

Exercice 2.6 (Problème elliptique à coefficients non bornés)

- 1. (Etude de l'espace fonctionnel.)
 - (a) Soit $u \in H^1(p,\Omega)$; comme $p|D_iu| \ge \alpha |D_iu|$ p.p., $D_iu \in L^2(\Omega)$ pour tout i et donc $u \in H^1(\Omega)$. On remarque aussi que

$$||u||_{H^{1}(\Omega)}^{2} = ||u||_{2}^{2} + \sum_{i=1}^{N} ||D_{i}u||_{2}^{2} \le \max\{1, \frac{1}{\alpha^{2}}\} ||u||_{H^{1}(p,\Omega)}^{2}.$$
(2.68)

(b) Il est clair que $H^1(p,\Omega)$ est un espace vectoriel normé et que sa norme est induite par un produit scalaire. Il faut maintenant montrer que $H^1(p,\Omega)$ est complet.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $H^1(p,\Omega)$. L'inégalité (2.68) montre que la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $H^1(\Omega)$. Il existe donc $u\in H^1(\Omega)$ tel que $u_n\to u$ et $D_iu_n\to D_iu$ (pour tout i) dans $L^2(\Omega)$ quand $n\to +\infty$.

Pour $i \in \{1, \dots, N\}$, la suite $(pD_iu_n)_{n \in \mathbb{N}}$ est de Cauchy dans $L^2(\Omega)$. Il existe donc $\xi_i \in L^2(\Omega)$ tel que $pD_iu_n \to \xi_i$ dans $L^2(\Omega)$ quand $n \to +\infty$. Mais, quitte à extraire une sous-suite, on a aussi $D_iu_n \to D_iu$ p.p. et $pD_iu_n \to \xi_i$ p.p., ce qui prouve que $\xi_i = pD_iu$.

Finalement, on a donc $u \in H^1(p,\Omega)$ et $u_n \to u$ dans $H^1(p,\Omega)$ quand $n \to +\infty$. Ce qui prouve que $H^1(p,\Omega)$ est un espace de Hilbert.

- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy de $H^1_0(p,\Omega)$ convergeante dans $H^1(p,\Omega)$. L'inégalité (2.68) montre que la suite $(u_n)_{n\in\mathbb{N}}$ converge aussi dans $H^1(\Omega)$. Comme $H^1_0(\Omega)$ est fermé dans $H^1(\Omega)$, on a donc $u\in H^1_0(\Omega)$ et donc $u\in H^1_0(p,\Omega)$. On a bien montré que $H^1_0(p,\Omega)$ est un s.e.v. fermé de $H^1(p,\Omega)$.
- 3. L'espace $H^1_0(p,\Omega)$ est un espace de Hilbert. L'existence et l'unicité de u solution de (2.17)(2.18) est alors une conséquence du théorème de Lax-Milgram (théorème 2.3). En effet, on définit la forme bilinéaire a et la forme linéaire T sur $H^1_0(p,\Omega)$ par

$$a(u, v) = \int_{0} p(x) \nabla u(x) \cdot \nabla v(x) \, dx,$$
$$T(v) = \int_{\Omega} h(x) v(x) \, dx,$$

La continuité de a et T sont facile à montrer car (par l'inégalité de Cauchy-Schwarz) $a(u,v) \leq \|u\|_{H_0^1(p,\Omega)} \|u\|_{H_0^1(p,\Omega)}$ et $T(v) \leq \|u\|_{H_0^1(p,\Omega)}$.

La coercivité de a est une conséquence de $p \le \alpha$ p.p. et de l'inégalité de Poincaré,

$$a(u,v) = \int_{\Omega} p^2(x) \nabla u(x) \cdot \nabla u(x) \, \mathrm{d}x \ge \frac{\alpha^2}{\alpha^2 + C_{\Omega}^2} \|u\|_{H_0^1(p,\Omega)},$$

où C_{Ω} est donnée dans le lemme 2.5.

- 4. (Précisions...)
 - (a) Soit $\varphi \in C_c^\infty(\Omega)$ et K une partie compacte de Ω telle que $\varphi = 0$ dans le complémentaire de K. On a alors $pD_i\varphi \in L^2(\Omega)$ car $D_i\varphi \in L^\infty(\Omega)$ et la restriction de p^2 à K est intégrable. On en déduit bien que $\varphi \in H^1_0(p,\Omega)$.
 - (b) On va constuire p à partir d'une fonction ψ de]0,1[dans $[1,+\infty[$ mesurable (et même continue) intégrable sur]0,1[d'intégrale 1 mais de carré non intégrable sur $]0,\varepsilon[$ pour tout $\varepsilon>0$ (par exemple, on peut prendre $\psi(x)=1/\sqrt{x}$) et d'une partie A dénombrable dense dans [0,1] (par exemple, l'ensemble des rationnels de [0,1].

On indexe la partie A avec \mathbb{N}^\star , c'est-à-dire $A=\{q_n,\,n\in\mathbb{N}^\star\}$, et on peut ajouter que $q_1=0$. On définit alors la fonction \bar{p} par $\bar{p}(x)=\sum_{n\in\mathbb{N}^\star}(\frac{1}{n}^2)\psi(x-q_n)$. La série $\sum_{n\in\mathbb{N}^\star}(\frac{1}{n}^2)\psi(\cdot-q_n)$ est convergente dans $\overline{\mathbb{R}}_+$ en tout point et est absolument convergente et donc convergente dans $L^1(]0,1[)$. On a donc $\bar{p}<+\infty$ p.p.. En prenant p(x)=1 si $\bar{p}(x)=+\infty$ et $p(x)=\bar{p}(x)$ sinon, on obtient ainsi une fonction p mesurable, bornée inférieurement par 1 et égale p.p. à \bar{p} .

Soit $\varphi \in C_c^{\infty}(\Omega)$, φ non nulle. On va montrer maintenant que $p\varphi' \not\in L^2(]0,1[)$ (et donc $\varphi \notin H_0^1(p,\Omega)$).

Comme φ est non nulle, il existe $a \in]0,1[$ tel que $\varphi'(a) \neq 0$. Par continuité de φ' il existe $\varepsilon > 0$ et $\eta > 0$ tel que $|\varphi'(x)| \geq \eta$ pour tout $x \in [a,a+2\varepsilon[$. On choisit alors $n \in \mathbb{N}^*$ tel que $q_n \in [a,a+\varepsilon]$ et on remarque que $\bar{p}(x)^2 \varphi'(x)^2 \geq (\eta^2/n^4) \psi^2(x-q_n)$ pour $x \in [a,a+2\varepsilon]$ et donc $p\varphi' \notin L^2(]0,1[)$ car

$$\int_{a}^{a+2\varepsilon} \psi^{2}(x-q_{n}) dx \ge \int_{0}^{\varepsilon} \psi^{2}(x) dx = +\infty.$$

Exercice 2.7 (Deux problèmes elliptiques emboîtés)

1. Le théorème 2.6 donne l'existence et l'unicité de w solution de (2.20). Pour $v \in H_0^1(\Omega)$, on pose alors

$$S(v) = \int_{\Omega} (M(x) + N(x)) \nabla w(x) \cdot \nabla v(x) \, dx.$$

L'application S est linéaire continue de $H_0^1(\Omega)$ dans \mathbb{R} , c'est donc un élément de $H^{-1}(\Omega)$. Le théorème 2.9 donne alors l'existence et l'unicité de u solution de (2.19). Ce qui est bien le résultat demandé.

2. La solution w de (2.20) dépend linéairement de f. Puis, la solution u de (2.19) dépend linéairement de w. On en déduit que u dépend linéairement de f et donc que l'application T est linéaire de $L^2(\Omega)$ dans $H^1_0(\Omega)$ et donc aussi linéaire de $L^2(\Omega)$ dans $L^2(\Omega)$.

Si w est la solution de (2.20), on a, en prenant v = w dans (2.20),

$$\alpha \|w\|_{H_0^1(\Omega)}^2 \le \|f\|_{L^2(\Omega)} \|w\|_{L^2(\Omega)}.$$

En utilisant l'inégalité de Poincaré (Lemme 2.5), il existe C_{Ω} , ne dépendant que de Ω , tel que $\|w\|_{L^{2}(\Omega)} \le C_{\Omega} \|w\|_{H^{1}_{\Omega}(\Omega)}$. On a donc, avec $C_{1} = C_{\Omega}/\alpha$,

$$||w||_{H_0^1(\Omega)} \le C_1 ||f||_{L^2(\Omega)}. \tag{2.69}$$

Comme M et N sont à coefficients dans $L^{\infty}(\Omega)$, il existe $\beta \in \mathbb{R}_+$ (ne dépendant que de M et N) tel que, pour tout $\xi \in \mathbb{R}^d$,

$$|(M+N)\xi| \leq \beta |\xi|$$
 p.p..

On a donc, pour tout $v \in H_0^1(\Omega)$ et S définie dans la première question,

$$|S(v)| \le \beta ||w||_{H_0^1(\Omega)} ||v||_{H_0^1(\Omega)}.$$

Si u = T(f), on en déduit, en prenant v = u dans (2.19),

$$\alpha \|u\|_{H_0^1(\Omega)}^2 \le \beta \|w\|_{H_0^1(\Omega)} \|u\|_{H_0^1(\Omega)},$$

et donc, avec (2.69) et $C_2 = \beta C_1/\alpha$,

$$||u||_{H_0^1(\Omega)} \le C_2 ||f||_{L^2(\Omega)}.$$

Ceci prouve que l'application $f\mapsto u$ est linéaire continue de $L^2(\Omega)$ dans $H^1_0(\Omega)$. Comme l'application $u\mapsto u$ est compacte de $H^1_0(\Omega)$ dans $L^2(\Omega)$ (théorème 1.33), on en déduit que T est une une application linéaire compacte de $L^2(\Omega)$ dans $L^2(\Omega)$.

3. On commence par remarquer que les hypothèses sur M et N imposent $\lambda > 0$. Puis, si u = T(f), (2.19) et (2.20) donnent, pour tout $v \in H_0^1(\Omega)$,

$$\int_{\Omega} M(x) \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} (\lambda + 1) M(x) \nabla w(x) \cdot \nabla v(x) \, dx = (\lambda + 1) \int_{\Omega} f(x) v(x) \, dx.$$

Ce qui donne bien que u est solution de (2.21) avec $A = M/(\lambda + 1)$.

4. Soit $f \in L^p(\Omega)$. On note p' l'exposant conjugué de p, c'est-à-dire $p' = \frac{p}{p-1}$. Le théorème d'injection de Sobolev (théorème 1.38) donne l'existence de C_p (ne dépendant en fait que de p) tel que, pour tout $v \in H^1_0(\Omega)$, on a $v \in L^{p'}(\Omega)$ et

$$||v||_{L^{p'}(\Omega)} \le C_p ||v||_{H_0^1(\Omega)}.$$

Avec l'inégalité de Hölder, on en déduit que l'application $v\mapsto \int_\Omega f(x)v(x)\,\mathrm{d}x$ est un élément $H^{-1}(\Omega)$ et que

$$|\int_{\Omega} f(x)v(x) \, dx| \le C_p ||f||_{L^p(\Omega)} ||v||_{H_0^1(\Omega)}.$$

On peut alors reprendre (en les adaptant légèrement) les démonstrations des deux premières questions.

Le théorème 2.9 donne l'existence et l'unicité de w solution de (2.20) et on a $\alpha \|w\|_{H_0^1(\Omega)} \leq C_p \|f\|_{L^p(\Omega)}$. Puis, le théorème 2.9 donne alors l'existence et l'unicité de u solution de (2.19) et, avec β défini à la question 2, on obtient

$$||u||_{H_0^1(\Omega)} \le \frac{\beta C_p}{\alpha^2} ||f||_{L^p(\Omega)}.$$

Ceci donne que l'application $f\mapsto u$ est linéaire continue de $L^p(\Omega)$ dans $H^1_0(\Omega)$. Puis, comme l'application $u\mapsto u$ est compacte de $H^1_0(\Omega)$ dans $L^q(\Omega)$ pour $1\leq q<+\infty$ (voir la remarque 1.40), on en déduit que l'application $f\mapsto u$ est une une application linéaire compacte de $L^p(\Omega)$ dans $L^q(\Omega)$ pour $1\leq q<+\infty$.

5. La démonstration est ici très voisine de la précédente. On a ici p=6/5 et donc le conjugué de p est $p'=6=2^\star$. Soit $f\in L^{6/5}(\Omega)$. Le théorème d'injection de Sobolev (théorème 1.38) donne l'existence de C (ne dépendant de rien) tel que, pour tout $v\in H^1_0(\Omega)$, on a $v\in L^6(\Omega)$ et

$$||v||_{L^6(\Omega)} \le C||v||_{H^1_0(\Omega)}.$$

Avec l'inégalité de Hölder, on en déduit que l'application $v\mapsto \int_\Omega f(x)v(x)\,\mathrm{d}x$ est un élément $H^{-1}(\Omega)$ et que

$$\left| \int_{\Omega} f(x)v(x) \, \mathrm{d}x \right| \le C \|f\|_{L^{6/5}(\Omega)} \|v\|_{H_0^1(\Omega)}.$$

Le théorème 2.9 donne l'existence et l'unicité de w solution de (2.20) et on a $\alpha \|w\|_{H^1_0(\Omega)} \le C \|f\|_{L^{6/5}(\Omega)}$. Puis, le théorème 2.9 donne alors l'existence et l'unicité de u solution de (2.19) et, avec β défini à la question 2, on obtient

$$||u||_{H_0^1(\Omega)} \le \frac{\beta C}{\alpha^2} ||f||_{L^{6/5}(\Omega)}.$$

Ceci donne que l'application $f\mapsto u$ est linéaire continue de $L^{6/5}(\Omega)$ dans $H^1_0(\Omega)$. Puis, comme l'application $u\mapsto u$ est continue de $H^1_0(\Omega)$ dans $L^6(\Omega)$ (théorème 1.38) et est compacte de $H^1_0(\Omega)$ dans $L^q(\Omega)$ pour $1\leq q<6=2^\star$ (voir la remarque 1.40), on en déduit que l'application $f\mapsto u$ est une application linéaire continue de $L^{6/5}(\Omega)$ dans $L^q(\Omega)$ et linéaire compacte de $L^{6/5}(\Omega)$ dans $L^q(\Omega)$ pour $1\leq q<6$.

Exercice 2.8 (Problème de Neumann)

1. Pour $u \in H^1(\Omega)$, on pose $S(u) = \int_{\Omega} u(x) \, dx$. L'application S est bien définie sur $H^1(\Omega)$ (car $H^1(\Omega) \subset L^2(\Omega) \subset L^1(\Omega)$). Elle est linéaire. Enfin, elle est continue car

$$S(u) \le ||u||_{L^{1}(\Omega)} \le ||u||_{L^{2}(\Omega)} \lambda_{N}(\Omega)^{\frac{1}{2}} \le ||u||_{H^{1}(\Omega)} \lambda_{N}(\Omega)^{\frac{1}{2}},$$

où $\lambda_N(\Omega)$ est la mesure de Lebesgue (N-dimensionnelle) de Ω . Comme $H=\mathrm{Ker}(S)$, on en déduit que H est s.e.v. fermé de $H^1(\Omega)$.

Pour tout $u \in H^1(\Omega)$, on a $\| |\nabla u| \|_{L^2(\Omega)}^2 \le \| |\nabla u| \|_{L^2(\Omega)}^2 + \| u \|_{L^2(\Omega)}^2 = \| u \|_{H^1(\Omega)}^2$. On a donc $\| u \|_m \le \| u \|_{H^1(\Omega)}$ pour tout $u \in H$. Pour montrer que $\| \cdot \|_m$ est équivalente dans H à $\| \cdot \|_{H^1(\Omega)}$, il suffit donc de montrer qu'il existe C > 0 (ne dépendant que de Ω) t.q.

$$||u||_{L^2(\Omega)} \le C||u||_m \text{ pour tout } u \in H.$$

$$(2.70)$$

(On aura alors $\|u\|_{H^1(\Omega)}^2 \leq (C^2+1)\|u\|_m^2$ pour tout $u \in H$.)

Pour montrer (2.70), on raisonne par l'absurde. On suppose qu'il existe une suite déléments de H, $(u_n)_{n\in\mathbb{N}}$ telle que

$$||u_n||_{L^2(\Omega)} > n||u_n||_m$$
 pour tout $n \in \mathbb{N}$.

En remplaçant u_n par $\frac{u_n}{\|u_n\|_{L^2(\Omega)}}$, on peut supposer $\|u_n\|_{L^2(\Omega)}=1$. On a alors aussi $\|u_n\|_m \leq \frac{1}{n}$, ce qui prouve que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1(\Omega)$. Par les théorèmes de compacité vus au chapitre 1 (section 1.6), on en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans $L^2(\Omega)$. On peut supposer (après extraction d'une sous-suite) qu'il existe $u\in L^2(\Omega)$ telle que $u_n\to u$ dans $L^2(\Omega)$, quand $n\to +\infty$. Comme $\|u_n\|_{L^2(\Omega)}=1$ pour tout $n\in\mathbb{N}$, on a aussi $\|u\|_{L^2(\Omega)}=1$. On remarque aussi que les dérivées (par transposition) de u_n convergent vers les dérivées de u dans \mathcal{D}^\star . Or, de $\|u_n\|_m \leq \frac{1}{n}$ on déduit $\nabla u_n\to 0$ dans $L^2(\Omega)^N$. Comme la convergence L^2 entraîne la convergence dans \mathcal{D}^\star , on a donc $\nabla u=0$. Ceci montre que u est constante sur Ω (exercice 1.4). Comme $u_n\to u$ dans $H^1(\Omega)$ et que $u_n\in H$ pour tout $n\in\mathbb{N}$, on a aussi $u\in H$ et donc $\int_\Omega u(x)\,\mathrm{d} x=0$. On en déduit que u=0 p.p., ce qui est impossible car $\|u\|_{L^2(\Omega)}=1$.

2. Pour $v=(v_1,\ldots,v_N)^t\in L^2(\Omega)^N$, on pose $\|v\|_{L^2(\Omega)^N}=\int_{\Omega}|v(x)|^2~\mathrm{d}x$, de sorte que $L^2(\Omega)^N$ muni de cette norme est un espace de Hilbert. Pour $u\in H$, on pose $J(u)=\nabla u=(D_1u,\ldots,D_Nu)^t$. L'application J est alors une isométrie de H (muni de la norme $\|\cdot\|_m$) dans une partie de $L^2(\Omega)^N$, notée $\mathrm{Im}(J)$.

Soit $v \in \operatorname{Im}(J)$, il existe un unique $u \in H$ t.q. v = J(u). On pose $S(v) = \langle T, u \rangle_{(H^1(\Omega))', H^1(\Omega)}$. Comme J est une isométrie et que la norme $\|\cdot\|_{H^1(\Omega)}$ est équivalente dans H à la norme $\|\cdot\|_m$, l'application S est linéaire continue de $\operatorname{Im}(J)$, s.e.v. de $L^2(\Omega)^N$, dans $\mathbb R$. Par le théorème de Hahn-Banach, on peut donc prolonger S en \tilde{S} , élément du dual topologique de $L^2(\Omega)^N$. Par le théorème de représentation de Riesz dans les espaces de Hilbert, il existe alors $F \in L^2(\Omega)^N$ telle que

$$\tilde{S}(v) = \int_{\Omega} F(x) \cdot v(x) \, \mathrm{d}x.$$

On a donc, pour tout $u \in H$,

$$\langle T, u \rangle_{(H^1(\Omega))', H^1(\Omega)} = \int_{\Omega} F(x) \cdot \nabla u(x) \, \mathrm{d}x.$$

On pose maintenant

$$a = \frac{1}{\lambda_N(\Omega)} \langle T, 1_{\Omega} \rangle_{(H^1(\Omega))', H^1(\Omega)},$$

(où 1_{Ω} désigne la fonction constante égale à 1 dans Ω).

Pour $u \in H^1(\Omega)$, on a u = u - m + m (ou, plus rigoureusement, $u = u - m1_{\Omega} + m1_{\Omega}$ p.p.) avec

$$m = \frac{1}{\lambda_N(\Omega)} \int_{\Omega} u(x) \, \mathrm{d}x.$$

Comme $u-m\in H$ et $\nabla(u-m)=\nabla u$ p.p. on a $\langle T,u\rangle_{(H^1(\Omega))',H^1(\Omega)}=\int_{\Omega}F(x)\cdot\nabla u(x)~\mathrm{d}x$ et donc

$$\langle T, u \rangle_{(H^1(\Omega))', H^1(\Omega)} = \langle T, u - m \rangle_{(H^1(\Omega))', H^1(\Omega)} + m \langle T, 1_{\Omega} \rangle_{(H^1(\Omega))', H^1(\Omega)} = \int_{\Omega} F(x) \cdot \nabla u(x) \, \mathrm{d}x + a \int_{\Omega} u(x) \, \mathrm{d}x.$$

3. (a) On suppose que u est solution de (2.23). En prenant $v = 1_{\Omega}$ dans (2.23), on a alors

$$0 = a \lambda_N(\Omega) + 0.$$

Ce qui prouve que a = 0.

(b) On applique le théorème de Lax-Milgram (lemme 2.3) dans l'espace de Hilbert H (muni de la norme $\|\cdot\|_m$) avec

$$a(u,v) = \int_{\Omega} A(x) \nabla u(x) \nabla v(x) dx,$$

et

$$T(v) = \int_{\Omega} F(x) \cdot \nabla v(x) \, \mathrm{d}x.$$

La continuité de a vient du fait que $a_{i,j} \in L^{\infty}(\Omega)$ pour tout i, j. La coercivité de a vient de l'existence de $\alpha > 0$ donnée dans les hypothèses sur A. Enfin, la continuité de T vient du fait que $F \in L^2(\Omega)^N$.

On obtient ainsi un unique $u \in H$ t.q. (2.23) soit vrai pour tout $v \in H$. Comme (2.23) est aussi vrai si v est une fonction constante, on obtient aussi l'existence et l'unicité de $u \in H$ t.q. (2.23) soit vrai pour tout $v \in H^1(\Omega)$.

(c) On prend tout d'abord $v \in \mathcal{D}(\Omega)$ dans (2.23) (avec a=0). La régularité de A, F, u et v nous permet d'intégrer par parties (la régularité de Ω ne sert à rien pour cette étape). On obtient

$$\int_{\Omega} (-\operatorname{div}(A(x)\nabla u(x)) + \operatorname{div}(F(x)))v(x) \, dx = 0 \text{ pour tout } v \in \mathcal{D}(\Omega).$$

On en déduit que $-\operatorname{div}(A(x)\nabla u(x))+\operatorname{div}(F(x))=0$ p.p. (par le lemme fondamental 1.1) puis, par continuité de la fonction $-\operatorname{div}(A\nabla u)+\operatorname{div}(F)$, que $-\operatorname{div}(A(x)\nabla u(x))+\operatorname{div}(F(x))=0$ pour tout $x\in\Omega$.

On prend maintenant des fonctions $v \in C^{\infty}(\bar{\Omega})$ dans (2.23). On peut ici aussi intégrer par parties (on utilise ici la régularité de Ω). On obtient

$$\int_{\partial\Omega} (A(x)\nabla u(x) - F(x)) \cdot n(x)v(x) \, \mathrm{d}\gamma(x) = 0 \text{ pour tout } v \in C^\infty(\bar{\Omega}),$$

où $\partial\Omega$ est le bord de Ω et $d\gamma(x)$ désigne l'intégration par rapport à la mesure (N-1)-dimensionnelle sur $\partial\Omega$.

Par une technique dite "de cartes locales", on peut se ramener au cas du lemme fondamental (lemme 1.1) pour en déduire que $(A\nabla u - F)\cdot n = 0$ p.p. sur $\partial\Omega$ puis partout sur $\partial\Omega$. Mais il est plus rapide de voir qu'il est possible de choisir v t.q. $v = (A\nabla u - F)\cdot n$ sur $\partial\Omega$. On obtient ainsi directement $(A\nabla u - F)\cdot n = 0$ sur $\partial\Omega$.

Exercice 2.9 (Un exemple dans $H^1(\mathbb{R}^N)$)

1. Comme $u, f \in L^1_{loc}(\mathbb{R}^N), \Delta u - u = D_i f$ dans $\mathcal{D}^*(\mathbb{R}^N)$ signifie

$$\int u(x)\Delta v(x) dx - \int u(x)v(x) dx = -\int f(x)\partial_i v(x) dx \text{ pour tout } v \in \mathcal{D}(\mathbb{R}^N).$$

(Les intégrales sont toutes sur \mathbb{R}^N .)

Comme $u \in H^1(\mathbb{R}^N)$, $\int u(x)\Delta v(x) dx = -\int \nabla u(x) \cdot \nabla v(x) dx$ pour tout $v \in \mathcal{D}(\mathbb{R}^N)$. On a donc $\Delta u - u = D_i f$ dans $\mathcal{D}^*(\mathbb{R}^N)$ si et seulement si

$$\int \nabla u(x) \cdot \nabla v(x) \, dx + \int u(x)v(x) \, dx = \int f(x)\partial_i v(x)(x) \, dx \text{ pour tout } v \in \mathcal{D}(\mathbb{R}^N).$$

Comme $f \in L^2(\mathbb{R}^N)$ et que $\mathcal{D}(\mathbb{R}^N)$ est dense dans $H^1(\mathbb{R}^N)$, ceci est équivalent à (2.24).

2. On définit l'application T de $H^1(\mathbb{R}^N)$ dans \mathbb{R} par $T(v) = \int f(x)D_iv(x)$ dx. L'inégalité de Cauchy-Schwarz montre que T est bien définie, appartient à $H^{-1}(\mathbb{R}^N)$ (dual (topologique) de $H^1(\mathbb{R}^N)$) et que $\|T\|_{H^{-1}(\mathbb{R}^N)} \leq \|f\|_{L^2(\mathbb{R}^N)}$.

L'égalité (2.24) s'écrit $(u \mid v)_{H^1(\mathbb{R}^N)} = T(v)$. L'existence et l'unicité de u solution de (2.24) est alors une conséquence du théorème de représentation de Riesz dans un espace de Hilbert.

En prenant v = u dans (2.24) on obtient $||u||_{H^1(\mathbb{R}^N)} \leq ||f||_{L^2(\mathbb{R}^N)}$.

Exercice 2.10 (Norme H^2 sur \mathbb{R}^N)

1. On rappelle que,

$$||u||_{H^2}^2 = ||u||_{L^2}^2 + \sum_{i=1}^N ||D_i u||_{L^2}^2 + \sum_{i=1}^N \sum_{j=1}^N ||D_j D_i u||_{L^2}^2.$$

Ceci donne

$$||u||_{L^2}^2 + ||\Delta u||_{L^2}^2 \le ||u||_{L^2}^2 + N^2 \sum_{i=1}^N ||D_i D_i u||_{L^2}^2 \le N^2 ||u||_{H^2}^2.$$

On peut donc prendre $C_1 = \frac{1}{N}^2$.

Pour montrer l'existence de C_2 , on va utiliser des intégrations par parties (avec des fonctions régulières) et la densité de $\mathcal{D}(\mathbb{R}^N)$ dans $H^2(\mathbb{R}^N)$.

Pour $i, j \in \{1, ..., N\}$ et $\varphi \in \mathcal{D}(\mathbb{R}^N)$, en notant ∂_i la dérivée partielle dans la direction i,

$$\int \partial_i \partial_j \varphi(x) \partial_i \partial_j \varphi(x) \, dx = \int \partial_i \partial_i \varphi(x) \partial_j \partial_j \varphi(x) \, dx,$$

et donc

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \int (\partial_i \partial_j \varphi(x))^2 dx = \int \Delta \varphi(x)^2 dx.$$

Par densité de $\mathcal{D}(\mathbb{R}^N)$ dans $H^2(\mathbb{R}^N)$ on en déduit pour tout $u \in H^2(\mathbb{R}^N)$,

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \|D_j D_i u\|_{L^2}^2 = \|\Delta u\|_{L^2}^2.$$
(2.71)

Pour $i \in \{1, \dots, N\}$ et $\varphi \in \mathcal{D}(\mathbb{R}^N)$ on a aussi

$$\int \partial_i \varphi(x) \partial_i \varphi(x) \, \mathrm{d}x = \int \partial_i \partial_i \varphi(x) \varphi(x) \, \mathrm{d}x,$$

et donc

$$\sum_{i=1}^{N} \int (\partial_i \varphi(x))^2 dx = \int \Delta \varphi(x) \varphi(x) dx \le \int \Delta \varphi(x)^2 dx + \int \varphi(x)^2 dx$$

Par densité de $\mathcal{D}(\mathbb{R}^N)$ dans $H^2(\mathbb{R}^N)$ on en déduit pour tout $u \in H^2(\mathbb{R}^N)$,

$$\sum_{i=1}^{N} \|D_i u\|_{L^2}^2 \le \|\Delta u\|_{L^2}^2 + \|u\|_{L^2}^2. \tag{2.72}$$

Avec (2.71) et (2.72), on obtient que $C_2 = 2$ convient.

2. (a) Comme $u\in L^1_{\mathrm{loc}}({\rm I\!R}^N),$ $\Delta\Delta u+\lambda u=f$ dans $\mathcal{D}^\star({\rm I\!R}^N)$ signifie

$$\int u(x)\Delta \Delta v(x) \, dx + \lambda \int u(x)v(x) \, dx = \langle f, v \rangle_{\mathcal{D}^*, \mathcal{D}} \text{ pour tout } v \in \mathcal{D}(\mathbb{R}^N).$$

(Les intégrales sont sur \mathbb{R}^N .)

Comme $u \in H^2(\mathbb{R}^N)$, $\int u(x)\Delta \Delta v(x) dx = \int \Delta u(x)\Delta v(x) dx$ pour tout $v \in \mathcal{D}(\mathbb{R}^N)$. On a donc $\Delta \Delta u + \lambda u = f$ dans $\mathcal{D}^*(\mathbb{R}^N)$ si et seulement si

$$\int \Delta u(x) \Delta v(x) \, dx + \lambda \int u(x) v(x) \, dx = \langle f, v \rangle_{\mathcal{D}^*, \mathcal{D}} \text{ pour tout } v \in \mathcal{D}(\mathbb{R}^N).$$

Comme $f \in H^{-2}(\mathbb{R}^N)$ et que $\mathcal{D}(\mathbb{R}^N)$ est dense dans $H^2(\mathbb{R}^N)$, ceci est équivalent à (2.25).

(b) On définit sur $H^2(\mathbb{R}^N)$ le produit scalaire $(\cdot | \cdot)_{\lambda}$ par

$$(u | v)_{\lambda} = \int \Delta u(x) \Delta v(x) dx + \lambda \int u(x) v(x) dx.$$

La question 1 montre que ce produit scalaire est équivalent au produit scalaire usuel de $H^2(\mathbb{R}^N)$. L'existence et l'unicité de u solution de (2.25) est alors une conséquence du théorème de représentation de Riesz dans un espace de Hilbert.

Exercice 2.11 (Modélisation d'un problème de contact)

1. (Recherche d'une formulation faible) On suppose que u est solution classique de (2.26)-(2.29). On a bien sûr u(x) = 0 pour tout $x \in \partial B$.

Soit $v\in C^2(\Omega,\mathbb{R})$ telle que $v_{|\Omega_+}\in C^2(\overline{\Omega_+}),\,v_{|\Omega_-}\in C^2(\overline{\Omega_-})$ et v(x)=0 pour tout $x\in\partial B$. En multipliant (2.26) par v(x) et en intégrant sur Ω , des intégrations par parties donnent

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx + \int_{I} \frac{\partial u}{\partial y}(x, 0^{+}) v(x, 0^{+}) \, dx - \int_{I} \frac{\partial u}{\partial y}(x, 0^{-}) v(x, 0^{-}) \, dx = \int_{\Omega} f(x) v(x) \, dx.$$

En utilisant (2.28),(2.29), on obtient bien que u vérifie (2.30).

Réciproquement, on suppose maintenant que u vérifie (2.30).

En prenant $v \in C^{\infty}(\Omega_+)$ (que l'on prolonge par 0 hors de Ω_+) on obtient en intégrant par parties

$$-\int_{\Omega_+} \Delta u(x)v(x) \, \mathrm{d}x = \int_{\Omega_+} f(x)v(x) \, \mathrm{d}x$$

et donc, comme v est arbitraire, $-\Delta u(x) = f(x)$ pour tout $x \in \Omega_+$. Un raisonnement analogue donne $-\Delta u(x) = f(x)$ pour tout $x \in \Omega_-$ et donc (par continuité) $-\Delta u(x) = f(x)$ pour tout $x \in \Omega$.

On prend maintenant $w \in C^2_c(I)$ que l'on prolonge par 0 hors de I et on définit v sur Ω en posant

$$\begin{aligned} v(x,y) &= w(x)((1-2y)^+)^3 \text{ si } y \geq 0,\\ v(x,y) &= 0 \text{ si } y < 0. \end{aligned}$$

Cette fonction v est acceptable dans (2.30). Elle donne, en intégrant par parties, comme $-\Delta u(x) = f(x)$ pour tout $x \in \Omega$,

$$-\int_{I} \frac{\partial u}{\partial y}(x, 0^{+})w(x) dx + \int_{I} g(x)(u(x, 0^{+}) - u(x, 0^{-}))w(x) dx.$$

Comme w est abitraire dans $C^2_c(I)$, ceci donne $\frac{\partial u}{\partial y}(x,0^+)=g(x)(u(x,0^+)-u(x,0^-))$ pour tout $x\in I$. Un raisonnement analogue donne $\frac{\partial u}{\partial y}(x,0^-)=g(x)(u(x,0^+)-u(x,0^-))$ pour tout $x\in I$. On a bien montré que u est solution classique de (2.26)-(2.29).

2. (Traces et espace fonctionnel) On note $D=\{x\in B,\, 1<|x|<2\}$, de sorte que $D\subset\Omega$. Comme D est à frontière lipschitzienne, le théorème 1.29 donne l'existence de l'opérateur γ linéaire continu de $H^1(D)$ dans $L^2(\partial D)$ prolongeant la notion de trace classique. L'opérateur $\tilde{\gamma}$ qui à u (appartenant à $H^1(D)$) associe la restriction de $\gamma(u)$ à ∂B est donc linéaire continu de $H^1(D)$ dans $L^2(\partial B)$. Pour $u\in H^1(\Omega)$ on définit $\gamma_0(u)$ comme l'image par $\tilde{\gamma}$ de la restriction de u à D (qui est bien un élément de $H^1(D)$.

Comme Ω_+ est à frontière lipschitzienne, le théorème 1.29 donne l'existence de l'opérateur γ linéaire continu de $H^1(\Omega_+)$ dans $L^2(\partial\Omega_+)$ prolongeant la notion de trace classique. Pour $u\in H^1(\Omega)$, on définit $\gamma_+(u)$ comme la restriction à I de $\gamma(u|_{\Omega_+})$. On définit γ_- de manière analogue.

3. (Coerci(ti)vité)

Il suffit de montrer qu'il existe C tel que $\|u\|_{L^2(\Omega_\pm)} \le C \||\nabla u|\|_{L^2(\Omega_\pm)}$ pour tout $u \in H$ La preuve probablement la plus rapide consiste à raisonner par l'absurde et à utiliser le théorème 1.34 pour $H^1(\Omega_+)$ (et $H^1(\Omega_-)$). On suppose donc qu'il existe une suite $(u_n)_{n\in\mathbb{N}}$ de H telle que

$$||u_n||_{L^2(\Omega_+)} > n|||\nabla u_n|||_{L^2(\Omega_+)}.$$

Par homogénéité, on peut supposer que $\|u_n\|_{L^2(\Omega_+)}=1$ et on a donc $\lim_{n\to+\infty}\||\nabla u_n|\|_{L^2(\Omega_+)}=0$. La suite $(u_n)_{n\in\mathbb{N}}$ est donc bornée dns $H^1(\Omega_+)$ (plus exactement, il s'agit de la suite des restrictions à Ω_+ des u_n). On peut supposer, quitte à extraire une sous-suite, que $u_n\to u$ faiblement dans $H^1(\Omega_+)$ (quand $n\to+\infty$) et le théorème 1.34 donne $u_n\to u$ dans $L^2(\Omega_+)$ et donc $\|u\|_{L^2(\Omega_+)}=1$. Comme $\nabla u_n\to 0$ dans $L^2(\Omega_+)^N$, $\nabla u=0$ p.p. et la fonction u est donc constante (exercice 1.4) et $u_n\to u$ dans $H^1(\Omega_+)$. Mail la trace de u_n sur le bord de Ω_+ est nulle (car u est dans H), l'opérateur trace étant continu de $H^1(\Omega_+)$ dans $L^2(\partial\Omega_+)$ on en déduit que la trace de u sur le bord de Ω_+ est nulle et donc u est la fonction nulle u=0 p.p. pour être plus précis), en contradiction avec u=0 p.p. pour être plus précis), en contradiction avec u=0 p.p. pour être plus précis).

Bien sûr, un raisonnement analogue peut se faire avec Ω_{-} .

4. (Existence et unicité de solutions faibles) L'espace H est un espace de Hilbert (avec le produit scalaire de $H^1(\Omega)$). On définit a de $H \times H$ dans \mathbb{R} par

$$a(u,v) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx + \int_{I} g(x) (\gamma_{+} u(x) - \gamma_{-} u(x)) (\gamma_{+} v(x) - \gamma_{-} v(x)) \, dx.$$

La forme a est bilinéaire symétrique continue (grâce à la continuité des opérateurs γ_+ et γ_- de H dans $L^2(I)$). La question 3 montre qu'elle définit un produit scalaire sur H équivalent au produit scalaire de $H^1(\Omega)$ car $a(u,u) \geq \int_{\Omega} \nabla u(x) \cdot \nabla u(x) \, \mathrm{d}x$.

D'autre part, l'application $v \mapsto \int_{\Omega} f(x)v(x) dx$ appartient à H' (car $f \in L^2(\Omega)$).

Le théorème de représentation de Riesz dans un Hilbert (voir par exemple [20] théorème 6.56) donne alors l'existence et l'unicité de u solution de (2.31).

5. En prenant $v=u_n$ dans (2.31), en remarquant que $\int_{\Omega} f(x)u_n(x)dx \leq \|f\|_{L^2(\Omega)}\|u\|_{L^2(\Omega)}$ et en utilisant la question 3, on montre que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1(\Omega)$ et que qu'il existe C telle que, pour tout $n\in\mathbb{N}$.

$$\int_{\Omega} n(\gamma_{+}u_{n}(x) - \gamma_{-}u_{n}(x))^{2} dx \le C.$$
(2.73)

Quitte à extraire une sous-suite, on peut donc supposer que $u_n \to u$ faiblement dans $H^1(\Omega)$ et donc aussi faiblement dans $H^1(\Omega_+)$ et $H^1(\Omega_-)$ (plus précisément il s'agit de la convergence des restrictions des u_n à Ω_+ et Ω_- . Les opérateurs γ_\pm étant continus de $H^1(\Omega_\pm)$ dans $L^2(I)$, on a aussi $\gamma_\pm u_n \omega \gamma_\pm u$ faiblement dans $L^2(I)$ car un opérateur continu entre deux espaces de Banach transforme une suite faiblement convergente en suite faiblement convergente, voir à ce sujet l'exercice 1.22. En fait, ici, on pourrait même montrer la convergence de la suite $(\gamma_\pm u_n)_{n\in\mathbb{N}}$ dans $L^2(I)$. L'inégalité (2.73) donne que $\gamma_+ u_n(x) - \gamma_- u_n(x) \to 0$ dans $L^2(I)$ et donc $\gamma_+ u = \gamma_- u$ p.p. sur I.

En prenant $\varphi \in \mathcal{D}(\Omega)$ arbitraire, une intégration par parties (téorème 1.30) sur Ω_+ et Ω_- donne alors que $u \in H^1(B)$ et $D_i u = D_i u_{|\Omega_+}$ p.p. sur Ω_\pm . Comme $\gamma_0 u = 0$ p.p. sur ∂B , finalement $u \in H^1(B)$.

On prend maintenant $v \in H_0^1(B)$ dans (2.31), on obtient que u est solution du problème

$$u \in H^1_0(B),$$

$$\int_{\Omega} \nabla u(x) \nabla v(x) \; \mathrm{d}x = \int f(x) v(x) \; \mathrm{d}x \text{ pour tout } v \in H^1_0(B).$$

Comme la solution de ce problème est unique (théorème (2.6)), un raisonnement par l'absurde classique permet de montrer que $u_n \to u$ faiblement dans $H^1(\Omega)$ sans extraction de sous-suite.

Exercice 2.12 (De Fourier à Dirichlet)

1. Voici des définitions possibles.

La fonction u est solution "classique" de (2.32) si $u \in C^2(\overline{\mathbb{R}^N_+}, \mathbb{R})$ et vérifie $-\Delta u(x) + u(x) = f(x)$ pour tout $x \in \mathbb{R}^N_+$ et $-\partial_1 u(0,y) + \sigma u(0,y) = g(y)$ pour tout $y \in \mathbb{R}^{N-1}$.

La fonction u est solution "faible" de (2.32) si $u \in H^1(\mathbb{R}^N_+)$ et vérifie, pour tout $v \in H^1(\mathbb{R}^N_+)$,

$$\int_{\mathbb{R}^N_+} (\nabla u(x) \cdot \nabla v(x) + u(x)v(x)) \, \mathrm{d}x + \int_{\mathbb{R}^{N-1}} \sigma \gamma u(y) \gamma v(y) \, \mathrm{d}y = \int_{\mathbb{R}^N_+} f(x)v(x) \, \mathrm{d}x - \int_{\mathbb{R}^{N-1}} g(y) \gamma v(y) \, \mathrm{d}y,$$

où γ est l'opérateur trace, linéaire continu de $H^1(\mathbb{R}^N_+)$ dans $L^2(\mathbb{R}^{N-1})$, dont l'existence est donnée par le théorème 1.27.

2. On définit a de $H^1(\mathbb{R}^N_+)^2$ dans \mathbb{R} et T de $H^1(\mathbb{R}^N_+)$ dans \mathbb{R} par

$$a(u,v) = \int_{\mathbb{R}^{N}_{+}} (\nabla u(x) \cdot \nabla v(x) + u(x)v(x)) \, dx + \int_{\mathbb{R}^{N-1}} \sigma \gamma u(y) \gamma v(y) \, dy$$
$$T(v) = \int_{\mathbb{R}^{N}_{+}} f(x)v(x) \, dx - \int_{\mathbb{R}^{N-1}} g(y) \gamma v(y) \, dy.$$

La forme a définit un produit scalaire sur $H^1(\mathbb{R}^N_+)$ équivalent au produit scalaire usuel (car $\sigma \geq 0$ et γ continu de $H^1(\mathbb{R}^N_+)$ dans $L^2(\mathbb{R}^{N-1})$).

L'application T appartient à $H^1(\mathbb{R}^N_+)'$ (car $f \in L^2(\mathbb{R}^N_+)$, $g \in L^2(\mathbb{R}^{N-1})$ et γ continu de $H^1(\mathbb{R}^N_+)$ dans $L^2(\mathbb{R}^{N-1})$).

Le théorème de représentation de Riesz dans un Hilbert (voir par exemple [20] théorème 6.56) donne alors l'existence et l'unicité de u solution faible de (2.32).

Comme $a(u,u) \ge \|u\|_{H^1(\mathbb{R}^N_+)}$, il est utile pour la suite de remarquer que $\|u\|_{H^1(\mathbb{R}^N_+)} \le \|T\|_{H^1(\mathbb{R}^N_+)}$.

3. On note u la solution faible de (2.32), c'est-à-dire u solution de

$$u \in H^{1}(\mathbb{R}^{N}_{+}),$$

$$\int_{\mathbb{R}^{N}_{+}} (\nabla u(x) \cdot \nabla v(x) + u(x)v(x)) \, \mathrm{d}x + \int_{\mathbb{R}^{N-1}} \sigma \gamma u(y) \gamma v(y) \, \mathrm{d}y = \int_{\mathbb{R}^{N}_{+}} f(x)v(x) \, \mathrm{d}x. \tag{2.74}$$

Pour montrer que $H^2(\mathbb{R}^N_+)$, on utilise la méthode donnée dans la preuve du théorème 2.20.

Comme cela a été vu à la question précédente, pour tout $T \in H^1(\mathbb{R}^N_+)'$, il existe un et un seul w_T solution de

$$w_T \in H^1(\mathbb{R}^N_+) \tag{2.75}$$

$$\int_{\mathbb{R}^{N}_{+}} (\nabla w_{T}(x) \cdot \nabla v(x) + w_{T}(x)v(x)) dx + \int_{\mathbb{R}^{N-1}} \sigma \gamma w_{T}(y) \gamma v(y) dy = T(v), \qquad (2.76)$$

et $||w_T||_{H^1(\mathbb{R}^N_+)} \le ||T||_{H^1(\mathbb{R}^N_+)'}$.

Soit $n \in \mathbb{N}^*$, on prend pour T l'application $v \mapsto \int_{\mathbb{R}^N_+} n(f(x_1, x_2 + \frac{1}{n}) - f(x)) \, \mathrm{d}x$ (où x_1 et x_2 sont les deux composantes de x, c'est seulement pour ne pas alourdir les notations que l'on se limite ici à N=2). La solution de (2.75)-(2.76) est alors la fonction $w_T = n(u(x_1, x_2 + \frac{1}{n}) - u(x))$.

Une adaptation immédiate du lemme 2.18 (où $H_0^1(\mathbb{R}^N_+)$ peut être remplacé par $H^1(\mathbb{R}^N_+)$ et $\mathcal{D}(\mathbb{R}^N_+)$ par $C_c^{\infty}(\overline{\mathbb{R}^N_+})$ qui est dense dans $H^1(\mathbb{R}^N_+)$ montre que $\|T\|_{H^1(\mathbb{R}^N_+)'} \leq \|f\|_{L^2(\mathbb{R}^N_+)}$ et donc, pour tout $n \in \mathbb{N}^{\star}$,

$$||n(u(x_1, x_2 + \frac{1}{n}) - u(x))||_{H^1(\mathbb{R}^N_+)} \le ||f||_{L^2(\mathbb{R}^N_+)}.$$

On pose $\psi_n = n(u(x_1, x_2 + \frac{1}{n}) - u(x))$. La suite $(\psi_n)_{n \in \mathbb{N}^*}$ est bornée dans $H^1(\mathbb{R}^N_+)$. On peut donc supposer, quitte à extraire une sous-suite, qu'elle converge faiblement dans $H^1(\mathbb{R}^N_+)$. On note ψ cette limite faible.

Par ailleurs a preuve du lemme 2.19 donne $\psi_n \to D_2 u$ dans $\mathcal{D}^\star(\mathbb{R}^N_+)$ quand $n \to +\infty$. On en déduit que $D_2 u = \psi \in H^1(\mathbb{R}^N_+)$ et donc $D_1 D_2 u \in L^2(\mathbb{R}^N_+)$ et $D_2 D_2 u \in L^2(\mathbb{R}^N_+)$. Pour conclure, il ne reste plus qu'à montrer que $D_1 D_1 u \in L^2(\mathbb{R}^N_+)$. Pour cela, on utilise l'équation satisfaite par u. En effet, celle ci donne $-\Delta u + u = f$ dans $\mathcal{D}^\star(\mathbb{R}^N_+)$, et donc $D_1 D_1 u = u - f - D_2 D_2 u$ ce qui prouve que $D_1 D_1 u \in L^2(\mathbb{R}^N_+)$. Finalement, on a bien montré que $u \in H^2(\mathbb{R}^N_+)$.

4. La suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1(\mathbb{R}^N_+)$ (car $\|u_n\|_{H^1(\mathbb{R}^N_+)} \leq \|f\|_{L^2(\mathbb{R}^N_+)}$). On peut donc supposer, quitte à extraire une sous-suite, qu'elle converge faiblement dans $H^1(\mathbb{R}^N_+)$. On note u cette limite faible. En prenant $v=u_n$ dans (2.74) (avec $u=u_n$ et $\sigma=n$), on remarque que $\gamma u_n \to 0$ dans $L^2(\mathbb{R}^{N-1})$ quand $n\to +\infty$. Or $\gamma u_n\to \gamma u$ au moins faiblement dans $L^2(\mathbb{R}^{N-1})$ (un opérateur continu entre deux espaces de Banach transforme une suite faiblement convergente en suite faiblement convergente, voir l'exercice 1.22). On a donc $\gamma u=0$, c'est-à-dire $u\in \mathrm{Ker}\gamma=H^1_0(\mathbb{R}^N_+)$ (remarque 1.28).

En prenant maintenant $v \in H_0^1(\mathbb{R}^N_+)$ dans (2.74) (avec $u = u_n$ et $\sigma = n$) en faisant $n \to +\infty$, on obtient

$$(u \mid v)_{H_0^1(\mathbb{R}_+^N)} = \int_{\mathbb{R}_+^N} f(x)v(x) dx.$$

Ceci prouve que u est solution faible de (2.33). Cette solution est unique (par exemple parce que f=0 p.p. implique u=0 p.p.). Cette unicité nous permet (par contradiction) d'affirmer que $u_n \to u$ faiblement dans $H^1(\mathbb{R}^N_+)$, quand $n \to +\infty$, sans extraction de sous-suite.

Il reste à prouver que $u_n \to u$ dans $H^1(\mathbb{R}^N_+)$, quand $n \to +\infty$. La convergence faible dans $H^1(\mathbb{R}^N_+)$ nous donne $(u \mid u)_{H^1(\mathbb{R}^N_+)} \le \liminf_{n \to +\infty} (u_n \mid u_n)_{H^1(\mathbb{R}^N_+)}$ (voir remarque 1.18). Mais, on remarque aussi que, pour tout $n \in \mathbb{N}$,

$$(u_n \mid u_n)_{H^1(\mathbb{R}^N_+)} \le (f \mid u_n)_{L^2(\mathbb{R}^N_+)}$$

et donc

$$\lim_{n \to +\infty} \sup (u_n \, | \, u_n)_{H^1(\mathbb{R}^N_+)} \le \lim_{n \to +\infty} (f \, | \, u_n)_{L^2(\mathbb{R}^N_+)} = (f \, | \, u)_{L^2(\mathbb{R}^N_+)} = (u \, | \, u)_{H^1(\mathbb{R}^N_+)}.$$

On en déduit que $(u_n \mid u_n)_{H^1(\mathbb{R}^N_+)} \to (u \mid u)_{H^1(\mathbb{R}^N_+)}$ quand $n \to +\infty$, ce qui est suffisant pour affirmer que $u_n \to u$ dans $H^1(\mathbb{R}^N_+)$, quand $n \to +\infty$, car, en utilisant encore que $u_n \to u$ faiblement dans $H^1(\mathbb{R}^N_+)$,

$$(u_n - u \,|\, u_n - u)_{H^1(\mathbb{R}^N_+)} = (u_n \,|\, u_n)_{H^1(\mathbb{R}^N_+)} + 2(u_n \,|\, u)_{H^1(\mathbb{R}^N_+)} + (u \,|\, u)_{H^1(\mathbb{R}^N_+)} \to 0 \text{ quand } n \to +\infty.$$

Exercice 2.13 (Equation de Schrödinger)

1. Conditions de Dirichlet -

(a) Pour $u, v \in V$, on note u_1, u_2 les composantes de u et v_1, v_2 les composantes de v. Ces notations seront conservées dans la suite.

On définit un produit scalaire sur V par

$$(u \mid v)_V = \int_{\Omega} \nabla u_1(x) \cdot \nabla v_1(x) \, dx + \int_{\Omega} \nabla u_2(x) \cdot \nabla v_2(x) \, dx.$$

Grâce à l'inégalité de Poincaré (lemme 2.5), l'application $u, v \mapsto (u \mid v)_V$ est bien un produit scalaire sur V et l'espace V muni de ce produit scalaire est un espace de Hilbert.

Pour $u, v \in V$, on définit a et T par

$$a(u,v) = (u \mid v)_V + \int_{\Omega} u_2(x)v_1(x) \, dx - \int_{\Omega} u_1(x)v_2(x) \, dx$$
$$T(v) = \int_{\Omega} f_1(x)v_1(x) \, dx + \int_{\Omega} f_2(x)v_2(x) \, dx.$$

Grâce encore à l'inégalité de Poincaré, la forme a est bilinéaire continue (de $V \times V$ dans \mathbb{R}) et $T \in V'$. De plus, a est coercive car $a(u,u) = (u \mid u)_V$ (noter que a n'est pas symétrique). On peut donc appliquer le théorème de Lax-Milgram (théorème 2.3), il donne l'existence et l'unicité de $u \in V$ tel que a(u,v) = T(v) pour tout $v \in V$ et donc l'existence et l'unicité de u solution du problème (2.36) (car a(u,v) = T(v) pour tout $v \in V$ si et seulement si u est solution de (2.36)).

(b) Soit u la solution (2.36). Comme $u_1, u_2 \in L^2(\Omega)$, le théorème de régularité 2.16 donne $u_1, u_2 \in H^2(\Omega)$.

La première équation de (2.34) donne alors, pour tout $\varphi \in \mathcal{D}(\Omega)$,

$$-\int_{\Omega} \Delta u_1(x)\varphi(x) \, \mathrm{d}x = -\langle \Delta u_1, \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = \int_{\Omega} \nabla u_1(x) \cdot \nabla \varphi(x) \, \mathrm{d}x$$
$$= -\int_{\Omega} u_2(x)\varphi(x) \, \mathrm{d}x + \int_{\Omega} f_1(x)\varphi(x) \, \mathrm{d}x.$$

On en déduit par le lemme 1.1 que la première équation de (2.34) est satisfaite p.p. sur Ω . Un raisonnement analogue donne que la deuxième équation de (2.34) est satisfaite p.p. sur Ω .

Réciproquement, si $u_1, u_2 \in H^2(\Omega)$ et que les équations (2.34) sont satisfaites p.p. sur Ω , les équations (2.36) sont satisfaites pour tout $\varphi \in \mathcal{D}(\Omega)$ et donc, par densité, pour tout $\varphi \in H^1_0(\Omega)$. Si on ajoute que $u_1, u_2 \in H^1_0(\Omega)$, on obtient que u est solution de (2.36).

Comme la solution de (2.36) est unique, ceci termine la question.

- (c) On montre par récurrence sur m que $u_1, u_2 \in H^{2m}(\Omega)$. En effet, la question précédente montre que $u_1, u_2 \in H^2(\Omega)$. Puis si $u_1, u_2 \in H^{2m}(\Omega)$, le théorème de régularité 2.16 donne $u_1, u_2 \in H^{2m+2}(\Omega) = H^{2(m+1)}(\Omega)$ (car $(-u_2 + f_1)$ et $(u_1 + f_2)$ appartiennent à $H^{2m}(\Omega)$).
- (d) L'application $f\mapsto u$ solution de (2.36) est continue de $L^2(\Omega)\times L^2(\Omega)$ dans V (en remarquant que $\|u\|_V^2=a(u,u)=T(u)$ avec les notations de la question 1a. Puis l'application $u\mapsto u$ de V dans $L^2(\Omega)\times L^2(\Omega)$ est compacte (par le théorème 1.34). Par composition, on en déduit que L'application $f\mapsto u$ solution de (2.36) est compacte de $L^2(\Omega)\times L^2(\Omega)$ dans $L^2(\Omega)\times L^2(\Omega)$.
- 2. Conditions aux limites de Neumann -

(a) On prend ici $W=H^1(\Omega)\times H^1(\Omega)$ qu'on lui munit du produit scalaire induit par $H^1(\Omega)$, c'est-à-dire défini par

$$(u \mid v)_W = (u_1 \mid v_1)_{H^1(\Omega)} + (u_2 \mid v_2)_{H^1(\Omega)}.$$

Muni de ce produit scalaire, l'espace W est un espace de Hilbert.

Pour $u, v \in W$, on définit a et T par

$$a(u,v) = \int_{\Omega} (\nabla u_1(x) \cdot \nabla v_1(x) + (u_2(x) + \frac{1}{n}u_1(x))v_1(x)) dx + \int_{\Omega} (\nabla u_2(x) \cdot \nabla v_2(x) + (\frac{1}{n}u_2(x) - u_1(x))v_2(x)) dx,$$

$$T(v) = \int_{\Omega} f_1(x)v_1(x) dx + \int_{\Omega} f_2(x)v_2(x) dx.$$

Ici encore la forme a est bilinéaire continue (de $W \times W$ dans \mathbb{R}) et $T \in W'$. De plus, a est coercive car $a(u,u) \geq (\frac{1}{n})(u\,|\,u)_W$. On peut donc appliquer le théorème de Lax-Milgram (théorème 2.3), qui donne l'existence et l'unicité de $u \in W$ tel que a(u,v) = T(v) pour tout $v \in W$ et donc l'existence et l'unicité de u solution du problème (2.39).

(b) Dans la première équation de (2.39), on prend $\varphi=u_2^{(n)}$. Dans la deuxième équation de (2.39), on prend $\varphi=-u_1^{(n)}$. En additionnant les équations obtenues et en utilisant l'inégalité de Cauchy-Schwarz, on obtient

$$||u_1^{(n)}||_{L^2(\Omega)}^2 + ||u_2^{(n)}||_{L^2(\Omega)}^2 = \int_{\Omega} f_1(x) u_2^{(n)}(x) \, \mathrm{d}x - \int_{\Omega} f_2(x) u_1^{(n)}(x) \, \mathrm{d}x.$$

$$\leq ||f_1||_{L^2(\Omega)} ||u_2^{(n)}||_{L^2(\Omega)} + ||f_2||_{L^2(\Omega)} ||u_1^{(n)}||_{L^2(\Omega)}$$

$$\leq \frac{1}{2} (||f_1||_{L^2(\Omega)}^2 + ||u_2^{(n)}||_{L^2(\Omega)}^2 + ||f_2||_{L^2(\Omega)}^2 + ||u_1^{(n)}||_{L^2(\Omega)}^2).$$

On en déduit l'inégalité demandée.

Les suites $(u_1^{(n)})_{n\in\mathbb{N}^\star}$ et $(u_2^{(n)})_{n\in\mathbb{N}^\star}$ sont donc bornées dans $L^2(\Omega)$. En prenant maintenant $\varphi=u_1^{(n)}$ dans la première équation de (2.39) et $\varphi=u_2^{(n)}$ dans la deuxième équation de (2.39) on en déduit une borne dans $L^2(\Omega)$ des suites $(|\nabla u_1^{(n)}|)_{n\in\mathbb{N}^\star}$ et $(|\nabla u_2^{(n)}|)_{n\in\mathbb{N}^\star}$ et donc que les suites $(u_1^{(n)})_{n\in\mathbb{N}^\star}$ et $(u_2^{(n)})_{n\in\mathbb{N}^\star}$ sont bornées dans $H^1(\Omega)$.

Plus précisément,

$$||u_1^{(n)}||_{H^1(\Omega)}^2 + ||u_2^{(n)}||_{H^1(\Omega)}^2 \le 2(||f_1||_{L^2(\Omega)}^2 + ||f_2||_{L^2(\Omega)}^2). \tag{2.77}$$

(c) Comme les suites $(u_1^{(n)})_{n\in\mathbb{N}^\star}$ et $(u_2^{(n)})_{n\in\mathbb{N}^\star}$ sont bornées dans $H^1(\Omega)$, on peut supposer, quitte à extraire une sous-suite, qu'elles convergent faiblement dans $H^1(\Omega)$. On note u_1, u_2 les limites faibles dans $H^1(\Omega)$ de ces sous-suites. En passant à la limite quand $n\to+\infty$ dans les équations de (2.39) (écrites avec $u_1^{(n)}$ et $u_2^{(n)}$) on obtient que u_1, u_2 sont solutions de (2.39) avec 0 au lieu de $\frac{1}{n}$ (noter pour cela que les suites $(u_1^{(n)})_{n\in\mathbb{N}^\star}$ sont bornées dans $L^2(\Omega)$).

Comme on a raisonné avec une extraction de sous-suite, l'unicité de la solution de (2.39) avec 0 au lieu de $\frac{1}{n}$ ne découle par du raisonnement précédent. Elle est toutefois facile à montrer car si on a deux

solutions de (2.39) avec 0 au lieu de $\frac{1}{n}$ (et les mêmes f_1 et f_2) leur différence, encore notée u_1, u_2 , est solution de (2.39) avec 0 au lieu de $\frac{1}{n}$ et $f_1=f_2=0$ p.p.. Dans la première équation de (2.39), on prend alors $\varphi=u_2$. Dans la deuxième équation de (2.39), on prend $\varphi=-u_1$. En additionnant les équations obtenues on en déduit que $u_1=u_2=0$ p.p.. Ceci prouve bien l'unicité demandée.

On note enfin que (2.77) donne, en passant à la limite inférieure quand $n \to +\infty$,

$$||u_1||_{H^1(\Omega)}^2 + ||u_2||_{H^1(\Omega)}^2 \le 2(||f_1||_{L^2(\Omega)}^2 + ||f_2||_{L^2(\Omega)}^2).$$
 (2.78)

(d) Soit u la solution (2.39) avec 0 au lieu de $\frac{1}{n}$. Comme u_2 , $u_1 \in L^2(\Omega)$, le théorème de régularité 2.16 valable avec $H^1(\Omega)$ au lieu de $H^1_0(\Omega)$ donne u_1 , $u_2 \in H^2(\Omega)$. Le raisonnement de la question 1b donne alors que les équations (2.34) sont satisfaites p.p. sur Ω .

En prenant maintenant $\varphi \in H^1(\Omega)$ dans (2.39), le théorème d'intégration par parties 1.30 donne

$$\int_{\partial\Omega} \nabla u_i(x) \cdot n(x) v(x) \, dx = 0 \text{ pour tout } v \in H^{\frac{1}{2}}(\partial\Omega) \text{ et } i = 2, 2, \tag{2.79}$$

où n est le vecteur normal à $\partial\Omega$ et extérieur.

Pour i=1 ou 2, la fonction $\nabla u_i(x)\cdot n(x)$ appartient $H^{\frac{1}{2}}(\partial\Omega)$ car $u_i\in H^2(\Omega)$). On peut donc prendre $v=H^{\frac{1}{2}}(\partial\Omega)$ dans (2.79), et on obtient $\nabla u_i(x)\cdot n(x)=0$ p.p. sur $\partial\Omega$ (pour la mesure de lebesgue N-1-dimensionnelle). Les équations (2.37) sont satisfaites p.p. (pour la mesure de lebesgue N-1-dimensionnelle) sur $\partial\Omega$.

Réciproquement, on suppose que $u_1, u_2 \in H^2(\Omega)$, que les équations (2.34) sont satisfaites p.p. sur Ω et que les équations (2.37) sont satisfaites p.p. (pour la mesure de lebesgue N-1-dimensionnelle) sur $\partial\Omega$ (avec l'opérateur trace). Il suffit alors d'utilser le théorème d'intégration par parties 1.30 pour montrer que $u=(u_1,u_2)$ est solution (2.39) avec 0 au lieu de $\frac{1}{n}$. Comme cette solution est unique, ceci termine la question.

N.B. Si $f_1, f_2 \in C^{\infty}(\bar{\Omega})$, on peut montrer aussi que $u_1, u_2 \in C^{\infty}(\bar{\Omega})$.

- (e) La preuve est identique à celle de la question 1d. Grâce à l'estimation (2.78), l'application $f\mapsto u$ solution de (2.39) (avec 0 au lieu de $\frac{1}{n}$) est continue de $L^2(\Omega)\times L^2(\Omega)$ dans W. Puis l'application $u\mapsto u$ de W dans $L^2(\Omega)\times L^2(\Omega)$ est compacte (par le théorème 1.34). Par composition, on en déduit que l'application $f\mapsto u$ solution de (2.39) (avec 0 au lieu de $\frac{1}{n}$) est compacte de $L^2(\Omega)\times L^2(\Omega)$ dans $L^2(\Omega)\times L^2(\Omega)$.
- 3. Conditions au limites mixtes

La méthode suggérée par les questions précédentes consiste à introduire le problème faible suivant :

$$\begin{split} u_1 &\in H^1_0(\Omega), \ u_2 \in H^1(\Omega), \\ \int_{\Omega} \nabla u_1(x) \cdot \nabla \varphi(x) \ \mathrm{d}x + \int_{\Omega} u_2(x) \varphi(x) \ \mathrm{d}x = \int_{\Omega} f_1(x) \varphi(x) \ \mathrm{d}x, \ \forall \varphi \in H^1_0(\Omega), \\ \int_{\Omega} \nabla u_2(x) \cdot \nabla \varphi(x) \ \mathrm{d}x + \int_{\Omega} (\frac{1}{n} u_2(x) - u_1(x)) \varphi(x) \ \mathrm{d}x = \int_{\Omega} f_2(x) \varphi(x) \ \mathrm{d}x, \ \forall \varphi \in H^1(\Omega). \end{split}$$

On montre que ce problème faible a une et une seule solution. On montre des estimations indépendantes de n sur le couple (u_1,u_2) solution dans $H^1_0(\Omega) \times H^1(\Omega)$. Ces estimations permettent de passer à limite quand $n \to +\infty$ pour avoir une solution du problème désiré. Il est ensuite possible ensuite de montrer la régularité de la solution obtenue et finalement la compacité de l'opérateur obtenu de $L^2(\Omega) \times L^2(\Omega)$ dans lui même.

Exercice 2.14 (Inégalité de Trudinger-Moser et $L^1(\sqrt{\ln(L^1)}) \subset H^{-1}$, N=2) Partie I, décomposition dans $H^1_0(\Omega)$

- 1. Pour $1 < s \le 2$, $\varphi'(s) = -s + 2$. Il est alors facile de voir que $\varphi \in C^1(\mathbb{R}, \mathbb{R})$ et donc que $\varphi_k \in C^1(\mathbb{R}, \mathbb{R})$ pour $k \in \mathbb{N}^\star$. Pour $|s| \le k$, $\varphi_k(s) = s$ et $\varphi_k'(s) = 1$. On en déduit que, pour tout $s \in \mathbb{R}$, $\lim_{k \to \infty} \varphi_k(s) = s$ et $\lim_{k \to \infty} \varphi_k'(s) = 1$. Pour $k \le |s| \le 2k$, $0 \le \varphi_k'(s) = \varphi'(\frac{s}{k}) = -|\frac{s}{k}| + 2 \le 1$ et $|\varphi_k(s)| \le |s|$. Pour $|s| \ge 2k$, $\varphi_k'(s) = 0 \le 1$ et $|\varphi_k(s)| = \frac{3}{2} \le |s|$.
- 2. Par le lemme 2.23, on a $\varphi_k(u) \in H^1_0(\Omega)$ pour tout $k \in N^*$. Par la question précédente, $|\varphi_k(u)| \leq |u|$ p.p. pour tout $k \in N^*$ et que $\varphi_k(u) \to u$ p.p. quand $k \to \infty$. De plus, pour tout $i \in \{1, \dots, N\}, |D_i\varphi_k(u)| = |\varphi_k'(u)D_iu| \leq |D_iu|$ p.p. et $D_i\varphi_k(u) \to D_iu$ p.p. quand $k \to \infty$. Le théorème de convergence dominée donne alors que $\varphi_k(u) \to u$ dans $H^1_0(\Omega)$ quand $k \to \infty$.
- 3. Soient $u \in H^1_0(\Omega)$ et $\varepsilon > 0$. La question 2 donne l'existence de k > 0 tel que $\|u \varphi_k(u)\|_{H^1_0(\Omega)} \le \varepsilon$. Il suffit alors de prendre $u_1 = \varphi_k(u)$ et $u_2 = u \varphi_k(u)$. on a bien $u_1 \in L^\infty(\Omega)$ car $|u_1| \le (3/2)k$ p.p..

Partie II, Inégalité de Trudinger-Möser

1. On rappelle que $H_0^1(\mathbb{R}^2) = H^1(\mathbb{R}^2) = W^{1,2}(\mathbb{R}^2)$. La définition (1.30) du corrigé de l'exercice 1.9 donne, pour $N=2, q\geq 2$ et $u\in H_0^1(\mathbb{R}^2)$,

$$||u||_{L^q(\mathbb{R}^2)} \le D_{2,q} ||u||_{H_0^1(\mathbb{R}^2)}$$
 pour tout $u \in H_0^1(\mathbb{R}^2)$,

avec $D_{2,q}=(1+2^qC_{2,p}^{\frac{q}{p}}+2^q)^{\frac{1}{q}}, C_{2,p}=\frac{p}{2-p}$ et $q=2\frac{p}{2-p}$. On a donc $p=\frac{2q}{2+q}, C_{2,p}=\frac{q}{2}$ et donc

$$D_{2,q} \leq \big(3 \max\{1, 2^q C_{2,p}^{\frac{q}{p}}, 2^q\}\big)^{\frac{1}{q}} \leq 3 \big(1 + 2 \big(\frac{q}{2}\big)^{(\frac{1}{q} + \frac{1}{2})} + 2\big).$$

Comme $(\frac{q}{2})^{(\frac{1}{q}+\frac{1}{2})}=(\frac{q}{2})^{\frac{1}{q}}(\frac{q}{2})^{\frac{1}{2}}$ et que $\lim_{q\to\infty}(\frac{q}{2})^{\frac{1}{q}}=1$, on en déduit l'existence de $D\in R_+$ vérifiant (2.40).

En prolongeant u par 0 hors de Ω , l'inégalité (2.40) donne (2.41) si $q \geq 2$. Puis pour q < 2, l'inégalité de Hölder généralisée donne que $\|u\|_{L^q(\mathbb{R}^2)} \leq \lambda_2(\Omega)^{\frac{1}{q}-\frac{1}{2}} \|u\|_{L^2(\mathbb{R}^2)}$ pour avoir l'existence de C ne dépendant que de Ω vérfiant (2.41).

2. Pour $x \in \Omega$,

$$e^{\sigma u(x)^2} = \sum_{n \in \mathbb{N}} \frac{\sigma^n u(x)^{2n}}{n!},$$

et donc, avec le théorème de convergence monotone et la question 1,

$$\|e^{\sigma u^2}\|_{L^1(\Omega)} = \lambda_2(\Omega) + \sum_{n \ge 1} \frac{\sigma^n}{n!} \|u\|_{L^{2n}(\Omega)}^{2n} \le \lambda_2(\Omega) + \sum_{n \ge 1} \frac{\sigma^n}{n!} (C\sqrt{2n})^{2n} \le \lambda_2(\Omega) + \sum_{n \ge 1} \frac{\sigma^n}{n!} (2C^2)^n n^n.$$

Soit $a_n = \frac{\sigma^n}{n!} (2C^2)^n n^n$ de sorte que

$$\frac{a_{n+1}}{a_n} = \frac{\sigma}{n} 2C^2 \frac{(n+1)^{n+1}}{n^n} = \sigma 2C^2 \frac{n+1}{n} (\frac{n+1}{n})^n.$$

On a donc $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = \sigma 2eC^2$.

On choisit σ tel que $0 < \sigma < 1/(2eC^2)$ et on pose $a = \lambda_2(\Omega) + \sum_{n \geq 1} \frac{\sigma^n}{n!} (2C^2)^n n^n$.

On obtient alors $||e^{\sigma u^2}||_{L^1(\Omega)} \le a$. On note σ_0 cette valeur de σ .

3. On utilise pour cette question les nombres σ_0 et a trouvés à la question 2.

Soit
$$\sigma > 0$$
 et $1 \le p < +\infty$. On choisit $\varepsilon > 0$ tel que $(\frac{2p\sigma}{\sigma_0})^{\frac{1}{2}}\varepsilon = 1$.

Soit $u \in H_0^1(\Omega)$, $u \neq 0$. La partie I donne l'existence de u_1 et u_2 tels que $u_1 \in L^{\infty}(\Omega)$ et $||u_2||_{H_0^1(\Omega)} \leq \varepsilon$.

On a donc, comme $u^2 \le 2u_1^2 + 2u_2^2$ p.p., avec A > 0 tel que $e^{2p\sigma u_1^2} \le A$ p.p.,

$$e^{p\sigma u^2} \leq e^{2p\sigma u_1^2} e^{2p\sigma u_2^2} \leq A e^{\sigma_0 \frac{2p\sigma}{\sigma_0} u_2^2} \text{ p.p.}.$$

Le choix de ε donne $\|(\frac{2p\sigma}{\sigma_0})^{\frac{1}{2}}u_2\|_{H^1_0(\Omega)}=(\frac{2p\sigma}{\sigma_0})^{\frac{1}{2}}\|u_2\|_{H^1_0(\Omega)}\leq 1.$ On en déduit que $e^{\sigma u^2}\in L^p(\Omega)$ et

$$||e^{\sigma u^2}||_{L^p(\Omega)} \le (Aa)^{\frac{1}{p}}.$$

Partie III, sur la résolution du problème de Dirichlet

1. Soit $\beta \in \mathbb{R}_+^*$ et soient $s, t \in \mathbb{R}_+^*$.

Si $st > \beta t \sqrt{|\ln t|}$, on a alors $s > \beta \sqrt{|\ln t|}$ et donc $s^2 > \beta^2 |\ln t|$ et donc $e^{\frac{s^2}{\beta^2}} > e^{|\ln t|} > e^{\ln t} = t$. On obtient ainsi $st < se^{\frac{s^2}{\beta^2}}$. On a bien montré que

$$st \le \max\{\beta t \sqrt{|\ln t|}, se^{\frac{s^2}{\beta^2}}\}.$$

et donc

$$st \le \beta t \sqrt{|\ln t|} + se^{\frac{s^2}{\beta^2}}.$$

On choisit maintenant $\beta > 0$ tel que $\sigma > 1/\beta^2$. On a alors $\frac{1}{s}e^{\sigma - \frac{s^2}{\beta^2}} \to +\infty$ lorsque $s \to +\infty$, et il existe donc $\gamma > 0$ tel que $e^{\sigma s^2} > se^{\frac{s^2}{\beta^2}}$ pour $s > \gamma$.

On obtient alors, pour tout $s, t \in \mathbb{R}_+^*$,

$$st \leq \beta t \sqrt{|\ln t|} + s e^{\sigma s^2} \leq \begin{cases} \beta t \sqrt{|\ln t|} + e^{\sigma s^2} \text{ si } s > \gamma, \\ \gamma t \text{ si } s \leq \gamma, \end{cases}$$

si bien que finalement, pour tous $s, t \in \mathbb{R}_+^*$,

$$st \le e^{\sigma s^2} + \gamma t + \beta t \sqrt{|\ln t|}.$$

2. Soit $u\in H^1_0(\Omega)$ tel que $\|u\|_{H^1_0(\Omega)}\leq 1$. On choisit $\sigma=\sigma_0>0$ trouvé à la question 2 de la partie II et $\beta>0,\,\gamma>0$ trouvés à la question 1. La question 1 donne

$$|fu| \leq e^{\sigma_0 u^2} + \gamma |f| + \beta |f| \sqrt{|\ln|f||} \text{ p.p..}$$

On en déduit (avec a trouvé à la question 2 de la partie II) que $fu \in L^1(\Omega)$ et

$$||fu||_{L^1(\Omega)} \le a + \gamma ||f||_{L^1(\Omega)} + \beta ||f\sqrt{|\ln(|f|)|}||_{L^1(\Omega)} = M.$$

Par linéarité, on a donc, pour tout $u \in H^1_0(\Omega)$, $fu \in L^1(\Omega)$ et $||fu||_{L^1(\Omega)} \leq M||u||_{H^1_0(\Omega)}$. Ce qui prouve que l'application $T: u \mapsto \int_{\Omega} f(x)u(x) \, \mathrm{d}x$ est un élément de $H^{-1}(\Omega)$.

3. Comme $T \in H^{-1}(\Omega)$, le théorème 2.9 donne l'existence et l'unicité de $u \in H_0^1(\Omega)$ tel que

$$\int_{\Omega} \nabla u \nabla v \, dx = \langle T, u \rangle_{H^{-1}(\Omega), H_0^1(O)} = \int_{\Omega} f u \, dx \text{ pour tout } v \in H_0^1(\Omega).$$
 (2.80)

En prenant $v \in \mathcal{D}^*(\Omega)$ dans (2.80) ceci montre que $-\Delta u = f$ dans $\mathcal{D}^*(\Omega)$.

Réciproquement si $u \in H_0^1(\Omega)$ est tel que $-\Delta u = f$ dans $\mathcal{D}^*(\Omega)$. On a (2.80) pour tout $v \in \mathcal{D}^*(\Omega)$ et donc par densité u est la solution de (2.80).

Partie IV, contre-exemple

- 1. On choisit une fonction $\varphi \in C_c^\infty(B_{2\delta})$ positive et telle que $\varphi = 1$ sur B_δ (l'existence d'une telle fonction est un résultat classique par régularisation, voir par exemple [20, paragraphe 8.1.2]) que l'on prolonge par 0 de sorte que $\varphi \in C_c^\infty(\Omega)$. La fonction $u = v\varphi$ appartient à $u \in H_0^1(\Omega)$.
- 2. On choisit f sous la forme $f(x) = \frac{1}{|x|^2(-\ln(|x|)^\alpha)}$ pour $x \in B(0,\delta)$ et f=0 hors de $B(0,\delta)$. Pour que $f \in L^1(\Omega)$ il suffit que $\alpha > 1$.

$$f(x)(\ln|f(x)|)^{\theta} = \frac{1}{|x|^2(-\ln(|x|)^{\alpha}}(-2\ln|x| - \alpha\ln(-\ln(|x|))^{\theta}.$$

On a donc $f(\ln |f|)^{\theta} \in L^1(\Omega)$ si $\alpha - \theta > 1$, c'est-à-dire $\alpha > 1 + \theta$. Enfin, on choisit u construit à la question 1 avec $\gamma \in]0, \frac{1}{2}[$ (pour avoir $u \in H^1_0(\Omega)$).

$$f(x)u(x) = \frac{1}{|x|^2(-\ln|x|)^{\alpha-\gamma}} \text{ pour } x \in B_{\delta}.$$

et donc $fu \notin L^1(\Omega)$ si $\alpha - \gamma \leq 1$. Il suffit donc de choisir $\gamma = \alpha - 1$, ce qui possible en prenant $1 + \theta < \alpha < 3/2$. On a bien $f \in L^1(\Omega)$, $f(\ln |f|)^{\theta} \in L^1(\Omega)$ et $fu \notin L^1(\Omega)$ pour certains $u \in H^1_0(\Omega)$.

3. On choisit la fonction f construite à la question précédente. On suppose que $-\Delta u = f$ dans $\mathcal{D}^{\star}(\Omega)$ avec $u \in H_0^1(\Omega)$.

Comme $u \in H^1_0(\Omega)$, on a $-\Delta u \in H^{-1}(\Omega)$, c'est-à-dire que l'élément de $\mathcal{D}^*(\Omega)$ noté $-\Delta u$ se prolonge en application linéaire continue sur $H^1_0(\Omega)$. Ceci est impossible car on a construit à la question précédente une fonction v dans $H^1_0(\Omega)$ telle que $fv \notin L^1(\Omega)$.

Un moyen simple de voir cette impossibilité est d'utiliser le fait que les fonctions f et v sont positives sur $B(0,\delta)$. On considère alors $v_n=\min\{v,n\}$ de sorte que $v_n\in H^1_0(\Omega)$ et $\|v_n\|_{H^1_0(\Omega)}\leq \|v\|_{H^1_0(\Omega)}$. Comme $fv_n\in L^1(\Omega)$, le fait que $-\Delta u\in H^{-1}(\Omega)$ (avec $u\in H^1_0(\Omega)$) donnerait, en admettant que

$$\int_{\Omega} f v_n \, \mathrm{d}x = \langle -\Delta u, v_n \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \tag{2.81}$$

ce qu'on démontre ci-après, l'existence de C tel que

$$\int_{\Omega} f v_n \, \mathrm{d}x \le C \|v_n\|_{H_0^1(\Omega)} \le C \|v\|_{H_0^1(\Omega)},$$

Par convergence monotone on en déduirait $fv \in L^1(\Omega)$ ce qui est faux.

Démontrons maintenant l'égalité (2.81). Comme $v_n \in L^\infty(\Omega) \cap H^1_0(\Omega)$, il existe une suite $(\varphi_p)_{p \in N}$ bornée dans $L^\infty(\Omega)$ d'éléments de $C_c^\infty(\Omega)$ telle que $\varphi_p \to v_n$ dans $H^1_0(\Omega)$ quand $p \to +\infty$. On obtient $\int_\Omega f v_n \, \mathrm{d}x = \langle -\Delta u, v_n \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$ en faisant $p \to +\infty$ dans l'égalité $\int_\Omega f \varphi_p \, \mathrm{d}x = \langle -\Delta u, \varphi_p \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$ (avec le théorème de convergence dominée pour le terme de gauche et la convergence de φ_p vers v_n dans $H^1_0(\Omega)$ pour le terme de droite).

Exercice 2.15 (Décomposition de Hodge) L'exercice (corrigé) 2.8 donne l'existence d'une fonction $u \in H^1(\Omega)$ telle que

$$\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \, dx = \int_{\Omega} f(x) \cdot \nabla \varphi(x) \, dx, \ \forall \varphi \in H^{1}(\Omega).$$

On peut aussi ajouter la condition $\int_{\Omega} u(x) dx = 0$ et on a alors existence et unicité de u (voir l'exercice 2.8).

On pose alors $g = f - \nabla u$. Les fonctions u et g vérifient les conditions demandées.

On suppose maintenant que $g \in C^1(\bar{\Omega})$ et que $\Omega = (]0,1[)^N$. On a

$$\int_{\Omega} g(x) \cdot \nabla \varphi(x) \, dx = 0 \text{ pour tout } \varphi \in H^1(\Omega).$$

On raisonne comme dans l'exercice 2.8. En prenant $\varphi \in C_c^\infty(\Omega)$, le lemme fondamental (lemme 1.1) nous permet de montrer que $\operatorname{div}(g) = 0$ partout dans Ω . Puis, en prenant $\varphi \in C^1(\bar{\Omega})$, une intégration par parties (plutôt plus facile que dans l'exercice 2.8) donne

$$\int_{\partial\Omega} g(x) \cdot n(x)\varphi(x) \, d\gamma(x) = 0 \text{ pour tout } \varphi \in C^1(\bar{\Omega}).$$

De cette égalité, on déduit que $g \cdot n = 0$ p.p. sur $\partial \Omega$.

Ceci peut se démontrer si N=2 de la manière suivante : $\mathrm{d}\gamma(x)=dx_1$ ou dx_2 , selon les parties de $\partial\Omega$ (avec $x=(x_1,x_2)^t$). Avec $g=(g_1,g_2)^t$, on en déduit que $g_1(x)=0$ partout sur $\{0\}\times[0,1]\cup\{1\}\times[0,1]$ et $g_2(x)=0$ partout sur $[0,1]\times\{0\}\cup[0,1]\times\{1\}$. (Ce qui donne bien $g\cdot n=0$ p.p. sur $\partial\Omega$.) La généralisation au cas $N\geq 1$ ne pose pas de difficulté.

Exercice 2.16 (Problème de Stokes, vitesse)

1. On pose $V = H_0^1(\Omega)^N$ et on définit un produit scalaire sur V par

$$(u \mid v)_V = \sum_{i=1}^N \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, dx.$$

(Avec
$$u = (u_1, \dots, u_N)^t$$
, $v = (v_1, \dots, v_N)^t$.)

Grâce à l'inégalité de Poincaré (Lemme 2.5), l'application $u, v \mapsto (u \mid v)_V$ est bien un produit scalaire sur V et V (avec ce produit scalaire) est un espace de Hilbert.

L'espace H est fermé dans V (par exemple parce que l'application $u \mapsto \operatorname{div} u$ est continue de V dans $L^2(\Omega)$). L'espace H (avec le même produit scalaire) est donc aussi un espace de Hilbert.

Pour $v \in H$, on pose $T(v) = \int_{\Omega} f(x) \cdot v(x) dx$. Grâce encore à l'inégalité de Poincaré, $T \in H'$. Le problème (2.43) s'écrit alors

$$u \in H,$$

$$(u \,|\, v)_V = T(v) \text{ pour tout } v \in H.$$

On peut donc appliquer le théorème de représentation de Riesz (voir par exemple [20, Théorème 6.56]), il donne l'existence et l'unicité de $u \in V$ solution de (2.42).

2. On conserve dans les corrigés suivants les notations du corrigé de la question précédente. On commence par remarquer que le problème (2.43). est équivalent à

$$\begin{split} u &\in V,\\ (u\,|\,v)_V + n \int_\Omega \operatorname{div} u(x) \operatorname{div} v(x) \; \mathrm{d}x = \int_\Omega f(x) \cdot v(x) \; \mathrm{d}x \text{ pour tout } v \in V. \end{split}$$

On définit la forme a par $a(u,v)=(u\,|\,v)_H+\int_\Omega {\rm div}\, u(x){\rm div}\, v(x)\,{\rm d}x$. La forme a définie su V un produit scalaire sur V équivalent au produit scalaire de la première question. On peut donc, une nouvelle fois, appliquer le théorème de représentation de Riesz, il donne l'existence et l'unicité de $u\in V$ solution de (2.43).

3. On prend $v = u^{(n)}$ dans (2.43) et on utilise l'inégalité de Cauchy-Schwarz,

$$(u^{(n)} \mid u^{(n)})_V \le (u^{(n)} \mid u^{(n)})_H + n \int_{\Omega} (\operatorname{div} u^{(n)}(x))^2 \, \mathrm{d}x = \int_{\Omega} f(x) \cdot u^{(n)}(x) \, \mathrm{d}x \le \sum_{i=1}^n \|f_i\|_{L^2(\Omega)} \|u_i^{(n)}\|_{L^2(\Omega)}.$$

Avec l'inégalité de Poincaré (lemme 2.5) on déduit que la suite $(u^{(n)})_{n\in\mathbb{N}}$ est bornée dans V puis que la suite $(\sqrt{n}\operatorname{div} u^{(n)})_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$.

4. La suite $(u^{(n)})_{n\in\mathbb{N}}$ est bornée dans V, on peut supposer, après extraction d'une sous-suite, qu'elle converge faiblement dans V. On note u cette limite faible.

En prenant $v \in H$, de sorte que div v = 0 p.p.,

$$(u^{(n)} | v)_V = \int_{\Omega} f(x) \cdot v(x) dx$$
 pour tout $v \in V$.

Quand $n \to +\infty$, on obtient

$$(u \mid v)_V = \int_{\Omega} f(x) \cdot v(x) dx$$
 pour tout $v \in V$.

La fonction u appartient à V et vérifie l'équation demandée dans (2.42). Il reste à vérifier que $u \in H$, ce qui vrai car $\operatorname{div} u^{(n)} \to \operatorname{div} u$ au moins faiblement dans $L^2(\Omega)$ mais $\operatorname{div} u^{(n)} \to 0$ dans $L^2(\Omega)$ (car la suite $(\sqrt{n}\operatorname{div} u^{(n)})_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$) et donc $\operatorname{div} u = 0$ p.p., ce qui prouve que $u \in H$. La fonction u est donc solution de (2.42). L'unicité de la solution de(2.42) permet alors d'affirmer que $u^{(n)} \to u$ faiblement dans V quand $u \to +\infty$, sans extraction de sous-suite.

Exercice 2.17 (Conditions aux limites de Wentzel)

- 1. L'espace $H^1_p(0,2\pi)$ est fermé dans $H^1(]0,2\pi[)$ (par exemple parce que l'application $u\mapsto u$ est continue de $H^1(]0,2\pi[)$ dans $C([0,2\pi],{\rm I\!R})$ muni de la norme de la convergence uniforme). L'espace $H^1_p(0,2\pi)$ (avec le produit scalaire de $H^1(]0,2\pi[)$) est donc un espace de Hilbert.
- 2. L'application $(u,v)\mapsto (u\,|\,v)_H$ est clairement un produit scalaire sur H (elle est bilinéaire symétrique et a(u,u)>0 si u est non nulle). Il reste à montrer que H est complet avec ce produit scalaire. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans H. La suite $(u_n)_{n\in\mathbb{N}}$ est donc de Cauchy dans $H^1(B)$ et la suite $(\bar{\gamma}(u_n))n\in\mathbb{N}$ est de Cauchy dans $H^1_p(0,2\pi)$. Il existe donc $u\in H^1(B)$ et $g\in H^1_p(0,2\pi)$ tels que $u_n\to u$ dans $H^1(B)$ et $\bar{\gamma}(u_n)\to g$ dans $H^1_p(0,2\pi)$ quand $n\to+\infty$. Comme $u_n\to u$ dans $H^1(B)$ on a aussi $\bar{\gamma}(u_n)\to\bar{\gamma}(u)$ dans $L^2(]0,2\pi[)$. On en déduit que $\bar{\gamma}(u)=g$ p.p. et donc $u\in H$. Finalement, comme $u_n\to u$ dans $H^1(B)$ et $\bar{\gamma}(u_n)\to\bar{\gamma}(u)$ quand $n\to+\infty$, on a bien $u_n\to u$ dans H. L'espace H est bien complet.

1. Le problème (2.46)-(2.47) sécrit, en posant $T(v)=\int_B f(z)v(z)\,\mathrm{d}z+\int_0^{2\pi}j(g)(\theta)j(\gamma(v))(\theta)d\theta$,

$$u \in H$$

$$(u \,|\, v)_H = T(v) \text{ pour tout } v \in H.$$

L'application T appartient à H'. En effet,

$$\begin{split} &|\int_{B} f(z)v(z) \; \mathrm{d}z| \leq \|f\|_{L^{2}(B)} \|v\|_{H^{1}(B)} \; \mathrm{et} \\ &|\int_{0}^{2\pi} j(g)(\theta)j(\gamma(v))(\theta) d\theta| \leq \|g\|_{L^{2}(\partial B)} \|\gamma(v)\|_{L^{2}(\partial B)}. \end{split}$$

Ceci montre, avec la continuité de l'opérateur γ de $H^1(B)$ dans $L^2(\partial B)$, que T appartient à H'.

Le théorème de représentation de Riesz (voir par exemple [20] théorème 6.56) donne l'existence et l'unicité de u solution de (2.46)-(2.47).

Il est intéressant de remarquer, pour la question 4, que l'application $(f,g)\mapsto (u,\gamma(u)$ (avec u solution de (2.46)-(2.47)) envoie un bomé de $L^2(B)\times L^2(\partial B)$ dans un borné de $H^1(B)\times H^1_p(0,2\pi)$.

2. Pour $u,v\in H$ on pose $a(u,v)=\int_{B}\nabla u(x)\cdot\nabla v(x)\,\mathrm{d}x+(\bar{\gamma}(u)\,|\,\bar{\gamma}(v))_{H^{1}_{p}(0,2\pi)}$. Le problème (2.46)-(2.47) (sans "uv" dans la 1ère intégrale de (2.47)) sécrit alors, avec la même application T que dans la question précédente,

$$u \in H$$

 $a(u, v) = T(v)$ pour tout $v \in H$.

Pour montrer l'existence et l'unicité de u solution de (2.46)-(2.47) (sans "uv") il suffit donc (avec le théorème de représentation de Riesz) de montrer que la forme bilinéaire a définit sur H un produit scalaire équivalent au produit scalaire $(\cdot \mid \cdot)_H$. Il est immédiat que $a(u,u) \leq (u \mid u)_H$. Il suffit donc de montrer qu'il existe c > 0 tel que, pour tout $u \in H$, $a(u,u) \geq c(u \mid u)_H$.

On montre l'existence de c par contradiction. Si c n'existe pas, il existe, pour tout $n \in \mathbb{N}^*$, $u_n \in H$ tel que

$$a(u_n, u_n) < \frac{1}{n} (u_n | u_n)_H.$$
 (2.82)

Noter que $u_n \neq 0$ (car $a(u,u) \geq 0$ pour tout $u \in H$). Par un argument d'homogénéité, on peut supposer que $\|u_n\|_H = 1$. La suite $(u_n)_{n \in \mathbb{N}}$ est donc bornée dans $H^1(B)$ et la suite $(\bar{\gamma}(u_n))_{n \in \mathbb{N}}$ est bornée dans $H^1_p(0,2\pi)$. On peut donc aussi supposer, après extraction d'une sous-suite, qu'il existe $u \in H^1(B)$ et $h \in H^1_p(0,2\pi)$ tels que $u_n \to u$ faiblement dans $H^1(B)$ et $\bar{\gamma}(u_n) \to h$ faiblement dans $H^1_p(0,2\pi)$ quand $n \to +\infty$.

Comme γ est continu de $H^1(B)$ dans $L^2(\partial B)$, la convergence faible de u_n vers u dans $H^1(B)$ donne $\gamma(u_n) \to \gamma(u)$ faiblement dans $L^2(\partial B)$ (voir par exemple l'exercice 1.22). Comme j est une isométrie, on a aussi (quand $n \to +\infty$) $\bar{\gamma}(u_n) \to \bar{\gamma}(u)$ faiblement dans $L^2(\partial B)$ et donc $h = \bar{\gamma}u$ p.p.. Enfin, on a aussi (par exemple avec l'exercice 1.22 $D_iu_n \to D_iu$ faiblement dans $L^2(B)$ pour i=1,2.

On remarque maintenant que $(u_n \mid u_n)_H = 1$, l'inégalité (2.82) donne donc $D_i u_n \to 0$ (pour i = 1, 2) dans $L^2(B)$ et $\bar{\gamma}(u_n) \to 0$ dans $H^1_p(0,2\pi)$ quand $n \to +\infty$ (on en déduit en particulier $h = \bar{\gamma}(u) = 0$ p.p.). On a donc $\nabla u = 0$ p.p. et il existe donc $b \in \mathbb{R}$ tel que u = b p.p. (exercice 1.4). ceci donne $\gamma(u) = b$ et $\bar{\gamma}(u) = b$ p.p. et donc u = 0 p.p..

Pour conclure, on rappelle que la convergence faible de u_n vers u dans $H^1(B)$ donne la convergence dans $L^2(B)$ (théorème 1.34) et donc $u_n \to 0$ dans $L^2(B)$. Mais, on sait déjà que $D_i u_n \to 0$ (pour i=1,2) dans $L^2(B)$ et donc $u_n \to 0$ dans $H^1(B)$, ce qui est impossible car $||u_n||_{H} = 1$ et

$$||u_n||_H^2 = ||u_n||_{H^1(B)}^2 + ||\bar{\gamma}(u_n)||_{H^1(0,2\pi)} \to 0 \text{ quand } n \to +\infty.$$

On a bien montré que la forme bilinéaire a définit sur H un produit scalaire équivalent au produit scalaire $(\cdot | \cdot)_H$ et donc l'existence et l'unicité de u solution de (2.46)-(2.47) (sans "uv").

Ici aussi on peut remarquer que l'application $(f,g)\mapsto (u,\gamma(u) \text{ (avec } u \text{ solution de (2.46)-(2.47) sans "}uv")$ envoie un bomé de $L^2(B)\times L^2(\partial B)$ dans un borné de $H^1(B)\times H^1_p(0,2\pi)$.

3. On suppose que u est solution au sens classique. Soit $v \in C^2(\overline{B}, \mathbb{R})$. On pose $\overline{v}(r, \theta) = u(r \cos \theta, r \sin \theta)$. On multiplie (2.44) par v et on intégre par parties sur B, on obtient

$$\int_{\mathcal{B}} \nabla u(z) \cdot \nabla v(z) \, \mathrm{d}z + \int_{B} u(z) v(z) \, \mathrm{d}z - \int_{0}^{2\pi} (\frac{\partial u}{\partial x} (\cos \theta, \sin \theta) \cos \theta + \frac{\partial u}{\partial y} (\cos \theta, \sin \theta) \sin \theta) d\theta = \int_{B} f(z) v(z) \, \mathrm{d}z,$$

c'est-à-dire

$$\int_{\mathcal{B}} \nabla u(z) \cdot \nabla v(z) \, dz + \int_{B} u(z)v(z) \, dz - \int_{0}^{2\pi} \frac{\partial \bar{u}}{\partial r}(1,\theta)\bar{v}(1,\theta)d\theta = \int_{B} f(z)v(z) \, dz.$$

En utilisant (2.45) et une intégration par parties, on obtient

$$\int_{\mathcal{B}} \nabla u(z) \cdot \nabla v(z) \, dz + \int_{B} u(z)v(z) \, dz + \int_{0}^{2\pi} \frac{\partial \bar{u}}{\partial \theta} (1, \theta) \frac{\partial \bar{v}}{\partial \theta} (1, \theta) d\theta + \int_{0}^{2\pi} \bar{u}(1, \theta) \bar{v}(1, \theta) d\theta$$

$$= \int_{B} f(z)v(z) \, dz + \int_{0}^{2\pi} g(\cos \theta, \sin \theta) \bar{v}(1, \theta) d\theta.$$

Comme $\bar{u}(1,\theta) = \bar{\gamma}(u)(\theta)$ et $\bar{v}(1,\theta) = \bar{\gamma}(u)(\theta)$, ceci donne exactement l'équation (2.47) pour $v \in C^2(\overline{B},\mathbb{R})$.

La densité de $C^2(\overline{B}, \mathbb{R})$ dans H permet de conclure que u est l'unique solution de (2.46)-(2.47).

Réciproquement, on suppose maintenant que u est l'unique solution de (2.46)-(2.47).

Le fait que (2.47) soit vérifiée pour tout $v \in \mathcal{D}(B)$ donne (comme $u \in C^2(B,\mathbb{R})$) que u vérifie (2.44) pour tout $(x,y) \in \overline{B}$.

On prend maintenant dans (2.47) $v \in C^2(\overline{B}, \mathbb{R})$. Des intégrations parties (sur B et sur $]0, 2\pi[$) permettent de montrer (comme $u \in C^2(\overline{B}, \mathbb{R})$ et u vérifie (2.44))

$$\int_0^{2\pi} \left(\frac{\partial \bar{u}}{\partial r}(1,\theta)\bar{v}(1,\theta) - \frac{\partial^2 \bar{u}}{\partial \theta^2}(1,\theta) + \bar{u}(1,\theta)\right)\bar{v}(1,\theta)d\theta = \int_0^{2\pi} g(\cos\theta,\sin\theta)\bar{v}(1,\theta)d\theta.$$

On peut prendre pour fonction $\theta \mapsto \bar{v}(1,\theta)$ la restriction à $[0,2\pi]$ d'une fonction arbitraire de \mathbb{R} dans \mathbb{R} , de classe C^2 et 2π -périodique. Le choix de telles fonctions est suffisant pour en déduire que u vérifie (2.45) pour tout $(x,y) \in \partial B$.

4. La linéarité de T est imédiate. La compacité de T est due au fait que l'application $(f,g)\mapsto (u,\gamma(u))$ (u solution de (2.46)-(2.47)) envoie un bomé de $L^2(B)\times L^2(\partial B)$ dans un borné de $H^1(B)\times H^1_p(0,2\pi)$ puis que l'application $(u,v)\mapsto (u,v)$ envoie (par le théorème 1.34) un borné de $H^1(B)\times H^1_p(0,2\pi)$ dans une partie relativement relativement compacte de $L^2(B)\times L^2(\partial B)$.

Enfin, soient u la solution de (2.46)-(2.47) associée à (f,g) et v la solution de (2.46)-(2.47) associée à (φ,ψ) au lieu de (f,g). On remarque que, comme $T(f,g)=(u,\gamma(u))$, avec u solution de (2.46)-(2.47)

$$(u | v)_{H} = \int_{B} f(z)v(z) dz + \int_{0}^{2\pi} j(g)(\theta)j(\gamma(v))(\theta)d\theta = ((f,g) | v, \gamma(v))_{L^{2}(B) \times L^{2}(\partial B)}$$
$$= ((f,g) | T(\varphi,\psi))_{L^{2}(B) \times L^{2}(\partial B)}.$$

Puis, comme $T(\varphi, \psi) = (v, \gamma(v))$, avec v solution de (2.46)-(2.47) avec (φ, ψ) au lieu de (f, g),

$$(v | u)_{H} = \int_{B} \varphi(z)u(z) dz + \int_{0}^{2\pi} j(\psi)(\theta)j(\gamma(u))(\theta)d\theta = ((\varphi, \psi) | u, \gamma(u))_{L^{2}(B) \times L^{2}(\partial B)}$$
$$= ((\varphi, \psi) | T(f, g))_{L^{2}(B) \times L^{2}(\partial B)}.$$

Ce qui montre bien que $T = T^*$.

Exercice 2.18 (Problème de Stokes, vitesse et pression)

Partie I, existence et unicité de u

Soit (u, p) est une solution classique de (2.48). On remarque tout d'abord que $u \in H$. Puis, pour $v \in H$, on multiplie la première équation de (2.48) par v et on intègre sur Ω . Les fonctions u et v sont suffisamment régulières pour intégrer par parties et obtient ainsi l'équation (2.50). Ceci montre que u est alors solution de (2.50).

- 1. L'application div qui à $u \in H^1_0(\Omega)^N$ associe divu est linéaire continue de $H^1_0(\Omega)^N$ dans $L^2(\Omega)$. Comme $H = \operatorname{Ker}$ div, on en déduit que H est un s.e.v. fermé de $H^1_0(\Omega)^N$.
- 2. Il suffit ici d'appliquer le théorème de Lax-Milgram, lemme 2.3 (ou le théorème de Riesz dans les espaces de Hilbert) en remarquant que H est un espace de Hilbert (H est muni de la norme naturelle de $H_0^1(\Omega)^N$), avec a et T définis par

$$a(u,v) = \sum_{i=1}^{N} \int_{\Omega} \nabla u_i(x) \cdot \nabla v_i(x) \, dx, \text{ et } T(v) = \int_{\Omega} f(x) \cdot v(x) \, dx.$$

3. Pour $v \in H$, on a $\operatorname{div}(v) = 0$ p.p. dans Ω et donc $\int_{\Omega} p \operatorname{div}(v) \, \mathrm{d}x = 0$. On en déduit que u est solution de (2.50). Par la question précédente, la fonction (vectorielle) u est donc l'unique solution de (2.50).

Partie II, préliminaire d'analyse fonctionnelle

1. Soit $u \in \operatorname{Ker} A$ (on a donc Au = 0). Pour $v \in \operatorname{Im} A^*$, il existe $g \in F$ tel que $v = A^*g$, on a donc

$$(v|u)_E = (A^*g|u)_E = (g|Au)_F = 0.$$

Ce qui montre que $u \in (\operatorname{Im} A^*)^{\perp}$. On a donc $\operatorname{Ker} A \subset (\operatorname{Im} A^*)^{\perp}$.

Réciproquement, soit $u \in (\operatorname{Im} A^*)^{\perp}$. On a alors, en posant f = Au,

$$(Au|Au)_F = (f|Au)_F = (A^*f|u)_E = 0,$$

car $A^*f\in {\rm Im}A^*$. Donc, Au=0, c'est-à-dire $u\in {\rm Ker}A$. Ceci donne $({\rm Im}A^*)^\perp\subset {\rm Ker}A$.

Finalement, on a bien montré que $(\operatorname{Im} A^*)^{\perp} = \operatorname{Ker} A$.

- 2. Si F est un s.e.v. fermé d'un espace de Hilbert H, on a toujours $H=F\oplus F^{\perp}$. D'autre part, si $G\subset H$, on a $G^{\perp}=\bar{G}^{\perp}$.
 - Si F est un s.e.v. d'un espace de Hilbert H, on a donc

$$H = \bar{F} \oplus F^{\perp}$$
 et $H = F^{\perp} \oplus (F^{\perp})^{\perp}$.

Ceci permet de prouver que $(F^{\perp})^{\perp} = \bar{F}$.

On applique ici ce résutat avec $F = \text{Im}A^*$, on obtient (avec la question précédente)

$$\overline{\operatorname{Im} A^*} = ((\operatorname{Im} A^*)^{\perp})^{\perp} = (\operatorname{Ker} A)^{\perp}.$$

Partie III, Existence et unicité partielle de p

1. (a) Soit $v \in E$. On a

$$(A^*p_n|v)_E = (p_n|Av)_F = \int_{\Omega} p_n \operatorname{div}(v) dx,$$

et

$$(A^*q_n|v)_E = (q_n|Av)_F = \int_{\Omega} q_n \operatorname{div}(v) \, dx = \int_{\Omega} p_n \operatorname{div}(v) \, dx - a_n \int_{\Omega} \operatorname{div}(v) \, dx.$$

Comme $v \in H^1_0(\Omega)^N$, on a (en intégrant par parties) $\int_\Omega \operatorname{div}(v) \, \mathrm{d}x = 0$ et donc

$$(A^*p_n|v)_E = (A^*q_n|v)_E$$
 pour tout $v \in H_0^1(\Omega)^N$.

Ceci montre bien que $A^*p_n = A^*q_n$.

(b) Par le lemme 2.34, il existe $v_n \in H^1_0(\Omega)^N$ t.q. $\operatorname{div}(v_n) = q_n$ p.p. $\operatorname{dans} \Omega$ et $\|v_n\|_{H^1_0(\Omega)^N} \leq C \|q_n\|_{L^2(\Omega)}$. On obtient alors

$$(A^*q_n|v_n)_E = \int_{\Omega} q_n \operatorname{div}(v_n) \, dx = \int_{\Omega} q_n^2 \, dx = \|q_n\|_F^2.$$

La question précédente donne $A^*p_n=A^*q_n$. On a donc

$$||q_n||_F^2 = (A^*p_n|v_n)_E \le ||A^*p_n||_E ||v_n||_E \le C||A^*p_n||_E ||q_n||_F,$$

et donc

$$||q_n||_F \le C||A^*p_n||_E.$$

L'hypothèse de convergence de A^*p_n donne que la suite $(A^*p_n)_{n\in\mathbb{N}}$ est bornée (dans E). On en déduit que la suite $(q_n)_{n\in\mathbb{N}}$ est bornée dans F.

(c) Comme la suite $(q_n)_{n\in\mathbb{N}}$ est bornée dans l'espace de Hilbert F, on peut supposer, après extraction éventuelle d'une sous-suite, que cette suite converge faiblement dans F. Il existe donc $q\in F$ t.q. $q_n\to q$ faiblement dans F, quand $n\to +\infty$. On va montrer que $v=A^*q$.

Soit $w \in E$, On a $\lim_{n \to +\infty} (q_n | Aw)_F = (q | Aw)_F$. Mais

$$(q_n|Aw)_F = (A^*q_n|w)_E = (A^*p_n|w)_E.$$

Comme $A^*p_n \to v$ dans E, on a donc aussi $\lim_{n \to +\infty} (q_n|Aw)_F = (v|w)_E$. On obtient donc

$$(q|Aw)_F = (v|w)_E$$
 pour tout $w \in E$.

Ceci donne $(A^*q|w)_E = (v|w)_E$ pour tout $w \in E$, et donc $v = A^*q$. On a bien montré que $v \in \text{Im}A^*$.

- 2. La question précédente montre que $\operatorname{Im} A^*$ est fermé (dans E). Avec la partie II, on a donc $(\operatorname{Ker} A)^{\perp} = \operatorname{Im}(A^*)$. On a déjà vu que $\operatorname{Ker} A = H$. On a donc $H^{\perp} = \operatorname{Im}(A^*)$.
- 3. (a) On a $(u|v)_E=\int_\Omega fv\ \mathrm{d}x=(T_f|v)_E$ pour tout $v\in H.$ Ceci signifie bien que $u-T_f\in H^\perp$ et donc que $u-T_f\in \mathrm{Im} A^*.$
 - (b) Comme $u-T_f \in \operatorname{Im} A^*$, il existe $p \in F = L^2(\Omega)$ t.q. $u-T_f = A^*p$. On a donc pour tout $v \in H^1_0(\Omega)^N$,

$$(u|v)_E - \int_{\Omega} fv \, dx = (u - T_f|v)_E = (A^*p|v)_E = (p|Av)_F = \int_{\Omega} p \operatorname{div}(v) \, dx.$$

Ce qui signifie bien que (u, p) est solution de (2.49).

4. On a déja montré à la question 3 de la partie I que $u_1 = u_2 = u$ où u est l'unique solution de (2.50).

On obtient alors que $\int_{\Omega} p_1 \operatorname{div}(v) \, \mathrm{d}x = \int_{\Omega} p_2 \operatorname{div}(v) \, \mathrm{d}x$ pour tout $v \in H_0^1(\Omega)^N$. En prenant $v = (v_1, \dots, v_N)^t$ avec $v_1 \in \mathcal{D}(\Omega)$ et $v_i = 0$ pour $i \geq 2$, on en déduit que $D_1(p_1 - p_2) = 0$ (dans \mathcal{D}^{\star}). De manière analogue on a $D_i(p_1 - p_2) = 0$ pour tout $i \in \{1, \dots, N\}$. Ceci permet d'affirmer qu'il existe $a \in \mathbb{R}$ t.q. $p_1 - p_2 = a$ p.p. (voir l'exercice 1.4).

Exercice 2.19 (Continuité séquentielle de L^2 -faible dans H_0^1)

1. En prenant $v=u_n$ dans (2.51) (avec f_n et u_n au lieu de f et u), on obtient

$$\alpha \|u_n\|_{H_0^1(\Omega)}^2 \le \|f_n\|_{L^2(\Omega)} \|u_n\|_{L^2(\Omega)} \le \|f_n\|_{L^2(\Omega)} C_{\Omega} \|u_n\|_{H_0^1(\Omega)},$$

où C_{Ω} est donné par l'inégalité de Poincaré. On a donc, pour tout $n \in \mathbb{N}$,

$$||u_n||_{H_0^1(\Omega)} \le \frac{C_\Omega}{\alpha} \sup_{p \in \mathbb{N}} (||f_p||_{L^2(\Omega)}) = M < +\infty,$$

la suite $(f_n)_{n\in\mathbb{N}}$ étant bornée dans $L^2(\Omega)$.

2. Si $u_n \not\to u$ faiblement dans $H^1_0(\Omega)$, il existe $\varepsilon > 0$, $\psi \in H^{-1}(\Omega)$ et une sous-suite, encore notée $(u_n)_{n \in \mathbb{N}}$, t.q.

$$|\langle \psi, u_n - u \rangle_{H^{-1}(\Omega), H^1_o(\Omega)}| \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (2.83)

Après une nouvelle extraction éventuelle, on peut supposer que $u_n \to \bar{u}$ faiblement dans $H_0^1(\Omega)$. Soit $v \in H_0^1(\Omega)$. On a

$$\int_{\Omega} A \nabla u_n \cdot \nabla v \, dx = \int_{\Omega} f_n v \, dx,$$

et donc, quand $n \to \infty$,

$$\int_{\Omega} A \nabla \bar{u} \cdot \nabla v \, dx = \int_{\Omega} f v \, dx.$$

On en déduit que $\bar{u} = u$, ce qui est en contradiction avec (2.83).

On a donc bien montré que $u_n \to u$ faiblement dans $H_0^1(\Omega)$ et, par le théorème de Rellich, que $u_n \to u$ dans $L^2(\Omega)$.

3.

$$\int_{\Omega} A \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} f_n u_n \, dx \to \int_{\Omega} f u dx = \int A \nabla u \cdot \nabla u \, dx,$$

car $u_n \to u$ dans $L^2(\Omega)$ et $f_n \to f$ faiblement dans $L^2(\Omega)$.

4. On a

$$\int_{\Omega} A(\nabla u_n - \nabla u) \cdot (\nabla u_n - \nabla u) \, \mathrm{d}x = \int_{\Omega} A \nabla u_n \cdot \nabla u_n \, \mathrm{d}x - \int_{\Omega} A \nabla u_n \cdot \nabla u - \int_{\Omega} A \nabla u \cdot \nabla u_n + \int_{\Omega} A \nabla u \cdot \nabla u \, \mathrm{d}x.$$

Les quatre termes de droite de cette égalité tendent vers $\int_{\Omega} \nabla u \cdot \nabla u \, dx$ quand $n \to +\infty$. Le terme de gauche (qui est positif) tend donc vers 0. Ceci donne $\alpha \|u_n - u\|_{H^1_0(\Omega)}^2 \to 0$ (quand $n \to +\infty$) et donc, quand $n \to +\infty$,

$$u_n \to u$$
 dans $H_0^1(\Omega)$.

Remarque sur la topologie faible : L'application $f\mapsto u$ (où u est solution de (2.51)) est donc séquentiellement continue de $L^2(\Omega)$ -faible dans $H^1_0(\Omega)$, c'est-à-dire qu'elle transforme les suites faiblement convergentes de $L^2(\Omega)$ en suites convergentes de $H^1_0(\Omega)$. Elle est donc aussi séquentiellement continue de $L^2(\Omega)$ -faible dans $L^2(\Omega)$. Après avoir défini la topologie faible de $L^2(\Omega)$ (ce qui n'est pas fait dans ce livre), on peut toutefois remarquer que cette application n'est pas continue de $L^2(\Omega)$ -faible (c'est-à-dire $L^2(\Omega)$ muni de la topologie faible) dans $L^2(\Omega)$ (c'est-à-dire $L^2(\Omega)$ muni de la topologie associée à sa norme).

Exercice 2.20 (liminaire à l'exercice 2.21) En prenant x=0 dans (2.52), on obtient $\lim_{y\to\infty}\varphi(y)=0$. Il existe donc a_0 tel que $\varphi(a_0)\leq 1$.

On définit maintenant, par récurrence, une suite $(a_k)_{k\in\mathbb{N}}$ par

$$\frac{C}{a_{k+1} - a_k} \left(\frac{1}{2^k}\right)^{\beta} = \frac{1}{2^{k+1}}$$

on a alors, par récurrence, $\varphi(a_k) \leq \frac{1}{2^k}$.

En effet pour k = 0 on a bien $\varphi(a_0) \leq 1$.

Puis, pour $k \ge 0$, si $\varphi(a_k) \le \frac{1}{2^k}$, on a

$$\varphi(a_{k+1}) \le \frac{C}{a_{k+1} - a_k} \varphi(a_k)^{\beta} \le \frac{C}{a_{k+1} - a_k} \frac{1}{2^{k\beta}} = \frac{1}{2^{k+1}}.$$

On montre maintenant que $\lim_{k\to\infty}a_k<\infty$. Pour cela, on remarque que

$$a_{k+1} - a_k = 2C \frac{2^k}{2^{k\beta}} = 2C \frac{1}{2^{k(\beta-1)}} = 2Cb^k \text{ avec } b = \frac{1}{2^{\beta-1}}.$$

On a donc

$$a_k = a_0 + \sum_{p=0}^{k-1} 2Cb^p \le a_0 + 2C\sum_{p=0}^{\infty} b^p = a_0 + \frac{2C}{1-b},$$

car $b=\frac{1}{2^{\beta-1}}<1$ car $\beta>1$. On prend donc $a=a_0+\frac{2C}{1-b}$ et on a, comme φ est décroissante,

$$0 \le \varphi(a) \le \varphi(a_k)$$
 pour tout $k \in \mathbb{N}$,

et donc

$$0 \le \varphi(a) \le \frac{1}{2^k}$$
 pour tout $k \in \mathbb{N}$.

Ce qui donne $\varphi(a) = 0$.

Exercice 2.21 (Solutions bornées d'un problème elliptique)

1. Pour $u, v \in H_0^1(\Omega)$ on pose

$$a(u, v) = \int_{\Omega} A \nabla u \cdot \nabla v \, dx \text{ et } T(v) = \int_{\Omega} F \cdot \nabla v \, dx.$$

Comme cela a été vu dans ce chapitre, la forme a est une forme bilinéaire continue coercive sur $H_0^1(\Omega)$. Puis, pour $v \in H_0^1(\Omega)$, on a

$$T(v) \le \int_{\Omega} |F \cdot \nabla v| \, \mathrm{d}x \le |||F|||_{L^{2}(\Omega)} |||\nabla v|||_{L^{2}(\Omega)} = |||F|||_{L^{2}(\Omega)} ||v||_{H_{0}^{1}(\Omega)}.$$

On en déduit que $T \in (H_0^1(\Omega))'$ et donc qu'il existe une et une seule solution u de (2.53).

2. En prenant $v = S_k(u)$ dans (2.53) on obtient

$$\alpha \| |\nabla(S_k(u))| \|_{L^2(\Omega)}^2 = \alpha \int_{A_k} \nabla u \cdot \nabla u \, dx = \int_{A_k} F \cdot \nabla u \, dx$$

$$\leq \| |F| \|_{L^2(A_k)} \| |\nabla(S_k(u))| \|_{L^2(\Omega)}$$

$$\leq \| |F| \|_{L^p(\Omega)} (\lambda_N(A_k))^{\frac{1}{2} - \frac{1}{p}} \| |\nabla(S_k(u))| \|_{L^2(\Omega)},$$

$$\operatorname{car} \int_{A_k} |F|^2 dx \leq \left(\int_{\Omega} |F|^p dx \right)^{\frac{2}{p}} \lambda_N(A_k)^{1-\frac{2}{p}}. \text{ On obtient ainsi}$$

$$\alpha \||\nabla (S_k(u))||_{L^2(\Omega)} \leq \||F||_{L^p(\Omega)} \lambda_N(A_k)^{\frac{1}{2}-\frac{1}{p}}.$$

3. Pour h > k, on a $|S_k(u)| \ge (h - k)$ sur A_h . On a donc

$$(h - k)(\lambda_N(A_h))^{\frac{1}{1^*}} \leq \left(\int_{\Omega} |S_k(u)|^{1^*} dx \right)^{\frac{1}{1^*}}$$

$$\leq C_1 |||\nabla S_k(u)|||_{L^1(\Omega)}$$

$$\leq C_1 \int_{A_h} |\nabla S_k(u)| \, \mathrm{d}x \leq C_1 |||\nabla S_k(u)|||_{L^2(\Omega)} \lambda_N(A_k)^{\frac{1}{2}}.$$

Avec la question 2, on obtient

$$(h-k)(\lambda_N(A_h))^{\frac{1}{1^*}} \le \frac{C_1}{\alpha} ||F||_{Lp} \lambda_N(A_k)^{1-\frac{1}{p}},$$

et donc, avec $C_2 = \frac{C_1}{\alpha} |||F|||_{L^p(\Omega)}$,

$$(h-k)\lambda_N(A_h)^{\frac{N-1}{N}} \le C_2\lambda_N(A_k)^{1-\frac{1}{p}}.$$

4. Pour $k\in {\rm I\!R}_+$, on pose $\varphi(k)=(\lambda_N(A_k))^{\frac{N-1}{N}}.$ On a alors, pour $h\geq k\geq 0,$

$$(h-k)\varphi(h) \le C_2 \varphi(k)^{\frac{N}{N-1}} \stackrel{p-1}{\stackrel{p}{\longrightarrow}}.$$

On pose
$$\beta = \frac{N}{N-1} \frac{p-1}{p}$$
.

On remarque que $\beta>1$ car p>N (en effet, on a $\frac{N}{N-1}\frac{p-1}{p}>1\Leftrightarrow Np-N>Np-p$).

On peut alors appliquer l'exercice 2.20, il donne l'existence de $a \in \mathbb{R}_+$ t.q. $\varphi(a) = 0$ et donc $||u||_{L^{\infty}(\Omega)} \le a$.

5. On suppose tout d'abord que $|||F|||_{L^p(\Omega)}=1$, ce qui donne, avec les notations des questions précédentes, $C_2=\frac{C_1}{\alpha}.$

On reprend alors le corrigé de l'exercice 2.20. Le choix de a_0 est tel que $\varphi(a_0) \leq 1$. Comme

$$\varphi(0) \leq \lambda_N(\Omega)^{\frac{N-1}{N}}, \, \beta \frac{N-1}{N} = \frac{p-1}{p} \text{ et } C_2 = C_1/\alpha,$$

il suffit donc de prendre a_0 t.q.

$$\frac{C_1 \lambda_N(\Omega)^{\frac{p-1}{p}}}{\alpha a_0} \le 1.$$

On peut donc choisir $a_0=\frac{C_1\lambda_N(\Omega)^{\frac{p-1}{p}}}{\alpha}$. On a alors $\|u\|_{L^\infty(\Omega)}\leq a$ avec

$$a = a_0 + \frac{2C_2}{1-b} = a_0 + \frac{C_1}{\alpha} \frac{2}{1 - \frac{1}{2^{\beta-1}}}.$$

On a donc $\|u\|_{L^\infty(\Omega)} \leq C_3$, avec $C_3=a_0+\frac{C_1}{\alpha}\frac{2}{1-\frac{1}{2^{\beta-1}}}.$

On remarque bien que C_3 ne dépend que de Ω , α et p (noter que N est implicitement dans Ω).

On peut maintenant supposer que F est quelconque dans $L^p(\Omega)^N$ (la fonction u est toujours la solution de (2.53)). Pour $\gamma>0$ la fonction u/γ est solution de (2.53) avec F/γ au lieu de F. Si $||F||_{L^p(\Omega)}>0$, en choisissant $\gamma=||F||_{L^p(\Omega)}$ (de sorte que $||F/\gamma||_{L^p(\Omega)}=1$) on a donc $||u/\gamma||_{\leq}C_3$ ce qui donne

$$||u||_{L^{\infty}(\Omega)} \leq C_3 |||F|||_{L^p(\Omega)}.$$

(Noter aussi que l'inégalité est évidente si $||F||_{L^p(\Omega)} = 0$.)

Exercice 2.22 (Solutions bornées d'un problème elliptique, suite)

1. Les théorèmes d'injection de Sobolev (théorème 1.38) donnent l'existence de C, ne dépendant que de Ω (et $q, q < +\infty$, si N=2) tel que, pour tout $u \in H^1_0(\Omega)$,

$$\begin{split} &\text{Si } N=2, \ \|v\|_{L^q(\Omega)} \leq C \|v\|_{H^1_0(\Omega)}. \\ &\text{Si } N>2, \ \|v\|_{L^{2^\star}(\Omega)} \leq C \|v\|_{H^1_0(\Omega)}, \ 2^\star = \frac{2N}{N-2}. \end{split}$$

En prenant $q=\frac{p}{p-1}$, c'est-à-dire $q=\frac{2N}{N-2}$ si N>2, on obtient avec l'inégalité de Hölder,

$$\int_{\Omega} f(x)v(x) \, \mathrm{d}x \leq \|f\|_{L^{p}(\Omega)} \|v\|_{L^{q}(\Omega)} \leq C \|f\|_{L^{p}(\Omega)} \|v\|_{H_{0}^{1}(\Omega)}, \text{ pour tout } v \in H_{0}^{1}(\Omega).$$

Ceci montre que l'application $f\mapsto \int_\Omega f(x)v(x)\,\mathrm{d}x$ est un élément de $H^{-1}(\Omega)$ et donc, par le théorème 2.9, qu'il existe une et une seule solution u de (2.54).

2. Pour N>2, on a $N/2>\frac{2N}{N+2}$ et donc $f\in L^{\frac{2N}{N+2}}(\Omega)$. la question précédente montre aussi qu'il existe une unique solution u de (2.54).

L'inégalité de Hölder donne avec $q=\frac{p}{p-1}$ et donc q< N/(N-2) $(q<+\infty$ si N=2) puis l'injection de Sobolev de $W_0^{1,r}$ dans $L^q(\Omega)$ avec $r^\star=q$ et donc $r<\frac{N}{N-1}$

$$\int_{\Omega} f(x)v(x) \, \mathrm{d}x \le \|f\|_{L^{p}(\Omega)} \|v\|_{L^{q}(\Omega)} \le C \|f\|_{L^{p}(\Omega)} \|v\|_{W_{0}^{1,r}(\Omega)}.$$

On note maintenant $G=\{\nabla v,\,v\in W_0^{1,r}(\Omega)\}$ et on considère l'application $\nabla v\mapsto \int_\Omega f(x)v(x)\,\mathrm{d} x.$ Cette application est bien définie car un élément de $W_0^{1,r}(\Omega)$ est entièrement determiné par son gradient (voir la remarque 2.7) Cette application est linéaire continue avec la norme de $L^r(\Omega)^N$. On peut la prolonger par le théorème de Hahn-Banach en une application linéaire continue notée T sur tout $L^r(\Omega)^N$. Par l'isomorphisme naturel entre $L^r(\Omega)'$ et $L^{r'}(\Omega)$, avec r'=r/(r-1)>N, il existe donc $F\in (L^{r'})^N$ tel que

$$\int_{\Omega} f(x)v(x) dx = \int_{\Omega} F(x) \cdot \nabla v(x) dx,$$

pour tout $v \in W_0^{1,r}(\Omega)$ et donc aussi pour tout $v \in W_0^{1,2}(\Omega)$ car r < 2.

On est ainsi ramené à l'exercice 2.21.

N.B. Remarques complémentaires :

- 1. Pour trouver par exemple la première composante de F, on considère l'application continue de $L^r(\Omega)$ dans \mathbb{R} définie par $w \mapsto (w, 0, \dots, 0) \mapsto T(w, 0, \dots, 0)$ et on utilise l'isomorpisme entre $L^r(\Omega)'$ et $L^{r'}(\Omega)$.
- 2. La fin du raisonnement présenté dans cette question se généralise facilement. Elle permet de montrer que si Ω est un ouvert borné de \mathbb{R}^N (N>1) et $1\leq q<+\infty$, une application linéaire T de $W_0^{1,q}(\Omega)$ dans \mathbb{R} est continue (c'est donc un élément de $W_0^{1,q}(\Omega)'$) si et seulement si il existe $F\in (L^p)^N$, p=q(q-1) $(p=\infty$ si q=1) tel que

$$T(g) = \int F(x) \cdot \nabla g(x) \, dx$$
 pour tout $g \in W_0^{1,q}(\Omega)$.

(Noter que ceci revient à dire que T = -divF dans $\mathcal{D}^*(\Omega)$.)

Exercice 2.23 (Diffusion évanescente et convection) Partie I

1. Soit $u_n \in \mathcal{D}(\Omega)$ t.q. $u_n \to u$ dans $H^1_0(\Omega)$. On a donc, quand $n \to +\infty$, $u_n \to u$ dans $L^2(\Omega)$ et $\partial_i u_n \to D_i u$ dans $L^2(\Omega)$ pour tout $i \in \{1, \dots, N\}$. (On rappelle que $\partial_i u_n$ désigne la dérivée partielle classique de u_n par rapport à sa i-ème variable.) On peut aussi supposer (après extraction éventuelle d'une sous-suite) que $u_n \to u$ p.p. et qu'il existe $F \in L^2(\Omega)$ t.q. $|u_n| \le F$ pour tout $n \in \mathbb{N}$. On en déduit, par convergence dominée, que $u_n^2 \to u^2$ dans $L^1(\Omega)$ (quand $n \to +\infty$).

Soit $\varphi \in \mathcal{D}(\Omega)$ et $i \in \{1, \dots, N\}$, on a alors

$$\langle D_i(u^2), \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int_{\Omega} u^2 \partial_i \varphi \, \mathrm{d}x = -\lim_{n \to +\infty} \int_{\Omega} u_n^2 \partial_i \varphi \, \mathrm{d}x.$$
 (2.84)

Comme u_n et φ appartiennent à $\mathcal{D}(\Omega)$, on a, en intégrant par parties

$$\int_{\Omega} u_n^2 \partial_i \varphi \, \mathrm{d}x = -2 \int_{\Omega} \varphi u_n \partial_i u_n \, \mathrm{d}x.$$

Comme $u_n \to u$ dans $L^2(\Omega)$ et $\partial_i u_n \to D_i u$ dans $L^2(\Omega)$, on a $u_n \partial_i u_n \to u D_i u$ dans $L^1(\Omega)$ et donc (comme $\varphi \in L^{\infty}(\Omega)$,

$$\lim_{n \to +\infty} \int_{\Omega} \varphi u_n \partial_i u_n \, dx = \int_{\Omega} \varphi u \partial_i u \, dx.$$

En revenant à (2.84), on en déduit que

$$\langle D_i(u^2), \varphi \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\int_{\Omega} u^2 \partial_i \varphi \, \mathrm{d}x = 2 \int_{\Omega} \varphi u D_i u \, \mathrm{d}x.$$

Ce qui prouve bien que $D_i(u^2) = 2uD_iu$ p.p. (les dérivées par transposition de u et u^2 sont en fait des dérivées faibles et donc identifiées à des fonctions).

La démonstration précédente donne aussi que $u_n^2 \to u^2$ dans $L^1(\Omega)$ et $\partial_i(u_n^2) = 2u_n\partial_i u_n \to 2uD_i u = D_i(u^2)$ dans $L^1(\Omega)$. On a donc $u_n^2 \to u^2$ dans $W^{1,1}(\Omega)$, ce qui donne, comme $u_n \in \mathcal{D}(\Omega)$, que $u^2 \in W_0^{1,1}(\Omega)$.

2. Soit $\varphi \in W_0^{1,1}(\Omega)$. il existe une suite $(\varphi_n)_{n \in \mathbb{N}}$ d'éléments de $\mathcal{D}(\Omega)$ t.q. $\varphi_n \to \varphi$ dans $W^{1,1}(\Omega)$. Comme $\operatorname{div}(w) = 0$ dans $\mathcal{D}^*(\Omega)$, on a, pour tout $n \in \mathbb{N}$

$$0 = \langle \operatorname{div}(w), \varphi_n \rangle_{\mathcal{D}^*(\Omega), \mathcal{D}(\Omega)} = -\sum_{i=1}^N \int_{\Omega} w_i \partial_i \varphi_n \, dx.$$

Comme $\partial_i \varphi_n \to D_i \varphi$ dans $L^1(\Omega)$ (et que $w \in L^{\infty}(\Omega)^N$), on en déduit, quand $n \to +\infty$,

$$\sum_{i=1}^{N} \int_{\Omega} w_i D_i \varphi \, \mathrm{d}x = 0,$$

c'est-à-dire $\int_{\Omega} w(x) \cdot \nabla \varphi(x) \, dx = 0$.

3. On utilise le résulat de la question précédente avec $\varphi = u^2$ et le fait que $D_i(u^2) = 2uD_iu$, on obtient

$$0 = \int_{\Omega} w \cdot \nabla(u^2) \, dx = \sum_{i=1}^{N} \int_{\Omega} 2w_i u D_i u \, dx = 2 \int_{\Omega} u w \cdot \nabla u \, dx.$$

Partie II

1. On suppose que u est solution de (2.55) et on pose $\overline{u}=u-G$. On a alors $\overline{u}\in H^1(\Omega)$ et, comme γ est un opérateur linéaire, $\gamma(\overline{u})=\gamma(u)-\gamma(G)=g-g=0$ (dans $L^2(\partial\Omega)$), ce qui prouve que $\overline{u}\in H^1_0(\Omega)$. Puis, si $v\in H^1_0(\Omega)$, en remplaçant u par $\overline{u}+G$ dans (2.55), on montre bien que \overline{u} est solution de (2.56).

Réciproquement, on suppose que \overline{u} est solution de (2.56). On pose alors $u=\overline{u}+G$, on a bien $u\in H^1(\Omega)$ et $\gamma(u)=\gamma(\overline{u})+\gamma(G)=0+g=g$ (dans $L^2(\partial\Omega)$). Puis, si $v\in H^1_0(\Omega)$, en remplaçant \overline{u} par u-G dans (2.56), on montre bien que u est solution de (2.55).

On a bien ainsi montré l'équivalence désirée.

2. En utilisant la théorème de Lax-Milgram (théorème 2.3) on va montrer que (2.56) admet une et une seule solution (grâce à la question précédente, on en déduit que (2.55) admet une et une seule solution).

Le problème (2.56) peut s'écrire

$$\overline{u} \in H,$$
 (2.85a)

$$\bar{a}(\bar{u}, v) = T(v) \text{ pour tout } v \in H,$$
 (2.85b)

avec $H = H_0^1(\Omega)$,

$$\bar{a}(\overline{u}, v) = \int_{\Omega} a \nabla \overline{u}(x) \cdot \nabla v(x) \, dx + \int_{\Omega} \overline{u}(x) w(x) \cdot \nabla v(x) \, dx$$

et

$$T(v) = \int_{\Omega} f(x)v(x) dx - \int_{\Omega} a\nabla G(x) \cdot \nabla v(x) dx - \int_{\Omega} G(x)w(x) \cdot \nabla v(x) dx.$$

L'espace H est bien un espace de Hilbert (avec sa norme naturelle). L'application T est bien linéaire de H dans \mathbb{R} et, en utilisant l'inégalité de Hölder, on voit que T est continue (on utilise ici le fait que $f \in L^2(\Omega)$, $G \in H^1(\Omega)$ et $w \in L^\infty(\Omega)^N$). L'application \bar{a} est bien bilinéaire de $H \times H$ dans R et continue (grâce encore au fait que $w \in L^\infty(\Omega)^N$).

Pour montrer la coercivité de \bar{a} , on utilise la question 3 de la partie I, elle donne, pour tout $u \in H$,

$$\bar{a}(u,u) = \int_{\Omega} a \nabla u(x) \cdot \nabla u(x) \; \mathrm{d}x + \int_{\Omega} u(x) w(x) \cdot \nabla u(x) \; \mathrm{d}x = \int_{\Omega} a \nabla u(x) \cdot \nabla u(x) \; \mathrm{d}x = a \|u\|_{H_0^1(\Omega)}.$$

Comme a>0, on en déduit bien que \bar{a} est coercive. On peut donc appliquer le lemme 2.3, il donne l'existence et l'unicité de \bar{u} solution de (2.56). Grâce à la question précédente, on en déduit l'existence et l'unicité de u solution de (2.55).

Petite précision : Noter que la non unicité de G n'est pas un problème pour l'unicité de de la solution de (2.55). En effet, on fixe G et on note \overline{u} l'unique solution de (2.56). Si u est solution de (2.55), u - G est solution de (2.56) et donc $u = \overline{u} + G$. La fonction $\overline{u} + G$ est donc l'unique solution de (2.55). En fait, la fonction \overline{u} dépend du choix de G mais la fonction $\overline{u} + G$ ne dépend pas de G.

3. Il sufffit de prendre v = u dans (2.55). Avec la question 3 de la partie I on obtient

$$a||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} f(x)u(x) dx.$$

4. Comme $(u-b)^+ \in H^1_0(\Omega)$, on peut prendre $v=(u-b)^+$ dans (2.55), on obtient, en utilisant $\nabla (u-b)^+ = 1_{u>b} \nabla u$ p.p. et $f \leq 0$ p.p.,

$$\int_{u>b} a\nabla u(x) \cdot \nabla u(x) \, \mathrm{d}x + \int_{\Omega} u(x)w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x = \int_{\Omega} f(x)(u-b)^{+}(x) \, \mathrm{d}x \le 0. \quad (2.86)$$

On remarque maintenant que $\int_{u>b} a \nabla u(x) \cdot \nabla u(x) \, \mathrm{d}x = \int_{\Omega} a \nabla (u-b)^+ \cdot \nabla (u-b)^+ = a \|(u-b)^+\|_{H^1_0(\Omega)}$ et que

$$\int_{\Omega} u(x)w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x = \int_{\Omega} (u(x)-b)w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x + b \int_{\Omega} w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x$$
$$= \int_{\Omega} (u(x)-b)^{+}w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x + b \int_{\Omega} w(x) \cdot \nabla (u-b)^{+}(x) \, \mathrm{d}x.$$

La question 3 de la partie I donne $\int_{\Omega} (u(x)-b)^+ w(x) \cdot \nabla (u-b)^+(x) \, \mathrm{d}x = 0$. D'autre part, comme div(w) = 0 dans $\mathcal{D}^\star(\Omega)$, on a $\int_{\Omega} w \cdot \nabla \varphi \, \mathrm{d}x = 0$ pour tout $\varphi \in \mathcal{D}(\Omega)$. Par densité de $\mathcal{D}(\Omega)$ dans $H^1_0(\Omega)$ on a aussi (on utilise ici seulement le fait que $w \in L^2(\Omega)^N$) $\int_{\Omega} w \cdot \nabla \varphi \, \mathrm{d}x = 0$ pour tout $\varphi \in H^1_0(\Omega)$ et donc, en particulier pour $\varphi = (u-b)^+$. On en déduit que

$$\int_{\Omega} u(x)w(x) \cdot \nabla(u-b)^{+}(x) \, \mathrm{d}x = 0.$$

Revenant à (2.86), on obtient finalement $a\|(u-b)^+\|_{H^1_0(\Omega)} \le 0$ et donc $(u-b)^+ = 0$ p.p., c'est-à-dire $u \le b$ p.p. dans Ω .

Remarque : On suppose maintenant g=0 et on note u la solution de (2.55). La démonstration précédente montre donc que $u\leq 0$ p.p. dans Ω si $f\leq 0$ p.p. dans Ω . Si maintenant on suppose $f\geq 0$ On remarque que (-u) est la solution de (2.55) avec (-f) au lieu de f. On a donc $(-u)\leq 0$ p.p., c'est-à-dire $u\geq 0$ p.p..

Partie III

- 1. Le fait que $u_n \ge 0$ p.p. dans Ω est une conséquence directe de la remarque à la fin de la démonstration de la question 4 de la partie II.
- 2. La fonction u_n vérfie

$$u_n \in H_0^1(\Omega),$$

$$\frac{1}{n} \int_{\Omega} \nabla u_n(x) \cdot \nabla v(x) \, dx - \int_{\Omega} u_n(x) D_1 v(x) \, dx = \int_{\Omega} f(x) v(x) \, dx, \ \forall v \in H_0^1(\Omega).$$

On pose $\bar{u}_n = u_n + \beta \psi$ (de sorte que $\nabla \bar{u}_n = \nabla u_n + \beta (1,0)^t$). Les formules d'intégration par parties dans $H^1(\Omega)$ (théorème 1.30) donnent que, pour une fonction $v \in H^1_0(\Omega)$, on a

$$\int_{\Omega} D_1 v \, dx = 0, \quad \int_{\Omega} \psi D_1 v \, dx = -\int_{\Omega} v \partial_1 \psi \, dx = -\int_{\Omega} v \, dx.$$

On en déduit que la fonction \bar{u}_n est solution de

$$\begin{split} &\bar{u}_n \in H^1(\Omega), \ \gamma(u_n) = \beta x_1 \ (\mathrm{dans} \ L^2(\partial\Omega)), \\ &\frac{1}{n} \int_{\Omega} \nabla \bar{u}_n(x) \cdot \nabla v(x) \ \mathrm{d}x - \int_{\Omega} \bar{u}_n(x) D_1 v(x) \ \mathrm{d}x = \int_{\Omega} (f(x) + \beta) v(x) \ \mathrm{d}x, \ \forall v \in H^1_0(\Omega). \end{split}$$

On choisit $\beta = -\|f\|_{L^{\infty}(\Omega)}$. On a alors $f + \beta \leq 0$ p.p. dans Ω et $\beta x_1 \leq 0$ sur $\partial \Omega$. On peut donc appliquer la question 4 de la partie 2, elle donne $\bar{u}_n \leq 0$ p.p. dans Ω et donc $u_n \leq \|f\|_{L^{\infty}(\Omega)}$ p.p. dans Ω . Avec la question précédente, ceci donne $0 \leq u_n \leq \|f\|_{L^{\infty}(\Omega)}$ p.p. dans Ω . On peut donc choisir $C_1 = \|f\|_{L^{\infty}(\Omega)}$.

3. La question 3 de la partie II donne

$$\frac{1}{n} \|u_n\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} f u_n \, \mathrm{d}x.$$

Comme (avec C_1 donné à la question précédente) $\int_{\Omega} f u_n \, dx \leq \lambda_N(\Omega) \|u_n\|_{\infty} \|f\|_{\infty} \leq \lambda_N(\Omega) C_1 \|f\|_{\infty}$, on a donc

$$||u_n||_{H_0^1(\Omega)}^2 \le n\lambda_N(\Omega)C_1||f||_{\infty}.$$

On peut donc prendre $C_2 = \sqrt{\lambda_N(\Omega)C_1\|f\|_{\infty}}$.

- 4. Soit $n \in \mathbb{N}^*$. La fonction u_n est la solution faible de $-\Delta u_n = f D_1 u_n$. Comme Ω est convexe et que $f D_1 u_n \in L^2(\Omega)$ (car $u_n \in H^1_0(\Omega)$), la remarque 2.17 donne que $u \in H^2(\Omega)$.
- 5. Comme $u_n \in C^1(\overline{\Omega})$ et que $u_n = 0$ sur $\partial\Omega$, on a, pour tout $x_2 \in]0,1[$,

$$\frac{\partial u_n}{\partial x_1}(0,x_2) = \lim_{x_1 \to 0^+} \frac{u_n(x_1,x_2)}{x_1}.$$

La question 1 de la partie III donne que $u_n(x_1,x_2) \geq 0$ pour tout $(x_1,x_2) \in \Omega$ (comme u_n est continue, le fait que $u_n \geq 0$ p.p. dans Ω implique que $u_n \geq 0$ partout dans Ω). On en déduit que $\frac{\partial u_n}{\partial x_1}(0,x_2) \geq 0$ pour tout $x_2 \in]0,1[$.

Les trois autres propriétés demandées se montrent de manière analogue.

6. La question 2 de la partie III donne que la suite $(u_n)_{n\in\mathbb{N}}$ est borné dans $L^{\infty}(\Omega)$. Il existe donc une soussuite de la suite $(u_n)_{n\in\mathbb{N}}$, encore notée $(u_n)_{n\in\mathbb{N}}$, et il existe $u\in L^{\infty}(\Omega)$ t.q. $u_n\to u$ *-faiblement dans $L^{\infty}(\Omega)$ quand $n\to +\infty$.

En prenant $\varphi=1_{u<0}$, on remarque que $\int_{\Omega}u_n\varphi\;\mathrm{d}x\geq 0$ (car $u_n\geq 0$ p.p.) et donc $\int_{\Omega}u\varphi\;\mathrm{d}x\geq 0$, c'est-à-dire

$$\int_{u<0} u(x) \, \mathrm{d}x \ge 0.$$

Ceci donne bien $u \ge 0$ p.p..

7. Soit $\varphi \in \mathcal{D}(\Omega)$. Pour tout $n \in \mathbb{N}^*$ on a

$$\frac{1}{n} \int_{\Omega} \nabla u_n(x) \cdot \nabla \varphi(x) \, dx - \int_{\Omega} u_n(x) \partial_1 \varphi(x) \, dx = \int_{\Omega} f(x) \varphi(x) \, dx. \tag{2.87}$$

Comme $||u_n||_{H_0^1(\Omega)} \leq C_2 \sqrt{n}$, on a

$$\left| \frac{1}{n} \int_{\Omega} \nabla u_n(x) \cdot \nabla \varphi(x) \, dx \right| \le \frac{1}{n} \|u_n\|_{H_0^1(\Omega)} \|\varphi\|_{H_0^1(\Omega)} \le \frac{C_2}{\sqrt{n}} \|\varphi\|_{H_0^1(\Omega)}.$$

On a donc $\lim_{n\to+\infty} \frac{1}{n} \int_{\Omega} \nabla u_n(x) \cdot \nabla \varphi(x) dx = 0.$

D'autre part, on a $u_n \to u$ *-faiblement dans $L^{\infty}(\Omega)$, on en déduit que

$$\lim_{n \to +\infty} \int_{\Omega} u_n(x) \partial_1 \varphi(x) \, dx = \int_{\Omega} u(x) \partial_1 \varphi(x) \, dx.$$

Quand $n \to +\infty$ dans (2.87), on obtient donc

$$-\int_{\Omega} u(x)\partial_1 \varphi(x) \, \mathrm{d}x = \int_{\Omega} f(x)\varphi(x) \, \mathrm{d}x,$$

ce qui donne bien $D_1 u = f$ dans $\mathcal{D}^*(\Omega)$.

8. Comme $u_n \in H^2(\Omega)$, la dérivée par transposition $-\Delta u_n$ est un élément de $L^2(\Omega)$ et (2.87) donne

$$-\frac{1}{n}\Delta u_n + D_1 u_n = f \text{ p.p.}.$$

En multipliant cette équation par φ (on utilise ici uniquement le fait que $\varphi \in L^2(\Omega)$) on a donc

$$-\frac{1}{n}\int_{\Omega} \Delta u_n \varphi \, dx + \int_{\Omega} \varphi D_1 u_n \, dx = \int_{\Omega} f \varphi \, dx. \tag{2.88}$$

Comme les fonctions D_1u_n et D_2u_n sont dans $H^1(\Omega)$, on peut maintenant utiliser les formules d'intégration par parties (théorème 1.30). On obtient (comme $\varphi \in C^1(\overline{\Omega})$)

$$-\frac{1}{n}\int_{\Omega} (D_1 D_1 u_n) \varphi \, \mathrm{d}x = \frac{1}{n}\int_{\Omega} D_1 u_n \partial_1 \varphi \, \mathrm{d}x + \frac{1}{n}\int_0^1 \gamma(D_1 u_n)(0, x_2) \varphi(0, x_2) \, \mathrm{d}x_2$$

$$-\frac{1}{n} \int_0^1 \gamma(D_1 u_n)(1, x_2) \varphi(1, x_2) \, \mathrm{d}x_2.$$

et

$$-\frac{1}{n} \int_{\Omega} (D_2 D_2 u_n) \varphi \, dx = \frac{1}{n} \int_{\Omega} D_2 u_n \partial_2 \varphi \, dx + \frac{1}{n} \int_0^1 \gamma(D_2 u_n)(x_1, 0) \varphi(x_1, 0) \, dx_1$$
$$-\frac{1}{n} \int_0^1 \gamma(D_2 u_n)(x_1, 1) \varphi(x_1, 1) \, dx_1.$$

Une intégration par parties donne aussi (comme $u_n \in H_0^1(\Omega)$)

$$\int_{\Omega} \varphi D_1 u_n \, \mathrm{d}x = -\int_{\Omega} u_n \partial_1 \varphi \, \mathrm{d}x.$$

En utilisant ces trois intégrations par parties dans (2.88), on obtient l'égalité demandée.

9. Comme $\varphi \geq 0$ sur $\partial\Omega$, la question 5 et l'égalité de la question 8 donnent, pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{n} \int_{\Omega} \nabla u_n(x) \nabla \varphi(x) \, dx - \int_{\Omega} u_n(x) \frac{\partial \varphi}{\partial x_1}(x) \, dx \le \int_{\Omega} f(x) \varphi(x) \, dx.$$

On peut alors passer à la limite quand $n \to +\infty$, comme à la question 7, et on obtient bien (2.57).

10. La question 7 donne $D_1u = f$ dans $\mathcal{D}^*(\Omega)$. Comme u est de classe C^1 , D_1u est représenté par la dérivée classique de u. Puis, comme $\partial_1 u$ et f sont continues sur Ω , on en déduit que $\partial_1 u = f$ partout dans Ω . Comme $\partial_1 u$ et f sont continues sur $\overline{\Omega}$, on a même $\partial_1 u = f$ partout dans $\overline{\Omega}$.

On prend maintenant $\varphi \in C^1(\overline{\Omega})$ t.q. $\varphi \geq 0$ sur $\partial\Omega$, $\varphi(x) = 0$ si $x = (x_1, x_2) \in \partial\Omega$, $x_1 \neq 0$.. Une intégration par parties dans (2.57) donne alors

$$\int_0^1 u(0, x_2) \varphi(0, x_2) \, \mathrm{d}x_2 \le 0.$$

Dans cette inégalité, la fonction $\varphi(0,\cdot)$ peut être égale (par exemple) à n'importe quelle fonction appartenant à $\mathcal{D}(]0,1[)$ et prenant ses valeurs dans \mathbb{R}_+ . Comme $u(0,\cdot)$ est une fonction continue sur]0,1[, on déduit donc de cette inégalité que $u(0,x_2)\leq 0$ pour tout $x_2\in]0,1[$.

La question 6 donne $u \ge 0$ p.p. sur Ω . Comme u est continue sur $\overline{\Omega}$, on a donc $u \ge 0$ partout sur $\overline{\Omega}$. On obtient donc finalement $u(0, x_2) = 0$ pour tout $x_2 \in]0, 1[$ (et même [0, 1]).

La fonction u est bien entièrement déterminée par f, on a

$$u(x_1, x_2) = \int_0^{x_1} f(t, x_2) dt.$$

11. On pose $w=(\alpha,\beta)$, avec $\alpha,\beta\neq 0$. En reprenant la même méthode que celle développée ci dessus pour le cas w=(-1,0), la question équivalente à la question 10 donne que u est solution du problème suivant :

$$-w \cdot \nabla u = f \operatorname{dans} \Omega,$$

$$u(0,x_2)=0$$
 pour tout $x_2\in]0,1[$ si $\alpha<0$ et $u(1,x_2)=0$ pour tout $x_2\in]0,1[$ si $\alpha>0$, $u(x_1,0)=0$ pour tout $x_1\in]0,1[$ si $\beta<0$ et $u(x_1,1)=0$ pour tout $x_1\in]0,1[$ si $\beta>0$.

Exercice 2.24 (Condition de Dirichlet non homogène)

1. Soit $G \in H^1(\Omega)$ t.q. $\gamma(G) = g$. La fonction u est solution de (2.14) si seulement si u - G est solution de

$$w = u - G \in H_0^1(\Omega),$$

$$\int_{\Omega} \left(\sum_{i=1}^N \sum_{j=1}^N a_{i,j}(x) D_j w(x) D_i v(x) \right) dx = S(v), \forall v \in H_0^1(\Omega),$$
(2.89)

$$\operatorname{avec} S(v) = \int_{\Omega} f(x) v(x) \; \mathrm{d}x - \int_{\Omega} \left(\sum_{i=1}^N \sum_{j=1}^N a_{i,j}(x) D_j G(x) D_i v(x) \right) \; \mathrm{d}x.$$

Comme $(a_{i,j})_{i,j=1,...,N} \subset L^{\infty}(\Omega)$ et $D_jG \in L^2(\Omega)$ pour tout j, on a $S \in H^{-1}(\Omega)$. L'existence et l'unicité de u est alors donnée par le théorème 2.9.

- 2. La démonstration est identique à la précédente en remplaçant $\int_{\Omega} f(x)v(x) dx$ par T(v).
- 3. Les théorèmes d'injection de Sobolev (théorème 1.38) donnent l'existence de C, ne dépendant que de Ω et $q, q < +\infty$, tel que, pour tout $u \in H^1_0(\Omega)$,

$$||v||_{L^q(\Omega)} \le C||v||_{H_0^1(\Omega)}.$$

En prenant $q = \frac{p}{p-1}$ $(q = 1 \text{ si } p = +\infty)$, on obtient, grâce à l'inégalité de Hölder,

$$\int_{\Omega} f(x)v(x) \, \mathrm{d}x \leq \|f\|_{L^p(\Omega)} \|v\|_{L^q(\Omega)} \leq C \|f\|_{L^p(\Omega)} \|v\|_{H^1_0(\Omega)}, \text{ pour tout } v \in H^1_0(\Omega).$$

Ceci montre que l'application $f \mapsto \int_{\Omega} f(x)v(x) \, \mathrm{d}x$ est un élément de $H^{-1}(\Omega)$ et donc, par la question (2), qu'il existe une et une seule solution u de (2.14).

4. Les théorèmes d'injection de Sobolev (théorème 1.38) donnent l'existence de C, ne dépendant que de Ω tel que, pour tout $u \in H^1_0(\Omega)$,

$$||v||_{L^{2^{\star}}(\Omega)} \le C||v||_{H_0^1(\Omega)}, \text{ avec } 2^{\star} = \frac{2N}{N-2}.$$

En prenant $q=\frac{p}{p-1}$, c'est-à-dire $q=\frac{2N}{N-2}$, on obtient, avec l'inégalité de Hölder,

$$\int_{\Omega} f(x)v(x) \, \mathrm{d}x \leq \|f\|_{L^{p}(\Omega)} \|v\|_{L^{q}(\Omega)} \leq C \|f\|_{L^{p}(\Omega)} \|v\|_{H^{1}_{0}(\Omega)}, \text{ pour tout } v \in H^{1}_{0}(\Omega).$$

Ceci montre que l'application $f \mapsto \int_{\Omega} f(x)v(x) \, \mathrm{d}x$ est un élément de $H^{-1}(\Omega)$ et donc, par la question (2), il existe une et une seule solution u de (2.14).

Chapitre 3

Problèmes elliptiques non linéaires

On présente dans ce chapitre trois méthodes pour obtenir des résulats d'existence de solution pour des problèmes elliptiques non linéaires : une méthode de compacité , une méthode de monotonie et, dans une section plus courte, une métode par minimisation. On donnera également une méthode pour obtenir un résultat d'unicité.

3.1 Méthodes de compacité

3.1.1 Degré topologique et théorème de Schauder

Objectif. Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 1$, ou un ouvert borné d'un espace de Banach E. Soit $f \in C(\bar{\Omega}, \mathbb{R}^N)$ (ou $f \in C(\bar{\Omega}, E)$) et $y \in \mathbb{R}^N$ (ou $y \in E$). On cherche à montrer qu'il existe $x \in \bar{\Omega}$ tel que f(x) = y.

On commence par donner l'existence (et l'unicité) d'une application, appelée degré topologique, en dimension finie introduite en 1933 par Brouwer ¹ puis en dimension infinie par Leray et Schauder ². Cette application nous permet parfois d'obtenir le théorème d'existence de solution recherché.

Théorème 3.1 (Degré topologique de Brouwer) Soit $N \geq 1$. On note \mathcal{A} l'ensemble des triplets (f, Ω, y) où Ω est un ouvert borné de \mathbb{R}^N , $f \in C(\bar{\Omega}, \mathbb{R}^N)$ et $y \in \mathbb{R}^N$ tel que $y \notin \{f(x), x \in \partial \Omega\}$. Il existe une application d de \mathcal{A} dans \mathbb{Z} , appelée "degré topologique", vérifiant les trois propriétés suivantes :

- (d1) (Normalisation) $d(\mathrm{Id}, \Omega, y) = 1$ si $y \in \Omega$.
- (d2) (Degré d'une union) Si $\Omega_1 \cup \Omega_2 \subset \Omega$, $\Omega_1 \cap \Omega_2 = \emptyset$ et $y \notin \{f(x), x \in \overline{\Omega} \setminus \Omega_1 \cup \Omega_2\}$, alors

$$d(f, \Omega, y) = d(f, \Omega_1, y) + d(f, \Omega_2, y).$$

(d3) (Invariance par homotopie) Si $h \in C([0,1] \times \overline{\Omega}, \mathbb{R}^N)$, $y \in C([0,1], \mathbb{R}^N)$ et si, pour tout $t \in [0,1]$, $y(t) \notin \{h(t,x), x \in \partial\Omega\}$, alors

$$d(h(t,\cdot),\Omega,y(t))=d(h(0,\cdot),\Omega,y(0))$$
 pour tout $t\in[0,1]$.

Remarque 3.2 (**Propriétés importantes**) Des propriétés du degré topologique (d1)-(d3) données dans le théorème 3.1), et plus particulièrement de la propriété d'additivité (d2), on déduit les propriétés suivantes :

^{1.} Luitzen Egbertus Jan Brouwer (1881–1966), mathématicien et philosophe néerlandais, qui a travaillé en topologie, théorie des ensembles, théorie de la mesure et analyse complexe.

^{2.} Juliusz Pawel Schauder (1899–1943), mathématicien polonais d'origine juive, connu pour ses travaux en analyse fonctionnelle, équations aux dérivées partielles et physique mathématique. Assassiné par la Gestapo, après dénonciation d'un collègue allemand.

- 1. Si $\Omega = \emptyset$, alors en prenant $\Omega_1 = \Omega_2 = \emptyset$ dans (d2), on obtient que $d(f, \emptyset, y) = 0$.
- 2. Si $(f,\Omega,y)\in\mathcal{A}$ et $d(f,\Omega,y)\neq 0$, alors il existe $x\in\Omega$ tel que f(x)=y. En effet, raisonnons par contraposée et supposons qu'il n'existe pas $x\in\Omega$ tel que f(x)=y. En prenant $\Omega_1=\Omega_2=\emptyset$, comme par hypothèse $y\notin\{f(x),x\in\partial\Omega\}$, on a $y\notin\{f(x),x\in\bar\Omega\setminus\Omega_1\cup\Omega_2\}$ et donc par (d2) et par l'item 1,

$$d(f, \Omega, y) = d(f, \Omega_1, y) + d(f, \Omega_2, y) = 0.$$

3. Soient A une matrice $N \times N$ inversible, Ω un ouvert borné de \mathbb{R}^N et $y \in \mathbb{R}^N$ tel que $A^{-1}y \in \Omega$; pour $x \in \mathbb{R}^N$, on pose f(x) = Ax. On a alors $(f, \Omega, y) \in \mathcal{A}$ et le degré $d(f, \Omega, y)$ est égal au signe du déterminant de A, on a donc $d(f, \Omega, y) \neq 0$.

La remarque 3.2 donne une méthode, dite *méthode du degré topologique*, ou *argument de degré* pour trouver des solutions à des problèmes non linéaires, dont voici la teneur. Soit $N \geq 1$, Ω un ouvert borné de \mathbb{R}^N , $f \in C(\bar{\Omega}, \mathbb{R}^N)$ et $y \in \mathbb{R}^N$. On cherche à montrer qu'il existe $x \in \Omega$ telle que f(x) = y. Pour cela, on construit une application h de $[0,1] \times \bar{\Omega}$ dans \mathbb{R}^N t.q.

- 1. $h(1,\cdot) = f$,
- 2. $h(0,\cdot)=q$ où q est une application linéaire inversible et telle que $y\in\{q(x),x\in\Omega\}$.
- 3. $h(t,x) \neq y$ pour tout $t \in [0,1]$ et tout $x \in \partial \Omega$.

On obtient alors $d(f, \Omega, y) = d(g, \Omega, y) \neq 0$ et donc qu'il existe $x \in \Omega$ tel que f(x) = y.

Remarque 3.3 (Le cas N = 1) Dans le cas N = 1, la méthode du degré topologique que l'on vient de décrire n'est pas vraiment intéressante, car elle n'apporte rien de plus que le théorème des valeurs intermédiaires.

Une conséquence de cette méthode du degré topologique est le théorème de point fixe de Brouwer que nous rappelons maintenant (voir [11] pour l'article original en allemand, et [13, 35] pour des versions plus modernes).

Théorème 3.4 (Point fixe de Brouwer) Soit $N \ge 1$, R > 0 et $f \in C(B_R, B_R)$ avec $B_R = \{x \in \mathbb{R}^N, ||x|| \le R\}$ (où \mathbb{R}^N est muni d'une norme notée $||\cdot||$). Alors f admet un point fixe, c'est-à-dire qu'il existe $x \in B_R$ tel que f(x) = x.

Démonstration Si il existe $x \in \partial B_R$ (c'est-à-dire tel que $\|x\| = R$) tel que f(x) = x, il n'y a plus rien à démontrer. On suppose donc maintenant $f(x) \neq x$ pour tout $x \in \partial B_R$. On pose alors $\Omega = \{x \in \mathbb{R}^N, \|x\| < R\}$ (ce qui donne $B_R = \bar{\Omega}$) et, pour $t \in [0,1]$ et $x \in B_R$, h(t,x) = x - tf(x). Il est facile de voir que $h(t,x) \neq 0$ pour tout $x \in \partial \Omega = \{x \in \mathbb{R}^N, \|x\| = R\}$. On en déduit que $d(h(1,\cdot),\Omega,0) = d(h(0,\cdot),\Omega,0) = d(\mathrm{Id},\Omega,0) = 1$ et donc qu'il existe $x \in \Omega$ tel que f(x) = x.

Le théorème 3.1 a été généralisé dès 1934 à la dimension infinie par Leray et Schauder [27] sous une hypothèse fondamentale de compacité que nous donnons maintenant.

Définition 3.5 (Compacité) Soient E un espace de Banach (réel), B une partie de E et f une application de B dans E. On dit que f est compacte si f vérifie les deux propriétés suivantes :

- 1. f est continue,
- 2. $\{f(x), x \in C\}$ est relativement compacte (dans E) pour tout partie C bornée de B.

Notons que dans l'article original de Leray-Schauder [27], le terme "compacte" n'est pas employé, l'expression "complètement continue" est utilisée en lieu et place.

On peut remarquer, dans la définition précédente, que si f est linéaire (et B=E) la deuxième condition entraı̂ne la première. Mais ceci est faux pour des applications non linéaires.

Définition 3.6 Soit E un espace de Banach (réel). On note A l'ensemble des triplets $(\mathrm{Id} - f, \Omega, y)$ où Ω est un ouvert borné de E, f est une application compacte de $\bar{\Omega}$ dans E (ce qui est équivalent à dire que f est continue et $\{f(x), x \in \bar{\Omega}\}$ est une partie relativement compacte de E) et $y \in E$ tel que $y \notin \{x - f(x), x \in \partial \Omega\}$.

Théorème 3.7 (Degré topologique de Leray-Schauder) Soit E un espace de Banach (réel) et A donné par la définition 3.6. Il existe alors une application d de A dans \mathbb{Z} , appelée "degré topologique", vérifiant les trois propriétés suivantes :

- (d1) (Normalisation) $d(\mathrm{Id}, \Omega, y) = 1$ si $y \in \Omega$.
- $\begin{array}{l} \textit{(d2)} \textit{(Degr\'e d'une union)} \textit{d}(\mathrm{Id}-f,\Omega,y) = \textit{d}(\mathrm{Id}-f,\Omega_1,y) + \textit{d}(\mathrm{Id}-f,\Omega_2,y) \textit{ si } \Omega_1 \cup \Omega_2 \subset \Omega, \Omega_1 \cap \Omega_2 = \emptyset \\ \textit{et } y \not\in \{x-f(x), x \in \bar{\Omega} \setminus \Omega_1 \cup \Omega_2\}. \end{array}$
- (d3) (Invariance par homotopie) Si h est une application compacte de $[0,1] \times \bar{\Omega}$ dans E (ce qui est équivalent à dire que h est continue et $\{h(t,x), t \in [0,1], x \in \bar{\Omega}\}$ est une partie relativement compacte de E), $y \in C([0,1],E)$ et $y(t) \not\in \{x-h(t,x), x \in \partial\Omega\}$ (pour tout $t \in [0,1]$), on a alors $d(\mathrm{Id}-h(t,\cdot),\Omega,y(t))=d(\mathrm{Id}-h(0,\cdot),\Omega,y(0))$ pour tout $t \in [0,1]$.

Comme dans le cas de la dimension finie (voir la remarque 3.2), des propriétés du degré topologique (données dans le théorème 3.7), on déduit que $d(\operatorname{Id} - f, \Omega, y) \neq 0$ implique qu'il existe $x \in \Omega$ tel que x - f(x) = y. Pour donner l'analogue de la seconde propriété de la remarque 3.2, nous avons besoin d'un deuxième théorème dû à Leray et Schauder que nous donnons maintenant.

Théorème 3.8 (Application linéaire compacte) Soit E un espace de Banach (réel), L une application linéaire compacte de E dans E et Ω un ouvert borné contenant 0. On suppose que

$$x \in E, Lx = x \Rightarrow x \notin \partial\Omega.$$
 (3.1)

Alors $(\mathrm{Id} - L, \Omega, 0) \in \mathcal{A}$, où \mathcal{A} est donné par la définition 3.6, et $d(\mathrm{Id} - L, \Omega, 0) \neq 0$.

Remarque 3.9 (Hypothèse équivalente à (3.1)) Noter que, comme L est linéaire, l'hypothèse (3.1) est équivalente à dire $(x \in E, Lx = x) \Rightarrow x = 0$, ce qui est équivalent à dire que 1 n'est pas valeur propre de L. En effet, supposons que Lx = x et que $x \neq 0$ et montrons que cela contredit l'hypothèse (3.1). Comme L est linéaire, L(tx) = tx pour tout $t \in \mathbb{R}$. On choisit alors $t = \sup\{\alpha, sx \in \Omega \ \forall s \in [0, \alpha]\}$. Comme Ω est un ouvert borné contenant 0, il existe donc $\varepsilon > 0$ et R > 0 tels que $B(0, \varepsilon) \subset \Omega \subset B(0, R)$; on a donc

$$\frac{\varepsilon}{\|x\|} \le t \le \frac{R}{\|x\|},$$

et $tx \in \partial\Omega$, d'où la contradiction. La réciproque est immédiate car $0 \notin \partial\Omega$.

On peut maintenant, comme en dimension finie, donner une méthode pour trouver des solutions à des problèmes non linéaires. Soit E un espace de Banach, Ω un ouvert borné de E contenant 0, f une application de $\bar{\Omega}$ dans E. On cherche à montrer qu'il existe $x \in \Omega$ tel que x - f(x) = 0 (quitte à changer f, on peut toujours se ramener à cette forme). Pour cela, on construit une application h de $[0,1] \times \bar{\Omega}$ dans E, compacte et t.q.

- 1. $h(1,\cdot) = f$,
- 2. $h(0,\cdot) = L$ avec L linéaire de E de E,
- 3. $x h(t, x) \neq 0$ pour tout $t \in [0, 1]$ et tout $x \in \partial \Omega$.

On obtient alors $d(\mathrm{Id} - f, \Omega, 0) = d(\mathrm{Id} - L, \Omega, 0) \neq 0$ et donc qu'il existe $x \in \Omega$ tel que x - f(x) = 0.

Bien sûr, pour pouvoir construire une telle que fonction h, il faut que f soit une application compacte et que L soit une application linéaire compacte.

Comme en dimension finie, une première conséquence de l'existence du degré topologique est l'obtention d'un théorème de point fixe que nous donnons maintenant.

Théorème 3.10 (Point fixe de Schauder) Soit E un espace de Banach, R > 0, $B_R = \{x \in E, ||x|| \le R\}$ et f une application compacte de B_R dans B_R (c'est-à-dire f continue et $\{f(x), x \in B_R\}$ relativement compacte dans E). Alors f admet un point fixe, c'est-à-dire qu'il existe $x \in B_R$ tel que f(x) = x.

Démonstration La démonstration est très voisine de celle du théorème 3.4. S'il existe $x \in \partial B_R$ (c'est-à-dire tel que $\|x\| = R$) tel que f(x) = x, il n'y a plus rien à démontrer. On suppose donc maintenant $f(x) \neq x$ pour tout $x \in \partial B_R$. On pose alors $\Omega = \{x \in E, \|x\| < R\}$ (ce qui donne $B_R = \bar{\Omega}$) et, pour $t \in [0,1]$ et $x \in B_R$, h(t,x) = tf(x). Il est facile de voir que $x - h(t,x) \neq 0$ pour tout $x \in \partial \Omega = \{x \in \mathbb{R}^N, \|x\| = R\}$. La compacité de h se déduit de celle de f. On en déduit alors que $d(\mathrm{Id} - h(1,\cdot),\Omega,0) = d(\mathrm{Id} - h(0,\cdot),\Omega,0) = d(\mathrm{Id},\Omega,0) = 1$ et donc qu'il existe $x \in \Omega$ tel que f(x) = x.

Le théorème de Schauder est faux si on remplace l'hypothèse de compacité de f par la simple hypothèse de continuité. Toutefois, la difficulté principale dans l'utilisation du théorème de Schauder (ou, plus généralement, dans l'utilisation du degré topologique) est souvent de montrer la continuité de f (ou, dans l'utilisation du degré topologique, la continuité de l'application notée h précédemment).

3.1.2 Existence par le théorème de Schauder

On rappelle tout d'abord la définition de fonction de Carathéodory.

Définition 3.11 ³ Soit $N, p, q \in \mathbb{N}^*$ et Ω un ouvert de \mathbb{R}^N . Soit a une application de $\Omega \times \mathbb{R}^p$ dans \mathbb{R}^q . On dit que a est fonction de Carathéodory si $a(\cdot, s)$ est borélienne pour tout $s \in \mathbb{R}^p$ et $a(x, \cdot)$ est continue pour presque tout $x \in \Omega$.

Remarque 3.12 Soit $N, p, q \in \mathbb{N}^*$, Ω un ouvert de \mathbb{R}^N et a une fonction de Carathéodory de $\Omega \times \mathbb{R}^p$ dans \mathbb{R}^q . La fonction a est alors borélienne de $\Omega \times \mathbb{R}^p$ dans \mathbb{R}^q (ce qui pourrait être faux si a était seulement borélienne par rapport à chacun de ses arguments). Si v est une fonction borélienne de Ω dans \mathbb{R}^p , la fonction $x \mapsto a(x, v(x))$ est alors borélienne de Ω dans \mathbb{R}^q . Cette propriété est plusieurs fois utilisée dans la suite (sans la rappeler) lorsque v est dans $L^r(\Omega)$ (pour un $r \in [1, +\infty]$) en choisissant un représentant (borélien) de v (la fonction $v \mapsto a(x, v(x))$ ne dépend pas du représentant choisi pour v, modulo la relation d'équivalence "= p.p.").

On se place maintenant sous les hypothèses suivantes :

$$N > 1$$
, Ω est un ouvert borné de \mathbb{R}^N , (3.2a)

$$a: \Omega \times \mathbb{R} \to \mathbb{R}$$
 est une fonction de Carathéodory, (3.2b)

il existe
$$\alpha > 0$$
 et $\beta > 0$ tel que $\alpha \le a(\cdot, s) \le \beta$ p.p. et pour tout $s \in \mathbb{R}$, (3.2c)

$$f: \Omega \times \mathbb{R} \to \mathbb{R}$$
 est une fonction de Carathéodory et $f \in L^{\infty}(\Omega \times \mathbb{R})$. (3.2d)

Sous les hypothèses 3.2, on cherche à montrer l'existence de u, solution du problème suivant :

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} a(x, u(x)) \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x, u(x)) v(x) \, dx, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (3.3)

Théorème 3.13 (Existence, second membre borné) Sous les hypothèses (3.2), il existe u solution de (3.3).

^{3.} Constantin Carathéodory (1873 -1950), mathématicien allemand d'origine grecque, dont les recherches portent sur le calcul des variations, et les équations aux dérivées partielles.

Démonstration Pour $\bar{u} \in L^2(\Omega)$, le chapitre sur les équations elliptiques linéaires nous donne l'existence et l'unicité de u solution de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} a(x, \bar{u}(x)) \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x, \bar{u}(x)) v(x) \, dx, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.4)

Plus précisément, pour montrer l'existence et l'unicité de u solution de (3.4), on applique le théorème 2.6. Pour cela, on met le problème (3.4) sous la forme (2.5) en posant $a_{i,j} = 0$ si $i \neq j$, $a_{i,i} = a(\cdot, \bar{u})$ et $f = f(\cdot, \bar{u})$ (dans cette dernière égalité, la fonction f du terme de gauche est celle de (2.5) et la fonction f du terme de droite est celle de (3.4)). Le théorème 2.6 donne bien l'existence et l'unicité de u solution de (3.4).

On pose $T(\bar{u}) = u$; l'application T est donc une application de E dans E avec $E = L^2(\Omega)$. Un point fixe de T est une solution de (3.3). Pour démontrer l'existence d'un tel point fixe, on utilise le théorème 3.10.

Tout d'abord, en utilisant α , l'inégalité de Poincaré et la borne L^{∞} de f, on montre facilement que l'image de T est dans un borné de $H^1_0(\Omega)$ et donc (par le théorème 1.33 de Rellich) dans un compact de $L^2(\Omega)$. En prenant R assez grand, l'application T envoie donc $B_R = \{v \in L^2(\Omega), \|v\|_2 \le R\}$ dans B_R et $\{T(\bar{u}), \bar{u} \in B_R\}$ est relativement compacte dans $L^2(\Omega)$. Pour utiliser le théorème 3.10, il reste à montrer la continuité de T.

Soit $(\bar{u}_n)_{n\in\mathbb{N}}$ une suite de E t.q. $\bar{u}_n\to\bar{u}$ dans E, quand $n\to+\infty$. On pose $u_n=T(\bar{u}_n)$. Après extraction d'une sous-suite, on peut supposer que $\bar{u}_n\to\bar{u}$ p.p. et qu'il existe $w\in H^1_0(\Omega)$ t.q. $u_n\to w$ faiblement dans $H^1_0(\Omega)$ (et donc aussi $u_n\to w$ dans $L^2(\Omega)$). On va montrer que w est solution de (3.4). En effet, Soit $v\in H^1_0(\Omega)$, on a

$$\int_{\Omega} a(x, \bar{u}_n(x)) \nabla u_n(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x, \bar{u}_n(x)) v(x) \, dx, \text{ pour tout } v \in H_0^1(\Omega).$$

En passant à la limite quand $n \to +\infty$ (en utilisant la convergence dominée et le passage à la limite sur le produit d'une convergence faible et d'une convergence dans L^2), on obtient

$$\int_{\Omega} a(x, \bar{u}(x)) \nabla w(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x, \bar{u}(x)) v(x) \, dx, \text{ pour tout } v \in H_0^1(\Omega).$$

Ceci prouve que $w=T(\bar{u})$. On a donc prouvé, après extraction d'une sous-suite, que $T(\bar{u}_n)\to T(\bar{u})$ dans $L^2(\Omega)$. Par un raisonnement classique par l'absurde on peut montrer que cette convergence reste vraie sans extraction de sous-suite (voir l'exercice 1.14 pour un exemple de ce type de raisonnement). On a ainsi démontré la continuité de T. On peut donc appliquer le théorème 3.10 et conclure à l'existence d'un point fixe de T, ce qui termine cette démonstration.

3.1.3 Existence par degré topologique

On reprend le même problème que dans le paragraphe 3.1.2 en supprimant l'hypothèse f bornée qui permettait une application simple du théorème de Schauder. On considère l'équation de diffusion-convection-réaction suivante :

$$\begin{cases} u \in H_0^1(\Omega) \\ \int a(x, u(x)) \nabla u(x) \cdot \nabla v(x) + \int_{\Omega} G(x) \varphi(u(x)) \cdot \nabla v(x) \, \mathrm{d}x = \\ \int_{\Omega} f(x, u(x)) v(x) \, \mathrm{d}x, \quad \forall v \in H_0^1(\Omega) \end{cases}$$
(3.5)

qui est la formulation faible du problème suivant :

$$\begin{cases} -\operatorname{div}(a(x,u)\nabla u) - \operatorname{div}(G(x)\varphi(u)) = f(x,u), \ x \in \Omega, \\ u = 0 \text{ sur } \partial\Omega. \end{cases}$$
 (3.6)

Notons que cette équation est non linéaire pour trois raisons : les termes de diffusion, convection et réaction sont non linéaires. Le premier terme du membre de gauche est le terme de diffusion, le second terme du membre de gauche est le terme de convection et le membre de droite est le terme de réaction.

On se place sous les hypothèses suivantes :

$$\Omega$$
 est un ouvert borné de \mathbb{R}^N , $N \ge 1$, (3.7a)

$$a$$
 est une fonction de Carathéodory (voir la définition 3.11), (3.7b)

$$\exists \alpha, \beta > 0; \alpha \leq a(x, s) \leq \beta \quad \forall s \in \mathbb{R} \qquad \text{p.p. } x \in \Omega, \tag{3.7c}$$

$$G \in C^1(\bar{\Omega}, \mathbb{R}^N), \operatorname{div} G = 0,$$
 (3.7d)

$$\varphi \in C(\mathbb{R}, \mathbb{R})$$
 et il existe $C_1 \ge 0 : |\varphi(s)| \le C_1 |s| \quad \forall s \in \mathbb{R},$ (3.7e)

$$f$$
 est une fonction de Carathéodory, et $\exists C_2 \ge 0$ et $d \in L^2(\Omega)$; $|f(x,s)| \le d(x) + C_2|s|$, (3.7f)

$$\lim_{s \to +\infty} \frac{f(x,s)}{s} = 0. \tag{3.7g}$$

Remarque 3.14 (Alternative de Fredholm) Dans le cas où $a \equiv 1, \varphi = 0$ et f est de la forme $f(x,s) = d(x) + \lambda s$ où λ est une valeur propre du laplacien sur Ω avec condition de Dirichet (c'est-à-dire qu'il existe $w \in H^1_0(\Omega)$, $w \neq 0$ t.q. $-\Delta w = \lambda w$ dans $\mathcal{D}^*(\Omega)$) et d un élément de $L^2(\Omega)$, le problème (3.6) devient $-\Delta u = \lambda u + d$, avec condition de Dirichlet. Ce problème n'admet une solution que si d est orthogonal à l'espace propre associé à λ (et dans ce cas on n'a pas unicité). Cette propriété est connue sous le nom d'alternative de Fredholm⁴, voir l'exercice 2.2. C'est pour assurer l'existence pour tout d dans $L^2(\Omega)$ qu'on ajoute l'hypothèse de sous-linéarité sur f (hypothèse (3.7g)).

Remarque 3.15 (Coercivité) Lorsque div $G \neq 0$, le problème peut se traiter de manière similaire à celle donnée dans la démonstration de théorème 3.16 à condition que div $G \leq \lambda_1$ p.p. où λ_1 est la première valeur propre de $u \mapsto -\mathrm{div}(\alpha \nabla u)$ avec condition de Dirichlet (cette valeur propre est strictement positive). Sans cette condition, le problème devient plus difficile (voir l'exercice 3.4), même dans le cas linéaire, c'est-à-dire le cas où a et f ne dépendent pas de u et où $\varphi(u) = u$. La difficulté principale est due à l'absence de coercivité de l'opérateur $u \mapsto -\mathrm{div}(\alpha \nabla u) - \mathrm{div}(Gu)$.

Théorème 3.16 (Existence, second membre non borné) Sous les hypothèses (3.7), il existe une solution de (3.5).

Démonstration On donne ici une preuve par degré topologique. Cette méthode demande des estimations *a priori* c'est-à-dire des estimations sur u, sans connaître son existence. Supposons donc u solution de (3.5), on peut (et on va) montrer qu'il existe R>0 tel que $\|u\|_{L^2}\leq R$. On établit les estimations à partir du problème non linéaire, et non pas à partir du problème linéarisé (ce qui serait le cas par Schauder, voir remarque 3.17; ceci présente de sérieux avantages. Par exemple dans le terme de convection non linéaire, on peut écrire (formellement)

$$\int_{\Omega} G\varphi(u) \cdot \nabla u \quad dx = \int_{\Omega} G \cdot \nabla \phi(u) \, dx$$

^{4.} Erik Ivar Fredholm (1866–1927), mathématicien suédois connu pour ses travaux sur les équations intégrales et la théorie spectrale.

$$= -\int_{\Omega} \operatorname{div} G \, \phi(u) \, dx$$
$$= 0 \qquad \operatorname{car} \operatorname{div} G = 0,$$

où ϕ est la primitive de φ s'annulant en 0. Notons que l'estimation $\|u\|_{L^2(\Omega)} \leq R$ revient à montrer que toutes les solutions sont dans la boule B_R (boule fermée de centre 0 et de rayon R), ce qui est une estimation <u>uniforme</u> sur toutes les solutions.

On réécrit le problème sous la forme :

$$\left\{ \begin{array}{l} u \in H^1_0(\Omega), \\ \int_{\Omega} a(u) \nabla u \cdot \nabla v \; \mathrm{d}x = \langle F(u), v \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}, \forall v \in H^1_0(\Omega), \end{array} \right.$$

où F(u) est, pour $u \in L^2(\Omega)$, l'élément de $H^{-1}(\Omega)$ défini par

$$\langle F(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = -\int_{\Omega} G\varphi(u) \cdot \nabla v \, dx + \int_{\Omega} f(u)v \, dx.$$

Comme $G \in L^{\infty}(\Omega)^N$, $|\varphi(s)| \leq C_1 |s|$ et $|f(\cdot,s)| \leq d + C_2 |s|$, il est facile de voir que l'application F qui à u associe F(u) est continue de $L^2(\Omega)$ dans $H^{-1}(\Omega)$.

Pour $S \in H^{-1}(\Omega)$, le problème linéaire

$$\begin{cases} w \in H_0^1(\Omega), \\ \int_{\Omega} a(u) \nabla w \cdot \nabla v \, dx = \langle S, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}, \end{cases}$$
(3.8)

admet une unique solution $w \in H^1_0(\Omega)$. On note B_u l'opérateur qui à S dans $H^{-1}(\Omega)$ associe w solution de (3.8). L'opérateur B_u est linéaire continu de $H^{-1}(\Omega)$ dans $H^1_0(\Omega)$ et $H^1_0(\Omega)$ s'injecte compactement dans $L^2(\Omega)$. On en déduit que l'opérateur B_u est compact de $H^{-1}(\Omega)$ dans $L^2(\Omega)$.

Le problème (3.5) est équivalent à résoudre le problème de point fixe $u = B_u(F(u))$. On va donc montrer, par degré topologique, que le problème suivant admet une solution

$$\begin{cases} u \in L^2(\Omega), \\ u = B_u(F(u)). \end{cases}$$

Pour $t \in [0,1]$, on pose $h(t,u) = B_u(t \ F(u)) \in L^2(\Omega)$. L'application h est ainsi définie de $[0,1] \times L^2(\Omega)$ dans $L^2(\Omega)$. Pour R > 0, on pose $B_R = \{u \in L^2(\Omega) \ \text{t.q.} \ \|u\|_{L^2(\Omega)} < R\}$. On va montrer que

- 1. il existe R > 0 tel que, pour tout $t \in [0,1]$ et tout $u \in L^2(\Omega)$, si u h(t,u) = 0 alors $||u||_{L^2(\Omega)} < R$. (C'est cette estimation *a priori* qui est le point le plus difficile à montrer).
- 2. h est continue de $[0,1] \times \bar{B}_R$ dans \bar{B}_R ;
- 3. L'ensemble $\{h(t,u), t \in [0,1], u \in \bar{B}_R\}$ est relativement compact dans $L^2(\Omega)$.

Si on suppose qu'on a démontré les points 1 et 3, on n'a pas de solution à l'équation u - h(t, u) = 0 sur le bord de la boule B_R , et on peut donc définir le degré $d(\operatorname{Id} - h(t, .), B_R, 0)$. Ce degré ne dépend pas de t, on a donc :

$$d(\operatorname{Id} - h(t, \cdot), B_R, 0) = d(\operatorname{Id} - h(0, \cdot), B_R, 0)$$

= $d(\operatorname{Id}, B_R, 0) = 1$.

On en déduit l'existence de $u \in B_R$ tel que u - h(1, u) = 0, c'est-à-dire

$$u = B_u(F(u)).$$

Donc u est solution de (3.5) (et le théorème 3.16 est démontré).

Il reste donc à montrer les points 1-3. Commençons par démontrer l'item 3 (pour tout R>0). Soit R>0. On suppose que $\|u\|_{L^2} \le R$. On a :

$$F(u) \in H^{-1}(\Omega), \text{ et } \langle F(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = -\int_{\Omega} G\varphi(u) \cdot \nabla v \, dx + \int_{\Omega} f(u)v \, dx.$$

Estimons $\langle F(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}$:

$$\begin{split} \langle F(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} & \leq \| \|G\|_{\infty} \|\varphi(u)\|_{L^2(\Omega)} \|v\|_{H_0^1(\Omega)} + \|f(u)\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ & \leq \| \|G\|_{\infty} C_1 \|u\|_{L^2(\Omega)} \|v\|_{H_0^1(\Omega)} + \|d\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} + C_2 \|u\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ & \leq (\| \|G\|_{\infty} C_1 R + C_{\Omega} \|d\|_{L^2(\Omega)} + C_2 \|C_{\Omega}\|_{L^2(\Omega)} R) \|v\|_{H_0^1(\Omega)}, \end{split}$$

où C_{Ω} ne dépend que de Ω (et est donnée par l'inégalité de Poincaré). Donc

$$t||F(u)||_{H^{-1}} \le ||G|||_{\infty} C_1 R + C_{\Omega} ||d||_{L^2(\Omega)} + C_2 C_{\Omega} R, \quad \forall t \in [0, 1].$$

Posons $h(t,u) = B_u(tF(u)) = w$ et montrons qu'il existe \bar{R} dépendant que de $R, G, C_{\Omega}, C_1, C_2, \alpha$ tel que

$$||h(t,u)||_{H_0^1(\Omega)} \le \bar{R}.$$

Par définition, w est solution de

$$\begin{cases}
\int_{\Omega} a(u) \nabla w \cdot \nabla v = \langle t F(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} & \forall v \in H_0^1(\Omega), \\
w \in H_0^1(\Omega).
\end{cases}$$
(3.9)

En prenant v = w dans (3.9), on obtient :

$$\alpha \|w\|_{H^1_0(\Omega)}^2 \leq \|tF(u)\|_{H^{-1}(\Omega)} \|w\|_{H^1_0(\Omega)} \leq \widetilde{R} \|w\|_{H^1_0(\Omega)},$$

$$\text{avec } \widetilde{R} = \| \, |G| \, \|_{\infty} \, C_1 R + C_{\Omega} \| d \|_{L^2(\Omega)} + C_2 \, C_{\Omega} \, R. \, \text{On a donc } \| h(t,u) \|_{H^1_0(\Omega)} = \| w \|_{H^1_0(\Omega)} \leq \frac{\widetilde{R}}{\alpha} = \bar{R}.$$

On en déduit par le théorème de Rellich (théorème 1.33) que l'ensemble $\{h(t,u), t \in [0,1], u \in \bar{B}_R\}$ est relativement compact dans $L^2(\Omega)$, ce qui montre bien l'item 3.

Montrons maintenant l'item 2. Soit $(t_n)_{n\in\mathbb{N}}\subset [0,1]$ une suite telle que $t_n\to t$ lorsque $n\to +\infty$ et soit $(u_n)_{n\in\mathbb{N}}\subset L^2(\Omega)$ une suite telle que $u_n\to u$ dans $L^2(\Omega)$. On veut montrer que $h(t_n,u_n)\to h(t,u)$ dans $L^2(\Omega)$. Soit $w_n=h(t_n,u_n)$ et w=h(t,u). Pour montrer que $w_n\to w$ dans $L^2(\Omega)$, on cherche à passer à la limite sur l'équation suivante :

$$\begin{cases} \int_{\Omega} a(u_n) \nabla w_n \cdot \nabla v \, dx = -t_n \int_{\Omega} G\varphi(u_n) \cdot \nabla v \, dx + t_n \int_{\Omega} f(u_n) v \, dx \\ w_n \in H_0^1(\Omega). \end{cases}$$
(3.10)

On sait déjà que $(w_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$, car la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$ (c'est ce qu'on a montré à l'étape précédente : si $||u_n||_{L^2(\Omega)} \leq R$ alors $||w_n||_{H^1_0(\Omega)} \leq \bar{R}$.

La suite $(w_n)_{n\in\mathbb{N}}$ est bornée dans $H_0^1(\Omega)$, et à une sous-suite près, (on ne renumérote pas) on a donc

$$w_n \to \bar{w}$$
 dans H_0^1 faible et $w_n \to \bar{w}$ dans $L^2(\Omega)$,

$$u_n \to u \text{ p.p. et } \exists H \in L^2(\Omega) ; |u_n| \leq H \text{ p.p.}.$$

Soit $v \in H^1_0(\Omega)$; comme $a(u_n) \to a(u)$ p.p. donc $a(u_n) \nabla v \to a(v) \nabla v$ p.p., et $|a(u_n) \nabla v| \leq \beta |\nabla v|$; on en déduit que $a(u_n) \nabla v \to a(u) \nabla v$ dans $L^2(\Omega)$. Mais $\nabla w_n \to \nabla \bar{w}$ dans $(L^2(\Omega))^N$ faible. On a donc

$$\int_{\Omega} a(u_n) \nabla w_n \cdot \nabla v \, dx \to \int_{\Omega} a(u) \nabla \bar{w} \cdot \nabla v \, dx \text{ lorsque } n \to +\infty.$$

On remarque ensuite que $\varphi(u_n) \to \varphi(u)$ p.p. et que $|\varphi(u_n)| \le C_1 |u_n| \le C_1 H$; donc par le théorème de convergence dominée de Lebesgue, $\varphi(u_n) \to \varphi(u)$ dans $L^2(\Omega)$ et $\int_\Omega G\varphi(u_n) \cdot \nabla v \ \mathrm{d}x \to \int_\Omega G\varphi(u) \cdot \nabla v \ \mathrm{d}x$ lorsque $n \to +\infty$.

Enfin pour le dernier terme, comme $f(u_n) \to f(u)$ p.p. et $|f(u_n)| \le |d| + C_2 H$ p.p., on a donc par convergence dominée $f(u_n) \to f(u)$. On en déduit que $\int_{\Omega} f(u_n) v \, \mathrm{d}x \to \int_{\Omega} f(u) v \, \mathrm{d}x$ lorsque $n \to +\infty$. En passant à la limite dans (3.10), on obtient

$$\int_{\Omega} a(u) \nabla \bar{w} \cdot \nabla v \, dx = -t \int_{\Omega} G \varphi(u) \cdot \nabla v \, dx + t \int_{\Omega} f(u) v \, dx,$$

et donc $\bar{w} = h(t, u) = w$.

En raisonnant par l'absurde, on montre ensuite que (sans sous-suite) $w_n \to w$ dans H_0^1 faible et $w_n \to w$ dans $L^2(\Omega)$ où $w_n = h(t_n, u_n)$ et w = h(t, u); l'application h est donc continue. On a donc bien montré l'item 2.

Il reste maintenant à démontrer l'item 1. On veut montrer qu'il existe R>0 tel que pour tout $t\in[0,1]$ et tout $u\in L^2(\Omega)$, si u=h(t,u), alors $\|u\|_{L^2(\Omega)}< R$. Soit $t\in[0,1]$, et u=h(t,u)=t $B_u(F(u))$, c'est-à-dire

$$\begin{cases}
\int_{\Omega} a(u) \nabla u \cdot \nabla v \, dx = -t \int_{\Omega} G\varphi(u) \cdot \nabla v \, dx + t \int_{\Omega} f(u) v \, dx, & \forall v \in H_0^1(\Omega). \\
u \in H_0^1(\Omega).
\end{cases}$$
(3.11)

Pour $s \in \mathbb{R}$, on pose $\Phi(s) = \int_0^s \varphi(\xi) \, \mathrm{d}\xi$ (Φ est donc une primitive de φ). Comme $u \in H^1_0(\Omega)$, il n'est pas difficile de montrer que $\Phi(u) \in W^{1,1}_0(\Omega)$ et que

$$\int_{\Omega} G\varphi(u) \cdot \nabla u \, dx = \int_{\Omega} G \cdot \nabla \Phi(u) \, dx.$$

(Ceci est laissé en exercice, il suffit d'approcher u, dans $H_0^1(\Omega)$, par une suite de fonctions appartenant à $\mathcal{D}(\Omega)$.) Comme $\operatorname{div}(G) = 0$, on a alors

$$\int_{\Omega} G\varphi(u) \cdot \nabla u \, dx = \int_{\Omega} G \cdot \nabla \Phi(u) \, dx = \int_{\Omega} \operatorname{div} G \, \Phi(u) \, dx = 0. \tag{3.12}$$

On choisit maintenant v = u dans (3.11). Par les hypothèses (3.7), on a donc :

$$\alpha \|u\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} |f(u)u| \, \mathrm{d}x$$

On va déduire de cette dernière inégalité qu'il existe R>0 t.q $\|u\|_{L^2(\Omega)}< R$. C'est ici qu'on utilise l'hypothèse (3.7g) i.e. $\lim_{s\to\pm\infty}\frac{f(x,s)}{s}=0$. Raisonnons par l'absurde. Supposons qu'un tel R n'existe pas. Alors il existe une suite $(u_n)_{n\in\mathbb{N}^+}$ d'éléments de

 $H_0^1(\Omega)$ telle que

$$||u_n||_{L^2(\Omega)} \ge n \text{ et } \alpha ||u_n||_{H_0^1}^2 \le \int_{\Omega} |f(u_n)u_n| \, \mathrm{d}x.$$

Montrons que ceci est impossible. Posons $v_n=\dfrac{u_n}{\|u_n\|_{L^2(\Omega)}}.$ On a donc $\|v_n\|_{L^2(\Omega)}=1$ et

$$\alpha \|v_n\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} \left| \frac{f(u_n)}{\|u_n\|_{L^2(\Omega)}} v_n \right| dx.$$

Or $|f(s)| \leq |d| + C_2|s|$, on a donc

$$\alpha \|v_n\|_{H_0^1(\Omega)}^2 \leq \int_{\Omega} \frac{|d| + C_2 |u_n|}{\|u_n\|_{L^2}} |v_n| \, \mathrm{d}x$$

$$\leq \int_{\Omega} \frac{|d| |v_n|}{\|u_n\|_{L^2}} \, \mathrm{d}x + C_2 \int_{\Omega} |v_n|^2 \, \mathrm{d}x$$

$$\leq \|d\|_{L^2(\Omega)} + C_2.$$

La suite $(v_n)_{n\in\mathbb{N}^\star}$ est ainsi bornée dans $H^1_0(\Omega)$, et donc, à une sous-suite près, $v_n\to v$ dans $L^2(\Omega)$. Par passage à la limite on en déduit que $\|v\|_{L^2}=1$ (ce qui donne $v\neq 0$). On a aussi (toujours à une sous-suite près) :

$$v_n \to v$$
 p.p., $|v_n| \le H$ avec $H \in L^2(\Omega)$.

Enfin, en utilisant l'inégalité de Poincaré, il existe C_{Ω} , ne dépendant que de Ω t.q.

$$\frac{\alpha}{C_{\Omega}} = \frac{\alpha}{C_{\Omega}} \|v_n\|_{L^2}^2 \le \alpha \|v_n\|_{H_0^1}^2 \le \int_{\Omega} \frac{|f(u_n)|}{\|u_n\|_{L^2(\Omega)}} |v_n| \, \mathrm{d}x.$$

On pose

$$X_n = \int_{\Omega} \frac{|f(u_n)||v_n|}{\|u_n\|_{L^2(\Omega)}} \, \mathrm{d}x,$$

et on montre maintenant que $X_n \to 0$ lorsque $n \to +\infty$, ce qui est impossible car $X_n \ge \frac{\alpha}{C_{\rm C}} > 0$. Montrons que $\frac{f(u_n)|v_n|}{|v_n|} \to 0$ p.p. avec domination (dans $L^1(\Omega)$); on aura alors par le théorème de convergence dominée que $\overline{\|u_n\|_{L^2(\Omega)}}$ \to 0 p.p. avec domination (same 2 (17)), = = $X_n \to 0$ lorsque $n \to +\infty$. On montre tout d'abord la domination. On a

$$\frac{|f(u_n)|}{\|u_n\|_{L^2(\Omega)}} \leq \frac{|d| + C_2|u_n|}{\|u_n\|_{L^2}} \leq |d| + C_2|v_n| \leq |d| + C_2H,$$

et donc
$$\left|\frac{f(u_n)}{\|u_n\|_{L^2(\Omega)}}v_n\right| \le (|d| + C_2H)H \in L^1(\Omega).$$

On montre maintenant la convergence p.p.. On a $v_n \to v$ p.p. et donc $\exists A$; $\operatorname{mes}(A^c) = 0$ et $v_n(x) \to v(x)$ pour tout $x \in A$. Soit $x \in A$,

 $\begin{array}{l} \textbf{1er cas:} \quad \text{si } v(x) > 0 \, ; \, v_n(x) \to v(x), \, \text{mais} \lim_{n \to +\infty} \|u_n\|_{L^2(\Omega)} = +\infty \, \text{donc} \, u_n(x) = v_n(x) \|u_n\|_{L^2(\Omega)} \to +\infty. \\ \text{Par l'hypothèse (3.7g), } \lim_{s \to +\infty} \frac{f(s)}{s} = 0, \, \text{et donc} \\ \end{array}$

$$\frac{f(u_n(x))}{\|u_n\|_{L^2(\Omega)}}v_n(x) = \frac{f(u_n(x))u_n(x)}{u_n(x)\|u_n\|_{L^2(\Omega)}}v_n(x) = \frac{f(u_n(x))}{u_n(x)}(v_n(x))^2 \to 0 \text{ quand } n \to \infty.$$

2ème cas : si v(x) < 0; on a de même $\lim_{n \to +\infty} \frac{f(u_n(x))}{\|u_n\|_{L^2(\Omega)}} v_n(x) = 0$, car $\lim_{s \to -\infty} \frac{f(s)}{s} = 0$.

3ème cas : si v(x) = 0, on a

$$\begin{split} \left| \frac{f(u_n(x))}{\|u_n\|_{L^2(\Omega)}} v_n(x) \right| & \leq \frac{|d(x)| + C_2 |u_n(x)|}{\|u_n\|_{L^2(\Omega)}} |v_n(x)| \\ & \leq (|d(x)| + C_2 |v_n(x)|) |v_n(x)| \\ & \to 0 \quad \text{car} \quad v(x) = 0. \end{split}$$

En résumé on a $\frac{f(u_n)}{\|u_n\|_{L^2(\Omega)}} v_n \to 0$ p.p. lorsque $n \to +\infty$. On a ainsi montré que $\lim_{n \to +\infty} X_n = 0$, en contradiction avec $X_n \geq \frac{\alpha}{C_\Omega}$ pour tout $n \in \mathbb{N}^*$.

On a donc montré qu'il existe R > 0 tel que $(u = h(t, u)) \Rightarrow (\|u\|_{L^2(\Omega)} < R)$, ce qui termine la démonstration de 1.

On a ainsi montré l'existence de solution à (3.5). Le théorème 3.16 est donc démontré.

Remarque 3.17 (Preuve du théorème d'existence 3.16 par Schauder) La preuve du théorème d'existence 3.16 par le théorème de Schauder est nettement plus compliquée que dans le cas f bornée du théorème 3.13. Considérons le problème linéaire suivant :

$$\int_{\Omega} a(\bar{u}) \nabla u \cdot \nabla v \, dx + \int_{\Omega} G\varphi(\bar{u}) \cdot \nabla v \, dx = \int_{\Omega} f(\bar{u}) v \, dx \qquad \text{pour tout } v \in H_0^1(\Omega). \tag{3.13}$$

Dans (3.13), on a noté, de manière abrégée, $a(\overline{u})$ et $f(\overline{u})$ les fonctions $x \mapsto a(x, \overline{u}(x))$ et $x \mapsto f(x, \overline{u}(x))$. Cette notation abrégée sera souvent utilisée par la suite.

Soit T l'opérateur défini de $L^2(\Omega)$ dans $L^2(\Omega)$ par $T(\bar{u})=u$ où u est solution de (3.13). Il est assez facile de montrer que T est continu et même compact. Par contre il est difficile de montrer que T envoie une boule de $L^2(\Omega)$ dans elle-même. Pour cela, il faut obtenir une estimation sur u en fonction de \bar{u} , et ce n'est pas gagné. Prenons v=u dans (3.13), comme on a fait dans le paragraphe 3.1.2. On obtient, grâce aux hypothèses (3.7),

$$\alpha \|u\|_{H_0^1(\Omega)}^2 \leq \|\,|G|\,\|_\infty C_1 \|\bar{u}\|_{L^2(\Omega)} \|u\|_{H_0^1(\Omega)} + \|d\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} + C_2 \|\bar{u}\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)}.$$

Montrons que le dernier terme à lui tout seul empêche d'avoir facilement des estimations. Supposons G=0 et d=0, on a alors grâce à l'inégalité de Poincaré :

$$\frac{\alpha}{C_{\Omega}^{2}} \|u\|_{L^{2}(\Omega)}^{2} \le \alpha \|u\|_{H_{0}^{1}(\Omega)}^{2} \le C_{2} \|\bar{u}\|_{L^{2}(\Omega)} \|u\|_{L^{2}(\Omega)}$$

c'est-à-dire $\|u\|_{L^2(\Omega)} \leq \frac{C_\Omega^2}{\alpha} C_2 \|\bar{u}\|_{L^2} \leq \frac{C_\Omega^2}{\alpha} C_2 R$ si \bar{u} est dans la boule de centre 0 et de rayon R de $L^2(\Omega)$, soit encore si $\|\bar{u}\|_{L^2(\Omega)} \leq R$. On ne peut pas en conclure que $\|u\|_{L^2(\Omega)} < R$ (sauf si $C_\Omega^2 C_2 < \alpha$ et dans ce cas la seule

solution de (3.5) ne peut être que u=0. En effet, si u est solution de (3.5), le raisonnement précédent avec $\bar{u}=u$ donne $\|u\|_{L^2(\Omega)} \leq C_\Omega^2 \frac{C_2}{\alpha} \|u\|_{L^2}$ et donc u=0 car $C_\Omega^2 \frac{C_2}{\alpha} < 1$).

La méthode ne fonctionne donc pas pas de manière directe. Toutefois, elle fonctionne avec un peu de travail supplémentaire en utilisant l'hypothèse de (3.7b). Une solution est, par exemple, de considérer une suite de problèmes avec second membre tronqué et de passer à la limite.

Il est maintenant naturel de se demander si, sous les hypothèses (3.7) (hypothèses du théorème 3.16), on peut montrer l'unicité de la solution. Dans le cas où f ne dépend pas de u et où l'équation est linéaire (c'est-à-dire que a ne dépend pas de u et φ est linéaire), il suffit de prendre la différence de deux solutions comme fonction test dans les deux formulations faibles associées à ces deux solutions et de faire la différences des deux équations obtenues. On montre ainsi que les deux solutions sont égales (p.p.). Dans le cas général, la situation est plus compliquée.

Remarque 3.18 (f lipschitzienne ne donne pas l'unicité) Il est inutile de supposer f lipschitzienne pour le résultat d'unicité, il suffit pour s'en convaincre de considérer l'exemple suivant, où f est lipchitzienne et pour lequel on n'a pas unicité. Prenons par exemple $a=1, \varphi=0$ et $f(u)=\lambda u$, où λ est une valeur propre de $(-\Delta)$ avec condition de Dirichlet. Le problème est alors

$$\begin{cases} \int_{\Omega} \nabla u \cdot \nabla v \, dx = \lambda \int_{\Omega} uv \, dx \quad \forall \in H_0^1(\Omega), \\ u \in H_0^1(\Omega). \end{cases}$$

Ce problème admet deux solutions : $u_1=0$, et une fonction propre $u_2\neq 0$ associée à λ . Evidemment $f(u)=\lambda u$ ne satisfait pas la condition (3.7g) mais on peut modifier f légérement pour que cette condition soir vérifiée, tout en gardant u_1 et u_2 comme solutions dès que $u_2\in L^\infty(\Omega)$ (le fait que $u_2\in L^\infty(\Omega)$ est toujours vrai si N<6; ceci peut se démontrer, par exemple, à partir de l'exercice 2.22). En effet, en prenant \widetilde{f} qui est égale à f sur $]-\gamma,\gamma[$ où $\gamma=\|u_2\|_{L^\infty}$ et qui est raccordée à 0 ensuite, de telle sorte que $\widetilde{f}\in C_c(\mathbb{R},\mathbb{R})$, on a les mêmes solutions pour $\widetilde{f}\in C_c(\mathbb{R},\mathbb{R})$, c'est-à-dire pour le problème :

$$\begin{cases} \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} \tilde{f}(u)v \, dx \\ u \in H_0^1(\Omega) \end{cases}$$

on a ainsi 2 solutions avec $\lim_{s \to \pm \infty} \frac{\tilde{f}(s)}{s} = 0$. Le fait que f soit lipschitzienne est donc inutile pour l'unicité.

Montrons l'unicité dans le cas où f ne dépend pas de s, *i.e.* f(x,s)=d(x), sous les hypothèses d'existence (3.7) et en supposant de plus que a et φ sont lipschitziennes, c'est-à-dire :

$$\exists C_3 > 0 \; ; \; \forall s, s_2 \in \mathbb{R}, \left\{ \begin{array}{l} |a(x,s_1) - a(x,s_2)| \leq C_3 |s_1 - s_2| \; \text{p.p.} \; x \in \mathbb{R}, \\ |\varphi(s_1) - \varphi(s_2)| \leq C_3 |s_1 - s_2|. \end{array} \right. \tag{3.14}$$

Théorème 3.19 (Existence et unicité) Sous les hypothèses (3.7) et (3.14), il existe une et une seule solution à (3.5).

Démonstration : La technique utilisée ici apparaît pour la première fois dans un article d'Artola en 1986 [4]. Soient u_1 et u_2 deux solutions de (3.5). On a :

$$\int_{\Omega} a(u_1) \nabla u_1 \cdot \nabla v \, dx + \int_{\Omega} G\varphi(u_1) \cdot \nabla v \, dx = \int_{\Omega} fv \, dx, \tag{3.15}$$

et

$$\int_{\Omega} a(u_2) \nabla u_2 \cdot \nabla v \, dx + \int_{\Omega} G\varphi(u_2) \cdot \nabla v \, dx = \int_{\Omega} fv \, dx.$$
 (3.16)

L'idée est de prendre $v=T_{\varepsilon}(u_1-u_2)$ dans (3.15) et (3.16), où $\varepsilon>0$ et T_{ε} est la troncature au niveau ε , c'est-à-dire

$$T_{\varepsilon}(s) = \begin{cases} -\varepsilon & \text{si } s < -\varepsilon, \\ s & \text{si } -\varepsilon \leq s \leq \varepsilon, \\ \varepsilon & \text{si } s > \varepsilon. \end{cases}$$

Si u_1 et $u_2 \in H_0^1(\Omega)$, alors $T_{\varepsilon}(u_1-u_2) \in H_0^1(\Omega)$ et $\nabla T_{\varepsilon}(u_1-u_2) = \nabla (u_1-u_2) \mathbb{1}_{\{0<|u_1-u_2|<\varepsilon\}}$ (ceci est une généralisation simple du lemme 2.24). En prenant $v=T_{\varepsilon}(u_1-u_2)$, et en faisant la différence de (3.15) et (3.16), on obtient :

$$\int_{\Omega} (a(u_1)\nabla u_1 \cdot \nabla (T_{\varepsilon}(u_1 - u_2)) - a(u_2)\nabla u_2 \cdot \nabla (T_{\varepsilon}(u_1 - u_2))) dx$$

$$= \int_{\Omega} G(\varphi(u_2) - \varphi(u_1)) \cdot \nabla (T_{\varepsilon}(u_1 - u_2)) dx,$$

soit encore, en posant $A_{\varepsilon} = \{0 < |u_1 - u_2| < \varepsilon\},\$

$$\int_{A_{\varepsilon}} a(u_1) \nabla(u_1 - u_2) \cdot \nabla(u_1 - u_2) \, dx = \int_{A_{\varepsilon}} (a(u_2) - a(u_1)) \nabla u_2 \cdot \nabla(u_1 - u_2) \, dx + \int_{A_{\varepsilon}} G(\varphi(u_2) - \varphi(u_1)) \cdot \nabla(u_1 - u_2) \, dx.$$

Par hypothèse, $a(u_1) \ge \alpha$ p.p., et donc :

$$\alpha \int_{A_{\epsilon}} |\nabla (u_1 - u_2)|^2 dx \le \int_{A_{\epsilon}} C_3 |u_2 - u_1| |\nabla u_2| |\nabla (u_2 - u_1)| dx + \int_{A_{\epsilon}} C_3 |u_1 - u_2| |G| |\nabla (u_1 - u_2)| dx.$$

On a $|u_1 - u_2| \le \varepsilon$ p.p. dans A_{ε} . En appliquant l'inégalité de Cauchy Schwarz dans les deux dernières intégrales, on obtient donc :

$$\alpha \int_{A_{\varepsilon}} |\nabla(u_1 - u_2)|^2 dx \leq C_3 \varepsilon \left(\int_{A_{\varepsilon}} |\nabla u_2|^2 dx \right)^{\frac{1}{2}} \left(\int_{A_{\varepsilon}} |\nabla(u_2 - u_1)|^2 dx \right)^{\frac{1}{2}} + C_3 \varepsilon \left(\int_{A_{\varepsilon}} |G|^2 dx \right)^{\frac{1}{2}} \left(\int_{A_{\varepsilon}} |\nabla(u_1 - u_2)|^2 dx \right)^{\frac{1}{2}}.$$

On a donc

$$\alpha \left(\int_{A_{\varepsilon}} (\nabla (u_1 - u_2))^2 \right)^{\frac{1}{2}} \le C_3 \ \varepsilon \ a_{\varepsilon}, \text{ avec } a_{\varepsilon} = \left(\int_{A_{\varepsilon}} |G|^2 \ \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_{A_{\varepsilon}} |\nabla u_2|^2 \ \mathrm{d}x \right)^{\frac{1}{2}}$$

ou encore

$$\alpha \left(\int_{\Omega} |\nabla (T_{\varepsilon}(u_1 - u_2))|^2 dx \right)^{\frac{1}{2}} = \alpha \| |\nabla T_{\varepsilon}(u_1 - u_2)| \|_{L^2(\Omega)} \le C_3 \varepsilon a_{\varepsilon}$$

donc, en désignant par λ_N la mesure de Lebesgue sur \mathbb{R}^N ,

$$\frac{\alpha}{\lambda_N(\Omega)^{\frac{1}{2}}} \| |\nabla T_{\varepsilon}(u_1 - u_2)| \|_{L^1(\Omega)} \le \alpha \| |\nabla T_{\varepsilon}(u_1 - u_2)| \|_{L^2(\Omega)} \le C_3 \varepsilon a_{\varepsilon}.$$

Comme $H^1_0(\Omega)\subset W^{1,1}_0(\Omega)$, on a $T_{\varepsilon}(u_1-u_2)\in H^1_0(\Omega)\subset W^{1,1}_0(\Omega)$ et l'inégalité de Sobolev donne

$$||T_{\varepsilon}(u_1 - u_2)||_{L^{1^{\star}}} \le |||\nabla T_{\varepsilon}(u_1 - u_2)|||_{L^1(\Omega)}, \text{avec } 1^{\star} = \frac{N}{N - 1}$$

et donc

$$\frac{\alpha}{\lambda_N(\Omega)^{\frac{1}{2}}} \|T_{\varepsilon}(u_1 - u_2)\|_{L^{1^*}} \le C_3 \varepsilon a_{\varepsilon}.$$

Si N=1, on a $\frac{N}{N-1}=+\infty$ et on conclut facilement que $u_1=u_2$ p.p.. Le cas $N\geq 2$ demande un léger développement supplémentaire. On remarque que

$$||T_{\varepsilon}(u_1 - u_2)||_{L^{1^{\star}}} = \left(\int_{\Omega} |T_{\varepsilon}(u_1 - u_2)|^{1^{\star}} dx \right)^{\frac{1}{1^{\star}}}$$

$$\geq \left(\int_{B_{\varepsilon}} \varepsilon^{1^{\star}} dx \right)^{\frac{1}{1^{\star}}}$$

$$\geq \varepsilon \left(\lambda_N(B_{\varepsilon}) \right)^{\frac{N-1}{N}},$$

où $B_{\varepsilon} = \{x; |u_1(x) - u_2(x)| \ge \varepsilon\}$. On a donc

$$\varepsilon(\lambda_N(B_\varepsilon))^{\frac{N-1}{N}} \le \frac{(\lambda_N(\Omega))^{\frac{1}{2}}}{\alpha} C_3 \varepsilon a_\varepsilon$$

et on en déduit que $(\lambda_N(B_{\varepsilon}))^{\frac{N-1}{N}} \leq C_4 \ a_{\varepsilon}$. Prenons, pour $n \in \mathbb{N}^{\star}$, $\varepsilon = \frac{1}{n}$, on a $A_{\frac{1}{n+1}} \subset A_{\frac{1}{n}}$ et $\bigcap_{n \in \mathbb{N}} A_{\frac{1}{n}} = \emptyset$, donc $\lambda_N(A_{\frac{1}{n}}) \to 0$ lorsque $n \to +\infty$ (par continuité décroissante d'une mesure). On rappelle que

$$a_{\frac{1}{n}} = \left(\int_{A_{\frac{1}{n}}} |G|^2 dx \right)^{\frac{1}{2}} + \left(\int_{A_{\frac{1}{n}}} |\nabla u_2|^2 dx \right)^{\frac{1}{2}}.$$

Comme $G, |\nabla u_2| \in L^2(\Omega)$, on en déduit que $\lim_{n \to +\infty} a_{\frac{1}{n}} = 0$.

On a aussi $B_{\frac{1}{n+1}}\supset B_{\frac{1}{n}}$ et $\cup_{n\in\mathbb{N}}B_{\frac{1}{n}}=\{|u_1-u_2|>0\}$. Donc $\lim_{n\to+\infty}\lambda_N(B_{\frac{1}{n}})=\lambda_N\{|u_1-u_2|>0\}$ (par continuité croissante de la mesure). Comme

$$\left(\lambda_N(B_{\frac{1}{n}})\right)^{\frac{N-1}{N}} \le C_4 \ a_{\frac{1}{n}},$$

en passant à la limite lorsque n tend vers $+\infty$, on obtient $\lambda_N\{|u_1-u_2|>0\}\leq 0$, et donc $u_1=u_2$ p.p., ce qui termine la démonstration.

3.2 Méthodes de monotonie

3.2.1 Introduction

Pour le problème (3.3), dans le cas où f (le second membre) dépend de ∇u , on sait encore prouver l'existence d'une solution avec le théorème de Schauder, voir exercice 3.2. La question est plus difficile dans le cas où a dépend de ∇u . On se place sous les hypothèses suivantes :

$$\begin{cases} \Omega \text{ ouvert born\'e de } \mathbb{R}^N, \\ a \in C(\mathbb{R}^N, \mathbb{R}), \\ \exists \alpha, \ \beta \in \mathbb{R}_+^*; \alpha \leq a(\xi) \leq \beta, \forall \xi \in \mathbb{R}^N, \\ f \in L^2(\Omega). \end{cases}$$

On cherche à montrer l'existence d'une solution au problème suivant :

$$\left\{ \begin{array}{l} u \in H^1_0(\Omega), \\ \int_{\Omega} a(\nabla u) \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x, \forall v \in H^1_0(\Omega). \end{array} \right.$$

Peut-on appliquer le théorème de Schauder? Pour l'appliquer, il faut l'utiliser dans $H^1_0(\Omega)$ pour que $a(\nabla u)$ ait un sens. Soit $\tilde{u} \in H^1_0(\Omega)$, par le théorème de Lax-Milgram, il existe un unique $u \in H^1_0(\Omega)$ solution de :

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} a(\nabla \tilde{u}) \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \ \forall v \in H_0^1(\Omega). \end{cases}$$
 (3.17)

Soit T l'opérateur de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$ défini par $T(\tilde{u})=u$ solution de (3.17). L'opérateur T est bien de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$ et

- (1) il existe R > 0 t..q. $||u||_{H_0^1(\Omega)} \le R$ pour tout $\tilde{u} \in H_0^1(\Omega)$,
- (2) l'application T est continue de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$. En effet, si $\tilde{u}_n \to \tilde{u}$ dans $H^1_0(\Omega)$, on a $\nabla \tilde{u}_n \to \nabla \tilde{u}$ dans $L^2(\Omega)^N$ et il n'est pas très difficile de montrer que $T(\tilde{u}_n) \to T(\tilde{u})$ dans $H^1_0(\Omega)$.

Mais l'application T n'est (en général) pas compacte (de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$). Si on était en dimension finie, les points (1) et (2) suffiraient à montrer l'existence d'une solution. L'idée est donc de considérer des problèmes approchés en dimension finie et de passer à la limite en utilisant la monotonie de l'opérateur (qui est vraie sous des hypothèses données sur a ci-après).

3.2.2 Opérateurs de Leray-Lions

On considère ici un cas un peu simplifié des opérateurs de Leray–Lions ⁵, dont l'étude est exposée dans un célèbre article des auteurs en 1965 [26]. On se place sous les hypothèses suivantes :

$$\Omega \text{ ouvert born\'e de } {\rm I\!R}^N, \ N \geq 1, \ 1$$

$$a: \mathbb{R}^N \to \mathbb{R}^N \text{ continue},$$
 (3.18b)

(coercivité)
$$\exists \alpha > 0 \mid a(\xi) \cdot \xi \ge \alpha |\xi|^p, \forall \xi \in \mathbb{R}^N,$$
 (3.18c)

^{5.} Jacques-Louis Lions (1928–2001), mathématicien français, membre de l'Académie des sciences, spécialiste de la théorie des équations aux dérivées partielles et de la théorie du contrôle.

(croissance)
$$\exists C \in \mathbb{R}; |a(\xi)| \le C(1+|\xi|^{p-1}), \forall \xi \in \mathbb{R}^N,$$
 (3.18d)

(monotonie)
$$(a(\xi) - a(\eta)) \cdot (\xi - \eta) \ge 0 \quad \forall (\xi, \eta) \in (\mathbb{R}^N)^2,$$
 (3.18e)

$$\sigma \in L^{\infty}(\Omega); \exists \sigma_0 > 0; \sigma \ge \sigma_0 \quad \text{p.p.},$$
 (3.18f)

$$f \in L^{\frac{p}{p-1}}(\Omega). \tag{3.18g}$$

Ces hypothèses permettent en particulier de traiter certains modèles dits "LES" (Large Eddy Simulation) utilisés en mécanique des fluides. On s'intéresse alors au problème suivant :

$$\begin{cases} -\mathrm{div}(\sigma(x)a(\nabla u(x))) = f(x) \text{ dans } \Omega, \\ u = 0 \quad \text{sur } \partial\Omega. \end{cases}$$
 (3.19)

Exemple 3.20 (p-laplacien et opérateur de Smagorinsky) Pour $\sigma \equiv 1$ et $a(\xi) = |\xi|^{p-2}\xi$ (1),l'équation s'écrit $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=f$. L'opérateur $u\mapsto -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ s'appelle le p-laplacien. Pour p=2, on retrouve le laplacien classique. Le cas p=3 donne l'opérateur de Smagorinsky ⁶ qui apparaît dans un modèle de LES.

Remarque 3.21 (Opérateur de Leray-Lions, cas général) Dans le cadre général des opérateurs dits de Leray-Lions, le terme $a(\nabla u)$ du problème (3.19) considéré ici remplacé par un terme de la forme $a(x, u, \nabla u)$, et la fonction a est alors une fonction de trois variables.

Cherchons une forme faible adéquate de (3.19). Remarquons que si $w \in L^p(\Omega)^N$, alors, l'hypothèse (3.18d) de croissance sur a donne

$$|a(w)| \le C(1+|w|^{p-1})$$

 $\le C+C|w|^{p-1} \in L^{\frac{p}{p-1}}(\Omega)$

 $\operatorname{car} C \in L^{\infty} \text{ et } |w|^{p-1} \in L^{\frac{p}{p-1}}(\Omega) = L^{p'}(\Omega) \text{ avec } p' = \frac{p}{p-1} \text{ (ou encore } \frac{1}{p} + \frac{1}{p'} = 1). \text{ Donc si } u \in W_0^{1,p}(\Omega), \text{ on a } p' = \frac{p}{p-1} \text{ (ou encore } \frac{1}{p} + \frac{1}{p'} = 1).$ $\nabla u \in (L^p(\Omega))^N$ et $a(\nabla u) \in (L^{p'}(\Omega))^N$. Prenons alors $v \in W_0^{1,p}(\Omega)$, on a $\nabla v \in L^p(\Omega)^N$. On a donc

$$a(\nabla u) \cdot \nabla v = \sum_{i=1}^{N} a_i(\nabla u) D_i v \in L^1(\Omega).$$

Il est donc naturel de chercher $u \in W_0^{1,p}(\Omega)$ et de prendre les fonctions test dans $W_0^{1,p}(\Omega)$.

On rappelle aussi que si $f\in L^{p'}(\Omega)$, l'application $v\mapsto \int_{\Omega}f(x)v(x)\;\mathrm{d}x$ est linéaire continue de $W^{1,p}_0(\Omega)$ dans \mathbb{R} . C'est donc un élément du dual (topologique) de $W_0^{1,p}(\Omega)$ (ce dual est noté $W^{-1,p'}(\Omega)$). Par abus de langage, on note encore f cet élément de $W^{-1,p'}(\Omega)$, c'est-à-dire que pour $f \in L^{p'}(\Omega)$, on a

$$\langle f, v \rangle_{W^{-1,p'}(\Omega), W_0^{1,p}(\Omega)} = \int_{\Omega} f(x)v(x) \, \mathrm{d}x \text{ pour tout } v \in W_0^{1,p}(\Omega).$$

La forme faible de (3.19) que l'on considère est donc :

$$\begin{cases}
 u \in W_0^{1,p}(\Omega), \\
 \int_{\Omega} \sigma a(\nabla u) \cdot \nabla v \, dx = \langle f, v \rangle_{W^{-1,p'}(\Omega), W_0^{1,p}(\Omega)}, \forall v \in W_0^{1,p}(\Omega).
\end{cases}$$
(3.20)

^{6.} Joseph Smagorinsky (1924-2005), physicien américain spécialiste des modèles de turbulence, de la météorologie dynamique et de la climatologie.

Remarque 3.22 (Second membre plus général) Le cadre "naturel" du problème (3.20) n'est donc pas limité au cas $f \in L^{p'}(\Omega)$. On peut remplacer dans (3.20) f par n'importe quel élément de $W^{-1,p'}(\Omega)$. On peut prendre par exemple f = -div F avec $F \in L^{p'}(\Omega)^N$, où div F est défini par

$$\langle \operatorname{div} F, v \rangle_{W^{-1,p'}(\Omega), W_0^{1,p}(\Omega)} = -\int_{\Omega} F(x) \cdot \nabla v(x) \, \mathrm{d}x.$$

On peut alors remplacer $\langle f, v \rangle_{W^{-1,p'}(\Omega),W_0^{1,p}(\Omega)}$ par $\int_{\Omega} F(x) \cdot \nabla v(x) \, \mathrm{d}x$ dans (3.20). Sous cette hypothèse, le théorème d'existence et d'unicité donné ci après (théorème 3.23) reste vrai.

Théorème 3.23 (Existence et unicité) Sous les hypothèses (3.18), il existe $u \in W_0^{1,p}(\Omega)$ solution de (3.20). Si de plus a est strictement monotone, c'est-à-dire si

$$(a(\xi) - a(\eta)) \cdot (\xi - \eta) > 0 \text{ pour tout } (\xi, \eta) \in (\mathbb{R}^N)^2, \ \xi \neq \eta$$
(3.21)

alors la solution est unique.

Pour la démonstration de ce théorème, nous aurons besoin de quelques lemmes (classiques) d'intégration que nous rappelons ici.

Lemme 3.24 (Convergence contre convergence faible) Soit $1 . On pose <math>p' = \frac{p}{p-1}$. On suppose que $f_n \to f$ dans $L^p(\Omega)$ et $g_n \to g$ faiblement dans $L^{p'}(\Omega)$. Alors

$$\int_{\Omega} f_n g_n dx \to \int_{\Omega} f g dx \text{ lorsque } n \to +\infty.$$

On pourra consulter [20, Proposition 6.81] pour sa démonstration.

Par contre, on rappelle que si $f_n \to f$ dans L^p faible et $g_n \to g$ dans $L^{p'}$ faible, on n'a pas en général convergence de $\int_{\Omega} f_n \ g_n \ \mathrm{d}x$ vers $\int_{\Omega} fg \ \mathrm{d}x$.

Lemme 3.25 Si $a \in C(\mathbb{R}^N, \mathbb{R}^N)$ vérifie l'hypothèse de croissance (3.18d) et si $u_n \to u$ dans $W_0^{1,p}(\Omega)$ alors $a(\nabla u_n) \to a(\nabla u)$ dans $L^{p'}(\Omega)^N$.

Le lemme 3.25 se démontre par le théorème de convergence dominée de Lebesgue.

On rappelle aussi que les espaces $W_0^{1,p}(\Omega), L^p(\Omega)$ et $L^{p'}(\Omega)$ sont réflexifs pour $1 , et donc pour toute suite bornée d'un de ces espaces, on peut extraine une sous-suite faiblement convergente dans cet espace. On rappelle enfin que les espaces <math>W_0^{1,p}(\Omega), L^p(\Omega)$ et $L^{p'}(\Omega)$ sont séparables, *i.e.* ils contiennent une partie dénombrable dense, ce qui va nous permettre l'approximation du problème par des problèmes de dimension finie. On aura également besoin du résultat suivant sur les opérateurs coercifs pour la démonstration théorème 3.23 :

Lemme 3.26 (Opérateur coercif dans IR^N) Soit $T: \mathbb{R}^N \to \mathbb{R}^N$ continue. On suppose que T est coercif, c'est-à-dire que

$$\frac{T(v) \cdot v}{|v|} \to +\infty \text{ quand } |v| \to +\infty.$$

Soit $b \in \mathbb{R}^N$. Alors, il existe $v \in \mathbb{R}^N$ t.q. T(v) = b. L'opérateur T est donc surjectif.

Démonstration On utilise le degré topologique de Brouwer (ce qui possible car on est en dimension finie). On pose h(t,v)=tT(v)+(1-t)v. Pour t=0, on a h(0,v)=v (donc h(0,v)=I, où I est l'opérateur $v\mapsto v$). Pour

t=1 on a h(1,v)=T(v). Pour appliquer le degré, on remarque d'abord que l'application $h:[0,1]\times\mathbb{R}^N\to\mathbb{R}^N$ est continue (car T est continue).

On veut ensuite montrer qu'il existe R > 0 t.q.

$$t \in [0, 1], v \in \mathbb{R}^N \text{ et } h(t, v) = b \Rightarrow |v| < R.$$
 (3.22)

On suppose qu'on a démontré (3.22). Quitte à augmenter R, on peut aussi supposer que |b| < R. On pose $B_R = \{x \in \mathbb{R}^N \text{ t.q. } |x| < R\}$. Par invariance par homotopie du degré, on a donc que $d(h(t,\cdot), B_R, b)$ ne dépend pas de t, et donc :

$$d(T, B_R, b) = d(\mathrm{Id}, B_R, b).$$

Comme $b \in B_R$, on a $d(\mathrm{Id}, B_R, b) = 1$ et donc $d(T, B_R, b) = 1$. On en déduit l'existence de $v \in B_R$ tel que T(v) = b.

Il reste à démontrer qu'il existe R > 0 vérifiant (3.22).

Soit $t \in [0,1]$ et $v \in \mathbb{R}^N$ t.q. h(t,v) = b, c'est-à-dire tT(v) + (1-t)v = b. On a donc $tT(v) \cdot v + (1-t)v \cdot v = b \cdot v \le |b||v|$ et donc, si $v \ne 0$,

$$t\frac{T(v) \cdot v}{|v|} + (1-t)|v| = t\frac{T(v) \cdot v}{|v|} + (1-t)\frac{v \cdot v}{|v|} \le |b|.$$

Comme $\frac{T(w)\cdot w}{|w|}\to +\infty$ lorsque $|w|\to +\infty,$ il existe R>0 t.q.

$$|w| \ge R \Rightarrow \min(\frac{T(w) \cdot w}{|w|}, |w|) > |b|.$$

On en déduit que |v| < R. Ceci termine la démonstration.

Ce lemme se généralise à n'importe quel espace de dimension finie :

Lemme 3.27 (Opérateur coercif en dimension finie) Soit E un espace de dimension finie, et $T: E \to E'$ continue (noter que $\dim E' = \dim E < +\infty$). On suppose que T est coercif, c'est-à-dire:

$$\frac{\langle T(v),v\rangle_{E',E}}{\|v\|_E}\to +\infty \ quand \ \|v\|_E\to +\infty.$$

Alors, pour tout $b \in E'$ il existe $v \in E$ t.q. T(v) = b.

Démonstration On se ramène à \mathbb{R}^N . Soit $N=\dim E$. On choisit une base de E, notée (e_1,\ldots,e_N) , et on note $(e_1^\star,\ldots,e_N^\star)$ la base duale de E' (c'est-à-dire t.q. $\langle e_i^\star,e_j\rangle_{E',E}=\delta_{ij}$). On définit une application I de \mathbb{R}^N dans E et une application J de \mathbb{R}^N dans E' par

$$I(\alpha) = \sum_{i=1}^{N} \alpha_i e_i \text{ et } J(\beta) = \sum_{i=1}^{N} \beta_i e_i^{\star} \text{ pour } \alpha, \beta \in \mathbb{R}^N.$$

L'opérateur I est une bijection linéaire de \mathbb{R}^N dans E et l'opérateur J est une bijection linéaire de \mathbb{R}^N dans E'. Soit $\tilde{T} = J^{-1} \circ T \circ I$. L'opérateur \tilde{T} est continu de \mathbb{R}^N dans \mathbb{R}^N .

Soit $\alpha \in \mathbb{R}^N$. On pose $v = I(\alpha)$ et $\beta = \tilde{T}(\alpha)$ (donc $\beta = J^{-1}(T(v))$). On a donc

$$\tilde{T}(\alpha) \cdot \alpha = \beta \cdot \alpha = \sum_{i=1}^{N} \beta_i \alpha_i = \langle \sum_{j=1}^{N} \beta_j e_j^{\star}, \sum_{i=1}^{N} \alpha_i e_i \rangle_{E',E} = \langle J(\beta), I(\alpha) \rangle_{E',E} = J(\beta) (\sum_{i=1}^{N} \alpha_i e_i) = \langle T(v), v \rangle_{E',E}.$$

En prenant comme norme sur \mathbb{R}^N , $\|\alpha\| = \|I(\alpha)\|_E$, l'hypothèse de coercivité sur T donne alors

$$\lim_{\|\alpha\| \to +\infty} \frac{\tilde{T}(\alpha) \cdot \alpha}{\|\alpha\|} = +\infty.$$

Par équivalence des normes en dimension finie, on a donc aussi

$$\lim_{|\alpha| \to +\infty} \frac{\tilde{T}(\alpha) \cdot \alpha}{|\alpha|} = +\infty.$$

On peut donc appliquer le lemme 3.26 à \tilde{T} .

Soit $b \in E'$. On pose $\beta = J^{-1}(b)$. Le lemme 3.26 donne l'existence de $\alpha \in \mathbb{R}^N$ t.q. $\tilde{T}(\alpha) = \beta$. On pose $v = I(\alpha)$ et on a alors $T(v) = T \circ I(\alpha) = J \circ \tilde{T}(\alpha) = J(\beta) = b$. On a ainsi montré l'existence de v dans E t.q. T(v) = b.

Démonstration du théorème 3.23

Etape 1 Existence de la solution à un problème en dimension finie

L'espace $W_0^{1,p}(\Omega)$ est séparable. Il existe donc une famille dénombrable $(f_n)_{n\in\mathbb{N}^*}$ dense dans $W_0^{1,p}(\Omega)$. Soit $E_n=\mathrm{Vect}\{f_1\dots f_n\}$ l'espace vectoriel engendré <u>par les n</u> premières fonctions de cette famille. On a donc dim $E_n\leq n$ et $E_n\subset E_{n+1}$ pour tout $n\in\mathbb{N}^*$ et on a $\overline{\cup_{n\in\mathbb{N}}E_n}=W_0^{1,p}$. On en déduit que pour tout $v\in W_0^{1,p}(\Omega)$ il existe une suite $(v_n)_{n\in\mathbb{N}^*}$ telle que $v_n\in E_n$ pour tout $n\in\mathbb{N}^*$ et $v_n\to v$ dans $W_0^{1,p}(\Omega)$ lorsque $n\to+\infty$.

Dans cette première étape, on fixe $n \in \mathbb{N}^*$ et on cherche u_n solution du problème suivant, posé en dimension finie :

$$\begin{cases} u_n \in E_n, \\ \int_{\Omega} \sigma a(\nabla u_n) \cdot \nabla v \, dx = \langle f, v \rangle_{W^{-1,p'}, W_0^{1,p}} \, \forall v \in E_n. \end{cases}$$
 (3.23)

L'application $v\mapsto < f, v>_{W^{-1,p'},W_0^{1,p}}$ est une application linéaire E_n dans ${\rm I\!R}$ (elle est donc aussi continue car $\dim E_n<+\infty$). On note b_n cette application. On a donc $b_n\in E_n'$ et

$$\langle b_n, v \rangle_{E'_n, E_n} = \langle f, v \rangle_{W^{-1, p'}, W_0^{1, p}}.$$

Soit $u \in E_n$. On note $T_n(u)$ l'application de E_n dans $\mathbb R$ qui a $v \in E_n$ associe $\int_\Omega \sigma a(\nabla u) \cdot \nabla v \, dx$. Cette application est linéaire, c'est donc aussi un élément de E'_n et on a

$$\langle T_n(u), v \rangle_{E'_n, E_n} = \int_{\Omega} \sigma a(\nabla u) \cdot \nabla v \, dx.$$

On a ainsi défini une application T_n de E_n dans E'_n . On va montrer que T_n est continue et coercive. On pourra ainsi en déduire, par le lemme 3.27, que T_n est surjectif, et donc qu'il existe $u_n \in E_n$ vérifiant $T_n(u_n) = b_n$, c'est-à-dire u_n solution du problème (3.23).

(a) Continuité de T_n On rappelle que n est fixé. Pour simplifier les notations, on oublie ici l'indice n, c'est-à-dire que l'on pose $E=E_n$ et $T=T_n$. On munit E de la norme définie par $\|\cdot\|_E=\|\cdot\|_{W_0^{1,p}}$. Soit $u,\bar{u}\in E$. On a :

$$\begin{split} \|T(u) - T(\bar{u})\|_{E'} &= \max_{v \in E, \, \|v\|_E = 1} < T(u) - T(\bar{u}), v >_{E', E} \\ &= \max_{v \in E, \, \|v\|_{W_0^{1,p} = 1}} \int_{\Omega} \sigma(a(\nabla u) - a(\nabla \bar{u})) \cdot \nabla v \, \, \mathrm{d}x \\ &\leq \max_{v \in W_0^{1,p}, \, \|v\|_{W^{1,p} = 1}} \int_{\Omega} \sigma(a(\nabla u) - a(\nabla \bar{u})) \cdot \nabla v \, \, \mathrm{d}x. \end{split}$$

On pose $\beta = \|\sigma\|_{L^{\infty}(\Omega)}$, on obtient alors

$$||T(u) - T(\bar{u})||_{E'} \leq \max_{v \in W_0^{1,p}, ||v||_{W_0^{1,p}} = 1} \beta ||a(\nabla u) - a(\nabla \bar{u})||_{L^{p'}(\Omega)} ||\nabla v||_{L^p(\Omega)}$$

$$\leq \beta ||a(\nabla u) - a(\nabla \bar{u})||_{L^{p'}(\Omega)}.$$

Donc si $(u_n)_{n\in\mathbb{N}}$ est une suite de E t.q. $u_n\to \bar{u}$ dans E, on a

$$||T(u_n) - T(\bar{u})||_{E'} \le \beta |||a(\nabla u_n) - a(\nabla \bar{u})|||_{L^{p'}(\Omega)}.$$

Par le lemme 3.25, on a $a(\nabla u_n) \to a(\nabla \bar{u})$ dans $(L^{p'}(\Omega))^N$. On a ainsi montré que $T(u_n) \to T(\bar{u})$ dans E', et donc que T est continue (de E dans E').

(b) Coercivité de T_n On rappelle qu'on a posé $E=E_n$ et $T=T_n$. On veut montrer que

$$\frac{\langle T(u), u \rangle_{E', E}}{\|u\|_E} \to +\infty \text{ lorsque } \|u\|_E \to +\infty.$$

Par définition, et grâce aux hypothèses (3.18),

$$< T(u), u>_{E',E} = \int_{\Omega} \sigma \ a(\nabla u) \cdot \nabla u \ dx \ge \sigma_0 \ \alpha \int_{\Omega} |\nabla u|^p \ dx.$$

On a donc

$$< T(u), u>_{E',E} \geq C \|u\|_{W_0^{1,p}}^p = C \|u\|_E^p \quad \text{ avec } C = \sigma_0 \ \alpha.$$

Finalement,

$$\frac{\langle T(u), u \rangle_{E', E}}{\|u\|_E} \ge C\|u\|_E^{p-1} \to +\infty \text{ lorsque } \|u\|_E \to +\infty,$$

car on a supposé p > 1 (le cas p = 1 est plus difficile et demande des outils supplémentaires, mais il est intéressant en géométrie pour le problème des surfaces minimales par exemple).

On a ainsi montré que T est coercive. On peut donc appliquer le lemme 3.27. Il donne l'existence d'une solution au problème en dimension finie (3.23) (cette technique permet aussi par exemple de démontrer l'existence de solution pour le problème (3.20) approché par éléments finis P1).

Etape 2 Existence de la solution à un problème en dimension infinie

On a montré l'existence d'une solution au problème (3.23). On va maintenant tenter (et réussir!) un passage à la limite sur ce problème lorsque $n \to +\infty$ pour montrer l'existence d'une solution au problème (3.20). Pour cela nous allons :

- (a) obtenir une estimation sur u_n , qui nous permettra d'obtenir de la compacité, et donc d'effectuer
- (b) un passage à la limite sur les problèmes (3.23) de manière à avoir l'existence d'une solution u du problème (3.20) comme limite des solutions u_n des problèmes (3.23); pour cela, il nous faudra une
- (c) astuce pour montrer que la limite du terme non linéaire est bien le terme qu'on veut....

(a) Estimation sur u_n

On prend $v = u_n$ dans (3.23). On obtient :

$$\sigma_0 \alpha \int_{\Omega} |\nabla u_n|^p dx \le ||f||_{W^{-1,p'}} ||u_n||_{W_0^{1,p}}$$

par coercivité de a. On a donc : $\sigma_0 \alpha \|u_n\|_{W_0^{1,p}}^p \leq \|f\|_{W^{-1,p'}} \|u_n\|_{W_0^{1,p}}$, d'où

$$||u_n||_{W_0^{1,p}}^{p-1} \le \frac{1}{\sigma_0 \alpha} ||f||_{W^{-1,p'}}.$$

(b) Passage à la limite

La suite $(u_n)_{n\in\mathbb{N}}$ est donc bornée dans $W_0^{1,p}(\Omega)$, qui est réflexif. On en déduit qu'il existe une sous-suite encore notée $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\to u$ faiblement dans $W_0^{1,p}(\Omega)$.

Par hypothèse, $|a(\nabla u_n)| \leq C(1+|\nabla u_n|^{p-1})$, donc la suite $(a(\nabla u_n))_{n\in\mathbb{N}}$ est bornée dans $(L^{p'}(\Omega))^N$, qui est réflexif. Donc il existe $\zeta\in (L^{p'}(\Omega))^N$ telle que, à une sous-suite près,

$$a(\nabla u_n) \to \zeta$$
 faiblement dans $(L^{p'}(\Omega))^N$.

Soit $v \in W_0^{1,p}(\Omega)$, on sait que $\overline{\bigcup_{n \in \mathbb{N}} E_n} = W_0^{1,p}$, donc il existe $(v_n)_{n \in \mathbb{N}}$ t.q. $v_n \in E_n$ pour tout $n \in \mathbb{N}^*$ et

$$v_n \longrightarrow v \text{ dans } W_0^{1,p}(\Omega),$$

$$\nabla v_n \to \nabla v \text{ dans } (L^p(\Omega))^N.$$

On utilise alors (3.23) avec $v = v_n$ on obtient :

$$\int_{\Omega} \sigma a(\nabla u_n) \cdot \nabla v_n \, dx = \langle f, v_n \rangle.$$

Mais $< f, v_n > \to < f, v >$, car v_n converge faiblement vers v dans $W_0^{1,p}(\Omega)$. De plus $a(\nabla u_n) \to \zeta$ faiblement dans $(L^{p'}(\Omega))^N$ et $\nabla v_n \to \nabla v$ dans $(L^p(\Omega))^N$. Donc par le lemme 3.24, on a

$$\int_{\Omega} \sigma \zeta \cdot \nabla v \, \mathrm{d}x = \langle f, v \rangle_{W^{-1,p'}, W_0^{1,p}} \quad \forall v \in W_0^{1,p}(\Omega). \tag{3.24}$$

On a ainsi prouvé l'existence de $u\in W^{1,p}_0(\Omega)$ t.q. u est la limite faible dans $W^{1,p}_0(\Omega)$ de la suite $(u_n)_{n\in\mathbb{N}}$ et t.q. la limite faible dans $(L^{p'}(\Omega))^N$ de la suite $(a(\nabla u_n))_{n\in\mathbb{N}}$, notée ζ , vérifie (3.24). Si ζ était égal à $a(\nabla u)$, on aurait terminé. Ceci serait facile à établir si a était linéaire. En effet, supposons qu'il existe une matrice carrée de taille N, notée A, telle que $a(\xi) = A\xi$ pour tout $\xi \in \mathbb{R}^N$ (et donc p = p'). Comme $u_n \to u$ dans $\mathcal{D}^*(\Omega)$ on a aussi $D_i u_n \to D_i u$ dans $\mathcal{D}^*(\Omega)$ (pour tout i). Comme la suite $(D_i u_n)_{n \in \mathbb{N}}$ est bornée dans $L^2(\Omega)$, on en déduit que $D_i u_n \to D_i u$ faiblement dans $L^2(\Omega)$ (pour tout i) et donc $A \nabla u_n \to A \nabla u$ faiblement dans $L^2(\Omega)^N$, ce qui prouve que $\zeta = a(\nabla u)$. Malheureusement, la situation est plus compliquée quand a est non linéaire.

(c) Limite du terme non linéaire

Pour terminer, il reste à démontrer que

$$\int_{\Omega} \sigma \zeta \cdot \nabla v \, dx = \int_{\Omega} \sigma \, a(\nabla u) \cdot \nabla v \, dx \text{ pour tout } v \in W_0^{1,p}(\Omega).$$
 (3.25)

On peut le démontrer par deux manières différentes, selon les hypothèses :

- 1. Par l'astuce de Minty 7 , , qui utilise uniquement la monotonie de a, c'est-à-dire $(a(\xi)-a(\eta))\cdot(\xi-\eta)\geq 0$. On a dans ce cas uniquement $u_n\to u$ faiblement dans $W_0^{1,p}(\Omega)$.
- 2. Par la méthode de Leray-Lions, qui utilise la stricte monotonie de a, c'est-à-dire $(a(\xi)-a(\eta))\cdot(\xi-\eta)>0$ pour tout $\xi,\eta,\xi\neq\eta$. On a alors en plus $u_n\to u$ dans $W_0^{1,p}(\Omega)$.

(A) Etape commune à Minty et Leray-Lions.

Pour montrer (3.25), on commence par étudier la limite de $\int_{\Omega} \sigma \ a(\nabla u_n) \cdot \nabla u_n \ dx$. L'astuce consiste à utiliser l'équation! En effet $\int_{\Omega} \sigma \ a(\nabla u_n) \cdot \nabla u_n \ dx = < f, u_n > \to < f, u > \text{car } u_n \to u \text{ dans } W_0^{1,p}(\Omega)$ faible. Mais on sait (étape précédente) que u satisfait (3.24), et donc $: < f, u >_{W^{-1,p'},W_0^{1,p}} = \int_{\Omega} \sigma \zeta \cdot \nabla u \ dx$.

Donc
$$\lim_{n \to +\infty} \int_{\Omega} \sigma \ a(\nabla u_n) \cdot \nabla u_n \ dx = \langle f, u \rangle_{W^{-1,p'}, W_0^{1,p}}$$

$$= \int_{\Omega} \sigma \zeta \cdot \nabla u \ dx.$$

On distingue maintenant les méthodes de Minty et de Leray-Lions (qui sont toutefois très voisines).

(B) Démonstration de (3.25)

• 1ére méthode : Astuce de Minty

Soit $v \in W_0^{1,p}(\Omega)$; il existe $(v_n)_{n \in \mathbb{N}}$ tel que $v_n \in E_n$ pour tout $n \in \mathbb{N}$ et $v_n \to v$ dans $W_0^{1,p}(\Omega)$ lorsque $n \to +\infty$. On va passer à la limite dans le terme $\int_{\Omega} \sigma \, a(\nabla u_n) \cdot \nabla v_n \, \, \mathrm{d}x$ grâce à l'hypothèse de monotonie. En effet,

$$0 \le \int_{\Omega} \sigma(a(\nabla u_n) - a(\nabla v_n)) \cdot (\nabla u_n - \nabla v_n) \, dx =$$

$$\int_{\Omega} \sigma(a(\nabla u_n) \cdot \nabla u_n \, dx - \int_{\Omega} \sigma(a(\nabla u_n) \cdot \nabla v_n \, dx - \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla u_n \, dx + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx) + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx) + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx) + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx + \int_{\Omega} \sigma(a(\nabla v_n) \cdot \nabla v_n \, dx) + \int_{\Omega} \sigma(a$$

On a vu que en (A) que $T_{1,n} \to \int_{\Omega} \sigma \zeta \cdot \nabla u \, dx$ lorsque $n \to +\infty$.

On a

$$\lim_{n \to +\infty} T_{2,n} = \int_{\Omega} \sigma \, \zeta \cdot \nabla v \, dx$$

par produit d'une convergence dans $(L^p)^N$ et d'une convergence faible dans $(L^{p'}(\Omega)^N)$ (lemme 3.24). De même,

$$\lim_{n \to +\infty} T_{3,n} = \int_{\Omega} \sigma \, a(\nabla v) \cdot \nabla u \, dx$$

par produit d'une convergence dans $(L^{p'}(\Omega)^N)$ et d'une convergence faible dans $(L^p(\Omega))^N$. Enfin, on a aussi

$$\lim_{n \to +\infty} T_{4,n} = \int_{\Omega} \sigma \ a(\nabla v) \cdot \nabla v \ dx$$

^{7.} George James Minty Jr. (1929–1986), mathématicien américain, specialisé en analyse et mathématiques discrètes.

lorsque $n \to +\infty$ et ce dernier terme est le plus simple car on a le produit d'une convergence dans $(L^{p'}(\Omega)^N)$ et d'une convergence dans $(L^p(\Omega))^N$.

Le passage à la limite dans l'inégalité donne donc :

$$\int_{\Omega} \sigma(\zeta - a(\nabla v)) \cdot (\nabla u - \nabla v) \, dx \ge 0 \text{ pour tout } v \in W_0^{1,p}(\Omega).$$

On choisit maintenant astucieusement la fonction test v. On prend $v=u+\frac{1}{n}w$, avec $w\in W_0^{1,p}(\Omega)$ et $n\in\mathbb{N}^\star$. On obtient ainsi :

$$-\frac{1}{n} \int_{\Omega} \sigma \left(\zeta - a(\nabla u + \frac{1}{n} \nabla w) \right) \cdot \nabla w \, dx \ge 0$$

et donc

$$\int_{\Omega} \sigma \left(\zeta - a(\nabla u + \frac{1}{n} \nabla w) \right) \cdot \nabla w \, dx \le 0.$$

 $\text{Mais } u + \frac{1}{n} \ w \to u \text{ dans } W_0^{1,p}(\Omega), \text{ donc par le lemme 3.25, } a \left(\nabla u + \frac{1}{n} \nabla w \right) \to a(\nabla u) \text{ dans } (L^{p'}(\Omega))^N.$ En passant à la limite lorsque $n \to +\infty$, on obtient alors

$$\int_{\Omega} \sigma(\zeta - a(\nabla u)) \cdot \nabla w \, dx \le 0 \quad \forall w \in W_0^{1,p}(\Omega).$$

Par linéarité (on peut changer w en -w), on a donc : $\int_{\Omega} \sigma(\zeta - a(\nabla u)) \cdot \nabla w \, dx = 0, \ \forall w \in W_0^{1,p}(\Omega)$. On en déduit que

$$\int_{\Omega} \sigma \, \zeta \cdot \nabla w \, dx = \int_{\Omega} \sigma \, a(\nabla u) \cdot \nabla w \, dx \quad \forall w \in W_0^{1,p}(\Omega).$$

On a donc bien démontré que u est solution de (3.20).

Notons que l'on a montré ce résultat par approximation, c'est-à-dire en montrant d'abord l'existence de solution à un problème approché qui se pose en dimension finie, puis en passant à la limite. Ceci est également possible en utilisant un problème approché obtenu avec des schémas numériques, par exemple avec un schéma numérique utilisant des éléments finis P1.

• 2éme méthode : Astuce de Leray-Lions On suppose maintenant la stricte monotonie de a, c'est-à-dire :

$$(a(\xi) - a(\eta)) \cdot (\xi - \eta) > 0$$
 si $\xi \neq \eta$.

On va montrer que u est solution de (3.20) (on le sait déjà, grâce à la première méthode) mais aussi que $a(\nabla u) = \zeta$ et surtout que $u_n \to u$ dans $W_0^{1,p}(\Omega)$.

Comme $\overline{\cup_{n\in\mathbb{N}}E_n}=W_0^{1,p}$, il existe une suite $(v_n)_{n\in\mathbb{N}}$ telle que $v_n\in E_n$ pour tout $n\in\mathbb{N}$ et $v_n\to u$ dans $W_0^{1,p}(\Omega)$. Par hypothèse de monotonie, on a :

$$\int_{\Omega} \sigma(a(\nabla u_n) - a(\nabla v_n)) \cdot (\nabla u_n - \nabla v_n) \ge 0.$$

Avec le même raisonnement que pour Minty (mais maintenant $v_n \to u$ au lieu de $v_n \to v$), on a :

$$\lim_{n \to +\infty} \int_{\Omega} \sigma(a(\nabla u_n) - a(\nabla v_n)) \cdot (\nabla u_n - \nabla v_n) \, dx = \int_{\Omega} \sigma(\zeta - a(\nabla u)) \cdot \underbrace{(\nabla u - \nabla u)}_{= 0} \, dx,$$

donc si on pose $F_n(x) = \sigma(a(\nabla u_n) - a(\nabla v_n)) \cdot (\nabla u_n - \nabla v_n)$, on a $F_n \ge 0$ p.p. et $\int_{\Omega} F_n \, dx \to 0$ lorsque $n \to +\infty$. Donc $F_n \to 0$ dans L^1 , et donc, après extraction d'une sous-suite, $F_n \to 0$ p.p.. On peut aussi supposer, après extraction d'une sous-suite, que $\nabla v_n \to \nabla u$ p.p..

Soit $x \in \Omega$ tel que $\sigma(x) \ge \sigma_0$, $F_n(x) \to 0$ (on a donc $a(\nabla u_n(x)) - a(\nabla v_n(x)) \cdot (\nabla u_n(x) - \nabla v_n(x)) \to 0$) et $\nabla v_n(x) \to \nabla u(x)$ lorsque $n \to +\infty$. On suppose aussi que pour cette valeur de x, les hypothèses sur a (croissance, coercivité et monotonie) sont vérifiées et que $\nabla v_n(x)$ converge (dans \mathbb{R}). Ces hypothèses sur x ne font que retirer un ensemble de mesure nulle de points.

Etape A : La suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ est bornée dans \mathbb{R}^N . En effet, grâce aux hypothèses (3.18c) (3.18d) de coercivité et croissance sur a, on a

$$\frac{1}{\sigma_0} F_n(x) \ge \left(a(\nabla u_n(x)) - a(\nabla v_n(x)) \cdot (\nabla u_n(x) - \nabla v_n(x)) \right) \\
\ge \alpha |\nabla u_n(x)|^p - C(1 + |\nabla u_n(x)|^{p-1}) |\nabla v_n(x)| - C(1 + |\nabla v_n(x)|^{p-1}) |\nabla u_n(x)| + \alpha |\nabla v_n(x)|^p.$$

On en déduit que la suite $(F_n(x))_{n\in\mathbb{N}}$ est non bornée si la suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ est non bornée. Or $F_n(x)\to 0$ lorsque $n\to +\infty$. Donc il faut que la suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ soit bornée.

Etape B: Soit $\xi \in \mathbb{R}^N$ limite d'une sous-suite de la suite $(\nabla u_n(x))_{n \in \mathbb{N}}$. On rappelle que x est fixé. On a donc pour cette sous-suite (encore notée $(\nabla u_n(x))_{n \in \mathbb{N}}$) $\lim_{n \to +\infty} a(\nabla u_n(x)) = a(\xi)$. Comme $\lim_{n \to +\infty} F_n(x) = 0$, on en déduit

$$(a(\xi) - a(\nabla u(x)) \cdot (\xi - \nabla u(x)) = 0.$$

Or, le 1er terme de cette égalité est strictement positif si $\xi \neq \nabla u(x)$. On a donc donc $\xi = \nabla u(x)$. On a donc (sans extraction de sous-suite pour cette étape) $\nabla u_n(x) \to \nabla u(x)$ quand $n \to +\infty$.

En résumé, on a ainsi montré que $\nabla u_n \to \nabla u$ p.p. (à une sous-suite près, car on extrait une sous-suite pour avoir $F_n \to 0$ p.p. et $\nabla v_n \to \nabla u$ p.p.). On en déduit que $a(\nabla u_n) \to a(\nabla u)$ p.p.. Ceci est suffisant pour montrer que $\zeta = a(\nabla u)$. En effet, on sait déjà que $a(\nabla u_n) \to \zeta$ dans $(L^{p'})^N(\Omega)$ faible. On en déduit alors que $\zeta = a(\nabla u)$ par le lemme d'intégration (voir [20, Exercice 6.18] pour la démonstration) suivant :

Lemme 3.28 (Convergence par norme dominée) Soit Ω un ouvert borné. On suppose que $f_n \to f$ p.p. et que $(f_n)_{n \in \mathbb{N}}$ bornée dans L^q , q > 1. Alors $f_n \to f$ dans $L^r(\Omega)$ pour tout r tel que $1 \le r < q$.

Du lemme 3.28, on déduit que la suite $(a(\nabla u_n))_{n\in\mathbb{N}}$ converge dans $L^r(\Omega)^N$, pour $1 \leq r < p'$, vers $a(\nabla u)$. Comme cette même suite converge faiblement dans $(L^{p'})^N(\Omega)$ vers ζ , on peut conclure (par exemple en utilisant l'unicité de la limite faible dans $L^r(\Omega)^N$) que les limites sont égales, c'est-à-dire

$$\zeta = a(\nabla u) \text{ p.p..}$$

Il reste à montrer que $u_n \to u$ dans $W_0^{1,p}(\Omega)$. On sait déjà que $u_n \to u$ faiblement dans $W_0^{1,p}(\Omega)$ et donc dans $L^p(\Omega)$. Comme, après extraction d'une sous-suite, on a $\nabla u_n \to \nabla u$ p.p., le lemme 3.28 nous donne $\nabla u_n \to \nabla u$ dans $L^r(\Omega)^N$ pour tout $1 \le r < p$ et donc $u_n \to u$ dans $W_0^{1,r}(\Omega)$ pour tout $1 \le r < p$. En raisonnant par contradiction on a même $u_n \to u$ dans $W_0^{1,r}(\Omega)$ pour tout $1 \le r < p$ sans extraction de sous-suite. Mais ceci ne donne pas la convergence dans $W_0^{1,p}(\Omega)$. Pour démontrer cette convergence dans $W_0^{1,p}(\Omega)$, on réutilise l'étape (A) commune à Minty et Leray-Lions. Cette étape a donné

$$\lim_{n \to +\infty} \int_{\Omega} \sigma a(\nabla u_n) \cdot \nabla u_n \, dx = \int_{\Omega} \sigma \zeta \cdot \nabla u \, dx.$$

Mais on sait maintenant que $\zeta = a(\nabla u)$ p.p., on a donc

$$\lim_{n \to +\infty} \int_{\Omega} \sigma a(\nabla u_n) \cdot \nabla u_n \, dx = \int_{\Omega} \sigma a(\nabla u) \cdot \nabla u \, dx.$$

On rappelle maintenant un lemme classique d'intégration (voir [20, exercice 4.25]), valable dans tout espace mesuré mais que l'on donne ici dans le cas qui nous intéresse.

Lemme 3.29 (Convergence L^1 pour une suite de fonctions positives)

Soit Ω un ouvert borné de \mathbb{R}^N . Soit $f \in L^1(\Omega)$. On suppose que la suite $(f_n)_{n \in \mathbb{N}}$ de fonctions de $L^1(\Omega)$ vérifie :

- 1. $f_n \geq 0$ p.p., pour tout $n \in \mathbb{N}$,
- 2. $f_n \to f$ p.p. quand $n \to +\infty$,
- 3. $\lim_{n\to+\infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx$.

Alors $f_n \to f$ dans $L^1(\Omega)$.

On sait déjà que $\nabla u_n \to \nabla u$ p.p.. On applique alors le lemme 3.29 à la suite $(f_n)_{n\in\mathbb{N}}$ définie par $f_n=\sigma a(\nabla u_n)\cdot \nabla u_n$. Le lemme 3.29 donne la convergence $L^1(\Omega)$ de cette suite et donc l'équi-intégrabilité 8 de la suite $(f_n)_{n\in\mathbb{N}}$. Avec l'hypothèse de coercivité sur a et l'hypothèse sur σ , on obtient l'équi-intégrabilité de la suite $(|\nabla u_n|^p)_{n\in\mathbb{N}}$. Il reste à appliquer le théorème de Vitali 9 pour conclure que $\nabla u_n \to \nabla u$ dans $L^p(\Omega)^N$ et donc que $u_n \to u$ dans $W_0^{1,p}(\Omega)$. Comme d'habitude, un argument par contradiction montre que cette convergence dans $W_0^{1,p}(\Omega)$ a lieu sans extraction de sous-suite dès que u_n converge faiblement vers u dans $W_0^{1,p}(\Omega)$ (et pour avoir cette convergence, on a dû extraire une sous-suite). Dans l'étape 3 ci dessous, on va démontrer l'unicité de la solution de (3.20) si a est strictement monotone. Ceci permet de conclure que la suite $(u_n)_{n\in\mathbb{N}}$ converge (sans extraction de sous-suite) dans $W_0^{1,p}(\Omega)$ vers l'unique solution de (3.20).

On a ainsi terminé la partie "existence" du théorème 3.23

Etape 3 : Unicité On suppose que a est strictement monotone. Soient u_1 et u_2 deux solutions.

$$\int_{\Omega} \sigma a(\nabla u_i) \cdot \nabla v \, dx = \langle f, v \rangle \quad i = 1, 2 \quad \forall v \in W_0^{1,p}(\Omega).$$

On fait la différence des deux équations, et on prend $v = u_1 - u_2$. On obtient :

$$\int_{\Omega} \sigma(a(\nabla u_1) - a(\nabla u_2)) \cdot \nabla(u_1 - u_2) \, dx = 0.$$

Or $Y = \sigma(a(\nabla u_1) - a(\nabla u_2)) \cdot \nabla(u_1 - u_2) \geq 0$, et Y > 0 si $\nabla u_1 \neq \nabla u_2$; on a donc $\nabla u_1 = \nabla u_2$ p.p. et donc $u_1 = u_2$ car u_1 et $u_2 \in W_0^{1,p}(\Omega)$.

$$A \in T, n \in \mathbb{N}, m(A) \le \delta \Rightarrow \int_A |f_n| dm \le \varepsilon.$$

- 9. Théorème de Vitali : Soit (X,T,m) un espace mesuré ; on note L^1 l'espace $L^1_{\rm I\!R}(E,T,m)$. Soit $(f_n)_{n\in{\rm I\!N}}$ une suite de L^1 telle que $f_n\to f$ p.p., f prenant ses valeurs dans ${\rm I\!R}$. Alors, $f\in L^1$ et $f_n\to f$ dans L^1 si et seulement si les deux conditions suivantes sont vérifiées :
- 1. la suite $(f_n)_{n\in\mathbb{N}}$ est équi-intégrable.
- 2. Pour tout $\varepsilon > 0$, il existe $C \in T$ tel que $m(C) < +\infty$ et $\int_{C^c} |f_n| \, \mathrm{d} m \le \varepsilon$ pour tout $n \in \mathbb{N}$. (Voir par exemple [20, Théorème 4.51] pour la démonstration.)
 - 10. Giuseppe Vitali (1875–1932), mathématicien italien, spécialiste de théorie de la mesure.

^{8.} Soit (X,T,m) un espace mesuré; on dit que qu'une suite $(f_n)_{n\in\mathbb{N}}\subset L^1(\Omega)$ est équi-intégrable si, pour tout $\varepsilon>0$, il existe $\delta>0$ tel que

Remarque 3.30 Dans le cas des opérateurs de Leray-Lions, lorsque a dépend de x, ∇u mais aussi de u, on arrive encore à montrer des résulats d'unicité si $p \leq 2$.

3.3 Méthode par minimisation d'une fonctionnelle

Nous avons vu au chapitre 2 qu'il était parfois possible d'obtenir une solution à un problème elliptique linéaire en cherchant un point où une fonctionnelle atteint son minimum. Une telle méthode est possible aussi pour des équations elliptique non linéaires. Nous donnons seulement deux exercices pour illustrer cette méthode, les exercices 3.6 et 3.7. L'exercice 3.7 utilise le théorème d'existence des multiplicateurs de Lagrange que nous rappelons (et démontrons) ici dans un cas simple (suffisant pour l'exercice 3.7).

Théorème 3.31 (Multiplicateur de Lagrange) Soient E un espace de Banach, $f \in C(E, \mathbb{R})$, $g \in C^1(E, \mathbb{R})$ et $A = \{v \in E; g(v) = 0\}$. Soit $u \in A$ tel que $f(u) \leq f(v)$ pour tout $v \in A$. On suppose que f est différentiable au point u et que $\operatorname{Im}(dg(u)) = \mathbb{R}$. Alors, en notant df(u) et dg(u) les différentielles de f et g au point u, il existe $\lambda \in \mathbb{R}$ tel que $df(u) = \lambda dg(u)$.

Démonstration Noter que dg(u) et df(u) sont des éléments de E'. Comme $\mathrm{Im}(dg(u)) = \mathbb{R}$, il existe $v \in E$ tel que $dg(u)(v) \neq 0$. On pose a = dg(u)(v) (donc $a \in \mathbb{R}^*$).

On définit la fonction G de $E \times \mathbb{R}$ dans \mathbb{R} par G(w,t) = g(u+w+tv). Comme $g \in C^1(E,\mathbb{R}), G \in C^1(E \times \mathbb{R},\mathbb{R})$. On désigne par d_1G , resp. d_2G , la différentielle de G par rapport à la première variable, resp. deuxième variable (donc $d_1G(w,t) \in \mathcal{L}(E,\mathbb{R}) = E'$ et $d_2G(w,t) \in \mathcal{L}(\mathbb{R},\mathbb{R})$ que l'on identifie à \mathbb{R}).

Comme $d_2G(0,0)=dg(u)(v)\neq 0$, le théorème des fonctions implicites donne l'existence de $\varepsilon>0$ et $\eta>0$ tels que pour tout $w\in B(0,\eta)$ (boule ouverte de centre 0 et rayon η), il existe un et un seul $t\in]-\varepsilon,\varepsilon[$ tel que G(w,t)=0. On note $\phi(w)$ cette valeur de t. Le théorème des fonctions implicites donne aussi que ϕ est de classe C^1 (noter que, par exemple, $d\phi(0)\in E'$).

Comme $g(u+w+\phi(w)v)=0$ pour tout $w\in B(0,\eta)$, un développement au premier ordre de g (au point u) et de ϕ (au point 0) donne 0

$$dg(u)(w + d\phi(0)(w)v) = 0 \text{ et donc } dg(u)(w) + a d\phi(0)(w) = 0,$$
(3.26)

ou encore

$$d\phi(0)(w) = -a^{-1}dq(u)(w)$$
 pour tout $w \in E$.

Pour tout $w \in B(0,\eta)$, $f(u) \le f(u+w+\phi(w)v)$ (car $u+w+\phi(w)v \in A$) et donc avec un développement au premier ordre de f et ϕ (on rappelle que f est différentiable en au point u) $df(u)(w+d\phi(0)(w)v)=0$, c'est-à-dire

$$0 = df(u)(w) - a^{-1}dg(u)(w)df(u)(v)$$
 pour tout $w \in E$.

Ceci donne $df(u) = \lambda dg(u)$ avec $\lambda = a^{-1} df(u)(v)$.

Remarque 3.32 Dans le théorème 3.31, la fonction g est à valeurs dans $\mathbb R$. Il est assez facile de généraliser le théorème si g est à valeurs dans $\mathbb R^p$ pour un p>1. Il faut alors remplacer $\mathrm{Im}(dg(u))=\mathbb R$ par $\mathrm{Im}(dg(u))=\mathbb R^p$ et la conclusion devient il existe $\lambda_1,\ldots,\lambda_p\in\mathbb R$ tel que $df(u)=\sum_{i=1}^p\lambda_idg_i(u)$ où g_1,\ldots,g_p sont les p composantes de g.

^{11.} pour obtenir (3.26) on peut, par exemple, utiliser les développements au premier ordre avec sw au lieu de w, diviser par s (s > 0) et faire tendre s vers 0.

Pour conclure cette section, on rappelle sans démonstration le théorème des fonctions implicites.

Théorème 3.33 (Fonctions implicites) Soient E un espace vectoriel normé et F, G deux espaces de Banach. Soient $f \in C(E \times F, G)$ et $(a, b) \in E \times F$ tels que f(a, b) = 0. On suppose :

- Pour tout $x \in E$, l'application $y \mapsto f(x,y)$ appartient à $C^1(F,G)$. On note $d_2f(x,y)$ la différentielle de f_x au point y.
- L'application $(x,y) \mapsto d_2 f(x,y)$ appartient à $C(E \times F, \mathcal{L}(F,G))$.
- L'application $d_2f(a,b)$ est bijective continue de F dans G (et donc d'inverse continue).

Alors, il existe $\varepsilon > 0$ et $\eta > 0$ tels que pour tout $x \in B(a,\eta)$ (boule ouverte de centre 0 et rayon η), il existe un et un seul $y \in B(b,\varepsilon)$ (boule ouverte de centre 0 et rayon ε) tel que f(x,y) = 0. On note $\phi(x)$ cette valeur de y. La fonction ϕ est de classe C^1 .

3.4 Exercices

Exercice 3.1 (Existence par Schauder) Corrigé en page 175

Soit Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$, $g \in L^2(\Omega)$, a une fonction continue de \mathbb{R} dans \mathbb{R} et h une fonction continue de $\mathbb{R} \times \mathbb{R}^N$ dans \mathbb{R} . On suppose que

- $--0<\alpha=\inf_{s\in\mathbb{R}}a(s)\leq\sup_{s\in\mathbb{R}}a(s)=\beta<+\infty,$
- il existe $\delta \in [0,1]$ et $C_1 \in \mathbb{R}$ t.q. $|h(s,\xi)| \leq C_1(1+|s|^{\delta}+|\xi|^{\delta})$ pour tout $(s,\xi) \in \mathbb{R} \times \mathbb{R}^N$.
- 1. Soit $\overline{u} \in H_0^1(\Omega)$. Montrer que $h(\overline{u}, \nabla \overline{u}) \in L^2(\Omega)$ et qu'il existe une unique solution u de

$$\begin{cases}
 u \in H_0^1(\Omega), \\
 \int_{\Omega} a(\overline{u}(x)) \nabla u(x) \cdot \nabla v(x) \, dx + \int_{\Omega} h(\overline{u}(x), \nabla \overline{u}(x)) v(x) \, dx = \int_{\Omega} g(x) v(x) \, dx, \forall v \in H_0^1(\Omega).
\end{cases}$$
(3.27)

Dans la suite, on note T l'application qui à \overline{u} associe u, unique solution de (3.27). L'application T est donc de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$.

2. (Estimation sur u) Soit $\overline{u} \in H_0^1(\Omega)$ et $u = T(\overline{u})$. Montrer qu'il existe C_2 ne dépendant que Ω , α , g et C_1 tel que

$$||u||_{H_0^1(\Omega)} \le C_2(1 + ||\overline{u}||_{H_0^1(\Omega)}^{\delta}).$$

[On pourra prendre v = u dans (3.27).]

En déduire qu'il existe $R \in \mathbb{R}_+^*$ t.q.

$$\|\overline{u}\|_{H_0^1(\Omega)} \le R \Rightarrow \|u\|_{H_0^1(\Omega)} \le R.$$

- 3. (Continuité de T) Soit $(\overline{u}_n)_{n\in\mathbb{N}}$ une suite de $H^1_0(\Omega)$ et $\overline{u}\in H^1_0(\Omega)$. On suppose que $\overline{u}_n\to \overline{u}$ dans $H^1_0(\Omega)$ (quand $n\to +\infty$). On pose $f_n=h(\overline{u}_n,\nabla \overline{u}_n),\, f=h(\overline{u},\nabla \overline{u}),\, u_n=T(\overline{u}_n)$ et $u=T(\overline{u})$.
 - (a) Montrer que $f_n \to f$ dans $L^2(\Omega)$.
 - (b) Montrer que $u_n \to u$ faiblement dans $H_0^1(\Omega)$.
 - (c) Montrer que $\int_{\Omega} a(\bar{u}_n(x)) \nabla u_n(x) \cdot \nabla u_n(x) dx \to \int_{\Omega} a(\bar{u}(x)) \nabla u(x) \cdot \nabla u(x) dx$.

En déduire que $u_n \to u$ dans $H_0^1(\Omega)$. [On pourra s'inspirer de l'exercice 2.19.]

4. (Compacité de T) Soit $(\overline{u}_n)_{n\in\mathbb{N}}$ une suite bornée de $H^1_0(\Omega)$. On pose $f_n=h(\overline{u}_n,\nabla\overline{u}_n)$ et $u_n=T(\overline{u}_n)$. Montrer qu'il existe une sous-suite de la suite $(\overline{u}_n)_{n\in\mathbb{N}}$, encore notée $(\overline{u}_n)_{n\in\mathbb{N}}$, et il existe $f\in L^2(\Omega)$ et $b\in L^\infty(\Omega)$ t.q.

 $f_n \to f$ faiblement dans $L^2(\Omega)$, $a(\overline{u}_n) \to b$ p.p..

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente dans $H_0^1(\Omega)$. [On pourra raisonner comme dans l'exercice 2.19.]

5. Montrer qu'il existe $u \in H_0^1(\Omega)$ t.q. u = T(u) (et donc u solution de (3.27) avec $\overline{u} = u$).

Exercice 3.2 (Existence par Schauder, généralisation de l'exercice 3.1) Corrigé en page 178

Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$), a une fonction de $\Omega \times \mathbb{R}$ dans \mathbb{R} et f une fonction de $\Omega \times \mathbb{R} \times \mathbb{R}^N$ dans \mathbb{R} vérifiant :

- a est mesurable par rapport à $x \in \Omega$, pour tout $s \in \mathbb{R}$, et continue par rapport à $s \in \mathbb{R}$, p.p. en $x \in \Omega$.
- Il existe $\alpha, \beta \in \mathbb{R}_+^{\star}$ t.q. $\alpha \leq a(x,s) \leq \beta$ pour tout $s \in \mathbb{R}$ et p.p. en $x \in \Omega$.
- f est mesurable par rapport à $x \in \Omega$, pour tout $s, p \in \mathbb{R} \times \mathbb{R}^N$, et continue par rapport à $(s, p) \in \mathbb{R} \times \mathbb{R}^N$, p.p. en $x \in \Omega$.
- Il existe $d \in L^2(\Omega)$, $C \in \mathbb{R}$ et $\delta \in [0,1[$ tel que $|f(\cdot,s,p)| \leq C(d+|s|^{\delta}+|p|^{\delta})$ p.p., pour tout $s,p \in \mathbb{R} \times \mathbb{R}^N$.

Montrer qu'il existe une et une seule solution \boldsymbol{u} du problème suivant :

$$\left\{ \begin{array}{l} u \in H^1_0(\Omega), \\ \int_{\Omega} a(x,u(x)) \nabla u(x) \cdot \nabla v(x) \; \mathrm{d}x = \int_{\Omega} f(x,u(x),\nabla u(x)) v(x) \; \mathrm{d}x, \; \mathrm{pour \; tout} \; v \in H^1_0(\Omega). \end{array} \right.$$

[On pourra construire une application de $H_0^1(\Omega)$ dans $H_0^1(\Omega)$ et utiliser le théorème de Schauder.]

Exercice 3.3 (Degré d'une application affine) Corrigé en page 182

Soit E un espace de Banach (réel). Pour R > 0, on pose $B_R = \{v \in E; ||v||_E < R\}$.

- 1. Soit f une application constante de E dans E. Il existe donc $a \in E$ tel que f(v) = a pour tout $v \in E$. Soit R > 0 tel que $||a||_E \neq R$. Montrer que $d(\mathrm{Id} f, B_R, 0)$ est bien défini et que $d(\mathrm{Id} f, B_R, a) = 1$ si $R > ||a||_E$ et $d(\mathrm{Id} f, B_R, a) = 0$ si $R < ||a||_E$.
- 2. Soit L une application linéaire compacte de E dans E. On suppose que 1 n'est pas valeur propre de L. Soit $a \in E$. On définit f de E dans E en posant f(v) = Lv + a pour tout $v \in E$.
 - (a) Montrer que l'équation u f(u) = 0 a au plus une solution.
 - (b) Montrer que l'équation u f(u) = 0 a une unique solution. On note b cette solution. Montrer que

$$d(\mathrm{Id} - f, B_R, 0) \neq 0 \text{ si } R > ||b||_E \text{ et } d(\mathrm{Id} - f, B_R, 0) = 0 \text{ si } R < ||b||_E.$$

Exercice 3.4 (Convection-diffusion, Dirichlet, existence) Corrigé en page 182

Soit Ω un ouvert borné de \mathbb{R}^N , N=2 ou 3, p>N, $W\in L^p(\Omega)^N$, φ une fonction lipschitzienne de \mathbb{R} dans \mathbb{R} t.q. $\varphi(0)=0$ et $f\in L^2(\Omega)$.

On s'intéresse ici au problème suivant

$$\begin{cases}
-\Delta u + \operatorname{div}(W\varphi(u)) = f \operatorname{dans} \Omega, \\
u = 0 \operatorname{sur} \partial \Omega.
\end{cases}$$
(3.29)

Le but de cet exercice est de montrer l'existence de solution faible au problème (3.29). L'unicité (et la positivité si $f \ge 0$ p.p.) de la solution faible est montré dans l'exercice 3.5.

1. Soit $u \in H_0^1(\Omega)$, montrer que $W\varphi(u) \in L^2(\Omega)^N$. [Utiliser le théorème d'injection de Sobolev, théorème 1.38.]

Cette première question permet de définir la formulation faible du problème (3.29). Elle consiste à chercher u solution de (3.30).

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x - \int_{\Omega} \varphi(u(x)) W(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.30)

Pour montrer l'existence d'une solution à (3.30) on va utiliser la méthode du degré topologique en construisant une application h de $[0,1]\times L^q(\Omega)$ dans $L^q(\Omega)$ avec $q=\frac{2p}{p-2}$ (de sorte que $\frac{1}{p}+\frac{1}{q}=\frac{1}{2}$). On pose donc pour la suite $q=\frac{2p}{p-2}$. Si N=3, on pose $2^\star=6$ et si N=2, on choisit pour 2^\star un nombre strictement supérieur à q (de sorte que, pour N=2 ou 3, $H^1_0(\Omega)$ s'injecte continûment dans $L^{2^\star}(\Omega)$ et compactement dans $L^q(\Omega)$).

2. (Construction des opérateurs B et h) Soit $\tilde{u} \in L^q$. Montrer qu'il existe une unique u solution de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x - \int_{\Omega} \varphi(\tilde{u}(x)) W(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.31)

On note B l'opérateur qui à \tilde{u} dans $L^q(\Omega)$ associe u solution de (3.31). Puis, pour $t \in [0,1]$ et $\tilde{u} \in L^q(\Omega)$, on pose $h(t,\tilde{u}) = B(t\tilde{u})$.

- 3. Montrer que h est continu et compact de $[0,1] \times L^q(\Omega)$ dans $L^q(\Omega)$.
- 4. (Estimations a priori) Soit $u \in L^q(\Omega)$ t.q. u = h(t, u). On a donc

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x - \int_{\Omega} \varphi(t \, u(x)) W(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.32)

Pour $s \in \mathbb{R}$, on pose $\psi(s) = \int_0^s \frac{1}{(1+|\xi|)^2} d\xi$.

(a) Montrer que $\psi(u) \in H_0^1(\Omega)$. En prenant $v = \psi(u)$ dans (3.32), montrer qu'il existe C_l ne dépendant que Ω, W, φ et f t.q.

$$\|\ln(1+|u|)\|_{H_0^1(\Omega)} \le C_l.$$

(b) Pour $v \in L^{2^{\star}}(\Omega)$, montrer que pour tout $A \geq 0$ on a

$$\int_{\Omega} |v(x)|^{q} dx \le \left(\int_{\Omega} |v(x)|^{2^{\star}} dx \right)^{\frac{q}{2^{\star}}} \lambda_{N}(\{|v| \ge A\})^{1 - \frac{q}{2^{\star}}} + A^{q} \lambda_{N}(\Omega).$$

On rappelle que λ_N est la mesure de Lebesgue sur les boréliens de \mathbb{R}^N .

- (c) En utilisant (a) et (b), montrer qu'il existe C>0, ne dépendant que de Ω,W,φ et f t.q. $\|u\|_{H^1_0(\Omega)}< C$.
- 5. (Degré topologique) Montrer l'existence d'une solution à (3.30).
- 6. On retire dans cette question l'hypothèse $\varphi(0)=0$ et on se donne un élément T de $H^{-1}(\Omega)$. Montrer qu'il existe u solution de (3.30) avec $\int_{\Omega} f(x)v(x) \, \mathrm{d}x$ remplacé par $\langle T,v\rangle_{H^{-1}(\Omega),H^1_0(\Omega)}$.

Exercice 3.5 (Convection-diffusion, Dirichlet, unicité) Corrigé en page 185

On reprend ici les mêmes hypothèses que dans l'exercice 3.4, c'est-à-dire :

Soit Ω un ouvert borné de \mathbb{R}^N , N=2 ou 3, p>N, $W\in L^p(\Omega)^N$, φ une fonction lipschitzienne de \mathbb{R} dans \mathbb{R} t.q. $\varphi(0)=0$ et $f\in L^2(\Omega)$.

L'exercice 3.4 a montré qu'il existait u solution faible de (3.29), c'est-à-dire u solution de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x - \int_{\Omega} \varphi(u(x)) W(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x) v(x) \, \mathrm{d}x \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.33)

L'objectif de cet exercice est de montrer l'unicité de la solution de (3.33) et de montrer que $u \ge 0$ p.p. si $f \ge 0$ p.p..

- 1. Montrer l'unicité de la solution de (3.33).
- 2. On retire dans cette question (et seulement dans cette question) l'hypothèse $\varphi(0)=0$ et on se donne un élément T de $H^{-1}(\Omega)$. Montrer que le problème (3.30) avec $\int_{\Omega} f(x)v(x) \, \mathrm{d}x$ remplacé par $\langle T,v\rangle_{H^{-1}(\Omega),H^1_0(\Omega)}$ a une unique solution (l'existence a été montrée dans l'exercice 3.4).
- 3. On suppose $f \leq 0$ p.p.. Soit u la solution de (3.33). Montrer que $u \leq 0$ p.p.. [Pour $n \in \mathbb{N}^*$, on pourra prendre $v = S_n(u)$ dans (3.33) avec $S_n \in C(\mathbb{R}, \mathbb{R})$ définie par $S_n(s) = \max(0, \min(s, \frac{1}{n}))$ et faire tendre n vers $+\infty$.]

Exercice 3.6 (Existence par minimisation) Soient Ω un ouvert borné de \mathbb{R}^N ($N \geq 1$), a une fonction de Ω dans \mathbb{R} et f une fonction de $\Omega \times \mathbb{R}$ dans \mathbb{R} vérifiant :

- $-a \in L^{\infty}(\Omega).$
- Il existe $\alpha \in \mathbb{R}_+^{\star}$ tel que $\alpha \leq a$ p.p..
- f est mesurable par rapport à $x \in \Omega$, pour tout $s \in \mathbb{R}$, et continue par rapport à $s \in \mathbb{R}$, p.p. en $x \in \Omega$.
- Il existe $d \in L^2(\Omega)$, $C \in \mathbb{R}$ et $\delta \in [0,1[$ tel que pour presque tout $x \in \Omega$, $|f(\cdot,s)| \leq C|s|^{\delta} + d$ pour tout $s \in \mathbb{R}$.

On pose $F(x,s) = \int_0^s f(x,t)dt$. Pour presque tout $x \in \Omega$, la fonction $s \mapsto F(x,s)$ est donc une fonction de classe C^1 de ${\mathbb R}$ dans ${\mathbb R}$

1. Soit $u \in H_0^1(\Omega)$. Montrer que $F(\cdot, u) \in L^1(\Omega)$.

Corrigé – Pour le corrigé de cette question et des questions suivantes, on va noter A un ensemble de mesure nulle, c'est-à-dire tel que $\lambda_N(A)=0$ (on rappelle que λ_N désigne la mesure de Lebesgue sur \mathbb{R}^N), et tel que l'application $s\mapsto f(x,s)$ est, pour tout $x\in A^c=\Omega\setminus A$, continue de \mathbb{R} dans \mathbb{R} et vérifie $|f(x,s)|\leq C|s|^\delta+d$ (pour tout $s\in\mathbb{R}$).

La définition de F donne, pour tout $x \in A^c$ et pour tout $s \in \mathbb{R}$,

$$|F(x,s)| \le \frac{C}{\delta+1}|s|^{\delta+1} + \delta|s| \le \frac{C}{\delta+1}(|s|^2+1) + \delta(|s|^2+1),$$
 (3.34)

et donc $|F(x, u(x))| \le C_1 |u(x)|^2 + C_1$, avec $C_1 = \delta + \frac{C}{\delta + 1}$.

Comme $u \in L^2(\Omega)$ et que Ω est borné (et donc de mesure de Lebesgue finie), on en déduit que $F(\cdot, u) \in L^1(\Omega)$.

N.B. On rappelle que $F(\cdot,u)$ désigne la fonction $x\mapsto F(x,u(x))$ qui est définie p.p.. Dire qu'elle appartient à $L^1(\Omega)$ est à prendre au sens qu'il existe $v\in \mathcal{L}^1(\Omega)$ telle que $v=F(\cdot,u)$ p.p. (on cofond alors $F(\cdot,u)$ avec la classe de v dans $L^1(\Omega)$). La preuve faite de cette question est un peu incorrecte sur le plan de la mesurabilité (les problèmes de mesurabilité sont souvent quelque peu oubliés dans de nombreux ouvrages, v0 compris celui ci). En fait si on choisit un représentant pour v1, v2 est-à-dire un élément de la classe v3, on peut effectivement montrer

(grâce aux hypothèses sur f) qu'il existe v mesurable de Ω dans \mathbb{R} (munis des tribus boréliennes) telle que $v = F(\cdot, u)$ p.p. et le raisonnement précédent donne bien $v \in \mathcal{L}^1(\Omega)$. Pour plus de précision, on peut consulter, par exemple, [20] exercice 7.14.

Pour $u \in H_0^1(\Omega)$, on pose $E(u) = \frac{1}{2} \int_{\Omega} a(x) \nabla u(x) \cdot \nabla u(x) dx - \int_{\Omega} F(x, u(x)) dx$.

2. Montrer que $E(u) \to +\infty$ quand $||u||_{H^1_{\sigma}(\Omega)} \to +\infty$.

Corrigé – De la première inégalité donnée dans (3.34) on déduit que $\lim_{s\to\pm\infty}\frac{F(x,s)}{s^2}=0$, uniformément par rapport à $x\in A^c$. Pour tout $\varepsilon>0$ il existe donc C_ε , ne dépendant que de ε , C et δ tel que $|F(x,s)|\leq \varepsilon |s|^2+C_\varepsilon$ pour tout $s\in\mathbb{R}$ et tout $s\in\mathbb{R}$ et

Soit $u \in H_0^1(\Omega)$, en utilisant cette majoration de F, la minoration de a et l'inégalité de Poincaré (2.7), on obtient

$$E(u) \ge \frac{\alpha}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \varepsilon \int_{\Omega} |u(x)|^2 dx - C_{\varepsilon} \lambda_N(\Omega) \ge \left(\frac{\alpha}{2} - \varepsilon C_{\Omega}^2\right) \int_{\Omega} |\nabla u(x)|^2 dx - C_{\varepsilon} \lambda_N(\Omega).$$

En choisissant $\varepsilon > 0$ tel que $(\frac{\alpha}{2} - \varepsilon C_{\Omega}^2) > 0$ et en remarquant que $\| |\nabla u| \|_{L^2(\Omega)}^2 \ge \frac{1}{C_{\Omega}^2 + 1} \| u \|_{H_0^1(\Omega)}^2$, on en déduit que $E(u) \to +\infty$ quand $\| u \|_{H_0^1(\Omega)} \to +\infty$.

3. On note $I=\inf\{E(u),\,u\in H^1_0(\Omega)\}$. Montrer que $I\in\mathbb{R}$ et qu'il existe $u\in H^1_0(\Omega)$ tel que E(u)=I. Corrigé –

On choisit une suite $(u_n)_{n\in\mathbb{N}}$ de $H^1_0(\Omega)$ telle que $\lim_{n\to+\infty} E(u_n)=I$. La question 2 montre que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée. On peut donc supposer (quitte à extraire une sous-suite) qu'elle converge faiblement dans $H^1_0(\Omega)$ et, grâce au théorème de Rellich 1.33, qu'elle converge dans $L^2(\Omega)$. Enfin, toujours quitte à extraire une sous-suite, on peut supposer qu'elle converge p.p. en restant dominée dans $L^2(\Omega)$ (voir, par exemple, [20] théorème 6.11). On a donc, quand $n\to+\infty$, $D_iu_n\to D_iu$ faiblement dans $L^2(\Omega)$, pour tout i (car $u_n\to u$ faiblement dans $H^1_0(\Omega)$, exercice 1.22), $u_n\to u$ p.p. et, pour tout $n\in\mathbb{N}$ $|u_n|\le g$ p.p. avec $g\in L^2(\Omega)$.

Pour le premier terme de $E(u_n)$, l'application $v \mapsto \int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) dx$ est un élément du dual de $H_0^1(\Omega)$, on a donc

$$\|\sqrt{a}|\nabla u|\|_{L^2(\Omega)}^2 = \int_{\Omega} a(x)\nabla u(x) \cdot \nabla u(x) \, dx = \lim_{n \to +\infty} \int_{\Omega} a(x)\nabla u(x) \cdot \nabla u_n(x) \, dx.$$

Mais, par l'inégalité de Cauchy-Schwarz,

$$\int_{\Omega} a(x)\nabla u(x) \cdot \nabla u_n(x) \, \mathrm{d}x \le \|\sqrt{a}|\nabla u|\|_{L^2(\Omega)} \|\sqrt{a}|\nabla u_n|\|_{L^2(\Omega)},$$

et donc $\|\sqrt{a}|\nabla u|\|_{L^2(\Omega)}^2 \leq \liminf_{n\to+\infty} \|\sqrt{a}|\nabla u|\|_{L^2(\Omega)} \|\sqrt{a}|\nabla u_n|\|_{L^2(\Omega)}$, ce qui donne

$$\int_{\Omega} a(x) \nabla u(x) \cdot \nabla u(x) \, dx \le \liminf_{n \to +\infty} \int_{\Omega} a(x) \nabla u_n(x) \cdot \nabla u_n(x) \, dx.$$

Pour le deuxième terme de $E(u_n)$, comme $s \mapsto F(x,s)$ est continue pour $x \in A^c$, on obtient avec le nombre C_1 de la première question

$$F(\cdot, u_n) \to F(\cdot, u)$$
 p.p., quand $n \to +\infty$,

$$|F(\cdot, u_n)| \le C_1 |u_n|^2 + C_1 \le C_1 |q|^2 + C_1 \text{ p.p., pour tout } n \in \mathbb{N}.$$

On en déduit, avec le théorème de convergence dominée, $\int_{\Omega} F(x, u_n(x) dx \to \int_{\Omega} F(x, u(x) dx) dx$ quand $n \to +\infty$. Ceci donne

$$I \leq E(u) = \frac{1}{2} \int_{\Omega} a(x) \nabla u(x) \cdot \nabla u(x) \, dx - \int_{\Omega} F(x, u(x)) \, dx \leq \liminf_{n \to +\infty} E(u_n) = I,$$

et donc $I \in \mathbb{R}$ et E(u) = I.

4. Montrer qu'il existe u solution du problème suivant :

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x = \int_{\Omega} f(x, u(x)) v(x) \, \mathrm{d}x, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (3.35)

Corrigé – On va montrer que la fonction u trouvée à la question précédente est solution de (3.35). Soit $v \in H_0^1(\Omega)$. Comme $E(u) \leq E(u+tv)$, on obtient, pour 0 < t,

$$0 \le \frac{E(u+tv) - E(u)}{t} = \int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) \, dx + t \int_{\Omega} a(x) \nabla v(x) \cdot \nabla v(x) \, dx - \int_{\Omega} \frac{F(x, u(x) + tv(x)) - F(x, u(x))}{t} \, dx. \quad (3.36)$$

Comme $s \mapsto F(x,s)$ est de classe C^1 pour $x \in A^c$,

$$\frac{F(\cdot, u+tv) - F(\cdot, u)}{t} \to f(\cdot, u)v \text{ p.p., quand } t \to 0,$$

$$|\frac{F(\cdot,u+tv)-F(\cdot,u)}{t}|\leq |v(x)|(C|u(x)|+C|v(x)|+C+d) \ \ \textit{p.p., pour tout } t\in]0,1[.$$

Pour la majoration ci dessus, on a utilisé le théorème des accroissements finis. Il donne pour presque tout $x \in O$ et tout $t \in]0,1[$,

$$|F(x, u(x) + tv(x)) - F(x, u(x))| \le \max_{\theta \in [0, 1]} |f(x, u(x) + t\theta v(x))tv(x)| \le t|v(x)|(C(|u(x)| + |v(x)|)^{\delta} + d)$$

$$\le t|v(x)|(C(|u(x)| + |v(x)|) + C + d).$$

On peut maintenant faire $t \to 0$, avec $t \in]0,1[$, dans (3.36) pour obtenir, avec le théorème de convergence dominée,

$$0 \le \int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) \, dx - \int_{\Omega} f(x, u(x)) v(x) \, dx.$$

Comme cette inégalité est aussi vraie pour -v, on obtient bien, finalement, que u est solution de (3.35).

N.B. La preuve donnée pour cette question utilise seulement la dérivabilité de E au point u dans toutes les directions v de $H^1_0(\Omega)$. Une autre démonstration possible consisterait à montrer que E est différentiable au point u. Ceci donnerait Df(u)=0, c'est-à-dire u solution de (3.35).

Une fonction peut être dérivable au point u dans toutes les directions sans être différentiable au point u. C'est la cas par exemple de la fonction $u \mapsto \int_{\Omega} |u(x)| dx$ dans $L^1(\Omega)$ au point 0.

Exercice 3.7 (Minimisation avec contrainte)

Soit Ω un ouvert borné de \mathbb{R}^N , $N \geq 2$, et $p \in]1, \frac{N+2}{N-2}[$. On cherche une solution non nulle au problème suivant :

$$\begin{cases} -\Delta u = |u|^{p-1}u \text{ dans } \Omega, \\ u = 0 \text{ sur } \partial \Omega. \end{cases}$$
 (3.37)

1. Pour $v \in H^1_0(\Omega)$, on pose $E(v) = \frac{1}{2} \int_{\Omega} |\nabla v(x)|^2 \, \mathrm{d}x$ et $F(v) = \int_{\Omega} |v|^{p+1} \, \mathrm{d}x$. On pose aussi $A = \{v \in H^1_0(\Omega), F(v) = 1\}$. Montrer qu'il existe $u \in A$ t.q. $u \ge 0$ p.p. et $E(u) \le E(v)$ pour tout $v \in A$.

Corrigé – Le théorème 1.38 sur les injections de Sobolev donne $H_0^1(\Omega) \subset L^{2^*}(\Omega)$ si N > 2 et $H_0^1(\Omega) \subset L^q(\Omega)$ pour tout $q < \infty$ si N = 2. On en déduit que $F(u) \in L^1(\Omega)$ si $u \in H_0^1(\Omega)$ (pour N > 2, $1 + p = 2^*$) et donc $A \neq \emptyset$.

On note $I = \inf\{E(v), v \in A\}$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite de A telle que $\lim_{n \to +\infty} E(u_n) = I$. La suite $(u_n)_{n \in \mathbb{N}}$ est bornée dans $H_0^1(\Omega)$. On peut donc supposer (quitte à extraire une sous-suite) qu'elle converge

faiblement dans $H_0^1(\Omega)$ et, grâce au théorème de Rellich 1.33, qu'elle converge dans $L^2(\Omega)$. On note u cette limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Comme dans l'exercice 3.6, la convergence faible de u_n vers u dans $H_0^1(\Omega)$ donne $E(u) \leq \liminf_{n \to +\infty} E(u_n)$.

On montre maintenant que $u \in A$. Par le théorème 1.38, la suite $(u_n)_{n \in \mathbb{N}}$ est bornée dans $L^{2^*}(\Omega)$ si N>2 et dans $L^q(\Omega)$ pour tout $q < \infty$ si N=2. Comme elle est convergente dans $L^2(\Omega)$, une application simple de l'inégalité de Hölder L^{12} donne qu'elle converge dans $L^q(\Omega)$ pour tout $q < 2^*$ et donc, en particulier dans $L^{p+1}(\Omega)$. On a donc $\lim_{n \to +\infty} F(u_n) = F(u) = 1$ et donc $u \in A$ et E(u) = I car $I \leq E(u) \leq \liminf_{n \in \mathbb{N}} E(u_n) = I$. Enfin, pour avoir $u \geq 0$ p.p., il suffit de remplacer u par u car u car u car u et u et

2. Montrer qu'il existe u non nulle, $u \ge 0$ p.p., solution faible de (3.37).

Corrigé – On va montrer que la fonction u trouvée à la question précédente est, à une constante multiplicative près, solution faible de (3.37). Pour cela, on va appliquer le théorème 3.31.

Comme $E(u+v)=\frac{1}{2}\int_{\Omega}|\nabla u(x)|^2\,\mathrm{d}x+\int_{\Omega}\nabla u(x)\cdot\nabla v(x)\,\mathrm{d}x+\frac{1}{2}\int_{\Omega}|\nabla v(x)|^2\,\mathrm{d}x,$ la fonction E est différentiable au point u et sa différentielle au point u, notée dE(u) est l'élément de $H^{-1}\Omega$ défini par

$$\langle dE(u), v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx.$$

On montre maintenant que $F \in C^1(H_0^1(\Omega), \mathbb{R})$.

On remarque que, pour tout $s \in \mathbb{R}$ et tout $h \in \mathbb{R}$,

$$|s+h|^{p+1} = |s|^{p+1} + (p+1)s^{p}\operatorname{sign}(s)h + R(s,h),$$
(3.38)

avec $|R(s,h)| \le (p+1)^2 (|s|^{p-1}h^2 + |h|^{p+1}).$

En effet, pour s>0 et $h\geq -s$, un développement de Taylor donne qu'il existe $\theta\in]0,1[$ tel que $R(s,h)=\frac{p(p+1)}{2}(s+\theta h)^{p-1}h^2$ et donc $R(s,h)\leq \frac{p(p+1)}{2}(|s|^{p-1}h^2+|h|^{p+1})$. Pour s>0 et h<-s, $|R(s,h)|=||s+h|^{p+1}-|s|^{p+1}-(p+1)s^psgn(s)h|\leq (p+2)|h|^{p+1}$.

Pour s < 0, en changeant s en -s, on obtient les mêmes majorations pour |R(s,h)|.

Enfin, pour s = 0, $|R(s, h)| = |h|^{p+1}$.

Soit maintenant $v \in H^1_0(\Omega)$. Pour tout $w \in H^1_0(\Omega)$, on utilise (3.38) avec s = v(x) et h = w(x) (pour presque tout $x \in \Omega$). Comme $|v|^p \in L^{1+\frac{1}{p}}(\Omega)$ et $w \in L^{p+1}(\Omega)$, l'inégalité de Hölder donne $|v|^p w \in L^1(\Omega)$. On obtient alors avec la majoration de |R(s,h)| et (de nouveau) avec l'inégalité de Hölder,

$$F(v+w) = F(v) + \int_{\Omega} (p+1)v(x)^p \text{sign}(v(x))w(x) dx + R(w),$$

 $avec \ |R(w) \leq (p+1)^2 \int_{\Omega} (|v(x)|^{p-1}w(x)^2 + |w(x)|^{p+1}) \ \mathrm{d}x \leq (p+1)^2 \big(\|v\|_{L^{p+1}(\Omega)}^{p-1} \|w\|_{L^{p+1}(\Omega)}^2 + \|w\|_{L^{p+1}(\Omega)}^{p+1} \big).$ L'injection continue de $H^1_0(\Omega)$ dans $L^{p+1}(\Omega)$ donne alors $R(w) = \|w\|_{L^{p+1}(\Omega)} \eta(w)$ avec $\eta(w) \to 0$ (dans $H^1_0(\Omega)$ quand $w \to 0$ dans $H^1_0(\Omega)$. Ceci prouve que F est différentiable au point v et

$$\langle dF(v), w \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = \int_{\Omega} \int_{\Omega} (p+1)v(x)^p \operatorname{sign}(v(x))w(x) dx.$$

On remarque aussi que, avec l'inégalité de Hölder,

$$|\langle dF(v), w \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}| \leq (p+1) ||v|^p ||\frac{p}{p+1}||w||_{L^{p+1}(\Omega)} \leq (p+1) ||v||_{L^{p+1}(\Omega)}^p C_p ||w||_{H_0^1(\Omega)},$$

où C_p est un nombre tel que, pour tout $w \in H^1_0(\Omega)$, $\|w\|_{L^{p+1}(\Omega)} \leq C_p \|w\|_{H^1_0(\Omega)}$. On a donc

$$||dF(v)||_{H^{-1}(\Omega)} \le (p+1)||v||_{L^{p+1}(\Omega)}^p \le (p+1)C_p^p||v||_{H_0^1(\Omega)}^p.$$

On montre maintenant la continuité de $v \mapsto dF(v)$ de $H^1_0(\Omega)$ dans $H^{-1}(\Omega)$. Soit $(v_n)_{n \in \mathbb{N}}$ une suite de $H^1_0(\Omega)$ telle que $v_n \to v$ dans $H^1_0(\Omega)$ quand $n \to +\infty$. On a donc aussi $v_n \to v$ dans $L^{p+1}(\Omega)$ quand $n \to +\infty$.

12. Si
$$1 \le p < r < q < +\infty$$
 et $u \in L^p(X, T, m) \cap L^q(X, T, m)$, $||u||_{L^r} \le ||u||_{L^p}^{\theta} ||u||_{L^q}^{1-\theta}$, avec $\theta = \frac{p}{r} \frac{q-r}{q-r}$.

De la définition de $dF(v_n)$ et dF(v) on déduit

$$||dF(v_n) - dF(v)||_{H^{-1}(\Omega)} \le (p+1)C_p||v_n(x)^p \operatorname{sign}(v_n(x)) - v(x)^p \operatorname{sign}(v(x))||_{L^{1+\frac{1}{p}}(\Omega)}^{\frac{p}{p+1}}.$$

En extrayant une sous-suite, on peut supposer qu'il existe $g \in L^{p+1}(\Omega)$ telle que

$$v_n \to v$$
 p.p. quand $n \to +\infty$,
 $|v_n| \le g$ p.p. et pour tout $n \in \mathbb{N}$,

On en déduit, par convergence dominée que $v_n(x)^p \operatorname{sign}(v_n(x)) \to v(x)^p \operatorname{sign}(v(x))$ dans $L^{1+\frac{1}{p}}(\Omega)$ quand $n \to +\infty$. Comme la limite ne dépend pas de la sous-suite choisie, un raisonnement par l'absurde classique montre que le convergence a lieu sans extraction de sous-suite. On a ainsi montré que $dF(v_n) \to dF(v)$ dans $H^{-1}(\Omega)$ et donc que $F \in C^1(H_0^1(\Omega), \mathbb{R})$.

On peut maintenant appliquer le théorème 3.31. Comme u n'est pas la fonction nulle (car F(u)=1), $\operatorname{Im}(DF(u)=\mathbb{R})$ et le théorème 3.31 donne l'existence de $\lambda \in \mathbb{R}$ tel que $DE(u)=\lambda Df(u)$, c'est-à-dire comme $u\geq 0$ p.p., pour tout $v\in H^1_0(\Omega)$,

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = \lambda \int_{\Omega} \int_{\Omega} (p+1)u(x)^{p} v(x) \, dx.$$
 (3.39)

Comme $u \in H_0^1(\Omega)$ et $u \neq 0$ (dans $H_0^1(\Omega)$), le terme de gauche de (3.39) est strictement positif pour v = u. On en déduit que $\lambda > 0$. On choisit maintenant $\theta > 0$ telle que $\theta = (p+1)\lambda\theta^p$ (ce qui est possible car p > 1), la fonction θu est solution faible de (3.37), c'est-à-dire, en notant \bar{u} cette fonction,

$$\bar{u} \in H_0^1(\Omega),$$

$$\int_{\Omega} \nabla \bar{u}(x) \cdot \nabla v(x) \, dx = \int_{\Omega} \int_{\Omega} \bar{u}(x)^{p-1} \bar{u}(x) v(x) \, dx \text{ pour tout } v \in H_0^1(\Omega).$$

Exercice 3.8 (Convergence faible et non linéarité) Corrigé en page 187 Remarque liminaire : Soit $\varphi \in C(\mathbb{R}, \mathbb{R})$; lorsqu'une suite $(u_n)_{n \in \mathbb{N}}$ tend faiblement vers u dans un espace L^p et que la suite $\varphi(u_n)$ tend faiblement vers f dans un espace L^q , il est en général faux que $f = \varphi(u)$ p.p.. On ajoute l'hypothèse que $\int u_n \varphi(u_n) \, \mathrm{d}x$ converge vers $\int uf \, \mathrm{d}x$. Si φ est croissante, l'astuce de Minty permet alors de montrer que $f = \varphi(u)$ p.p.. Si φ est strictement croissante, on obtient même la convergence de u_n vers u (c'est l'"astuce de Leray-Lions"). Cet exercice détaille ces idées dans le cadre p = q = 2, et avec une mesure finie.

Soit (X,T,m) un espace mesuré fini (c'est-à-dire $m(X)<+\infty$). On note L^2 l'espace $L^2_{\mathbb{R}}(X,T,m)$. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites bornées de L^2 et $u,v\in L^2$. On suppose que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent faiblement dans L^2 vers u et v respectivement.

$$\lim_{n \to +\infty} \int u_n w \, dm = \int uw \, dm \text{ et } \lim_{n \to +\infty} \int v_n w \, dm = \int vw \, dm \text{ pour tout } w \in L^2.$$

1. On suppose, dans cette question seulement, que $v_n = u_n$ p.p., pour tout $n \in \mathbb{N}$ (et donc u = v p.p.). Montrer que $u_n \to u$ dans L^2 (quand $n \to +\infty$) si et seulement si $\int u_n^2 dm \to \int u^2 dm$ (quand $n \to +\infty$).

On suppose pour toute la suite de l'exercice que $\int u_n v_n \, dm \to \int uv \, dm$ (quand $n \to +\infty$) et qu'il existe une fonction φ de $\mathbb R$ dans $\mathbb R$ telle que

- φ est continue, et il existe $C \in \mathbb{R}$ tel que $|\varphi(s)| \leq C + C|s|$ pour tout $s \in \mathbb{R}$.
- $v_n = \varphi(u_n)$ p.p., pour tout $n \in \mathbb{N}$.
- 2. Soit $w \in L^2$, montrer que, quand $n \to +\infty$,

$$\int (\varphi(u_n) - \varphi(w))(u_n - w) \, dm \to \int (v - \varphi(w))(u - w) \, dm. \tag{3.40}$$

- 3. On suppose que φ est croissante.
 - (a) Soit $\bar{w} \in L^2$ et $t \in \mathbb{R}$. Montrer que

$$\int (v - \varphi(u + t\bar{w}))t\bar{w} \, dm \le 0.$$

[Utiliser (3.40).] En déduire que $\int (v - \varphi(u))\bar{w} dm = 0$.

- (b) Montrer que $v = \varphi(u)$ p.p..
- 4. On suppose que φ strictement croissante. Pour $n \in \mathbb{N}$, on pose $G_n = (\varphi(u_n) \varphi(u))(u_n u)$.
 - (a) Montrer que $G_n \to 0$ dans L^1 quand $n \to +\infty$ (utiliser (3.40)).
 - (b) Montrer qu'il existe une sous-suite de la suite $(G_n)_{n\in\mathbb{N}}$, notée $(G_{\psi(n)})_{n\in\mathbb{N}}$ (avec ψ strictement croissante de \mathbb{N} dans \mathbb{N}) t.q. $G_{\psi(n)} \to 0$ p.p.. En déduire que $u_{\psi(n)} \to u$ p.p. (utiliser la croissance stricte de φ).
 - (c) Montrer que $u_n \to u$ dans L^p pour tout $p \in [1, 2]$.

Exercice 3.9 (Opérateur de Leray-Lions)

Soient Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$, a une fonction de $\Omega \times \mathbb{R} \times \mathbb{R}^N$ dans \mathbb{R}^N et $p \in]1, +\infty[$ vérifiant (avec $p' = \frac{p}{p-1})$:

- (Fonction de Carathéodory) a est mesurable par rapport à $x \in \Omega$, pour tout $s, \xi \in \mathbb{R} \times \mathbb{R}^N$, et continue par rapport à $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$, p.p. en $x \in \Omega$.
- (Coercivité) Il existe $\alpha \in \mathbb{R}_+^*$ t.q. $\alpha(x, s, \xi) \cdot \xi \ge \alpha |\xi|^p$ pour tout $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$ et p.p. en $x \in \Omega$.
- (Croissance) Il existe $d \in L^{p'}(\Omega)$ et $C \in \mathbb{R}$ t.q. $|a(\cdot,s,\xi)| \leq C(d+|s|^{p-1}+|\xi|^{p-1})$ p.p., pour tout $s,\xi \in \mathbb{R} \times \mathbb{R}^N$.
- (Monotonie stricte) $(a(x,s,\xi)-a(x,s,\eta)\cdot(\xi-\eta)>0$ pour tout $(s,\xi,\eta)\in\mathbb{R}\times\mathbb{R}^N\times\mathbb{R}^N, \xi\neq\eta$, et p.p. en $x\in\Omega$.

Soit $f \in W^{-1,p'}(\Omega)$. Montrer qu'il existe u solution du problème suivant :

$$\begin{cases} u \in W_0^{1,p}(\Omega), \\ \int_{\Omega} a(x, u(x), \nabla u(x)) \cdot \nabla v(x) \, \mathrm{d}x = \langle f, v \rangle_{W^{-1,p'}(\Omega), W_0^{1,p}(\Omega)}, \text{ pour tout } v \in W_0^{1,p}(\Omega). \end{cases}$$
(3.41)

[Reprendre la démonstration du théorème 3.23]

Corrigé – La première hypothèse sur a (fonction de Carathéodory) sert à assurer qu'en choisissant des représentants mesurables pour u et ∇u la fonction $x \mapsto a(x,u(x),\nabla u(x))$ est mesurable. Nous ne détaillons pas ce point ici (voir, par exemple, [20] exercice 7.14 pour une preuve). La troisième hypothèse sur a (croissance) permet alors d'assurer que $a(\cdot,u,\nabla u)\in L^{p'}(\Omega)$ dés que $u\in W^{1,p}(\Omega)$. L'équation demandée dans le problème 3.41 a bien un sens (puisque l'on intégre le produit d'une fonction de $L^{p'}(\Omega)$ avec une fonction de $L^p(\Omega)$).

Comme dans la preuve du théorème 3.23 on choisit famille dénombrable $(f_n)_{n\in\mathbb{N}^*}$ dense dans $W_0^{1,p}(\Omega)$ et on pose $E_n = \text{Vect}\{f_1 \dots f_n\}$ l'espace vectoriel engendré par les n premières fonctions de cette famille.

on fixe $n \in \mathbb{N}^*$ et on cherche u_n solution du problème suivant, posé en dimension finie :

$$\begin{cases} u_n \in E_n, \\ \int_{\Omega} a(x, u_n(x), \nabla u_n(x)) \cdot \nabla v(x) \, dx = \langle f, v \rangle_{W^{-1, p'}(\Omega), W_0^{1, p}(\Omega)}, \text{ pour tout } v \in E_n. \end{cases}$$
(3.42)

L'application $v \mapsto < f, v >_{W^{-1,p'},W_0^{1,p}}$ est une application linéaire (et donc) continue de E_n dans \mathbb{R} . On note b_n cette application. Pour $u \in E_n$. On note $T_n(u)$ l'application de E_n dans \mathbb{R} qui a $v \in E_n$ associe $\int_{\Omega} a(x,u_n(x),\nabla u_n(x)) \cdot \nabla v(x) \, dx$. Cette application est linéaire, c'est donc aussi un élément de E'_n et le problème 3.42 consiste à chercher

 $u_n \in E_n$ tel que $T_n(u_n) = b_n$. L'existence u_n est donc une conséquence du lemme 3.27 si on montre que T_n est continue et coercive.

La Continuité de T_n se montre comme dans la preuve du théorème 3.23, il suffit de vérifier que $v_m \to v$ dans $W_0^{1,p}(\Omega)$ quand $m \to +\infty$ implique $a(\cdot, v_m, \nabla v_m) \to a(\cdot, v, \nabla v)$ dans $L^{p'}(\Omega)$ quand $m \to +\infty$.

On suppose donc que $v_m \to v$ dans $W_0^{1,p}(\Omega)$ quand $m \to +\infty$, c'est-à-dire $v_m \to v$ et $D_i v_m \to D_i v$ (pour tout i) dans $L^p(\Omega)$ quand $m \to +\infty$. Par la réciproque partielle du théorème de convergence dominée ([20], téorème 6.11) on peut donc supposer, après extraction d'une sous-suite, qu'il existe $g \in L^p(\Omega)$ telle que

$$u_m \to u$$
 p.p., quand $m \to +\infty$, $D_i u_m \to D_i u$ p.p., quand $m \to +\infty$, pour $i=1,\ldots,N$, $|u_m| \le g$ p.p. et pour tout $m \in \mathbb{N}$, $|\nabla u_m| \le g$ p.p. et pour tout $m \in \mathbb{N}$.

Il suffit maintenant (gâce à l'hypothèse de croissance sur a) d'appliquer le théorème de convergence dominée pour en déduire que $a(\cdot, v_m, \nabla v_m) \to a(\cdot, v, \nabla v)$ dans $L^{p'}(\Omega)$ quand $m \to +\infty$.

Enfin, comme la limite ne dépend pas de la sous-suite choisie, cette convergence a lieu sans extraction d'une sous-suite. Ceci permet comme dans la preuve du théorème 3.23 de montrer que T_n est continue (de E_n dans E_n).

L'ypothèse de coercivité de α donne la corecivité de T_n , exactement comme dans la preuve du théorème 3.23.

L'existence de u_n solution de 3.42 est donc une conséquence du lemme 3.27.

Il s'agit maintenant de passer à limite quand $n \to +\infty$ pour avoir une solution de 3.41.

En prenant $v=u_n$ dans 3.42, on montre (comme dans) que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $W_0^{1,p}(\Omega)$. On peut donc supposer, quitte à extraire une sous-suite que $u_n\to u$ faiblement dans $W_0^{1,p}(\Omega)$. L'hypothèse de croissance sur a montre que la suite $(|a(\cdot,u_n,\nabla u_n)|)_{n\in\mathbb{N}}$ est bornée dans $(L^{p'}(\Omega))^N$. Il existe donc $\zeta\in (L^{p'}(\Omega))^N$ telle que, après une nouvelle extraction de sous-suite,

$$a(\cdot, u_n, \nabla u_n) \to \zeta$$
 faiblement dans $(L^{p'}(\Omega))^N$.

La preuve faite pour le théorème 3.23 donne alors (sans modification)

$$\int_{\Omega} \zeta \cdot \nabla v \, \mathrm{d}x = \langle f, v \rangle_{W^{-1,p'}, W_0^{1,p}} \quad \forall v \in W_0^{1,p}(\Omega). \tag{3.43}$$

Il s'agit maintenant de montrer, comme dans la preuve du théorème 3.23, grâce à la monotonie stricte de a que $\zeta = a(\cdot, u, \nabla u)$.

On commence à remarquer que la preuve faite pour l'étape commune à Minty et Leray-Lions donne ici

$$\lim_{n \to +\infty} \int_{\Omega} a(x, u_n(x), \nabla u_n(x)) \cdot \nabla u_n(x) \, dx = \int_{\Omega} \zeta(x) \cdot \nabla u(x) \, dx.$$
 (3.44)

La suite de la preuve est proche de celle donnée pour le théorème 3.23. La difficulté nouvelle ici est la présence de u_n dans $a(\cdot, u_n, \nabla u_n)$. Pour cela on remarque que $u_n \to u$ faiblement dans $W_0^{1,p}(\Omega)$ et donc, par le téorème de Rellich 1.33, $u_n \to u$ dans $L^p(\Omega)$ et on peut donc supposer, après extraction d'une sous-suite, que $u_n \to u$ p.p. et qu'il existe $g \in L^p(\Omega)$ telle que, pour tout $n \in \mathbb{N}$, $|u_n| \leq g$ p.p..

On reprend maintenant le raisonnement fait pour le théorème 3.23. Comme $\overline{\bigcup_{n\in\mathbb{N}}E_n}=W_0^{1,p}(\Omega)$, il existe une suite $(v_n)_{n\in\mathbb{N}}$ telle que $v_n\in E_n$ pour tout $n\in\mathbb{N}$ et $v_n\to u$ dans $W_0^{1,p}(\Omega)$. On peut aussi supposer, toujours quitte à extraire une sous-suite, qu'il existe $G\in L^p(\Omega)$ tel que

$$v_n \to u$$
 p.p., quand $n \to +\infty$,
 $D_i v_n \to D_i u$ p.p., quand $n \to +\infty$, pour $i=1,\ldots,N$,
 $|v_n| \le G$ p.p. et pour tout $n \in \mathbb{N}$,
 $|\nabla v_n| \le G$ p.p. et pour tout $m \in \mathbb{N}$.

Ceci donne, en particulier, par le théorème de convergence dominée que $a(\cdot, v_n, \nabla v_n) \to a(\cdot, u, \nabla u)$ dans $L^{p'}(\Omega)$ mais aussi que $a(\cdot, u_n, \nabla v_n) \to a(\cdot, u, \nabla u)$ dans $L^{p'}(\Omega)$ quand $n \to +\infty$.

Par l'hypothèse de monotonie sur a,

$$\int_{\Omega} (a(x, u_n(s), \nabla u_n(x)) - a(x, u_n(x), \nabla v_n(x))) \cdot (\nabla u_n - \nabla v_n) \, dx \ge 0.$$

Puis,

$$\int_{\Omega} (a(x, u_n(s), \nabla u_n(x)) - a(x, u_n(x), \nabla v_n(x))) \cdot (\nabla u_n - \nabla v_n) \, dx = \int_{\Omega} a(x, u_n(s), \nabla u_n(x)) \cdot \nabla u_n(x) \, dx$$
$$-\int_{\Omega} a(x, u_n(s), \nabla u_n(x)) \cdot \nabla v_n(x) \, dx - \int_{\Omega} (a(x, u_n(s), \nabla v_n(x)) \cdot \nabla u_n(x) \, dx + \int_{\Omega} a(x, u_n(s), \nabla v_n(x)) \cdot \nabla v_n(x) \, dx.$$

On passe à limite (quand $n \to +\infty$) dans les 4 termes du membre de droite de cette égalité.

Grâce à (3.44), le premier terme tend, quand $n \to +\infty$, vers $\int_{\Omega} \zeta(x) \cdot \nabla u(x) dx$.

Le deuxième terme tend aussi vers $\int_{\Omega} \zeta(x) \cdot \nabla u(x) dx$ (par le lemme 3.24).

Le troisième terme tend vers $\int_{\Omega} a(x, u(x), \nabla u(x)) \cdot \nabla u(x) dx$ (par le lemme 3.24).

Le quatrième terme est le plus facile, il tend aussi vers $\int_{\Omega} a(x, u(x), \nabla u(x)) \cdot \nabla u(x) dx$.

En posant $F_n(x) = (a(x, u_n(x), \nabla u_n(x)) - a(x, u_n(x), \nabla v_n(x))) \cdot (\nabla u_n(x) - \nabla v_n(x))$, on a donc $F_n \ge 0$ p.p. et $\int_{\Omega} F_n(x) dx \to 0$ lorsque $n \to +\infty$. Donc $F_n \to 0$ dans $L^1(\Omega)$ et on peut spposer, après extraction d'une sous-suite, $F_n \to 0$ p.p..

On sait aussi que $\nabla v_n \to \nabla u$ p.p. (quand $n \to +\infty$). L'objectif est de montrer que $\nabla u_n \to \nabla u$ p.p..

Soit $x \in \Omega$ tel que $F_n(x) \to 0$ et $\nabla v_n(x) \to \nabla u(x)$ lorsque $n \to +\infty$. On suppose aussi que pour cette valeur de x, les hypothèses sur a (croissance, coercivité et monotonie) sont vérifiées et que $\nabla v_n(x)$, $u_n(x)$ et $v_n(x)$ convergent (dans \mathbb{R}) vers $\nabla u(x)$, u(x) et u(x). Ces hypothèses sur x ne font que retirer un ensemble de mesure nulle de points, c'est-à-dire qu'elles sont vérifiées pour $x \in A$ avec A de mesure nulle.

On montre tout d'abord que la suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ est bornée dans \mathbb{R}^N . En effet, grâce aux hypothèses (3.18c) (3.18d) de coercivité et croissance sur a, on a

$$F_n(x) = (a(x, u_n(x), \nabla u_n(x)) - a(x, u_n(x), \nabla v_n(x)) \cdot (\nabla u_n(x) - \nabla v_n(x))$$

$$\geq \alpha |\nabla u_n(x)|^p - C(d(x) + |u_n(x)|^{p-1}| + |\nabla u_n(x)|^{p-1}) |\nabla v_n(x)|$$

$$- C(d(x) + |u_n|^{p-1}| + |\nabla v_n(x)|^{p-1}) |\nabla u_n(x)| + \alpha |\nabla v_n(x)|^p.$$

On en déduit que la suite $(F_n(x))_{n\in\mathbb{N}}$ est non bornée si la suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ est non bornée. Or $F_n(x)\to 0$ lorsque $n\to +\infty$. Donc il faut que la suite $(\nabla u_n(x))_{n\in\mathbb{N}}$ soit bornée.

Soit maintenant $\xi \in \mathbb{R}^N$ limite d'une sous-suite de la suite $(\nabla u_n(x))_{n \in \mathbb{N}}$. On rappelle que x est fixé. On a donc pour cette sous-suite (encore notée $(\nabla u_n(x))_{n \in \mathbb{N}}$) $\lim_{n \to +\infty} a(x, u_n(x), \nabla u_n(x)) = a(x, u(x), \xi)$.

Comme $\lim_{n\to+\infty} F_n(x) = 0$, on en déduit

$$(a(x, u(x), \xi) - a(x, u(x), \nabla u(x)) \cdot (\xi - \nabla u(x)) = 0.$$

Or, le 1er terme de cette égalité est strictement positif si $\xi \neq \nabla u(x)$. On a donc donc $\xi = \nabla u(x)$. On a donc (sans extraction de sous-suite) $\nabla u_n(x) \rightarrow \nabla u(x)$ quand $n \rightarrow +\infty$.

En résumé, on a ainsi montré que $\nabla u_n \to \nabla u$ p.p. (plus précisément $\nabla u_n(x) \to \nabla u(x)$ quand $n \to +\infty$ pour tout $x \in A$). On en déduit que $a(\cdot, u, \nabla u_n) \to a(\cdot, u, \nabla u)$ p.p.. On en déduit alors que $\zeta = a(\cdot, u, \nabla u)$ exactement comme dans la preuve du théorème 3.23.

On a ainsi montré que u est solution du problème 3.41.

En complément on peut aussi montrer que $u_n \to u$ dans $W_0^{1,p}(\Omega)$ (ce qui n'était pas demandé dans cet exercice). Ici encore on raisonne comme dans la preuve du théorème 3.23.

Comme $\zeta = a(\cdot, u, \nabla u)$, (3.44) donne

$$\lim_{n \to +\infty} \int_{\Omega} a(x, u_n(x), \nabla u_n(x)) \cdot \nabla u_n(x) dx = \int_{\Omega} a(x, u(x), \nabla u(x)) \cdot \nabla u(x) dx.$$

On applique le lemme 3.29 à la suite $(f_n)_{n\in\mathbb{N}}$ définie par $f_n=a(\cdot,u_n,\nabla u_n)\cdot\nabla u_n$. Il donne la convergence dans $L^1(\Omega)$ de cette suite et donc l'équi-intégrabilité de la suite $(f_n)_{n\in\mathbb{N}}$. Avec l'hypothèse de coercivité sur a, on obtient l'équi-intégrabilité de la suite $(|\nabla u_n|^p)_{n\in\mathbb{N}}$. Il reste à appliquer le théorème de Vitali pour conclure que $\nabla u_n \to \nabla u$ dans $L^p(\Omega)^N$ et donc que $u_n \to u$ dans $W_0^{1,p}(\Omega)$.

3.5 Corrigés des exercices

Exercice 3.1 (Existence par Schauder)

1. On remarque que $|h(\bar{u}, \nabla \bar{u})| \leq C_1(1+|\bar{u}|^{\delta}+|\nabla \bar{u}|^{\delta}) \in L^{\frac{2}{\delta}}(\Omega) \subset L^2(\Omega)$ car $\delta < 1$.

Pour $u, v \in H_0^1(\Omega)$, on pose

$$A(u,v) = \int_{\Omega} a(\bar{u}) \nabla u \cdot \nabla v \, dx.$$

Comme $0 < \alpha \le a(\bar{u}) \le \beta$, il est facile de montrer de A est bilinéaire continue et coercive sur $(H_0^1(\Omega))^2$. On conclut alors qu'il existe bien une unique solution à (3.27).

2. En prenant v = u dans (3.27), on obtient

$$\alpha \|u\|_{H_0^1(\Omega)}^2 \le \|g\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} + C_1 |\Omega|^{\frac{1}{2}} \|u\|_{L^2(\Omega)} + \left(C_1 \||\bar{u}|^{\delta}\|_{L^2(\Omega)} + C_1 \||\nabla \bar{u}|^{\delta}\|_{L^2(\Omega)}\right) \|u\|_{L^2(\Omega)}.$$

Avec C_{Ω} donnée par l'inégalité de Poincaré, on en déduit

$$\frac{\alpha}{C_{\Omega}} \|u\|_{H_0^1(\Omega)} \le \|g\|_{L^2(\Omega)} + C_1 \left(|\Omega|^{\frac{1}{2}} + \||\bar{u}|^{\delta}\|_{L^2(\Omega)} + \||\nabla \bar{u}|^{\delta}\|_{L^2(\Omega)} \right). \tag{3.45}$$

Mais en utilisant l'inégalité de Hölder (ou l'inégalité de Jensen pour la fonction (concave) de \mathbb{R}_+ dans \mathbb{R}_+ définie par $s\mapsto s^\delta$) on obtient

$$\||\bar{u}|^{\delta}\|_{L^{2}(\Omega)}^{2} = \int_{\Omega} |\bar{u}|^{2\delta} dx \le \left(\int_{\Omega} \bar{u}^{2} dx\right)^{\delta} |\Omega|^{1-\delta}, \text{ et}$$
(3.46)

$$\||\nabla \bar{u}|^{\delta}\|_{L^{2}(\Omega)}^{2} = \int_{\Omega} |\nabla \bar{u}|^{2\delta} dx \le \left(\int_{\Omega} |\nabla \bar{u}|^{2} dx\right)^{\delta} |\Omega|^{1-\delta}.$$
(3.47)

(Si $\delta \in [\frac{1}{2}, 1[$, ces deux inégalités correspondent à l'injection classique de $L^2(\Omega)$ dans $L^{2\delta}(\Omega)$.)

De ces deux majorations (et avec l'inégalité de Poincaré), on déduit l'existence de \bar{C} ne dépendant que de Ω et δ t.q.

$$\||\bar{u}|^{\delta}\|_{L^{2}(\Omega)} \leq \bar{C} \|\bar{u}\|_{H_{0}^{1}(\Omega)}^{\delta} \text{ et } \||\nabla \bar{u}|^{\delta}\|_{L^{2}(\Omega)} \leq \bar{C} \|\bar{u}\|_{H_{0}^{1}(\Omega)}^{\delta}.$$

En revenant à (3.45), on obtient l'existence de C_2 ne dépend que α , g, Ω et C_1 t.q.

$$||u||_{H_0^1(\Omega)} \le C_2 \left(1 + ||\bar{u}||_{H_0^1(\Omega)}^{\delta}\right).$$

Pour conclure, on remarque qu'il existe $R \in {\rm I\!R}_+^\star$ tel que $R > C_2(1+R^\delta)$. En effet, on a

$$R - C_2 - C_2 R^{\delta} = R(1 - \frac{C_2}{R} - C_2 R^{\delta - 1}).$$

il suffit donc de prendre $R>2C_2$ et $R>(2C_2)^{\frac{1}{1-\delta}}$. (c'est ici que l'hypothèse $\delta<1$ est utilisée.) On a alors

$$\|\bar{u}\|_{H_0^1(\Omega)} \le R \Rightarrow \|u\|_{H_0^1(\Omega)} \le C_2(1+R^{\delta}) \le R.$$

3. (a) Si $f_n \not\to f$ dans $L^2(\Omega)$, il existe $\varepsilon > 0$ et une sous-suite, encore notée $(f_n)_{n \in \mathbb{N}}$ t.q.

$$||f_n - f||_{L^2(\Omega)} \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (3.48)

Après extraction éventuelle d'une sous-suite, on peut supposer que

$$\bar{u}_n \to \bar{u}$$
 p.p., avec un domination par une fonction G appartenant à $L^2(\Omega)$, et (3.49)

$$\nabla \bar{u}_n \to \nabla \bar{u}$$
 p.p., avec un domination par une fonction H appartenant à $L^2(\Omega)$. (3.50)

On a alors $f_n \to f$ p.p. et $|f_n| \le C_1(1+|G|^\delta+|H|^\delta)$ p.p. (et pour tout $n \in \mathbb{N}$). Comme $0 \le \delta \le 1$, on a $|G|^\delta+|H|^\delta \in L^2(\Omega)$. Le théorème de convergence dominée (dans $L^2(\Omega)$) donne alors $f_n \to f$ dans $L^2(\Omega)$, en contradiction avec (3.48).

(b) La question 2 donne que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H_0^1(\Omega)$. Si $u_n \not\to u$ faiblement dans $H_0^1(\Omega)$, il existe $\varepsilon > 0$, $\psi \in H^{-1}(\Omega)$ et une sous-suite, encore noté $(u_n)_{n\in\mathbb{N}}$, t.q.

$$|\langle \psi, u_n - u \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}| \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (3.51)

Puis, après extraction éventuelle d'une sous-suite, on peut supposer qu'il existe $w \in H^1_0(\Omega)$ tel que

$$u_n \to w$$
 faiblement dans $H_0^1(\Omega)$, (3.52)

$$\bar{u}_n \to \bar{u}$$
 p.p.. (3.53)

Soit $v \in H_0^1(\Omega)$; comme $u_n = T(\bar{u}_n)$, on a

$$\int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla v \, dx + \int_{\Omega} f_n v \, dx = \int_{\Omega} g v \, dx.$$

Comme $a(\bar{u}_n) \to a(\bar{u})$ p.p. et $|a(\bar{u}_n)| \le \beta$ p.p., on a, par convergence dominée, $a(\bar{u}_n)\nabla v \to a(\bar{u})\nabla v$ dans $L^2(\Omega)^N$. En passant à la limite quand $n \to +\infty$ dans l'égalité précédente, on obtient donc

$$\int_{\Omega} a(\bar{u}) \nabla w \cdot \nabla v \, dx + \int_{\Omega} f v \, dx = \int_{\Omega} g v \, dx,$$

ce qui prouve que w=u, en contradiction avec (3.51). On a bien ainsi montré que $u_n\to u$ faiblement dans $H^1_0(\Omega)$ quand $n\to +\infty$.

(c) Pour tout $n \in \mathbb{N}$ on a

$$\int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} g u_n \, dx - \int_{\Omega} f_n u_n \, dx.$$

Comme $u_n \to u$ dans $L^2(\Omega)$ et que $f_n \to f$ dans $L^2(\Omega)$, on en déduit

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} gu \, dx - \int_{\Omega} fu \, dx.$$

et donc, comme $u = T(\bar{u})$,

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} a(\bar{u}) \nabla u \cdot \nabla u \, dx.$$

On remarque maintenant que

$$\alpha \|u_n - u\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} a(\bar{u}_n)(\nabla u_n - \nabla u) \cdot (\nabla u_n - \nabla u) \, \mathrm{d}x.$$

Pour montrer que $u_n \to u$ dans $H_0^1(\Omega)$, il suffit donc de montrer que

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) (\nabla u_n - \nabla u) \cdot (\nabla u_n - \nabla u) \, dx = 0.$$
 (3.54)

Pour établir (3.54), remarquons tout d'abord qu'un raisonnement par l'absurde permet de montrer que

$$a(\bar{u}_n)\nabla u \to a(\bar{u})\nabla u$$
 dans $L^2(\Omega)^N$, quand $n \to +\infty$.

En utilisant le fait que $\nabla u_n \to \nabla u$ faiblement dans $L^2(\Omega)^N$, on en déduit que

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla u \cdot \nabla u_n \, dx = \int_{\Omega} a(\bar{u}) \nabla u \cdot \nabla u \, dx$$

$$\text{et} \lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla u \cdot \nabla u \, dx = \int_{\Omega} a(\bar{u}) \nabla u \cdot \nabla u \, dx.$$

Ceci permet de montrer (3.54) et donc de conclure que $u_n \to u$ dans $H^1_0(\Omega)$, ce qui prouve la continuité de l'opérateur T de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$.

4. La suite $(f_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$ et la suite $(\bar{u}_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$ et donc relativement compacte dans $L^2(\Omega)$. On peut donc supposer, après extraction d'une sous-suite, qu'il existe $f\in L^2(\Omega)$ et $\zeta\in L^2(\Omega)$ tels que

$$f_n \to f$$
 faiblement dans $L^2(\Omega)$, $\bar{u}_n \to \zeta$ p.p.. (3.55)

En posant $b = a(\zeta)$, on a donc $b \in L^{\infty}(\Omega)$ et $a(\bar{u}_n) \to b$ p.p..

(On peut montrer que $\zeta \in H_0^1(\Omega)$ mais il est faux de dire que $f = h(\zeta, \nabla \zeta)$ p.p..)

Comme $\alpha \leq b \leq \beta$ p.p., il existe une et une seule solution u de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} b \nabla u \cdot \nabla v \, dx = \int_{\Omega} (g - f) v \, dx \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (3.56)

On va montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge dans $H_0^1(\Omega)$ vers u, solution de (3.56) (on travaille ici avec la suite extraite qui vérifie (3.55)).

On sait déjà que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$. En raisonnant par l'absurde, il est alors assez facile de montrer que $u_n\to u$ faiblement dans $H^1_0(\Omega)$. En effet, comme la $(u_n)_{n\in\mathbb{N}}$ est bornée, il existe $w\in H^1_0(\Omega)$ tel que (après extraction de sous-suite) $u_n\to w$ faiblement dans $H^1_0(\Omega)$. On a alors, pour tout $n\in\mathbb{N}$ et tout $v\in H^1_0(\Omega)$,

$$\int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla v \, dx = \int_{\Omega} (g - f_n) v \, dx.$$

En passant à la limite quand $n \to +\infty$ dans cette équation, grâce aux convergences données dans (3.55), on obtient

$$\int_{\Omega} b\nabla w \cdot \nabla v \, dx = \int_{\Omega} (g - f)v \, dx.$$

Ceci prouve que w=u. On en déduit bien que $u_n\to u$ faiblement dans $H^1_0(\Omega)$ quand $n\to +\infty$. On a donc aussi $u_n\to u$ dans $L^2(\Omega)$.

Il reste à montrer la convergence (forte) de u_n vers u dans $H_0^1(\Omega)$. Pour cela on remarque tout d'abord que

$$\int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} (g - f_n) u_n \, dx \to \int_{\Omega} (g - f) u \, dx \text{ quand } n \to +\infty.$$

Comme u est solution de (3.56) on a donc

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} b \nabla u \cdot \nabla u \, dx.$$

En utilisant cette convergence et (3.55) on montre alors que

$$\lim_{n \to +\infty} \int_{\Omega} a(\bar{u}_n) \nabla (u_n - u) \cdot \nabla (u_n - u) \, \mathrm{d}x = 0.$$

 $\text{Comme }\alpha\|u_n-u\|_{H^1_0(\Omega)}^2\leq \int_\Omega a(\bar{u}_n)\nabla(u_n-u)\cdot\nabla(u_n-u)\;\mathrm{d}x\;\text{on conclut bien que }u_n\to u\;\mathrm{dans}\;H^1_0(\Omega).$

5. Il suffit ici d'appliquer le théorème de Schauder. L'opérateur T est continu et compact de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$. Il existe R>0 t.q. T envoie la boule de centre 0 et de rayon R (de $H^1_0(\Omega)$) dans elle-même. Le théorème de Schauder permet alors de dire qu'il existe u dans cette boule (et donc dans $H^1_0(\Omega)$) t.q. u=T(u). La fonction u ainsi trouvée est solution de (3.27) avec $\bar{u}=u$.

Exercice 3.2 (Existence par Schauder, généralisation de l'exercice 3.1) On suit la même démarche que pour l'exercice 3.1 (les modifications sont mineures). On construit un opérateur, noté T, de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$. On montre que, si R est bien choisi, T envoie la boule de centre 0 et de rayon R dans elle même. Enfin, on montre la continuité et la compacité de T et on conclut alors par le théorème de Schauder.

Construction de ${\cal T}$

Soit $\overline{u} \in H^1_0(\Omega)$. En choisissant un représentant de la classe de fonctions \overline{u} , la fonction $x \mapsto a(x, \overline{u}(x))$ est borélienne et ne change que sur un ensemble de mesure nulle si on change le représentant de \overline{u} , ceci est dû au fait que a est une fonction de Carathéodory (ce qui est la première hypothèse sur a). Avec la seconde hypothèse sur a, on a donc $a(\cdot, \overline{u}) \in L^{\infty}(\Omega)$ et $\alpha \leq a(\cdot, \overline{u}) \leq \beta$ p.p..

De même, en choisissant des représentants de \bar{u} et $\nabla \bar{u}$, la fonction $x \mapsto f(x, \bar{u}(x), \nabla \bar{u})$ est borélienne et ne change que sur un ensemble de mesure nulle si on change les représentants de \bar{u} et $\nabla \bar{u}$, ceci est aussi dû au fait que f est une fonction de Carathéodory (ce qui est la première hypothèse sur f). Avec la seconde hypothèse sur f, on a

$$|f(\cdot,\bar{u},\nabla\bar{u})| \leq C(d+|\bar{u}|^{\delta}+|\nabla\bar{u}|^{\delta}) \text{ p.p.}$$

et donc $f(\cdot, \bar{u}, \nabla \bar{u}) \in L^2(\Omega)$ car $d, \bar{u}, |\nabla \bar{u}| \in L^2(\Omega)$ et $\delta \leq 1$.

On peut maintenant appliquer le théorème 2.6, il donne l'existence et l'unicité de u solution de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} a(x, \bar{u}(x)) \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x, \bar{u}(x), \nabla \bar{u}(x)) v(x) \, dx, \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
(3.57)

On pose $u=T(\bar{u})$. On a ainsi construit une application T de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$. Pour conclure, il suffit maintenant de montrer que T admet un point fixe.

Estimations sur T

Soit $\overline{u} \in H_0^1(\Omega)$ et $u = T(\overline{u})$. En prenant v = u dans (3.57), on obtient

$$\alpha \|u\|_{H^1_0(\Omega)}^2 \le C(\|d\|_{L^2(\Omega)} + \||\bar{u}|^{\delta}\|_{L^2(\Omega)} + C_1 \||\nabla \bar{u}|^{\delta}\|_{L^2(\Omega)}) \|u\|_{L^2(\Omega)}.$$

Avec C_{Ω} donnée par l'inégalité de Poincaré, on en déduit

$$\frac{\alpha}{C_{\Omega}} \|u\|_{H_0^1(\Omega)} \le C(\|d\|_{L^2(\Omega)} + \||\bar{u}|^{\delta}\|_{L^2(\Omega)} + \||\nabla \bar{u}|^{\delta}\|_{L^2(\Omega)}). \tag{3.58}$$

Mais comme dans l'exercice 3.1, on a (en utilisant l'inégalité de Hölder)

$$\||\bar{u}|^{\delta}\|_{L^2(\Omega)}^2 \leq \left(\int_{\Omega} \bar{u}^2 \,\mathrm{d}x\right)^{\delta} |\Omega|^{1-\delta} \ \text{ et } \ \||\nabla \bar{u}|^{\delta}\|_{L^2(\Omega)}^2 \leq \left(\int_{\Omega} |\nabla \bar{u}|^2 \,\mathrm{d}x\right)^{\delta} |\Omega|^{1-\delta}.$$

On en déduit (avec l'inégalité de Poincaré) l'existence de \bar{C} ne dépendant que de Ω et δ t.q.

$$\||\bar{u}|^{\delta}\|_{L^{2}(\Omega)} \leq \bar{C} \|\bar{u}\|_{H_{0}^{1}(\Omega)}^{\delta} \text{ et } \||\nabla \bar{u}|^{\delta}\|_{L^{2}(\Omega)} \leq \bar{C} \|\bar{u}\|_{H_{0}^{1}(\Omega)}^{\delta}.$$

Avec (3.45), on obtient l'existence de C_2 ne dépend que α , Ω et C t.q.

$$||u||_{H_0^1(\Omega)} \le C_2 \left(1 + ||\bar{u}||_{H_0^1(\Omega)}^{\delta} \right). \tag{3.59}$$

Pour conclure cette étape, on remarque qu'il existe $R \in \mathbb{R}_+^*$ tel que $R > C_2(1+R^{\delta})$ (car $\delta < 1$) et donc

$$\|\bar{u}\|_{H^1_{\sigma}(\Omega)} \le R \Rightarrow \|u\|_{H^1_{\sigma}(\Omega)} \le C_2(1+R^{\delta}) \le R.$$

Ce qui montre que T envoie B_R dans B_R où B_R est la boule (fermée) de centre 0 et de rayon R.

Continuité de T

Soit $(\overline{u}_n)_{n\in\mathbb{N}}$ une suite de $H^1_0(\Omega)$ et $\overline{u}\in H^1_0(\Omega)$. On suppose que $\overline{u}_n\to \overline{u}$ dans $H^1_0(\Omega)$ (quand $n\to +\infty$). On pose $u_n=T(\overline{u}_n)$ et $u=T(\overline{u})$. On veut montrer que $u_n\to u$ dans $H^1_0(\Omega)$ quand $n\to +\infty$. On pose aussi $g_n=f(\cdot,\overline{u}_n,\nabla\overline{u}_n), g=f(\cdot,\overline{u},\nabla\overline{u}), A_n=a(\cdot,\overline{u}_n)$ et $A=a(\cdot,\overline{u})$.

On commence par remarquer que $g_n \to g$ dans $L^2(\Omega)$ (quand $n \to +\infty$). La démonstration est ici quasiment identique à celle de $f_n \to f$ dans l'exercice 3.1; la seule modification est dans la domination de g_n qui ici est $|g_n| \le C(d+|G|^\delta+|H|^\delta)$ p.p. (au lieu de $|f_n| \le C_1(1+|G|^\delta+|H|^\delta)$ p.p. dans l'exercice 3.1).

On montre maintenant que $u_n \to u$ faiblement dans $H^1_0(\Omega)$. On suit encore le même raisonnement que dans l'exercice 3.1. L'inégalité (3.59) donne que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$. Si $u_n \not\to u$ faiblement dans $H^1_0(\Omega)$, il existe $\varepsilon > 0$, $\psi \in H^{-1}(\Omega)$ et une sous-suite, encore noté $(u_n)_{n\in\mathbb{N}}$, t.q.

$$|\langle \psi, u_n - u \rangle_{H^{-1}(\Omega), H^1_{\sigma}(\Omega)}| \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (3.60)

Puis, après extraction éventuelle d'une sous-suite, il existe $w \in H_0^1(\Omega)$ tel que

$$u_n \to w$$
 faiblement dans $H^1_0(\Omega)$, $\bar{u}_n \to \bar{u}$ p.p..

Soit $v \in H_0^1(\Omega)$. Comme $u_n = T(\bar{u}_n)$, on a

$$\int_{\Omega} A_n \nabla u_n \cdot \nabla v \, dx = \int_{\Omega} g_n v \, dx. \tag{3.61}$$

Comme $A_n \to A$ p.p. (puisque a est p.p. continue par rapport à son deuxième argument) et $|A_n| \le \beta$ p.p., on a, par convergence dominée, $A_n \nabla v \to A \nabla v$ dans $L^2(\Omega)^N$. En passant à la limite quand $n \to +\infty$ dans l'égalité précédente, on obtient donc

$$\int_{\Omega} A \nabla w \cdot \nabla v \, dx = \int_{\Omega} g v \, dx.$$

Ce qui prouve que w=u (grâce à l'unicité de la solution de (3.57)) et donc $u_n\to u$ faiblement dans $H^1_0(\Omega)$, en contradiction avec (3.60). On a bien ainsi montré que $u_n\to u$ faiblement dans $H^1_0(\Omega)$ quand $n\to +\infty$ (sans extraction de sous-suite).

On veut montrer maintenant que $u_n \to u$ dans $H_0^1(\Omega)$ (et pas seulement faiblement). En prenant $v = u_n$ dans (3.61), on a

$$\int_{\Omega} A_n \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} g_n u_n \, dx.$$

Comme $u_n \to u$ dans $L^2(\Omega)$ et que $g_n \to g$ dans $L^2(\Omega)$, on en déduit

$$\lim_{n \to +\infty} \int_{\Omega} A_n \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} gu \, dx,$$

et donc, comme $u = T(\bar{u})$, (3.57) donne

$$\lim_{n \to +\infty} \int_{\Omega} A_n \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} A \nabla u \cdot \nabla u \, dx.$$
 (3.62)

On remarque maintenant que

$$\alpha \|u_n - u\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} A_n (\nabla u_n - \nabla u) \cdot (\nabla u_n - \nabla u) \, \mathrm{d}x. \tag{3.63}$$

Comme dans l'exercice 3.1, on utilise le fait que

$$A_n \nabla u \to A \nabla u$$
 dans $L^2(\Omega)^N$, quand $n \to +\infty$

et que $\nabla u_n \to \nabla u$ faiblement dans $L^2(\Omega)$. Ceci donne

$$\lim_{n \to +\infty} \int_{\Omega} A_n \nabla u \cdot \nabla u_n \, dx = \lim_{n \to +\infty} \int_{\Omega} A \nabla u \cdot \nabla u \, dx$$

$$\text{et } \lim_{n \to +\infty} \int_{\Omega} A_n \nabla u \cdot \nabla u \, dx = \lim_{n \to +\infty} \int_{\Omega} A \nabla u \cdot \nabla u \, dx,$$

et donc, avec (3.62),

$$\lim_{n \to +\infty} \int_{\Omega} A_n (\nabla u_n - \nabla u) \cdot (\nabla u_n - \nabla u) \, \mathrm{d}x = 0.$$

On conclut bien, avec (3.63), que $u_n \to u$ dans $H_0^1(\Omega)$. Ce qui prouve la continuité de l'opérateur T de $H_0^1(\Omega)$ dans $H_0^1(\Omega)$.

Compacité de T

On suit toujours le raisonnement fait pour l'exercice 3.1. Soit $(\overline{u}_n)_{n\in\mathbb{N}}$ une suite bornée de $H^1_0(\Omega)$. On pose $g_n=f(\cdot,\overline{u}_n,\nabla\overline{u}_n)$ et $u_n=T(\overline{u}_n)$.

La suite $(g_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)$ et la suite $(\bar{u}_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$ et donc relativement compacte dans $L^2(\Omega)$. On peut donc supposer, après extraction d'une sous-suite, qu'il existe $g\in L^2(\Omega)$ et $\zeta\in L^2(\Omega)$ t.q.

$$g_n \to g$$
 faiblement dans $L^2(\Omega),$ $\bar{u}_n \to \zeta \ \text{p.p.}$. (3.64)

En posant $b = a(\cdot, \zeta)$, on a donc $b \in L^{\infty}(\Omega)$ et $a(\cdot, \bar{u}_n) \to b$ p.p..

Comme $\alpha \leq b \leq \beta$ p.p., il existe une et une seule solution u de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} b \nabla u \cdot \nabla v \, dx = \int_{\Omega} gv \, dx \text{ pour tout } v \in H_0^1(\Omega). \end{cases}$$
 (3.65)

On va montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge dans $H_0^1(\Omega)$ vers u, solution de (3.65) (on travaille ici avec la suite extraite qui vérifie (3.64)).

On sait déjà que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$. En raisonnant par l'absurde, il est alors assez facile de montrer que $u_n\to u$ faiblement dans $H^1_0(\Omega)$. En effet, supposons qu'il existe $w\in H^1_0(\Omega)$ tel que, après extraction de sous-suite, $u_n\to w$ faiblement dans $H^1_0(\Omega)$. On a alors, pour tout $n\in\mathbb{N}$ et tout $v\in H^1_0(\Omega)$,

$$\int_{\Omega} a(x, \bar{u}_n) \nabla u_n \cdot \nabla v \, dx = \int_{\Omega} g_n v \, dx.$$

En passant à la limite quand $n \to +\infty$ dans cette équation, grâce aux convergences données dans (3.64), on obtient

$$\int_{\Omega} b\nabla w \cdot \nabla v \, dx = \int_{\Omega} gv \, dx.$$

Ceci prouve que w=u. On en déduit bien que $u_n\to u$ faiblement dans $H^1_0(\Omega)$ quand $n\to +\infty$. On a donc aussi $u_n\to u$ dans $L^2(\Omega)$.

Il reste à montrer la convergence (forte) de u_n vers u dans $H_0^1(\Omega)$. Pour cela on remarque tout d'abord que

$$\int_{\Omega} a(x, \bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} g_n u_n \, dx \to \int_{\Omega} gu \, dx \text{ quand } n \to +\infty.$$

Comme u est solution de (3.65) on a donc

$$\lim_{n \to +\infty} \int_{\Omega} a(x, \bar{u}_n) \nabla u_n \cdot \nabla u_n \, dx = \int_{\Omega} b \nabla u \cdot \nabla u \, dx.$$

En utilisant cette convergence et (3.64) on montre alors que

$$\lim_{n \to +\infty} \int_{\Omega} a(x, \bar{u}_n) \nabla(u_n - u) \cdot \nabla(u_n - u) \, \mathrm{d}x = 0.$$

Comme $\alpha \|u_n - u\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} a(x, \bar{u}_n) \nabla (u_n - u) \cdot \nabla (u_n - u) \, dx$ on conclut bien que $u_n \to u$ dans $H_0^1(\Omega)$. (On notera que la convergence est obtenue seulement pour la suite extraite qui vérifie (3.64).)

On a bien montré la compacité de T.

Conclusion

Il suffit ici d'appliquer le théorème de Schauder. L'opérateur T est continu et compact de $H^1_0(\Omega)$ dans $H^1_0(\Omega)$. D'après la question 2, il existe R>0 tel que T envoie la boule de centre 0 et de rayon R (de $H^1_0(\Omega)$) dans ellemême. Le théorème de Schauder permet alors de dire qu'il existe u dans cette boule (et donc dans $H^1_0(\Omega)$) tel que u=T(u). La fonction u ainsi trouvée est solution de (3.28).

Exercice 3.3 (Degré d'une application affine)

1. Il est clair que f est continue et compacte et que u - f(u) = 0 si et seulement si u = a. Si $||a||_E \neq R$, $d(\mathrm{Id} - f, B_R, a)$ est donc bien défini.

Si $R < ||a||_E$, l'équation u - f(u) = 0 n'a pas de solution dans B_R et donc $d(\mathrm{Id} - f, B_R, 0) = 0$.

Si $R > \|a\|_E$, on pose h(t,v) = tf(v). La fonction h est continue et compacte de $[0,1] \times E$ dans E et l'équation u = tf(u) n'a pas de solution sur ∂B_R pour $t \in [0,1]$ (car l'unique solution de u = tf(u) est ta). On a donc $d(\mathrm{Id} - f, B_R, 0) = d(\mathrm{Id} - h(1, \cdot), B_R, 0) = d(\mathrm{Id} - h(0, \cdot), B_R, 0) = d(\mathrm{Id}, B_R, 0) = 1$.

- 2. (a) Soit $u_1, u_2 \in E$ t.q. $u_1 f(u_1) = 0$ et $u_2 f(u_2) = 0$. En posant $u = u_1 u_2$ on a donc u Lu = 0. Comme 1 n'est pas valeur propre de L, on a donc u = 0, ce qui prouve bien que l'équation u f(u) = 0 a au plus une solution.
 - (b) On pose h(t, u) = Lu + ta. La fonction h est continue et compacte de $[0, 1] \times E$ dans E. Soit R > 0. L'équation u = h(0, u) n'a pas de solution sur ∂B_R (car 1 n'est pas valeur propre de L).

Si l'équation u = h(t, u) n'a pas de solution pour $t \in]0, 1]$ sur ∂B_R , on a

$$d(\mathrm{Id} - f, B_R, 0) = d(\mathrm{Id} - h(1, 0), B_R, 0) = d(\mathrm{Id} - L, B_R, 0) \neq 0,$$

d'après le théorème 3.8. Il existe donc $u \in B_R$ t.q. u - f(u) = 0.

D'autre part, si l'équation u = h(t, u) a une solution sur ∂B_R pour un t dans]0, 1]. On note c cette solution et on remarque (c/t) - f(c/t) = 0.

Dans tous les cas, on a donc montré qu'il existe $u \in E$ t.q. u - f(u) = 0.

Enfin, il est facile de voir que $d(\operatorname{Id} - f, B_R, 0) = d(\operatorname{Id} - L, B_R, 0) \neq 0$ si $R > ||b||_E$ et $d(\operatorname{Id} - f, B_R, 0) = 0$ si $R < ||b||_E$.

Exercice 3.4 (Convection-diffusion, Dirichlet, existence)

1. Le théorème 1.38 donne que $u \in L^6(\Omega)$ si N=3 et que $u \in L^r(\Omega)$ pour tout $r \in [1,+\infty[$ si N=2. Comme φ est lipschitzienne et $\varphi(0)=0$, il existe C_1 tel que $|\varphi(s)| \leq C_1 |s|$ pour tout $s \in \mathbb{R}$. On a donc aussi $\varphi(u) \in L^6(\Omega)$ si N=3 et $\varphi(u) \in L^r(\Omega)$ pour tout $r \in [1,+\infty[$ si N=2.

Pour N=3, on a $W\in L^3(\Omega)^3$ et $\varphi(u)\in L^6(\Omega)$, ce qui donne $W\varphi(u)\in L^2(\Omega)^3$ car $1/6+\frac{1}{3}=\frac{1}{2}$.

Pour N=2, on a $W\in L^p(\Omega)^2$ et $\varphi(u)\in L^{\frac{2p}{p-2}}(\Omega)$, ce qui donne $W\varphi(u)\in L^2(\Omega)^2$ car $\frac{1}{p}+\frac{p-2}{2p}=\frac{1}{2}$.

2. L'application $v\mapsto \int_{\Omega}\varphi(\tilde{u}(x))W(x)\cdot\nabla v(x)\,\mathrm{d}x+\int_{\Omega}f(x)v(x)\,\mathrm{d}x$ est linéaire continue de $H^1_0(\Omega)$ dans \mathbb{R} . L'existence et l'unicité de u solution de (3.31) est donc une conséquence du théorème 2.9.

3. On montre tout d'abord la continuité de h. Soit $(t_n, \tilde{u}_n)_{n \in \mathbb{N}}$ une suite de $[0,1] \times L^q(\Omega)$ t.q. $t_n \to t$ et $\tilde{u}_n \to \tilde{u}$ dans $L^q(\Omega)$ quand $n \to +\infty$. On pose $u_n = h(t_n, \tilde{u}_n)$ et $u = h(t, \tilde{u})$. On veut montrer que $u_n \to u$ dans $L^q(\Omega)$. On raisonne par l'absurde : si $u_n \not\to u$ dans $L^q(\Omega)$, il existe $\varepsilon > 0$ et une sous-suite, encore notée $(u_n)_{n \in \mathbb{N}}$, t.q.

$$||u_n - u||_{L^q(\Omega)} \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
 (3.66)

Après une éventuelle extraction de sous-suite (ce qui ne change pas (3.66)), on peut aussi supposer que

$$\tilde{u}_n \to \tilde{u}$$
 p.p. et $|\tilde{u}_n| \leq H$ p.p. pour tout $n \in \mathbb{N}$,

avec $H \in L^q(\Omega)$. On en déduit (par convergence dominée dans $L^q(\Omega)$ car φ est continue et $|\varphi(s)| \leq C_1 |s|$) que $\varphi(t_n \tilde{u}_n) \to \varphi(t \tilde{u})$ dans $L^q(\Omega)$ et donc $\varphi(t_n \tilde{u}_n) W \to \varphi(t \tilde{u}) W$ dans $L^2(\Omega)^N$ (en remarquant que $|HW| \in L^2(\Omega)$, car $|W| \in L^p(\Omega)$ et $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$).

Comme la suite $(\varphi(t_n\tilde{u}_n)W)_{n\in\mathbb{N}}$ est bornée dans $L^2(\Omega)^N$ et que u_n est solution de (3.31) avec $t_n\tilde{u}_n$ au lieu de \tilde{u} , on montre (en prenant $v=u_n$ dans 3.31) que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^1_0(\Omega)$. On peut donc supposer (toujours après extraction de sous-suite) qu'il existe \bar{u} t.q. $u_n\to\bar{u}$ faiblement dans $H^1_0(\Omega)$. On a donc aussi (par compacité de l'injection de $H^1_0(\Omega)$ dans $L^q(\Omega)$) $u_n\to\bar{u}$ dans $L^q(\Omega)$. On montre alors que \bar{u} est solution de (3.31) avec $t\tilde{u}$ au lieu de \tilde{u} (et donc que $\bar{u}=u$). Il suffit pour cela de passer à limite, pour tout $v\in H^1_0(\Omega)$, dans l'équation suivante

$$\int_{\Omega} \nabla u_n(x) \cdot \nabla v(x) \, dx - \int_{\Omega} \varphi(t_n \tilde{u}_n(x)) W(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x) v(x) \, dx.$$

Ce passage à limite découle facilement du fait que $\nabla u_n \to \nabla \bar{u}$ faiblement dans $L^2(\Omega)^N$ et $\varphi(t_n \tilde{u}_n) W \to \varphi(t \tilde{u}) W$ dans $L^2(\Omega)^N$.

On obtient ainsi que $\bar{u}=B(t\tilde{u})=u$, en contradiction avec (3.66) (car $u_n\to\bar{u}$ dans $L^q(\Omega)$). On a ainsi montré que $u_n\to u$ dans $L^q(\Omega)$. En fait, un raisonnement semblable par contradiction montrerait même que $u_n\to u$ faiblement dans $H^1_0(\Omega)$ mais ceci est inutile pour la suite.

On montre maintenant la compacité de h (ce qui est un peu plus facile). On suppose que t est quelconque dans [0,1] et que \tilde{u} reste dans un borné de $L^q(\Omega)$. On pose $u=h(t,\tilde{u})$. La fonction u est donc solution de (3.31) avec $t\tilde{u}$ au lieu de \tilde{u} . Grâce $|\varphi(s)| \leq C_1 |s|$, la fonction $\varphi(\tilde{u})$ reste dans un borné de $L^q(\Omega)$ et donc $\varphi(\tilde{u})W$ reste dans un borné de $L^q(\Omega)^N$. En prenant maintenant v=u dans (3.31) (avec $t\tilde{u}$ lieu de \tilde{u}), on en déduit que u reste dans un borné de $H^1_0(\Omega)$. Comme $H^1_0(\Omega)$ s'injecte compactement dans $L^q(\Omega)$, on en déduit que u reste dans un compact de $L^q(\Omega)$, ce qui prouve bien la compacité de h.

Remarque : un moyen probablement un peu plus rapide pour montrer la continuité et la compacité de h est de remarquer que h est la composée de B, qui est un opérateur continu et compact et $L^q(\Omega)$ dans $L^q(\Omega)$, avec l'application $(t,u)\mapsto tu$ qui est continue de $[0,1]\times L^q(\Omega)$ dans $L^q(\Omega)$.

4. (a) La fonction ψ (de \mathbbm{R} dans \mathbbm{R}) est de classe C^1 sur \mathbbm{R} et est lipschitzienne (car $|\psi'(s)| \leq 1$ pour tout $s \in \mathbbm{R}$). Le lemme 2.23 donne alors que $\psi(u) \in H^1_0(\Omega)$ et $\nabla \psi(u) = \frac{\nabla u}{(1+|u|)^2}$. On remarque aussi $|\psi(s)| \leq 1$ pour tout s.

En prenant $v = \psi(u)$ dans (3.32) et en utilisant $|\varphi(s)| \le C_1 |s|$ et $|\psi(s)| \le 1$, on obtient

$$\int_{\Omega} \frac{|\nabla u(x)|^{2}}{(1+|u(x)|)^{2}} dx \leq C_{1} \int_{\Omega} \frac{|tu(x)|}{(1+|u(x)|)^{2}} |W(x)| |\nabla u(x)| dx + ||f||_{L^{1}(\Omega)}
\leq C_{1} \int_{\Omega} |W(x)| \frac{|\nabla u(x)|}{1+|u(x)|} dx + ||f||_{L^{1}(\Omega)}.$$

En utilisant $ab \leq \frac{a^2}{2C_1} + 2C_1b^2$ pour $a,b \in {\rm I\!R}$, on obtient

$$\frac{1}{2} \int_{\Omega} \frac{|\nabla u(x)|^2}{(1+|u(x)|)^2} \, \mathrm{d}x \le 2C_1^2 ||W||_{L^2(\Omega)}^2 + ||f||_{L^1(\Omega)}.$$

On remarque maintenant que (toujours par le lemme 2.23) $\ln(1+|u|)\in H^1_0(\Omega)$ et l'inégalité précédente donne

$$\|\ln(1+|u|)\|_{H^1_0(\Omega)}^2 \le 2(2C_1^2\||W|\|_{L^2(\Omega)}^2 + \|f\|_{L^1(\Omega)}).$$

Ce qui donne la majoration désirée avec $C_l^2=2(2C_1^2\||W|\|_{L^2(\Omega)}^2+\|f\|_{L^1(\Omega)}).$

(b) On a

$$\int_{\Omega} |v(x)|^q dx = \int_{\{|v| \geq A\}} |v(x)|^q dx + \int_{\{|v| < A\}} |v(x)|^q dx \leq \int_{\{|v| \geq A\}} |v(x)|^q dx + A^q \lambda_N(\Omega).$$

Puis, l'inégalité de Hölder (avec $\frac{2^*}{q}$ et son conjugué) donne

$$\int_{\{|v| \ge A\}} |v(x)|^q dx = \int_{\Omega} |v(x)|^q \mathbb{1}_{\{|v| \ge A\}} dx \le \left(\int_{\Omega} |v(x)|^{2^*} dx\right)^{\frac{q}{2^*}} \lambda_N(\{|v| \ge A\})^{1-\frac{q}{2^*}}.$$

Ce qui donne bien l'inégalité désirée.

(c) On prend v = u dans (3.32), on obtient, avec l'inégalité de Hölder,

$$||u||_{H_0^1(\Omega)}^2 \le C_1 ||u||_{L^q(\Omega)} ||W||_{L^p(\Omega)} ||u||_{H_0^1(\Omega)} + ||f||_{L^2} C_{\Omega} ||u||_{H_0^1(\Omega)}, \tag{3.67}$$

où C_{Ω} ne dépend que de Ω et est donné par l'inégalité de Poincaré.

On commence par utiliser l'inégalité donnée dans 4(b) (élevée à la puissance $\frac{1}{q}$). Pour tout A > 0 on a

$$||u||_{L^{q}(\Omega)} \le 2||u||_{L^{2^{*}}} \lambda_{N}(\{|u| \ge A\})^{\frac{1}{q} - \frac{1}{2^{*}}} + 2A\lambda_{N}(\Omega)^{\frac{1}{q}}.$$

Comme l'injection de $H^1_0(\Omega)$ dans $L^{2^*}(\Omega)$ est continue, il existe \bar{C}_{Ω} ne dépendant que de Ω t.q. $\|u\|_{L^{2^*}(\Omega)} \leq \bar{C}_{\Omega} \|u\|_{H^1_0(\Omega)}$. On a donc

$$||u||_{L^{q}(\Omega)} \le 2\bar{C}_{\Omega}||u||_{H^{1}_{0}(\Omega)}\lambda_{N}(\{|u| \ge A\})^{\frac{1}{q}-\frac{1}{2^{\star}}} + 2A\lambda_{N}(\Omega)^{\frac{1}{q}}.$$

On utilise maintenant 4(a) (et l'inégalité de Poincaré). Pour tout $A \ge 0$ on a

$$\ln(1+A)\lambda_N(\{|u| \ge A\})^{\frac{1}{2}} \le \|\ln(1+|u|)\|_{L^2(\Omega)} \le C_{\Omega}\|\ln(1+|u|)\|_{H_0^1(\Omega)} \le C_{\Omega}C_l.$$

Comme $\lim_{A\to +\infty} \ln(1+A) = +\infty$, il existe donc A ne dépendant (comme C_l , noter aussi que p et q sont donnés par W) que de Ω , W, φ et f t.q.

$$\lambda_N(\{|u| \ge A\})^{\frac{1}{q} - \frac{1}{2^*}} \le \frac{1}{4\bar{C}_{\Omega}C_1 ||W||_{L^p(\Omega)}}.$$

Avec ce choix de A, (3.67) donne

$$||u||_{H_0^1(\Omega)}^2 \le \frac{1}{2} ||u||_{H_0^1(\Omega)}^2 + (2AC_1||W||_{L^p(\Omega)}\lambda_N(\Omega)^{\frac{1}{q}} + ||f||_{L^2(\Omega)}C_{\Omega})||u||_{H_0^1(\Omega)}.$$

On en déduit

$$||u||_{H_0^1(\Omega)} \le 2(2AC_1||W||_{L^p(\Omega)}\lambda_N(\Omega)^{\frac{1}{q}} + ||f||_{L^2(\Omega)}C_{\Omega}).$$

Ce qui est une estimation sur $||u||_{H_0^1(\Omega)}$ ne dépendant que Ω, W, φ et f.

5. Comme $H_0^1(\Omega)$ s'injecte continûment dans $L^q(\Omega)$, la question 4(c) R>0 t.q.

$$t \in [0,1], u \in L^{q}(\Omega), u = h(t,u) \Rightarrow ||u||_{L^{q}(\Omega)} < R.$$

La question 3 donne la continuité et la compacité de h de $[0,1] \times L^q(\Omega)$ dans $L^q(\Omega)$. On peut donc appliquer l'invariance par homotopie du degré topologique sur la boule (ouverte) de $L^p(\Omega)$ de centre 0 et de rayon R avec comme point cible 0. On obtient

$$d(\mathrm{Id} - h(1, \cdot), B_R, 0) = d(\mathrm{Id} - h(0, \cdot), B_R, 0).$$

L'application $\tilde{u}\mapsto h(0,\tilde{u})$ est constante $(h(0,\tilde{u})$ est, pour tout \tilde{u} , la solution faible de $-\Delta u=f$ dans Ω avec u=0 sur $\partial\Omega$). La solution de v=h(0,v) est unique et appartient à B_R . Ceci suffit pour dire que $d(\mathrm{Id}-h(0,\cdot),B_R,0)\neq 0$ (on peut ramener la constante à 0 par homotopie en remarquant, par exemple, que $d(\mathrm{Id}-th(0,\cdot),B_R,0)$ ne dépend pas de $t\in[0,1]$, voir l'exercice 3.3).

6. On commence par remplacer $\int_{\Omega} f(x)v(x) \, \mathrm{d}x$ par $\langle T,v \rangle_{H^{-1}(\Omega),H^1_0(\Omega)}$ dans (3.30). La démonstration est alors très semblable à la précédente. Les seuls points demandant une petite modification sont dans les questions 4(a) et 4(c). Dans la question 4(a), on a majoré $\int_{\Omega} |f\psi(u)| dx$ par $||f||_{L^1(\Omega)}$. Il faut maintenant majorer

$$|\langle T, \psi(v) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}|.$$

Cette majoration se fait en remarquant que

$$\begin{split} |\langle T, \psi(v) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}| &\leq \|T\|_{H^{-1}(\Omega)} \|\psi(u)\|_{H_0^1(\Omega)} \leq \|T\|_{H^{-1}(\Omega)} \|\frac{|\nabla u|}{(1+|u|)^2}\|_{L^2(\Omega)} \leq \\ &\leq \|T\|_{H^{-1}(\Omega)} \|\frac{|\nabla u|}{1+|u|}\|_{L^2(\Omega)} \leq 4\|T\|_{H^{-1}(\Omega)}^2 + \frac{1}{4} \|\frac{|\nabla u|}{1+|u|}\|_{L^2(\Omega)}^2. \end{split}$$

Dans la question 4(c), on a majoré $\int_{\Omega} |fu| dx$ par $C_{\Omega} ||f||_{L^{2}(\Omega)} ||u||_{H^{1}_{0}(\Omega)}$. Il faut maintenant majorer

$$|\langle T, u \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}|.$$

Ce qui est facile car

$$|\langle T, u \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}| \le ||T||_{H^{-1}(\Omega)} ||u||_{H_0^1(\Omega)}.$$

Il reste maintenant à retirer l'hypothèse $\varphi(0)=0$. Ceci est assez facile car il suffit de se ramener au cas précédent en remplaçant φ par $\varphi-\varphi(0)$ et en ajoutant au second membre de $(3.30)-\int_{\Omega}\varphi(0)W(x)\cdot\nabla v(x)\,\mathrm{d}x$. On se ramène bien au cas précédent car l'application $v\mapsto\int_{\Omega}\varphi(0)W(x)\cdot\nabla v(x)\,\mathrm{d}x$ est bien un élément de $H^{-1}(\Omega)$ (car $W\in L^2(\Omega)^N$).

Exercice 3.5 (Convection-diffusion, Dirichlet, unicité)

1. La démonstration d'unicité faite pour le théorème 3.19 n'a pas utilisée complètement les hypothèses sur G (qui étaient $G \in C^1(\bar{\Omega}, \mathbb{R}^N)$ et $\operatorname{div} G = 0$). Elle a utilisé seulement le fait que $G \in L^2(\Omega)^N$. Ici nous avons $W \in L^p(\Omega)^N$. Comme p > N, ceci donne bien $W \in L^2(\Omega)^N$ et la démonstration faite pour le théorème 3.19 est donc aussi valable ici. Nous la rappelons rapidement.

Soient u_1 et u_2 deux solutions de (3.33). On a donc :

$$\int_{\Omega} \nabla u_1 \cdot \nabla v \, dx - \int_{\Omega} \varphi(u_1) W \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \tag{3.68}$$

et

$$\int_{\Omega} \nabla u_2 \cdot \nabla v \, dx - \int_{\Omega} \varphi(u_2) W \cdot \nabla v \, dx = \int_{\Omega} f v \, dx.$$
 (3.69)

Pour $n \in \mathbb{N}^{\star}$ on définit $T_n \in C(\mathbb{R}, \mathbb{R})$ par $T_n(s) = \max(-\frac{1}{n}, \min(s, \frac{1}{n}))$. Le lemme 2.24 (ou plutôt sa généralisation, voir la remarque 2.25) donne $T_n(u_1 - u_2) \in H^1_0(\Omega)$ et $\nabla T_n(u_1 - u_2) = \nabla (u_1 - u_2) \mathbb{1}_{A_n}$ avec $A_n = \{0 < |u_1 - u_2| < \frac{1}{n}\}$.

On prend $v = T_n(u_1 - u_2)$ dans (3.68) et (3.69), on obtient

$$\int_{\Omega} \nabla(u_1 - u_2) \cdot \nabla T_n(u_1 - u_2) \, \mathrm{d}x = \int_{\Omega} (\varphi(u_1) - \varphi(u_2)) W \cdot \nabla (T_n(u_1 - u_2)) \, \mathrm{d}x.$$

Avec C_1 tel que $|\varphi(s_1) - \varphi(s_2)| \le C_1 |s_1 - s_2|$ pour tout $s_1, s_2 \in \mathbb{R}$, ceci donne

$$\int_{A_n} |\nabla (u_1 - u_2)|^2 \, \mathrm{d}x \le \int_{A_n} C_1 |u_1 - u_2| \, |W| \, |\nabla (u_1 - u_2)| \, \mathrm{d}x.$$

On a $|u_1 - u_2| \le \frac{1}{n}$ p.p. dans A_n . En appliquant l'inégalité de Cauchy Schwarz dans la dernière intégrale, on obtient donc :

$$\int_{A_n} |\nabla (u_1 - u_2)|^2 \, \mathrm{d}x \le \frac{C_1}{n} \left(\int_{A_n} |W|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_{A_n} |\nabla (u_1 - u_2)|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

On a donc

$$\| |\nabla T_n(u_1 - u_2)| \|_{L^2(\Omega)} = \left(\int_{A_n} |\nabla (u_1 - u_2)|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \le \frac{C_1}{n} a_n, \text{ avec } a_n = \left(\int_{A_n} |W|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

On utilise maintenant l'inégalité de Sobolev et Hölder pour obtenir, avec $1^* = \frac{N}{N-1}$ et en désignant par m la mesure de Lebesgue sur \mathbb{R}^N ,

$$||T_n(u_1 - u_2)||_{L^{1^*}} \le |||\nabla T_n(u_1 - u_2)|||_{L^1(\Omega)} \le m(\Omega)^{\frac{1}{2}}|||\nabla T_n(u_1 - u_2)|||_{L^2(\Omega)} \le \frac{C_1 m(\Omega)^{\frac{1}{2}}}{n} a_n.$$

On pose $B_n = \{|u_1 - u_2| \ge \frac{1}{n}\}$, de sorte que

$$\frac{1}{n}(m(B_n))^{\frac{N-1}{N}} \le \left(\int_{B_n} |T_n(u_1 - u_2)|^{1^*} dx\right)^{\frac{1}{1^*}} \le ||T_n(u_1 - u_2)||_{L^{1^*}}.$$

On a donc

$$(m(B_n))^{\frac{N-1}{N}} \le C_1 m(\Omega)^{\frac{1}{2}} a_n. \tag{3.70}$$

Pour $n \in \mathbb{N}^{\star}$, on a $A_{n+1} \subset A_n$. Comme $\bigcap_{n \in \mathbb{N}^{\star}} A_n = \emptyset$, la continuité décroissante de m donne que $\lim_{n \to +\infty} m(A_n) = 0$. Comme $W \in L^2(\Omega)^N$ on en déduit que $\lim_{n \to +\infty} a_n = 0$ et donc, grâce à (3.70), que $\lim_{n \to +\infty} m(B_n) = 0$.

On remarque enfin que $B_{n+1} \supset B_n$, pour tout $n \in \mathbb{N}^*$, et $\bigcup_{n \in \mathbb{N}} B_n = \{|u_1 - u_2| > 0\}$. Donc $\lim_{n \to +\infty} m(B_n) = m\{|u_1 - u_2| > 0\}$ (par continuité croissante d'une mesure). On obtient donc $m\{|u_1 - u_2| > 0\} = 0$ et donc $u_1 = u_2$ p.p..

- 2. La démonstration est identique à la précédente. Il suffit de remplacer, dans (3.68) et (3.69), $\int_{\Omega} f(x)v(x) dx$ par $\langle T, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}$.
- 3. La démonstration est voisine de celle de la première question. Pour $n \in \mathbb{N}^*$, on prend $v = S_n(u)$ dans (3.33) avec $S_n \in C(\mathbb{R}, \mathbb{R})$ définie par $S_n(s) = \max(0, \min(s, \frac{1}{n}))$. Ceci est possible car $S_n(u) \in H^1_0(\Omega)$. On sait aussi que $\nabla S_n(u) = \mathbb{1}_{E_n} \nabla u$ avec $E_n = \{0 < u < \frac{1}{n}\}$ (voir la remarque 2.25). Comme $S_n(u) \geq 0$ p.p. et $f \leq 0$ p.p., on obtient

$$\int_{\Omega} \nabla u \cdot \nabla S_n(u) \, dx - \int_{\Omega} \varphi(u) W \cdot \nabla S_n(u) \, dx \le 0.$$
 (3.71)

On a donc

$$\int_{\Omega} |\nabla S_n(u)|^2 dx = \int_{\Omega} \nabla u \cdot \nabla S_n(u) dx \le \int_{\Omega} \varphi(u) W \cdot \nabla S_n(u) dx.$$

Il existe $C_1 > 0$ tel que $|\varphi(s_1) - \varphi(s_2)| \le C_1 |s_1 - s_2|$ pour tout $s_1, s_2 \in \mathbb{R}$, ceci donne, avec l'inégalité de Cauchy Schwarz dans la dernière intégrale

$$\| |\nabla S_n(u)| \|_{L^2(\Omega)} \le \frac{C_1}{n} \Big(\int_{E_n} |W(x)|^2 dx \Big)^{\frac{1}{2}}.$$

On pose
$$\gamma_n = \left(\int_{E_n} |W(x)|^2 dx \right)^{\frac{1}{2}}$$
.

On utilise maintenant l'inégalité de Sobolev et Hölder pour obtenir, avec $1^* = \frac{N}{N-1}$ et en désignant par m la mesure de Lebesgue sur \mathbb{R}^N ,

$$||S_n(u)||_{L^{1^*}} \le |||\nabla S_n(u)|||_{L^1(\Omega)} \le m(\Omega)^{\frac{1}{2}} |||\nabla S_n(u)|||_{L^2(\Omega)} \le \frac{C_1 m(\Omega)^{\frac{1}{2}}}{n} \gamma_n.$$

On pose $D_n = \{u \ge \frac{1}{n}\}$, de sorte que

$$\frac{1}{n}(m(D_n))^{\frac{N-1}{N}} \le \left(\int_{D_n} |S_n(u)|^{1^*} \, \mathrm{d}x\right)^{\frac{1}{1^*}} \le ||S_n(u)||_{L^{1^*}}.$$

On a donc

$$(m(D_n))^{\frac{N-1}{N}} \le C_1 m(\Omega)^{\frac{1}{2}} \gamma_n.$$
 (3.72)

On conclut comme à la première question. Pour $n \in \mathbb{N}^{\star}$, on a $E_{n+1} \subset E_n$. Comme $\bigcap_{n \in \mathbb{N}^{\star}} E_n = \emptyset$, la continuité décroissante de m donne que $\lim_{n \to +\infty} m(E_n) = 0$. Comme $W \in L^2(\Omega)^N$ on en déduit que $\lim_{n \to +\infty} \gamma_n = 0$ et donc, grâce à (3.72), que $\lim_{n \to +\infty} m(D_n) = 0$.

On remarque enfin que $D_{n+1} \supset D_n$, pour tout $n \in \mathbb{N}^*$, et $\bigcup_{n \in \mathbb{N}} D_n = \{u > 0\}$. Donc $\lim_{n \to +\infty} m(D_n) = m\{u > 0\}$ (par continuité croissante d'une mesure). On obtient donc $m\{u > 0\} = 0$ et donc $u \leq 0$ p.p..

Exercice 3.8 (Convergence faible et non linéarité)

1. On remarque que

$$||u_n - u||_2^2 = \int u_n^2 dm + \int u^2 dm - 2 \int u_n u \, dm.$$
 (3.73)

Comme $u_n \to u$ faiblement dans L^2 , on a $\lim_{n \to +\infty} \int u_n u \, dm = \int u^2 \, dm$. On déduit alors facilement de (3.73) que $u_n \to u$ dans L^2 si et seulement si $\lim_{n \to +\infty} \int u_n^2 \, dm = \int u^2 \, dm$.

2. On commence par remarquer que $\varphi(w) \in L^2$ (grâce aux hypothèses sur φ et $m(X) < +\infty$). On a alors

$$\int (\varphi(u_n) - \varphi(w))(u_n - w) = \int (v_n u_n - v_n w - \varphi(w)u_n + \varphi(w)w) dm.$$

Les convergences faibles de u_n et v_n vers u et v donnent

$$\lim_{n \to +\infty} \int u_n \varphi(w) \, dm = \int u \varphi(w) \, dm \text{ et } \lim_{n \to +\infty} \int v_n w \, dm = \int v w \, dm.$$

Enfin on a, par hypothèse, $\lim_{n\to+\infty}\int u_nv_ndm=\int uvdm$. On en déduit que bien que

$$\lim_{n \to +\infty} (\varphi(u_n) - \varphi(w))(u_n - w) dm = \int (v - \varphi(w))(u - w) dm.$$

3. (a) On utilise ici (3.40) avec $w = u + t\bar{w}$. On obtient, quand $n \to +\infty$,

$$\int (\varphi(u_n) - \varphi(u + t\bar{w}))(u_n - u - t\bar{w}) dm \to -\int (v - \varphi(u + t\bar{w}))t\bar{w} dm.$$

Comme φ est croissante, on a $(\varphi(u_n) - \varphi(u + t\bar{w}))(u_n - u - t\bar{w}) \ge 0$ p.p. et donc $\int (\varphi(u_n) - \varphi(u + t\bar{w}))(u_n - u - t\bar{w}) dm \ge 0$. On en déduit, quand $n \to +\infty$, $\int (v - \varphi(u + t\bar{w}))t\bar{w} dm \le 0$.

En prenant $t=\frac{1}{m}$ $(m\in\mathbb{N}^{\star})$, on a donc $\int (v-\varphi(u+\frac{\bar{w}}{m}))\bar{w}\leq 0$. En appliquant le théorème de convergence dominée (remarquer que $|(v-\varphi(u+\frac{\bar{w}}{m}))\bar{w}|\leq F$ p.p. avec $F=(|v|+C+C|u|+C|\bar{w}|)|\bar{w}|\in L^1$), on obtient, quand $m\to\infty$,

$$\int (v - \varphi(u))\bar{w} \, \mathrm{d}m \le 0.$$

De même, en prenant $t = -\frac{1}{m}$, on montre $\int (v - \varphi(u))\bar{w} \, dm \ge 0$. On a donc $\int (v - \varphi(u))\bar{w} \, dm = 0$.

- (b) On choisit $\bar{w} = \mathbb{1}_A \mathbb{1}_{A^c}$, avec $A = \{x \in X \; ; \; (v \varphi(u))(x) \geq 0\}$. La question précédente donne alors $\int |v \varphi(u)| \, \mathrm{d}m = 0$ et donc $v = \varphi(u)$ p.p..
- 4. (a) En prenant w=u dans (3.40), on obtient $\lim_{n\to+\infty}\int G_n\,\mathrm{d} m=0$. Comme φ est croissante, on a $G_n\geq 0$ p.p., pour tout $n\in\mathbb{N}$ et donc $\|G_n\|_1=\int G_n\,\mathrm{d} m$. On en déduit bien que $G_n\to 0$ dans L^1 .
 - (b) Comme $G_n \to 0$ dans L^1 , il existe une sous-suite de la suite $(G_n)_{n \in \mathbb{N}}$, notée $(G_{\psi(n)})_{n \in \mathbb{N}}$ (avec ψ strictement croissante de \mathbb{N} dans \mathbb{N}) t.q. $G_{\psi(n)} \to 0$ p.p. (c'est la réciproque partielle du théorème de convergence dominée). Il existe donc $A \in T$ tel que m(A) = 0 et $G_{\psi(n)}(x) \to 0$ (quand $n \to +\infty$) si $x \in A^c$.

Soit $x \in A^c$. On pose a = u(s). Pour $s \in \mathbb{R}$, on pose $f(s) = (\varphi(s) - \varphi(a))|s - a|$. Comme φ est strictement croissante continue, la fonction f est aussi strictement croissante continue. Elle admet donc une fonction réciproque, notée g, qui est continue. Comme $|f(u_{\psi(n)}(x))| = G_{\psi(n)}(x) \to 0$, on a $f(u_{\psi(n)}(x)) \to 0$ et donc $u_{\psi(n)}(x) = g(f(u_{\psi(n)}(x))) \to g(0) = a$. On a donc $\lim_{n \to +\infty} u_{\psi(n)}(x) = u(x)$ pour tout $x \in A^c$, ce qui prouve bien que $u_{\psi(n)} \to u$ p.p..

(c) On montre que $u_n \to u$ dans L^p pour tout $p \in [1, 2[$ en raisonnant pas l'absurde. On suppose qu'il existe $p \in [1, 2[$ tel que $(u_n)_{n \in \mathbb{N}}$ ne converge par vers u dans L^p . Il existe alors $\varepsilon > 0$ et une sous-suite de la suite $(u_n)_{n \in \mathbb{N}}$ qui reste en dehors de la boule (de L^p) de centre u et de rayon ε . Par le raisonnement de la question précédente, de cette sous-suite, un peut extraire une sous-suite, notée $(u_n)_{\psi(n)}$ qui converge p.p. vers u. Comme la suite $(u_n)_{n \in \mathbb{N}}$ est bornée dans L^2 , on peut alors montrer que cette sous-suite converge dans L^p vers u (c'est une conséquence du théorème de Vitali, voir note 9 page 162). En contradiction avec le fait que cette sous-suite reste en dehors de la boule (de L^p) de centre u et de rayon ε . On a ainsi montré que $u_n \to u$ dans L^p pour tout $p \in [1, 2[$.

Chapitre 4

Problèmes paraboliques

Les EDP paraboliques sont utilisées pour décrire une grande variété de phénomènes, en particulier des phénomènes dépendant du temps, notamment la conduction de la chaleur, la diffusion des particules et l'évaluation de produits financiers.

La définition "historique" du terme "parabolique" est valide pour une EDP linéaire du second ordre à coefficients constants : Une EDP linéaire du second ordre à coefficients constants est de la forme $a\partial_{xx}^2 u + 2b\partial_{xt}^2 u + c\partial_{tt}^2 u + d\partial_x^2 ux + e\partial_t u + f = 0$, où $u: \mathbb{R}^2 \to \mathbb{R}$ est une fonction à valeurs réelles de deux variables réelles x et t. Habituellement, x représente la position unidimensionnelle et t représente le temps, et l'EDP est résolue sous réserve de conditions initiales et limites prescrites. Cette EDP est qualifiée de parabolique si les coefficients a,b,c,d,e,f satisfont la condition $b^2 - ac = 0$. Le nom "parabolique" est utilisé parce que l'hypothèse sur les coefficients est la même que la condition pour l'équation de géométrie analytique $ax^2 + 2bxy + cy^2 + dx + ey + F = 0$ pour définir une parabole planaire.

L'exemple de base d'une EDP parabolique est l'équation de la chaleur unidimensionnelle, $\partial_t u = \alpha \partial_{xx}^2 u$, où u(x,t) est la température à l'instant t et à la position x le long d'une tige mince, et $\alpha \in \mathbb{R}_+$ est la diffusivité thermique. Le symbole $\partial_t u$ signifie la dérivée partielle de u par rapport à la variable temps t, et de même $\partial_{xx}^2 u$ est la dérivée partielle seconde par rapport à x. Pour un corps en dimension 2 ou 3, l'équation de la chaleur s'écrit $u_t = \alpha \Delta u$, où Δ est l'opérateur de Laplace. Le fait que $-\Delta$ soit un opérateur elliptique (voir chapitre 2) suggère une définition plus large d'une EDP parabolique : $u_t = -Au$, où A est un opérateur elliptique du second ordre La dénomination "parabolique" peut aussi se généraliser à des EDP non linéaires, voir paragraphe 4.4.

Dans le paragraphe suivant, nous donnons un aperçu rapide des différents types de solutions des équations paraboliques et des méthodes impliquées. La recherche des solutions faibles d'une équation parabolique nécessite des outils assez fins d'intégration à valeur valeur vectorielle que nous introduisons au paragraphe 4.2. Le paragraphe 4.3 est consacré à l'étude de l'équation de la chaleur. Nous y présentons deux méthodes pour la preuve d'existence et unicité d'une solution faible : la méthode classique de Faedo-Galerkin, et une méthode plus récente, que nous appellons "coercivité généralisée". Les problèmes paraboliques non linéaires sont évoqués au paragraphe 4.4, au travers de deux exemples, l'un concerne in problème de diffusion non linéaire et l'autre un problème de diffusion convection non linéaire. Enfin, au paragraphe 4.5, nous donnons un certain nombre d'outils puissants pour s'assurer de la compacité en temps. Certains de ces outils seront particulièrement adaptés à l'étude de la convergence d'approximations numériques des équations paraboliques non linéaires.

4.1 Solutions classiques, solutions mild, solutions faibles

Equation de la chaleur dans \mathbb{R}^N , solutions classiques

Soit $N \ge 1$ et $u_0 \in C(\mathbb{R}^N, \mathbb{R})$. On s'intéresse ici à chercher des solutions classiques au problème suivant

$$\partial_t u(x,t) - \Delta u(x,t) = 0, \ x \in \mathbb{R}^N, \ t \in \mathbb{R}^+,$$

$$u(x,0) = u_0(x), \ x \in \mathbb{R}^N,$$

$$(4.1)$$

où $\partial_t u$ désigne la dérivée partielle de u par rapport au temps t, et Δu désigne le laplacien de u défini par (2.3). Par "solution classique", on entend une fonction $u \in C^2(\mathbb{R}^N \times \mathbb{R}_+, \mathbb{R}) \cap C(\mathbb{R}^N \times \mathbb{R}_+, \mathbb{R})$ solution de (4.1) au sens classique de la dérivation et de la condition initiale.

On commence par un petit calcul formel (le terme "formel" signifiant souvent en mathématiques "non nécessairement justifié"). On suppose qu'on peut utiliser pour la condition initiale et pour la solution la transformée de Fourier (en espace). On retient comme formule pour la transformée de Fourier d'une fonction intégrable sur ${\rm I\!R}^N$ la formule suivante :

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{N}{2}}} \int e^{-ix\cdot\xi} f(x) \, \mathrm{d}x.$$

Si u est solution de (4.1), on obtient ainsi (si on est autorisé à utiliser la transformée de Fourier)

$$\hat{\partial}_t u(\xi,t) + |\xi|^2 \hat{u}(\xi,t) = 0$$
, pour $\xi \in \mathbb{R}^N$ et $t > 0$, et $\hat{u}(\xi,0) = \hat{u}_0(\xi)$, pour $\xi \in \mathbb{R}^N$,

ce qui donne

$$\hat{u}(\xi,t) = e^{-|\xi|^2 t} \hat{u}_0(\xi)$$
, pour $\xi \in \mathbb{R}^N$ et $t \ge 0$.

En choisissant $g(t) \in L^1(\mathbb{R}^N)$ t.q. $\widehat{g(t)}(\xi) = e^{-|\xi|^2 t}$, on a donc $\hat{u}(\cdot,t) = \widehat{g(t)}\hat{u}_0$ pour tout $t \geq 0$ et donc (en utilisant le fait que la transformée de Fourier transforme la convolution en produit),

$$\hat{u}(\cdot,t) = (2\pi)^{-\frac{N}{2}} \widehat{g(t) \star u_0}$$
 pour $t \ge 0$.

ou encore

$$u(\cdot,t) = (2\pi)^{-\frac{N}{2}}g(t) \star u_0 \text{ pour } t \geq 0.$$

Il reste à calculer g(t). Comme $\widehat{g(t)} \in L^1({\rm I\!R}^N)$ pour t>0, le théorème d'inversion de Fourier nous donne $g(t)=\widehat{\widehat{g(t)}}(-\cdot)$, c'est-à-dire

$$g(t)(x) = \frac{1}{(2\pi)^{\frac{N}{2}}} \int e^{ix\cdot\xi} e^{-|\xi|^2 t} d\xi \ \ \text{pour} \ x \in {\rm I\!R}^N \ \text{et} \ t > 0.$$

Le changement de variable $\xi = frac\eta\sqrt{2t}$ donne alors

$$g(t)(x) = \frac{1}{(2\pi)^{\frac{N}{2}}} \frac{1}{(2t)^{\frac{N}{2}}} \int e^{ix \cdot \frac{\eta}{\sqrt{2t}}} e^{-\frac{|\eta|^2}{2}} d\eta \ \ \text{pour} \ x \in {\rm I\!R}^N \ \text{et} \ t > 0.$$

Finalement, on obtient

$$g(t)(x) = \frac{1}{(2t)^{\frac{N}{2}}} e^{-|\frac{x}{\sqrt{2}t}|^2\frac{1}{2}} = \frac{1}{(2t)^{\frac{N}{2}}} e^{-\frac{|x|^2}{4t}} \ \ \text{pour} \ x \in {\rm I\!R}^N \ \text{et} \ t > 0,$$

Ce qui donne

$$u(x,t) = \frac{1}{(4\pi t)^{\frac{N}{2}}} \int e^{-\frac{|x-y|^2}{4t}} u_0(y) dy \text{ pour } x \in \mathbb{R}^N \text{ et } t > 0.$$
 (4.2)

Il est maintenant possible de donner des conditions sur u_0 pour lesquelles (4.2) donne une solution classique de (4.1). Voici deux exemples de conditions suffisantes pour lesquelles la fonction u donnée par (4.2) est une solution classique de (4.1):

Exemple 1:

$$u_0 \in (L^1(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N)) \cap C(\mathbb{R}^N, \mathbb{R}).$$

Exemple 2:

$$u_0 \in C(\mathbb{R}^N, \mathbb{R})$$
 et il existe $C \in \mathbb{R}$ et $p \in \mathbb{N}$ tels que $|u_0(x)| \leq C(1 + |x|^p)$ pour tout $x \in \mathbb{R}^N$. (4.3)

On a ainsi obtenu des résultats d'existence d'une solution classique pour (4.1). A-t-on alors unicité de la solution? On n'a pas de résultat d'unicité si on ne met des hypothèses que sur u_0 . Plus précisément, on peut construire une solution classique non nulle de (4.1) avec $u_0 = 0$. Il n'y a donc jamais unicité de la solution classique de (4.1). Par contre, si on rajoute une hypothèse convenable de croissance sur la solution, on a un résultat d'unicité.

Théorème 4.1 Sous l'hypothèse (4.3), il existe une et une seule fonction u vérifiant :

- 1. u est solution classique de (4.1).
- 2. $\forall T > 0, \exists C_T \in \mathbb{R}, P_T \in \mathbb{N} \text{ tel que } |u(x,t)| \leq C_T(1+|x|^{P_T}), \forall x \in \mathbb{R}^N, \forall t \in [0,T].$

Comme nous l'avons déjà dit, sans la deuxième condition sur u donnée dans le théorème 4.1, il n'y a pas unicité de la solution puisque l'on peut trouver $u \in C^{\infty}(\mathbb{R}^N \times [0, +\infty[), u \neq 0 \text{ et t.q.})$

$$\left\{ \begin{array}{l} \partial_t u - \Delta u = 0 \text{ dans } {\rm I\!R}^N \times {\rm I\!R}_+, \\ u(x,0) = 0 \quad \forall x \in {\rm I\!R}^N. \end{array} \right.$$

Un exemple est donné dans le livre de Smoller [34]. La démonstration de l'unicité dans le théorème 4.1 peut se faire en utilisant la transformée Fourier dans l'espace \mathcal{S}' (où \mathcal{S}' est le dual de l'ensemble \mathcal{S} des fonctions C^{∞} à décroissance rapide ainsi que toutes leurs dérivées, muni de sa topologie naturelle). Pour cela, on remarque que, sous l'hypothèse de croissance donnée dans le théorème 4.1, on a $u \in \mathcal{S}'$. Notons que ce raisonnement par analyse de Fourier est limité à \mathbb{R}^N et essentiellement au cas du laplacien.

Solutions presque classiques, équation de diffusion, Ω ouvert borné

Soit Ω un ouvert borné de \mathbb{R}^N . Pour u_0 donné, on s'intéresse maintenant au problème

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{dans} \quad \Omega \times \mathbb{R}_+^*, \\ u(x,t) = 0 \text{ pour } x \in \partial \Omega \text{ et } t > 0, \\ u(x,0) = u_0(x) \text{ pour } x \in \Omega. \end{cases}$$
 (4.4)

Pour cela on définit un opérateur \mathcal{A} d'une partie de $L^2(\Omega)$, notée $D(\mathcal{A})$, dans $L^2(\Omega)$ en posant

$$D(\mathcal{A}) = \{ u \in H_0^1(\Omega); \Delta u \in L^2(\Omega) \}$$

et, pour $u \in D(\mathcal{A})$, $\mathcal{A}u = -\Delta u$. Dans la définition de $D(\mathcal{A})$, Δu est une dérivée faible de u. Le fait que $u \in D(\mathcal{A})$ signifie donc simplement que $u \in H^1_0(\Omega)$ et qu'il existe $f \in L^2(\Omega)$ t.q. $\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$ pour tout $v \in \mathcal{D}(\Omega)$ (ou, de manière équivalente, pour tout $v \in H^1_0(\Omega)$).

On suppose maintenant que $u_0 \in L^2(\Omega)$ et va chercher une solution de (4.4) au sens suivant :

$$\begin{cases} u \in C^{1}(]0, +\infty[, L^{2}(\Omega)) \cap C([0, +\infty[, L^{2}(\Omega)), \\ u(t) \in D(\mathcal{A}) \text{ et } u'(t) + \mathcal{A}u(t) = 0 \text{ p.p., pour tout } t > 0, \\ u(0) = u_{0} \text{ p.p.,} \end{cases}$$
 (4.5)

où u(t) désigne la fonction $x\mapsto u(x,t)$. On rappelle (voir le chapitre 2, et plus particulièrement le théorème 2.14) qu'il existe une base hilbertienne de $L^2(\Omega)$ (c'est-à-dire une famille orthonormale dense dans $L^2(\Omega)$), notée $(e_n)_{n\in\mathbb{N}^*}$, formée de fonctions propres de l'opérateur \mathcal{A} . Pour tout $n\in\mathbb{N}^*$, la fonction e_n est une solution faible

$$\left\{ \begin{array}{l} -\Delta e_n = \lambda_n e_n \ \mathrm{dans} \ \Omega, \\ e_n = 0 \ \mathrm{sur} \ \partial \Omega. \end{array} \right.$$

avec $\lambda_n > 0$ et $\lambda_n \uparrow + \infty$ lorsque $n \to + \infty$. Pour tout $n \in \mathbb{N}^*$, on a donc $e_n \in D(\mathcal{A})$ et $\mathcal{A}e_n = \lambda_n e_n$.

Soit $u_0 \in L^2(\Omega)$. En notant $(u|v)_2$ le produit scalaire de u et v dans $L^2(\Omega)$, on a

$$u_0 = \sum_{n=1}^{+\infty} (u_0|e_n)_2 e_n$$

(cette série étant convergente dans $L^2(\Omega)$).

On a aussi
$$\sum_{n=1}^{+\infty} (u_0|e_n)_2^2 = \|u_0\|_2^2 < +\infty$$
.
On pose, pour $t \geq 0$,

$$u(t) = \sum_{n=1}^{+\infty} e^{-\lambda_n t} (u_0 | e_n)_2 e_n,$$

qui est une série convergente dans $L^2(\Omega)$. On a donc ainsi $u(t) \in L^2(\mathbb{R}^N)$ pour tout $t \ge 0$ et on a même (comme la suite $(\lambda_n)_{n\in\mathbb{N}^*}$ est bornée inférieurement par λ_1 avec $\lambda_1>0$) $u\in C([0,+\infty[,L^2(\Omega))]$ et $u(0)=u_0$ p.p.. D'autre part, comme $\lambda_n \uparrow +\infty$ quand $n \to +\infty$, il est facile de montrer que la fonction u est dérivable de $]0, +\infty[$ dans $L^2(\Omega)$ et que la dérivée de u est obtenue est dérivant la série terme à terme (ceci est une conséquence du fait que la série dérivée terme à terme est, sur $]0,+\infty[$, localement uniformément convergente dans $L^2(\Omega)$). On a donc, pour tout t > 0,

$$u'(t) = \frac{du}{dt} = \sum_{n=1}^{+\infty} (-\lambda_n) e^{-\lambda_n t} (u_0|e_n)_2 e_n.$$

(La série écrite dans le terme de droite est convergente dans $L^2(\Omega)$).

On rappelle que (selon le chapitre 2) $u(t) \in D(\mathcal{A})$ pour tout t > 0 car la série $\sum_{n=1}^{+\infty} \lambda_n e^{-\lambda_n t} (u_0|e_n)_2 e_n$ est convergente dans $L^2(\Omega)$. Le chapitre 2 donne aussi, pour tout t>0,

$$\mathcal{A}u(t) = \sum_{n=1}^{+\infty} \lambda_n e^{-\lambda_n t} (u_0|e_n)_2 e_n.$$

On a donc $u \in C^1(]0, +\infty[, L^2(\Omega))$ et $u'(t) + \mathcal{A}(u(t)) = 0$ p.p. pour tout $t \in]0, +\infty[$. On a ainsi trouvé une solution au problème (4.5).

On veut montrer maintenant que cette solution est unique. Pour cela, nous allons montrer que si u est solution du problème avec donnée initiale nulle, c'est-à-dire

$$\left\{\begin{array}{l} u\in C^1(]0,+\infty[,L^2(\Omega))\cap C([0,+\infty[,L^2(\Omega)),\\ u(t)\in D(\mathcal{A}) \text{ et } u'(t)+\mathcal{A}u(t)=0 \text{ p.p., pour tout } t>0,\\ u(0)=0 \text{ p.p.,} \end{array}\right.$$

alors u reste nulle pour tout temps, c'est-à-dire u(t) = 0 p.p. pour tout $t \ge 0$.

Soit t>0. Comme $u'(t)+\mathcal{A}u(t)=0$ p.p., en prenant le produit scalaire avec $u(t)\in L^2(\Omega)$, on obtient $(u'(t)|u(t))_2+(\mathcal{A}u(t)|u(t))_2=0$. Comme $(\mathcal{A}u(t)|u(t))_2=\int_{\Omega}|\nabla u(t)|^2\,\mathrm{d}x$, on a donc

$$(u'(t)|u(t))_2 = -\int_{\Omega} |\nabla u(t)|^2 dx \le 0.$$

Soit ψ l'application définie par $t\mapsto \psi(t)=\|u(t)\|_{L^2(\Omega)}^2$. L'application ψ est continue sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^\star et $\psi'(t)=2(u'(t)|u(t))_2$ pour tout t>0. On a donc $\psi'(t)\leq 0$ pour tout t>0. L'application ψ est donc décroissante sur \mathbb{R}_+ et, comme $\psi(0)=0$, on en déduit que $\psi(t)\leq 0$ pour tout $t\geq 0$. Donc $\psi(t)=0$ pour tout $t\geq 0$. On a bien finalement u(t)=0 p.p. pour tout $t\geq 0$.

Nous avons ainsi montré l'existence et l'unicité de la solution de (4.5). Cette solution est dite "presque classique" car la dérivation en temps est prise au sens classique (puisque u est de classe C^1 à valeurs dans $L^2(\Omega)$), la condition intiale est prise au sens classique dans $L^2(\Omega)$. Par contre le laplacien de u(t) est pris au sens des dérivées faibles. Il faut un travail supplémentaire (sur la régularité des fonctions e_n) pour montrer que l'équation $\partial_t u - \Delta u$ est vérifiée au sens classique sur $\mathbb{R}^N \times \mathbb{R}^+_+$. Ceci est fait pour N=1 dans l'exercice 4.1.

Remarque 4.2 (Généralisation) On peut aussi montrer l'existence et l'unicité (pour $u_0 \in L^2(\Omega)$) de la solution de (4.5) en remplaçant, dans la définition de \mathcal{A} , Δu par $\sum_{i,j=1}^N D_j(a_{ij}D_iu)$, avec $a_{ij} \in L^\infty(\Omega)$, sous une hypothèse de coercivité, c'est-à-dire s'il existe $\alpha > 0$ tel que $\alpha |\xi|^2 \leq \sum a_{ij}\xi_i \; \xi_j \; \text{p.p. dans } \Omega$ et pour tout $\xi \in \mathbb{R}^N$. On peut aussi remplacer $u'(t) + \mathcal{A}u(t) = 0$ par $u'(t) + \mathcal{A}u(t) = f(t)$ si $f \in C([0, \infty[, L^2(\Omega)).$

Solutions presque classiques par semi-groupes

Soit E un espace de Banach réel et $\mathcal{A}:D(\mathcal{A})\subset E\to E$ un opérateur linéaire. L'ensemble $D(\mathcal{A})$ est donc le s.e.v. de E sur lequel \mathcal{A} est défini.

Définition 4.3 (Opérateur m-accrétif) On dit que A est m-accrétif si A vérifie :

- (i) D(A) est dense dans E,
- (ii) $\forall \lambda > 0$, $(\mathrm{Id} + \lambda \mathcal{A})$ est inversible, d'inverse continue et $\|(I + \lambda \mathcal{A})^{-1}\|_{\mathcal{L}(E,E)} \leq 1$.

On rappelle que $\mathcal{L}(E,E)$ désigne l'ensemble des opérateurs linéaires continus de E dans E, et que

$$\|T\|_{\mathcal{L}(E,E)} = \sup_{u \in E, u \neq 0} \frac{\|T(u)\|_E}{\|u\|_E}, \text{ pour tout } T \in \mathcal{L}(E,E).$$

Remarque 4.4 (Opérateur maximal monotone) Soit E est un espace de <u>Hilbert</u> réel et $A:D(A)\subset E\to E$ un opérateur linéaire. L'opérateur A est m-accrétif si et seulement si il vérifie :

$$\left\{ \begin{array}{ll} (\mathcal{A}u|u)_E \geq 0 & \forall u \in D(\mathcal{A}), \\ (\mathrm{Id} + \mathcal{A}) \text{ surjectif.} \end{array} \right.$$

Dans ce cas, on dit que A est maximal monotone.

Exemple : Le laplacien Soit Ω est un ouvert borné de \mathbb{R}^N , $E=L^2(\Omega)$ et \mathcal{A} défini par $D(\mathcal{A})=\{u\in H^1_0(\Omega); \Delta u\in L^2(\Omega)\}$ et $\mathcal{A}u=-\Delta u$ si $u\in D(\mathcal{A})$. L'opérateur \mathcal{A} est alors un opérateur m-accrétif (ou maximal monotone puisqu'on est dans le cas d'un Hilbert).

Remarque 4.5 (**Graphe d'un opérateur** *m*-accrétif) Le graphe d'un opérateur *m*-accrétif est fermé. En ce sens, il est maximal, d'où le "m" dans *m*-accrétif.

On admettra le théorème suivant dû à Hille ¹ et Yosida ² (voir par exemple [10] pour la démonstration dans le cas des espaces de Hilbert) :

Théorème 4.6 (Hille-Yosida) Soit E un espace de Banach, $A:D(A) \subset E \to E$ un opérateur linéaire m-accrétif et $u_0 \in D(A)$. Alors il existe un unique $u: \mathbb{R}_+ \to E$ tel que

$$u \in C^1([0, +\infty[, E),$$
 (4.6a)

$$u(t) \in D(\mathcal{A}), \forall t \ge 0,$$
 (4.6b)

$$u'(t) + \mathcal{A}(u(t)) = 0 \quad sur \quad \mathbb{R}_{+}^{\star}, \tag{4.6c}$$

$$u(0) = u_0.$$
 (4.6d)

La démonstration de ce théorème peut s'effectuer par une discrétisation en temps : on considère le problème elliptique $\frac{u_{n+1}-u_n}{\delta t}+\mathcal{A}u_{n+1}=0$, qui s'écrit encore $u_{n+1}=(\mathrm{Id}+\delta t\mathcal{A})^{-1}u_n$, où $\delta t>0$ est le pas de la discrétisation. On effectue ensuite un passage à la limite $\delta t\to 0$.

Définition 4.7 (Semi-groupe) Soit E un espace de Banach, $A:D(A) \subset E \to E$ un opérateur linéaire maccrétif. Pour $u_0 \in D(A)$ et $t \geq 0$, on pose $S(t)u_0 = u(t)$, où u est l'unique fonction vérifiant (4.6). Alors l'opérateur S(t) est un opérateur linéaire continu de $D(A) \subset E$ dans E qui vérifie

$$\begin{cases} S(t+s) = S(t) \circ S(s) \ pour \ t, s \ge 0; \\ S(0) = \text{Id} \\ \|S(t)u_0\|_E \le \|u_0\|_E, \end{cases}$$

On dit que $\{S(t), t \geq 0\}$ est un semi-groupe de contraction.

Soit $t \geq 0$, comme $\overline{D(A)} = E$, l'opérateur S(t) se prolonge de manière unique à tout E en un opérateur $\overline{S(t)}$ et $\overline{S(t)} \in \mathcal{L}(E,E)$.

Définition 4.8 (Solution mild) Soit E un espace de Banach, $A:D(A)\subset E\to E$ un opérateur linéaire m-accrétif. Soit $u_0\in E$, la fonction $u(t)=\overline{S(t)}u_0$, définie de manière unique, s'appelle solution mild du problème

$$\begin{cases} \partial_t u + \mathcal{A}u = 0, \\ u(0) = u_0. \end{cases}$$

Dans le cas du laplacien, on peut se demander en quel sens la solution mild satisfait (4.4). On peut montrer que la solution mild est solution en un sens faible que nous verrons dans la section 4.3. De plus, cette solution mild est, dans ce cas particulier, l'unique solution faible. Cependant, cette situation n'est pas complètement générale. La solution mild, obtenue par densité, est toujours unique (dès que $u_0 \in E$, quelque soit l'espace de Banach E et l'opérateur m-accrétif A). Pour les problèmes issus d'équations aux dérivées partielles, cette solution mild est en

^{1.} Carl Einar Hille (1894-1980), mathématicien américain d'originie suédoise, spécialiste d'analyse.

^{2.} Kōsaku Yosida (1909-1990), mathématicien japonais, spécialiste de l'analyse fonctionnelle.

général une solution faible du problème que l'on veut résoudre; toutefois le problème de l'unicité de la solution faible est beaucoup plus difficile. On peut avoir non unicité de la solution faible quand on prend une "solution faible" dans un sens qui semble pourtant raisonnable. Il n'y a pas alors d'équivalence entre la notion de solution *mild* et de solution faible, car la solution *mild* est unique alors qu'il n'y a pas unicité de la solution faible.

Pour essayer d'éclairer cette difficulté, nous nous intéressons, dans le paragraphe qui suit, à un problème un peu plus simple. Nous nous intéressons à un problème elliptique pour lequel nous montrons que la solution obtenue par densité, à la manière de la solution *mild* introduite ci-dessus, est unique alors qu'on n'a pas unicité des solutions faibles en prenant une définition "naturelle" de solution faible. Ceci montre en particulier que dans le cas parabolique, il n'y a pas non plus d'équivalence entre solution *mild* et solution faible (par exemple en considérant les solutions stationnaires).

Le laplacien avec donnée L^1 On considère un ouvert borné Ω de \mathbb{R}^N , $N \geq 2$, des fonctions a_{ij} , pour $i,j=1,\ldots,N$, appartenant à $L^\infty(\Omega)$ et satisfaisant l'hypothèse de coercivité habituelle :

$$\exists \; \alpha>0; \quad \sum_{i,j} \; \alpha_{ij} \; \xi_i \; \xi_j \geq \alpha |\xi|^2 \; \text{p.p. dans} \; \Omega, \quad \forall \xi \in {\rm I\!R}^N.$$

On note A la fonction à valeurs dans $\mathcal{M}_N(\mathbb{R})$, définie par les fonctions a_{ij} , $i, j = 1, \dots, N$. On sait (par le lemme de Lax-Milgram) que pour tout $f \in L^2(\Omega)$, il existe une unique solution u de

$$\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} A \nabla u \cdot \nabla v \, dx = \int f v, \ \forall v \in H_0^1(\Omega). \end{cases}$$
 (4.7)

On considère le même problème avec une donnée moins régulière $f \in L^1(\Omega)$.

Etape 1 - Estimation, cas régulier. Pour tout $1 \le q < \frac{N}{N-1}$, on montre qu'il existe $C_q \in \mathbb{R}$ tel que si u est (l'unique) solution de (4.7) avec $f \in L^2(\Omega)$ alors $\|u\|_{W_0^{1,q}(\Omega)} \le C_q \|f\|_{L^1(\Omega)}$. On pose alors $T_q(f) = u$.

Définition 4.9 (Solution mild pour un problème elliptique à donnée L^1) Sous les hypothèses précédentes sur Ω et A, soit $f \in L^1(\Omega)$. La fonction Tf est la solution mild de

$$\begin{cases} -\operatorname{div}(A\nabla u) = f \ dans \ \Omega, \\ u = 0 \ sur \ \partial\Omega. \end{cases}$$
 (4.8)

Etape 3 - Quel sens donner à la solution mild? Il est naturel de se demander quel rapport il y a entre la solution $mild\ u = Tf$ et une solution faible du problème de Dirichlet homogène. Il est assez facile de montrer que u est solution faible dans le sens (naturel) suivant :

$$\begin{cases}
 u \in \bigcap_{1 \le q < \frac{N}{N-1}} W_0^{1,q}(\Omega), \\
 \int_{\Omega} A \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in \bigcup_{r > N} W_0^{1,r}(\Omega).
\end{cases}$$
(4.9)

Remarque : un résultat analogue d'existence de solution mild et donc d'existence de solution faible est encore vrai si f est une mesure sur Ω (dans (4.9), on remplace alors fvdx par vdf). Pour montrer ce résultat, on utilise la densité de $L^2(\Omega)$ dans l'ensemble des mesures sur Ω au sens de la convergence faible- \star dans $C(\bar{\Omega})'$ (car l'ensemble des mesures sur Ω peut être vu comme une partie du dual de $C(\bar{\Omega})$). Il faut aussi utiliser le fait que les éléments de $W_0^{1,r}(\Omega)$ sont des fonctions continues pour r>N.

Etape 4 - Unicité mild, non unicité faible La solution mild est unique. La solution de (4.9) est-elle unique? pas toujours... Montrons d'abord que si $\overline{N}=2$, la solution faible est unique. Ceci se montre par régularité sur le problème dual, qui entraîne l'unicité sur le problème primal. Soit u solution de

$$\begin{cases}
 u \in \bigcap_{1 \le q < 2} W_0^{1,q}(\Omega), \\
 \int A \nabla u \cdot \nabla v \, dx = 0, \quad \forall v \in \bigcup_{r > 2} W_0^{1,r}(\Omega).
\end{cases}$$
(4.10)

On veut montrer que u=0. On ne peut pas prendre comme fonction test v=u dans (4.9) ou (4.10), en raison du manque de régularité de u. Pour contourner ce problème, on va raisonner en utilisant la régularité des solutions du problème dual. On remarque d'abord que u est solution de (4.10) et que (4.10) peut se re-écrire ainsi :

$$\begin{cases}
 u \in \bigcap_{1 \le q < 2} W_0^{1,q}, \\
 \int A^t \nabla v \cdot \nabla u \, dx = 0, \quad \forall v \in \bigcup_{r > 2} W_0^{1,r}(\Omega).
\end{cases} \tag{4.11}$$

Or on sait (par le théorème de Lax-Milgram) que si $g \in L^2(\Omega)$ il existe un unique v solution de

$$\begin{cases} v \in H_0^1(\Omega), \\ \int A^t \nabla v \cdot \nabla w \, dx = \int gw \, dx, \quad \forall w \in H_0^1(\Omega). \end{cases}$$
 (4.12)

((4.12) est le problème dual de (4.7).)

On aimerait pouvoir prendre w=u dans (4.12), car on aurait alors, grâce à (4.11), $\int_{\Omega} gu \ dx=0$ pour tout $g\in L^2(\Omega)$, ce qui permettrait de conclure que u=0. Mais pour l'instant, on ne peut pas car u et v ne sont pas dans les bons espaces. L'astuce consiste à considérer un second membre g plus régulier dans (4.12) et d'utiliser le résultat de régularité suivant [28].

Théorème 4.10 (Meyers, [28]) Il existe $p^* > 2$, ne dépendant que de A et Ω , tel que si $g \in L^{\infty}(\Omega)$ et v solution de (4.12) alors $v \in W_0^{1,p^*}(\Omega)$.

Soit donc $g \in L^{\infty}(\Omega)$ et v solution de (4.12). On a alors $v \in W_0^{1,p^{\star}}(\Omega)$ grâce au théorème de Meyers. On note $(p^{\star})'$ l'exposant conjugué de p^{\star} , de sorte que $(p^{\star})' = \frac{p^{\star}}{p^{\star}-1} < 2$. Par densité de $\mathcal{D}(\Omega)$ dans $W_0^{1,(p^{\star})'}(\Omega)$, on déduit de (4.12) que

$$\int A^t \nabla v \cdot \nabla w \, dx = \int gw \, dx, \quad \forall w \in W_0^{1,(p^*)'}(\Omega). \tag{4.13}$$

Or, comme $(p^\star)' = \frac{p^\star}{p^\star - 1} < 2$, toute solution u solution de (4.11) appartient à $W_0^{1,(p^\star)'}(\Omega)$. On peut donc prendre w = u dans (4.13). Mais comme $v \in W_0^{1,p^\star}(\Omega)$ avec $p^\star > 2$, on a également, par (4.11), $\int_\Omega A^t \nabla v \cdot \nabla u \, \mathrm{d}x = 0$. On a donc $\int_\Omega gu \, \mathrm{d}x = 0$, pour tout $g \in L^\infty(\Omega)$. On en déduit que u = 0 en prenant successivement $g = \mathbb{1}_{\{u > 0\}}$ puis $g = \mathbb{1}_{\{u < 0\}}$.

Pour N=3, le théorème de régularité de Meyers est encore vrai, la démonstration d'unicité est donc encore juste si A est telle que $p^*>N=3$ (afin de pouvoir prendre v comme fonction test dans (4.9)). Mais il existe des fonctions matricielle $A=(a_{ij})_{i,j=1,N}$ (à coefficients dans $L^{\infty}(\Omega)$ et coercive) pour lesquelles $p^*<3$. L'unicité n'est plus assurée et on peut effectivement construire des cas pour lesquels la solution de (4.9) n'est pas unique (voir [30]).

Etape 5 Que peut-on rajouter à solution faible pour avoir l'unicité? Pour $f \in L^1(\Omega)$, on montre qu'il existe une et une solution à une nouvelle formulation, due à Ph. Bénilan [7]. Cette nouvelle formulation (aussi appelée formulation entropique), est la suivante :

$$\begin{cases} u \in W_0^{1,q}(\Omega), \text{ pour tout } 1 \leq q < \frac{N}{N-1}, & T_k(u) \in H_0^1(\Omega), \ \forall k > 0, \\ \int_{\Omega} A \nabla u \cdot \nabla T_k(u - \varphi) \, \mathrm{d}x = \int f T_k(u - \varphi) \, \mathrm{d}x \quad \forall \varphi \in \mathcal{D}(\Omega), \ \forall k \geq 0. \end{cases}$$

$$(4.14)$$

où T_k est la fonction troncature, définie par : $T_k(s) = \max(\min(k,s), -k)$. L'article de Ph. Bénilan et al. démontre qu'il existe une unique solution au problème (4.14) (qui est donc la solution mild de (4.8)). Ph. Bénilan conjecturait que le fait d'ajouter la condition $T_k(u) \in H^1_0(\Omega)$ (pour tout k>0) à la formulation (4.9) devait suffire à assurer l'unicité. De fait, dans les articles de Serrin et Prignet [32, 30], le contre exemple consiste à construire une solution non nulle de (4.9) avec f=0, mais cette solution ne vérifie pas $T_k(u) \in H^1_0(\Omega)$ pour k>0. La conjecture de Bénilan reste donc une conjecture. . .

Une autre question ouverte consiste à trouver une formulation semblable à (4.14) donnant l'unicité lorsque f est une mesure sur Ω .

Remarque 4.11 (Limitation de la méthode semi-groupe) Une difficulté importante de cette méthode par semi-groupe est sa généralisation au cas où A dépend de t.

Méthode de Faedo-Galerkin (discrétisation en espace)

Soit Ω un ouvert borné de \mathbb{R}^N , T > 0, u_0 une fonction de Ω dans \mathbb{R} et f une fonction de $\Omega \times]0, T[$ dans \mathbb{R} . On considère l'équation de la chaleur

$$\begin{cases} \partial_t u - \Delta u = f \operatorname{dans} \Omega \times]0, T[, \\ u = 0 \operatorname{sur} \partial \Omega \times]0, T[, \\ u(.,0) = u_0 \end{cases}$$
(4.15)

Pour $u_0 \in L^2(\Omega)$ et f dans un espace convenablement choisi, on va chercher $u \in L^2(]0, T[, H^1_0(\Omega))$ solution faible de ce problème. La méthode de Faedo ⁴-Galerkine ⁵ consiste à construire par approximation une suite de problèmes dont la solution existe et de montrer la convergence des solutions des problèmes approchées vers une fonction qui satisfait une formulation faible de (4.15).

Comme $H_0^1(\Omega)$ est séparable, il existe une suite $(E_n)_{n\in\mathbb{N}}$ d'espaces inclus dans $H_0^1(\Omega)$, de dimension finie, par exemple $\dim E_n=n$, et tels que $E_n\subset E_{n+1}$ et

$$\overline{\bigcup_{n\in\mathbb{N}} E_n} = H_0^1(\Omega).$$

^{3.} Philippe Bénilan (1941–2001), mathématicien français, spéialiste des EDP, professeur à l'université de Besançon.

^{4.} Alessandro Faedo (1913–2001), mathématicien et homme politique italien, connu pour ses travaux en analyse numérique; il a été l'un des élèves de Leonida Tonelli et il lui a succédé à la chaire d'analyse mathématique de l'université de Pise après la mort de ce dernier.

^{5.} Boris Grigorievitch Galerkine (1871–1945), mathématicien et ingénieur soviétique, connu pour sa méthode d'intégration approchée et spécialiste de mécanique des structures.

Soit
$$\{e_1 \dots e_n\}$$
 une base de E_n . On cherche $u_n(t) = \sum_{i=1}^n \alpha_i(t)e_i$ t .q.

$$\sum_{i=1}^n \int_\Omega \alpha_i'(t) e_i \ e_k \ \mathrm{d}x \ + \sum_{i=1}^n \int_\Omega \ \alpha_i(t) \nabla e_i \cdot \nabla e_k \ \mathrm{d}x = \int_\Omega \ f(t) e_k \ \mathrm{d}x, \text{ pour tout } k = \{1 \dots n\} \text{ et } t > 0,$$

et les $\alpha_i(0)$ sont choisis pour que $u_n(0) = \sum_{i=1}^n \alpha_i(0)e_i \to u_0$ dans $L^2(\Omega)$ quand $n \to +\infty$. Ceci donne, pour tout $n \in \mathbb{N}^*$, un système de n équations différentielles avec condition initiale pour lequel on montre l'existence d'une solution. On cherche alors des estimations sur la solution u_n qui permettent de passer à la limite quand $n \to +\infty$. Cette technique, qu'on va développer plus loin, permet de montrer que pour $f \in L^2(]0, T[, H^{-1})$ la limite u des u_n satisfait :

$$\left\{ \begin{array}{l} u \in L^{2}(]0,T[,H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0,T[,H^{-1}(\Omega)), u \in C([0,T],L^{2}(\Omega)), u(0) = u_{0} \text{ p.p.,} \\ \int_{0}^{T} \langle \partial_{t}u,v \rangle_{H^{-1},H_{0}^{1}} \, \mathrm{d}t + \int_{0}^{T} \left(\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x \right) \, \mathrm{d}t = \int_{0}^{T} \langle f,v \rangle_{H^{-1},H_{0}^{1}} \, \mathrm{d}t, \; \forall v \in L^{2}(]0,T[,H_{0}^{1}(\Omega)). \end{array} \right.$$

Discrétisation en espace et en temps

On discrétise le problème (4.15) par un schéma numérique, par exemple par éléments finis P1 en espace et par un schéma d'Euler ⁶ implicite en temps. On obtient une solution approchée notée u_n . On obtient alors des estimations sur u_n . On passe ensuite à la limite lorsque $n \to +\infty$.

Pour $f \in L^2(0,T,L^2(\Omega))$, on obtient ainsi pour le problème de la chaleur (4.15) que la limite u du schéma numérique satisfait :

$$\begin{cases}
 u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\
 - \int_{0}^{T} \int_{\Omega} u \partial_{t} \varphi \, dx \, dt + \int_{0}^{T} \int_{\Omega} \nabla u \cdot \nabla \varphi \, dx \, dt - \int_{\Omega} u_{0}(x) \varphi(x, 0) \, dx \\
 = \int_{0}^{T} \int_{\Omega} f \varphi \, dx \, dt, \quad \forall \varphi \in C_{0}^{\infty}([0, T[\times \Omega)).
\end{cases}$$
(4.17)

On démontrera plus loin le lemme suivant, qui donne l'équivalence des formulations (4.16) et (4.17).

Lemme 4.12 (Équivalence des formulations faibles) Soit Ω un ouvert borné de \mathbb{R}^N , T > 0, $u_0 \in L^2(\Omega)$ et $f \in L^2(0, T, L^2(\Omega))$. Alors, la fonction u est solution de (4.16) si et seulement si u est solution de (4.17).

Existence par degré topologique

Dans le cas de problèmes non linéaires, plutôt que d'approcher ou de discrétiser, on peut se ramener à un problème linéaire et appliquer un argument de type degré topologique, en utilisant les résultats connus dans le cas linéaire. C'est ce qu'on fera par exemple sur le problème (voir le problème (4.43))

$$\left\{ \begin{array}{l} \partial_t u + \operatorname{div}(v(t,x)f(u)) - \Delta u = 0 \text{ dans } \Omega \times]0, T[, \\ u = 0 \text{ sur } \partial \Omega \times]0, T[, \\ u(\cdot,0) = u_0. \end{array} \right.$$

^{6.} Leonhard Euler (1707–1783), mathématicien, physicien, astronome, géographe et ingénieur suisse qui fonda la théorie des graphes et la topologie et fit des découvertes fondamentales dans de nombreuses branches des mathématiques.

4.2 Intégration de fonctions à valeurs vectorielles

On a utilisé dans les formulations faibles de la section 4.1 les espaces $L^2(]0,T[,L^2(\Omega)), L^2(]0,T[,H^1_0(\Omega))$ et $L^2(]0,T[,H^{-1}(\Omega))$. Ce sont des espaces pour lesquels on utilise l'intégration de fonctions à valeurs dans un espace de Banach de dimension infinie (comme, par exemple, $L^2(\Omega)$). Il nous faut donc préciser comment on définit une telle intégrale. Rappelons d'abord comment on définit l'intégrale sur \mathbb{R} (voir aussi [20, Chapitre 4]. On commence par définir la notion de mesurabilité. On rappelle que si (X,T,m) est un espace mesuré, une fonction $f:X\to\mathbb{R}$ est mesurable si $f^{-1}(B)\in T$ pour tout $B\in \mathcal{B}(\mathbb{R})$. Une généralisation facile de cette notion de mesurabilité aux espaces de Banach est donc la suivante : une fonction f de f dans f est mesurable si $f^{-1}(B)\in T$ pour tout f est la tribu engendrée par les ouverts de f. En fait cette notion n'a aucun intérêt du point de vue de l'intégrale si f est la tribu engendrée par les ouverts de f. En fait cette notion n'a aucun intérêt du point de vue de l'intégrale si f est pas séparable. Par ailleurs, une fonction réelle f: f est une suite f est une limite simple de fonctions étagées, f est une suite f est une limite simple de fonctions étagées, f est une suite f est une space de Banach non séparable). C'est cette dernière notion (limite simple de fonctions étagées) qui est intéressante pour définir l'intégrale. Plus précisément, comme l'intégrale ne voit pas les changements d'une fonction sur un ensemble de mesure nulle, nous allons définir la notion de "f est a manière suivante :

Définition 4.13 (Fonction m-mesurable) Soit (X, T, m) un espace mesuré. On dit qu'une fonction f, définie de X à valeurs dans \mathbb{R} ou à valeurs dans un Banach E est m-mesurable si elle est limite presque partout de fonctions étagées.

Proposition 4.14 (Mesurabilité et m-mesurabilité) Soit (X, T, m) un espace mesuré.

- 1. Une fonction f de X à valeurs dans \mathbb{R} est m-mesurable si et seulement s'il existe g mesurable t.q. f=g p.p..
- 2. Soit E est un espace de Banah séparable et f une fonction de X dans E. Alors,
 - (a) f est mesurable au sens " $f^{-1}(B) \in T$ pour tout $B \in B(E)$ " si et seulement si f est limite simple de fonctions étagées.
 - (b) Comme dans le cas réel, la fonction f de X dans E est m-mesurable si et seulement si il existe g mesurable t.q. f = g p.p..

Soit (X,T,m) un ensemble mesuré, E un espace de Banach et f une fonction m-mesurable de X dans E. Il est facile de voir que la fonction $x\mapsto \|f(x)\|_E$ est m-mesurable de X dans \mathbb{R}_+ . la quantité $\int \|f(x)\|_E \,\mathrm{d}m(x)$ est donc parfaitement définie dans $\mathbb{R}_+ \cup \{+\infty\}$. Ceci permet de définir l'espace $\mathcal{L}^1_E(X,T,m)$.

Définition 4.15 (L'espace $\mathcal{L}_{E}^{1}(X, T, m)$) Soit (X, T, m) un ensemble mesuré, E un espace de Banach et f une fonction m-mesurable de X dans E. La fonction f appartient à $\mathcal{L}_{E}^{1}(X, T, m)$ si

$$\int \|f(x)\|_E \, \mathrm{d}m(x) < +\infty.$$

On veut maintenant définir l'intégrale d'un élément de $\mathcal{L}^1_E(X,T,m)$ où (X,T,m) est un espace mesuré et E un espace de Banach. Soit $f\in\mathcal{L}^1_E(X,T,m)$. On ne peut pas utiliser la même technique que pour $E=\mathbb{R}$ (c'est-à-dire décomposer f en f^+ et f^- et commencer par intégrer des fonctions mesurables positives). Par contre, comme f est m-mesurable, on sait qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions étagées t.q. $f_n\to f$ p.p.. Il existe donc $A\in T$ tel que $m(A^c)=0$ et $f_n(x)\to f(x)$ pour tout $x\in A$. On pose alors

$$A_n = \{x \in A; ||f_n(x)||_E \le 2||f(x)||_E\} \text{ et } g_n = f_n charac_{A_n}.$$

(le nombre 2 pourrait être remplacé ici par n'importe quel nombre > 1 et A pourrait être remplacé par un autre ensemble vérifiant les mêmes propriétés : cela ne changerait pas la définition de l'intégrale donnée dans la définition 4.16.) La suite $(g_n)_{n\in\mathbb{N}}$ vérifie :

$$g_n$$
 étagée pour tout $n \in \mathbb{N}$, $g_n \to f$ p.p.,
$$\int \|g_n - f\|_E \, \mathrm{d}m \to 0 \text{ par convergence dominée.}$$

La définition de l'intégrale d'une fonction étagée est immédiate : on pose

$$I_n = \int g_n \, \mathrm{d}m.$$

On peut alors montrer que $(I_n)_{n\in\mathbb{N}}$ est une suite de Cauchy dans E. Cette suite converge donc dans E. On peut aussi montrer que la limite de cette suite ne dépend que de f (et non du choix de f_n et de A). Il est donc naturel de définir l'intégrale de f comme la limite de cette suite. C'est ce qui est fait dans la définition 4.16.

Définition 4.16 (Intégrale à valeurs dans E) Soit $f: X \to E$ où (X, T, m) est un espace mesuré et E un espace de Banach.

- 1. (Rappel) $f \in \mathcal{L}^1_E(X,T,m)$ si f est m-mesurable et $\int \|f\|_E dm < +\infty$.
- 2. (Intégrale) Soit $f \in \mathcal{L}^1_E(X,T,m)$. Soit $(f_n)_{n \in \mathbb{N}}$ suite de fonctions étagées telle que $f_n \to f$ p.p.. Soit $A \in T$ tel que $m(A^c) = 0$ et $f_n(x) \to f(x)$ pour tout $x \in A$. On pose $A_n = \{x \in A; \|f_n(x)\|_E \le 2\|f(x)\|\}$ et $g_n = f_n$ charac A_n . On définit l'intégrale de f par :

$$\int f \, \mathrm{d}m = \lim_{n \to +\infty} \int g_n \, \mathrm{d}m \in E.$$

Avec la relation d'équivalence = p.p., on définit alors $L^1_E(X,T,m)$. Il est alors facile aussi de deviner les définitions de $\mathcal{L}^p_E(X,T,m)$ et $L^p_E(X,T,m)$ pour tout $1 \leq p \leq +\infty$. Un élément de $L^p_E(X,T,m)$ est donc un ensemble d'éléments de $\mathcal{L}^p_E(X,T,m)$ (et deux fonctions appartenant à cet ensemble sont égales p.p.). Comme d'habitude en intégration, si $F \in L^p_E(X,T,m)$, on confond F et f si $f \in F$ (de sorte que l'on raisonne comme si $F \in \mathcal{L}^p_E(X,T,m)$).

Proposition 4.17 Soit $1 \le p \le +\infty$, (X, T, m) un espace mesuré σ -fini et E un espace de Banach. Alors

- 1. $L_E^p(X,T,m)$ (avec sa norme naturelle) est complet. C'est donc un espace de Banach.
- 2. Si $p < +\infty$ et E est séparable, $L_E^p(X, T, m)$ est séparable.
- 3. Si p = 2 et E est un Hilbert, alors $L_E^2(X, T, m)$ est aussi un espace de Hilbert, dont le produit scalaire est défini par :

$$(u|v)_{L_E^2(X,T,m)} = \int_X (u(x)|v(x))_E dm(x).$$

Par conséquent, de toute suite bornée de $L_E^2(X,T,m)$ on peut extraire une sous-suite faiblement convergente dans $L_E^2(X,T,m)$.

4. Si 1 et si <math>E est un espace de Banach réflexif séparable, l'espace $L_E^p(X,T,m)$ est alors un espace de Banach réflexif séparable.

- 5. (Dualité dans $L_E^p(X,T,m)$) Soit $1 \le p \le +\infty$, $p' = \frac{p}{p-1}$ et $v \in L_{E'}^{p'}(X,T,m)$. Pour $u \in L_E^p(X,T,m)$, l'application $T_v: u \mapsto \int \langle v,u \rangle_{E',E} \, \mathrm{d} m$ est bien définie, linéaire et continue de $L_E^p(X,T,m)$ dans \mathbb{R} . (On a donc $T_v \in (L_E^p(X,T,m))'$).
 - De plus, l'application $T: v \mapsto T_v$ est une isométrie de $L_{E'}^{p'}(X,T,m)$ sur son image (qui est donc une partie de $L_{E}^{p}(X,T,m)'$).
 - Si E' est séparable et $p < \infty$, l'image de T est $(L_E^p(X,T,m))'$ en entier.
- 6. (Convergence dominée) Soit $1 \le p < +\infty$ et $(u_n)_{n \in \mathbb{N}}$ une suite de $L_E^p(X, T, m)$. Si
 - (a) $u_n \to u$ p.p.,
 - (b) $||u_n||_E \leq G$ p.p. pour tout $n \in \mathbb{N}$ avec $G \in \mathcal{L}^p_{\mathbb{R}}(X, T, m)$, alors $u_n \to u$ dans $L^p_E(X, T, m)$.

Démonstration de la proposition 4.17

Les propriétés 1-4 ne sont pas démontrées ici. La propriété 5 est partiellement démontrée dans l'exercice 4.2. La propriété 6 est plus facile. Il suffit de remarquer que

$$||u_n - u||_E \le ||u_n||_E + ||u||_E \le 2G.$$

On a donc $\|u_n-u\|_E^p \leq 2^p |G|^p \in \mathcal{L}^1_{\rm I\!R}(X,T,m)$. Par le théorème de convergence dominée pour les fonctions à valeurs dans ${\rm I\!R}$, on en déduit que $\int \|u_n-u\|_E^p dm \to 0$ et donc que $u_n \to u$ dans $L^p_E(X,T,m)$.

Remarque 4.18 Soit E un espace de Banach. On dit que E est uniformément convexe si

$$\forall \eta > 0, \exists \varepsilon > 0 \text{ tel que } (\|x\|_E = 1, \|y\|_E = 1, \|x - y\| \ge \eta) \Rightarrow \|\frac{x + y}{2}\| \le 1 - \varepsilon.$$

Les espaces $L^p(\Omega)$ avec $1 et <math>\Omega$ ouvert de \mathbb{R}^N sont uniformément convexes. Une conséquence importante du fait que E soit un Banach uniformément convexe est que si $(x_n)_{n \in \mathbb{N}}$ est une suite de E t.q. $x_n \to x$ faiblement dans E et $\|x_n\|_E \to \|x\|_E$, alors $x_n \to x$ dans E. Cette propriété permet éventuellement de simplifier certaines démonstrations de la proposition 4.17 (mais n'est pas nécessaire).

Nous allons maintenant introduire différentes notions de dérivée pour une fonction à valeurs vectorielles. Plaçons nous maintenant dans le cadre qui va nous intéresser pour les équations paraboliques, c'est-à-dire :

$$(X, T, m) = (]0, T[, \mathcal{B}(]0, T[), \lambda).$$

On va d'abord définir proprement la dérivée par rapport au temps, $\partial_t u = \frac{du}{dt}$, pour une fonction de]0,T[dans E qui n'est pas dérivable au sens classique (c'est-à-dire au sens de l'existence de la limite, dans E, du quotient différentiel habituel).

On note maintenant $L_E^p(]0,T[)$ ou $L^p(]0,T[,E)$ l'espace $L_E^p(]0,T[,\mathcal{B}(]0,T[),\lambda)$ et $L_{E,loc}^1(]0,T[)$ ou $L_{loc}^1(]0,T[,E)$ l'ensemble des (classes de) fonctions à valeurs dans E localement intégrables sur]0,T[(avec la mesure de Lebesgue).

Le lemme suivant est le pendant du lemme 1.1, lemme fondamental qui nous a permis de définir la dérivée par transposition des fonctions à valeurs dans IR. Sa démonstration en est similaire.

Lemme 4.19 Soit $u \in L^1_{loc}(]0,T[,E)$ on suppose que

$$\forall \varphi \in \mathcal{D}(]0, T[), \int_0^T u(t)\varphi(t) dt = 0.$$

Alors u = 0 p.p.

On peut ainsi définir la dérivée par transposition d'une fonction u de]0,T[à valeurs dans un espace de Banach E.

Définition 4.20 (Dérivée par transposition) Soit E un espace de Banach, $1 \le p \le +\infty$ et $u \in L_E^p(]0,T[)$. On note \mathcal{D} l'espace $\mathcal{D}(]0,T[)$ et \mathcal{D}_E^{\star} l'ensemble des applications linéaires de \mathcal{D} dans E. On définit $\partial_t u \in \mathcal{D}_E^{\star}$ par :

$$\langle \partial_t u, \varphi \rangle_{\mathcal{D}_E^*, \mathcal{D}} = -\int_0^T u(t) \varphi'(t) \, \mathrm{d}t \in E.$$

Remarque 4.21 Si $u \in C^1(]0, T[, E)$ on a

$$-\int_0^T u(t)\varphi'(t) dt = \int_0^T u'(t)\varphi(t) dt = \langle \partial_t u, \varphi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}}.$$

On confond alors u' (dérivée classique) avec $\partial_t u$ (dérivée par transposition), c'est-à-dire la fonction u' qui appartient à C([0,T],E) avec l'application linéaire de \mathcal{D} dans E notée $\partial_t u$. (Grâce au lemme 4.19, la fonction u' est entièrement déterminée par $\partial_t u$, ce qui justifie la confusion entre u' et $\partial_t u$.)

Définition 4.22 (Dérivée faible) Soit E et F deux espaces de Banach et $1 \leq p,q \leq +\infty$. On suppose qu'il existe un espace vectoriel G t.q. $E \subset G$ et $F \subset G$. Soit $u \in L_E^p(]0,T[)$ (on a donc $\partial_t u \in \mathcal{D}_E^{\star}$). On dit que $\partial_t u \in L_F^q(]0,T[)$ si il existe une fonction $v \in L_F^q(]0,T[)$ telle que

$$\langle \partial_t u, \varphi \rangle_{\mathcal{D}_E^*, \mathcal{D}} = -\underbrace{\int_0^T u(t)\varphi'(t) \, \mathrm{d}t}_{\in E} = \underbrace{\int_0^T v(t)\varphi(t) \, \mathrm{d}t}_{\in E}.$$

Cette égalité n'a de sens que s'il existe un espace vectoriel G tel que $E \subset G$ et $F \subset G$. Dans ce cas, on confond $\partial_t u \in \mathcal{D}_E^{\star}$ et $v \in L_F^q(]0,T[)$. (Ici aussi le lemme 4.19 est utile pour faire cette confusion car, grâce au lemme 4.19, si la fonction v existe elle est alors unique.)

En résumé, on a donc trois notions de dérivée d'une fonction u de [0, T] à valeurs dans E (espace de Banach).

- (1) Dérivée classique : $u':]0, T[\rightarrow E \text{ (existe rarement...)}.$
- (2) Dérivée par transposition : ∂_tu ∈ D_E^{*} (existe dès que u ∈ L_E^p(]0, T[)).
 (3) Dérivée faible : ∂_tu ∈ L_F^q(]0, T[) où F est un Banach tel que E ⊂ G et F ⊂ G avec G espace vectoriel. Exemples Soit Ω un ouvert borné de \mathbb{R}^N .
 - 1. $E=H^1_0(\Omega), F=H^{-1}(\Omega).$ On a alors $E,F\subset G=\mathcal{D}^\star(\Omega).$
 - 2. $1 \leq p < +\infty, q = \frac{p}{p-1}, E = W_0^{1,p}(\Omega), F = W^{-1,q}(\Omega)$. On a aussi $E, F \subset G = \mathcal{D}^\star(\Omega)$.
 - 3. $E=H^1(\Omega)$ $F=(H^1(\Omega))'$. Pour cet exemple, on a $F\not\subset \mathcal{D}^\star(\Omega)$. En effet, on prend par exemple T définie, pour $v \in H^1(\Omega)$, par

$$T(v) = \int_{\partial \Omega} v \, \mathrm{d}\gamma(x).$$

L'application T est bien une application linéaire continue sur $H^1(\Omega)$, donc $T \in H^1(\Omega)'$. Mais T = 0 sur $\mathcal{D}(\Omega)$, et donc, comme T n'est pas l'application nulle, F ne s'injecte pas dans $\mathcal{D}^{\star}(\Omega)$.

Dans cet exemple, pour injecter E et F dans le même espace G, on commence par identifier $(L^2(\Omega))'$ (dual topologique de $L^2(\Omega)$) avec $L^2(\Omega)$. Ceci est possible car si $T \in L^2(\Omega)'$, par le théorème de représentation de Riesz, il existe une et une seule fonction $u \in L^2(\Omega)$ telle que $T(v) = (v|u)_2$ pour tout $v \in L^2(\Omega)$. On confond alors u et T. Par cette identification, on a donc $L^2(\Omega)' = L^2(\Omega)$. On remarque maintenant que, si E,H sont deux espaces de Banach tels que $E\subset H$, et avec injection continue de E dans H et densité de E dans H, on a alors $H'\subset E'$. On prend ici $E=H^1(\Omega)$ et $H=L^2(\Omega)$ et on a donc (grâce à l'identification entre $L^2(\Omega)$ et $L^2(\Omega)'$) $H'=L^2(\Omega)\subset H^1(\Omega)'$. Finalement, on a donc $E,F\subset G$ en prenant $G=(H^1(\Omega))'$. On a ainsi mis E et F dans le même espace $G=(H^1(\Omega))'$ grâce à l'identification de $L^2(\Omega)$ avec $(L^2(\Omega))'$.

4. Dans l'exemple précédent, on a deux espaces de Banach E et H avec $E \subset H$, injection continue de E dans H et densité de E dans H. On a alors $H' \subset E'$. L'espace H est un espace de Hilbert. En identifiant H avec H', on a donc $E \subset E'$. Mais si l'objectif est seulement d'avoir $E \subset E'$, il n'est pas nécessaire d'avoir $H' \subset E'$ et on peut retirer l'hypothèse de densité de E dans H. Plus précisément, soit E un espace de Banach et H un espace de Hilbert avec $E \subset H$ et injection continue de E dans H. On identifie H avec H'. Soit maintenant $u \in E$, comme $u \in H$, on a donc identification entre u et T_u qui est l'application $v \mapsto (v|u)_H$ de H dans \mathbb{R} . On peut alors aussi identifier u (qui est dans E) avec la restriction de T_u à E (qui est un élément de E'). Cette identification est légitime car si u_1 et u_2 sont deux éléments différents de E, les restrictions de T_{u_1} et T_{u_2} à E sont des applications différentes. On a ainsi $E \subset E'$. Dans cet exemple, il faut toutefois noter que (en l'absence de densité de E dans E0 des éléments différents de E1 ont la même restriction à E2 (et peuvent donc correspondre au même élément de E1).

Un exemple intéressant de cette situation est obtenu en prenant $H=L^2(\Omega)^N$ (avec Ω ouvert borné de \mathbb{R}^N , N>1) et $E=\{u\in H: \operatorname{div}(u)=0\}$.

Remarque 4.23 (Comparaison de $L^p(]0,T[,L^p(\Omega))$ et $L^p(\Omega\times]0,T[)$) Soient T>0, Ω un ouvert de \mathbb{R}^N , $1 \leq p < +\infty$. Soit $u \in L^p(]0,T[,L^p(\Omega))$. Il existe alors $v \in L^p(\Omega\times]0,T[)$ tel que $u(t)=v(\cdot,t)$ p.p. (dans Ω) et pour presque tout $t \in]0,T[$. (Noter que cette égalité est vraie quels que soient les représentants choisis pour u et v.)

Récripoquement, si $v \in L^p(\Omega \times]0, T[)$, il existe $u \in L^p(]0, T[, L^p(\Omega))$ tel que $u(t) = v(\cdot, t)$ p.p. (dans Ω) et pour presque tout $t \in]0, T[$. Ces deux assertions permettent d'identifier $L^p(\Omega \times]0, T[)$ et $L^p(]0, T[, L^p(\Omega))$. Noter toutefois que le deuxième assertion est fausse pour $p = +\infty$ (voir [14] page 28 pour un exemple).

En conservant ces notations, on peut alors comparer $\frac{du}{dt}$ (qui s'applique à un élément de $\mathcal{D}(]0,T[)$) et $\partial_t v$ (qui s'applique à un élément de $\mathcal{D}(\Omega \times]0,T[)$). De fait, pour tout $\varphi \in \mathcal{D}(]0,T[)$ et tout $\psi \in \mathcal{D}(\Omega)$ on a

$$\begin{split} \int_{\Omega} \langle \frac{du}{dt}, \varphi \rangle_{\mathcal{D}_{E}^{\star}, \mathcal{D}}(x) \psi(x) \; \mathrm{d}x &= -\int_{\Omega} (\int_{0}^{T} u(t) \varphi'(t) dt)(x) \psi(x) \; \mathrm{d}x \\ &= -\int_{\Omega} \int_{0}^{T} v(x, t) \varphi'(t) \psi(x) \; \mathrm{d}x \; \mathrm{d}t \\ &= \langle \frac{\partial v}{\partial t}, \varphi \psi \rangle_{\mathcal{D}^{\star}(\Omega \times]0, T[), \mathcal{D}(\Omega \times]0, T[)}. \end{split}$$

Proposition 4.24 (Commutation de l'action de dualité et de l'intégrale) Soit E un espace de Banach, $u \in L_E^1(]0, T[)$, $\psi \in E'$ et $\varphi \in \mathcal{D}(]0, T[)$. Alors,

$$<\psi, \int_0^T u(t)\varphi(t) dt>_{E',E} = \int_0^T <\psi, u(t)>_{E',E} \varphi(t) dt.$$

La preuve de la proposition 4.24 est laissée en exercice.

Lemme 4.25 (Continuité en temps) Soit E un espace de Banach, $1 \le p \le +\infty$ et $u \in L_E^p(]0,T[)$. On suppose que $\partial_t u \in L_E^p(]0,T[)$ (on a alors $u \in W_E^{1,p}(]0,T[)$. Alors, $u \in C([0,T],E)$, et même $u \in C^{0,1-\frac{1}{p}}([0,T],E)$.

Plus précisément, il existe $a \in E$ t.q. $u(t) = a + \int_0^t \partial_t u(s) ds$ pour presque tout $t \in]0,T[$ et u est alors identifié à la fonction (continue sur [0,T]) $t\mapsto a+\int_0^t\partial_t u(s)ds$. En particulier, ceci donne pour tout $0\leq t_1< t_2\leq T$,

$$u(t_2) - u(t_1) = \int_{t_1}^{t_2} \partial_t u(s) ds.$$

Démonstration La démonstration est semblable au cas $E = \mathbb{R}$, voir exercice 1.3. On pose $\partial_t u = v \in L_E^p([0,T])$ et on définit w par $w(t)=\int_0^t v(s)ds$, de sorte que $w\in C([0,T],E)$. On montre assez facilement que $\partial_t w=v=\partial_t u$ et donc $\partial_t (w-u)=0$. On a donc

$$\int_{0}^{T} (w - u)\partial_{t}\varphi \, dt = 0 \text{ pour tout } \varphi \in \mathcal{D}(]0, T[).$$
(4.18)

On choisit maintenant une fonction $\varphi_0 \in \mathcal{D}(]0,T[)$ t.q. $\int_0^T \varphi_0(s)ds=1$. Pour $\psi \in \mathcal{D}(]0,T[)$ on définit φ par

$$\varphi(t) = \int_0^t \psi(s)ds - \int_0^t \varphi_0(s)ds \int_0^T \psi(s)ds,$$

de sorte que $\varphi \in \mathcal{D}([0,T[])$ et on peut prendre φ dans (4.18). On en déduit (la preuve est laissée en exercice) qu'il existe $a \in E$ tel que w - u = a p.p. Donc $u \in C([0,T],E)$. Avec l'inégalité de Hölder, on montre ensuite que $u \in C^{0,1-\frac{1}{p}}.$

Nous allons maintenant montrer un lemme plus difficile donnant aussi la continuité de u. On suppose que E est un espace de Banach et F un espace de Hilbert tel que $E \subset F$, avec injection continue, et E dense dans F. On a donc aussi $F' \subset E'$. Comme F est un espace de Hilbert, on peut identifier F avec son dual par le théorème de représentation de Riesz, c'est-à-dire que l'on identifie $v \in F$ avec l'application $T_v: u \mapsto (v|u)_F$ (qui est un élément de F'). L'application $v \mapsto T_v$ est une isométrie (bijective) de F dans F'. Avec cette identification, on a donc $E \subset F = F' \subset E'$. Donc, tout élément de E est alors un élément de E'. Pour $u, v \in E$, on a

$$< v, u >_{E',E} = (v|u)_F,$$

c'est-à-dire $\langle T_v, u \rangle_{E',E} = \langle v|u \rangle_F$, où T_v est l'élément de F' identifié à $v \in F$. Avec cette identification de F avec F', on va maintenant donner un résultat de continuité de u dans F si $u \in L^2(]0,T[,E]$ et $\partial_t u \in$ $L^2(]0,T[,E')$. Il faut faire très attention que cette dernière hypothèse n'a de sens que par l'identification de F avec F' (si on change d'espace F, on change le sens de $\partial_t u \in L^2([0,T],E')$, alors que E' n'est pas changé!).

Lemme 4.26 (CS de Continuité) Soit E un espace de Banach et F un espace de Hilbert tels que $E \subset F$, avec injection continue, et E dense dans F. On identifie F avec F' (de sorte que $E \subset F = F' \subset E'$). Soit $u \in$ $L_E^2(]0,T[)$, on suppose que $\partial_t u \in L_{E'}^2(]0,T[)$. Alors $u \in C([0,T],F)$ et, pour tout $t_1,t_2 \in [0,T]$, $t_1 > t_2$, on a

$$||u(t_1)||_F^2 - ||u(t_2)||_F^2 = 2 \int_{t_2}^{t_1} \langle \partial_t u, u \rangle_{E', E} dt.$$
 (4.19)

Démonstration On va montrer que $u \in C([0,T]), F)$.

Soit $\rho \in \mathcal{D}(]-2,-1[)$ tel que $\int_{\mathbb{R}} \rho \, \mathrm{d}x = 1$ et $\rho \geq 0$. Pour $n \in \mathbb{N}^*$, on pose $\rho_n = n\rho(n\cdot)$ de sorte que le support de ρ_n est inclus dans $]-\frac{2}{n},-\frac{1}{n}[$ et que $\int \rho_n \, \mathrm{d}x = 1$. (La suite $(\rho_n)_{n \in \mathbb{N}}$ est une suite de noyaux régularisants.) On définit u_n par convolution avec ρ_n , c'est-à-dire $u_n = \tilde{u} \star \rho_n$ avec

$$\tilde{u} = u \operatorname{sur}]0, T[$$

 $u = 0 \operatorname{sur}]0, T[^{c}.$

On a donc $u_n \to u$ dans $L_E^2(]0,T[), u_n \in C_c^\infty(\mathbb{R},E)$ et $u_n' = \tilde{u} \star \rho_n'$. Soit $t \in \mathbb{R}$, on a

$$u'_n(t) = \int_0^T u(s)\rho'_n(t-s)ds.$$

On remarque maintenant que $ho_n(t-s)=0$ si $t-s
ot\in\left]\frac{-2}{n},\frac{-1}{n}\right[$ c'est-à-dire $s
ot\in\left]t+\frac{1}{n},t+\frac{2}{n}\right[.$ Soit $\varepsilon > 0$ et $t \in [0, T - \varepsilon[$. Pour $n \ge n_0$ avec n_0 tel que $\frac{2}{n_0} < \varepsilon$ on a $t + \frac{2}{n} < T$ et donc

$$\rho_n(t-\cdot) \in \mathcal{D}(]0,T[).$$

On a alors

$$\begin{split} u_n'(t) &= <\partial_t u, \rho_n(t-\cdot)>_{\mathcal{D}_E^\star,\mathcal{D}} \\ &= \int_0^T \partial_t u(s) \rho_n(t-s) ds \in E', \text{ car } \partial_t u \in L^2_{E'}(]0,T[). \end{split}$$

Donc, $u'_n = \tilde{\partial_t u} \star \rho_n \text{ sur } [0, T - \varepsilon[, \text{ avec }]$

$$\tilde{\partial}_t u = \begin{cases} \partial_t u \text{ sur }]0, T[\\ 0 \text{ sur }]0, T[^c. \end{cases}$$

$$\begin{split} \text{Mais } \tilde{\partial_t u} \star \rho_n &\to \tilde{\partial}_t u \text{ dans } L^2(\mathbb{R}, E'). \text{ Donc } u_n' = \tilde{\partial_t u} \star \rho_n \to \partial_t u \text{ dans } L^2_{E'}(]0, T - \varepsilon[). \\ \text{En résumé, } \left\{ \begin{array}{l} u_n \to u \text{ dans } L^2_{E}(]0, T[) \\ u_n' \to \partial_t u \text{ dans } L^2_{E'}(]0, T - \varepsilon[) & \forall \varepsilon > 0. \end{array} \right. \\ \text{On va maintenant montrer que } (u_n(t))_{n \in \mathbb{N}} \text{ est une suite de Cauchy dans } F \text{ pour tout } t \in [0, T[, \text{ et même, pour labeled of the proof of the$$

tout $\varepsilon > 0$, uniformément si $t \in [0, T - \varepsilon]$.

Soit $\varepsilon > 0$ et $\varphi \in C^1([0,T],\mathbb{R})$ définie par $\varphi(t) = \|u_n(t) - u_m(t)\|_F^2$. On a donc, pour $t \in]0,T[$,

$$\varphi'(t) = 2(\underbrace{(u'_n - u'_m)(t)}_{\in E} | \underbrace{(u_n - u_m)(t)}_{\in E}))_F.$$

On rappelle que $u_n \in C_c^{\infty}(\mathbb{R}, E)$ et donc $(u_n' - u_m')(t) \in E$. Soient $t_1, t_2 \in [0, T - \varepsilon]$, on a

$$\varphi(t_2) - \varphi(t_1) = \int_{t_1}^{t_2} 2(u'_n(s) - u'_n(s)|u_n(s) - u_m(s))_F ds$$
$$= 2 \int_{t_1}^{t_2} \langle \partial_t (u_n - u_m)(s), u_n(s) - u_m(s) \rangle_{E', E} ds.$$

Donc,

$$\varphi(t_2) - \varphi(t_1) \leq 2 \left(\int_0^{T-\varepsilon} \|\partial_t (u_n - u_m)\|_{E'}^2 ds \right)^{\frac{1}{2}} \left(\int_0^T \|u_n - u_m\|_E^2 ds \right)^{\frac{1}{2}}$$

$$\leq 2 \|\partial_t (u_n - u_m)\|_{L_{E'}^2} \|u_n - u_m\|_{L_E^2}.$$

Soit $\eta > 0$, comme $u_n \to u$ dans $L_E^2(]0,T[)$ et comme la suite $(\partial_t u_n)_{n \in \mathbb{N}^*}$ est bornée dans $L_{E'}^2(]0,T-\varepsilon[)$, il existe n_0 tel que

$$\varphi(t_2) - \varphi(t_1) \le \eta \text{ pour } m, n \ge n_0.$$

On a donc

$$\varphi(t_2) \le \varphi(t_1) + \eta$$
 pour $n, m \ge n_0$.

On intègre cette inégalité pour $t_1 \in]0, T - \varepsilon[$. On obtient

$$(T - \varepsilon)\varphi(t_2) \le \int_0^{T-\varepsilon} \|u_n - u_m\|_F^2 dt_1 + T\eta$$

 $\le \|u_n - u_m\|_{L_F^2}^2 + T\eta$

En utilisant une nouvelle fois que $u_n \to u$ dans $L^2_E(]0,T[)$, il existe n_1 t.q.

$$(T-\varepsilon)\varphi(t_2) \leq (T+1)\eta \text{ pour } n, m \geq n_1.$$

On a donc $\varphi(t) \leq \frac{(T+1)\eta}{T-\varepsilon}$ pour $n,m \geq n_1$ et $t \in [0,T-\varepsilon]$. On a ainsi montré que, pour tout $t \in [0,T-\varepsilon]$,

$$n, m \ge n_1 \Rightarrow \|u_n(t) - u_m(t)\|_F^2 \le \frac{(T+1)\eta}{T-\varepsilon}$$

Ceci montre bien que la suite $(u_n(t))_{n\in\mathbb{N}}$ est de Cauchy dans F uniformément par rapport à t, si $t\in[0,T-\varepsilon]$. Il existe donc une fonction w de [0,T[dans F t.q. $u_n(t)\to w(t)$ dans F pour tout $t\in[0,T[$. Comme cette convergence est uniforme sur $[0,T-\varepsilon]$ pour tout $\varepsilon>0$, la fonction w est continue sur $[0,T-\varepsilon]$ pour tout $\varepsilon>0$. On a donc $w\in C([0,T[,F])$.

Comme $u_n \to u$ dans $L_E^2(]0,T[)$ (et donc p.p. sur]0,T[après extraction éventuelle d'une sous-suite), on a donc u=w p.p., et donc $u\in C([0,T[,F])$ (car on identifie, comme d'habitude, la classe de fonctions u avec son représentant continu qui est justement w).

De manière analogue, en décentrant les noyaux régularisants de l'autre côté, on montre que $u \in C(]0,T],F)$. On a donc $u \in C([0,T],F)$.

Enfin, on a aussi pour $t_1, t_2 \in [0, T]$,

$$||u_n(t_1)||_F^2 - ||u_n(t_2)||_F^2 = 2 \int_{t_2}^{t_1} (u'_n(s)|u_n(s))_F ds$$
$$= 2 \int_{t_2}^{t_1} \langle \partial_t(u_n)(s), u_n(s) \rangle_{E', E} ds$$

en passant à la limite sur n, on obtient

$$||u(t_1)||_F^2 - ||u(t_2)||_F^2 = 2 \int_{t_2}^{t_1} \langle \partial_t u(s), u(s) \rangle_{E', E} ds.$$

Remarque 4.27 Un exemple classique du lemme 4.26 consiste à prendre $E=H^1_0(\Omega)$ (où Ω est un ouvert de \mathbb{R}^N , $N\geq 1$), $F=L^2(\Omega)$, F' identifié à F, et donc $E'=H^{-1}(\Omega)$. Le choix de E' pour l'espace dans lequel est $\partial_t u$ est crucial dans la démonstration du lemme 4.26 mais des généralisations de ce lemme sont possibles. L'exercice 4.4 montre que $u\in L^2(]0,1[,H^1(]0,+\infty[)$ et $\partial_t u\in L^2(]0,1[,H^{-1}(]0,+\infty[)$ (l'espace L^2 étant identifié à lui même) sont des hypothèses suffisantes pour obtenir $u\in C([0,T],L^2(\Omega))$. Le lemme 4.26 ne s'applique pas ici directement car $H^{-1}(]0,+\infty[)$ est le dual de $H^1(]0,+\infty[)$ et n'est donc pas le dual de $H^1(]0,+\infty[)$. Un argument de prolongement permet de se ramener au lemme 4.26 (exercice 4.4).

Une conséquence intéressante du lemme 4.26 est la formule d'intégration par parties en temps qui est l'objet du lemme suivant.

Lemme 4.28 (Intégration par parties en temps) Soit E un espace de Banach et F un espace de Hilbert tels que $E \subset F$, avec injection continue, et E dense dans F. On identifie F avec F' (de sorte que $E \subset F = F' \subset E'$). Soit $u, v \in L^2_E(]0, T[)$, on suppose que $\partial_t u, \partial_t v \in L^2_{E'}(]0, T[)$. Alors $u, v \in C([0,T],F)$ et

$$\int_0^T \langle \partial_t u, v \rangle_{E', E} + \int_0^T \langle \partial_t v, u \rangle_{E', E} = (u(T)|v(T))_F - (u(0)|v(0))_F.$$

Démonstration

Le lemme 4.26 donne $u, v \in C([0, T], F)$. On applique maintenant la formule (4.19) aux fonctions u, v et u + v (avec $t_1 = T$ et $t_2 = 0$), on obtient

$$\begin{aligned} &\|(u+v)(T)\|_F^2 - \|(u+v)(0)\|_F^2 = 2\int_0^T <\partial_t(u+v), u+v>_{E',E} \mathrm{d}t, \\ &\|u(T)\|_F^2 - \|u(0)\|_F^2 = 2\int_0^T <\partial_t u, u>_{E',E} \mathrm{d}t, \\ &\|v(T)\|_F^2 - \|v(0)\|_F^2 = 2\int_0^T <\partial_t v, v>_{E',E} \mathrm{d}t. \end{aligned}$$

En retranchant à la première équation les deux suivantes, ceci donne (en notant que $\partial_t(u+v) = \partial_t u + \partial_t v$)

$$2(u(T)|v(T))_F - 2(u(0)|v(0))_F = 2\int_0^T (\langle \partial_t u, v \rangle_{E',E}) dt + \langle \partial_t v, u \rangle_{E',E}) dt,$$

ce qui donne la formule désirée.

4.3 Étude de l'équation de la chaleur

Notation : Si E est un espace de Banach et T > 0, on notera souvent $L^2(]0, T[, E)$ (au lieu de $L^2_E(]0, T[)$) l'espace $L^2_E(]0, T[, \mathcal{B}(]0, T[, \lambda)$.

On s'intéresse dans ce paragraphe au problème suivant :

Soit Ω un ouvert borné de \mathbb{R}^N , $T \in \mathbb{R}_+^*$, f une fonction de $\Omega \times]0, T[$ dans \mathbb{R} et u_0 une fonction de Ω dans \mathbb{R} . On cherche u tel que

$$\left\{ \begin{array}{ll} \partial_t u - \Delta u = f & \ \ \mathrm{dans} \ \Omega \times]0, T[, \\ u = 0 & \ \ \mathrm{sur} \ \partial \Omega \times]0, T[, \\ u(\cdot, 0) = u_0. \end{array} \right.$$

Ce problème linéaire admet une unique solution faible, résultat fait l'objet du théorème 4.29 ci-après. On en donne deux démonstrations du théorème 4.29, d'esprit très différent :

- par la méthode classique de Faedo-Galerkine qui consiste à approcher l'EDP initiale par un système différentiel,
- par une méthode plus directe par une technique qu'on appelle ici coercivité généralisée, qui fait appel à des résultats d'analyse fonctionnelle abstraits.

Théorème 4.29 (Existence et unicité de la solution faible de l'équation de la chaleur) Soit Ω un ouvert borné de \mathbb{R}^N , T>0 et $u_0\in L^2(\Omega)$, on identifie $L^2(\Omega)$ avec son dual et on suppose que $f\in L^2(]0,T[,H^{-1}(\Omega))$. Alors, il existe un et un seul u tel que

$$\begin{cases}
 u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \ \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega)), \\
 \int_{0}^{T} \langle \partial_{t}u(s), v(s) \rangle_{H^{-1}, H_{0}^{1}} ds + \int_{0}^{T} \int_{\Omega} \nabla u(s) \cdot \nabla v(s) \, dx \, ds = \int_{0}^{T} \langle f(s), v(s) \rangle_{H^{-1}, H_{0}^{1}} \, ds \\
 v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)),
\end{cases}$$

$$(4.20)$$

$$u(0) = u_{0} \ p.p..$$

(On rappelle que u(s) (resp. v(s)) désigne la fonction $x \mapsto u(x,t)$ (resp. v(x,t)). On a de plus les estimations suivantes sur u et $\partial_t u$:

$$||u||_{L^{2}(]0,T[,H_{0}^{1}(\Omega))} \le ||u_{0}||_{2} + ||f||_{L^{2}(]0,T[,H^{-1}(\Omega))}, \tag{4.21}$$

$$\|\partial_t u\|_{L^2([0,T[,H^{-1}(\Omega))]} \le \|u_0\|_2 + 2\|f\|_{L^2([0,T[,H^{-1}(\Omega))]},\tag{4.22}$$

$$||u(t)||_{2}^{2} \leq ||u_{0}||_{2}^{2} + ||\partial_{t}u||_{L^{2}(]0,T[,H^{-1}(\Omega))}^{2} + ||u||_{L^{2}(]0,T[,H^{\frac{1}{2}}(\Omega))}^{2}, pour tout \ t \in [0,T[.$$
 (4.23)

On rappelle que l'on a identifié $L^2(\Omega)$ avec $L^2(\Omega)$)', de sorte que $H^1_0(\Omega) \subset L^2(\Omega) = L^2(\Omega)' \subset H^{-1}(\Omega)$. Comme on cherche u t.q. $u \in L^2(]0,T[,H^1_0(\Omega))$ et $\partial_t u \in L^2(]0,T[,H^{-1}(\Omega))$, on a nécessairement $u \in C([0,T],L^2(\Omega))$ (d'après le lemme 4.26). La fonction u est donc définie en tout $t \in [0,T]$, ce qui permet de donner un sens à la condition $u(0) = u_0$ p.p..

4.3.1 Preuve du théorème d'existence et unicité par la méthode de Faedo-Galerkine

L'idée de cette méthode est de résoudre d'abord un problème approché, qui s'écrit sous la forme d'un système différentiel. Pour cela, on peut chercher une solution approchée en espace à l'aide d'une méthode d'éléments finis, mais le plus simple dans le cas de l'opérateur de Laplace est d'utiliser une base hilbertienne formée de ses fonctions propres, c'est-à-dire une base hilbertienne de $L^2(\Omega)$, notée $\{e_n, n \in \mathbb{N}^*\}$ telle que e_n est (pour tout n) une solution faible de

$$\left\{ \begin{array}{ll} -\Delta e_n = \lambda_n e_n & \mathrm{dans}\; \Omega, \\ e_n = 0 & \mathrm{sur}\; \partial \Omega, \end{array} \right.$$

avec $\lambda_n \in \mathbb{R}$.

Etape 1, remarques liminaires. Par le théorème 2.14, il existe une famille famille $(e_n)_{n\in\mathbb{N}^*}$ qui est une base hilbertienne de $L^2(\Omega)$ et qui vérifie

$$\begin{cases} e_n \in H_0^1(\Omega), \\ \int_{\Omega} \nabla e_n \cdot \nabla v \, dx = \lambda_n \int_{\Omega} e_n v \, dx, \text{ pour tout } v \in H_0^1(\Omega), \end{cases}$$

avec $\lambda_n > 0$ pour tout $n \in \mathbb{N}^*$ et $\lambda_n \uparrow +\infty$ quand $n \to +\infty$.

Comme $(e_n)_{n\in\mathbb{N}^*}$ est une base hilbertienne de $L^2(\Omega)$, on a, pour tout $w\in L^2(\Omega)$, $w=\sum_{n\in\mathbb{N}^*}(w|e_n)_2e_n$ au sens de la convergence $L^2(\Omega)$ (c'est-à-dire que $\sum_{i=1}^n(w|e_i)e_i\to w$ dans $L^2(\Omega)$ quand $n\to+\infty$).

On va montrer maintenant que la famille $(\lambda_n^{-\frac{1}{2}}e_n)_{n\in\mathbb{N}^\star}$ est une base hilbertienne de $H^1_0(\Omega)$. On rappelle que $H^1_0(\Omega)$ est un espace de Hilbert; la norme de u dans $H^1_0(\Omega)$ est définie par $\|u\|_{H^1_0(\Omega)} = \|\,|\nabla u|\,\|_{L^2(\Omega)}$ et donc le produit scalaire de u et v dans $H^1_0(\Omega)$ est donné par $(u|v)_{H^1_0(\Omega)} = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x$.

On remarque tout d'abord que pour tout $n, m \ge 1$, on a

$$\int_{\Omega} \nabla e_n \cdot \nabla e_m \, dx = \lambda_n \int_{\Omega} e_n e_m \, dx = \lambda_n \delta_{n,m}.$$

On en déduit que $(e_n|e_m)_{H^1_0(\Omega)}=0$ si $n\neq m$ et

$$\|\frac{e_n}{\sqrt{\lambda_n}}\|_{H^1_0(\Omega)}^2 = \int_{\Omega} \frac{\nabla e_n \cdot \nabla e_n}{\lambda_n} \, \mathrm{d}x = 1.$$

Puis, on remarque que l'espace vectoriel engendré par la famille $(e_n)_{n\in\mathbb{N}^*}$, noté $ev\{e_n,n\in\mathbb{N}^*\}$, est dense dans $H^1_0(\Omega)$. En effet soit $v\in H^1_0(\Omega)$ t.q. $(v|e_n)_{H^1_0(\Omega)}=0$ pour tout $n\in\mathbb{N}^*$. On a donc, pour tout $n\in\mathbb{N}^*$,

$$0 = (v|e_n)_{H_0^1(\Omega)} = \int_{\Omega} \nabla e_n \cdot \nabla v \, dx = \lambda_n \int_{\Omega} e_n v \, dx.$$

Comme $(e_n)_{n\in\mathbb{N}^\star}$ est une base hilbertienne de $L^2(\Omega)$ (et $\lambda_n\neq 0$ pour tout $n\in\mathbb{N}^\star$), on en déduit que v=0 p.p.. Ceci montre que l'orthogonal dans $H^1_0(\Omega)$ de $ev\{e_n,\,n\in\mathbb{N}^\star\}$ est réduit à $\{0\}$ et donc que $ev\{e_n,\,n\in\mathbb{N}^\star\}$ est dense dans $H^1_0(\Omega)$. Finalement, on obtient ainsi que la famille $(\lambda_n^{-\frac{1}{2}}e_n)_{n\in\mathbb{N}^\star}$ est une base hilbertienne de $H^1_0(\Omega)$.

Etape 2, solution approchée.

Soit $n \in \mathbb{N}^*$; on pose $E_n = ev\{e_p, p = 1, \dots n\}$, et on cherche une solution approchée u_n sous la forme $u_n(t) = \sum_{i=1}^n \alpha_i(t)e_i$ avec $\alpha_i \in C([0,T],\mathbb{R})$. En supposant que les α_i sont dérivables pour tout t (ce qui n'est pas vrai, en général), on a donc

$$u'_n(t) = \sum_{i=1}^n \alpha'_i(t)e_i,$$

de sorte que, pour tout $\varphi \in H^1_0(\Omega)$ et tout $t \in]0,T[$, on a (compte tenu de l'injection de $L^2(\Omega)$ dans $H^1_0(\Omega)$),

$$\langle u'_n(t), \varphi \rangle_{H^{-1}(\Omega), H^1_0(\Omega)} = \sum_{i=1}^n \alpha'_i(t) \int_{\Omega} e_i \varphi \, \mathrm{d}x.$$

D'autre part, pour tout $t \in [0, T]$ on a

$$-\Delta u_n(t) = -\sum_{i=1}^n \alpha_i(t) \Delta e_i = \sum_{i=1}^n \lambda_i \alpha_i(t) e_i \text{ dans } \mathcal{D}^\star(\Omega) \text{ et dans } H^{-1}(\Omega),$$

c'est-à-dire, pour tout $\varphi \in H_0^1(\Omega)$,

$$\langle -\Delta u_n(t), \varphi \rangle_{H^{-1}(\Omega), H^1_0(\Omega)} = \int_{\Omega} \nabla u_n(t) \cdot \nabla \varphi \, dx = \sum_{i=1}^n \lambda_i \alpha_i(t) \int_{\Omega} e_i \varphi \, dx.$$

Enfin, comme $f \in L^2(]0,T[,H^{-1})$, on a pour tout $\varphi \in H^1_0(\Omega)$, $\langle f(\cdot), \varphi \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} \in L^1_{\mathbb{R}}(]0,T[)$. La quantité $\langle f(t), \varphi \rangle_{H^{-1}(\Omega),H^1_0(\Omega)}$ est donc définie pour presque tout t et on obtient finalement, pour presque tout t et pour tout $\varphi \in H^1_0(\Omega)$,

$$\langle u'_n(t) - \Delta u_n(t) - f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = \sum_{i=1}^n (\alpha'_i(t) + \lambda_i \alpha_i(t)) \int_{\Omega} e_i \varphi \, \mathrm{d}x - \langle f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}.$$

Pour obtenir u_n , une idée naturelle est de choisir les fonctions α_i pour que

$$\langle u_n'(t) - \Delta u_n(t) - f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = 0$$

pour tout $\varphi \in E_n$. En posant $f_i(t) = \langle f(t), e_i \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$, ceci est équivalent à demander pour tout $i \in \{1, \ldots, n\}$,

$$\alpha_i'(t) + \lambda_i \alpha_i(t) = f_i(t).$$

En tenant compte de la condition initiale et en posant $\alpha_i^{(0)}=(u_0|e_i)_2$, ceci suggère donc de prendre

$$\alpha_i(t) = \alpha_i^{(0)} e^{-\lambda_i t} + \int_0^t e^{-\lambda_i (t-s)} f_i(s) ds.$$
 (4.24)

Les fonctions α_i ainsi définies appartiennent à $C([0,T],\mathbb{R})$ et on a donc $u_n \in C([0,T],E_n) \subset C([0,T],H^1_0(\Omega))$ avec $u_n(t) = \sum_{i=1}^n \alpha_i(t)e_i$.

Etape 3, précision sur la dérivée en temps. Soit $n \in \mathbb{N}^{\star}$ et u_n la solution approchée donnée par l'étape précédente. Les fonctions α_i ne sont pas nécessairement dérivables. On va préciser ici ce que vaut la dérivée (par transposition) de u_n . On va noter cette dérivée $\partial_t(u_n)$. Par définition de la dérivation par transposition, $\partial_t(u_n)$ est un élément de \mathcal{D}_E^{\star} avec $E = H_0^1(\Omega)$. Soit $\varphi \in \mathcal{D}(]0,T[)$ on a

$$\langle \partial_t(u_n), \varphi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}} = -\int_0^T u_n(t) \varphi'(t) \, \mathrm{d}t \in E_n \subset H_0^1(\Omega).$$

Comme $u_n = \sum_{i=1}^n \alpha_i e_i$, on a donc

$$\langle \partial_t u_n, \varphi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}} = -\sum_{i=1}^n \int_0^T \alpha_i(t) e_i \varphi'(t) dt = -\sum_{i=1}^n \left(\int_0^T \alpha_i(t) \varphi'(t) dt \right) e_i.$$

On utilise maintenant (4.24),

$$\int_0^T \alpha_i(t)\varphi' \, \mathrm{d}t = T_i + S_i,$$

avec

$$T_{i} = \int_{0}^{T} \alpha_{i}^{(0)} e^{-\lambda_{i} t} \varphi'(t) dt = \int_{0}^{T} \alpha_{i}^{(0)} \lambda_{i} e^{-\lambda_{i} t} \varphi(t) dt.$$
$$S_{i} = \int_{0}^{T} \left(\int_{0}^{t} e^{-\lambda_{i} (t-s)} f_{i}(s) ds \right) \varphi'(t) dt.$$

Pour transformer S_i on utilise le théorème de Fubini :

$$\begin{split} S_i &= \int_0^T \Big(\int_0^T \mathbbm{1}_{[0,t]}(s) e^{-\lambda_i(t-s)} f_i(s) ds\Big) \varphi'(t) \; \mathrm{d}t = \int_0^T \Big(\int_0^T \mathbbm{1}_{[s,T]}(t) e^{-\lambda_i(t-s)} \varphi'(t) \; \mathrm{d}t\Big) f_i(s) ds \\ &= \int_0^T \Big(\int_s^T e^{-\lambda_i(t-s)} \varphi'(t) \; \mathrm{d}t\Big) f_i(s) ds = \int_0^T \Big(\int_s^T \lambda_i e^{-\lambda_i(t-s)} \varphi(t) \; \mathrm{d}t\Big) f_i(s) ds - \int_0^T \varphi(s) f_i(s) ds. \\ &= \int_0^T \Big(\int_0^t \lambda_i e^{-\lambda_i(t-s)} f_i(s) ds\Big) \varphi(t) dt - \int_0^T f_i(t) \varphi(t) dt. \end{split}$$

On en déduit que $T_i+S_i=\int_0^T \lambda_i \alpha_i(t) \varphi(t) \;\mathrm{d}t - \int_0^T f_i(t) \varphi(t) \;\mathrm{d}t$, et donc

$$\langle \partial_t u_n, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\sum_{i=1}^n \int_0^T \lambda_i \alpha_i(t) e_i \varphi(t) dt + \sum_{i=1}^n \int_0^T f_i(t) e_i \varphi(t) dt.$$

Comme cette égalité est vraie pour tout $\varphi \in \mathcal{D}(]0,T[)$, on a finalement

$$\partial_t u_n = -\sum_{i=1}^n \lambda_i \alpha_i e_i + \sum_{i=1}^n f_i e_i \in L^2(]0, T[, E_n).$$

Ce qui peut aussi s'écrire, avec $f^{(n)} = \sum_{i=1}^{n} f_i e_i$,

$$\partial_t u_n = \Delta u_n + f^{(n)} \in L^2(]0, T[, E_n) \subset L^2(]0, T[, H_0^1(\Omega)) \subset L^2(]0, T[, H^{-1}(\Omega)).$$

Soit maintenant $v \in L^2(]0, T[, H_0^1(\Omega))$. Comme $\partial_t u_n \in L^2(]0, T[, H^{-1}(\Omega))$, on a $\langle \partial_t u_n, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \in L^1(]0, T[)$ et

$$\int_0^T \langle \partial_t u_n(t), v(t) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt = -\int_0^T \int_\Omega \nabla u_n \cdot \nabla v \, dx \, dt + \sum_{i=1}^n \int_0^T \int_\Omega f_i e_i v \, dx \, dt.$$

Ceci donne, en revenant à la définition de f_i ,

$$\int_0^T \langle \partial_t u_n(t), v(t) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt + \int_0^T \int_{\Omega} \nabla u_n \cdot \nabla v \, dx \, dt = \sum_{i=1}^n \int_0^T \langle f(t), e_i \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \left(\int_{\Omega} e_i v \, dx \right) dt$$

$$= \int_0^T \langle f(t), \sum_{i=1}^n (v|e_i)_2 e_i \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt.$$

On note P_n l'opérateur de projection orthogonale dans $L^2(\Omega)$ sur le s.e.v. E_n . L'opérateur P_n peut donc être vu comme un opérateur de $L^2(\Omega)$ dans $H^1_0(\Omega)$ (car $E_n \subset H^1_0(\Omega)$). On note alors P_n^t l'opérateur transposé qui est donc un opérateur de $H^{-1}(\Omega)$ dans $(L^2(\Omega))'$ qui est lui même identifié à $L^2(\Omega)$ et est aussi un s.e.v. de $H^{-1}(\Omega)$. On obtient alors (pour tout $v \in L^2(]0, T[, H^1_0(\Omega))$)

$$\int_{0}^{T} \langle \partial_{t} u_{n}, v \rangle_{H^{-1}, H_{0}^{1}} dt + \int_{0}^{T} \int_{\Omega} \nabla u_{n} \cdot \nabla v \, dx \, dt = \int_{0}^{T} \langle f, P_{n} v \rangle_{H^{-1}, H_{0}^{1}} dt = \int_{0}^{T} \langle P_{n}^{t} f, v \rangle_{H^{-1}, H_{0}^{1}} dt. \quad (4.25)$$

On a aussi $u_n \in C([0,T], H_0^1(\Omega))$ et $u_n(0) = P_n u_0$.

Etape 4, estimations sur la solution approchée.

Pour $n \in \mathbb{N}^{\star}$, on a $u_n \in C([0,T],H_0^1(\Omega)) \subset L^2(]0,T[,H_0^1(\Omega))$ et $\partial_t u_n = \Delta u_n + f^{(n)} \in L^2(]0,T[,H^{-1}(\Omega))$. D'après la section 4.2, on a donc

$$\frac{1}{2}||u_n(T)||_2^2 - \frac{1}{2}||u_0||_2^2 = \int_0^T \langle \partial_t u_n, u_n \rangle_{H^{-1}, H_0^1} dt.$$

En prenant $v = u_n$ dans (4.25), on en déduit

$$\frac{1}{2}||u_n(T)||_2^2 - \frac{1}{2}||u_0||_2^2 + \int_0^T \int_{\Omega} |\nabla u_n|^2 dx dt = \int_0^T \langle f, P_n u_n \rangle_{H^{-1}, H_0^1} dt,$$

et donc

$$||u_n||_{L^2(]0,T[,H_0^1(\Omega))}^2 = \int_0^T \int_{\Omega} |\nabla u_n|^2 \, \mathrm{d}x \, \mathrm{d}t \le \frac{1}{2} ||u_0||_2^2 + \int_0^T \langle f, P_n u_n \rangle_{H^{-1},H_0^1} dt.$$

On en déduit, en remarquant que $P_n u_n = u_n$,

$$\begin{split} \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2 &\leq \frac{1}{2}\|u_0\|_2^2 + \int_0^T \langle f,u_n\rangle_{H^{-1},H_0^1} dt \\ &\leq \frac{1}{2}\|u_0\|_2^2 + \|f\|_{L^2(]0,T[,H^{-1}(\Omega))}\|u_n\|_{L^2(]0,T[,H_0^1(\Omega))} \\ &\leq \frac{1}{2}\|u_0\|_2^2 + \frac{1}{2}\|f\|_{L^2(]0,T[,H^{-1}(\Omega))}^2 + \frac{1}{2}\|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2. \end{split}$$

On a donc

$$||u_n||_{L^2(]0,T[,H_0^1(\Omega))}^2 \le ||u_0||_2^2 + ||f||_{L^2(]0,T[,H^{-1}(\Omega))}^2.$$

Ce qui donne aussi

$$||u_n||_{L^2(]0,T[,H_0^1(\Omega))} \le ||u_0||_2 + ||f||_{L^2(]0,T[,H^{-1}(\Omega))}.$$

Comme $\partial_t u_n = \Delta u_n + P_n^t f$ (égalité (4.25)) et que $\|P_n w\|_{H_0^1(\Omega)} \le \|w\|_{H_0^1(\Omega)}$ pour tout $w \in H_0^1(\Omega)$, on obtient aussi une borne sur $\partial_t u_n$:

$$\|\partial_t u_n\|_{L^2(]0,T[,H^{-1}(\Omega))} \le \|u_n\|_{L^2(]0,T[,H^1_0(\Omega))} + \|f\|_{L^2(]0,T[,H^{-1}(\Omega))}$$

et donc

$$\|\partial_t u_n\|_{L^2([0,T[,H^{-1}(\Omega)))} \le \|u_0\|_2 + 2\|f\|_{L^2([0,T[,H^{-1}(\Omega)))}.$$

La suite $(u_n)_{n\in\mathbb{N}^*}$ est donc bornée dans $L^2(]0,T[,H^1_0(\Omega))$ et la suite $(\partial_t u_n)_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$.

Etape 5, passage à la limite. Grâce aux estimations obtenues à l'étape précédente, on peut supposer, après extraction éventuelle d'une sous-suite, que, quand $n \to +\infty$,

$$u_n \to u$$
 faiblement dans $L^2(]0, T[, H_0^1(\Omega)),$

$$\partial_t u_n \to w$$
 faiblement dans $L^2(]0,T[,H^{-1}(\Omega))$

et les estimations sur u_n et $\partial_t u_n$ donnent aussi les estimations suivantes sur u et w:

$$||u||_{L^2(]0,T[,H_0^1(\Omega))} \le ||u_0||_2 + ||f||_{L^2(]0,T[,H^{-1}(\Omega))},$$

$$||w||_{L^2(]0,T[,H^{-1}(\Omega))} \le ||u_0||_2 + 2||f||_{L^2(]0,T[,H^{-1}(\Omega))}.$$

Nous allons montrer tout d'abord que $w = \partial_t u$ (puis nous montrerons que u est solution de $\partial_t u = \Delta u + f$ au sens demandé par (4.20)).

Par définition de $\partial_t u$, on a, pour tout $\varphi \in \mathcal{D}(]0,T[)$,

$$\int_0^T \partial_t u(t)\varphi(t)dt = -\int_0^T u(t)\varphi'(t)dt.$$

Pour démontrer que $\partial_t u = w$, il suffit donc de montrer que l'on a, pour tout $\varphi \in \mathcal{D}(]0,T[)$,

$$\int_0^T w(t)\varphi(t)dt = -\int_0^T u(t)\varphi'(t)dt. \tag{4.26}$$

On rappelle que le terme de gauche de l'égalité (4.26) est dans $H^{-1}(\Omega)$ alors que le terme de droite est dans $H^1_0(\Omega)$. Cette égalité utilise donc le fait que $H^1_0(\Omega) \subset H^{-1}(\Omega)$, cette inclusion étant due au fait que nous avons identifié $L^2(\Omega)'$ avec $L^2(\Omega)$.

Soit donc $\varphi \in \mathcal{D}(]0,T[)$. Nous allons montrer (4.26). Pour $\psi \in H^1_0(\Omega)$, on considère l'application S de $L^2(]0,T[,H^1_0(\Omega))$ dans ${\rm I\!R}$ définie par

$$S(v) = \int_{\Omega} \left(-\int_{0}^{T} v(t)\varphi'(t)dt \right) \psi(x) dx \text{ pour } v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)).$$

L'application S est linéaire continue de $L^2(]0,T[,H^1_0(\Omega))$ dans \mathbb{R} . Comme $u_n\to u$ faiblement $L^2(]0,T[,H^1_0(\Omega))$, on a donc $S(u_n)\to S(u)$ quand $n\to +\infty$. Or, pour $v=u_n$ et pour v=u, on a

$$S(v) = -\left(\int_0^T v(t)\varphi'(t)dt|\psi\right)_2 = -\left(\int_0^T v(t)\varphi'(t)dt,\psi\right)_{H^{-1},H_0^1}.$$

On a donc, quand $n \to +\infty$,

$$-\langle \int_0^T u_n(t)\varphi'(t)dt, \psi \rangle_{H^{-1}, H_0^1} \to -\langle \int_0^T u(t)\varphi'(t)dt, \psi \rangle_{H^{-1}, H_0^1}.$$

On utilise maintenant le fait que $-\int_0^T u_n(t)\varphi'(t)dt = \int_0^T \partial_t u_n(t)\varphi(t)dt$ (par définition de $\partial_t u_n$). On a donc

$$\langle \int_0^T \partial_t u_n(t) \varphi(t) dt, \psi \rangle_{H^{-1}, H_0^1} \to -\langle \int_0^T u(t) \varphi'(t) dt, \psi \rangle_{H^{-1}, H_0^1}.$$

On considère maintenant l'application \bar{S} de $L^2(]0,T[,H^{-1}(\Omega))$ dans IR définie par

$$\bar{S}(v) = \langle \int_0^T v(t)\varphi(t)dt, \psi \rangle_{H^{-1}, H_0^1} \text{ pour } v \in L^2(]0, T[, H^{-1}(\Omega)).$$

L'application \bar{S} est linéaire continue de $L^2(]0,T[,H^{-1}(\Omega))$ dans \mathbb{R} . Comme $\partial_t u_n \to w$ faiblement $L^2(]0,T[,H^{-1}(\Omega))$, on a donc $\bar{S}(\partial_t u_n) \to \bar{S}(w)$ quand $n \to +\infty$, c'est-à-dire

$$\langle \int_0^T \partial_t u_n(t) \varphi(t) dt, \psi \rangle_{H^{-1}, H_0^1} \to \langle \int_0^T w(t) \varphi(t) dt, \psi \rangle_{H^{-1}, H_0^1}.$$

On en déduit que pour tout $\psi \in H_0^1(\Omega)$, on a

$$-\langle \int_0^T u(t)\varphi'(t)dt,\psi\rangle_{H^{-1},H^1_0}=\langle \int_0^T w(t)\varphi(t)dt,\psi\rangle_{H^{-1},H^1_0}.$$

On a donc bien montré que $-\int_0^T u(t)\varphi'(t)dt = \int_0^T w(t)\varphi(t)dt$ pour tout $\varphi \in \mathcal{D}(]0,T[)$, c'est-à-dire que $\partial_t u = w$.

Nous savons donc que $u_n \to u$ faiblement dans $L^2(]0,T[,H^1_0(\Omega))$ et que $\partial_t u_n \to \partial_t u$ faiblement dans $L^2(]0,T[,H^{-1}(\Omega))$. Pour montrer que u est solution de $\partial_t u = \Delta u + f$ au sens demandé par (4.20), il suffit maintenant de passer à la limite dans (4.25). Soit $v \in L^2(]0,T[,H^1_0(\Omega))$, on a pour tout $n \in \mathbb{N}^*$, selon (4.25),

$$\int_0^T \langle \partial_t u_n, v \rangle_{H^{-1}, H_0^1} dt + \int_0^T (u_n | v)_{H_0^1} dt = \int_0^T \langle f, P_n v \rangle_{H^{-1}, H_0^1} dt.$$

Les deux termes de gauche de cette égalité passent à limite quand $n \to +\infty$ grâce aux convergences de u_n et $\partial_t u_n$. Pour le terme de droite, on utilise l'étape liminaire. On remarque que $P_n v(t) \to v(t)$ dans $H^1_0(\Omega)$ pour presque tout t et $\|P_n v(t)\|_{H^1_0(\Omega)} \le \|v(t)\|_{H^1_0(\Omega)}$ pour presque tout t. Cela permet de passer à la limite dans le terme de droite, par le théorème de convergence dominée. On obtient ainsi

$$\int_0^T \langle \partial_t u, v \rangle_{H^{-1}, H_0^1} dt + \int_0^T (u|v)_{H_0^1} dt = \int_0^T \langle f, v \rangle_{H^{-1}, H_0^1} dt.$$

Ce qui est bien le sens souhaité dans la formulation (4.20).

Etape 6, condition initiale. Comme $u \in L^2(]0, T[, H_0^1(\Omega))$ et $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$, on sait que $u \in C([0, T], L^2(\Omega))$ (voir la section 4.2). Pour terminer la démonstration du fait que u est solution de (4.20), il reste donc seulement à montrer que $u(0) = u_0$ p.p. (c'est-à-dire $u(0) = u_0$ dans $L^2(\Omega)$).

On sait que $u(t) \to u(0)$ dans $L^2(\Omega)$ quand $t \to 0$. On sait aussi que $u_n(0) = \sum_{i=1}^n \alpha_i^{(0)} e_i \to u_0$ dans $L^2(\Omega)$ quand $n \to +\infty$. Pour en déduire que $u(0) = u_0$, il suffit de montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ est relativement compacte dans $C([0,T],H^{-1}(\Omega))$. En effet, si la suite $(u_n)_{n \in \mathbb{N}^*}$ est relativement compacte dans

 $C([0,T],H^{-1}(\Omega))$, il existe $w\in C([0,T],H^{-1}(\Omega))$ et une sous-suite, encore notée $(u_n)_{n\in\mathbb{N}^\star}$, t.q. $u_n(t)\to w(t)$ dans $H^{-1}(\Omega)$ uniformément par rapport à $t\in[0,T]$ (et donc aussi dans $L^2(]0,T[,H^{-1}(\Omega))$). En particulier, on a donc $w(0)=u_0$. Mais on sait déjà que $u_n\to u$ faiblement dans $L^2(]0,T[,H^1_0(\Omega))$ et donc aussi faiblement dans $L^2(]0,T[,H^{-1}(\Omega))$. Par unicité de la limite, on a donc u=w p.p. sur]0,T[et donc u(t)=w(t) pour tout $t\in[0,T]$ car u et w sont continues sur [0,T]. On obtient ainsi, finalement, $u(0)=w(0)=u_0$.

Il reste à montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est relativement compacte dans $C([0,T],H^{-1}(\Omega))$. Par le théorème d'Ascoli (théorème 1.32), il suffit de montrer que

- 1. Pour tout $t \in [0,T]$, $(u_n(t))_{n \in \mathbb{N}^*}$ est relativement compacte dans $H^{-1}(\Omega)$.
- 2. $||u_n(t) u_n(s)||_{H^{-1}} \to 0$, quand $s \to t$, uniformément par rapport à $n \in \mathbb{N}^*$ (et pour tout $t \in [0, T]$).

Par démontrer le deuxième point, on utilise le fait que $\partial_t u_n \in L^1([0,T],H^{-1}(\Omega))$. La section 4.2 (lemme 4.25) nous donne que pour tout $t_1,t_2 \in [0,T], t_1 > t_2$, et tout $n \in \mathbb{N}^*$, on a (dans $H^{-1}(\Omega)$)

$$u_n(t_1) - u_n(t_2) = \int_{t_2}^{t_1} \partial_t u_n(s) ds,$$

et donc

$$||u_n(t_1) - u_n(t_2)||_{H^{-1}} \le \int_{t_2}^{t_1} ||\partial_t u_n(s)||_{H^{-1}} ds \le \left(\int_0^T ||\partial_t u_n(s)||_{H^{-1}}^2 ds\right)^{\frac{1}{2}} \sqrt{t_1 - t_2} \le ||\partial_t u_n||_{L^2(]0,T[,H^{-1})} \sqrt{t_1 - t_2}.$$

Comme la suite $(\partial_t u_n)_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$, on en déduit bien que $||u_n(t)-u_n(s)||_{H^{-1}}\to 0$, quand $s\to t$, uniformément par rapport à $n\in\mathbb{N}^*$ (et pour tout $t\in[0,T]$).

Pour démontrer de premier point, on utilise encore la section 4.2 (lemme 4.26). Comme $u_n \in L^2(]0, T[, H_0^1(\Omega))$ et $\partial_t u_n \in L^2(]0, T[, H^{-1}(\Omega))$, on a, pour tout $t, s \in [0, T]$,

$$||u_n(t)||_2^2 = ||u_n(s)||_2^2 + 2\int_s^t \langle \partial_t u_n(\xi), u_n(\xi) \rangle_{H^{-1}, H_0^1} d\xi,$$

et donc

$$||u_n(t)||_2^2 \le ||u_n(s)||_2^2 + 2\int_s^t |\langle \partial_t u_n(\xi), u_n(\xi) \rangle_{H^{-1}, H_0^1} |d\xi \le ||u_n(s)||_2^2 + 2||\partial_t u_n||_{L^2(]0, T[, H^{-1})} ||u_n||_{L^2(]0, T[, H_0^1)}.$$

En intégrant cette inégalité par rapport à s sur [0, T], on en déduit

$$T\|u_n(t)\|_2^2 \le \|u_n\|_{L^2(]0,T[,L^2(\Omega))}^2 + 2T\|\partial_t u_n\|_{L^2(]0,T[,H^{-1})}\|u_n\|_{L^2(]0,T[,H^1_0)}.$$

Ceci montre que la suite $(u_n(t))_{n\in\mathbb{N}^*}$ est bornée dans $L^2(\Omega)$ pour tout $t\in[0,T]$ (et même uniformément par rapport à t). On en déduit que la suite $(u_n(t))_{n\in\mathbb{N}^*}$ est relativement compacte dans $H^{-1}(\Omega)$ pour tout $t\in[0,T]$. On peut donc appliquer le théorème d'Ascoli (théorème 1.32) et conclure, comme cela est indiqué au début de cette étape, que $u(0)=u_0$ p.p.. Ceci termine la démonstration du fait que u est solution de (4.20) et donc la démonstration de la partie "existence" du théorème 4.29.

Dans la démonstration, nous avons obtenu les estimations suivantes

$$||u||_{L^{2}(]0,T[,H_{0}^{1}(\Omega))} \leq ||u_{0}||_{2} + ||f||_{L^{2}(]0,T[,H^{-1}(\Omega))},$$

$$||\partial_{t}u||_{L^{2}(]0,T[,H^{-1}(\Omega))} \leq ||u_{0}||_{2} + 2||f||_{L^{2}(]0,T[,H^{-1}(\Omega))}.$$

Enfin, comme $u \in L^2(]0,T[,H_0^1(\Omega))$ et $\partial_t u \in L^2(]0,T[,H^{-1}(\Omega))$, le lemme 4.26 donne, pour tout t,

$$||u(t)||_2^2 = ||u_0||_2^2 + 2 \int_0^t \langle \partial_t u(s), u(s) \rangle_{H^{-1}, H_0^1} ds,$$

on en déduit que

$$||u(t)||_2^2 \le ||u_0||_2^2 + ||\partial_t u||_{L^2(]0,T[,H^{-1}(\Omega))}^2 + ||u||_{L^2(]0,T[,H^1_0(\Omega))}^2$$
, pour tout $t \in [0,T[,H^1_0(\Omega))]$

Etape 7, unicité. On montre maintenant la partie "unicité" du théorème 4.29. Soit u_1, u_2 deux solutions de (4.20). On pose $u = u_1 - u_2$. En faisant la différence des équations satisfaites par u_1 et u_2 et en prenant, pour $t \in [0, T]$, $v = u1_{[0,t]}$ comme fonction test, on obtient

$$\int_0^t \langle \partial_t u(s), u(s) \rangle_{H^{-1}, H_0^1} ds + \int_0^t \int_\Omega \nabla u(s) \cdot \nabla u(s) \, \mathrm{d}x ds = 0.$$

Comme $u \in L^2(]0,T[,H^1_0(\Omega))$ et $\partial_t u \in L^2(]0,T[,H^{-1}(\Omega))$, on a, d'après la section 4.2,

$$\frac{1}{2}(\|u(t)\|_2^2 - (\|u(0)\|_2^2) = \int_0^t \langle \partial_t u(s), u(s) \rangle_{H^{-1}, H_0^1} ds.$$

On en déduit, pour tout $t \in [0, T]$,

$$(\|u(t)\|_2^2 - (\|u(0)\|_2^2) + 2\int_0^t \int_{\Omega} \nabla u(s) \cdot \nabla u(s) \, dx ds = 0.$$

Enfin, comme u(0)=0, on obtient bien, finalement, u(t)=0 p.p. dans Ω , pour tout $t\in[0,T]$. Ceci termine la démonstration de la partie "unicité" du théorème 4.29.

4.3.2 Preuve du théorème d'existence et unicité par coercivité généralisée

Une autre preuve du théorème 4.29 consiste à appliquer un théorème général qui donne la bijectivité d'une application d'un espace de Banach dans le dual d'un espace de Banach.

Théorème 4.30 (Application linéaire bijective d'un espace de Banach dans le dual d'un espace de Banach) Soient E un espace de Banach, F un espace de Banach réflexif et B une application linéaire continue de E dans F'. Si la condition

$$\exists \beta > 0 \text{ tel que } \forall u \in E, \|Bu\|_{F'} \ge \beta \|u\|_E, \tag{4.27}$$

est vérifiée, alors Im(B) est fermée et B est injective.

De plus, si la condition

$$\left[\forall u \in E, \langle Bu, v \rangle_{F',F} = 0\right] \Longrightarrow v = 0 \tag{4.28}$$

est vérifiée, alors B est bijective de E dans F'.

Démonstration

Soit $(y_n)_{n\in\mathbb{N}}\subset \operatorname{Im}(B)$ une suite convergente dans F' vers $y\in F'$. Il existe donc une suite $(u_n)_{n\in\mathbb{N}}\subset E$ telle que $y_n=Bu_n$ pour tout $n\in\mathbb{N}$. La suite $(y_n)_{n\in\mathbb{N}}$ est de Cauchy dans F', et en raison de la condition (4.27), la suite u_n est de Cauchy dans E et converge vers un certain $u\in E$; de plus, par continuité de B, on a donc y=Bu, ce qui montre que $\operatorname{Im}(B)$ est fermée.

Supposons que la condition (4.27) soit vérifiée; il est clair que si Bu = Bv alors u = v, ce qui montre que B est injective.

Supposons maintenant que la condition (4.28) soit vérifiée, et montrons que B est bijective. Comme on a déjà montré que B est injective et que $\mathrm{Im}(B)$ est fermée, il suffit de montrer que $\mathrm{Im}(B)$ est dense dans F'. On applique pour cela la caractérisation de la densité d'un s.e.v. d'un espace de Banach vue à l'exercice 1.10, question 2a avec $G = \mathrm{Im}(B)$, qui s'applique car on a supposé F réflexif. Cette caractérisation est exactement la condition (4.28), ce qui conclut la preuve.

Remarque 4.31 (La condition inf-sup) La condition (4.27) s'écrit de manière équivalente

$$\exists \beta>0 \text{ tel que } \inf_{\substack{u\in E\\\|u\|_E=1}} \sup_{\substack{v\in F\\\|v\|_F=1}} \langle Bu,v\rangle_{F',F} \geq \beta \|u\|_E,$$

ce qui explique l'appellation "inf-sup" habituelle.

Donnons maintenant une preuve directe du théorème 4.29 en appliquant le théorème 4.30, avec

$$-E = \{ u \in L^2(0,T; H_0^1(\Omega)) : \partial_t u \in L^2(0,T; H^{-1}(\Omega)) \},$$

$$||u||_E^2 = ||u||_{L^2(0,T;H_0^1(\Omega))}^2 + ||u||_{L^2(0,T;H^{-1}(\Omega))}^2$$

(notons que $E \subset C([0,T];L^2(\Omega))$ par le lemme 4.26),

-
$$F = L^2(0, T; H_0^1(\Omega)) \times L^2(\Omega),$$

— l'application linéaire B de E dans F^\prime définie par

$$\forall u \in E, \forall (v, z) \in F, Bu(v, z) = \langle \partial_t u - \Delta u, v \rangle_{L^2(0, T; H^{-1}(\Omega)), L^2(0, T; H^1_0(\Omega))} + \int_{\Omega} u_0(x) z(x) \, \mathrm{d}x,$$

$$\text{avec } u_0 = u(0)$$

Si on montre que B est bijective, on a immédiatement l'existence et l'unicité de la solution de (4.20), ce qui donne la démonstration du théorème 4.29. Montrons donc que B satisfait les conditions du théorème 4.30. On commence par montrer que

$$\forall u \in E, \|Bu\|_{F'} > \|u\|_{E},\tag{4.29}$$

en s'inspirant de la preuve de [3, Theorem 3.6, second proof]. Soit $R=\Delta^{-1}$ l'application linéaire continue de $H^{-1}(\Omega)$ dans $H^1_0(\Omega)$ définie par

$$\varphi \in H^{-1}(\Omega) \mapsto R\varphi$$
, solution de
$$\forall v \in H^1_0(\Omega), \ \int_{\Omega} \nabla (R\varphi) \cdot \nabla v \ \mathrm{d}x = \langle \varphi, v \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$$

On peut donc écrire

$$Bu(v,z) = \int_0^T \int_{\Omega} \nabla (R\partial_t u + u) \cdot \nabla v \, dx \, dt + \int_{\Omega} u(0)z \, dx.$$

Choisissons $(v, z) = (R\partial_t u + u, u(0))$; on a alors

$$Bu(v,z) = \|\nabla (R\partial_t u + u)\|_{L^2(0,T;L^2(\Omega)^d)}^2 + \|u(0)\|_{L^2(\Omega)}^2$$

$$= \|\nabla(R\partial_t u)\|_{L^2(0,T;L^2(\Omega)^d)}^2 + \|\nabla u\|_{L^2(0,T;L^2(\Omega)^d)}^2 + 2\int_0^T \int_{\Omega} \nabla(R\partial_t u) \cdot \nabla u \, dx \, dt + \|u(0)\|_{L^2(\Omega)}^2.$$

Comme R est un isomorphisme, on a $\|\nabla(R\partial_t u)\|_{L^2(0,T:L^2(\Omega)^d)} = \|\partial_t u\|_{L^2(0,T:H^{-1}(\Omega))}$, et donc

$$Bu(v,z) = \|\partial_t u\|_{L^2(0,T:H^{-1}(\Omega))}^2 + \|u\|_{L^2(0,T:H_0^1(\Omega))}^2 + 2\int_0^T \langle \partial_t u, u \rangle_{H^{-1}(\Omega),H_0^1(\Omega)} + \|u(0)\|_{L^2(\Omega)}^2,$$

Par le lemme (4.26), on a donc

$$Bu(v,z) = \|\partial_t u\|_{L^2(0,T:H^{-1}(\Omega))}^2 + \|u\|_{L^2(0,T:H_0^1(\Omega))}^2 + \|u(T)\|_{L^2(\Omega)}^2 - \|u(0)\|_{L^2(\Omega)}^2 + \|u(0)\|_{L^2(\Omega)}^2$$

$$\geq \|u\|_E^2.$$

Comme $\|(v,z)\|_F^2 = Bu(v,z)$ et $\|Bu\|_{F'}\|(v,z)\|_F \ge Bu(v,z)$, on a donc $Bu(v,z) \le \|Bu\|_{F'}^2$ et on a donc bien montré que l'inégalité (4.29) est satisfaite.

On en déduit par le théorème 4.30 que ${\rm Im}B$ est fermé (car F est un espace de Banach réflexif) et que B est injective.

Pour montrer que B est bijective, il reste à montrer que $\operatorname{Im} B$ est dense. Il suffit pour cela, toujours par le théorème 4.30, que la condition (4.28) est vérifiée. Soit $(v,z) \in F$ tel que

$$\forall u \in E, \langle Bu, v \rangle_{F',F} = 0,$$

ce qui s'écrit encore

$$\forall u \in E, \langle \partial_t u - \Delta u, v \rangle_{L^2(H^{-1}), L^2(H_0^1)} + \int_{\Omega} u_0(x) z(x) \, \mathrm{d}x = 0.$$
 (4.30)

On veut montrer que si cette condition est vérifiée, alors v=0 et z=0.

— On choisit d'abord $u \in E$ tel que $u(x,t) = \varphi(t)w(x)$ avec $\varphi \in C_c^{\infty}(]0,T[)$ et $w \in H_0^1(\Omega)$. En remplaçant dans (4.30),on obtient

$$\forall \varphi \in C_c^{\infty}(]0, T[), \forall w \in H_0^1(\Omega),$$

$$\int_0^T \left[\varphi'(t) \int_{\Omega} w(x) v(x, t) \, \mathrm{d}x + \varphi(t) \int_{\Omega} \nabla w(x) \cdot \nabla v(x, t) \, \mathrm{d}x \right] \, \mathrm{d}t = 0. \quad (4.31)$$

Comme $v \in L^2(0,T;H^1_0(\Omega))$, sa dérivée (en temps) par transposition $\partial_t v$ est définie par

$$\langle \partial_t v, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\int_0^T v(\cdot, t) \varphi'(t) \, \mathrm{d}t \in H_0^1(\Omega), \forall \varphi \in C_c^{\infty}(]0, T[).$$

On rappelle que cette dérivée par transposition est une dérivée faible appartenant à $L^2(0,T;H^{-1}(\Omega))$, encore notée $\partial_t v$, s'il existe $\psi \in L^2(0,T;H^{-1}(\Omega))$ tel que

$$\underbrace{-\int_0^T v(\cdot,t)\varphi'(t) \, \mathrm{d}t}_{\in H_0^1(\Omega)} = \underbrace{\int_0^T \psi(t)\varphi(t) \, \mathrm{d}t}_{\in H^{-1}(\Omega)}.$$

Remarquons que cette égalité a un sens car on a identifié $L^2(\Omega)$ à son dual, ce qui permet d'identifier $H^1_0(\Omega)$ avec un sous-espace de $H^{-1}(\Omega)$. Cette dernière égalité s'écrit encore

$$\forall w \in H_0^1(\Omega), (-\int_0^T v(\cdot, t)\varphi'(t) \, \mathrm{d}t | w)_{L^2} = \langle \int_0^T \psi(t)\varphi(t) \, \mathrm{d}t, w \rangle_{H^{-1}, H_0^1}$$

ou encore, grâce à la propriété de commutativité de l'intégrale avec l'action de dualité (proposition 4.24),

$$\forall w \in H_0^1(\Omega), -\int_0^T \varphi'(v|w)_{L^2} = \int_0^T \varphi(\psi, w)_{H^{-1}, H_0^1}.$$
 (4.32)

Or en remarquant que $-\Delta v \in L^2(0,T;H^{-1}(\Omega))$ et que

$$\langle -\Delta v, w \rangle_{H^{-1}, H_0^1} = \int_{\Omega} \nabla v \cdot \nabla w \, \mathrm{d}x,$$

on voit que l'égalité (4.31) donne exactement (4.32) pour $\psi=-\Delta v$. On en déduit que $\partial_t v=-\Delta v$ et donc $v\in E$ et

$$\partial_t v + \Delta v = 0$$
 dans $L^2(0, T; H^{-1}(\Omega))$.

— Soit maintenant $u \in E$ quelconque. Comme $v \in E$, on peut utiliser le lemme 4.28. Il donne

$$\int_0^T \langle \partial_t u, v \rangle_{H^{-1}, H_0^1} + \int_0^T \langle \partial_t v, u \rangle_{H^{-1}, H_0^1} = (u(T)|v(T))_{L^2} - (u(0)|v(0))_{L^2}.$$

D'autre part, comme $u, v \in L^2(0, T; H_0^1(\Omega))$,

$$\int_0^T \langle -\Delta u, v \rangle_{H^{-1}, H_0^1} = \int_0^T \langle -\Delta v, u \rangle_{H^{-1}, H_0^1}.$$

En remplaçant dans (4.30), on obtient

$$(u(T)|v(T))_{L^{2}} - (u(0)|v(0))_{L^{2}} - \int_{0}^{T} \langle \partial_{t}v, u \rangle_{H^{-1}, H_{0}^{1}} + \int_{0}^{T} \langle -\Delta v, u \rangle_{H^{-1}, H_{0}^{1}} + (u(0)|z)_{L^{2}} = 0.$$

Et, comme $\partial_t v + \Delta v = 0$, on obtient

$$(u(T)|v(T))_{L^2} - (u(0)|v(0))_{L^2} + (u(0)|z)_{L^2} = 0.$$

En choisissant u sous la forme $u(t)=\frac{T-t}{T}w$ avec w arbitraire dans $H^1_0(\Omega)$, on obtient $(w|z-u(0))_{L^2}=0$ et donc z=v(0). L'égalité précédente devient alors $(u(T)|v(T))_{L^2}=0$ et donc v(T)=0 en prenant u=v. Finalement, en intégrant sur [0,t] plutôt que [0,T], on montre que v(t)=0 pour tout $t\in[0,T]$; on a ainsi bien montré que v=0 et v=0, ce qui termine la preuve.

4.3.3 Autres propriétés de la solution de l'équation de la chaleur

Nous allons maintenant donner quelques propriétés complémentaires de la solution faible de l'équation de la chaleur.

Proposition 4.32 (Dépendance continue) Soit Ω un ouvert borné de \mathbb{R}^N et T>0. Pour $u_0\in L^2(\Omega)$ et $f\in L^2(]0,T[,H^{-1}(\Omega))$, on note $T(u_0,f)$ la solution du problème (4.20). L'opérateur T est linéaire continu de $L^2(\Omega)\times L^2(]0,T[,H^{-1}(\Omega))$ dans $L^2(]0,T[,H^0(\Omega))$ et dans $C([0,T],L^2(\Omega))$.

Démonstration Il suffit de reprendre les estimations vues dans le théorème 4.29, pour u solution de (4.20). :

$$\begin{split} &\|u\|_{L^2(]0,T[,H_0^1)} \leq \|f\|_{L^2(]0,T[,H^{-1})} + \|u_0\|_2, \\ &\|u(t)\|_2^2 \leq \|u_0\|_2^2 + \|\partial_t u\|_{L^2(]0,T[,H^{-1})}^2 + \|u\|_{L^2(]0,T[,H_0^1)}^2 \text{ pour tout } t \in [0,T], \\ &\|\partial_t u\|_{L^2(]0,T[,H^{-1})} \leq \|u_0\|_2 + 2\|f\|_{L^2(]0,T[,H^{-1})}. \end{split}$$

On en déduit bien la continuité de T dans les espaces annoncés.

Proposition 4.33 (Positivité et principe du maximum) Soit Ω un ouvert borné de \mathbb{R}^N , T > 0 et $u_0 \in L^2(\Omega)$. On note u la solution de (4.20) avec f = 0.

- 1. On suppose $u_0 \ge 0$ p.p.. On a alors $u(t) \ge 0$ p.p. et pour tout $t \in [0,T]$.
- 2. On suppose que $u_0 \in L^{\infty}(\Omega)$. Soit $A, B \in \mathbb{R}$ tels que $A \leq 0 \leq B$ et $A \leq u_0 \leq B$ p.p.. On a alors $A \leq u(t) \leq B$ p.p. et pour tout $t \in [0,T]$.

Démonstration Pour démontrer le premier point, on montre plutôt (ce qui est équivalent) que $u_0 \leq 0$ p.p. implique $u(t) \leq 0$ p.p. pour tout $t \in [0,T]$. On suppose donc que $u_0 \leq 0$ p.p.. On utilise alors le lemme 4.34 avec $\varphi(s) = s^+$. Il donne que $u^+ \in L^2(]0,T[,H^1_0(\Omega))$. Pour $t \in [0,T]$, on peut donc prendre $v = u^+1_{]0,t[}$ dans l'équation de (4.20) et on obtient

$$\int_0^t \langle \partial_t u(s), u^+(s) \rangle_{H^{-1}, H_0^1} ds + \int_0^t \int_\Omega \nabla u(s) \cdot \nabla u^+(s) \, \mathrm{d}x ds = 0.$$

En utilisant encore le lemme 4.34, on a donc

$$\frac{1}{2} \|u^{+}(t)\|_{2}^{2} - \frac{1}{2} \|u^{+}(0)\|_{2}^{2} + \int_{0}^{t} \|u^{+}(s)\|_{H_{0}^{1}}^{2} ds = 0.$$

Comme $u^+(0) = u_0^+ = 0$ p.p., on en déduit bien que $||u^+(t)||_2 = 0$ et donc $u(t) \le 0$ p.p..

La démonstration du deuxième point est semblable en utilisant le lemme 4.34 avec $\varphi(s)=(s-B)^+$ et $\varphi(s)=(s-A)^-$.

Lemme 4.34 Soit Ω un ouvert borné de \mathbb{R}^N et T>0. Soit φ une fonction lipchitzienne de \mathbb{R} dans \mathbb{R} t.q. $\varphi(0)=0$. On définit Φ par

$$\Phi(\xi) = \int_0^{\xi} \varphi(\bar{\xi}) d\bar{\xi} \, pour \, \xi \in \mathbb{R}.$$

Soit $u \in L^2(]0, T[, H_0^1(\Omega))$ t.q. $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$. On a alors $\varphi(u) = L^2(]0, T[, H_0^1(\Omega))$, $\Phi(u) \in C([0, T], L^1(\Omega))$ et, pour tout $t_1, t_2 \in [0, T]$,

$$\int_{\Omega} \Phi(u(t_2)) dx - \int_{\Omega} \Phi(u(t_1)) dx = \int_{t_1}^{t_2} \langle \partial_t u(s), \varphi(u(s)) \rangle_{H^{-1}, H_0^1} ds.$$

On a aussi pour presque tout $t \in]0,T[$, $\varphi(u(t)) \in H^1_0(\Omega)$ et $\nabla \varphi(u(t)) = \varphi'(u(t))\nabla u$ p.p., c'est-à-dire, en étant plus précis, $\nabla \varphi(u)(x,t) = \varphi'(u(x,t))\nabla u(x,t)$ pour presque tout $x \in \Omega$. Dans cette égalité, on peut prendre pour $\varphi'(u(x,t))$ n'importe quelle valeur si φ n'est pas dérivable au point u(x,t). En particulier ceci montre que, pour tout $a \in \mathbb{R}$, $\nabla u = 0$ p.p. sur l'ensemble $\{u = a\}$.

Démonstration Ce lemme est la version "parabolique" des lemmes 2.23 et 2.24 vus précédemment. La démonstration consiste à considérer d'abord (comme dans le lemme 2.23) que φ est de classe C^1 et à régulariser u. Puis à approcher φ par des fonctions de classe C^1 (au moins lorsque φ est dérivable sauf en un nombre fini de points, le cas général étant plus difficile). Cette preuve n'est pas détaillée ici.

On donne maintenant l'équivalence entre la formulation faible (4.20) et une autre formulation faible, la formulation (4.33). Cette deuxième formulation est, en particulier, intéressante lorsque l'on cherche à prouver la convergence des solutions approchées obtenues par une discrétisation en espace et en temps. Cette équivalence est encore vraie dans le cas non linéaire, voir par exemple la preuve de l'existence par convergence numérique du problème de Stefan dans l'exercice4.8.

Proposition 4.35 (Equivalence entre deux formulations faibles) Soit Ω un ouvert borné de \mathbb{R}^N , T > 0, $u_0 \in L^2(\Omega)$ et $f \in L^2(]0, T[, H^{-1}(\Omega))$ (on identifie, comme d'habitude $L^2(\Omega)$ avec $L^2(\Omega)'$). Alors u est solution de (4.20) si et seulement si u vérifie :.

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ -\int_{0}^{T} \int_{\Omega} u \partial_{t} \varphi \, dx \, dt - \int_{\Omega} u_{0}(x) \varphi(x, 0) \, dx + \int_{0}^{T} \int_{\Omega} \nabla u \cdot \nabla \varphi \, dx \, dt \\ = \int_{0}^{T} \langle f(s), \varphi(\cdot, s) \rangle_{H^{-1}, H_{0}^{1}} \, ds \, \text{ pour tout } \varphi \in \mathcal{D}([0, T[\times \Omega). \end{cases}$$

$$(4.33)$$

Démonstration On montre tout d'abord que "u solution de $(4.20) \Rightarrow u$ est solution de (4.33)". On suppose donc que u est solution de (4.20). Soit $\varphi \in \mathcal{D}(\Omega \times [0,T])$. Pour $n \in \mathbb{N}^*$, on pose

$$\varphi_n(x,t) = \sum_{i=0}^{n-1} 1_{]t_i,t_{i+1}[}(t)\varphi(x,t_i), \tag{4.34}$$

où $t_i=\frac{i}{n}T$. Comme φ est une fonction régulière, il est clair que $\varphi_n\in L^2(]0,T[,H^1_0(\Omega))$ et que $\varphi_n\to\varphi$ dans $L^2(]0,T[,H^1_0(\Omega))$ quand $n\to+\infty$. Comme $\varphi_n\in L^2(]0,T[,H^1_0(\Omega))$ et que u est solution de (4.20), on a

$$\int_0^T \langle \partial_t u, \varphi_n \rangle_{H^{-1}, H_0^1} dt + \int_0^T \int_{\Omega} \nabla u \cdot \nabla \varphi_n \, dx \, dt = \int_0^T \langle f, \varphi_n \rangle_{H^{-1}, H_0^1} \, dt.$$

On pose $T_n=\int_0^T \langle \partial_t u, \varphi_n \rangle_{H^{-1}, H^1_0} dt$. Comme $\varphi_n \to \varphi$ dans $L^2(]0, T[, H^1_0(\Omega))$ quand $n \to +\infty$, l'égalité précédente donne

$$\lim_{n \to +\infty} T_n = \int_0^T \langle \partial_t u, \varphi \rangle_{H^{-1}, H_0^1} dt = -\int_0^T \int_{\Omega} \nabla u \cdot \nabla \varphi \, dx \, dt + \int_0^T \langle f, \varphi \rangle_{H^{-1}, H_0^1} \, dt. \tag{4.35}$$

On va maintenant calculer $\lim_{n\to+\infty} T_n$ en utilisant (4.34). On a

$$\begin{split} T_n &= \int_0^T \langle \partial_t u(t), \sum_{i=0}^{n-1} \mathbb{1}_{]t_i, t_{i+1}[}(t) \varphi(\cdot, t_i) \rangle_{H^{-1}, H^1_0} dt = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \langle \partial_t u(t), \varphi(\cdot, t_i) \rangle_{H^{-1}, H^1_0} dt \\ &= \sum_{i=0}^{n-1} \langle \int_{t_i}^{t_{i+1}} \partial_t u(t) dt, \varphi(\cdot, t_i) \rangle_{H^{-1}, H^1_0}. \end{split}$$

Comme $u, \partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ (on rappelle que $H^1_0(\Omega) \subset H^{-1}(\Omega)$ par l'identification de $L^2(\Omega)$ avec son dual), on a (d'après la section 4.2) $u \in C([0,T],H^{-1}(\Omega))$ et

$$\int_{t_i}^{t_{i+1}} \partial_t u(t) \, dt = u(t_{i+1}) - u(t_i) \in H^{-1}(\Omega).$$

On a donc

$$T_n = \sum_{i=0}^{n-1} \langle u(t_{i+1}) - u(t_i), \varphi(\cdot, t_i) \rangle_{H^{-1}, H_0^1} = \sum_{i=0}^{n-1} \int_{\Omega} (u(x, t_{i+1}) - u(x, t_i)) \varphi(x, t_i) \, \mathrm{d}x.$$

La dernière égalité venant de la manière avec laquelle un élément de $H_0^1(\Omega)$ est considéré comme un élément de $H^{-1}(\Omega)$. Une intégration par parties discrète donne alors (en remarquant que $\varphi(\cdot,t_n)=0$)

$$T_n = -\int_{\Omega} u(x,0)\varphi(x,0) dx + \sum_{i=1}^n \int_{\Omega} (\varphi(x,t_{i-1}) - \varphi(x,t_i))u(x,t_i) dx.$$

Puis, comme φ est une fonction régulière,

$$T_{n} = -\int_{\Omega} u_{0}(x)\varphi(x,0) dx - \sum_{i=1}^{n} \int_{\Omega} \left(\int_{t_{i-1}}^{t_{i}} \partial_{t}\varphi(x,t)dt \right) u(x,t_{i}) dx$$

$$= -\int_{\Omega} u_{0}(x)\varphi(x,0) dx - \int_{0}^{T} \int_{\Omega} \partial_{t}\varphi(x,t) \left(\sum_{i=1}^{n} \mathbb{1}_{]t_{i-1},t_{i}[} u(x,t_{i}) \right) dx dt$$

$$= -\int_{\Omega} u_{0}(x)\varphi(x,0) dx - \int_{0}^{T} \int_{\Omega} \partial_{t}\varphi(x,t) (u(x,t) + R_{n}(x,t)) dx dt,$$

avec $R_n(x,t) = \sum_{i=1}^n \mathbb{1}_{]t_{i-1},t_i[}u(x,t_i) - u(x,t).$ Pour tout $t \in [0,T]$, on a

$$||R_n(\cdot,t)||_{L^2(\Omega)} \le \max\{||u(s_1)-u(s_2)||_{L^2(\Omega)}, s_1,s_2 \in [0,T], |s_1-s_2| \le \frac{T}{n}\}.$$

Comme $u \in C([0,T],L^2(\Omega))$, on en déduit que $\lim_{n\to+\infty} \|R_n(\cdot,t)\|_{L^2(\Omega)}=0$ uniformément par rapport à $t\in[0,T]$ et donc que

$$\lim_{n \to +\infty} \int_0^T \int_{\Omega} \partial_t \varphi(x, t) R_n(x, t) \, \mathrm{d}x \, \mathrm{d}t = 0.$$

En résumé, on a donc

$$\lim_{n \to +\infty} T_n = -\int_{\Omega} u_0(x)\varphi(x,0) \, \mathrm{d}x - \int_{0}^{T} \int_{\Omega} \partial_t \varphi(x,t)u(x,t) \, \mathrm{d}x \, \mathrm{d}t.$$

Avec (4.35) on a donc, pour tout $\varphi \in \mathcal{D}([0,T] \times \Omega)$,

$$-\int_0^T \int_\Omega \partial_t \varphi(x,t) u(x,t) \, \mathrm{d}x \, \mathrm{d}t - \int_\Omega u_0(x) \varphi(x,0) \, \mathrm{d}x + \int_0^T \int_\Omega \nabla u \cdot \nabla \varphi \, \mathrm{d}x \, \mathrm{d}t = \int_0^T \langle f,\varphi \rangle_{H^{-1},H^1_0} \, \mathrm{d}t.$$

Ceci montre que u est bien solution de (4.33).

On montre maintenant que "u solution de (4.33) $\Rightarrow u$ est solution de (4.20)". On suppose donc que u est solution de (4.33). On veut montrer que u est solution de (4.20). On va raisonner en deux étapes. On va d'abord montrer que $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ et $\partial_t u = \Delta u + f$ (remarquer que $\Delta u, f \in L^2(]0, T[, H^{-1}(\Omega))$ puis que $u(0) = u_0$.

Etape 1 On montre ici que $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ et $\partial_t u = \Delta u + f$. On utilise la définition de $\partial_t u$. On a $\partial_t u \in \mathcal{D}_E^{\star}$, avec $E = H_0^1(\Omega)$, et pour tout $\phi \in C^{\infty}(]0, T[, \mathbb{R})$

$$\langle \partial_t u, \phi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}} = -\int_0^T u(t)\phi'(t) dt \in H_0^1(\Omega).$$

Pour montrer que $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ et $\partial_t u = \Delta u + f$, il s'agit donc de montrer que, pour tout $\phi \in \mathcal{D}(]0, T[)$,

$$-\int_{0}^{T} u(t)\phi'(t) dt = \int_{0}^{T} (\Delta u(t) + f(t))\phi(t) dt.$$

Noter que le membre de gauche de cette égalité est dans $H_0^1(\Omega)$ et donc dans $H^{-1}(\Omega)$ (grâce à l'identification entre $L^2(\Omega)$ et son dual) et que le membre de droite est dans $H^{-1}(\Omega)$. Pour montrer l'égalité de ces deux termes, il suffit de montrer que

$$\langle -\int_0^T u(t)\phi'(t)\;\mathrm{d}t,\psi\rangle_{H^{-1},H^1_0}=\langle \int_0^T (\Delta u(t)+f(t))\phi(t)\;\mathrm{d}t,\psi\rangle_{H^{-1},H^1_0}\;\text{pour tout}\;\psi\in H^1_0(\Omega),$$

c'est-à-dire que

$$-\int_0^T \langle u(t)\phi'(t),\psi\rangle_{H^{-1},H_0^1}dt = \int_0^T \langle (\Delta u(t)+f(t))\phi(t),\psi\rangle_{H^{-1},H_0^1}dt \text{ pour tout } \psi\in H_0^1(\Omega).$$

Par densité de $\mathcal{D}(\Omega)$ dans $H_0^1(\Omega)$, il suffit de considérer $\psi \in \mathcal{D}(\Omega)$. En utilisant la manière donc $H_0^1(\Omega)$ est inclus dans $H^{-1}(\Omega)$, on a

$$-\int_{0}^{T} \langle u(t)\phi'(t), \psi \rangle_{H^{-1}, H_{0}^{1}} dt = -\int_{0}^{T} \int_{\Omega} u(x, t)\phi'(t)\psi(x) dx dt.$$

D'autre part, on a

$$\int_0^T \langle (\Delta u(t) + f(t))\phi(t), \psi \rangle_{H^{-1}, H_0^1} dt = \int_0^T \phi(t) \langle \Delta u(t) + f(t), \psi \rangle_{H^{-1}, H_0^1} dt$$
$$= -\int_0^T \phi(t) \int_{\Omega} \nabla u(x, t) \cdot \nabla \psi(x) dx dt + \int_0^T \phi(t) \langle f, \psi \rangle_{H^{-1}, H_0^1} dt.$$

En résumé, pour terminer l'étape 1, il suffit donc de montrer que

$$-\int_{0}^{T} \int_{\Omega} u(x,t)\phi'(t)\psi(x) \, \mathrm{d}x \, \mathrm{d}t = \int_{0}^{T} \phi(t) \Big(-\int_{\Omega} \nabla u(x,t) \cdot \nabla \psi(x) \, \mathrm{d}x \, \mathrm{d}t + \langle f,\psi \rangle_{H^{-1},H_{0}^{1}} \Big) \, \mathrm{d}t$$
pour tout $\phi \in \mathcal{D}(]0,T[)$ et tout $\psi \in \mathcal{D}(\Omega)$. (4.36)

Comme cela a été déjà dit, ceci donnera $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ et $\partial_t u = \Delta u + f$.

Pour montrer (4.36), on utilise (4.33). Soit $\phi \in \mathcal{D}(]0,T[)$ et $\psi \in \mathcal{D}(\Omega)$. On choisit dans (4.33), $\varphi(x,t)=\phi(t)\psi(x)$ (ce qui est possible car on a bien $\varphi \in \mathcal{D}(]0,T[\times\Omega)$. On obtient

$$-\int_0^T \int_{\Omega} u(x,t)\phi'(t)\psi(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^T \int_{\Omega} (\nabla u(x,t) \cdot \nabla \psi(x))\phi(t) \, \mathrm{d}x \, \mathrm{d}t = \int_0^T \langle f(t), \phi(t)\psi \rangle_{H^{-1},H_0^1} \, \mathrm{d}t.$$

Ceci donne (4.36) et termine donc l'étape 1, c'est-à-dire $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$ et $\partial_t u = \Delta u + f$ (ce qui l'équation demandée dans (4.20)).

Etape 2 Comme $u \in L^2(]0,T[,H^1_0(\Omega))$ et $\partial_t u \in L^2(]0,T[,H^{-1}(\Omega))$, on a (d'après la section 4.2), $u \in C([0,T],L^2(\Omega))$. On montre dans cette deuxième étape que $u(0)=u_0$. Pour $n \in \mathbb{N}^\star$, on choisit une fonction r_n de $\mathcal{D}(]0,T[)$ décroissante et t.q. $|r_n'(t)| \leq 2n$ pour tout $t,r_n(0)=1$ et $r_n(t)=0$ si $t \geq \frac{1}{n}$.

Soit $\psi \in \mathcal{D}(\Omega)$ et $n \in \mathbb{N}^*$ tel que $\frac{1}{n} < T$. On prend $\varphi(x,t) = r_n(t)\psi(x)$ dans (4.33). On obtient

$$-\int_0^{\frac{1}{n}} \int_{\Omega} u(x,t) r'_n(t) \psi(x) \, \mathrm{d}x \, \mathrm{d}t - \int_{\Omega} u_0(x) \psi(x) \, \mathrm{d}x + \int_0^{\frac{1}{n}} \int_{\Omega} \nabla u(x,t) \cdot \nabla \psi(x) r_n(t) \, \mathrm{d}x \, \mathrm{d}t$$

$$= \int_0^{\frac{1}{n}} \langle f(t), \psi \rangle_{H^{-1}, H_0^1} r_n(t) dt,$$

c'est-à-dire

$$T_n = \int_{\Omega} u_0(x)\psi(x) dx - R_n + S_n,$$
 (4.37)

avec

$$T_n = -\int_0^{\frac{1}{n}} \int_{\Omega} u(x,t) r'_n(t) \psi(x) \, \mathrm{d}x \, \mathrm{d}t,$$

$$R_n = \int_0^{\frac{1}{n}} \int_{\Omega} \nabla u(x,t) \cdot \nabla \psi(x) r_n(t) \, \,\mathrm{d}x \, \,\mathrm{d}t \, \,\mathrm{et} \, S_n = \int_0^{\frac{1}{n}} \langle f(t), \psi \rangle_{H^{-1}, H_0^1} r_n(t) dt.$$

On montre tout d'abord que ${\cal R}_n$ et ${\cal S}_n$ tendent vers 0. En effet, on a

$$|R_{n}| \leq \int_{0}^{\frac{1}{n}} \int_{\Omega} |\nabla u(x,t)| |\nabla \psi(x)| \, dx \, dt$$

$$\leq \left(\int_{0}^{\frac{1}{n}} \int_{\Omega} |\nabla u(x,t)|^{2} \, dx \, dt \right)^{\frac{1}{2}} \left(\int_{0}^{\frac{1}{n}} \int_{\Omega} |\nabla \psi(x)|^{2} \, dx \, dt \right)^{\frac{1}{2}}$$

$$\leq ||u||_{L^{2}(]0,T[,H_{0}^{1})} \frac{1}{\sqrt{n}} ||\psi||_{H_{0}^{1}}.$$
(4.38)

On a donc $\lim_{n \to +\infty} R_n = 0$. On a aussi $\lim_{n \to +\infty} S_n = 0$ car

$$|S_n| \le ||f||_{L^2(]0,T[,H^{-1})} \frac{1}{\sqrt{n}} ||\psi||_{H_0^1}.$$

On remarque maintenant que

$$T_{n} = -\int_{0}^{\frac{1}{n}} \int_{\Omega} u(x,0) r'_{n}(t) \psi(x) \, dx \, dt - \int_{0}^{\frac{1}{n}} \int_{\Omega} (u(x,t) - u(x,0)) r'_{n}(t) \psi(x) \, dx \, dt$$
$$= \int_{\Omega} u(x,0) \psi(x) \, dx - \int_{0}^{\frac{1}{n}} \int_{\Omega} (u(x,t) - u(x,0)) r'_{n}(t) \psi(x) \, dx \, dt$$

(On a utilisé ici $r_n(0)=1$ et $r_n(\frac{1}{n})=0$.) On majore de dernier terme de cette égalité :

$$|\int_0^{\frac{1}{n}} \int_{\Omega} (u(x,t) - u(x,0)) r'_n(t) \psi(x) \, dx \, dt| \leq \frac{1}{n} 2n \|\psi\|_{L^2(\Omega)} \max_{t \in [0,\frac{1}{n}]} \|u(\cdot,t) - u(\cdot,0)\|_{L^2(\Omega)}.$$

Comme $u \in C([0,T],L^2(\Omega))$ ce denier terme tend vers 0 quand $n \to +\infty$ et on a donc, finalement,

$$\lim_{n \to +\infty} T_n = \int_{\Omega} u(x,0)\psi(x) \, dx.$$

Avec (4.37), comme $\lim_{n\to+\infty}R_n=\lim_{n\to+\infty}S_n=0$, on en déduit

$$\int_{\Omega} u(x,0) \psi(x) \; \mathrm{d}x = \int_{\Omega} u_0(x) \psi(x) \; \mathrm{d}x \; \mathrm{pour} \; \mathrm{tout} \; \psi \in \mathcal{D}(\Omega).$$

Ceci permet de conclure que $u(0) = u_0$ et termine la démonstration de la proposition 4.35.

Compacité Nous donnons maintenant un théorème de compacité qui sera très utile pour la résolution de problèmes non linéaires comme ceux de la section 4.4. C'est l'équivalent parabolique des théorèmes de compacité vus pour les problèmes elliptiques. Soit Ω est un ouvert borné de \mathbb{R}^N . Pour $f \in H^{-1}(\Omega)$, on note T(f) la solution faible de l'équation $-\Delta u = f$ avec $u \in H^1_0(\Omega)$. On a déjà montré que l'opérateur T était compact de $H^{-1}(\Omega)$ dans $L^2(\Omega)$.

Proposition 4.36 (Compacité) Soit Ω un ouvert borné de \mathbb{R}^N et T>0. On identifie $L^2(\Omega)'$ avec $L^2(\Omega)$. Pour $f\in L^2(]0,T[,H^{-1}(\Omega))$ et $u_0\in L^2(\Omega)$ on note $T(f,u_0)$ la solution de (4.20). L'opérateur T est compact de $L^2(]0,T[,H^{-1}(\Omega))\times L^2(\Omega)$ dans $L^2(]0,T[,L^2(\Omega))$.

Démonstration La proposition 4.32 donne déjà la continuité de T. Il reste donc à montrer que T transforme les parties bornées de $L^2(]0,T[,H^{-1}(\Omega))\times L^2(\Omega)$ en parties relativement compactes de $L^2(]0,T[,L^2(\Omega))$. Soit donc A une partie bornée de $L^2(]0,T[,H^{-1}(\Omega))\times L^2(\Omega)$. On pose $B=\{T(f,u_0),(f,u_0)\in A\}$. Les estimations vues dans le théorème 4.29 montrent que B est une partie bornée de $L^2(]0,T[,H^{-1}(\Omega))$ et que $\{\partial_t u,u\in B\}$ est une partie bornée de $L^2(]0,T[,H^{-1}(\Omega))$. Le lemme de compacité donné ci-après (lemme 4.37), dû à J. L. Lions, donne alors la relative compacité de A dans $L^2(]0,T[,L^2(\Omega))$.

Lemme 4.37 (Compacité espace-temps, cadre L^2) Soit Ω un ouvert borné de \mathbb{R}^N et $(u_n)_{n\in\mathbb{N}}$ une suite de $L^2([0,T],L^2(\Omega))$. On identifie $L^2(\Omega)'$ avec $L^2(\Omega)$. On suppose que

- 1. la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(]0,T[,H_0^1(\Omega))$,
- 2. la suite $((\partial_t u_n))_{n\in\mathbb{N}}$ est bornée dans $L^2([0,T[,H^{-1}(\Omega)).$

Alors, la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans $L^2(]0,T[,L^2(\Omega))$.

Démonstration Ce lemme sera démontré plus loin dans un cadre plus général, voir théorème 4.41.

Remarque 4.38 (Opérateurs elliptiques généraux) Les résultats de ce paragraphe, c'est-à-dire le théorème 4.29 et les propositions 4.32, 4.33, 4.35 et 4.36, sont encore vrais en remplaçant l'opérateur Δu par $\operatorname{div}(A\nabla u)$ si la matrice A est à coefficients dans $L^{\infty}(\Omega)$ et qu'il existe $\alpha>0$ tel que $A\xi\cdot\xi\geq\alpha|\xi|^2$ p.p. et pour tout $\xi\in{\rm I\!R}^N$ (voir exercice 4.5). Il est aussi possible de considérer le cas où les coefficients de la matrice A dépendent aussi de t. Une possibilité est alors de faire une discrétisation en temps et de remplacer sur chaque intervalle de temps la matrice A par sa moyenne sur l'intervalle considéré. On résout alors le problème sur chacun de ces intervalles temporels. Il suffit ensuite d'obtenir des estimations sur la solution approchée et de passer à la limite sur le pas de discrétisation.

4.4 Existence et unicité pour des problèmes paraboliques non linéaires

Comme dans le cas elliptique, l'existence de la solution d'un problème parabolique non linéaire peut se prouver par point fixe de Schauder ou par degré topologique. Nous donnons ci après deux exemples.

4.4.1 Premier exemple : diffusion non linéaire

Considérons d'abord l'exemple suivant : Soient Ω un ouvert borné de \mathbb{R}^N $(N \ge 1)$ et $A : \mathbb{R} \to M_N(\mathbb{R})$ (où $M_N(\mathbb{R})$ désigne l'ensemble des matrices $N \times N$ à coefficients réels) t.q.

$$\forall s \in \mathbb{R}, A(s) = (a_{i,j}(s))_{i,j=1,\dots,N} \text{ où } a_{i,j} \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R}, \mathbb{R}), \tag{4.39}$$

$$\exists \alpha > 0; A(s)\xi \cdot \xi > \alpha |\xi|^2, \forall \xi \in \mathbb{R}^N, \forall s \in \mathbb{R}, \tag{4.40}$$

$$f \in L^2(]0, T[, H^{-1}(\Omega)) \text{ et } u_0 \in L^2(\Omega).$$
 (4.41)

Alors on peut montrer par le théorème de Schauder qu'il existe u solution de (toujours avec $L^2(\Omega)$ identifié à $L^2(\Omega)'$):

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega))(\text{ et donc } u \in C([0, T], L^{2}(\Omega))), \\ \int_{0}^{T} \langle \partial_{t}u, v \rangle_{H^{-1}, H_{0}^{1}} dt + \int_{0}^{T} \int_{\Omega} A(u)\nabla u \cdot \nabla v dx dt \\ = \int_{0}^{T} \langle f, v \rangle_{H^{-1}, H_{0}^{1}} dt, \ \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(\cdot, 0) = u_{0}. \end{cases}$$

$$(4.42)$$

Pour utiliser le théorème de Schauder, on utilise la résolution de problèmes linéaires : soit $\bar{u} \in L^2(]0, T[, L^2(\Omega))$, on définit l'opérateur T de $L^2(]0, T[, L^2(\Omega))$ dans $L^2(]0, T[, L^2(\Omega))$ par $T(\bar{u}) = u$ où u est **la** solution du problème (4.42) où on a remplacé A(u) par $A(\bar{u})$, c'est-à-dire :

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega)), \\ \int_{0}^{T} \langle \partial_{t}u, v \rangle_{H^{-1}, H_{0}^{1}} dt + \int_{0}^{T} \int_{\Omega} A(\bar{u}) \nabla u \cdot \nabla v dx dt \\ = \int_{0}^{T} \langle f, v \rangle_{H^{-1}, H_{0}^{1}} dt, \ \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(\cdot, 0) = u_{0}. \end{cases}$$

On montre ensuite qu'il existe R>0 tel que l'image de T est incluse dans B_R où B_R est la boule (de $L^2(]0,T[,L^2(\Omega)))$) de rayon R et de centre 0. On montre que T est continu et que T est compact (par le lemme de compacité espace-temps 4.37). On conclut avec le théorème de Schauder. Ceci est laissé à titre d'exercice (exercice 4.6). Notons qu'on peut aussi montrer l'unicité si A est lipschitzienne.

4.4.2 Deuxième exemple : diffusion convection non linéaire

Etudions maintenant un deuxième exemple en utilisant le degré topologique pour l'existence de la solution. Soit Ω un ouvert borné de \mathbb{R}^N ($N \geq 2$, le cas N=1 est plutôt plus simple). On considère l'équation de convection-diffusion suivante (avec une convection éventuellement non linéaire) :

$$\partial_t u + \operatorname{div}(\boldsymbol{b}f(u)) - \Delta u = 0,$$

avec $\boldsymbol{b} \in L^2(]0, T[, (L^2(\Omega)^N) \text{ et } u_0 \in L^2(\Omega).$

On suppose que f est une fonction lipschitzienne bornée de ${\rm I\!R}$ dans ${\rm I\!R}$ (et f(u) désigne, comme d'habitude, la fonction $(x,t)\mapsto f(u(x,t))$).

Une formulation faible du problème s'écrit (avec $L^2(\Omega)$ identifié à $L^2(\Omega)'$):

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega))(\text{et donc } u \in C([0, T], L^{2}(\Omega))), \\ \int_{0}^{T} \langle \partial_{t}u, v \rangle_{H^{-1}, H_{0}^{1}} dt - \int_{0}^{T} \int_{\Omega} \mathbf{b}f(u) \cdot \nabla v \, dx \, dt \\ + \int_{0}^{T} \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dt = 0, \ \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(\cdot, 0) = u_{0}. \end{cases}$$

$$(4.43)$$

Montrons l'existence d'une solution au problème (4.43) par degré topologique. Pour cela on va montrer que le problème (4.43) peut s'écrire sous la forme u-h(1,u)=0, où l'application h, définie de $[0,1]\times E$ dans E, avec $E=L^2(]0,T[,L^2(\Omega))$, vérifie :

- 1. h est compacte,
- 2. il existe $R \in \mathbb{R}_+$ t.q.

$$u - h(s, u) = 0, s \in [0, 1], u \in E \Rightarrow u \notin \partial B_R$$

3. l'application définie de E dans E par $u\mapsto u-h(0,u)$ est linéaire.

(Ceci est suffisant pour obtenir l'existence d'une solution au problème (4.43).)

Soit $s \in [0,1]$ et $u \in E.$ On note h(s,u) la solution du problème suivant :

$$\begin{cases}
 w \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}w \in L^{2}(]0, T[, H^{-1}(\Omega)), \\
 \int_{0}^{T} \langle \partial_{t}w, v \rangle_{H^{-1}, H_{0}^{1}} dt - \int_{0}^{T} \int_{\Omega} s \, \boldsymbol{b} f(u) \cdot \nabla v \, dx \, dt \\
 + \int_{0}^{T} \int_{\Omega} \nabla w \cdot \nabla v \, dx \, dt = 0, \, \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\
 w(\cdot, 0) = su_{0}.
\end{cases}$$
(4.44)

Notons que h(s, u) = w est bien définie car $bf(u) \in L^2(]0, T[, (L^2(\Omega)^N).$

De plus, il est facile de voir que le point 3. ci-dessus est vérifié, car h(0,u)=0 et donc u-h(0,u)=u. Il reste à montrer les points 1 et 2, c'est-à-dire que h est continue, que $\{h(s,u), s\in [0,1], u\in B\}$ est une partie relativement compacte de E, si B est une partie bornée de E, et qu'il existe R>0 tel que u-h(s,u)=0 n'a pas de solution avec $s\in [0,1]$ et $u\in \partial B_R$.

Montrons d'abord que h est continue. Soit $(s_n)_{n\in\mathbb{N}}$ une suite de [0,1] et $(u_n)_{n\in\mathbb{N}}$ une suite de E t.q. $s_n\to s$ dans \mathbb{R} et $u_n\to u$ dans E lorsque $n\to +\infty$. On pose $w_n=h(s_n,u_n)$, w=h(s,u) et on veut montrer que $w_n\to w$ dans E. Les fonctions w_n vérifient :

$$\begin{cases}
w_{n} \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}w_{n} \in L^{2}(]0, T[, H^{-1}(\Omega)), \\
\int_{0}^{T} \langle \partial_{t}w_{n}, v \rangle_{H^{-1}, H_{0}^{1}} dt - \int_{0}^{T} \int_{\Omega} s_{n} \mathbf{b} f(u_{n}) \cdot \nabla v dx dt \\
+ \int_{0}^{T} \int_{\Omega} \nabla w_{n} \cdot \nabla v dx dt = 0, \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\
w_{n}(\cdot, 0) = s_{n} u_{0}.
\end{cases}$$
(4.45)

En prenant $v=w_n$ dans (4.45), on montre que la suite $(w_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(]0,T[,H_0^1(\Omega))$ et que la suite $(\partial_t w_n))_{n\in\mathbb{N}}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$. On en déduit par le lemme 4.37 que $w_n\to \tilde w$ dans E, après extraction éventuelle d'une sous-suite. Mais les bornes sur w_n et $\partial_t w_n$ donnent aussi $w_n\to \tilde w$ faiblement dans $L^2(]0,T[,H_0^{-1}(\Omega))$ et $\partial_t w_n\to \partial_t \tilde w$ faiblement dans $L^2(]0,T[,H^{-1}(\Omega))$. Enfin, on peut supposer, toujours après extraction éventuelle d'une sous-suite que $u_n\to u$ p.p.. En passant à la limite dans l'équation satisfaite par w_n et en passant à la limite sur la condition initiale, on montre alors que $\tilde w=w$ (comme cela a été fait dans la démonstration du théorème 4.29). Ceci permet de conclure (sans extraction de sous-suite, grâce à la partie unicité du théorème 4.29) que $w_n\to w$ dans E et donne donc la continuité de h.

On pose maintenant $A=\{h(s,u),\,u\in L^2(]0,T[,L^2(\Omega)),\,s\in[0,1]\}$. Il est facile de voir que A est borné dans $L^2(]0,T[,H^1_0(\Omega))$ et que $\{\partial_t w,\,w\in A\}$ est borné dans $L^2(]0,T[,H^{-1}(\Omega))\}$. Le lemme 4.37 donne alors la relative compacité de A dans E. Enfin l'existence de R>0 tel que u-h(s,u)=0 n'ait pas de solution avec $s\in[0,1]$ et $u\in\partial B_R$ vient du fait que A est borné dans $L^2(]0,T[,H^1_0(\Omega))$ et donc aussi dans E.

En conclusion, on peut utiliser l'invariance par homotopie du degré. On obtient $d(\operatorname{Id} - h(1, \cdot), B_R, 0) = d(\operatorname{Id} - h(0, \cdot), B_R, 0) = d(\operatorname{Id}, B_R, 0) = 1$. Donc, il existe $u \in B_R$ t.q. u - h(1, u) = 0, c'est-à-dire u solution de (4.43).

On montre maintenant l'unicité de la solution de (4.43). On va montrer cette unicité dans un cadre un peu plus général; notons qu'on pourrait aussi montrer l'existence dans ce cadre, il suffit de reprendre la preuve précédente avec dans (4.44) $(sa(u) + (1-s)\alpha)\nabla w$ au lieu de ∇w) en remplaçant Δu par $\operatorname{div}(a(u)\nabla u)$, c'est-à-dire en considérant l'équation

$$\partial_t u + \operatorname{div}(bf(u)) - \operatorname{div}(a(u)\nabla u) = 0,$$

avec une fonction a lipschitzienne de \mathbb{R} dans \mathbb{R} et vérifant $\alpha \leq a(s) \leq \beta$ pour tout $s \in \mathbb{R}$ et deux nombres strictement positifs α, β .

Soit u_1, u_2 deux solutions de (4.43) (avec $\operatorname{div}(a(u)\nabla u)$ au lieu de Δu). On pose $u = u_1 - u_2$ et on va montrer que u = 0 p.p..

Pour $\varepsilon>0$ on définit la fonction T_ε de ${\rm I\!R}$ dans ${\rm I\!R}$ par $T_\varepsilon(s)=\max\{-\varepsilon,\min\{s,\varepsilon\}\}$. On note aussi ϕ_ε la primitive de T_ε s'annulant en 0. En prenant $v=T_\varepsilon(u)$ dans les formulations faibles satisfaites par u_1 et u_2 , on obtient

$$\int_0^T \langle \partial_t u, T_{\varepsilon}(u) \rangle_{H^{-1}, H_0^1} dt - \int_0^T \int_{\Omega} b(f(u_1) - f(u_2)) \cdot \nabla T_{\varepsilon}(u) dx dt + \int_0^T \int_{\Omega} a(u_1) \nabla u \cdot \nabla T_{\varepsilon}(u) dx dt = \int_0^T \int_{\Omega} (a(u_2) - a(u_1)) \nabla u_2 \cdot \nabla T_{\varepsilon}(u) dx dt.$$

Comme $\nabla T_{\varepsilon}(u) = \nabla u \mathbb{1}_{0<|u|<\varepsilon}$ p.p., on en déduit que

$$\int_{\Omega} \phi_{\varepsilon}(u(x,T)) dx - \int_{\Omega} \phi_{\varepsilon}(u(x,0)) dx + \alpha \int_{0}^{T} \int_{\Omega} \nabla u \cdot \nabla u \mathbb{1}_{0 < |u| < \varepsilon} dx dt$$

$$\leq \int_{0}^{T} \int_{\Omega} |b| |f(u_{1}) - f(u_{2})| |\nabla u| \mathbb{1}_{0 < |u| < \varepsilon} dx dt + \int_{0}^{T} \int_{\Omega} |a(u_{1}) - a(u_{2})| |\nabla u| \mathbb{1}_{0 < |u| < \varepsilon} dx dt. \quad (4.46)$$

Comme a et f sont des fonctions lipschitziennes, il existe L t.q.

$$|f(s_1) - f(s_2)| \le L|s_1 - s_2|$$
 et $|a(s_1) - a(s_2)| \le L|s_1 - s_2|$, pour tout $s_1, s_2 \in \mathbb{R}$.

On utilise alors le fait que $u_0=0$ p.p. et $\phi_{\varepsilon}\geq 0$ pour déduire de (4.46), avec $A_{\varepsilon}=\{0<|u|<\varepsilon\}$ et y=(x,t),

$$\alpha \int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u)|^2 dx dt \le L\varepsilon \Big(\int_{A_{\varepsilon}} |b|^2 dy \Big)^{\frac{1}{2}} \Big(\int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u)|^2 dx dt \Big)^{\frac{1}{2}} + L\varepsilon \Big(\int_A |\nabla u_2|^2 dy \Big)^{\frac{1}{2}} \Big(\int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u)|^2 dx dt \Big)^{\frac{1}{2}}.$$

On a donc $\alpha \| \| \nabla T_{\varepsilon}(u) \|_{L^2(Q)} \le a_{\varepsilon} \varepsilon$, avec $Q =]0, T[\times \Omega$ et

$$a_{\varepsilon} = L \left(\int_{A_{\varepsilon}} |b|^2 dy \right)^{\frac{1}{2}} + L \left(\int_{A_{\varepsilon}} |\nabla u_2|^2 dy \right)^{\frac{1}{2}}.$$

Comme $\cap_{\varepsilon>0}A_{\varepsilon}=\emptyset$ la continuité décroissante d'une mesure donne que la mesure de Lebesgue (N+1 dimensionnelle) de A_{ε} tend vers 0 quand $\varepsilon\to 0$ et on a donc, comme $b,\nabla u_2\in L^2(Q)^N$, (noter que $L^2(Q)$ peut être identifié à $L^2(]0,T[,L^2(\Omega)))$

$$\lim_{\varepsilon \to 0} \int_{A_{\varepsilon}} |b|^2 dy = \lim_{\varepsilon \to 0} \int_{A_{\varepsilon}} |\nabla u_2|^2 dy = 0,$$

ce qui donne $\lim_{\varepsilon \to 0} a_{\varepsilon} = 0$. Il nous reste maintenant à utiliser, par exemple, l'injection de $W_0^{1,1}(\Omega)$ dans $L^{1^\star}(\Omega)$ (on rappelle que $1^\star = \frac{N}{N-1}$). Elle donne, pour $t \in]0,T[$,

$$||T_{\varepsilon}(u(t))||_{L^{1^{\star}}(\Omega)} \le |||\nabla T_{\varepsilon}(u(t))|||_{L^{1}(\Omega)}. \tag{4.47}$$

On désigne par λ_N le mesure de le Lebesgue dans ${\rm I\!R}^N$. On remarque maintenant que pour $t\in]0,T[$

$$\varepsilon \lambda_N \{ |u(t)| \ge \varepsilon \}^{\frac{1}{1^*}} \le \left(\int_{\Omega} |T_{\varepsilon}(u)|^{1^*} dx \right)^{\frac{1}{1^*}}.$$

On a donc, avec (4.47),

$$\varepsilon \lambda_N \{ |u(t)| \ge \varepsilon \}^{\frac{1}{1^*}} \le \| |\nabla T_\varepsilon(u(t))| \|_{L^1(\Omega)} = \int_{\Omega} |\nabla T_\varepsilon(u(x,t))| \, \mathrm{d}x,$$

et, en intégrant par rapport à t, sachant que $\frac{1}{1^\star}=\frac{N-1)}{N}$ et utilisant l'inégalité de Cauchy-Schwarz,

$$\varepsilon \int_0^T \lambda_N \{|u(t)| \ge \varepsilon\}^{\frac{N-1}{N}} dt \le \int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u(x,t))| dx dt \le \||\nabla T_{\varepsilon}(u)||_{L^2(Q)} (T\lambda_N(\Omega))^{\frac{1}{2}} \le \frac{(T\lambda_N(\Omega))^{\frac{1}{2}}}{\alpha} a_{\varepsilon} \varepsilon.$$

On a donc

$$\int_0^T \lambda_N \{|u(t)| \ge \varepsilon\}^{\frac{N-1}{N}} dt \le \frac{(T\lambda_N(\Omega))^{\frac{1}{2}}}{\alpha} a_{\varepsilon}.$$

Quand $\varepsilon \to 0$, par convergence dominée, on en déduit (comme $\lim_{\varepsilon \to 0} a_{\varepsilon} = 0$)

$$\int_0^T \lambda_N \{|u(t)| > 0\}^{\frac{N-1}{N}} dt \le 0.$$

On en déduit que $\lambda_N\{|u(t)|>0\}=0$ p.p. en $t\in]0,T[$ et donc u=0 p.p., ce qui termine cette preuve d'unicité.

Remarque 4.39 (Hypothèses supplémentaires sur b et u_0) Voici trois propriétés supplémentaires (dont la démonstration est laissée en exercice) au résultat d'existence et unicité de solution que nous venons de donner dans cette section pour ce problème de convection diffusion, sous des hypothèses supplémentaires sur b et u_0 . Ce complément sera utile pour l'étude des équations hyperboliques, théorème 5.25.

- 1. On ajoute l'hypothèse $\operatorname{div} \boldsymbol{b} = 0$ et on suppose $u_0 \in L^\infty(\Omega)$. Il existe donc $A \leq 0$ et $B \geq 0$ t.q. $A \leq u_0 \leq B$ p.p.. Soit u la solution de (4.43), on a alors $A \leq u \leq B$ p.p.. Pour démontrer ce résultat, il suffit de prendre $v = (u B)^+$ (pour montrer $u \leq B$ p.p.) et $v = (A u)^+$ (pour montrer $u \geq A$ p.p.) dans la formulation faible (4.43).
- 2. On ajoute toujours l'hypothèse $\operatorname{div} \boldsymbol{b} = 0$. Dans l'étude de ce problème de convection diffusion, on a supposé f lipschitzienne et bornée. En fait si $u_0 \in L^\infty(\Omega)$, et donc $A \leq u_0 \leq B$ p.p., avec $A \leq 0 \leq B$, on peut remplacer cette hypothèse sur f par "f localement lipschitzienne" (exemple : $f(s) = s^2$). La démonstration consiste à remplacer dans (4.43) f par \bar{f} , où \bar{f} est définie par $\bar{f}(s) = f(\max\{A, \min\{s, B\}\})$. La solution obtenue, u, vérifie alors $A \leq u \leq B$ p.p. (d'après l'item précédent) et est donc solution de (4.43) (avec f).
- 3. Enfin si $\operatorname{div} \boldsymbol{b} \in L^{\infty}(\Omega)$, $\|\operatorname{div} \boldsymbol{b}\|_{\infty} = C$, si f lipschitzienne de constante de Lipschitz L (mais f non nécessairement bornée) et $u_0 \in L^{\infty}(\Omega)$, $\|u_0\|_{\infty} = M$, on peut aussi montrer un résultat d'existence et d'unicité de solution à (4.43). La solution u vérifie alors $\|u(t)\|_{\infty} \leq M \exp(CLt)$ pour tout $t \in [0, T]$.

4.5 Compacité en temps

Dans ce paragraphe, on généralise le lemme de compacité dans L^2 (lemme 4.37) utilisé dans le paragraphe précédent comme conséquence du théorème 4.45, et on en donne sa démonstration. Ce résultat de compacité est utile pour la résolution de nombreux problèmes paraboliques.

Commençons par la version abstraite du lemme 4.37, qu'on obtient en remplaçant l'espace L^2 par un espace de Hilbert quelconque.

Lemme 4.40 (Compacité en temps, cadre hilbertien) On suppose que X et H sont des espaces de Hilbert, que X s'injecte compactement dans H, et que X est dense dans H On identifie H avec H' (par le théorème de représentation de Riesz). On suppose maintenant que $(u_n)_{n\in\mathbb{N}}$ est une suite bornée de $L^2(]0,T[,X)$ (T>0 est donné) et que $(\partial_t u_n)_{n\in\mathbb{N}}$ est une suite bornée de $L^2(]0,T[,X')$. Alors, la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans $L^2(]0,T[,H)$.

Notons que dans le lemme 4.37 on a $X=H^1_0(\Omega)$ et $H=L^2(\Omega)$). Ce résultat de compacité dans le cadre hilbertien (attribué à J.L. Lions) a ensuite été généralisé par Aubin dans le cadre d'espaces de Banach [5] :

Théorème 4.41 (Compacité en temps, cadre L^p , p > 1) Soit X, B, Y trois espaces de Banach et 1 . On suppose que <math>X s'injecte compactement dans B et que B s'injecte continûment dans Y. On suppose maintenant que $(u_n)_{n \in \mathbb{N}}$, est une suite bornée de $L^p(]0, T[, X)$ (T > 0 est donné) et que $(\partial_t u_n)_{n \in \mathbb{N}}$ est une suite bornée de $L^p(]0, T[, Y)$. Alors, la suite $(u_n)_{n \in \mathbb{N}}$ est relativement compacte dans $L^p(]0, T[, B)$.

Ce résultat a lui-même été étendu par J. Simon [33] au cas p=1. C'est ce dernier résultat que nous énoncerons sous le nom de théorème d'Aubin-Simon (voir théorème 4.45) et démontrerons dans ce paragraphe (ce qui démontrera donc également les lemmes de Lions 4.37,4.40 et le théorème d'Aubin 4.41).

Nous donnons enfin quelques généralisations du théorème d'Aubin-Simon, qui se révèlent utiles en particulier lors de l'étude mathématique de schémas numériques.

Nous commençons par donner le théorème fondamental de compacité de Kolmogorov (sous deux formes légèrement différentes) dont nous déduisons ensuite les théorèmes 4.45 et 4.54.

Nous donnons d'abord le théorème fondamental de compacité de Kolmogorov (sous deux formes légèrement différentes) dont nous déduisons ensuite les théorèmes 4.45 et 4.54.

Théorème 4.42 (Kolmogorov (1)) Soit B un espace de Banach, $1 \le p < +\infty$, T > 0 et $A \subset L^p(]0, T[, B)$. Le sous ensemble A est relativement compact dans $L^p(]0, T[, B)$ si A verifie les conditions suivantes :

- 1. Pour tout $f \in A$, il existe $Pf \in L^p(\mathbb{R}, B)$ tel que Pf = f p.p. dans]0,T[et $\|Pf\|_{L^p(\mathbb{R}, B)} \leq C$, où C ne dépend que de A.
- 2. Pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, la famille $\{\int_{\mathbb{R}} (Pf)\varphi \,dt, f \in A\}$ est relativement compacte dans B.
- 3. $\|Pf(\cdot+h)-Pf\|_{L^p(\mathbb{R},B)}\to 0$, lorsque $h\to 0$, uniformément par rapport à $f\in A$.

Ces trois conditions sont donc des conditions suffisantes pour la compacité relative; de fait, ces conditions sont aussi nécessaires mais ceci n'est pas la partie intéressante du théorème.

Démonstration tu théorème 4.42

Soit $(\rho_n)_{n\in\mathbb{N}^*}$ une suite de noyaux régularisants (symétriques), c'est-à-dire :

$$\rho_n(x) = n\rho(nx), \ \forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R},$$

$$\text{avec } \rho \in \mathcal{D}(\mathbb{R}), \ \int_{\mathbb{R}} \rho \ \mathrm{d}x = 1, \ \rho \ge 0, \ \rho(-x) = \rho(x) \text{ pour tout } x \in \mathbb{R}.$$

$$(4.48)$$

On pose K=[0,T] et, pour $n\in\mathbb{N}^\star, A_n=\{(Pf\star\rho_n)_{|_K}, f\in A\}$. La preuve se fait en deux étapes. À l'étape 1, on utilise le théorème d'Ascoli (théorème 1.32) et l'hypothèse 2 du théorème 4.42, pour montrer que pour $n\in\mathbb{N}^\star,$ l'ensemble A_n est relativement compact dans l'espace des fonctions continues C(K,B) muni de sa topologie habituelle. On en déduit que A_n est aussi relativement compact dans $L^p(]0,T[,B)$. À l'étape 2, on montre que les hypothèses 1 et 3 du théorème 4.42 donnent que $Pf\star\rho_n\to Pf$ in $L^p(\mathbb{R},B)$, lorsque $n\to+\infty$, uniformément par rapport à $f\in A$. Ceci permet de conclure que la famille A est relativement compacte dans $L^p(]0,T[,B)$.

Etape 1. Soit $n \in \mathbb{N}^*$; pour montrer que A_n est relativement compact dans C(K, B), on utilise le théorème d'Ascoli (théorème 1.32) ; on doit donc démontrer que les propriétés suivantes sont vérifiées :

- (a) pour tout $t \in K$, l'ensemble $\{Pf \star \rho_n(t), f \in A\}$ est relativement compact dans B,
- (b) la suite $\{Pf \star \rho_n, f \in A\}$ est équicontinue de K dans B (c'est-à-dire que la continuité est uniforme par rapport à $f \in A$).

On montre d'abord la propriété (a). Soit $t \in K$;

$$Pf \star \rho_n(t) = \int_{\mathbb{R}} Pf(s)\rho_n(t-s)ds = \int_{\mathbb{R}} Pf(s)\varphi(s)ds.$$

L'hypothèse 2 du théorème 4.42 donne la propriété (a), à savoir que $\{Pf \star \rho_n(t), f \in A\}$ est relativement compact dans B.

Voyons maintenant la propriété (b). Soient $t_1, t_2 \in K$ et $q = \frac{p}{p-1}$; grâce à l'inégalité de Hölder, on a

$$||Pf \star \rho_n(t_2) - Pf \star \rho_n(t_1)||_B \le \int_{\mathbb{R}} ||Pf(s)||_B ||\rho_n(t_2 - s) - \rho_n(t_1 - s)|| ds$$

$$\le ||Pf||_{L^p(\mathbb{R}, B)} ||\rho_n(t_2 - \cdot) - \rho_n(t_1 - \cdot)||_{L^q(\mathbb{R}, \mathbb{R})}.$$

Comme ρ_n est uniformément continue à support compact, on déduit facilement de cette inégalité (et de l'hypothèse 1 du théorème 4.42) et que la famille A_n est uniformément equicontinue de K sur B. Ceci donne la propriété (b) ce qui permet de conclure que A_n est relativement compact dans C(K,B). Cette compacité relative est équivalente à dire que pour tout $\varepsilon>0$, il existe un nombre fini de boules de rayon ε (pour la norme naturelle sur C(K,B)) recouvrant l'ensemble A_n . Puisque $\|\cdot\|_{L^p(]0,T[,B)} \le T^{\frac{1}{p}}\|\cdot\|_{C(K,B)}$, on obtient aussi la compacité relative de A_n dans $L^p(]0,T[,B)$.

Etape 2.

Soit $t \in {\rm I\!R}$, comme $\int_{{\rm I\!R}} \rho_n(s) ds = 1$ et $\overline{s} = ns$, on a

$$Pf \star \rho_n(t) - Pf(t) = \int_{\mathbb{R}} (Pf(t-s) - Pf(t))\rho_n(s)ds = \int_{-1}^1 (Pf(t-\frac{\overline{s}}{n}) - Pf(t))\rho(\overline{s})d\overline{s}.$$

Puis, par l'inégalité de Hölder, on a, avec $q = \frac{p}{p-1}$,

$$||Pf \star \rho_n(t) - Pf(t)||_B^p \le \left(\int_{-1}^1 ||Pf(t - \frac{s}{n}) - Pf(t))||_B^p ds\right) ||\rho||_{L^q}^p.$$

En intégrant par rapport à $t \in \mathbb{R}$ et en utilisant le théorème de Fubini-Tonelli, on obtient

$$||Pf \star \rho_n - Pf||_{L^p([0,T[,B))}^p \le 2\sup\{||Pf(\cdot + h) - Pf||_{L^p(\mathbb{R},B)}^p, |h| \le 1\}||\rho||_{L^q}^p.$$

Enfin, la troisième hypothèse du théorème 4.42 entraı̂ne que $\|Pf\star\rho_n-Pf\|_{L^p(]0,T[,B)}\to 0$ lorsque $n\to+\infty$, uniformément par rapport à $f\in A$. En conséquence, la compacité relative de A_n dans $L^p(]0,T[,B)$ pour tout $n\in\mathbb{N}$ (démontrée à l'étape 1) donne la compacité relative de A dans $L^p(]0,T[,B)$. Ceci conclut la preuve du théorème 4.42.

Donnons maintenant une forme alternative du théorème précédent qui a l'avantage de ne pas demander de prolongement de f en dehors [0, T].

Théorème 4.43 (Kolmogorov (2)) Soit B un espace de Banach, $1 \le p < +\infty$, T > 0 et $A \subset L^p(]0, T[, B)$. Le sous ensemble A est relativement compact dans $L^p(]0, T[, B)$ si A satisfait les conditions suivantes :

- 1. le sous ensemble A est borné dans $L^p(]0,T[,B)$.
- 2. Pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, la famille $\{\int_0^T f\varphi \, dt, f \in A\}$ est relativement compacte dans B.
- 3. Il existe une fonction croissante η de]0,T[dans \mathbb{R}_+ telle que $\lim_{h\to 0^+} \eta(h)=0$ et, pour tout $h\in]0,T[$ et $f\in A$,

 $\int_{0}^{T-h} \|f(t+h) - f(t)\|_{B}^{p} dt \le \eta(h).$

Démonstration:

La preuve utilise le théorème 4.42 avec Pf = 0 sur $[0,T]^c$. Les deux premiers points des hypothèses du théorème 4.42 sont clairement satisfaites. La seule difficulté est de prouver le troisième point. On le fait en deux étapes.

Étape 1. On va d'abord montrer que $\lim_{\delta\to 0}\int_0^\delta \|f(t)\|_B^p dt\to 0$ lorsque $\delta\to 0^+$, uniformément par rapport à $f\in A$.

Soit $\delta, h \in]0, T[$ tels que $\delta + h \le T$. Pour tout $t \in (0, \delta)$ on a $||f(t)||_B \le ||f(t+h)||_B + ||f(t+h) - f(t)||_B$ et donc

$$||f(t)||_B^p \le 2^p ||f(t+h)||_B^p + 2^p ||f(t+h) - f(t)||_B^p.$$

En intégrant cette inégalité pour $t \in (0, \delta)$, on obtient

$$\int_0^\delta \|f(t)\|_B^p \, \mathrm{d}t \le 2^p \int_0^\delta \|f(t+h)\|_B^p \, \mathrm{d}t + 2^p \int_0^\delta \|f(t+h) - f(t)\|_B^p \, \mathrm{d}t. \tag{4.49}$$

Soient maintenant $h_0 \in]0, T[$ et $\delta \in (0, T-h_0)$. Pour tout $h \in (0, h_0)$, l'inégalité (4.49) donne, comme $\eta(h) \leq \eta(h_0)$,

$$\int_0^\delta \|f(t)\|_B^p \, \mathrm{d}t \le 2^p \int_0^\delta \|f(t+h)\|_B^p \, \mathrm{d}t + 2^p \eta(h_0).$$

En intégrant cette inégalité pour $h \in (0, h_0)$, on a

$$h_0 \int_0^{\delta} \|f(t)\|_B^p dt \le 2^p \int_0^{h_0} \left(\int_0^{\delta} \|f(t+h)\|_B^p dt \right) dh + 2^p h_0 \eta(h_0).$$

Puis, grâce au théorème de Fubini-Tonelli,

$$\int_{0}^{h_{0}} \left(\int_{0}^{\delta} \|f(t+h)\|_{B}^{p} dt \right) dh = \int_{0}^{\delta} \left(\int_{0}^{h_{0}} \|f(t+h)\|_{B}^{p} dh \right) dt$$

$$\leq \int_{0}^{\delta} \left(\int_{0}^{T} \|f(s)\|_{B}^{p} ds \right) dt \leq \delta \|f\|_{L^{p}(]0,T[,B)}^{p},$$

d'où l'on déduit que

$$h_0 \int_0^\delta \|f(t)\|_B^p \, \mathrm{d}t \le \delta 2^p \|f\|_{L^p(]0,T[,B)}^p + 2^p h_0 \eta(h_0). \tag{4.50}$$

Soit maintenant $\varepsilon > 0$. On choisit d'abord $h_0 \in]0,T[$ tel que $2^p\eta(h_0) \leq \varepsilon$. Puis, on choisit $\overline{\delta} = \min\{T - h_0, \varepsilon \frac{h_0}{2^pC}\}$, avec $C = \sup_{f \in A} \|f\|_{L^p([0,T[,B))}^p$. On obtient alors, pour tout $f \in A$,

$$0 \le \delta \le \overline{\delta} \Rightarrow \int_0^\delta \|f(t)\|_B^p \le 2\varepsilon,$$

ce qui entraı̂ne que $\int_0^\delta \|f(t)\|_B^p \, \mathrm{d}t \to 0$ quand $\delta \to 0^+$, uniformément par rapport à $f \in A$. On a ainsi terminé l'étape 1.

Noter que des arguments similaires donnent que $\int_{T-\delta}^T \|f(t)\|_B^p dt \to 0$ lorsque $\delta \to 0^+$, uniformément par rapport à $f \in A$ (ceci se prouve en utilisant g définie par g(t) = f(T-t)) au lieu de f).

Étape 2. On montre maintenant que le troisième point des hypothèses du théorème 4.42 est satisfait, ce qui conclut la preuve du théorème 4.43.

On rappelle que Pf(t) = 0 si $t \in [0, T]^c$, et donc, pour tout $h \in]0, T[$ et $f \in A$,

$$\int_{\mathbb{R}} \|Pf(t+h) - Pf(t)\|_{B}^{p} dt \leq \int_{-h}^{0} \|f(t+h)\|_{B}^{p} dt + \int_{0}^{T-h} \|f(t+h) - f(t)\|_{B}^{p} dt + \int_{T-h}^{T} \|f(t)\|_{B}^{p} dt
\leq \int_{0}^{h} \|f(t)\|_{B}^{p} dt + \int_{0}^{T-h} \|f(t+h) - f(t)\|_{B}^{p} dt + \int_{T-h}^{T} \|f(t)\|_{B}^{p} dt.$$

Soit $\varepsilon > 0$. Il existe $h_1 > 0$ tel que $\eta(h_1) \le \varepsilon$. Grâce à l'étape 1, il existe $h_2 > 0$ tel que pour tout $f \in A$,

$$0 \le h \le h_2 \Rightarrow \int_0^h \|f(t)\|_B^p \, \mathrm{d}t \le \varepsilon \ \text{et} \ \int_{T-h}^T \|f(t)\|_B^p \, \mathrm{d}t \le \varepsilon.$$

En définissant $h_3 = \min\{h_1, h_2\}$, on a pour tout $f \in A$,

$$0 \le h \le h_3 \Rightarrow \int_{\mathbb{R}} \|Pf(t+h) - Pf(t)\|_B^p dt \le 3\varepsilon,$$

ce qui conclut l'étape 2 et la preuve du théorème 4.43.

On déduit alors du théoreme 4.43 un corollaire qui sera utile pour la preuve du théorème d'Aubin-Simon (théorème 4.45).

Corollaire 4.44 (Compacité en temps) Soient B un espace de Banach, $1 \le p < +\infty$, T > 0 et $A \subset L^p(]0, T[, B)$. Soit X un espace de Banach inclus dans B avec injection compacte. On suppose que A vérifie les conditions suivantes :

- 1. A est borné dans $L^p(]0,T[,B)$.
- 2. A est borné dans $L^1(]0,T[,X)$.

Noter que ces deux conditions sont vérifiées si A est borné dans $L^p(]0,T[,X)$.

3. Il existe une fonction croissante η de]0,T[dans \mathbb{R}_+ telle que $\lim_{h\to 0^+} \eta(h)=0$, pour tout $h\in]0,T[$ et pour tout $f\in A$,

$$\int_0^{T-h} \|f(t+h) - f(t)\|_B^p \, \mathrm{d}t \le \eta(h).$$

Alors l'ensemble A est relativement compact dans $L^p(]0,T[,B)$.

Démonstration Pour appliquer le théorème 4.43, on doit vérifier que, pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, la famille $\{\int_0^T f\varphi \, dt, f \in A\}$ est relativement compacte dans B.

Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Si $f \in A$, on a, en notant $\|\varphi\|_u = \max_{t \in \mathbb{R}} |\varphi(t)|$,

$$\| \int_0^T f \varphi \, \mathrm{d}t \|_X \le \| \varphi \|_u \| f \|_{L^1(]0,T[,X)}.$$

Comme A est borné dans $L^1(]0,T[,X)$, la famille $\{\int_0^T f\varphi \, \mathrm{d}t,\, f\in A\}$ est bornée dans X et donc relativement compacte dans B.

Nous donnons maintenant un théorème, essentiellement dû à J. P. Aubin (pour p > 1) [5] et J. Simon (pour p = 1) [33], qui généralise le lemme de Lions (lemme 4.37) utilisé dans la section précédente pour prouver l'existence d'une solution pour des équations paraboliques.

Théorème 4.45 (Aubin-Simon) Soit $1 \le p < +\infty$, et soient X, B, Y trois espaces de Banach tels que

- (i) $X \subset B$ avec injection compacte,
- (ii) $X \subset Y$ et si $(f_n)_{n \in \mathbb{N}}$ est une suite d'éléments de X telle que la suite $(\|f_n\|_X)_{n \in \mathbb{N}}$ est bornée dans \mathbb{R} , $f_n \to f$ dans B et $f_n \to 0$ dans Y (lorsque $n \to +\infty$), alors f=0.

Soit T > 0 et $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de $L^p(]0, T[, X)$ telle que

- 1. $(u_n)_{n\in\mathbb{N}}$ est bornée dans $L^p(]0,T[,X)$,
- 2. $(\frac{du_n}{dt})_{n\in\mathbb{N}}$ est bornée dans $L^1(]0,T[,Y)$.

Alors il existe $u \in L^p(]0,T[,B)$ tel que à une sous-suite près, $u_n \to u$ dans $L^p(]0,T[,B)$.

Remarque 4.46 Noter que l'hypothèse (*ii*) du théorème 4.45 est plus faible que l'hypothèse des articles originaux d'Aubin et Simon, qui est :

$$B \subset Y$$
 avec injection continue.

L'hypothèse (ii) ne demande en particulier pas que $B \subset Y$, ce qui est intéressant par exemple dans les applications à des solutions de schémas numériques, qui sont dans des espaces discrets pas forcément inclus dans l'espace continu. On peut aussi noter que l'hypothèse (i) peut aussi s'écrire

Si la suite $(\|w_n\|_X)_{n\in\mathbb{N}}$ est bornée, alors, à une sous-suite près, il existe $w\in B$ tel que $w_n\to w$ dans B. Cette reformulation conduit à une généralisation facile qui sert à prouver la convergence des approximations numériques de la solution des équations paraboliques : dans cette généralisation, X est remplacé par une suite $(X_n)_{n\in\mathbb{N}}$, voir Theorem 4.54 ci-dessous.

Preuve du théorème 4.45 La preuve utilise le corollaire 4.44 avec $A = \{u_n, n \in \mathbb{N}\}$. L'ensemble A est borné dans $L^p(]0,T[,B)$ (car X s'injecte continûment dans B) et donc dans $L^1(]0,T[,X)$, de sorte que nous n'avons plus qu'à prouver le troisième point des hypothèses du corollaire 4.44, c'est-à-dire

$$\int_0^{T-h} \|u_n(\cdot + h) - u_n\|_B^p dt \to 0 \text{ quand } h \to 0, \text{ uniformément par rapport à } n \in \mathbb{N}.$$
 (4.51)

Soit 0 < h < T et $\varepsilon > 0$. Pour $t \in (0, T - h)$, on a, en utilisant le lemme de Lions 4.47 donné plus loin,

$$||u_n(t+h) - u_n(t)||_B \le \varepsilon ||u_n(t+h) - u_n(t)||_X + C_\varepsilon ||u_n(t+h) - u_n(t)||_Y \le \varepsilon ||u_n(t+h)||_X + \varepsilon ||u_n(t)||_X + C_\varepsilon ||u_n(t+h) - u_n(t)||_Y,$$

et donc

$$||u_n(t+h) - u_n(t)||_B^p \le (3\varepsilon)^p ||u_n(t+h)||_Y^p + (3\varepsilon)^p ||u_n(t)||_Y^p + (3C_\varepsilon)^p ||u_n(t+h) - u_n(t)||_Y^p.$$

L'intégration de cette inégalité par rapport à t (entre 0 et T-h) conduit à

$$\int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{B}^{p} dt \le 2(3\varepsilon)^{p} \|u_n\|_{L^{p}(]0,T[,X)}^{p} + (3C_{\varepsilon})^{p} \int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{Y}^{p} dt. \quad (4.52)$$

On utilise maintenant le deuxième point de la remarque 4.49, également donné dans la section 4.2, qui nous donne que $u_n \in C([0,T],Y)$ et $u_n(t_1)-u_n(t_2)=\int_{t_1}^{t_2} \frac{du_n}{dt}(s)ds$ pour tout $t_1,t_2\in[0,T]$. Ceci nous permet de majorer le deuxième terme du second membre de (4.52) :

$$\int_{0}^{T-h} \|u_{n}(t+h) - u_{n}(t)\|_{Y}^{p} dt \leq \int_{0}^{T-h} \left(\int_{t}^{t+h} \|\frac{du_{n}}{dt}(s)\|_{Y} ds \right)^{p} dt
\leq M^{p-1} \int_{0}^{T-h} \left(\int_{t}^{t+h} \|\frac{du_{n}}{dt}(s)\|_{Y} ds \right) dt
\leq M^{p-1} \int_{0}^{T-h} \left(\int_{0}^{T} 1_{[t,t+h]}(s) \|\frac{du_{n}}{dt}(s)\|_{Y} ds \right) dt,$$

où M est un majorant de la norme $L^1(]0,T[,Y)$ de $\frac{du_n}{dt}$ (i.e $\|\frac{du_n}{dt}\|_{L^1(]0,T[,Y)}\leq M$ pour tout n). En utilisant le fait que $1_{[t,t+h]}(s)=1_{[s-h,s]}(t)$ et le théorème de Fubini-Tonelli, on obtient

$$\int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{Y}^{p} dt \le hM^{p}. \tag{4.53}$$

Donc, en tenant compte de (4.53), (4.52) donne

$$\int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{B}^{p} dt \le 2(3\varepsilon)^{p} \|u_n\|_{L^{p}(]0,T[,X)}^{p} + (3C_{\varepsilon})^{p} h M^{p}. \tag{4.54}$$

On peut alors conclure : Soit $\eta > 0$, on choisit $\varepsilon > 0$ pour majorer le premier terme du second membre de (4.54) par η (indépendamment de $n \in \mathbb{N}$). Comme C_{ε} est donné, il existe $h_0 \in]0,T[$ tel que le second terme du second membre de (4.54) est majoré par η (indépendamment de $n \in \mathbb{N}$) si $0 < h < h_0$. Finalement, on obtient

$$0 < h < h_0 \Rightarrow \int_0^{T-h} \|u_n(t+h) - u_n(t)\|_B^p dt \le 2\eta,$$

ce qui conclut la preuve du théorème 4.45.

Lemme 4.47 (Lions) Soient X, B, Y trois espaces de Banach tels que

- (i) $X \subset B$ avec injection compacte,
- (ii) $X \subset Y$ et si $(u_n)_{n \in \mathbb{N}}$ est une suite d'éléments de X telle que la suite $(\|u_n\|_X)_{n \in \mathbb{N}}$ est bornée, $u_n \to u$ dans B et $u_n \to 0$ dans Y (quand $n \to +\infty$), alors u=0.

Alors pour tout $\varepsilon > 0$, il existe C_{ε} tel que, pour $w \in X$,

$$||w||_B \le \varepsilon ||w||_X + C_\varepsilon ||w||_Y.$$

Remarque 4.48 (Sur les hypothèses du lemme de Lions) Comme dans le théorème 4.45, l'hypothèse (*ii*) du lemme 4.47 peut être remplacée par l'hypothèse plus forte

(ii)' $B \subset Y$ avec injection continue.

Preuve du lemme 4.47 On raisonne par contradiction : On suppose qu'il existe $\varepsilon > 0$ et une suite $(u_n)_{n \in \mathbb{N}}$ telle que $(u_n)_{n \in \mathbb{N}}$ telle que $u_n \in X$ et $1 = \|u_n\|_B > \varepsilon \|u_n\|_X + n\|u_n\|_Y$, pour tout $n \in \mathbb{N}$. Alors $(u_n)_{n \in \mathbb{N}}$ est bornée dans X et donc relativement compacte dans B. On peut donc supposer (à une sous-suite près) que $u_n \to u$ dans B et $\|u\|_B = 1$. De plus $u_n \to 0$ dans Y (car $\|u_n\|_Y \le \frac{1}{n}$). L'hypothèse (ii) du lemme 4.47 donne donc que u = 0, ce qui contredit $\|u\|_B = 1$.

Remarque 4.49 (Sur la dérivée faible de u) On rappelle ici (points 1 et 2) certains résultats essentiellement donnés dans la section 4.2 (avec une preuve différente pour le deuxième point). Soient X, Y deux espaces Banach et Z un espace vectoriel tel que $X, Y \subset Z$ (bien sûr, un cas simple est Z = Y). Soient $p, q \in [1, \infty]$.

1. En supposant que $u\in L^p(]0,T[,X)$, la dérivée faible de u, notée $\frac{du}{dt}$, est définie par son action sur les fonctions test, c'est-à-dire son action sur φ pour tout $\varphi\in\mathcal{D}(]0,T[)$ (noter que φ prend ses valeurs dans IR). En fait, si $\varphi\in\mathcal{D}(]0,T[)$ (et φ' est la dérivée classique de φ), la fonction $\varphi'u$ appartient à $L^p(]0,T[,X)$ et donc à $L^1(]0,T[,X)$ et l'action de $\frac{du}{dt}$ sur φ est définie comme

$$\langle \frac{du}{dt}, \varphi \rangle = -\int_0^T \varphi'(t)u(t) dt.$$

Noter que $\langle \frac{du}{dt}, \varphi \rangle \in X$.

Puis $\frac{du}{dt} \in L^q(]0,T[,Y)$ signifie qu'il existe $v \in L^q(]0,T[,Y)$ (et ce v est unique) de telle sorte que

$$-\int_0^T \varphi'(t)u(t) dt = \int_0^T \varphi(t)v(t) dt \text{ pour tout } \varphi \in \mathcal{D}(]0, T[).$$
 (4.55)

Noter que $\int_0^T \varphi'(t)u(t) dt \in X \subset Z$ et $\int_0^T \varphi(t)v(t) dt \in Y \subset Z$, donc l'égalité dans (4.55) est dans l'espace Z. Enfin, on identifie la dérivée faible de u (qui est une forme linéaire sur $\mathcal{D}(]0,T[)$) avec la fonction v (qui appartient à $L^q(]0,T[,Y)$).

2. Si $u \in L^p(]0,T[,X)$ et $\frac{du}{dt} \in L^q(]0,T[,Y)$, il est assez facile de prouver que $u \in C([0,T],Y)$ et que

$$u(t) = u(0) + \int_0^t \frac{du}{dt}(s)ds$$
, pour tout $t \in [0, T]$.

En effet, on pose $v = \frac{du}{dt}$ et on définit $w \in C([0,T],Y)$ par

$$w(t) = \int_0^t v(s)ds$$
 pour tout $t \in [0, T]$.

Pour $n \in \mathbb{N}^*$, soit $u_n = u \star \rho_n$ avec ρ_n défini par (4.48) et en ayant prolongé u par 0 en dehors de [0,T]. Comme $u \in L^p(\mathbb{R},X)$, on a $u_n \to u$ dans $L^p(\mathbb{R},X)$ et donc, à une sous-suite près, $u_n(t) \to u(t)$ dans X (lorsque $n \to +\infty$) pour presque tout $t \in]0,T[$.

Soient $t_1, t_2 \in]0, T[$ tels que $0 < t_1 < t_2 < T$ et $u_n(t_i) \to u(t_i)$ dans X (lorsque $n \to +\infty$) pour i=1,2. Pour $n \in \mathbb{N}^\star$ tel que $\frac{1}{n} < t_1$ et $\frac{1}{n} < T - t_2$, on définit φ_n par

$$\varphi_n(t) = \int_{t_2}^t \rho_n(t_2 - s) ds - \int_{t_1}^t \rho_n(t_1 - s) ds.$$

On a $\varphi_n \in \mathcal{D}([0,T])$ et $\varphi'_n(t) = \rho_n(t_2-t) - \rho_n(t_1-t)$ pour $t \in [0,T]$. De plus,

$$u_n(t_2) - u_n(t_1) = \int_0^T u(s)\varphi'_n(s)ds = -\int_0^T v(s)\varphi_n(s)ds.$$

Remarquons maintenant que (en utilisant $\rho(-\cdot) = \rho$ et avec un changement de variable)

$$\varphi_n(t) = \int_{t_2}^t \rho_n(s - t_2) ds - \int_{t_1}^t \rho_n(s - t_1) ds = -\int_{t_1}^{t_2} \rho_n(t - s) ds = -1_{(t_1, t_2)} \star \rho_n(t).$$

De plus, $\varphi_n \to -\mathbb{1}_{(t_1,t_2)}$ p.p. et puisque $|\varphi_n| \le 1$ p.p. (pour tout n), le théorème de convergence dominée donne

$$-\int_0^T v(s)\varphi_n(s)ds \to \int_{t_1}^{t_2} v(s)ds \text{ dans } Y.$$

On obtient alors, en faisant $n \to +\infty$,

$$u(t_2) - u(t_1) = \int_{t_1}^{t_2} v(s)ds = w(t_2) - w(t_1).$$

Ceci prouve qu'il existe $c \in \mathbb{R}$ tel que u = w + c p.p. sur]0,T[puis que $u \in C(]0,T[,Y)$ (puisque, comme d'habitude, nous identifions u avec la fonction continue w + c).

3. Dans le théorème 4.45, grâce au point précédent, on a $u_n \in C([0,T],Y)$ pour tout $n \in \mathbb{N}$. Cependant, la limite u n'est pas nécessairement continue. Un simple contre-exemple est obtenu avec p=1, X=B=Y et, par exemple, T=2. il est alors assez facile de construire une suite $(u_n)_n$ bornée dans $W^{1,1}(]0,T[)$ dont la limite est la fonction caractéristique de [1,2].

Remarque 4.50 (Un cas classique plus simple) Il existe un cas classique où le lemme 4.47 est plus simple. Soit B un espace Hilbert et X un espace Banach $X \subset B$. On définit sur X la norme duale de $\|\cdot\|_X$ pour le produit scalaire de B, à savoir

$$||u||_Y = \sup\{(u|v)_B, \ ; v \in X, ||v||_X < 1\}.$$

Alors, pour tout $\varepsilon > 0$ et $u \in X$, on a

$$||u||_B \le \varepsilon ||u||_X + \frac{1}{\varepsilon} ||u||_Y.$$

La preuve est simple, puisque

$$||u||_B = (u|u)_B^{\frac{1}{2}} \le (||u||_Y ||u||_X)^{\frac{1}{2}} \le \varepsilon ||u||_X + \frac{1}{\varepsilon} ||u||_Y.$$

Noter que la compacité de X dans B n'est pas nécessaire ici (mais, même dans ce cas simple du lemme 4.47,la compacité de X dans B est nécessaire pour le Théorème 4.45.)

Nous donnons maintenant une généralisation du corollaire 4.44 et du théorème 4.45, en utilisant une suite de sousespaces de B au lieu des espaces X et Y, ce qui permet d'utiliser ce résultat pour la compacité de suites obtenues par approximation numérique. Un exemple est donné dans l'exercice 4.8 (voir [16, chapitre 6] pour des exemples plus généraux).

Définition 4.51 (Suite compactement incluse) Soit B un espace Banach et $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces de Banach inclus dans B. On dira que la suite $(X_n)_{n\in\mathbb{N}}$ est compactement incluse dans B si toute suite $(u_n)_{n\in\mathbb{N}}$ satisfaisant

- $-u_n \in X_n$ pour tout $n \in \mathbb{N}$,
- la suite $(\|u_n\|_{X_n})_{n\in\mathbb{N}}$ est bornée,

est relativement compacte dans B.

Un exemple simple de suite $(X_n)_{n\in\mathbb{N}}$ compactement incluse dans B est donné dans l'exercice 4.7.

Proposition 4.52 (Compacité en temps avec une suite de sous-espaces) Soient $1 \le p < +\infty$ et T > 0. Soient $(X_n)_{n \in \mathbb{N}}$ une suite (d'espaces de Banach) compactement incluse dans B et Soit $(f_n)_{n \in \mathbb{N}}$ une suite de $L^p(]0, T[, B)$ satisfaisant aux conditions suivantes

- 1. La suite $(f_n)_{n\in\mathbb{N}}$ est bornée dans $L^p(]0,T[,B)$.
- 2. La suite $(\|f_n\|_{L^1(]0,T[,X_n)})_{n\in\mathbb{N}}$ est bornée.
- 3. Il existe une fonction croissante η de]0,T[à \mathbb{R}_+ telle que $\lim_{h\to 0^+} \eta(h)=0$ et, pour tout $h\in]0,T[$ et $n\in \mathbb{N}$,

$$\int_0^{T-h} \|f_n(t+h) - f_n(t)\|_B^p \, \mathrm{d}t \le \eta(h),$$

alors la suite $(f_n)_{n\in\mathbb{N}}$ est relativement compacte dans $L^p(]0,T[,B)$.

Preuve Comme dans le corollaire 4.44, pour appliquer le Théorème 4.43, il suffit de prouver que, pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, la suite $\{\int_0^T f_n \varphi \, dt, n \in \mathbb{N}\}$ est relativement compacte dans B.

Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Pour $n \in \mathbb{N}$, on a, avec $\|\varphi\|_u = \max_{t \in \mathbb{R}} |\varphi(t)|$,

$$\| \int_0^T f_n \varphi \, \mathrm{d}t \|_{X_n} \le \| \varphi \|_u \| f_n \|_{L^1(]0,T[,X_n)}.$$

Puisque la suite $(\|f_n\|_{L^1(]0,T[,X_n)})_{n\in\mathbb{N}}$ est bornée, la suite $\{\|\int_0^T f_n\varphi\,\mathrm{d}t\|_{X_n},\,n\in\mathbb{N}\}$ est également bornée. Par conséquent, la suite $\{\int_0^T f_n\varphi\,\mathrm{d}t,\,n\in\mathbb{N}\}$ est relativement compacte dans B.

Voici maintenant une généralisation du Théorème 4.45 utilisant une suite de sous-espaces de B.

Définition 4.53 (Suite compacte-continue) Soit B un espace de Banach, $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces de Banach inclus dans B et $(Y_n)_{n\in\mathbb{N}}$ une suite d'espaces de Banach. On dira que la suite $(X_n,Y_n)_{n\in\mathbb{N}}$ est compacte-continue dans B si les conditions suivantes sont remplies

- 1. La suite $(X_n)_{n\in\mathbb{N}}$ est compactement incluse dans B (voir définition 4.51).
- 2. $X_n \subset Y_n$ (pour tout $n \in \mathbb{N}$) et si la suite $(u_n)_{n \in \mathbb{N}}$ est telle que $u_n \in X_n$ (pour tout $n \in \mathbb{N}$), $(\|u_n\|_{X_n})_{n \in \mathbb{N}}$ bornée et $\|u_n\|_{Y_n} \to 0$ (lorsque $n \to +\infty$), alors toute sous-suite de $(u_n)_{n \in \mathbb{N}}$ convergeant dans B converge (dans B) vers 0.

Théorème 4.54 (Aubin-Simon avec une suite de sous-espaces) Soit $1 \le p < +\infty$. Soient B un espace Banach, $(X_n)_{n \in \mathbb{N}}$ une suite d'espaces de Banach inclus dans B et $(Y_n)_{n \in \mathbb{N}}$ une suite d'espaces de Banach. On suppose que la suite $(X_n, Y_n)_{n \in \mathbb{N}}$ est compacte-continue dans B (voir définition 4.53).

Soit T>0 et $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de $L^p(]0,T[,B]$ satisfaisant aux conditions suivantes

- 1. la suite $(f_n)_{n\in\mathbb{N}}$ est bornée dans $L^p(]0,T[,B)$,
- 2. $f_n \in L^p(]0,T[,X_n)$ (pour tout $n \in \mathbb{N}$) et la suite $(\|f_n\|_{L^p(]0,T[,X_n)})_{n \in \mathbb{N}}$ est bornée,
- 3. $\frac{df_n}{dt} \in L^1(]0,T[,Y_n)$ (pour tout $n \in \mathbb{N}$) et la suite $(\|\frac{df_n}{dt}\|_{L^1(]0,T[,Y_n)})_{n \in \mathbb{N}}$ est bornée,

alors il existe $f \in L^p(]0,T[,B)$ telle que, à une sous-suite près, $f_n \to f$ dans $L^p(]0,T[,B)$.

Démonstration La preuve utilise la proposition 4.52. Il suffit de prouver la troisième hypothèse sur $(f_n)_{n\in\mathbb{N}}$ de la Proposition 4.52, c'est-à-dire

$$\int_0^{T-h} \|f_n(\cdot+h) - f_n\|_B^p \, \mathrm{d}t \to 0 \text{ quand } h \to 0, \text{ uniformément par rapport à } n \in \mathbb{N}.$$

Pour tout $n \in \mathbb{N}$, comme $f_n \in L^p(]0, T[,B)$, on a $\int_0^{T-h} \|f_n(\cdot + h) - f_n\|_B^p \, dt \to 0$ lorsque $h \to 0$. La seule difficulté est de prouver l'uniformité de cette convergence par rapport à $n \in \mathbb{N}$. Ainsi, il suffit de prouver que pour tout $\eta > 0$ il existe $n_0 \in \mathbb{N}$ et $0 < h_0 < T$ tel que

$$n \ge n_0, \ 0 < h \le h_0 \Rightarrow \int_0^{T-h} \|f_n(\cdot + h) - f_n\|_B^p \, \mathrm{d}t \le \eta.$$
 (4.56)

Soit $\varepsilon > 0$; le lemma 4.55 donne l'existence de $n_0 \in \mathbb{N}$ et de $C_{\varepsilon} \in \mathbb{R}$ tel que

$$n \ge n_0, u \in X_n \Rightarrow ||u||_B \le \varepsilon ||u||_{X_n} + C_\varepsilon ||u||_{Y_n}.$$

On a donc, pour $n \ge n_0$, 0 < h < T et $t \in (0, T - h)$,

$$||f_n(t+h) - f_n(t)||_B \le \varepsilon ||f_n(t+h) - f_n(t)||_{X_n} + C_\varepsilon ||f_n(t+h) - f_n(t)||_{Y_n}$$

$$\le \varepsilon ||f_n(t+h)||_{X_n} + \varepsilon ||f_n(t)||_{X_n} + C_\varepsilon ||f_n(t+h) - f_n(t)||_{Y_n},$$

puis

$$||f_n(t+h) - f_n(t)||_B^p \le (3\varepsilon)^p ||f_n(t+h)||_{X_n}^p + (3\varepsilon)^p ||f_n(t)||_{X_n}^p + (3C_\varepsilon)^p ||f_n(t+h) - f_n(t)||_{Y_n}^p.$$

L'intégration de cette inégalité par rapport à t conduit à

$$\int_{0}^{T-h} \|f_n(t+h) - f_n(t)\|_{B}^{p} dt \leq 2(3\varepsilon)^{p} \|f_n\|_{L^{p}(]0,T[,X_n)}^{p} + (3C_{\varepsilon})^{p} \int_{0}^{T-h} \|f_n(t+h) - f_n(t)\|_{Y_n}^{p} dt.$$
(4.57)

Rappelons (voir la remarque 4.49) que $f_n \in C([0,T],Y_n)$ et $f_n(t_1) - f_n(t_2) = \int_{t_1}^{t_2} \frac{df_n}{dt}(s)ds$ pour tous $t_1,t_2 \in [0,T]$. On peut donc majorer le second terme du second membre de (4.57):

$$\int_{0}^{T-h} \|f_{n}(t+h) - f_{n}(t)\|_{Y_{n}}^{p} dt \leq \int_{0}^{T-h} \left(\int_{t}^{t+h} \|\frac{df_{n}}{dt}(s)\|_{Y_{n}} ds \right)^{p} dt
\leq \int_{0}^{T-h} M^{p-1} \left(\int_{t}^{t+h} \|\frac{df_{n}}{dt}(s)\|_{Y_{n}} ds \right) dt
\leq M^{p-1} \int_{0}^{T-h} \left(\int_{0}^{T} 1_{[t,t+h]}(s) \|\frac{df_{n}}{dt}(s)\|_{Y_{n}} ds \right) dt,$$

où M est une borne de la norme $L^1(]0,T[,Y_n)$ de $\frac{df_n}{dt}.$

En utilisant $1_{[t,t+h]}(s)=1_{[s-h,s]}(t)$ et le théorème de Fubini-Tonelli, on obtient

$$\int_{0}^{T-h} \|f_n(t+h) - f_n(t)\|_{Y_n}^p dt \le hM^p. \tag{4.58}$$

Grâce à cette dernière inégalité, (4.57) donne

$$\int_{0}^{T-h} \|f_n(t+h) - f_n(t)\|_{B}^{p} dt \le 2(3\varepsilon)^{p} \|f_n\|_{L^{p}(]0,T[,X_n)}^{p} + (3C_{\varepsilon})^{p} h M^{p}.$$
(4.59)

On peut maintenant conclure. Soit $\eta > 0$; on choisit $\varepsilon > 0$ de manière à majorer par η le premier terme du second membre de (4.59) (indépendamment de $n \in \mathbb{N}$). Ce choix de ε impose n_0 et C_ε . Pour ce C_ε donné, il existe $h_0 \in]0,T[$ tel que le deuxième terme du second membre de (4.59) est majoré par η (indépendamment de $n \in \mathbb{N}$) si $0 < h < h_0$. Enfin, on obtient

$$n \ge n_0, \ 0 < h < h_0 \Rightarrow \int_0^{T-h} \|f_n(t+h) - f_n(t)\|_B^p dt \le 2\eta.$$

Ceci conclut la preuve du Théorème 4.54.

Lemme 4.55 (Lions pour une suite de sous-espaces) Soient B un espace de Banach, $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces de Banach inclus dans B et $(Y_n)_{n\in\mathbb{N}}$ une suite d'espaces Banach. Supposons que la suite $(X_n,Y_n)_{n\in\mathbb{N}}$ est compacte-continue dans B (voir définition 4.53); alors, pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ et C_ε tel que, pour $n \geq n_0$ et $w \in X_n$, on a

$$||w||_B \le \varepsilon ||w||_{X_n} + C_\varepsilon ||w||_{Y_n}.$$

Démonstration. La preuve peut se faire par contradiction. Supposons qu'il existe $\varepsilon > 0$, une fonction croissante φ de $\mathbb N$ à $\mathbb N$ et, pour tout $n \in \mathbb N$, $u_{\varphi(n)} \in X_{\varphi(n)}$ telles que

$$1 = \|u_{\varphi(n)}\|_{B} > \varepsilon \|u_{\varphi(n)}\|_{X_n} + n\|u_{\varphi(n)}\|_{Y_n}.$$

Afin de définir u_n pour tout n, on pose $u_n=0$ pour $n\not\in \operatorname{Im}(\varphi)$. La suite $(u_n)_{n\in\mathbb{N}}$ est telle que $u_n\in X_n$ (pour tout $n\in\mathbb{N}$), la suite $(\|u_n\|_{X_n})_{n\in\mathbb{N}}$ est bornée et $\|u_n\|_{Y_n}\to 0$ quand $n\to+\infty$; la deuxième hypothèse de la définition 4.53 donne que toute sous-suite (de la suite $(u_n)_{n\in\mathbb{N}}$) convergeant dans B converge (dans B) vers 0. Mais, comme $(\|u_n\|_{X_n})_{n\in\mathbb{N}}$ est bornée, la première hypothèse de la définition 4.53 donne que la sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ admet une sous-suite convergeant dans B. La limite de cette sous-suite doit être 0 et sa norme dans B doit être égale à 1, ce qui est impossible. Ceci conclut la preuve du lemma 4.55.

Il est également possible de remplacer dans le Théorème 4.54 la dérivée temporelle par une dérivée discrète. Ceci est intéressant pour prouver la convergence de la solution approximative d'un problème parabolique en utilisant un schéma numérique. C'est le but du Théorème 4.56

Théorème 4.56 (Aubin-Simon pour une suite de sous-espaces et une dérivée en temps discrète) Soit $1 \le p < +\infty$, soient B un espace de Banach, $(X_n)_{n \in \mathbb{N}}$ une suite d'espaces de Banach inclus dans B et $(Y_n)_{n \in \mathbb{N}}$ une suite d'espaces de Banach. On suppose que la suite $(X_n, Y_n)_{n \in \mathbb{N}}$ est compacte-continue dans B (voir définition 4.53). Soit T > 0 et $(u_n)_{n \in \mathbb{N}}$ une suite de $L^p(]0, T[, B)$ satisfaisant aux conditions suivantes

1. pour tout $n \in \mathbb{N}$, il existe $N \in \mathbb{N}^*$ et k_1, \ldots, k_N dans \mathbb{R}_+^* tel que $\sum_{i=1}^N k_i = T$ et $u_n(t) = v_i$ pour $t \in (t_{i-1}, t_i)$, $i \in \{1, \ldots, N\}$, $t_0 = 0$, $t_i = t_{i-1} + k_i$, $v_i \in X_n$. (Bien entendu, les valeurs N, k_i et v_i dépendent de n).

La dérivée discrète en temps $\eth_t u_n$ est définie p.p. par

$$\eth_t u_n(t) = \frac{v_i - v_{i-1}}{k_i} pour t \in]t_{i-1}, t_i[.$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $L^p(]0,T[,B)$,

- 3. La suite $(\|u_n\|_{L^p(]0,T[,X_n)})_{n\in\mathbb{N}}$ est bornée.
- 4. La suite $(\|\eth_t u_n\|_{L^1([0,T[,Y_n])})_{n\in\mathbb{N}}$ est bornée.

Alors, il existe $u \in L^p(]0,T[,B)$ telle que, à une sous-suite près, $u_n \to u$ dans $L^p(]0,T[,B)$.

Démonstration.

Le début de la preuve suit de près celle du Théorème 4.54. Comme pour cette dernière, on utilise la proposition 4.52 et il ne reste qu'à prouver la troisième hypothèse sur $(u_n)_{n\in\mathbb{N}}$ de cette proposition, c'est-à-dire

$$\int_0^{T-h} \|u_n(\cdot + h) - u_n\|_B^p dt \to 0 \text{ quand } h \to 0, \text{ uniformément par rapport à } n \in \mathbb{N}.$$

Ici aussi, pour tout $n \in \mathbb{N}$, puisque $u_n \in L^p(]0,T[,B)$, on a $\int_0^{T-h} \|u_n(\cdot+h)-u_n\|_B^p \,\mathrm{d}t \to 0$ lorsque $h \to 0$. La seule difficulté est de prouver l'uniformité de cette convergence par rapport à $n \in \mathbb{N}$. Ainsi, il suffit de prouver que pour tout $\eta > 0$ il existe $n_0 \in \mathbb{N}$ et $0 < h_0 < T$ tels que

$$n \ge n_0, \ 0 < h \le h_0 \Rightarrow \int_0^{T-h} \|u_n(\cdot + h) - u_n\|_B^p \, \mathrm{d}t \le \eta.$$
 (4.60)

Soit $\varepsilon > 0$. le lemme 4.55 donne l'existence de $n_0 \in \mathbb{N}$ et $C_{\varepsilon} \in \mathbb{R}$ tel que

$$n \ge n_0, u \in X_n \Rightarrow ||u||_B \le \varepsilon ||u||_{X_n} + C_\varepsilon ||u||_{Y_n}.$$

Pour $n \ge n_0$, 0 < h < T et $t \in (0, T - h)$, on a

$$||u_n(t+h) - u_n(t)||_B \le \varepsilon ||u_n(t+h) - u_n(t)||_{X_n} + C_\varepsilon ||u_n(t+h) - u_n(t)||_{Y_n} \le \varepsilon ||u_n(t+h)||_{X_n} + \varepsilon ||u_n(t)||_{X_n} + C_\varepsilon ||u_n(t+h) - u_n(t)||_{Y_n},$$

et donc

$$||u_n(t+h) - u_n(t)||_B^p \le (3\varepsilon)^p ||u_n(t+h)||_{X_n}^p + (3\varepsilon)^p ||u_n(t)||_{X_n}^p + (3C_\varepsilon)^p ||u_n(t+h) - u_n(t)||_{Y_n}^p.$$

L'intégration de cette inégalité par rapport à t conduit à

$$\int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{B}^{p} dt \leq 2(3\varepsilon)^{p} \|u_n\|_{L^{p}(]0,T[,X_n)}^{p} + (3C_{\varepsilon})^{p} \int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{Y_n}^{p} dt.$$
(4.61)

La preuve diffère maintenant de celle du Théorème 4.54, car on a affaire à la dérivée discrète de u_n au lieu de la dérivée de u_n . Nous remarquons que pour presque tout $t \in]0, T-h[$ ($n \in h$ sont fixes)

$$u_n(t+h) - u_n(t) = \sum_{i; t_i \in]t, t+h[} (v_{i+1} - v_i) = \sum_{i=1}^{N-1} (v_{i+1} - v_i) 1_{]t, t+h[}(t_i) = \sum_{i=1}^{N-1} \frac{v_{i+1} - v_i}{k_{i+1}} k_{i+1} 1_{]t, t+h[}(t_i),$$

où $1_{]t,t+h[}(t_i) = 1 \text{ si } t_i \in]t,t+h[\text{ et } 0 \text{ si } t_i \notin]t,t+h[.$

Soit M une borne de la norme $L^1(]0,T[,Y_n)$ de $\eth_t u_n: M \geq \sum_{i=1}^{N-1} \|\frac{v_{i+1}-v_i}{k_{i+1}}\|_{Y_n} k_{i+1}$ pour tout n. On obtient alors

$$||u_n(t+h) - u_n(t)||_{Y_n}^p \le \left(\sum_{i=1}^{N-1} ||\frac{v_{i+1} - v_i}{k_{i+1}}||_{Y_n} k_{i+1} \mathbb{1}_{]t,t+h[}(t_i)\right)^p$$

$$\leq M^{p-1} \Big(\sum_{i=1}^{N-1} \| \frac{v_{i+1} - v_i}{k_{i+1}} \|_{Y_n} k_{i+1} \mathbb{1}_{]t,t+h[}(t_i) \Big)$$

L'intégration de cette inégalité par rapport à $t \in (0, T - h)$ donne, puisque $1_{[t,t+h]}(t_i) = 1_{[t_i-h,t_i]}(t)$,

$$\int_0^{T-h} \|u_n(t+h) - u_n(t)\|_{Y_n}^p \, \mathrm{d}t \le hM^p.$$

En utilisant cette inégalité dans (4.61), on a

$$\int_{0}^{T-h} \|u_n(t+h) - u_n(t)\|_{B}^{p} dt \le 2(3\varepsilon)^{p} \|u_n\|_{L^{p}(]0,T[,X_n)}^{p} + (3C_{\varepsilon})^{p} M^{p} h. \tag{4.62}$$

On peut alors conclure comme dans le Théorème 4.54 : soit $\eta>0$, on choisit $\varepsilon>0$ pour que le premier terme du second membre de (4.62) soit majoré par η (indépendamment de $n\in\mathbb{N}$). Ce choix de ε impose n_0 et C_ε . Pour C_ε donné, il existe $h_0\in]0,T[$ tel que le deuxième terme du second membre de (4.62) soit borné par η (indépendamment de $n\in\mathbb{N}$) si $0< h< h_0$. Enfin, on obtient

$$n \ge n_0, \ 0 < h < h_0 \Rightarrow \int_0^{T-h} \|u_n(t+h) - u_n(t)\|_B^p dt \le 2\eta.$$

Ceci conclut la preuve du Théorème 4.56.

Sous les hypothèses du théorème 4.54 ou du théorème 4.56, une autre question intéressante est de prouver une régularité supplémentaire pour u, à savoir que $u \in L^p(]0,T[,X)$ où X est un espace lié aux espaces X_n (et inclus dans B). La définition qui suit introduit la notion de suite B-limite-incluse, qui précise le lien entre l'espace X et les espaces X_n . Le résultat de régularité pour une telle suite est énoncé dans le théorème 4.58.

Définition 4.57 (Suite *B*-limite-incluse) Soient *B* un espace Banach, $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces Banach inclus dans *B* et *X* un espace de Banach inclus dans *B*. La suite $(X_n)_{n\in\mathbb{N}}$ est dite *B*-limite-incluse dans *X* s'il existe $C \in \mathbb{R}$ tel que si u est la limite dans *B* d'une sous-suite d'une suite $(u_n)_{n\in\mathbb{N}}$ vérifiant $u_n \in X_n$ et $||u_n||_{X_n} \le 1$, alors $u \in X$ et $||u||_X \le C$.

Théorème 4.58 (Régularité de la limite) Soient $1 \le p < +\infty$, T > 0, B un espace de Banach, X un espace de Banach inclus dans B, et $(X_n)_{n \in \mathbb{N}}$ une suite d'espaces de Banach inclus dans B et B-limite-incluse dans X au sens de la définition 4.57. Pour $n \in \mathbb{N}$, soit $u_n \in L^p(]0,T[,X_n)$ telle que la suite $(\|u_n\|_{L^p(]0,T[,X_n)})_{n \in \mathbb{N}}$ est bornée et que $u_n \to u$ dans $L^p(]0,T[,B)$ quand $n \to +\infty$. Alors $u \in L^p(]0,T[,X)$.

Démonstration.

Puisque $u_n \to u$ dans $L^p(]0,T[,B)$ lorsque $n \to +\infty$, nous pouvons supposer, à une sous-suite près, que $u_n \to u$ dans B p.p.. Comme la suite $(X_n)_{n \in \mathbb{N}}$ est B-limite-incluse dans X, on obtient, avec C donné par la définition 4.57.

$$||u||_X \leq C \liminf_{n \to +\infty} ||u_n||_{X_n} \text{ p.p.}.$$

Par le lemme de Fatou, on a

$$\int_0^T \|u(t)\|_X^p \, \mathrm{d}t \leq C^p \int_0^T \liminf_{n \to +\infty} \|u_n(t)\|_{X_n}^p \, \mathrm{d}t \leq C^p \liminf_{n \to +\infty} \int_0^T \|u_n(t)\|_{X_n}^p \, \mathrm{d}t.$$

Enfin, puisque la suite $(\|u_n\|_{L^p(]0,T[,X_n)})_{n\in\mathbb{N}}$ est bornée, on a bien $u\in L^p(]0,T[,X)$.

4.6 Exercices

Exercice 4.1 (Solution classique en dimension 1) Corrigé en page 259 Soit $u_0 \in L^2(]0,1[)$. On s'intéresse ici au problème suivant :

$$\begin{cases} \partial_t u(x,t) - \partial_{xx}^2 u(x,t) = 0, \ x \in]0,1[, \ t \in]0,+\infty[, \\ u(0,t) = u(1,t) = 0, \ t \in]0,+\infty[, \\ u(x,0) = u_0(x), \ x \in [0,1]. \end{cases}$$

$$(4.63)$$

La notation $\partial_t u$ désigne la dérivée de u par rapport à t et $\partial_x^2 u$ désigne la dérivée seconde de u par rapport à x. On dit que u est une solution classique de (4.63) si u vérifie les trois conditions suivantes

- (c1) u est de classe C^2 sur $]0,1[\times]0,+\infty[$ et vérifie au sens classique $\partial_t u \partial_x^2 u = 0$ en tout point de $]0,1[\times]0,+\infty[$,
- (c2) pour tout t > 0, les fonctions u, $\partial_x u$ et $\partial_x^2 u$ sont continues sur $[0,1] \times [t,+\infty[$ et u(0,t)=u(1,t)=0,
- (c3) $u(\cdot,t) \to u_0$ dans $L^2([0,1[)])$ quand $t \to 0$ (t > 0).
 - 1. Montrer que le problème (4.63) admet au plus une solution classique. [On pourra reprendre la méthode développée à la section 4.1.]
 - 2. Montrer que le problème (4.63) admet une solution classique. [On pourra reprendre la méthode développée à la section 4.1 en explicitant une base hilbertienne convenable de $L^2(]0,1[)$, voir l'exercice 2.2.]

Exercice 4.2 (Dual de L_E^p) Corrigé en page 261 Soit (X,T,m) un espace mesuré, E un espace de Banach et $1 . On pose <math>p' = \frac{p}{p-1}$.

1. Soit $v \in L^{p'}_{E'}(X,T,m)$ et $u \in L^p_E(X,T,m)$. Montrer que l'application $x \mapsto \langle v(x),u(x)\rangle_{E',E}$ est m-mesurable de X dans ${\rm I\!R}$ puis que $\langle v,u\rangle_{E',E} \in L^1_{{\rm I\!R}}(X,T,m)$ et

$$\int |\langle v, u \rangle_{E', E}| \, \mathrm{d}m \le ||v||_{L_{E'}^{p'}} ||u||_{L_{E}^{p}}.$$

- 2. Soit $v \in L_{E'}^{p'}(X, T, m)$.
 - (a) Montrer que l'application $u\mapsto \int \langle v,u\rangle_{E',E}\,\mathrm{d} m$ est bien définie, linéaire et continue de $L^p_E(X,T,m)$ dans IR .

On note T_v cette application (on a donc $T_v \in L^p_E(X,T,m)'$.)

- (b) Montrer que $||T_v||_{L^p_E(X,T,m)'} \le ||v||_{L^{p'}_{E'}(X,T,m)}$.
- (c) (Question plus difficile) Montrer que $\|T_v\|_{L^p_E(X,T,m)'} = \|v\|_{L^{p'}_{E'}(X,T,m)}$.

Exercice 4.3 (Dérivée faible pour une union de domaines)

On suppose que Ω_1 et Ω_2 sont deux ouverts disjoints de \mathbb{R}^N $(N\geq 1)$ et on note Ω l'intérieur de l'adhérence de $\Omega_1\cup\Omega_2$ (l'ouvert Ω peut donc être différent de $\Omega_1\cup\Omega_2$). Soit $f\in L^2(]0,T[,L^2(\Omega))$. Pour i=1,2, on note f_i la fonction obtenue en restreignant f à Ω_i , on a donc $f_i\in L^2(]0,T[,L^2(\Omega_i))$. On identifie (comme d'habitude) $L^2(\Omega)$ avec son dual et $L^2(\Omega_i)$ avec son dual (pour i=1,2). On suppose que $\frac{df_i}{dt}\in L^2(]0,T[,H^1(\Omega_i)')$ (pour i=1,2). Montrer que $\frac{df}{dt}\in L^2(]0,T[,H^1(\Omega)')$.

Exercice 4.4 (Sur la continuité à valeurs L^2) On pose T > 0 et $\Omega =]0, +\infty[$. On identifie, comme d'habitude, $L^2(\Omega)$ avec son dual. On suppose que $u \in L^2(]0, T[, H^1(\Omega))$ et $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$.

On rappelle la définition de "dérivée par transposition de u". C'est l'élément de $\mathcal{D}_{H^1(\Omega)}^{\star}$, noté $\partial_t u$, tel que, pour tout $\varphi \in \mathcal{D}(\Omega)$,

$$\langle \partial_t u, \varphi \rangle_{\mathcal{D}_{H^1(\Omega)}^*, \mathcal{D}} = -\int_0^T u(\cdot, t) \varphi'(t) dt.$$

La notation $u(\cdot,t)$ désigne la fonction $x\mapsto u(\cdot,t)$). Noter que $\int_0^T u(\cdot,t)\varphi'(t)\,\mathrm{d}t\in H^1(\Omega)$. On rappelle aussi que $\partial_t u\in L^2(]0,T[,H^{-1}(\Omega))$ signifie qu'il existe une fonction v (encore notée $\partial_t u$ et appelée "dérivée faible de u") appartenant à $L^2(]0,T[,H^{-1}(\Omega))$ telle que

$$\langle \partial_t u, \varphi \rangle_{\mathcal{D}_{H^1(\Omega)}^{\star}, \mathcal{D}} = -\int_0^T u(\cdot, t) \varphi'(t) dt = \int_0^T v(\cdot, t) \varphi(t) dt.$$

Noter que $\int_0^T v(\cdot,t)\varphi(t) \;\mathrm{d}t \in H^{-1}(\Omega).$ Cette égalité a bien un sens car $H^1(\Omega) \subset L^2(\Omega) = L^2(\Omega)' \subset H^{-1}(\Omega).$

On montre dans cet exercice que $u \in C([0,T],L^2(\Omega))$. Le lemme 4.26 ne s'applique pas directement car $H^{-1}(\Omega)$ n'est pas le dual de $H^1(\Omega)$ (noté $(H^1(\Omega)')$). On peut d'ailleurs remarquer que l'application qui à T élément de $H^1(\Omega)'$ associe sa restriction a $H^1_0(\Omega)$, qui est donc un élément de $H^{-1}(\Omega)$, n'est pas injective.

La méthode proposée ici consiste à se ramener au lemme 4.26 (avec $E=H^1(\mathbb{R})$ et $F=L^2(\mathbb{R})$) en utilisant un prolongement convenable de u.

On se donne trois nombres α , β et γ strictement positifs vérifiant $\alpha - \beta = 1$ et $(\alpha + 1) - \frac{\beta}{\gamma} = 0$ (un exemple possible est $\alpha=2,\,\beta=1,\,\gamma=\frac{1}{3}$). On définit \bar{u} de $\mathbb{R}\times]0,T[$ par

$$\bar{u}(x,t) = u(x,t) \text{ si } x \ge 0,$$

$$\bar{u}(x,t) = \alpha u(-x,t) - \beta u(-\gamma x,t) \text{ si } x < 0.$$

- 1. Montrer que $\bar{u} \in L^2(]0, T[, H^1(\mathbb{R})).$
- 2. Cette question donne une égalité essentielle pour calculer $\partial_t \bar{u}$, c'est-à-dire $\int_0^T \bar{u}(\cdot,t)\varphi'(t) dt$. Soit $\varphi \in \mathcal{D}(]0,T[)$ et $\psi \in \mathcal{D}(\mathbb{R})$. Pour x>0, on pose

$$\bar{\psi}(x) = \psi(x) + \alpha \psi(-x) - \frac{\beta}{\gamma} \psi(-\frac{x}{\gamma}).$$

(a) Montrer que

$$\langle \int_0^T \bar{u}(\cdot,t)\varphi'(t) \, dt, \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} = \int_0^T \left(\int_0^\infty u(x,t)\bar{\psi}(x) \, dx \right) \varphi'(t) dt.$$

[Utiliser la proposition 4.24 puis des changements de variables.]

(b) Montrer que $\bar{\psi} \in H_0^1(\Omega)$. En déduire que

$$\langle \int_0^T \bar{u}(\cdot,t)\varphi'(t) \, dt, \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} = \int_0^T \langle v(\cdot,t), \bar{\psi} \rangle_{H^{-1}(\Omega), H^1_0(\Omega)} \varphi(t) \, dt,$$

où $v = \partial_t u$ (et donc $v \in L^2(]0, T[, H^{-1}(\Omega)))$.

3. Montrer que $\partial_t \bar{u} \in L^2(]0, T[, H^{-1}(\mathbb{R}))$). En déduire que $\bar{u} \in C([0, T], L^2(\mathbb{R}))$ et que $u \in C([0, T], L^2(\Omega))$.

N.B. Par un argument de cartes locales, le résultat démontré dans cet exercice reste vrai si Ω est un ouvert borné de \mathbb{R}^N , $N \ge 1$, à bord fortement lipschitzien (remarque 1.22) [23].

Exercice 4.5 (Diffusion non homogène et non isotrope) Corrigé en page 265 On reprend les hypothèses du théorème 4.29. Soit donc Ω un ouvert borné de \mathbb{R}^N , T>0 et $u_0\in L^2(\Omega)$; on identifie $L^2(\Omega)$ avec son dual et on suppose que $f\in L^2(]0,T[,H^{-1}(\Omega))$.

On se donne aussi une application, notée A, de Ω dans $\mathcal{M}_N(\mathbb{R})$ (ensemble des matrices carrés à N lignes et N colonnes, à coefficients dans \mathbb{R}). On suppose que les coefficients de A appartiennent à $L^{\infty}(\Omega)$ et qu'il existe $\alpha > 0$ t.q.

$$A\xi\cdot\xi\geq\alpha|\xi|^2\text{ p.p., pour tout }\xi\in{\rm I\!R}^N.$$

En suivant la démonstration du théorème 4.29, montrer qu'il existe une unique fonction u telle que

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega)), \\ \int_{0}^{T} \langle \partial_{t}u(s), v(s) \rangle_{H^{-1}, H_{0}^{1}} ds + \int_{0}^{T} \left(\int_{\Omega} A \nabla u(s) \cdot \nabla v(s) dx \right) ds = \\ \int_{0}^{T} \langle f(s), v(s) \rangle_{H^{-1}, H_{0}^{1}} ds \text{ pour tout } v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(0) = u_{0} \text{ p.p.}. \end{cases}$$

$$(4.64)$$

Exercice 4.6 (Existence par le théorème de Schauder) Corrigé en page 270

Soit Ω un ouvert borné de \mathbb{R}^N et $A: \mathbb{R} \to M_N(\mathbb{R})$ (où $M_N(\mathbb{R})$ désigne les matrices $N \times N$ à coefficients réels) telle que

$$\forall s \in \mathbb{R}, A(s) = (a_{i,j}(s))_{i,j=1,\dots,N} \text{ où } a_{i,j} \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R}, \mathbb{R}), \tag{4.65}$$

$$\exists \alpha > 0; A(s)\xi \cdot \xi \ge \alpha |\xi|^2, \forall \xi \in \mathbb{R}^N, \forall s \in \mathbb{R}, \tag{4.66}$$

$$f \in L^2(]0, T[, H^{-1}(\Omega)) \text{ et } u_0 \in L^2(\Omega).$$
 (4.67)

On identifie $L^2(\Omega)$ à $L^2(\Omega)'$, comme d'habitude. On veut, dans cet exercice, montrer l'existence d'une solution au problème (4.42).

Soit $\bar{u}\in L^2(]0,T[,L^2(\Omega))$, on définit l'opérateur T de $L^2(]0,T[,L^2(\Omega))$ dans $L^2(]0,T[,L^2(\Omega))$ par $T(\bar{u})=u$ où u est **la** solution (donnée par l'exercice 4.5) du problème

$$\begin{cases} u \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega)), \\ \int_{0}^{T} \langle \partial_{t}u, v \rangle_{H^{-1}, H_{0}^{1}} dt + \int_{0}^{T} \int_{\Omega} A(\bar{u}) \nabla u \cdot \nabla v dx dt \\ = \int_{0}^{T} \langle f, v \rangle_{H^{-1}, H_{0}^{1}} dt, \ \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(\cdot, 0) = u_{0}. \end{cases}$$

- 1. Montrer que T est continu de $L^2(]0,T[,L^2(\Omega))$ dans $L^2(]0,T[,L^2(\Omega))$.
- 2. Montrer que T est compact de $L^2(]0,T[,L^2(\Omega))$ dans $L^2(]0,T[,L^2(\Omega))$.
- 3. Montrer qu'il existe R > 0 tel que $||T(\bar{u})||_{L^2([0,T],L^2(\Omega))} \le R$ pour tout $u \in L^2([0,T],L^2(\Omega))$.
- 4. Montrer qu'il existe u solution de (4.42).
- 5. On suppose maintenant de plus que $a_{i,j}$ est, pour tout i, j, une fonction lipschitzienne. Montrer que (4.42) admet une unique solution.

Exercice 4.7 (Exemple de suite compactement incluse)

Pour $N \in \mathbb{N}^*$, on pose $h = \frac{1}{N}$, $x_i = ih$ pour $i \in \{1, \dots, N\}$,

$$X_N = \{u \in L^2(]0,1[), \ u(x) = u_i \in \mathbb{R} \ \text{pour tout} \ x \in]x_{i-1},x_i[, \ i \in \{1,\dots,N\}\}$$

et pour $u \in X_N$,

$$||u||_{X_N}^2 = \sum_{i=1}^{N-1} \frac{1}{h} |u_{i+1} - u_i|^2 + ||u||_{L^2(]0,1[)}^2.$$

En utilisant le théorème 4.43, montrer que la suite $(X_N)_{N\in\mathbb{N}^*}$ est compactement incluse dans $L^2(]0,1[)$, c'està-dire que toute suite $(u_N)_{N\in\mathbb{N}^*}$ telle que $u_N\in X_N$ et telle que la suite $(\|u_N\|_{X_N})_{n\in\mathbb{N}}$ est bornée admet une sous-suite convergente dans $L^2(]0,1[)$.

Corrigé – Soit $(u_N)_{N\in\mathbb{N}^*}$ une suite telle que $u_N\in X_N$ et telle que la suite $(\|u_N\|_{X_N})_{N\in\mathbb{N}^*}$ est bornée. Pour montrer que cette suite admet une sous-suite convergence il suffit de montrer que la famille $A=\{u_N, N\in\mathbb{N}^*\}$ vérifie les trois hypothèses du théorème 4.43 avec T=1, p=2 et $B=\mathbb{R}$.

La première hypothèse du théorème 4.43 est vérifiée car $\|u_N\|_{X_N} \ge \|u_N\|_{L^2(]0,1[)}$. La deuxième hypothèse du théorème 4.43 est vérifiée car $B = \mathbb{R}$ et la suite $(u_N)_{N \in \mathbb{N}^*}$ est bornée dans $L^2(]0,1[)$ et donc aussi dans $L^1(]0,1[)$. Il reste à montrer la troisième hypothèse.

Soit $0 < \eta < 1$. On définit la fonction χ_i par $\chi_i(x) = 1$ si $x_i \in]x, x + \eta[$ et 0 sinon, de sorte que, pour $x \in]0, 1 - \eta[$ et $u \in X_N$,

$$u(x+\eta) - u(x) = \sum_{i=1}^{N-1} (u_{i+1} - u_i) \chi_i(x),$$

et donc, comme $\int_0^{1-\eta} \chi_i(x) dx = \eta$, avec Cauchy-Schwarz,

$$\int_0^{1-\eta} |u(x+\eta) - u(x)|^2 dx \le \eta (\sum_{i=1}^{N-1} |u_{i+1} - u_i|)^2 \le \eta \sum_{i=1}^{N-1} \frac{1}{h} |u_{i+1} - u_i|)^2 \le \eta ||u||_{X_N}.$$

On a donc, pour tout $N \in \mathbb{N}^*$, $\int_0^{1-\eta} |u_N(x+\eta) - u_N(x)|^2 dx \le \eta ||u_N||_{X_N}$ et ceci donne la troisième hypothèse du théorème 4.43 et donc que la suite $(u_N)_{N \in \mathbb{N}^*}$ admet une sous-suite convergente dans $L^2(]0,1[)$.

Exercice 4.8 (Existence pour le problème de Stefan, par schéma numérique) On se propose, dans cet exercice, de montrer l'existence d'une solution faible à un problème parabolique non linéaire en passant à la limite sur une solution approchée donnée par un schéma numérique. On considère le problème suivant.

$$\partial_t u(x,t) - \partial_{xx}^2 \varphi(u)(x,t) = v(x,t), \ x \in]0,1[, \ t \in]0,T[,$$
(4.68)

$$\partial_x \varphi(u)(0,t) = \partial_x \varphi(u)(1,t) = 0, \ t \in]0,T[, \tag{4.69}$$

$$u(x,0) = u_0(x), x \in]0,1[, \tag{4.70}$$

où ∂_t (resp. ∂_x , ∂_{xx}^2) désignent la dérivée d'ordre 1 par rapport à t (resp. d'ordre 1 et d'ordre 2 par rapport à x), et où φ , v, T, u_0 sont donnés et sont tels que

- 1. $T > 0, v \in L^{\infty}(]0, 1[\times]0, T[),$
- 2. φ croissante, lipschitzienne de \mathbb{R} dans \mathbb{R} ,
- 3. u_0 lipschitzienne de [0,1] dans \mathbb{R} (et donc, en particulier, $u_0 \in L^{\infty}([0,1])$).

Un exemple important est donné par $\varphi(s)=\alpha_1 s$ si $s\leq 0, \ \varphi(s)=0$ si $0\leq s\leq L$ et $\varphi(s)=\alpha_2(s-L)$ si $s\geq L$, avec α_1,α_2 et L donnés dans \mathbb{R}_+^\star . Noter pour cet exemple que $\varphi'=0$ sur]0,L[.

Les ensembles]0,1[et $]0,1[\times]0,T[$ sont munis de leur tribu borélienne et de la mesure de Lebesgue sur cette tribu.

On appelle "solution faible" de (4.68), (4.69), (4.70) une fonction u vérifiant

$$u \in L^{\infty}(]0, 1[\times]0, T[),$$
 (4.71)

$$\int_0^T \int_0^1 \left[u(x,t)\partial_t \psi(x,t) + \varphi(u(x,t))\partial_{xx}^2 \psi(x,t) + v(x,t)\psi(x,t) \right] dx dt$$

$$+ \int_0^1 u_0(x)\psi(x,0) \, \mathrm{d}x = 0, \ \forall \psi \in C_T^{\infty}(\mathbb{R}^2), \tag{4.72}$$

où $C_T^\infty(\mathbb{R}^2)$ désigne l'espace des fonctions de \mathbb{R}^2 à valeurs dans \mathbb{R} de classe C^∞ et telles que

$$\partial_x \psi(0,t) = \partial_x \psi(1,t) = 0 \text{ pour tout } t \in [0,T] \text{ et } \psi(x,T) = 0 \text{ pour tout } x \in [0,1]. \tag{4.73}$$

1. (Question indépendante des questions suivantes.) On suppose, dans cette question seulement, que φ est de classe C^2 , v est continue sur $[0,1] \times [0,T]$ et $u_0 \in C^2([0,1],\mathbb{R})$. Soit $w \in C^2(\mathbb{R}^2,\mathbb{R})$ et u la restriction de w à $]0,1[\times]0,T[$; montrer que u est solution de (4.71),(4.72) si et seulement si u vérifie (4.68), (4.69) et (4.70) au sens classique (c'est-à-dire pour tout $(x,t) \in [0,1] \times [0,T]$).

Corrigé – Comme $w \in C^2(\mathbb{R}^2, \mathbb{R})$, on a bien $u \in L^{\infty}(]0, 1[\times]0, T[)$ c'est-à-dire (4.71). On note D l'ensemble $]0, 1[\times]0, T[$.

Supposons que u satisfait (4.68)-(4.69)-(4.70) et montrons qu'alors u vérifie (4.72). Soit $\psi \in C_T^{\infty}(\mathbb{R}^2)$. En multipliant (4.68) par ψ et en intégrant sur D, on obtient :

$$\int_{D} \partial_{t} u(x,t) \psi(x,t) \, \mathrm{d}x \, \mathrm{d}t - \int_{D} \partial_{xx}^{2} (\varphi(u))(x,t) \psi(x,t) \, \mathrm{d}x \, \mathrm{d}t = \int_{D} v(x,t) \psi(x,t) \, \mathrm{d}x \, \mathrm{d}t. \tag{4.74}$$

Par intégration par parties, il vient :

$$\int_D \partial_t u(x,t)\psi(x,t) dx dt = \int_0^1 u(x,T)\psi(x,T) dx - \int_0^1 u(x,0)\psi(x,0) dx - \int_D u(x,t)\partial_t \psi(x,t) dx dt.$$

Comme $\psi \in C^{\infty}_T(\mathbb{R}^2)$ on a donc $\psi(x,T)=0$ pour tout $x \in [0,1]$ et comme u vérifie (4.70), on a $u(x,0)=u_0(x)$. On en déduit que

$$\int_{D} \partial_t u(x,t)\psi(x,t) \, \mathrm{d}x \, \mathrm{d}t = -\int_0^1 u_0(x)\psi(x,0) \, \mathrm{d}x - \int_{D} \partial_t \psi(x,t)u(x,t) \, \mathrm{d}x \, \mathrm{d}t. \tag{4.75}$$

Intégrons par parties le deuxième terme de (4.74).

$$\int_{D} \partial_{xx}^{2}(\varphi(u))(x,t)\psi(x,t) dx dt = \int_{0}^{T} \left[\partial_{x}(\varphi(u))(1,t)\psi(1,t) - \partial_{x}(\varphi(u))(0,t)\psi(0,t)\right] dt - \int_{D} \partial_{x}(\varphi(u))(x,t)\partial_{x}\psi(x,t) dx dt, \quad (4.76)$$

et comme u vérifie (4.69), on a

$$\partial_x(\varphi(u))(0,t) = \partial_x(\varphi(u))(1,t) = 0 \quad t \in]0,T[.$$

En tenant compte de ces relations et en ré—intégrant par parties, on obtient :

$$\int_{D} \partial_{xx}^{2}(\varphi(u))(x,t)\psi(x,t) dx dt = -\int_{D} \varphi(u)(x,t)\partial_{xx}^{2}\psi(x,t) dx dt.$$
(4.77)

En remplącant dans (4.75) et (4.77) dans (4.74), on obtient (4.68).

Réciproquement, on suppose que u satisfait (4.72). Soit $\psi \in C_c^{\infty}(D)$. En intégrant (4.72) par parties et en tenant compte que ψ et toutes ses dérivées sont nulles au bord de D, on obtient :

$$\int_{D} \left[-\partial_t u(x,t) + \partial_{xx}^2(\varphi(u))(x,t) - v(x,t) \right] \psi(x,t) \, \mathrm{d}x \, \mathrm{d}t = 0, \forall \psi \in C_c^{\infty}(D).$$

Comme u est de classe C^2 sur D, ceci entraîne que l'équation (4.68) est satisfaite par u. On prend ensuite $\psi \in C_T^{\infty}(\mathbb{R}^2)$, et on intègre (4.72) par parties; en tenant compte de (4.73), on obtient :

$$-\int_{0}^{1} u(x,0)\psi(x,0)dx - \int_{D} \partial_{t}u(x,t)\psi(x,t) dx dt - \int_{0}^{T} \partial_{x}(\varphi(u))(1,t)\psi(1,t) dt + \int_{0}^{T} \partial_{x}(\varphi(u))(0,t)\psi(0,t) dt + \int_{D} [\partial_{xx}^{2}\varphi(u)(x,t) - v(x,t)]\psi(x,t) dx dt + \int_{0}^{1} u_{0}(x)\psi(x,0) dx = 0.$$
(4.78)

En regroupant et en utilisant le fait que u satisfait (4.68), on obtient :

$$\int_0^1 (u_0(x) - u(x,0))\psi(x,0) \, dx - \int_0^T \partial_x(\varphi(u))(1,t)\psi(1,t) \, dt + \int_0^T \partial_x(\varphi(u))(0,t)\psi(0,t) \, dt = 0.$$

Comme ψ peut être pris arbitrairement comme la trace sur D d'une fonction appartenant à $C_c^{\infty}(]0,1[\times]-\infty,T[)$, on en déduit que u satisfait la condition initiale (4.70). Puis, ψ peut être pris arbitrairement comme la trace sur D d'une fonction appartenant à $C_c^{\infty}(]-\infty,1[\times]0,T[)$ ou d'une fonction appartenant à $C_c^{\infty}(]0,+\infty[\times]0,T[)$ vérifiant (4.73), on en déduit que u satisfait les conditions aux limites (4.69), ce qui conclut la question.

2. (Passage à la limite sur une non linéarité)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de $L^{\infty}(]0,1[\times]0,T[)$. Soient $u\in L^{\infty}(]0,1[\times]0,T[)$ et $f\in L^1(]0,1[\times]0,T[)$. On suppose que lorsque $n\to +\infty$,

- (a) $u_n \to u$ *-faiblement dans $L^{\infty}(]0,1[\times]0,T[)$,
- (b) $\varphi(u_n) \to f \text{ dans } L^1([0,1] \times [0,T]).$

(On rappelle que $\varphi(u_n)$ est la notation usuelle, mais incorrecte, de $\varphi \circ u_n$.)

Montrer que $\int_0^T \int_0^1 \varphi(u_n) u_n \, dx \, dt \to \int_0^T \int_0^1 fu \, dx \, dt$ lorsque $n \to +\infty$. En déduire que $\varphi(u) = f$ p.p. sur $]0,1[\times]0,T[$.

[Indication : Utiliser l'astuce de Minty, décrite dans la section 3.2.2 page 159 ou dans l'exercice 3.8]

Corrigé - On remarque que

$$\left| \int_{0}^{T} \int_{0}^{1} \varphi(u_{n}) u_{n} \, dx \, dt - \int_{0}^{T} \int_{0}^{1} fu \, dx \, dt \right| \leq \left| \int_{0}^{T} \int_{0}^{1} (\varphi(u_{n}) - f) u_{n} \, dx \, dt \right| + \left| \int_{0}^{T} \int_{0}^{1} f(u_{n} - u) \, dx \, dt \right|$$

$$\leq \|u_{n}\|_{L^{\infty}(]0,1[\times]0,T[)} \|\varphi(u_{n}) - f\|_{L^{1}(]0,1[\times]0,T[)} + \left| \int_{0}^{T} \int_{0}^{1} f(u_{n} - u) \, dx \, dt \right|.$$

Le premier terme du membre de droite de cette inégalité tend vers 0 car la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $L^{\infty}(]0,1[\times]0,T[)$ et $\varphi(u_n)\to f$ dans $L^1(]0,1[\times]0,T[)$. Le deuxième terme du membre de droite de cette inégalité tend vers 0 car $u_n\to u$ *-faiblement dans $L^{\infty}(]0,1[\times]0,T[)$ et $f\in L^1(]0,1[\times]0,T[)$. On a ainsi montré

$$\int_0^T \int_0^1 \varphi(u_n) u_n \, dx \, dt \to \int_0^T \int_0^1 fu \, dx \, dt \, lorsque \, n \to +\infty. \tag{4.79}$$

Soit $v \in L^{\infty}(]0,1[\times]0,T[)$. Comme φ est croissante, pour tout $n \in \mathbb{N}$,

$$\int_0^T \int_0^1 (\varphi(u_n) - \varphi(v))(u_n - v) \, \mathrm{d}x \, \mathrm{d}t \ge 0.$$

Quand $n \to +\infty$, cette inégalité devient, grâce à (4.79)

$$\int_0^T \int_0^1 (f - \varphi(v))(u - v) \, dx \, dt \ge 0.$$
 (4.80)

On choisit maintenant $v=u-s\psi$ (de sorte que $u-v=s\psi$) avec s>0 et $\psi\in C_c^\infty(D)$. En passant à la limite dans (4.80) quand $s\to 0$ on obtient, avec le théorème de convergence dominée,

$$\int_0^T \int_0^1 (f - \varphi(u)) \psi \, dx \, dt \ge 0.$$

Comme ψ est arbitraire dans $C_c^{\infty}(D)$ ceci donne bien $\varphi(u) = f$ p.p. dans D.

On cherche maintenant une solution approchée de (4.68),(4.69),(4.70).

Soient $N, M \in \mathbb{N}^*$. On pose $h = \frac{1}{N}$ et $k = \frac{T}{M}$. On va construire une solution approchée de (4.68),(4.69),(4.70) à partir de la famille $\{u_i^n, i=1,\ldots,N,\,n=0,\ldots,M\}$ vérifiant les équations suivantes

$$u_i^0 = \frac{1}{h} \int_{(i-1)h}^{ih} u_0(x) \, \mathrm{d}x, \, i = 1, \dots, N,$$
 (4.81)

$$\frac{u_i^{n+1} - u_i^n}{k} - \frac{\varphi(u_{i-1}^{n+1}) - 2\varphi(u_i^{n+1}) + \varphi(u_{i+1}^{n+1})}{h^2} = v_i^n, \ i = 1, \dots, N, \ n = 0, \dots, M - 1,$$

$$u_0^{n+1} = u_1^{n+1}, \qquad u_{N+1}^{n+1} = u_N^{n+1} \text{ pour tout } n = 0, \dots, M - 1,$$

$$(4.82)$$

$$u_0^{n+1} = u_1^{n+1}, \qquad u_{N+1}^{n+1} = u_N^{n+1} \text{ pour tout } n = 0, \dots, M-1,$$
 (4.83)

$$\text{avec } v_i^n = \frac{1}{kh} \int_{nk}^{(n+1)k} \int_{(i-1)h}^{ih} v(x,t) \; \mathrm{d}x \; \mathrm{d}t, \text{ pour tout } i=1,\dots,N, \text{ pour tout } n=0,\dots,M.$$

3. (Existence et unicité de la solution approchée.)

Soit $n \in \{0, \dots, M-1\}$; on suppose connue la famille $\{u_i^n, i=1, \dots, N\}$. On va prouver dans cette question l'existence et l'unicité de la famille $\{u_i^{n+1}, i=1,\ldots,N\}$ vérifiant (4.82)-(4.83) avec cette valeur

(a) Soit a>0, pour $s\in\mathbb{R}$, on pose $g_a(s)=s+a\varphi(s)$. Montrer que g_a est une application strictement croissante bijective de IR dans IR.

Corrigé – L'application $s \mapsto s$ est strictement croissante, et par hypothèse sur φ , l'application $s \mapsto a\varphi(s)$ est croissante; on en déduit que g_a est strictement croissante, comme somme d'une fonction strictement croissante et d'une fonction croissante. D'autre part, comme φ est croissante, on a $\varphi(s) \leq \varphi(0), \forall s \leq 0$, et donc $\lim_{s\to -\infty} g_a(s) = -\infty$. De même, $\varphi(s) \geq \varphi(0)$, $\forall s \geq 0$, et donc $\lim_{s\to +\infty} g_a(s) = +\infty$. La fonction g_a est continue et prend donc toutes les valeurs de l'intervalle $]-\infty,+\infty[$; comme elle est strictement croissante, elle est bijective.

(b) Soit $\overline{w}=(\overline{w}_i)_{i=1,\dots,N}\in\mathbb{R}^N$; on pose $\overline{w}_0=\overline{w}_1$ et $\overline{w}_{N+1}=\overline{w}_N$. Montrer qu'il existe un et un seul couple $(u,w)\in\mathbb{R}^N\times\mathbb{R}^N$, $u=(u_i)_{i=1,\dots,N}$, $w=(w_i)_{i=1,\dots,N}$ tel que :

$$\varphi(u_i) = w_i, \text{ pour tout } i \in \{1, \dots, N\}, \tag{4.84}$$

$$u_i + \frac{2k}{h^2}w_i = \frac{k}{h^2}(\overline{w}_{i-1} + \overline{w}_{i+1}) + u_i^n + kv_i^n$$
, pour tout $i = 1, \dots, N$. (4.85)

Corrigé – Posons $a = \frac{2k}{h^2}$; l'équation (4.85) s'écrit alors :

$$g_a(u_i) = \frac{k}{h^2}(\overline{w}_{i-1} + \overline{w}_{i+1}) + u_i^n + kv_i^n$$
, pour tout $i = 1, \dots, N$.

Par la question précédente, il existe donc un unique u_i qui vérifie cette équation; il suffit alors de poser $\varphi(u_i) = w_i$ pour déterminer de manière unique la solution de (4.84)-(4.85). On peut donc définir une application F de \mathbb{R}^N dans \mathbb{R}^N par $\overline{w} \mapsto F(\overline{w}) = w$ où w est, avec u, solution de (4.84)–(4.85).

(c) On munit \mathbb{R}^N de la norme usuelle $\|\cdot\|_{\infty}$. Montrer que l'application F est strictement contractante. [On pourra utiliser la monotonie de φ et remarquer que, si $a=\varphi(\alpha)$ et $b=\varphi(\beta)$, on a $|\alpha-\beta|\geq \frac{1}{L_{\varphi}}|a-b|$, où L_{φ} ne dépend que de φ .]

Corrigé – Soit \overline{w}^1 et $\overline{w}^2 \in \mathbb{R}^N$ et soit $w^1 = F(\overline{w}^1)$ et $w^2 = F(\overline{w}^2)$. Par définition de F, on a :

$$u_i^1 - u_i^2 + \frac{2k}{h^2}(w_i^1 - w_i^2) = \frac{k}{h^2} \left((\overline{w}_{i-1}^1 + \overline{w}_{i+1}^1) - (\overline{w}_{i-1}^2 + \overline{w}_{i+1}^2) \right) \quad \forall i = 1, \dots, N.$$
 (4.86)

Comme φ est monotone, le signe de $w_i^1-w_i^2=\varphi(u_i^1)-\varphi(u_i^2)$ est le même que celui de $u_i^1-u_i^2$, et donc

$$|u_i^1 - u_i^2 + \frac{2k}{h^2}(w_i^1 - w_i^2)| = |u_i^1 - u_i^2| + \frac{2k}{h^2}|w_i^1 - w_i^2|.$$
(4.87)

Et comme φ est lipschitzienne, en notant L_{φ} une constante de Lipschitz de φ (avec $L_{\varphi} > 0$), on a

$$|w_i^1 - w_i^2| = |\varphi(u_i^1) - \varphi(u_i^2)| \le L_{\varphi}|u_i^1 - u_i^2|,$$

d'où:

$$|u_i^1 - u_i^2| \ge \frac{1}{L_{i0}} |w_i^1 - w_i^2|. \tag{4.88}$$

On déduit donc de (4.86),(4.87) et(4.88) que

$$\frac{1}{L_{\varphi}}|w_{i}^{1}-w_{i}^{2}|+\frac{2k}{h^{2}}|w_{i}^{1}-w_{i}^{2}|\leq\frac{k}{h^{2}}\left(|\overline{w}_{i-1}^{1}-\overline{w}_{i-1}^{2}|+|\overline{w}_{i+1}^{1}-\overline{w}_{i+1}^{2}|\right)\quad\forall i=1,\ldots,N.$$

On a donc

$$|w_i^1 - w_i^2| \le \frac{1}{1 + \frac{h^2}{2kL_{io}}} \max_{i=1,\dots,N} |\overline{w}_i^1 - \overline{w}_i^2| \quad \forall i = 1,\dots,N.$$

d'où on déduit que $\|w^1 - w^2\|_{\infty} \le C\|\overline{w}^1 - \overline{w}^2\|_{\infty}$ avec $C = \frac{1}{1 + \frac{h^2}{2kL_{\varphi}}} < 1$. L'application F est donc bien strictement contractante.

(Noter que l'on a utilisé $\overline{w}_0 = \overline{w}_1$ et $\overline{w}_{N+1} = \overline{w}_N$ pour obtenir la majoration de $|w_i^1 - w_i^2|$ pour i = 1 et i = N).

(d) Soit $\{u_i^{n+1}, i=0,\ldots,N+1\}$ solution de (4.82)-(4.83). On pose $w=(w_i)_{i=1,\ldots,N}$, avec $w_i=\varphi(u_i^{n+1})$ pour $i\in\{1,\ldots,N\}$. Montrer que w=F(w).

Corrigé – Il suffit de remarquer que

$$u_i^{n+1} + \frac{2k}{h^2}\varphi(u_i^{n+1}) = \frac{k}{h^2}(\varphi(u_{i-1}^{n+1}) + \varphi(u_{i+1}^{n+1})) + u_i^n + kv_i^n, \ pour \ tout \ i = 1, \dots, N,$$

et donc, en posant $w_0 = \varphi(u_0^{n+1})$ et $w_{N+1} = \varphi(u_{N+1}^{n+1})$, on obtient bien $w_0 = w_1$, $w_{N+1} = w_N$ (par (4.83)) et

$$u_i^{n+1} + \frac{2k}{h^2}w_i = \frac{k}{h^2}(w_{i-1} + w_{i+1}) + u_i^n + kv_i^n$$
, pour tout $i = 1, \dots, N$,

ce qui montre bien que F(w) = w et aussi que, pour tout $i \in \{1, ..., N\}$, u_i^{n+1} est l'unique solution de l'équation sur z.

$$z + \frac{2k}{h^2}\varphi(z) = \frac{k}{h^2}(w_{i-1} + w_{i+1}) + u_i^n + kv_i^n.$$

(e) Soit $w=(w_i)_{i=1,\dots,N}$ tel que w=F(w). Montrer qu'il existe $\{u_i^{n+1},\,i=0,\dots,N+1\}$ solution de (4.82)-(4.83) avec $w_i=\varphi(u_i^{n+1})$ pour tout $i\in\{1,\dots,N\}$.

Corrigé – Comme w = F(w), la définition de F donne $w_0 = w_1$, $w_{N+1} = w_0$,

$$\varphi(u_i) = w_i$$
, pour tout $i \in \{1, \dots, N\}$,

et

$$u_i + \frac{2k}{h^2}w_i = \frac{k}{h^2}(w_{i-1} + w_{i+1}) + u_i^n + kv_i^n$$
, pour tout $i = 1, \dots, N$.

En prenant $u_i^{n+1} = u_i$ pour tout $i \in \{1, \dots, N\}$ et $u_0^{n+1} = u_1^{n+1}$, $u_{N+1}^{n+1} = u_N^{n+1}$, la famille $\{u_i^{n+1}, i = 0, \dots, N+1\}$ solution de (4.82)-(4.83) avec $w_i = \varphi(u_i^{n+1})$ pour tout $i \in \{1, \dots, N\}$.

(f) Montrer qu'il existe une unique famille $\{u_i^{n+1}, i=0,\ldots,N+1\}$ solution de (4.82)-(4.83).

Corrigé – L'existence d'une famille $\{u_i^{n+1}, i=0,\ldots,N+1\}$ solution de (4.82)-(4.83) est donnée par la question 3e (car F a un point fixe).

Pour montrer l'unicité, on remarque que si $\{u_i^{n+1}, i=0,\ldots,N+1\}$ est solution de (4.82)-(4.83) la question 3d montre que w est l'unique point fixe de F avec $w_i=\varphi(u_i^{n+1})$ pour tout $i=1,\ldots,N$. On a donc par (4.82)-(4.83)

$$u_i^{n+1} = \frac{k}{h^2}(w_{i-1} - 2w_i + w_{i+1}) + u_i^n + kv_i^n, \text{ pour tout } i = 1, \dots, N,$$
(4.89)

et donc l'unicité de $\{u_i^{n+1}, i = 0, ..., N+1\}.$

Les trois questions suivantes donnent des estimations sur la solution approchée dont on vient de montrer l'existence et l'unicité.

4. (Estimation $L^{\infty}(]0,1[\times]0,T[)$ sur la solution approchée)

On pose $A = ||u_0||_{L^{\infty}(]0,1[)}$ et $B = ||v||_{L^{\infty}(]0,1[\times]0,T[)}$.

Montrer, par récurrence sur n, que $u_i^n \in [-A - nkB, A + nkB]$ pour tout i = 1, ..., N et tout n = 0, ..., M. [On pourra, par exemple, considérer (4.82) avec i tel que $u_i^{n+1} = \min\{u_j^{n+1}, j = 1, ..., N\}$.]

Corrigé – La relation à démontrer par récurrence est clairement vérifiée au rang n=0, par définition de A. Supposons qu'elle soit vraie jusqu'au rang n, et démontrons—la au rang n+1. La relation (4.82) s'écrit encore :

$$u_i^{n+1} = u_i^n + \frac{k}{h^2}(\varphi(u_{i-1}^{n+1}) - \varphi(u_i^{n+1})) + \frac{k}{h^2}(\varphi(u_{i+1}^{n+1} - \varphi(u_i^{n+1})) + kv_i^n) + kv_i^n) + kv_i^n) + kv_i^n + kv_i^n) + kv_i^n + kv_i^n + kv_i^n + kv_i^n + kv_i^n) + kv_i^n + k$$

pour $i=1,\ldots,N$ et $n=0,\ldots,M-1$. Supposons que i est tel que $u_i^{n+1}=\min_{j=1,\ldots,N}u_j^{n+1}$. Comme φ est croissante, on a dans ce cas :

$$\varphi(u_{i-1}^{n+1})-\varphi(u_i^{n+1})\geq 0 \quad \text{ et } \quad \varphi(u_{i+1}^{n+1})-\varphi(u_i^{n+1})\geq 0,$$

et on en déduit que

$$\min_{j=1,\dots,N} u_j^{n+1} \ge u_i^n - kB$$

d'où, par hypothèse de récurrence

$$\min_{j=1,\dots,N} u_j^{n+1} \ge -A - nkB - kB.$$

Un raisonnement similaire en considérant maintenant i tel que $u_i^{n+1} = \max_{j=1,\dots,N} u_i^{n+1}$ conduit à :

$$\max_{j=1,\dots,N} u_j^{n+1} \le u_i^n + kB \le A + nkB + kB.$$

On a donc bien:

$$-A - (n+1)kB \le u_i^{n+1} \le A + (n+1)kB \quad \forall i = 1, \dots, N, \quad \forall n = 0, \dots, M-1.$$

On en déduit alors que, pour tout $n=0,\ldots,M$, $\|u^n\|_{L^\infty([0,1])} \leq c_{u_0,v,T}$ avec $c_{u_0,v,T}=A+BT$.

5. (Estimation $L^2(]0,T[,H^1_d)$ de $\varphi(u)$, où H^1_d est un équivalent discret de l'espace H^1) Montrer qu'il existe C_{T,φ,v,u_0} (ne dépendant que de T,φ,v et u_0) tel que, pour tout $n=0,\ldots,M-1$,

$$\sum_{n=0}^{M-1} \sum_{i=1}^{N-1} (\varphi(u_{i+1}^{n+1}) - \varphi(u_i^{n+1}))^2 \le C_{T,\varphi,v,u_0} \frac{h}{k}.$$
(4.90)

[Indication: multiplier (4.82) par u_i^{n+1} et sommer pour $i=1,\ldots,N$ et $n=0,\ldots,M$.]

Corrigé – Comme φ est croissante et lipschitzienne,

$$\sum_{i=1}^{N-1} (\varphi(u_{i+1}^{n+1}) - \varphi(u_i^{n+1}))^2 \le L_{\varphi}X^n \text{ avec } X^n = \sum_{i=1}^{N-1} (\varphi(u_{i+1}^{n+1}) - \varphi(u_i^{n+1}))(u_{i+1}^{n+1} - u_i^{n+1}),$$

où L_{φ} désigne la constante de Lipschitz de φ . On va maintenant montrer qu'il existe C_{T,v,u_0} (ne dépendant que de T,v et u_0) tel que $X^n \leq C_{T,v,u_0} \frac{h}{k}$ pour tout $n=0,\ldots,M-1$. Multiplions (4.82) par u_i^{n+1} et sommons pour $i=1,\ldots,N$; on obtient

$$X_1^n + X_2^n = X_3^n$$

avec

$$X_{1}^{n} = \sum_{i=1}^{N} \frac{u_{i}^{n+1} - u_{i}^{n}}{k} u_{i}^{n+1} = \frac{1}{k} \left[\sum_{i=1}^{N} \frac{1}{2} (u_{i}^{n+1} - u_{i}^{n})^{2} + \frac{1}{2} (u_{i}^{n+1})^{2} - \frac{1}{2} (u_{i}^{n})^{2} \right] \ge \widetilde{X}_{1}^{n}$$

$$avec \ \widetilde{X}_{1}^{n} = \frac{1}{2k} \sum_{i=1}^{N} \left[(u_{i}^{n+1})^{2} - (u_{i}^{n})^{2} \right], \quad (4.91)$$

$$X_{2}^{n} = -\frac{1}{h^{2}} \sum_{i=1}^{N} (\varphi(u_{i-1}^{n+1}) - 2\varphi(u_{i}^{n+1}) + \varphi(u_{i+1}^{n+1})) u_{i}^{n+1} = \frac{1}{h^{2}} \sum_{i=1}^{N-1} (\varphi(u_{i+1}^{n+1}) - \varphi(u_{i}^{n+1})) (u_{i+1}^{n+1} - u_{i}^{n+1})$$

$$= \frac{1}{h^{2}} X^{n} \quad (4.92)$$

et $X_3^n = \sum_{i=1}^N v_i^n u_i^{n+1}$.

On déduit de (4.91), (4.92) et de la question précédente que

$$\widetilde{X}_{1}^{n} + \frac{1}{h^{2}}X^{n} \le \sum_{i=1}^{N} v_{i}^{n}u_{i}^{n+1} \le \frac{1}{h}B(A + (n+1)kB).$$

En sommant pour n=0 à M-1 et en remarquant que $\sum_{n=0}^{M-1} \widetilde{X}_1^n = \frac{1}{2k} \sum_{i=1}^N (u_i^M)^2 - \sum_{i=1}^N \frac{1}{2k} (u_i^0)^2$, on obtient que

$$\sum_{n=0}^{M-1} X^n \le \frac{h}{k} BT(A + TB) + \frac{h}{2k} A^2.$$

d'où l'on déduit (4.90) avec $C_{T,\varphi,v,u_0} = L_{\varphi}(BT(A+TB)+A^2)$.

- 6. (Estimation $L^2(]0,T[,L^2)$ d'un équivalent discret de $\partial_t \varphi(u)$ et estimation $L^\infty(]0,T[,H^1_d)$ de $\varphi(u)$) C'est pour ces estimations que l'on utilise le fait que u_0 est lipschitzienne (les estimations précédentes utilisaient uniquement $u_0 \in L^\infty(]0,1[)$.
 - (a) Question préliminaire. Soit $\{w_i^n, i=0,\ldots,N+1, n=0,\ldots,M\}$ une famille de réels tels que $w_0^n=w_1^n$ et $w_N^n=w_{N+1}^n$ pour tout $n=0,\ldots,M$. Montrer que

$$\sum_{n=0}^{M-1} \sum_{i=1}^{N} (2w_i^{n+1} - w_{i-1}^{n+1} - w_{i+1}^{n+1})(w_i^{n+1} - w_i^n) \ge \frac{1}{2} \left[\sum_{i=1}^{N-1} (w_{i+1}^M - w_i^M)^2 - \sum_{i=1}^{N-1} (w_{i+1}^0 - w_i^0)^2 \right] \tag{4.93}$$

[Indication : on pourra remarquer que cette formule est l'équivalent discret, avec \geq au lieu de =, de l'égalité

$$- \int_{0}^{T} \int_{0}^{1} \partial_{xx} w(x,t) \, \partial_{t} w(x,t) \, dx \, dt = \frac{1}{2} \left(\int_{0}^{1} (\partial_{x} w(x,T))^{2} \, dx - \int_{0}^{1} \partial_{x} (w(x,0))^{2} \, dx \right)$$

pour des fonctions régulières w vérifiant les conditions de Neumann homogène en 0 et en 1, et s'inspirer de la démonstration de cette égalité.]

Corrigé – On va écrire le pendant discret de l'égalité suivante satisfaite par des fonctions régulières w vérifiant les conditions de Neumann homogène en 0 et en 1. Par intégration par parties et par le théorème de Fubini-Tonelli,

$$-\int_0^T \int_0^1 \partial_{xx}^2 w(x,t) \, \partial_t w(x,t) \, \mathrm{d}x \, \mathrm{d}t = \int_0^T \int_0^1 \partial_x w(x,t) \, \partial_{xt}^2 w(x,t) \, \mathrm{d}x \, \mathrm{d}t$$

$$= \frac{1}{2} \int_0^1 \int_0^T \partial_t ((\partial_x w(x,t))^2) \, \mathrm{d}x \, \mathrm{d}t$$

$$= \frac{1}{2} \int_0^1 \left[(\partial_x w(x,T))^2) - (\partial_x w(x,0))^2 \right] \, \mathrm{d}x \, \mathrm{d}t.$$

Posons
$$Y = \sum_{i=0}^{M-1} \sum_{i=0}^{N} (2w_i^{n+1} - w_{i-1}^{n+1} - w_{i+1}^{n+1})(w_i^{n+1} - w_i^n).$$

Par intégration par parties discrète et en tenant compte des égalités $w_0^n=w_1^n$ et $w_N^n=w_{N+1}^n$, on obtient

$$Y = \sum_{n=0}^{M-1} \sum_{i=1}^{N} \left[(w_i^{n+1} - w_{i-1}^{n+1}) + (w_i^{n+1} - w_{i+1}^{n+1}) \right] (w_i^{n+1} - w_i^n)$$

$$= \sum_{n=0}^{M-1} \sum_{i=1}^{N-1} (w_i^{n+1} - w_{i+1}^{n+1}) \left[(w_i^{n+1} - w_i^n) - (w_{i+1}^{n+1} - w_{i+1}^n) \right]$$

$$= \sum_{n=0}^{M-1} \sum_{i=1}^{N-1} (w_i^{n+1} - w_{i+1}^{n+1}) \left[(w_i^{n+1} - w_{i+1}^{n+1}) - (w_i^n - w_{i+1}^n) \right]$$

En utilisant l'inégalité $a(a-b)=\frac{1}{2}(a-b)^2+\frac{1}{2}a^2-\frac{1}{2}b^2\geq \frac{1}{2}a^2-\frac{1}{2}b^2$, on obtient alors

$$Y \ge \frac{1}{2} \sum_{n=0}^{M-1} \sum_{i=1}^{N-1} \left[(w_i^{n+1} - w_{i+1}^{n+1})^2 - (w_i^n - w_{i+1}^n)^2 \right]$$

ce qui donne bien l'inégalité (4.93).

(b) (Estimation $L^2(]0,T[,L^2)$ de $\partial_t \varphi(u)$)

Montrer qu'il existe C_2 (ne dépendant que de T, φ, v et u_0) t.q.

$$\sum_{n=0}^{M-1} h \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 \le C_2 k.$$
(4.94)

[Indication : multiplier (4.82) par $\varphi(u_i^{n+1}) - \varphi(u_i^n)$, sommer sur i et n et utiliser la question préliminaire avec $w_i^n = \varphi(u_i^n)$.]

 ${\it Corrig\'e}-{\it Multiplions}$ (4.82) ${\it par}$ $\varphi(u_i^{n+1})-\varphi(u_i^n)$ et sommons sur i et n pour obtenir :

$$X + Y = Z, (4.95)$$

avec

$$X = \sum_{n=0}^{M-1} \sum_{i=1}^{N} \frac{u_i^{n+1} - u_i^n}{k} (\varphi(u_i^{n+1}) - \varphi(u_i^n))$$

$$Y = -\sum_{n=0}^{M-1} \sum_{i=1}^{N} \frac{\varphi(u_{i-1}^{n+1}) - 2\varphi(u_i^{n+1}) + \varphi(u_{i+1}^{n+1})}{h^2} (\varphi(u_i^{n+1}) - \varphi(u_i^n))$$

$$Z = \sum_{n=0}^{M-1} \sum_{i=1}^{N} v_i^n (\varphi(u_i^{n+1}) - \varphi(u_i^n))$$

En notant L_{φ} une constante de Lipschitz de φ ($L_{\varphi} > 0$), on obtient la minoration suivante :

$$X \ge \frac{1}{L_{\varphi}k} \sum_{n=0}^{M-1} \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2.$$
 (4.96)

En utilisant l'inégalité (4.93) avec $w_i^n = \varphi(u_i^n)$ pour Y, on obtient :

$$Y \ge \frac{1}{2h^2} \left[\sum_{i=1}^{N} (\varphi(u_{i+1}^{M}) - \varphi(u_{i}^{M}))^2 - \sum_{i=1}^{N} (\varphi(u_{i+1}^{0}) - \varphi(u_{i}^{0}))^2 \right]$$
(4.97)

Enfin, on majore Z grâce à l'inégalité de Young :

$$Z \leq \frac{1}{2L_{\varphi}k} \sum_{n=0}^{M-1} \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 + \frac{1}{2}L_{\varphi}k \sum_{n=0}^{M-1} \sum_{i=1}^{N} (v_i^n)^2$$

$$\leq \frac{1}{2L_{\varphi}k} \sum_{n=0}^{M-1} \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 + \frac{1}{2}\frac{L_{\varphi}}{h}B^2.$$
(4.98)

En utilisant (4.95), (4.96), (4.97) et (4.98), on obtient:

$$\frac{1}{2L_{\varphi}k} \sum_{n=0}^{M-1} \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 \le \frac{1}{2h^2} \sum_{i=1}^{N} (\varphi(u_{i+1}^0) - \varphi(u_i^0))^2 + \frac{1}{2} \frac{L_{\varphi}}{h} B^2. \tag{4.99}$$

On en déduit que

$$\sum_{n=0}^{M-1} h \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 \le 2L_{\varphi}k \left(\frac{1}{2h} \sum_{i=1}^{N} (\varphi(u_{i+1}^0) - \varphi(u_i^0))^2 + \frac{1}{2}L_{\varphi}B^2\right).$$

 $Or |\varphi(u_{i+1}^0) - \varphi(u_i^0))| \le L_{\varphi} c_0 h$, où c_0 ne dépend que de u_0 (car u_0 est lipschitzienne), on a donc

$$\sum_{n=0}^{M-1} h \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 \le 2L_{\varphi}k(\frac{1}{2h^2}L_{\varphi}^2 c_0^2 h^2 + \frac{1}{2}L_{\varphi}B^2) = C_2 k.$$

ce qui donne (4.94).

(c) (Estimation $L^{\infty}(]0,T[,H_d^1)$ de $\varphi(u)$)

Montrer qu'il existe C_3 (ne dépendant que de T, φ, v et u_0) t.q., pour tout $n = 1, \dots, M$

$$\sum_{i=1}^{N-1} (\varphi(u_{i+1}^n) - \varphi(u_i^n))^2 \le C_3 h. \tag{4.100}$$

Cette estimation, intéressante, ne sera pas utilisée dans la suite de l'exercice.

Corrigé – Dans l'inégalité (4.99), on a omis le terme positif de droite de (4.97). Si on tient compte de ce terme, (4.99) devient

$$\frac{1}{2h^2} \sum_{i=1}^{N} (\varphi(u_{i+1}^M) - \varphi(u_i^M))^2 + \frac{1}{2L_{\varphi}k} \sum_{n=0}^{M-1} \sum_{i=1}^{N} (\varphi(u_i^{n+1}) - \varphi(u_i^n))^2 \\
\leq \frac{1}{2h^2} \sum_{i=1}^{N} (\varphi(u_{i+1}^0) - \varphi(u_i^0))^2 + \frac{1}{2} \frac{L_{\varphi}}{h} B^2. \quad (4.101)$$

la multiplication (4.101) par $2hL_{\varphi}k$ donne alors

$$\frac{L_{\varphi}k}{h}\sum_{i=1}^{N}(\varphi(u_{i+1}^{M})-\varphi(u_{i}^{M}))^{2} \leq C_{2}k.$$

ce qui donne (4.100) pour n=M. La méme estimation pour n < M s'obtient en sommant de 0 à n-1 au lieu de 0 à M-1.

Pour $M \in \mathbb{N}^{\star}$ et $N \in \mathbb{N}^{\star}$ donnés (et donc h et k sont donnés par $h = \frac{1}{N}$ et $M = \frac{k}{M}$), on définit, presque partout sur $[0,1] \times [0,T]$, avec la famille $\{u_i^n, i \in \{1,\ldots,N\} \ n \in \{0,\ldots,M\}\}$ solution de (4.81)-(4.82)-(4.83), une fonction u par

$$u(x,t) = u^{(n+1)}(x)$$
, si $t \in]nk, (n+1)k[$

et

$$u^{(n)}(x) = u_i^n$$
, si $x \in](i-1)h, ih[, i = 1, ..., N, n = 0, ..., M.$

L'objectif est maintenant de passer à la limite sur les paramètres de discrétisation pour obtenir une solution de (4.71)-(4.72)

Soient $(h_n,k_n)_{n\in\mathbb{N}}$ une suite de paramètres de discrétisation (et donc $N_n=\frac{1}{h_n}, M_n=\frac{T}{k_n}\in\mathbb{N}^*$) telle que $\lim_{n\to+\infty}h_n=\lim_{n\to+\infty}k_n=0$. On note u_n la solution (4.81)-(4.82)-(4.83) obtenue avec ces paramètres.

7. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite \star -faiblement convergente $L^{\infty}(]0,1[\times]0,T[)$ et que la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ admet une sous-suite convergente $L^2(]0,1[\times]0,T[)$.

En déduire que l'on peut supposer, quitte à extraire une sous-suite, que

- (a) $u_n \to u \star$ -faiblement dans $L^{\infty}(]0,1[\times]0,T[),$
- (b) $\varphi(u_n) \to \varphi(u)$ dans $L^p(]0,1[\times]0,T[)$, pour tout $p \in [1,\infty[$.

Corrigé – La question 4 donne, pour tout $n \in \mathbb{N}$, $||u_n||_{L^{\infty}(]0,1[\times]0,T[)} \le c_{u_0,v,T}$. La suite $(u_n)_{n\in\mathbb{N}}$ est donc bornée dans $L^{\infty}(]0,1[\times]0,T[)$ et elle admet une sous-suite \star -faible convergente dans $L^{\infty}(]0,1[\times]0,T[)$.

Comme φ est continue, la suite $(\varphi(u_n)_{n\in\mathbb{N}}$ est aussi bornée dans $L^{\infty}(]0,1[\times]0,T[)$ et donc bornée dans $L^{2}(]0,1[\times]0,T[)$ (que l'on identifie à $L^{2}(]0,T[,L^{2}]0,1[)$).

On va appliquer maintenant le théorème 4.56 à la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ avec pour X_n l'espace X_{N_n} de l'exercice 4.7, $Y_n = B = L^2([0,1[)$ et p = 2.

Puis, la fonction $\varphi(u_n)$ a bien la forme demandée par le théorème 4.56. On a déjà remarqué que l'hypothèse 2 du théorème 4.56 est vérifiée. L'hypothèse 3 du théorème 4.56 est donnée par l'estimation (4.90). Enfin, l'hypothèse 4 du théorème 4.56 est donnée par l'estimation (4.94). Le théorème 4.56 donne donc que la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ admet une sous-suite convergente dans $L^2(]0,T[,L^2(]0,1[)$ (identifié à $L^2(]0,1[\times]0,T[)$).

De cette suite $(u_n)_{n\in\mathbb{N}}$ on peut donc extraire une sous-suite, encore notée $(u_n)_{n\in\mathbb{N}}$, telle que

- $u_n \to u \star$ -faiblement dans $L^{\infty}(]0,1[\times]0,T[)$,
- $-\varphi(u_n) \to f \ dans \ L^2(]0,1[\times]0,T[).$

Comme la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ est bornée dans L^{∞} , on a donc aussi $\varphi(u_n) \to f$ dans $L^p(]0,1[\times]0,T[)$, pour tout $p \in [1,\infty[$.

Enfin, la question 2 montre que $f = \varphi(u)$ p.p..

8. Montrer que la fonction u trouvée à la question précédente est solution de (4.71),(4.72).

Corrigé – Pour h, k donnés, on note u la solution de (4.81)-(4.82)-(4.83) obtenue avec ces paramètres. Soit $\psi \in C_T^{\infty}(\mathbb{R}^2)$. On pose $\psi_i^{n+1} = \psi(x_i, (n+1)k)$, on multiplie (4.82) par ψ_i^{n+1} et somme sur i et n, on obtient

$$T_1 + T_2 = T_3$$

$$T_1 = hk \sum_{n=0}^{M-1} \sum_{i=1}^{N} \frac{u_i^{n+1} - u_i^n}{k} \psi_i^{n+1},$$

$$T_{2} = -hk \sum_{n=0}^{M-1} \sum_{i=1}^{N} \frac{\varphi(u_{i-1}^{n+1}) - 2\varphi(u_{i}^{n+1}) + \varphi(u_{i+1}^{n+1})}{h^{2}} \psi_{i}^{n+1},$$

$$T_{3} = hk \sum_{n=0}^{M-1} \sum_{i=1}^{N} v_{i}^{n} \psi_{i}^{n+1}.$$

Une intégration par parties discrète en temps donne
$$T_1 = hk \sum_{n=1}^{M-1} \sum_{i=1}^{N} u_i^n \frac{\psi_i^n - \psi_i^{n+1}}{k} + \sum_{i=1}^{N} hu_i^M \psi_i^M - \sum_{i=1}^{N} hu_i^0 \psi_i^1.$$

On en déduit qu'il existe C_1 ne dépendant que de $c_{u_0,v,T}$ (borne sur u), u_0 et ψ tel que

$$T_1 = -\int_0^T \int_0^1 u(x,t)\psi(x,t) \, dx \, dt + R_{1,1} + R_{1,2} - \int_0^1 u(x,t)\psi(x,0) \, dx + R_{1,3},$$

avec $|R_{1,1}| \le C_1(k+h)$, $|R_{1,2}| \le C_1k$ et $|R_{1,3}| \le C_1(k+h)$.

Une double intégration par parties discrète en temps donne, en posant $\psi_0^n = \psi(-h, nk)$ et $\psi_{N+1}^n = \psi(1+h)$

$$T_2 = -hk\sum_{n=0}^{M-1}\sum_{i=1}^{N}\frac{\psi_{i-1}^{n+1} - 2\psi_{i}^{n+1} + \psi_{i+1}^{n+1}}{h^2}\varphi_{i}^{n+1} - kh\sum_{n=0}^{M-1}\frac{\psi_{0}^{n+1} - \psi_{1}^{n+1}}{h^2}\varphi_{1}^{n+1} - kh\sum_{n=0}^{M-1}\frac{\psi_{N}^{n+1} - \psi_{N+1}^{n+1}}{h^2}\varphi_{N}^{n+1},$$

On en déduit qu'il existe C_2 ne dépendant que de $c_{u_0,v,T}$, φ et ψ tel que

$$T_1 = -\int_0^T \int_0^1 \Delta \psi(x, t) \varphi(u)(x, t) dx dt + R_{2,1} + R_{2,2} + R_{2,3},$$

avec $|R_{2,1}| \le C_2(k+h)$, $|R_{2,2}| \le C_2h$ et $|R_{2,2}| \le C_2h$.

La majoration de $R_{2,1}$ est due au caractère C^3 de ψ . Pour la majoration de $R_{2,2}$ et $R_{2,3}$ il suffit de remarquer que la condition de Neumann sur ψ donne une majoration en Ch^2 (C ne dépendant que ψ) de $|\psi_N^{n+1} - \psi_{N+1}^{n+1}|$ $et |\psi_0^{n+1} - \psi_1^{n+1}|.$

Enfin,

$$T_3 = \int_0^T \int_0^1 v(x, t) \psi(x, t) \, dx \, dt + R_3$$

et il existe C_3 ne dépendant que de v et ψ tel que $R_3 \leq C_3(h+k)$.

Il suffit maintenant d'écrire $T_1 + T_2 = T_3$ avec la fonction u_n construite avec les paramètres h_n et k_n .

Quand $n \to +\infty$, puisque $\lim_{n \to +\infty} h_n = \lim_{n \to +\infty} k_n = 0$ et que $u_n \to u$ et $\varphi(u_n) \to \varphi(u)$ dans $L^1(]0,1[\times]0,T[)$, on obtient (4.72) (et on savait déjà que u vérifie (4.71)).

Remarque 4.59 On peut aussi montrer l'unicité de la solution de (4.71),(4.72). Une autre méthode pour montrer l'existence de la solution au problème (4.71),(4.72) en utilisant la solution approchée donnée par un schéma numérique est décrite dans [18]. Elle utilise seulement $u_0 \in L^{\infty}([0,T])$ au lieu de u_0 lipschitzienne.

Exercice 4.9 (Existence pour le problème de Stefan, par régularisation)

Soient Ω un ouvert borné de \mathbb{R}^N $(N \geq 1), 0 < T < +\infty, f \in L^2(]0,T[,(L^2(\Omega)), u_0 \in L^2(\Omega)$ et φ une fonction lipschitzienne de IR de IR croissante (mais non nécessairement strictement croissante, la fonction φ peut être constante sur un intervalle de IR de mesure strictement positive).

Dans cet exercice, on donne une preuve alternative à la méthode classique de Alt et Lukhaus [2], de l'existence, par une technique de régularisation, d'une solution (faible) à l'équation $\partial_t u - \Delta(\varphi(u)) = f$ (dans $\Omega \times]0, T[$) avec conditions aux limites de Dirichlet homogènes et u_0 comme condition initiale. Plus précisément, la fonction u sera solution au sens suivant :

$$\begin{cases} u \in L^{\infty}(]0, T[, L^{2}(\Omega)), \partial_{t}u \in L^{2}(]0, T[, H^{-1}(\Omega)), u \in C([0, T], H^{-1}(\Omega)), \\ \varphi(u) \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ \int_{0}^{T} \langle \partial_{t}u(s), v(s) \rangle_{H^{-1}, H_{0}^{1}} \, \mathrm{d}s + \int_{0}^{T} \int_{\Omega} \nabla \varphi(u(x, s)) \cdot \nabla v(x, s) \, \mathrm{d}x \, \mathrm{d}s \\ = \int_{0}^{T} \int_{\Omega} f(x, s)v(x, s) \, \mathrm{d}x \, \mathrm{d}s, \qquad \forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \\ u(\cdot, 0) = u_{0}, \end{cases}$$

$$(4.102a)$$

On rappelle que $L^2(\Omega)$ est, comme d'habitude, identifié à $L^2(\Omega)'$. Dans (4.102), u(s) (resp. v(s)) désigne la fonction $x\mapsto u(x,s)$ (resp. v(x,s)). Puisque $L^2(\Omega)$ est identifié à $L^2(\Omega)'$, on peut écrire $H^1_0(\Omega)\subset L^2(\Omega)=L^2(\Omega)'\subset H^{-1}(\Omega)$. La fonction $\partial_t u$ est la dérivée faible de u (définition 4.22). Le fait que $u\in L^2(]0,T[,H^{-1}(\Omega))$ et $\partial_t u\in L^2(]0,T[,H^{-1}(\Omega))$ donne $u\in C([0,T],H^{-1}(\Omega))$ (lemme 4.25). La fonction u est définie pour tout $t\in [0,T]$, ce qui donne un sens à la condition initiale $u(0)=u_0$.

Pour résoudre ce problème, on introduit pour n>0 la fonction φ_n définie par $\varphi_n(s)=\varphi(s)+(\frac{1}{n})s$. On montre l'existence d'une solution au problème avec φ_n au lieu de φ . Puis, on passe à la limite quand $n\to +\infty$.

1. Montrer que le résultat de l'exercice 4.6 donne l'existence de u_n solution de (4.102) avec φ_n au lieu de φ , avec la régularité supplémentaire $u_n \in L^2(]0, T[, H^1_0(\Omega))$ (et donc $u_n \in C([0,T]), L^2(\Omega))$. [On rappelle que le lemme 4.34 donne $\nabla \varphi(v) = \varphi'(v) \nabla v$ p.p. si $v \in L^2(]0, T[, H^1_0(\Omega))$.]

Corrigé – Le résultat de l'exercice 4.6 donne l'existence de u_n solution de

$$\begin{cases} u_n \in L^2(]0, T[, H_0^1(\Omega)), \ \partial_t u_n \in L^2(]0, T[, H^{-1}(\Omega)), \\ \int_0^T \langle \partial_t u_n(s), v(s) \rangle_{H^{-1}, H_0^1} \, \mathrm{d}s \\ + \int_0^T \int_{\Omega} (\varphi'(u_n(x, s)) + \frac{1}{n}) \nabla u_n(x, s) \cdot \nabla v(x, s) \, \mathrm{d}x \, \mathrm{d}s \\ = \int_0^T (\int_{\Omega} f(s, x) v(s, x) \, \mathrm{d}x) \, \mathrm{d}s, \quad \forall v \in L^2(]0, T[, H_0^1(\Omega)), \\ u_n(0) = u_0 \ a.e.. \end{cases}$$
(4.103)

Grâce au lemme 4.34, on obtient bien que u_n est solution de (4.102) avec φ_n au lieu de φ , avec la régularité supplémentaire $u_n \in L^2(]0,T[,H^1_0(\Omega))$ (et donc $u_n \in C([0,T]),L^2(\Omega)$).

Dans les deux questions suivantes, on étudie cette suite $(u_n)_{n\in\mathbb{N}^*}$.

2. Montrer que la suite $(\varphi(u_n))_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^1_0(\Omega))$, que la suite $(\partial_t u_n)_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$ et que la suite $(u_n)_{n\in\mathbb{N}^*}$ est bornée dans $C(]0,T[,L^2(\Omega))$. [Le lemme 4.34 est encore utile ici.]

Corrigé – Soit Φ une primitive de φ . Comme $u_n \in L^2(]0, T[, H_0^1(\Omega))$ et $\partial_t u_n \in L^2(]0, T[, H^{-1}(\Omega))$, le lemme 4.34 donne que $\Phi(u_n) \in C([0,T], L^1(\Omega))$ et, pour $0 \le t_1 < t_2 \le T$,

$$\int_{\Omega} \Phi(u_n(t_2) dx - \int_{\Omega} \Phi(u_n(t_1) dx = \int_{t_1}^{t_2} \langle \partial_t u_n(s), \varphi(u_n(s)) \rangle_{H^{-1}, H_0^1} ds.$$

En prenant alors $v = \varphi(u_n)$ dans (4.103), on obtient un contrôle de $\Phi(u_n)$ dans $C([0,T],L^1(\Omega))$ et un contrôle de $\varphi(u_n)$ in $L^2(]0,T[,H^1_0(\Omega))$, et plus précisément, l'existence de $C \in \mathbb{R}_+$, ne dépendant que de f et de u_0 tel que pour tout $t \in [0,T]$,

$$\|\Phi(u_n(t))\|_{L^1(\Omega)} \le C, (4.104)$$

et

$$\|\varphi(u_n)\|_{L^2(]0,T[,H_0^1(\Omega))} \le C \text{ and } \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))} \le C\sqrt{n}.$$
 (4.105)

En vertu de (4.105) et (4.103), on obtient alors une estimation sur $\partial_t u_n$ in $L^2(]0, T[, H^{-1}(\Omega))$ qui s'écrit

$$\|\partial_t u_n\|_{L^2(]0,T[,H^{-1}(\Omega))} \le C.$$
 (4.106)

On va maintenant obtenir une estimation sur u_n dans $C([0,T],L^2(\Omega))$ grâce au fait que $f \in L^2(]0,T[,L^2(\Omega))$. Rappelons tout d'abord que $u_n \in C([0,T],L^2(\Omega))$; en prenant $v=u_n$ dans (4.103) on obtient (avec le lemme 4.26), que pour tout $t \in [0,T]$,

$$\frac{1}{2} \|u_n(t)\|_{L^2(\Omega)}^2 - \frac{1}{2} \|u_0\|_{L^2(\Omega)}^2 \le \int_0^t \int_{\Omega} f(x,s) u_n(x,s) \, \mathrm{d}x \, \mathrm{d}s \\
\le \int_0^t \|f(s)\|_{L^2(\Omega)} \|u_n(s)\|_{L^2(\Omega)} \, \mathrm{d}s \\
\le \int_0^T \|f(s)\|_{L^2(\Omega)}^2 \, \mathrm{d}s + \int_0^t \|u_n(s)\|_{L^2(\Omega)}^2 \, \mathrm{d}s,$$

qui donne une estimation $||u_n(t)||^2_{L^2(\Omega)}$ par la technique classique de Gronwall. On peut alors encore supposer que pour tout $t \in [0,T]$,

$$||u_n(t)||_{L^2(\Omega)} \le C. \tag{4.107}$$

3. Montrer qu'il existe u et ζ tels que (quitte à extraire une sous-suite, non renumérotée) $\varphi(u_n) \to \zeta$ faiblement dans $L^2(]0,T[,H^1_0(\Omega))$ et $u_n \to u$ dans $L^2(]0,T[,H^{-1}(\Omega))$ et faiblement dans $L^2(]0,T[,L^2(\Omega))$. [Pour la convergence de u_n , utiliser le théorème 4.45.]

Corrigé — L'estimation (4.105) nous permet de supposer qu'à une sous-suite près, qu'on note toujours $(u_n)_{n\in\mathbb{N}}$, on a $\varphi(u_n)\to \zeta$ faiblement dans $L^2(]0,T[,H^1_0(\Omega))$. De plus, comme $L^2(\Omega)$ s'injecte compactement dans $H^{-1}(\Omega)$, on peut aussi supposer qu'à une sous-suite près, toujours notée $(u_n)_{n\in\mathbb{N}}$, on a $u_n\to u$ in $L^2(]0,T[,H^{-1}(\Omega))$, grâce à (4.106)-(4.107)) et en appliquant le théorème 4.45, with $B=Y=H^{-1}(\Omega)$ and $X=L^2(\Omega)$. En vertu de (4.107), on a aussi $u_n\to u$ faiblement dans $L^2(]0,T[,L^2(\Omega))$ et $u\in L^\infty(]0,T[,L^2(\Omega))$.

Dans les questions suivantes, on montre que cette fonction u est la solution recherchée.

4. Montrer que $\lim_{n\to+\infty} \int_0^T \int_{\Omega} \varphi(u_n) u_n \, dx \, dt = \int_0^T \int_{\Omega} \zeta u \, dx \, dt$.

Corrigé – La question 3 donne que $\varphi(u_n) \to \zeta$ faiblement dans $L^2(]0,T[,H_0^1(\Omega))$ et que $u_n \to u$ in $L^2(]0,T[,H^{-1}(\Omega))$.

Comme $u \in L^2(]0,T[,L^2(\Omega))$, on a aussi

$$\int_0^T \int_{\Omega} \varphi(u_n(x,y)) u_n(x,t) \, \mathrm{d}x \, \mathrm{d}t = \int_0^T \langle u_n(t), \varphi(u_n(t)) \rangle_{H^{-1}, H_0^1} \, \mathrm{d}t$$

$$\to \int_0^T \langle u(t), \zeta(t) \rangle_{H^{-1}, H_0^1} \, \mathrm{d}t = \int_0^T \int_{\Omega} \zeta(x,t) u(x,t) \, \mathrm{d}x \, \mathrm{d}t \text{ as } n \to +\infty.$$

5. Utiliser l'astuce de Minty (voir par exemple au chapitre 3 la démonstration de (3.25)), pour montrer que $\varphi(u) = \zeta$ p.p.

Corrigé – Comme φ est croissante, on a pour tout $v \in L^2(]0,T[,L^2(\Omega))$,

$$0 \leq \int_{0}^{T} \int_{\Omega} \varphi(u_{n}(x,t)) - \varphi(v(x,t))(u_{n}(x,t) - v(x,t)) \, dx \, dt$$

$$\rightarrow \int_{0}^{T} \int_{\Omega} (\zeta(x,t) - \varphi(v(x,t))(u(x,t) - v(x,t)) \, dx \, dt \, lorque$$
et donc
$$\int_{0}^{T} \int_{\Omega} (\zeta(x,t) - \varphi(v(x,t))(u(x,t) - v(x,t)) \, dx \, dt \geq 0. \tag{4.108}$$

Soit $w \in C_c^{\infty}(\Omega \times]0,T[)$ et t > 0. En prenant $v = u + \tau w$ in (4.108), il vient

$$\int_0^T \int_{\Omega} (\zeta(x,t) - \varphi(u(x,t) + \tau w(x,t)) w(x,t) \, \mathrm{d}x \, \mathrm{d}t \le 0,$$

et par le théorème de convergence dominée (qui s'applique car φ est lipschitzienne, en faisant tendre τ vers 0, on obtient que

 $\int_0^T \int_{\Omega} (\zeta(x,t) - \varphi(u(x,t))w(x,t) \, \mathrm{d}x \, \mathrm{d}t \le 0.$

Comme w est arbitraire, ceci entraı̂ne que $\varphi(u)=\zeta$ p.p..

6. Montrer que $u \in C([0,T],H^{-1})$ et en déduire que $u(0)=u_0$. [Raisonner alors comme dans l'étape 6 du théorème 4.29.]

Corrigé – Comme $u_n \in L^2(]0,T[,L^2(\Omega)) \subset L^2(]0,T[,H^{-1}(\Omega))$ et $\partial_t u_n \in L^2(]0,T[,H^{-1}(\Omega))$, la fonction u_n appartient à $C([0,T],H^{-1}(\Omega))$ (et même à $C^{\frac{1}{2}}([0,T],H^{-1}(\Omega))$ par le lemme 4.25).

On montre que la suite $(u_n)_{n\in\mathbb{N}^*}$ est relativement compacte dans $C([0,T],H^{-1}(\Omega))$ par le théorème d'Ascoli (théorème 1.32) ; pour cela, il suffit de prouver que :

- (a) Pour tout $t \in [0,T]$, la suite $(u_n(t))_{n \in \mathbb{N}^*}$ est relativement compacte dans $H^{-1}(\Omega)$.
- (b) $||u_n(t) u_n(s)||_{H^{-1}} \to 0$ lorsque $s \to t$, uniformément par rapport à $n \in \mathbb{N}^*$ (et pour tout $t \in [0,T]$). Le deuxième point est une conséquence du fait que $\partial_t u_n \in L^1([0,T],H^{-1}(\Omega))$ grâce au lemme 4.25 qui donne que pour tous $t_1,t_2 \in [0,T]$, $t_1 > t_2$ et tout $n \in \mathbb{N}^*$,

$$u_n(t_1) - u_n(t_2) = \int_{t_2}^{t_1} \partial_t u_n(s) \, ds,$$

et donc

$$||u_n(t_1) - u_n(t_2)||_{H^{-1}} \le \int_{t_2}^{t_1} ||\partial_t u_n(s)||_{H^{-1}} ds$$

$$\le \left(\int_0^T ||\partial_t u_n(s)||_{H^{-1}}^2 ds\right)^{\frac{1}{2}} \sqrt{t_1 - t_2}$$

$$\le ||\partial_t u_n||_{L^2([0,T],H^{-1})} \sqrt{t_1 - t_2}.$$

La suite $(\partial_t u_n)_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$, et donc

 $\|u_n(t) - u_n(s)\|_{H^{-1}} \to 0$, lorsque $s \to t$, uniformément par rapport à $n \in \mathbb{N}^*$ (et pour tout $t \in [0, T]$).

Pour prouver le premier point, on utilise l'estimation (4.107), qui implique que la suite $(u_n(t))_{n\in\mathbb{N}^+}$ est bornée dans $L^2(\Omega)$ pour tout $t\in[0,T]$ et est donc relativement compacte dans $H^{-1}(\Omega)$ pour tout $t\in[0,T]$.

On peut donc appliquer le théorème d'Ascoli (théorème 1.32) et obtenir, comme annoncé, que $u(0) = u_0$.

7. Montrer que u est solution de (4.102).

Corrigé – Par l'estimation (4.106) et la linearité de l'operateur ∂_t , on a $\partial_t u_n \to \partial_t u$ faiblement dans $L^2(]0, T[, H^{-1}(\Omega))$. L'estimation (4.105) donne aussi que

$$\left| \frac{1}{n} \int_0^T \int_{\Omega} \nabla u_n(x, s) \cdot \nabla v(x, s) \, \mathrm{d}x \, \mathrm{d}s \right| \le \frac{C}{\sqrt{n}} \|v\|_{L^2(]0, T[, H_0^1(\Omega))},$$

et donc

$$\lim_{n \to \infty} \frac{1}{n} \int_0^T \int_{\Omega} \nabla u_n(x, s) \cdot \nabla v(x, s) \, dx \, ds = 0.$$

Il est maintenant possible de passer à la limite dans (4.103); on obtient que pour tout $v \in L^2(]0,T[,H_0^1(\Omega))$, It is now possible to pass to the limit in (4.103), it gives, for all $v \in L^2(]0,T[,H_0^1(\Omega))$

$$\int_0^T \langle \partial_t u(s), v(s) \rangle_{H^{-1}, H_0^1} \, \mathrm{d}s + \int_0^T \int_\Omega \nabla \zeta(x, s) \cdot \nabla v(x, s) \, \mathrm{d}x \, \mathrm{d}s = \int_0^T (\int_\Omega f(s, x) v(s, x) \, \mathrm{d}x) \, \mathrm{d}s. \tag{4.109}$$

La question 5 donne que $\zeta = \varphi(u)$ p.p. et la question 6 donne que $u(0) = u_0$. On a donc que u est solution de (4.102).

Exercice 4.10 (Théorème de Kolmogorov, avec $B={\rm I\!R}$) Corrigé en page 273 Le but de cet exercice est de refaire la démonstration du théorème 4.43 dans le cas (plus simple) $B={\rm I\!R}$ et p=1. Soit T>0; dans la suite on note L^1 l'espace $L^1(]0,T[,{\rm I\!R})$. Soit $(u_n)_{n\in{\rm I\!R}}$ une suite bornée de L^1 (on a donc $\sup_{n\in{\rm I\!R}}\|u_n\|_1<+\infty$). On suppose que pour tout $h\in]0,T[$ et tout $n\in{\rm I\!R}$ on a

$$\int_0^{T-h} |u_n(t+h) - u_n(t)| dt \le \eta(h),$$

où η est une fonction croissante de]0,T[dans \mathbb{R}_+ telle que $\lim_{h\to 0^+}\eta(h)=0$. L'objectif de l'exercice est de démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans L^1 .

1. Soit $\delta, h \in]0, T[$ t.g. $\delta + h < T$. Montrer que

$$\int_0^{\delta} |u_n(t)| \, \mathrm{d}t \le \int_0^{\delta} |u_n(t+h)| \, \mathrm{d}t + \int_0^{\delta} |u_n(t+h) - u_n(t)| \, \mathrm{d}t. \tag{4.110}$$

2. Soit $h_0 \in]0, T[$ et $\delta \in]0, T - h_0[$, montrer que

$$h_0 \int_0^{\delta} |u_n(t)| \, \mathrm{d}t \le \delta \|u_n\|_1 + h_0 \eta(h_0). \tag{4.111}$$

- 3. Montrer que $\int_0^\delta |u_n(t)| \; \mathrm{d}t \to 0$ quand $\delta \to 0^+$, uniformément par rapport à n.
- 4. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans L^1 . [Appliquer le théorème de Kolmogorov, théorème 4.42, en utilisant le prolongement de u_n par 0.]

4.7 Corrigés des exercices

Corrigé de l'exercice 4.1 (Solution classique en dimension 1)

1. Si u et \bar{u} sont deux solutions classiques de (4.63); la fonction $(u - \bar{u})$ est alors une solution classique de (4.63) avec $u_0 = 0$ p.p. (sur]0,1[). Pour montrer que $u = \bar{u}$, il suffit donc de montrer que la fonction nulle est l'unique solution de (4.63) lorsque $u_0 = 0$ p.p.. On suppose donc que u est une solution classique de (4.63) avec $u_0 = 0$ p.p.. On va montrer que u(x,t) = 0 pour tout $(x,t) \in [0,1] \times]0,+\infty[$.

Soit t > 0, les hypothèses (c1) et (c2) permettent de dire que

$$\int_0^1 \partial_t u(x,t) u(x,t) \, \mathrm{d}x = \frac{1}{2} \int_0^1 \partial_t (u^2)(x,t) \, \mathrm{d}x = \frac{1}{2} \frac{d}{dt} \left(\int_0^1 u^2(x,t) \, \mathrm{d}x \right)$$

et

$$\int_0^1 \partial_{xx}^2 u(x,t) u(x,t) \, \mathrm{d}x = -\int_0^1 u_x(x,t)^2 \, \mathrm{d}x.$$

Comme $\partial_t uu - \partial_{xx}^2 u u = 0$ sur $]0,1[\times]0,+\infty($, on en déduit que

$$\frac{1}{2}\frac{d}{dt}\left(\int_0^1 u^2(x,t)\,\mathrm{d}x\right) + \int_0^1 \partial_x u(x,t)^2\,\mathrm{d}x = 0.$$

Soit $0 < \varepsilon < T < +\infty$, en intégrant l'équation précédente entre ε et T, on obtient

$$\frac{1}{2} \int_0^1 u^2(x, T) \, dx + \int_0^T \int_0^1 \partial_x u^2(x, t) \, dx \, dt = \frac{1}{2} \int_0^1 u(x, \varepsilon) \, dx,$$

ce qui donne

$$\int_0^1 u^2(x,T) \, \mathrm{d}x \le \int_0^1 u^2(x,\varepsilon) \, \mathrm{d}x.$$

Lorsque $\varepsilon \to 0$, le membre de droite de cette inégalité tend vers 0 (par (c3)), on a donc $\int_0^1 u^2(x,T) \, \mathrm{d}x = 0$, ce qui donne $u(\cdot,T)=0$ p.p. et donc u(x,T)=0 pour tout $x\in[0,1]$ (car $u(\cdot,T)$ est supposée être continue sur [0,1]). Comme T>0 est arbitraire, on a bien montré que u(x,t)=0 pour tout $(x,t)\in[0,1]\times]0,+\infty[$.

2. On utilise un résultat de l'exercice 2.2. Pour $n \in \mathbb{N}^*$, on pose $c_n = 2 \int_0^1 u_0(t) \sin(n\pi t) dt$. L'exercice 2.2. donne que

$$\|u_0 - \sum_{p=1}^n c_p \sin(p\pi \cdot)\|_2 \to 0$$
, quand $n \to \infty$.

(On rappelle que $\|\cdot\|_2$ désigne $\|\cdot\|_{L^2(]0,1[)}$. Comme $|c_n| \le 2\|u_0\|_2$ pour tout $n \in \mathbb{N}^*$, la suite $(c_n)_{n \in \mathbb{N}^*}$ est bornée. On en déduit que la série

$$\sum_{n=1}^{+\infty} e^{-n^2 \pi^2 t} c_n \sin n\pi x$$

est convergente (dans ${\rm I\!R}$) pour tout $x\in {\rm I\!R}$ et t>0. De plus, pour tout $\varepsilon>0$, les séries

$$\sum_{n=1}^{+\infty} n e^{-n^2 \pi^2 \varepsilon} |c_n| \text{ et } \sum_{n=1}^{+\infty} n^2 e^{-n^2 \pi^2 \varepsilon} |c_n|$$

sont convergentes. Ceci montre que la fonction

$$x, t \mapsto \sum_{n=1}^{+\infty} e^{-n^2 \pi^2 t} c_n \sin n\pi x$$

est, pour tout $\varepsilon > 0$, de classe C^2 sur $\mathbb{R} \times]\varepsilon, +\infty[$ (elle est même de classe C^∞) et que la série peut être dérivée terme à terme, une fois en t et deux fois en x. On pose donc, pour $x \in]0,1[$ et t>0

$$u(x,t) = \sum_{n=1}^{+\infty} e^{-n^2 \pi^2 t} c_n \sin n\pi x.$$

La fonction u ainsi définie vérifie bien les conditions (c1) et (c2).

Il reste à montrer que u vérifie (c3). Soit $\varepsilon > 0$. Pour tout t > 0 et $n_0 > 0$, on a

$$||u(\cdot,t) - u_0||_2 \le ||\sum_{n=1}^{n_0} c_n (1 - e^{-n^2 t^2}) \sin(n\pi \cdot)||_2 + 2||u_0 - \sum_{n=1}^{n_0} c_n \sin(n\pi \cdot)||_2.$$

On commence par choisir n_0 pour que le deuxième terme du membre de droite de cette inégalité soit inférieur à ε . Puis, comme n_0 est maintenant fixé, on remarque qu'il existe $t_0 > 0$ tel que le premier terme du membre de droite de cette inégalité est inférieur à ε dès que $t \in]0, t_0]$. On en déduit bien que u vérifie (c3).

Corrigé de l'exercice 4.2 (Dual de L_E^p)

1. On choisit pour u et v des représentants, de sorte que $v \in \mathcal{L}_{E'}^{p'}(X,T,m)$ et $u \in \mathcal{L}_{E}^{p}(X,T,m)$. La m-mesurabilité de l'application $x \mapsto \langle u(x),v(x)\rangle_{E',E}$ (notée $\langle v,u\rangle_{E',E}$) est assez simple à montrer (et ne dépend pas des représentants choisis pour u et v). Il suffit de remarquer qu'il existe deux suites de fonctions étagées $(v_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ (v_n est une fonction de X dans E' et u_n de X dans X telle que $x_n \to v$ p.p. et $x_n \to x$ p.p. (quand $x_n \to x$). Pour tout $x_n \to x$ p.p. (quand $x_n \to x$). Pour tout $x_n \to x$ p.p. vers la fonction $x_n \to x$ qui est donc $x \to x$ qui est $x \to x$ qui est $x \to$

On remarque ensuite que $|\langle v(x), u(x)\rangle_{E',E}| \leq \|v(x)\|_{E'} \|u(x)\|_{E}$ pour tout $x \in X$. En intégrant par rapport à la mesure m (on utilise ici la monotonie de l'intégrale pour les fonctions m-mesurables à valeurs dans \mathbb{R} et l'inégalité de Hölder), on obtient que $\langle v, u \rangle_{E',E} \in \mathcal{L}^1_{\mathbb{R}}(X,T,m)$ (et donc $\langle v, u \rangle_{E',E} \in L^1_{\mathbb{R}}(X,T,m)$ avec la confusion habituelle entre \mathcal{L}^1 et \mathcal{L}^1) et

$$\int |\langle v, u \rangle_{E', E}| \, \mathrm{d}m \le \varepsilon t \|v\|_{E'} \|u\|_{E} \, \mathrm{d}m \le \|v\|_{L_{E'}^{p'}} \|u\|_{L_{E}^{p}}.$$

2.

(a) La question précédente donne bien que $\langle v,u\rangle_{E',E}\in L^1_E(X,T,m)$ pour tout $u\in L^p_E(X,T,m)$. L'application $u\mapsto \int \langle v,u\rangle_{E',E} \;\mathrm{d} m$ est donc bien définie de $L^p_E(X,T,m)$ dans ${\rm I\!R}$. Elle est trivialement linéaire. Sa continuité est une conséquence du fait que

$$\left| \int \langle v, u \rangle_{E', E} \, \mathrm{d}m \right| \le \varepsilon t |\langle v, u \rangle_{E', E}| \, \mathrm{d}m \le \|v\|_{L_{E'}^{p'}} \|u\|_{L_{E}^{p}}.$$

(b) Par définition de la norme dans le dual d'un espace de Banach, on a

$$||T_v||_{(L_E^p)'} = \sup\{|T_v(u)|, u \in L_E^p \text{ t.q. } ||u||_{L_E^p} = 1\}.$$

La question précédente donne que $|T_v(u)| \leq ||v||_{L^{p'}_{E'}}$ si $||u||_{L^p_E} = 1$, on a donc

$$||T_v||_{L_E^p(X,T,m)'} \le ||v||_{L_{T'}^{p'}(X,T,m)}.$$

(c) On pose q = p'. On raisonne ici en deux étapes. On commence par montrer l'égalité demandée si v est une fonction étagée. Puis, on traite le cas général.

Etape 1

On suppose, dans cette étape, que v est une fonction étagée non nulle. Il existe donc $n \in \mathbb{N}^*$, une famille A_1, \ldots, A_n d'éléments de la tribu T et une famille b_1, \ldots, b_n d'éléments de E', non nuls, t.q.

$$v = \sum_{i=1}^{n} b_i \mathbb{1}_{A_i}.$$

Soit $\varepsilon > 0$; de la définition de la norme dans E', on déduit que, pour tout $i \in \{1, \dots, n\}$, il existe $\bar{a}_i \in E$ tel que

$$\|\bar{a}_i\|_E = 1 \text{ et } \langle b_i, \bar{a}_i \rangle_{E',E} \ge (1 - \varepsilon) \|b_i\|_{E'}.$$

On pose $a_i = ||b_i||_{E'}^{q-1} \bar{a}_i$ pour tout $i \in \{1, \dots, n\}$ et

$$u = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}.$$

La fonction u est une fonction étagée (de X dans E) et on a

$$\int \langle v, u \rangle_{E', E} \, dm = \sum_{i=1}^{n} m(A_i) \langle b_i, a_i \rangle_{E', E} \ge (1 - \varepsilon) m(A_i) \|b_i\|_{E'}^q = (1 - \varepsilon) \|v\|_{L_{E'}^q}^q.$$

D'autre part, on a (comme p(q-1)=q)

$$||u||_{L_{E}^{p}}^{p} = \sum_{i=1}^{n} m(A_{i})||b_{i}||_{E'}^{p(q-1)} = \sum_{i=1}^{n} m(A_{i})||b_{i}||_{E'}^{q} = ||v||_{L_{E'}^{q}}^{q}.$$

On a donc

$$\frac{1}{\|u\|_{L_E^p}} \int \langle v, u \rangle_{E', E} \, \mathrm{d}m \ge (1 - \varepsilon) \frac{\|v\|_{L_{E'}^q}^q}{\|v\|_{L_E^q}^q} = (1 - \varepsilon) \|v\|_{L_{E'}^q}.$$

En posant $\bar{u}=\frac{u}{\|u\|_{L_E^p}}$, on a donc $\|\bar{u}\|_{L_E^p}=1$ et $\int \langle v,\bar{u}\rangle_{E',E} \;\mathrm{d}m \geq (1-\varepsilon)\|v\|_{L_{E'}^q}$. Ceci prouve que

$$||T_v||_{(L_E^p)'} \ge (1-\varepsilon)||v||_{L_{E'}^q}.$$

Comme $\varepsilon > 0$ est arbitraire, on obtient donc, avec la question 2(b), $||T_v||_{(L^p_p)'} = ||v||_{L^q_p}$.

Etape 2

On traite maintenant le cas général. Soit $v \in L^q_{E'}$ non nulle (si v = 0 p.p. l'égalité demandée est triviale). Il existe une suite $(v_n)_{n \in \mathbb{N}}$ de fonctions étagée (de X dans E') telle que $v_n \to v$ dans $L^q_{E'}$ (cette suite peut se construire comme cela a été pour la définition de L^1 , c'est-à-dire en construisant v_n telle que $\|v_n(x)\|_{E'} \le 2\|v(x)\|_{E'}$ pour presque tout $x \in E'$ et pour tout $n \in \mathbb{N}$).

Soit $\varepsilon>0$, il existe donc w fonction étagée telle que $\|w-v\|_{L^p_{E'}}\leq \varepsilon$. Par l'étape 1, il existe $u\in L^p_E$ t.q. $\|u\|_{L^p_E}=1$ et

$$\int \langle w, u \rangle_{E', E} dm \ge ||w||_{L_{E'}^q} - \varepsilon.$$

On a donc (avec la question 1)

$$\int \langle v, u \rangle_{E', E} dm = \int \langle w, u \rangle_{E', E} dm + \int \langle v - w, u \rangle_{E', E} dm \ge \|w\|_{L_{E'}^q} - \varepsilon - \|v - w\|_{L_{E'}^q}.$$

Comme $\|v-w\|_{L^q_{E'}} \le \varepsilon$ et $\|w\|_{L^q_{E'}} \ge \|v\|_{L^q_{E'}} - \varepsilon$, on a donc

$$\int \langle v, u \rangle_{E', E} dm \ge ||v||_{L_{E'}^q} - 3\varepsilon.$$

Comme $\varepsilon > 0$ est arbitraire, ceci permet d'affirmer que $||T_v||_{(L_E^p)'} \ge ||v||_{L_{E'}^q}$. Finalement, avec la question 2(b), on a bien $||T_v||_{(L_E^p)'} = ||v||_{L_{T'}^q}$.

Corrigé de l'exercice 4.3 (Dérivée faible pour une union de domaines) Il s'agit de montrer qu'il existe $u \in L^2(]0,T[,H^1(\Omega)')$ tel que, pour tout $\varphi \in \mathcal{D}(\Omega)$,

$$-\int_0^T f(t)\varphi'(t) dt = \int_0^T u(t)\varphi(t) dt.$$

Le terme de gauche de cette égalité est dans $L^2(\Omega)$ et le terme de droite est dans $H^1(\Omega)'$. Comme on a identifié $L^2(\Omega)$ avec son dual et que $H^1(\Omega)$ est dense dans $L^2(\Omega)$, on a $L^2(\Omega) \subset H^1(\Omega)'$ et montrer cette égalité consiste donc à montrer que pour tout $\psi \in H^1(\Omega)$ on a

$$\int_{\Omega} \left(-\int_{0}^{T} f(t)\varphi(t) \, \mathrm{d}t \right) (x)\psi(x) \, \mathrm{d}x = \langle \int_{0}^{T} u(t)\varphi(t) \, \mathrm{d}t, \psi \rangle_{H^{1}(\Omega)', H^{1}(\Omega)}. \tag{4.112}$$

On cherche donc $u \in L^2(]0,T[,H^1(\Omega)')$ vérifiant (4.112) pour tout $\varphi \in \mathcal{D}(\Omega)$ et tout $\psi \in H^1(\Omega)$.

Pour i=1,2, on sait que $\frac{df_i}{dt}\in L^2(]0,T[,H^1(\Omega_i)')$, il existe donc $u_i\in L^2(]0,T[,H^1(\Omega_i)')$ (qu'on peut confondre avec $\frac{df_i}{dt}$) telle que, pour tout $\varphi\in\mathcal{D}(\Omega)$ et tout $\psi\in H^1(\Omega_i)$ on a

$$\int_{\Omega_i} \left(- \int_0^T f_i(t)\varphi(t) \, \mathrm{d}t \right) (x)\psi(x) \, \mathrm{d}x = \langle \int_0^T u_i(t)\varphi(t) \, \mathrm{d}t, \psi \rangle_{H^1(\Omega_i)', H^1(\Omega_i)}. \tag{4.113}$$

Soient $\varphi \in \mathcal{D}(\Omega)$ et $\psi \in H^1(\Omega)$. On note ψ_i la restriction de ψ a Ω_i . On a donc $\psi_i \in H^1(\Omega_i)$ et $\|\psi\|_{H^1(\Omega)}^2 \leq \sum_{i=1}^2 \|\psi_i\|_{H^1(\Omega_i)}^2$. En utilisant (4.113) (et la proposition 4.24) on a

$$\begin{split} \int_{\Omega} \Big(- \int_{0}^{T} f(t) \varphi(t) \, \mathrm{d}t \Big)(x) \psi(x) \, \mathrm{d}x &= \sum_{i=1}^{2} \int_{\Omega_{i}} \Big(- \int_{0}^{T} f_{i}(t) \varphi(t) \, \mathrm{d}t \Big)(x) \psi_{i}(x) \, \mathrm{d}x \\ &= \sum_{i=1}^{2} \langle \int_{0}^{T} u_{i}(t) \varphi(t) \, \mathrm{d}t, \psi_{i} \rangle_{H^{1}(\Omega_{i})', H^{1}(\Omega_{i})} = \int_{0}^{T} \sum_{i=1}^{2} \langle u_{i}(t) \varphi(t), \psi_{i} \rangle_{H^{1}(\Omega_{i})', H^{1}(\Omega_{i})} \, \mathrm{d}t \\ &= \int_{0}^{T} \sum_{i=1}^{2} \langle u_{i}(t), \psi_{i} \rangle_{H^{1}(\Omega_{i})', H^{1}(\Omega_{i})} \varphi(t) \, \mathrm{d}t = \int_{0}^{T} \langle u(t), \psi \rangle_{H^{1}(\Omega_{i})', H^{1}(\Omega_{i})} \varphi(t) \, \mathrm{d}t \\ &= \langle \int_{0}^{T} u(t) \varphi(t) \, \mathrm{d}t, \psi \rangle_{H^{1}(\Omega)', H^{1}(\Omega)}, \end{split}$$

où u(t) est défini (pour presque tout t) par

$$\langle u(t), \psi \rangle_{H^1(\Omega)', H^1(\Omega)} = \sum_{i=1}^2 \langle u(t), \psi \rangle_{H^1(\Omega_i)', H^1(\Omega_i)}.$$

Comme $u_i \in L^2(]0, T[, H^1(\Omega_i)')$ et $\|\psi\|_{H^1(\Omega)}^2 \leq \sum_{i=1}^2 \|\psi_i\|_{H^1(\Omega_i)}^2$, on a bien $u \in L^2(]0, T[, H^1(\Omega)')$ et cela termine la démonstration.

Corrigé de l'exercice 4.4 (Sur la continuité à valeurs L^2)

- 1. La condition $\alpha \beta = 1$ donne que u(t) est continue au point x = 0 (pour presque tout t). Cette continuité en 0 permet alors de montrer que $\bar{u} \in L^2(]0, T[, H^1(\mathbb{R}))$.
- 2. (a) Comme $\bar{u} \in L^1(]0,T[,H^1(\mathbb{R})), \int_0^T \bar{u}(\cdot,t)\varphi'(t) \,\mathrm{d}t \in H^1(\mathbb{R}).$ Grâce à l'identification de $L^2(\mathbb{R})$ avec son dual, $H^1(\mathbb{R}) \subset L^2(\mathbb{R}) = L^2(\mathbb{R})' \subset H^1(\mathbb{R})' = H^{-1}(\mathbb{R})$ (les inclusions étant avec continuité). On calcule maintenant $\langle \int_0^T \bar{u}(\cdot,t)\varphi'(t) \,\mathrm{d}t,\psi \rangle_{H^{-1}(\mathbb{R}),H^1(\mathbb{R})}$ en utilisant la proposition 4.24, le fait que $\bar{u}(\cdot,t) \in H^{-1}(\mathbb{R})$ (par l'identification de $L^2(\mathbb{R})$ avec son dual) et des changements de variables.

$$\begin{split} \langle \int_0^T \bar{u}(\cdot,t) \varphi'(t) \, \mathrm{d}t, \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} &= \int_0^T \langle \bar{u}(\cdot,t) \varphi'(t), \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} \mathrm{d}t \\ &= \int_0^T \langle \bar{u}(\cdot,t), \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} \varphi'(t) \, \mathrm{d}t = \int_0^T \left(\int_{\mathbb{R}} \bar{u}(x,t) \psi(x) \, \mathrm{d}x \right) \varphi'(t) \, \mathrm{d}t \\ &= \int_0^T \left(\int_0^\infty u(x,t) \psi(x) \, \mathrm{d}x + \int_{-\infty}^0 \alpha u(-x,t) \psi(x) \, \mathrm{d}x - \int_{-\infty}^0 \beta u(-\gamma x,t) \psi(x) \, \mathrm{d}x \right) \varphi'(t) \mathrm{d}t \\ &= \int_0^T \left(\int_0^\infty u(x,t) \psi(x) \, \mathrm{d}x + \int_0^\infty \alpha u(x,t) \psi(-x) \, \mathrm{d}x - \int_0^\infty \frac{\beta}{\gamma} u(x,t) \psi(-\frac{x}{\gamma}) \, \mathrm{d}x \right) \varphi'(t) \mathrm{d}t \\ &= \int_0^T \left(\int_0^\infty u(x,t) \psi(x) \, \mathrm{d}x + \int_0^\infty \alpha u(x,t) \psi(-x) \, \mathrm{d}x - \int_0^\infty \frac{\beta}{\gamma} u(x,t) \psi(-\frac{x}{\gamma}) \, \mathrm{d}x \right) \varphi'(t) \mathrm{d}t \end{split}$$

(b) La fonction $\bar{\psi}$ appartient à $\mathcal{D}(\bar{\Omega})$ (c'est-à-dire qu'elle est la restriction à Ω d'un élément de $\mathcal{D}(\mathbb{R})$) et sa trace en x=0 est nulle grâce au fait que $(\alpha+1)-\frac{\beta}{\gamma}=0$. La fonction $\bar{\psi}$ appartient donc à $H^1_0(\Omega)$ et il est facile de montrer qu'il existe C, ne dépendant que de α , β et γ , tel que $\|\bar{\psi}\|_{H^1_0(\Omega)} \leq C\|\psi\|_{H^1(\mathbb{R})}$. Dans l'égalité obtenue à la question précédente, on utilise le fait que $u(\cdot,t)\in H^{-1}(\Omega)$ (par l'identification de $L^2(\Omega)$ avec son dual), de nouveau la proposition 4.24 et le fait que $\partial_t u=v\in L^2(]0,T[,H^{-1}(\Omega))$. On obtient

$$\begin{split} \langle \int_0^T \bar{u}(\cdot,t)\varphi'(t) \; \mathrm{d}t,\psi \rangle_{H^{-1}(\mathbb{R}),H^1(\mathbb{R})} &= \int_0^T \big(\int_0^\infty u(x,t)\bar{\psi}(x) \; \mathrm{d}x \big) \varphi'(t) \mathrm{d}t \\ &= \int_0^T \langle u(\cdot,t),\bar{\psi} \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} \varphi'(t) \mathrm{d}t = \int_0^T \langle u(\cdot,t)\varphi'(t),\bar{\psi} \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} \mathrm{d}t \\ &= \langle \int_0^T u(\cdot,t)\varphi'(t) \mathrm{d}t,\bar{\psi} \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} &= \langle -\int_0^T v(\cdot,t)\varphi(t) \mathrm{d}t,\bar{\psi} \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} \varphi(t) \; \mathrm{d}t. \end{split}$$

$$&= -\int_0^T \langle v(\cdot,t),\bar{\psi} \rangle_{H^{-1}(\Omega),H^1_0(\Omega)} \varphi(t) \; \mathrm{d}t.$$

3. Pour $\varphi \in \mathcal{D}(]0,T[)$ et $\psi \in \mathcal{D}(\mathbb{R})$, on note $\psi \otimes \varphi$ la fonction $(x,t) \mapsto \psi(x)\varphi(t)$. On note S l'application de $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(]0,T[)$ dans \mathbb{R} définie par

$$S(\psi \otimes \varphi) = \int_0^T \langle v(\cdot, t), \bar{\psi} \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \varphi(t) \, dt,$$

où $\bar{\psi}$ est définie comme à la question 2.

Par linéarité, S se prolonge sur l'espace vectoriel, noté G, engendré par les fonctions $\psi \otimes \varphi$. Si $\phi \in G$, $\phi(x,t) = \sum_{i=1}^{n} a_i \varphi_i(t) \psi_i(x)$, avec $n \in \mathbb{N}$, $\varphi \in \mathcal{D}(]0,T[)$ et $\psi_i \in \mathcal{D}(\mathbb{R})$ (pour tout i), et

$$S(\phi) = \int_0^T \langle v(\cdot, t), \sum_{i=1}^n a_i \varphi_i(t) \bar{\psi}_i \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt.$$

On a, pour tout t, avec C donné à la question 2b,

$$\|\sum_{i=1}^{n} a_{i} \varphi_{i}(t) \bar{\psi}_{i}\|_{H_{0}^{1}(\Omega)} \leq C \|\sum_{i=1}^{n} a_{i} \varphi_{i}(t) \psi_{i}\|_{H^{1}(\mathbb{R})} = \|\phi(\cdot, t)\|_{H^{1}(\mathbb{R})}.$$

On en déduit que

$$|S(\phi)| \leq \int_0^T \|v(\cdot,t)\|_{H^{-1}(\Omega)} \|\sum_{i=1}^n a_i \varphi_i(t) \bar{\psi}_i\|_{H_0^1(\Omega)} dt \leq C \int_0^T \|v(\cdot,t)\|_{H^{-1}(\Omega)} \|\phi(\cdot,t)\|_{H^1(\mathbb{R})} dt$$
$$\leq C \|v\|_{L^2([0,T[,H^{-1}(\Omega))}) \|\phi\|_{L^2([0,T[,H^1(\mathbb{R})))}.$$

L'application S se prolonge donc en une application linéaire continue de $L^2(]0,T[,H^1(\mathbb{R}))$ dans \mathbb{R} (ce prolongement est même unique car G est dense dans $L^2(]0,T[,H^1(\mathbb{R}))$). Ceci montre qu'il existe $w\in L^2(]0,T[,(H^1(\mathbb{R})')$ (qui est le dual de $L^2(]0,T[,H^1(\mathbb{R}))$) tel que

$$S(\phi) = \int_0^T \langle w(\cdot, t), \phi(\cdot, t) \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} dt.$$

En particulier ceci donne pour tout $\varphi \in \mathcal{D}([0,T])$ et $\psi \in \mathcal{D}(\mathbb{R})$,

$$\langle \int_0^T \bar{u}(\cdot,t)\varphi'(t) \, \mathrm{d}t, \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} = -S(\psi \otimes \varphi) = -\int_0^T \langle w(\cdot,t), \varphi(t)\psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})} dt$$
$$= \langle -\int_0^T w(t)\varphi(t) dt, \psi \rangle_{H^{-1}(\mathbb{R}), H^1(\mathbb{R})}.$$

On a donc $\int_0^T \bar{u}(\cdot,t)\varphi'(t) dt = -\int_0^T w(t)\varphi(t)dt$ pour tout $\varphi \in \mathcal{D}(]0,T[)$, c'est-à-dire $\partial_t \bar{u} = w \in L^2(]0,T[,(H^1(\mathbb{R})').$ Le lemme 4.26 donne alors $\bar{u} \in C([0,T],L^2(\mathbb{R}))$ et donc $u \in C([0,T],L^2(\Omega))$.

Corrigé de l'exercice 4.5 (Diffusion non homogène et non isotrope) Si A est symétrique, le plus simple consiste à utiliser une base hilbertienne de $L^2(\Omega)$ formée de fonctions propres de l'opérateur $u\mapsto -{\rm div}(A\nabla u)$ (avec condition de Dirichlet, c'est-à-dire u=0 sur $\partial\Omega$). On considère donc une famille $\{e_n,n\in\mathbb{N}^\star\}$ telle que e_n est (pour tout n) une solution faible de

$$\left\{ \begin{array}{ll} -{\rm div} A \nabla e_n = \lambda_n e_n & {\rm dans} \; \Omega, \\ e_n = 0 & {\rm sur} \; \partial \Omega, \end{array} \right.$$

avec $\lambda_n \in \mathbb{R}$. (On a vu dans la section 2.2 qu'une telle base existait.) La démontration de l'existence (et de l'unicité) d'une solution de (4.64) est alors très voisine de celle donnée pour le cas où A est la matrice identité.

Le cas où A est non symétrique est plus difficile car on n'a pas nécessairement une base hilbertienne de $L^2(\Omega)$ formée de fonctions propres de l'opérateur $u \mapsto -\text{div}(A\nabla u)$. Il faut alors modifier légèrement la démonstration. On considère alors la base hilbertienne $\{e_n, n \in \mathbb{N}^*\}$ associée au laplacien (avec condition de Dirichlet). Pour $n \in \mathbb{N}^*$, la fonction e_n est donc solution faible (non nulle) de

$$\begin{split} -\Delta e_n &= \lambda_n e_n \text{ dans } \Omega, \\ e_n &= 0 \text{ sur } \partial \Omega. \end{split}$$

On rappelle que $||e_n||_{L^2(\Omega)} = 1$, $\lambda_n > 0$ et $\lim_{n \to +\infty} \lambda_n = +\infty$. On a aussi $||e_n||_{H^1_0(\Omega)} = \sqrt{\lambda_n}$ et la famille $\{\frac{e_n}{\sqrt{\lambda_n}}, n \in \mathbb{N}^*\}$ est une base hilbertienne de $H^1_0(\Omega)$. C'était l'étape 1 de la démonstration du théorème 4.29).

Remarque 4.60 (Famille orthonormée) Compte tenu de la manière dont $H_0^1(\Omega)$ s'injecte dans $H^{-1}(\Omega)$ (par l'identification de $L^2(\Omega)'$ avec $L^2(\Omega)$) et de la définition du produit scalaire dans $H^{-1}(\Omega)$ (à partir du produit scalaire dans $H_0^{-1}(\Omega)$), on peut aussi remarquer que

$$(e_n|e_m)_{H^{-1}} = 0 \text{ si } n \neq m,$$

 $(e_n|e_m)_{H^{-1}} = \frac{1}{\lambda_n} \text{ si } n = m.$ (4.114)

La famille $\{\sqrt{\lambda_n}e_n, n \in \mathbb{N}^*\}$ est donc une famille orthonormée de $H^{-1}(\Omega)$ (c'est même une base hilbertienne de $H^{-1}(\Omega)$). Pour montrer (4.114), on rappelle tout d'abord la définition du produit scalaire dans $H^{-1}(\Omega)$. Si $u \in H_0^1(\Omega)$, on définit T_u dans $H^{-1}(\Omega)$ par

$$\langle T_u, \varphi \rangle_{H^{-1}, H_0^1} = (u|\varphi)_{H_0^1} = \int_{\Omega} \nabla u \cdot \nabla \varphi \, \mathrm{d}x.$$

L'application T est bijective de $H_0^1(\Omega)$ dans $H^{-1}(\Omega)$. Pour $u,v\in H_0^1(\Omega)$, on définit alors le produit scalaire dans $H^{-1}(\Omega)$ par

$$(T_u|T_v)_{H^{-1}(\Omega)} = (u|v)_{H_0^1(\Omega)} = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x.$$

Soit $n \in \mathbb{N}^*$, compte tenu de la manière dont $H_0^1(\Omega)$ s'injecte dans $H^{-1}(\Omega)$ (par l'identification de $L^2(\Omega)'$ avec $L^2(\Omega)$), on a, pour tout $\varphi \in H_0^1(\Omega)$,

$$\lambda_n \langle e_n, \varphi \rangle_{H^{-1}, H_0^1} = \lambda_n \int_{\Omega} e_n \varphi \, \mathrm{d}x = \int_{\Omega} \nabla e_n \cdot \nabla \varphi \, \mathrm{d}x,$$

ce qui montre que $T_{e_n} = \lambda_n e_n$. On a donc, pour $n, m \in \mathbb{N}^*$,

$$\lambda_n \lambda_m (e_n | e_m)_{H^{-1}(\Omega)} = (T_{e_n} | T_{e_m})_{H^{-1}(\Omega)} = (e_n | e_m)_{H_0^1(\Omega)} = \int_{\Omega} \nabla e_n \cdot \nabla e_m \, dx = \lambda_n \delta_{n,m}.$$

On en déduit bien (4.114).

On construit maintenant une solution approchée (étape 2 de la démonstration du théorème 4.29).

Pour $n \in \mathbb{N}^*$, on pose $E_n = ev\{e_p, p = 1, \dots n\}$, et on cherche une solution approchée u_n sous la forme $u_n(t) = \sum_{i=1}^n \alpha_i(t)e_i$ avec $\alpha_i \in C([0,T],\mathbb{R})$. Le calcul formel fait dans la démonstration du théorème 4.29 donne ici (en supposant que les α_i sont dérivables pour tout t), pour tout t0 et presque tout t1, t2, t3, t4.

$$\begin{split} &\langle u_n'(t) - \operatorname{div}(A\nabla u_n(t)) - f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \\ &= \sum_{i=1}^n \left(\alpha_i'(t) \int_{\Omega} e_i \varphi \, \mathrm{d}x + \alpha_i(t) \int_{\Omega} A\nabla e_i \cdot \nabla \varphi \, \mathrm{d}x \right) - \langle f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)}. \end{split}$$

On souhaite alors choisir les fonctions α_i pour que $\langle u_n'(t) - \operatorname{div}(A\nabla u_n)(t) - f(t), \varphi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = 0$ pour tout $\varphi \in E_n$.

On pose $f_i(t) = \langle f(t), e_i \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$ et on note F(t) le vecteur donc les composantes sont les $f_i(t)$, $i = 1, \ldots, n$. On définit aussi la matrice $n \times n$ (à coefficients réels) M en posant $M_{i,j} = \int_{\Omega} A \nabla e_j \cdot \nabla e_i \, \mathrm{d}x \, (M_{i,j})$ est le coefficient de M en ligne i et colonne j). en notant $\alpha(t)$ le vecteur donc les composantes sont les $\alpha_i(t)$, $i = 1, \ldots, n$, on souhaite donc avoir

$$\alpha'(t) + M\alpha(t) = F(t).$$

En tenant compte de la condition initiale et en posant $\alpha_i^{(0)} = (u_0|e_i)_2$ et $\alpha^{(0)}$ le vecteur donc les composantes sont les $\alpha_i^{(0)}$, $i = 1, \ldots, n$, ceci suggère donc de prendre

$$\alpha(t) = e^{-Mt}\alpha^{(0)} + \int_0^t e^{-M(t-s)}F(s)ds. \tag{4.115}$$

Les fonctions α_i ainsi définies appartiennent à $C([0,T],\mathbb{R})$ et on a donc $u_n\in C([0,T],E_n)\subset C([0,T],H^1_0(\Omega))$ avec $u_n(t)=\sum_{i=1}^n\alpha_i(t)e_i$.

Nous avons ici raisonné à n fixé. La matrice M et les fonctions F et α dépendent donc de n.

Adaptons maintenant l'étape 3 du théorème 4.29. Soit $n \in \mathbb{N}^*$ et u_n la solution approchée donnée par l'étape précédente. On va préciser ici ce que vaut la dérivée (par transposition) de u_n . Cette dérivée est notée $\partial_t u_n$. Par définition de la dérivation par transposition, $\partial_t u_n$ est un élément de \mathcal{D}_E^* avec $E = H_0^1(\Omega)$. Soit $\varphi \in \mathcal{D}(]0,T[)$ on a

$$\langle \partial_t u_n, \varphi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}} = -\int_0^T u_n(t) \varphi'(t) \, \mathrm{d}t \in E_n \subset H_0^1(\Omega).$$

Comme $u_n = \sum_{i=1}^n \alpha_i e_i$, on a donc

$$\langle \partial_t u_n, \varphi \rangle_{\mathcal{D}_E^{\star}, \mathcal{D}} = -\sum_{i=1}^n \int_0^T \alpha_i(t) e_i \varphi'(t) dt = -\sum_{i=1}^n \left(\int_0^T \alpha_i(t) \varphi'(t) dt \right) e_i.$$

On utilise maintenant (4.115),

$$\int_0^T \alpha_i(t)\varphi' \, \mathrm{d}t = T_i + S_i,$$

avec

$$T_i = \int_0^T (e^{-Mt}\alpha^{(0)})_i \varphi'(t)dt = \int_0^T (Me^{-Mt}\alpha^{(0)})_i \varphi(t)dt.$$
$$S_i = \int_0^T \left(\int_0^t e^{-M(t-s)} F(s)ds\right)_i \varphi'(t) dt.$$

Pour transformer S_i on utilise le théorème de Fubini et on obtient

$$S_i = \int_0^T \left(\int_0^t (Me^{-M(t-s)}F(s))_i ds \right) \varphi(t) dt - \int_0^T f_i(t)\varphi(t) dt.$$

On en déduit que $T_i+S_i=\int_0^T(M\alpha(t))_i\varphi(t)\;\mathrm{d}t-\int_0^Tf_i(t)\varphi(t)\;\mathrm{d}t,$ et donc

$$\langle \partial_t u_n, \varphi \rangle_{\mathcal{D}^*, \mathcal{D}} = -\sum_{i=1}^n \int_0^T (M\alpha(t))_i e_i \varphi(t) dt + \sum_{i=1}^n \int_0^T f_i(t) e_i \varphi(t) dt.$$

Comme φ est arbitraire dans $\mathcal{D}(]0,T[)$, on a donc (p.p. en t)

$$\partial_t u_n = -\sum_{i=1}^n (M\alpha)_i e_i + \sum_{i=1}^n f_i e_i \in L^2(]0, T[, E_n).$$

Le premier terme du membre de droite de cette égalité est même continu de [0,T] à valeurs dans E_n . En reprenant la définition de M, cette égalité donne (p.p. en t)

$$\partial_t u_n = -\sum_{i=1}^n \left(\int_{\Omega} A \nabla u_n \cdot \nabla e_i \, \mathrm{d}x \right) e_i + \sum_{i=1}^n f_i e_i. \tag{4.116}$$

La situation est légérement différente de celle du théorème 4.29. Mais on a toujours

$$\partial_t u_n \in L^2([0,T[,E_n) \subset L^2([0,T[,H_0^1(\Omega)) \subset L^2([0,T[,H^{-1}(\Omega)).$$

Compte tenu de la manière dont $H_0^1(\Omega)$ s'injecte dans $H^{-1}(\Omega)$ (par l'identification de $L^2(\Omega)'$ avec $L^2(\Omega)$) on a pour tout $v \in L^2([0,T],H_0^1(\Omega))$,

$$\int_0^T \langle \partial_t u_n(t), v(t) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt = -\int_0^T \int_\Omega \sum_{i=1}^n (M\alpha(t))_i e_i v \, dx \, dt + \sum_{i=1}^n \int_0^T \int_\Omega f_i e_i v \, dx \, dt.$$

Ceci est intéressant surtout lorsque $v \in L^2([0,T],E_n)$ car en reprenant la définition de M on obtient

$$\int_0^T \langle \partial_t u_n(t), v(t) \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} dt = -\int_0^T \int_\Omega A \nabla u_n \cdot \nabla v \, dx \, dt + \sum_{i=1}^n \int_0^T \int_\Omega f_i e_i v \, dx \, dt.$$

Ceci donne, en revenant à la définition de f_i , toujours pour $v \in L^2(]0, T[, E_n)$,

$$\int_{0}^{T} \langle \partial_{t} u_{n}(t), v(t) \rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} dt + \int_{0}^{T} \int_{\Omega} A \nabla u_{n} \cdot \nabla v \, dx \, dt$$

$$= \sum_{i=1}^{n} \int_{0}^{T} \langle f(t), e_{i} \rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} \left(\int_{\Omega} e_{i} v \, dx \right) dt = \int_{0}^{T} \langle f(t), v \rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} dt. \tag{4.117}$$

On rapelle aussi que $u_n \in C([0,T],H^1_0(\Omega))$ et $u_n(0)=P_nu_0$ où P_n est l'opérateur de projection orthogonale dans $L^2(\Omega)$ sur le s.e.v. E_n .

On cherche maintenant (étape 4) des estimations sur la solution approchée. Pour $n \in \mathbb{N}^*$, on a

$$u_n \in C([0,T], H_0^1(\Omega)) \subset L^2([0,T], H_0^1(\Omega)) \text{ et } \partial_t u_n \in L^2([0,T], E_n) \subset L^2([0,T], H^{-1}(\Omega)).$$

D'après la section 4.2, on a donc

$$\frac{1}{2}||u_n(T)||_2^2 - \frac{1}{2}||u_0||_2^2 = \int_0^T \langle \partial_t u_n, u_n \rangle_{H^{-1}, H_0^1} dt.$$

En prenant $v = u_n$ dans (4.117), on en déduit

$$\frac{1}{2}||u_n(T)||_2^2 - \frac{1}{2}||u_0||_2^2 + \int_0^T \int_{\Omega} A\nabla u_n \cdot \nabla u_n \, dx \, dt = \int_0^T \langle f, u_n \rangle_{H^{-1}, H_0^1} dt,$$

et donc

$$\alpha \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2 \leq \int_0^T \int_{\Omega} A \nabla u_n \cdot \nabla u_n \, dx \, dt \leq \frac{1}{2} \|u_0\|_2^2 + \int_0^T \langle f, u_n \rangle_{H^{-1},H_0^1} dt.$$

On en déduit

$$\begin{split} \alpha \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2 &\leq \frac{1}{2} \|u_0\|_2^2 + \int_0^T \langle f,u_n \rangle_{H^{-1},H_0^1} dt \\ &\leq \frac{1}{2} \|u_0\|_2^2 + \|f\|_{L^2(]0,T[,H^{-1}(\Omega))} \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))} \\ &\leq \frac{1}{2} \|u_0\|_2^2 + \frac{1}{2\alpha} \|f\|_{L^2(]0,T[,H^{-1}(\Omega))}^2 + \frac{\alpha}{2} \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2. \end{split}$$

On a donc

$$\alpha \|u_n\|_{L^2(]0,T[,H_0^1(\Omega))}^2 \le \|u_0\|_2^2 + \frac{1}{\alpha} \|f\|_{L^2(]0,T[,H^{-1}(\Omega))}^2.$$

Ce qui donne une borne sur u_n dans $L^2(]0,T[,H^1_0(\Omega)).$

Pour obtenir la borne sur $\partial_t u_n$, on utilise (4.116). Pour presque tout t on a

$$\partial_t u_n(t) = -\sum_{i=1}^n \left(\int_{\Omega} A \nabla u_n(t) \cdot \nabla e_i \, dx \right) e_i + \sum_{i=1}^n f_i(t) e_i.$$

Soit $v \in H^1_0(\Omega)$, on a $v = \sum_{i=1}^\infty (v|e_i)_{L^2} e_i$ et cette série est convergente dans $L^2(\Omega)$ et dans $H^1_0(\Omega)$. En posant $P_n(v) = \sum_{i=1}^n (v|e_i)_{L^2} e_i$ on a $\|P_nv\|_{H^1_0(\Omega)} \le \|v\|_{H^1_0(\Omega)}$. Comme

$$\langle \partial_t u_n(t), P_n v \rangle_{H^{-1}, H_0^1} = \langle \partial_t u_n(t), v \rangle_{H^{-1}, H_0^1} = \int_{\Omega} \partial_t u_n(t) v \, \mathrm{d}x$$

$$= -\sum_{i=1}^n \left(\int_{\Omega} A \nabla u_n(t) \cdot \nabla e_i \, \mathrm{d}x \right) (v|e_i)_{L^2} + \sum_{i=1}^n f_i(t) (v|e_i)_{L^2}.$$
(4.118)

on en déduit que

$$\|\partial_t u_n(t)\|_{H^{-1}(\Omega)} = \sup\{\langle \partial_t u_n(t), v \rangle_{H^{-1}, H_0^1}, v \in E_n, \|v\|_{H_0^1(\Omega)} \le 1\}.$$

Or, pour $v \in E_n$, on obtient avec (4.118)

$$\langle \partial_t u_n(t), v \rangle_{H^{-1}, H_0^1} = \int_{\Omega} A \nabla u_n(t) \cdot \nabla v \, \mathrm{d}x + \langle f(t), v \rangle_{H^{-1}, H_0^1}.$$

En utilisant le fait que les coefficients de A sont dans $L^{\infty}(\Omega)$, on en déduit l'existence de β , ne dépendant que de A, t.q. pour presque tout t,

$$\|\partial_t u_n(t)\|_{H^{-1}(\Omega)} \le \beta \|u_n(t)\|_{H^1_0(\Omega)} + \|f(t)\|_{H^{-1}(\Omega)}.$$

La suite $(u_n)_{n\in\mathbb{N}^*}$ est bornée dans $L^2(]0,T[,H^1_0(\Omega))$, la suite $(\partial_t u_n)_{n\in\mathbb{N}^*}$ est donc bornée dans $L^2(]0,T[,H^{-1}(\Omega))$.

Il s'agit maintenant (étape 5) de passer à la limite quand $n \to +\infty$. Grâce aux estimations obtenues à l'étape précédente, on peut supposer, après extraction éventuelle d'une sous-suite, que, quand $n \to +\infty$,

$$u_n \to u$$
 faiblement dans $L^2(]0, T[, H_0^1(\Omega)),$

$$\partial_t u_n \to w$$
 faiblement dans $L^2(]0,T[,H^{-1}(\Omega)).$

Comme nous l'avons dans la démonstration du théorème 4.29, on a $w = \partial_t u$.

Soit $v \in L^2(]0, T[, H_0^1(\Omega))$. Soit $n \in \mathbb{N}^*$. On pose $v_n(t) = P_n(v(t))$, de sorte que, par convergence dominée, $v_n \to v$ dans $L^2(]0, T[, H_0^1(\Omega))$. On utilise alors (4.117) avec v_n au lieu de v. On obtient

$$\int_0^T \langle \partial_t u_n, v_n \rangle_{H^{-1}, H_0^1} dt + \int_0^T \int_{\Omega} A \nabla u_n \cdot \nabla v_n \, dx \, dx \, dt = \int_0^T \langle f, v_n \rangle_{H^{-1}, H_0^1} dt.$$

Les trois termes de cette égalité passent à limite quand $n \to +\infty$ grâce aux convergences de u_n , v_n et $\partial_t u_n$. On obtient ainsi

$$\int_0^T \langle \partial_t u, v \rangle_{H^{-1}, H_0^1} dt + \int_0^T A \nabla u \cdot \nabla v \, dx \, dt = \int_0^T \langle f, v \rangle_{H^{-1}, H_0^1} dt.$$

Ce qui est bien ce qui était souhaité.

Comme $u \in L^2(]0,T[,H^1_0(\Omega))$ et $\partial_t u \in L^2(]0,T[,H^{-1}(\Omega))$, on sait que $u \in C([0,T],L^2(\Omega))$. Pour terminer la démonstration du fait que u est solution de (4.64), il reste donc seulement à montrer que $u(0) = u_0$ p.p. (c'est-à-dire $u(0) = u_0$ dans $L^2(\Omega)$). La démonstration de ce point est identique à celle donnée dans la démonstration du théorème 4.29. Cela termine la démonstration de l'existence d'une solution à (4.64).

On montre maintenant l'unicité de la solution de (4.64). La démonstration est très proche de celle donnée pour le théorème 4.29. Soit u_1, u_2 deux solutions de (4.64). On pose $u = u_1 - u_2$. En faisant la différence des équations satisfaites par u_1 et u_2 et en prenant, pour $t \in [0, T]$, $v = u1_{[0,t]}$ comme fonction test, on obtient

$$\int_0^t \langle \partial_t u(s), u(s) \rangle_{H^{-1}, H_0^1} ds + \int_0^t \int_\Omega A \nabla u(s) \cdot \nabla u(s) \, dx ds = 0.$$

Comme $u \in L^2(]0, T[, H_0^1(\Omega))$ et $\partial_t u \in L^2(]0, T[, H^{-1}(\Omega))$, on a, d'après la section 4.2,

$$\frac{1}{2}(\|u(t)\|_2^2 - (\|u(0)\|_2^2) = \int_0^t \langle \partial_t u(s), u(s) \rangle_{H^{-1}, H_0^1} ds.$$

On en déduit, pour tout $t \in [0, T]$,

$$(\|u(t)\|_2^2 - (\|u(0)\|_2^2) + 2\int_0^t \int_{\Omega} A\nabla u(s) \cdot \nabla u(s) \, dx \, dt = 0.$$

Enfin, comme u(0) = 0 et $A\nabla u \cdot \nabla u \geq 0$ p.p., on obtient bien, finalement, u(t) = 0 p.p. dans Ω , pour tout $t \in [0, T]$. On a ainsi terminé la démonstration de l'unicité de la solution de (4.64).

Corrigé de l'exercice 4.6 (Existence par le théorème de Schauder)

1. Soit $(\bar{u}_n)_{n\in\mathbb{N}}$ une suite de $L^2(]0,T[,L^2(\Omega))$ et $\bar{u}\in L^2(]0,T[,L^2(\Omega))$ telles que $\bar{u}_n\to\bar{u}$ dans $L^2(]0,T[,L^2(\Omega))$ quand $n\to+\infty$. On pose $u_n=T(\bar{u}_n)$ et $u=T(\bar{u})$. Pour montrer que $u_n\to u$ dans $L^2(]0,T[,L^2(\Omega))$ quand $n\to+\infty$, on raisonne par l'absurde. Si $u_n\not\to u$ dans $L^2(]0,T[,L^2(\Omega))$, il existe $\varepsilon>0$ et une soussuite, encore notée $(u_n)_{n\in\mathbb{N}}$, telle que

$$||u_n - u||_{L^2(]0,T[,L^2(\Omega))} \ge \varepsilon \text{ pour tout } n \in \mathbb{N}.$$
(4.119)

Pour $n \in \mathbb{N}$, u_n est la solution de (4.6) avec \bar{u}_n au lieu de \bar{u} . En prenant $v = u_n$ comme fonction test, on en déduit, grâce à (4.67), que la suite $(u_n)_{n \in \mathbb{N}}$ est bornée dans $L^2(]0,T[,H^1_0(\Omega))$. Puis, comme

$$\partial_t u_n = \operatorname{div}(A(\bar{u}_n)\nabla u_n) + f$$

dans $L^2(]0,T[,H^{-1}(\Omega))$, on en déduit que la suite $(\partial_t u_n)_{n\in\mathbb{N}}$ est bornée dans $L^2(]0,T[,H^{-1}(\Omega))$. Après extraction éventuelle de sous-suite, on peut donc supposer qu'il existe $w\in L^2(]0,T[,H^1_0(\Omega))$ et $\zeta\in L^2(]0,T[,H^{-1}(\Omega))$ telles que

$$u_n \to w$$
 faiblement dans $L^2(]0,T[,H^1_0(\Omega))$ lorsque $n \to +\infty,$ $\partial_t u_n \to \zeta$ faiblement dans $L^2(]0,T[,H^{-1}(\Omega))$ lorsque $n \to +\infty.$

Par le théorème 4.45, on a aussi $u_n \to u$ dans $L^2(]0,T[,L^2(\Omega))$. Comme cela a été montré dans la démonstration du théorème 4.29 on a nécessairement $\zeta=\partial_t w$.

On peut également supposer, toujours après extraction de sous-suite, que $\bar{u}_n \to \bar{u}$ p.p. lorsque $n \to +\infty$, de sorte que $A(\bar{u}_n) \to A(\bar{u})$ p.p. (grâce à la continuité des $a_{i,j}$).

Soit $v \in L^2(]0, T[, H_0^1(\Omega))$, on peut alors passer à la limite quand $n \to +\infty$, dans (4.6) écrit avec \bar{u}_n et u_n (au lieu de \bar{u} et u). On obtient que w est **la** solution de (4.6), c'est-à-dire que $w = u = T(\bar{u})$. On a donc $u_n \to u$ dans $L^2(]0, T[, L^2(\Omega))$, en contradiction avec (4.119).

On a bien ainsi montré la continuité de T.

- 2. Le début du raisonnement de la question précédente montre que $\operatorname{Im}(T)$ est bornée dans $L^2(]0,T[,H^1_0(\Omega))$ et que $\{\partial_t u,u\in\operatorname{Im}(T)\}$ est une partie bornée de $L^2(]0,T[,H^{-1}(\Omega))$. Le lemme de compacité 4.37 donne alors que $\operatorname{Im}(T)$ est relativement compacte dans $L^2(]0,T[,L^2(\Omega))$, ce qui donne la compacité de T.
- 3. Ici encore, ceci découle du raisonnement fait à la première question. En effet, on sait que $\operatorname{Im}(T)$ est bornée dans $L^2(]0,T[,H^1_0(\Omega))$ et donc aussi dans $L^2(]0,T[,L^2(\Omega))$.
- 4. On note B_R la boule de $L^2(]0,T[,L^2(\Omega))$ de centre 0 et de rayon R, avec R donné à la question précédente. L'opérateur T est continu et compact de B_R dans B_R . Le théorème de Schauder donne alors l'existence de $u\in B_R$ (et donc $u\in L^2(]0,T[,L^2(\Omega))$) telle que u=T(u), qui est donc solution de (4.42).
- 5. La démonstration est ici très proche de celle faite pour montrer l'unicité de la solution de (4.43).

Soit u_1, u_2 deux solutions de (4.42); posons $u = u_1 - u_2$ et montrons que u = 0 p.p..

Pour $\varepsilon > 0$ on définit la fonction T_{ε} de \mathbb{R} dans \mathbb{R} par $T_{\varepsilon}(s) = \max\{-\varepsilon, \min\{s, \varepsilon\}\}$. On note aussi ϕ_{ε} la primitive de T_{ε} s'annulant en 0. En prenant $v = T_{\varepsilon}(u)$ dans les formulations faibles satisfaites par u_1 et u_2 , on obtient

$$\int_0^T \langle \partial_t u, T_{\varepsilon}(u) \rangle_{H^{-1}, H_0^1} dt + \int_0^T \int_{\Omega} A(u_1) \nabla u \cdot \nabla T_{\varepsilon}(u) dx dt$$
$$= \int_0^T \int_{\Omega} (A(u_2) - A(u_1)) \nabla u_2 \cdot \nabla T_{\varepsilon}(u) dx dt.$$

Comme $\nabla T_{\varepsilon}(u) = \nabla u \mathbb{1}_{0<|u|<\varepsilon}$ p.p., on en déduit que

$$\int_{\Omega} \phi_{\varepsilon}(u(x,T)) dx - \int_{\Omega} \phi_{\varepsilon}(u(x,0)) dx + \alpha \int_{0}^{T} \int_{\Omega} \nabla u \cdot \nabla u \mathbb{1}_{0 < |u| < \varepsilon} dx dt$$

$$\leq \int_{0}^{T} \int_{\Omega} |(A(u_{1}) - A(u_{2})) \nabla u_{2}| |\nabla u| \mathbb{1}_{0 < |u| < \varepsilon} dx dt.$$
(4.120)

Comme les $a_{i,j}$ sont des fonctions lipschitziennes, il existe L t.q., pour tout $i, j \in \{1, ..., N\}$ et s_1 , $s_2 \in \mathbb{R}$,

$$|a_{i,j}(s_1) - a_{i,j}(s_2)| \le L|s_1 - s_2|,$$

On utilise alors le fait que $u_0=0$ p.p. et $\phi_{\varepsilon}\geq 0$ pour déduire de (4.120), avec $A_{\varepsilon}=\{0<|u|<\varepsilon\}$ et y=(x,t),

$$\alpha \int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u)|^2 dx dt \le N^2 L \varepsilon \left(\int_A |\nabla u_2|^2 dy \right)^{\frac{1}{2}} \left(\int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u)|^2 dx dt \right)^{\frac{1}{2}}.$$

On a donc $\alpha \| |\nabla T_{\varepsilon}(u)| \|_{L^{2}(Q)} \leq a_{\varepsilon} \varepsilon$, avec $Q =]0, T[\times \Omega]$ et

$$a_{\varepsilon} = N^2 L \Big(\int_{A_{\varepsilon}} |\nabla u_2|^2 \, \mathrm{d}y \Big)^{\frac{1}{2}}.$$

Comme $\cap_{\varepsilon>0} A_{\varepsilon}=\emptyset$ la continuité décroissante d'une mesure donne que la mesure de Lebesgue (N+1) dimensionnelle) de A_{ε} tend vers 0 quand $\varepsilon\to 0$; comme $\nabla u_2\in L^2(Q)^N$, (noter que $L^2(Q)$ peut être identifié à $L^2([0,T],L^2(\Omega))$), on a donc

$$\lim_{\varepsilon \to 0} \int_{A_{\varepsilon}} |\nabla u_2|^2 \, \mathrm{d}y = 0,$$

ce qui donne $\lim_{\varepsilon\to 0} a_{\varepsilon} = 0$. Il nous reste maintenant à utiliser, par exemple, l'injection de $W_0^{1,1}(\Omega)$ dans $L^{1^*}(\Omega)$; elle donne que pour $t \in]0,T[$,

$$||T_{\varepsilon}(u(t))||_{L^{1^{\star}}(\Omega)} \le |||\nabla T_{\varepsilon}(u(t))|||_{L^{1}(\Omega)}. \tag{4.121}$$

En désignant par "mes" le mesure de le Lebesgue dans \mathbb{R}^N , on remarque maintenant que pour $t \in]0,T[$

$$\varepsilon \lambda_N \{ |u(t)| \ge \varepsilon \}^{\frac{1}{1^*}} \le \left(\int_{\Omega} |T_{\varepsilon}(u)|^{1^*} dx \right)^{\frac{1}{1^*}}.$$

On a donc, avec (4.121),

$$\varepsilon \lambda_N \{ |u(t)| \ge \varepsilon \}^{\frac{1}{1^*}} \le \| |\nabla T_\varepsilon(u(t))| \|_{L^1(\Omega)} = \int_{\Omega} |\nabla T_\varepsilon(u(x,t))| \, \mathrm{d}x,$$

et, en intégrant par rapport à t, sachant que $\frac{1}{1^*} = \frac{N-1}{N}$ et utilisant l'inégalité de Cauchy-Schwarz,

$$\varepsilon \int_0^T \lambda_N \{|u(t)| \ge \varepsilon\}^{\frac{N-1}{N}} dt \le \int_0^T \int_{\Omega} |\nabla T_{\varepsilon}(u(x,t))| dx dt \le \||\nabla T_{\varepsilon}(u)||_{L^2(Q)} (T\lambda_N(\Omega))^{\frac{1}{2}} \le \frac{(T\lambda_N(\Omega))^{\frac{1}{2}}}{\alpha} a_{\varepsilon} \varepsilon.$$

On a donc

$$\int_{0}^{T} \lambda_{N}\{|u(t)| \geq \varepsilon\}^{\frac{N-1}{N}} dt \leq \frac{(T\lambda_{N}(\Omega))^{\frac{1}{2}}}{\alpha} a_{\varepsilon}.$$

quand $\varepsilon \to 0$, par convergence dominée, on en déduit (comme $\lim_{\varepsilon \to 0} a_{\varepsilon} = 0$)

$$\int_0^T \lambda_N \{|u(t)| > 0\}^{\frac{N-1}{N}} dt \le 0.$$

Ce qui donne $\lambda_N\{|u(t)|>0\}=0$ p.p. en $t\in]0,T[$ et donc u=0 p.p., ce qui termine cette preuve d'unicité.

Corrigé de l'exercice 4.10 (Théorème de Kolmogorov, avec $B = \mathbb{R}$)

- 1. Pour tout $t \in]0, \delta[$ on a $|u_n(t)| \le |u_n(t+h)| + |u_n(t+h) u_n(t)|$. En intégrant cette inégalité entre 0 et δ , on obtient bien (4.110).
- 2. Comme d'habitude, on choisit pour u_n l'un de représentants, de sorte que $u_n \in \mathcal{L}^1_{\mathbb{R}}(]0, T[,\mathcal{B}(]0,T[),\lambda)$ (pour tout $n \in \mathbb{N}$).

L'inégalité (4.110) est vraie pour tout $h \in]0, h_0[$. En intégrant (4.110) entre 0 et h_0 et en remarquant que $\int_0^{\delta} |u_n(t+h) - u_n(t)| dt \le \eta(h) \le \eta(h_0)$ (car $h \le h_0$ et $\delta \le T - h_0 \le T - h$) on obtient

$$h_{0} \int_{0}^{\delta} |u_{n}(t)| dt \leq \int_{0}^{h_{0}} \left(\int_{0}^{\delta} |u_{n}(t+h)| dt \right) dh + \int_{0}^{h_{0}} \left(\int_{0}^{\delta} |u_{n}(t+h) - u_{n}(t)| dt \right) dh$$

$$\leq \int_{0}^{h_{0}} \left(\int_{0}^{\delta} |u_{n}(t+h)| dt \right) dh + h_{0} \eta(h_{0}).$$

La mesure de Lebesgue est σ -finie et l'application $(t,h)\mapsto u_n(t+h)$ est borélienne de $]0,\delta[\times]0,h_0[$ dans $\mathbb R$ (car c'est la composée de $(t,h)\mapsto t+h$ qui est continue donc borélienne et de $s\mapsto u_n(s)$ qui est borélienne). On peut donc appliquer le théorème de Fubini-Tonelli pour obtenir que

$$\int_0^{h_0} \left(\int_0^{\delta} |u_n(t+h)| \, \mathrm{d}t \right) dh = \int_0^{\delta} \left(\int_0^{h_0} |u_n(t+h)| \, \mathrm{d}h \right) \, \mathrm{d}t \le \int_0^{\delta} \left(\int_0^T |u_n(s)| \, \mathrm{d}s \right) \le \delta \|u_n\|_1.$$

On en déduit (4.111).

3. Soit $\varepsilon > 0$. On choisit d'abord $h_0 \in]0,T[$ tel que $\eta(h_0) \leq \varepsilon.$ Puis, avec $C = \sup_{n \in \mathbb{N}} \|u_n\|_1$, on pose $\overline{\delta} = \min\{T - h_0, \varepsilon \frac{h_0}{C}\}$. On obtient alors, pour tout $n \in \mathbb{N}$,

$$0 \le \delta \le \overline{\delta} \Rightarrow \int_0^{\delta} |u_n(t)| dt \le 2\varepsilon.$$

On a donc $\int_0^\delta |u_n(t)| \, \mathrm{d}t \to 0$ quand $\delta \to 0^+$, uniformément par rapport à n.

Une démonstration analogue donne aussi que $\int_{T-\delta}^T |u_n(t)| dt \to 0$ quand $\delta \to 0^+$, uniformément par rapport à n (il suffit de raisonner avec $v_n(t) = u_n(T-t)$).

On prolonge u_n par 0 hors de]0,T[(et on note toujours u_n la fonction prolongée). Pour appliquer le théorème 4.43, il suffit de montrer que

$$\int_{\mathbb{R}} |u_n(t+h) - u_n(t)| dt \to 0 \text{ quand } h \to 0^+, \text{ uniformément par rapport à } n \in \mathbb{N}.$$

Pour cela, on remarque que pour h > 0 et $n \in \mathbb{N}$,

$$\int_{\mathbb{R}} |u_n(t+h) - u_n(t)| dt
\leq \int_{-h}^{0} |u_n(t+h)| dt + \int_{0}^{T-h} |u_n(t+h) - u_n(t)| dt + \int_{T-h}^{T} |u_n(t)| dt
= \int_{0}^{h} |u_n(t)| dt + \int_{0}^{T-h} |u_n(t+h) - u_n(t)| dt + \int_{T-h}^{T} |u_n(t)| dt.$$

Soit $\varepsilon > 0$. Il existe $h_1 > 0$ tel que $\eta(h_1) \le \varepsilon$. Puis, avec la question précédente, il existe $h_2 > 0$ tel que (pour tout $n \in \mathbb{N}$)

$$0 \le h \le h_2 \Rightarrow \int_0^h |u_n(t)| dt \le \varepsilon \text{ et } \int_{T-h}^T |u_n(t)| dt \le \varepsilon.$$

Avec $h_3=\min\{h_1,h_2\},$ on a donc (pour tout $n\in\mathbb{N}$)

$$0 \le h \le h_3 \Rightarrow \int_{\mathbb{R}} |u_n(t+h) - u_n(t)| dt \le 3\varepsilon.$$

Ceci termine la question.

Chapitre 5

Problèmes hyperboliques

Dans ce chapitre, nous allons nous intéresser tout d'abord aux équations hyperboliques scalaires, et nous allons démontrer le théorème d'existence et d'unicité de la solution entropique, dû à Kruzhkov ¹ Nous étudierons le cas unidimensionnel (section 5.1) puis multidimensionnel (section 5.2). Dans la section 5.3 nous donnerons quelques éléments pour l'étude des systèmes hyperboliques.

5.1 Le cas unidimensionnel

Les équations de type hyperbolique interviennent par exemple en mécanique des fluides (aéronautique, écoulements diphasiques, modélisation de rupture de barrage et d'avalanches). Elles sont souvent obtenues en négligeant les phénomènes de diffusion (parce qu'ils sont faibles à l'échelle considérée) dans les équations de conservation de la mécanique. L'exemple le plus classique d'équation hyperbolique linéaire est l'équation de transport (ou d'advection).

$$\partial_t u - c \partial_x u = 0, \ t \in \mathbb{R}_+, \ x \in \mathbb{R}, \tag{5.1}$$

où \boldsymbol{c} est la vitesse de transport avec condition initiale :

$$u(x,0) = u_0(x). (5.2)$$

Dans le cas où la condition initiale u_0 est suffisamment régulière, il est facile de voir que la fonction :

$$u(x,t) = u_0(x+ct),$$

est solution de (5.1)-(5.2). Si u_0 est non régulière (par exemple discontinue), nous verrons qu'il y a encore moyen de montrer que la fonction ainsi définie est solution en un sens que nous qualifierons de "faible". Si l'équation est non linéaire, i.e.

$$\partial_t u + \partial_x (f(u)) = 0, t \in \mathbb{R}_+, x \in \mathbb{R}_+$$

avec par exemple $f(u) = u^2$, et condition initiale (5.2), on peut encore définir des solutions faibles, mais leur calcul demande plus de travail, comme nous le verrons par la suite.

On se donne $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in C^1(\mathbb{R})$ et on considère maintenant le problème de Cauchy suivant, constitué d'une équation hyperbolique non linéaire et d'une condition initiale :

$$\partial_t u + \partial_x (f(u)) = 0, \quad (x, t) \in \mathbb{R} \times \mathbb{R}_+,$$
 (5.3a)

^{1.} Stanislav Nikolaevich Kruzhkov (1936–1997), mathématicien russe, spécialiste de l'analyse des EDP non linéaires.

$$u(x,0) = u_0(x). (5.3b)$$

5.1.1 Solutions classiques et courbes caractéristiques

Commençons par donner la définition de solution classique de ce problème même si, comme nous le verrons après, le problème (5.3) n'a pas, en général, de solution classique.

Notations. Soit Q une partie de \mathbb{R}^p $(p \geq 1)$ et $k \in \mathbb{N}$. On dit que $u \in C^k(\bar{Q})$ si u est la restriction à Q d'une fonction de classe C^k sur \mathbb{R}^p . Ceci est équivalent à la définition usuelle si k=0. On utilisera aussi la notation $u \in C^k_c(Q)$ qui signifie que $u \in C^k(\bar{Q})$ et qu'il existe $K \subset Q$, K compact tel que u=0 sur K^c . Cette notation sera utilisée par exemple pour $Q=\mathbb{R} \times \mathbb{R}_+$ ou $Q=\mathbb{R} \times [0,T[$.

Définition 5.1 (Solution classique) On suppose que $u_0 \in C^1(\mathbb{R})$ et $f \in C^1(\mathbb{R}, \mathbb{R})$. Alors u est solution classique de (5.3) si $u \in C^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ et u vérifie

$$\begin{cases} \partial_t u(x,t) + \partial_x (f(u))(x,t) = 0, & \forall (x,t) \in \mathbb{R} \times \mathbb{R}_+^*, \\ u(x,0) = u_0(x), & \forall x \in \mathbb{R}. \end{cases}$$

Avant de donner un résultat de non existence d'une solution classique (proposition 5.4), nous rappelons le résultat classique d'existence et d'unicité locale de solutions pour une équation différentielle non linéaire (théorème de Cauchy-Lipschitz), avec une fonction a localement lipschitzienne de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} et $x_0 \in \mathbb{R}$,

$$\begin{cases} x'(t) = a(x(t), t), & t \in \mathbb{R}_+^*, \\ x(0) = x_0. \end{cases}$$

$$(5.4)$$

Pour tout T>0, le problème (5.4) admet au plus une solution (classique) définie sur [0,T[. Il existe $T_{\max}>0$ (éventuellement égal à $+\infty$) et une fonction x continue sur $[0,T_{\max}[$, de classe C^1 sur $]0,T_{\max}[$, solution (classique) de (5.4). De plus, si $T_{\max}<+\infty$ alors $|x(t)|\to+\infty$ lorsque $t\to T_{\max}$.

Soit u une solution classique de (5.3). On définit alors

$$a \in C(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$$

$$(x,t) \mapsto a(x,t) = f'(u(x,t)).$$
(5.5)

Il est clair que la fonction u est alors une solution classique du problème suivant :

$$\begin{cases}
\partial_t u(x,t) + a(x,t)\partial_x u(x,t) = 0, & (x,t) \in \mathbb{R} \times \mathbb{R}_+^*, \\
u(x,0) = u_0(x).
\end{cases}$$
(5.6)

Nous donnons maintenant la définition des courbes caractéristiques pour l'équation (5.6), qui permet le lien entre les équations hyperboliques linéaires et les équations différentielles ordinaires.

Définition 5.2 (Courbe caractéristique) On suppose que la fonction a définie par (5.5) est localement lipschitzienne de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} . Soit $x_0 \in \mathbb{R}$. On appelle courbe caractéristique du problème (5.6) issue de $x_0 \in \mathbb{R}$, la courbe définie par le problème de Cauchy suivant :

$$\begin{cases} x'(t) = a(x(t), t) \\ x(0) = x_0 \end{cases}$$

$$(5.7)$$

Proposition 5.3 (Solutions classiques et courbes caractéristiques) Soit $f \in C^2(\mathbb{R}, \mathbb{R})$, $u_0 \in C^1(\mathbb{R})$ et u une solution classique de (5.3). Alors, pour tout $x_0 \in \mathbb{R}$ et tout $t \in \mathbb{R}_+$, on a $u(x_0 + f'(u_0(x_0))t, t) = u_0(x_0)$. Autrement dit, pour tout $x_0 \in \mathbb{R}$, la fonction u est constante sur la droite $t \mapsto x(t) = x_0 + f'(u_0(x_0))t$. (Cette droite est la courbe caractéristique du problème (5.6) issue de $x_0 \in \mathbb{R}$ avec a(x,t) = f'(u(x,t)).)

Démonstration On pose a(x,t)=f'(u(x,t)). Comme $f\in C^2(\mathbb{R},\mathbb{R})$ et que $u\in C^1(\mathbb{R}\times\mathbb{R}_+,\mathbb{R})$, la fonction a est bien localement lipschitzienne de $\mathbb{R}\times\mathbb{R}_+$ dans \mathbb{R} . Le théorème de Cauchy-Lipschitz s'applique donc pour le problème (5.6). Soit $x_0\in\mathbb{R}$, le problème (5.6) admet alors une solution maximale x(t) définie sur $[0,T_{\max}[$, et |x(t)| tend vers l'infini lorsque t tend vers T_{\max} si $T_{\max}<+\infty$. Les trois étapes de la démonstration sont les suivantes :

1. Comme u est solution classique, on a $u(x(t),t)=u_0(x_0), \forall t\in [0,T_{\max}[$, et donc u (solution de (5.3)) est constante sur la droite caractéristique issue de x_0 . En effet, soit φ définie par $\varphi(t)=u(x(t),t)$; en dérivant φ , on obtient : $\varphi'(t)=\partial_t u(x(t),t)+\partial_x u(x(t),t)x'(t)$. Comme la fonction x vérifie (5.7), ceci entraîne : $\varphi'(t)=\partial_t u(x(t),t)+f'(u(x(t),t))\partial_x u(x(t),t)$, et donc

$$\varphi'(t) = \partial_t u(x(t), t) + \partial_x u(f(u))(x(t), t) = 0.$$

La fonction φ est donc constante, et on a :

$$u(x(t), t) = \varphi(t) = \varphi(0) = u(x(0), 0) = u(x_0, 0) = u_0(x_0), \forall t \in [0, T_{\text{max}}].$$

2. Les courbes caractéristiques sont des droites, car $u(x(t),t) = u_0(x_0), \forall t \in [0,T_{\max}[$, et donc $x'(t) = f'(u_0(x_0))$. En intégrant, on obtient que le système (5.7) décrit la droite d'équation :

$$x(t) = f'(u_0(x_0))t + x_0. (5.8)$$

3. $T_{\max} = +\infty$ et donc $u(x,t) = u_0(x_0) \quad \forall t \in [0,+\infty[$. En effet, puisque x vérifie (5.8), on a donc, si $T_{\max} < \infty$,

$$\lim_{t \to T_{\max}} |x(t)| < +\infty$$
. On en déduit que $T_{\max} = +\infty$.

La notion de courbe caractéristique permet de se rendre compte facilement que les solutions classiques n'existent pas toujours, même si l'on part d'une donnée u_0 régulière. En effet, nous allons montrer que deux courbes caractéristiques peuvent se croiser. Comme on vient de montrer qu'une solution classique est constante le long d'une caractéristique, on en déduit la non existence d'une solution classique.

Proposition 5.4 (Non existence d'une solution classique) Soit $f \in C^2(\mathbb{R}, \mathbb{R})$, on suppose que f' n'est pas constante, alors il existe $u_0 \in C_c^{\infty}(\mathbb{R})$ telle que (5.3) n'admette pas de solution classique.

Démonstration Comme f' est non constante, il existe v_0, v_1 tel que $f'(v_0) > f'(v_1)$, et on peut construire $u_0 \in \mathcal{D}(\mathbb{R})$ telle que $u_0(x_0) = v_0$ et $u_0(x_1) = v_1$, où x_0 et x_1 sont donnés et $x_0 < x_1$, voir figure 5.1. Supposons que u soit solution classique avec cette donnée initiale. Alors, par la proposition 5.3:

$$u(x_0 + f'(u_0(x_0))t, t) = u_0(x_0) = v_0$$
 et $u(x_1 + f'(u_0(x_1))t, t) = u_0(x_1) = v_1$.

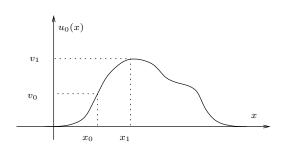
Soit T tel que $x_0 + f'(v_0)T = x_1 + f'(v_1)T = \bar{x}$, c'est-à-dire

$$T = \frac{x_1 - x_0}{f'(v_0) - f'(v_1)}.$$

On a alors:

$$u(\bar{x},T) = u_0(x_0) = v_0 = u_0(x_1) = v_1,$$

ce qui est impossible. On en conclut que (5.3) n'admet pas de solution classique pour cette donnée initiale.



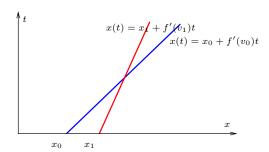


FIGURE 5.1 – Droites caractéristiques, cas non linéaire

5.1.2 Solutions faibles

Il n'existe donc pas toujours de solution au sens classique au problème (5.3). On va donc affaiblir le sens des solutions, et définir des solutions dites faibles. On donne cette définition dans un cadre légèrement plus général consistant à supposer que f est localement lipschitzienne (au lieu d'être de classe C^1). On note $\operatorname{Lip_{loc}}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions localement lipschitziennes de \mathbb{R} dans \mathbb{R} . On rappelle que si $f \in \operatorname{Lip_{loc}}(\mathbb{R},\mathbb{R})$, la fonction f est alors derivable p.p., sa dérivée est localement bornée et on a $f(d) - f(c) = \int_c^d f'(t) dt$ pour tout $c,d \in \mathbb{R}$.

Définition 5.5 (Solution faible) Soit $u_0 \in L^{\infty}(\mathbb{R})$ et $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$, On appelle solution faible de (5.3) une fonction $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ telle que

$$\int \int_{\mathbb{R}\times\mathbb{R}_+} [u(x,t)\partial_t \varphi(x,t) + f(u(x,t))\partial_x \varphi(x,t)] dx \, dt + \int_{\mathbb{R}} u_0(x)\varphi(x,0) \, dx = 0, \forall \varphi \in C_c^1(\mathbb{R}\times\mathbb{R}_+,\mathbb{R}).$$
 (5.9)

Notons que la condition initiale est bien prise en compte dans ces conditions. En effet, le fait que $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ entaîne que $\varphi(x,0)$ peut prendre n'importe quelle valeur, puisque φ est à support compact sur $\mathbb{R}_+ = [0, +\infty[$. Donnons maintenant les liens entre solution classique et solution faible.

Proposition 5.6 Soient $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$.

- 1. Si u est solution classique de (5.3) (et donc $u_0 \in C^1(\mathbb{R}, \mathbb{R})$) alors u est solution faible de (5.3).
- Si u ∈ C¹(ℝ × ℝ+) est solution faible de (5.3) alors u₀ ∈ C¹(ℝ, ℝ) (au sens où la classe de fonctions u₀ admet un représentant de classe C¹ et est alors identifiée à ce représentant) et u est solution classique de (5.3).
- 3. Soit $\sigma \in \mathbb{R}$, $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x > \sigma t\}$.
 - (a) On suppose que $u \in C(\mathbb{R} \times \mathbb{R}_+^*)$, que $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$, i = 1, 2, que l'équation (5.3a) est vérifiée pour tout $(x,t) \in D_i$ (i = 1,2) et que la condition initiale (5.3b) est satisfaite p.p.. Alors u est solution faible de (5.3).
 - (b) Plus généralement, on suppose que $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$ (i=1,2), que l'équation (5.3a) est vérifiée pour tout $(x,t) \in D_i$ (i=1,2) et que la condition initiale (5.3b) est satisfaite p.p.. Pour $t \in \mathbb{R}_+$, on pose

$$\begin{split} u_+(\sigma t,t) &= \lim_{x\downarrow \sigma t} u(x,t) \ \text{et} \ u_-(\sigma t,t) = \lim_{x\uparrow \sigma t} u(x,t), \\ [u](\sigma t,t) &= u_+(\sigma t,t) - u_-(\sigma t,t), \end{split}$$

$$[f(u)](\sigma t, t) = f(u_+(\sigma t, t)) - f(u_-(\sigma t, t)).$$

Alors u est solution faible de (5.3) si et seulement si

$$\sigma[u](\sigma t, t) = [f(u)](\sigma t, t) \text{ pour tout } t \in \mathbb{R}_+.$$
(5.10)

Cette condition s'appelle relation de Rankine²-Hugoniot³.

Démonstration

1. Supposons que u est solution classique de (5.3), c'est-à-dire de :

$$\begin{cases} \partial_t u + \partial_x (f(u)) = 0, & (x,t) \in \mathbb{R} \times \mathbb{R}_+^*, \\ u(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

Soit $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$. Multiplions (5.3) par φ et intégrons sur $\mathbb{R} \times \mathbb{R}_+$. On obtient :

$$\int_{\mathbb{R}} \int_{\mathbb{R}_+} \partial_t u(x,t) \varphi(x,t) \, dt \, dx + \int_{\mathbb{R}} \int_{\mathbb{R}_+} \partial_x (f(u))(x,t) \varphi(x,t) \, dt \, dx = 0.$$

L'application du théorème de Fubini et une intégration par parties donnent alors :

$$-\int_{\mathbb{R}} u(x,0)\varphi(x,0) dx - \int_{\mathbb{R}} \int_{\mathbb{R}_+} u(x,t)\partial_t \varphi(x,t)dt dx - \int_{\mathbb{R}_+} \int_{\mathbb{R}} f(u)(x,t)\partial_x \varphi(x,t) dx dt = 0,$$

(car le support de φ est un compact de $\mathbb{R} \times \mathbb{R}_+$). On obtient donc bien la relation (5.9), grâce à la condition initiale $u(x,0)=u_0(x)$.

2. Soit u une solution faible de (5.3), qui vérifie de plus $u \in C^1(\mathbb{R} \times [0, +\infty[))$. On a donc suffisamment de régularité pour intégrer par parties dans (5.9).

Commençons par prendre φ à support compact dans $\mathbb{R} \times]0, +\infty[$. On a donc $\varphi(x,0)=0$, et une intégration par parties dans (5.9) donne :

$$-\int_{\mathbb{R}} \int_{\mathbb{R}^+} \partial_t u(x,t) \varphi(x,t) \, dt \, dx - \int_{\mathbb{R}^+} \int_{\mathbb{R}} \partial_x (f(u))(x,t) \varphi(x,t) \, dx \, dt = 0.$$

On a donc:

$$\int_{\mathbb{R}} \int_{\mathbb{R}_+} \left(\partial_t u(x,t) + \partial_x (f(u))(x,t) \right) \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x = 0, \forall \varphi \in C_c^1(\mathbb{R} \times]0, +\infty[).$$

Comme $\partial_t u + \partial_x(f(u))$ est continue sur $\mathbb{R} \times \mathbb{R}_+^*$, on en déduit que $\partial_t u + \partial_x(f(u)) = 0$. En effet, on rappelle que si $h \in L^1_{\mathrm{loc}}(\mathbb{R} \times]0, +\infty[)$ et $\int_{\mathbb{R}} \int_{\mathbb{R}_+} h(x,t)) \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x = 0$ pour toute fonction φ appartenant à $C^1_c(\mathbb{R} \times]0, +\infty[)$, alors f=0 p.p.; si de plus h est continue sur $\mathbb{R} \times]0, +\infty[$, alors f=0 partout sur $\mathbb{R} \times]0, +\infty[$.

On prend alors $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+)$. Dans ce cas, une intégration par parties dans (5.9) donne

$$\int_{\mathbb{R}} u(x,0)\varphi(x,0) dx - \int_{\mathbb{R}} \int_{\mathbb{R}_+} \left(\partial_t u(x,t) + \partial_x (f(u))(x,t)\right) \varphi(x,t) dt dx - \int_{\mathbb{R}} u_0(x)\varphi(x,0) dx = 0.$$

^{2.} William John Macquorn Rankine (1820–1872), ingénieur écossais qui contribua aussi en physique et mathématiques.

^{3.} Pierre-Henri Hugoniot (1851–1887), inventeur, mathématicien et physicien français spécialiste de mécanique des fluides, en particulier des chocs.

Mais on vient de montrer que $\partial_t u + \partial_x (f(u)) = 0$. On en déduit que

$$\int_{\mathbb{R}} (u_0(x) - u(x,0))\varphi(x,0) \, \mathrm{d}x = 0, \forall \varphi \in C_c^1(\mathbb{R} \times R_+).$$

Ceci donne $u_0 = u(\cdot, 0)$ p.p.. Comme u est continue, on a donc u_0 continue (au sens où on identifie u_0 et $u(\cdot, 0)$) et u est solution classique de (5.3).

3. On montre directement l'item (b) (qui contient l'item (a)). On suppose que $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$ (i=1,2), que la première équation de (5.3) est vérifiée pour tout $(x,t) \in D_i$ (i=1,2) et que la condition initiale (de (5.3)) est satisfaite p.p. sur \mathbb{R} . Nous allons montrer que u est solution faible de (5.3) si et seulement si (5.10) est vérifiée. Pour cela, on pose

$$X = \int_{\mathbb{R}} \int_{\mathbb{R}_+} u(x,t) \partial_t \varphi(x,t) \, dt \, dx + \int_{\mathbb{R}_+} \int_{\mathbb{R}} f(u)(x,t) \partial_x \varphi(x,t) \, dx \, dt.$$

On a donc $X = X_1 + X_2$, avec

$$X_1 = \int_{\mathbb{R}} \int_{\mathbb{R}_+} u(x,t) \partial_t \varphi(x,t) \, dt \, dx \text{ et } X_2 = \int_{\mathbb{R}_+} \int_{\mathbb{R}} (f(u))(x,t) \partial_x \varphi(x,t) \, dx \, dt.$$

Calculons X_1 . Comme u n'est de classe C^1 que sur chacun des domaines D_i , on n'a pas le droit d'intégrer par parties sur $\mathbb{R} \times \mathbb{R}_+$ entier. On va donc décomposer l'intégrale sur D_1 et D_2 ; supposons par exemple $\sigma < 0$, voir figure 5.2. (Le cas $\sigma > 0$ se traite de façon similaire et le cas $\sigma = 0$ est plutôt plus simple). On a alors $D_1 = \{(x,t); x \in \mathbb{R}_- \text{ et } 0 < t < \frac{x}{\sigma}\}$ et $D_2 = \mathbb{R}_+ \times \mathbb{R}_+ \cup \{(x,t); x \in \mathbb{R}_- \text{ et } \frac{x}{\sigma} < t < +\infty\}$.

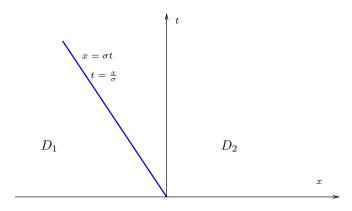


FIGURE 5.2 – Les domaines D_1 et D_2

On a donc:

$$X_1 = \int_{\mathbb{R}_-} \int_0^{\frac{x}{\sigma}} u(x,t) \partial_t \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x + \int_{\mathbb{R}_-} \int_{\frac{x}{\sigma}}^{+\infty} u(x,t) \partial_t \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x + \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} u(x,t) \partial_t \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x.$$

Comme u est de classe C^1 sur chacun des domaines, on peut intégrer par parties, ce qui donne :

$$X_{1} = \int_{\mathbb{R}} u_{-}(x, \frac{x}{\sigma})\varphi(x, \frac{x}{\sigma}) dx - \int_{\mathbb{R}} u(x, 0)\varphi(x, 0) dx - \int_{\mathbb{R}} \int_{0}^{\frac{x}{\sigma}} \partial_{t}u(x, t)\varphi(x, t) dt dx$$

$$-\int_{\mathbb{R}_{-}} u_{+}(x, \frac{x}{\sigma}) \varphi(x, \frac{x}{\sigma}) dx - \int_{\mathbb{R}_{-}} \int_{\frac{x}{\sigma}}^{+\infty} \partial_{t} u(x, t) \varphi(x, t) dt dx$$
$$-\int_{\mathbb{R}_{+}} u(x, 0) \varphi(x, 0) dx - \int_{\mathbb{R}_{+}} \int_{\mathbb{R}_{+}} \partial_{t} u(x, t) \varphi(x, t) dt dx. \quad (5.11)$$

En regroupant, il vient :

$$X_{1} = -\int_{\mathbb{R}} u(x,0)\varphi(x,0) \, dx - \int \int_{D_{1}} \partial_{t}u(x,t)\varphi(x,t) \, dt \, dx - \int \int_{D_{2}} \partial_{t}u(x,t)\varphi(x,t) \, dt \, dx - \int_{\mathbb{R}_{-}} [u](x,\frac{x}{\sigma})\varphi(x,\frac{x}{\sigma}) \, dx.$$

Dans la dernière intégrale, on effectue le changement de varaible $t=\frac{x}{\sigma}$. On obtient

$$X_{1} = -\int_{\mathbb{R}} u(x,0)\varphi(x,0) \, \mathrm{d}x - \int \int_{D_{1}} \partial_{t}u(x,t)\varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x - \int \int_{D_{2}} \partial_{t}u(x,t)\varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x + \sigma \int_{\mathbb{R}_{+}} [u](\sigma t,t)\varphi(\sigma t,t) \, \mathrm{d}t.$$

On décompose de même X_2 sur $D_1 \cup D_2$, en remarquant maintenant que $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x > \sigma t\}$:

$$X_2 = \int_{\mathbb{R}_+} \int_{-\infty}^{\sigma t} f(u)(x,t) \partial_x \varphi(x,t) \, dx \, dt + \int_{\mathbb{R}_+} \int_{\sigma t}^{+\infty} f(u)(x,t) \partial_x \varphi(x,t) \, dx \, dt.$$

La fonction u est de classe C^1 sur chacun des domaines, on peut là encore intégrer par parties. Comme φ est à support compact sur $\mathbb{R} \times \mathbb{R}_+$, on obtient :

$$X_{2} = -\int \int_{D_{1}} \partial_{x} f(u)(x,t) \varphi(x,t) dx dt - \int \int_{D_{2}} \partial_{x} f(u)(x,t) \varphi(x,t) dx dt - \int \int_{\mathbb{R}^{+}} [f(u)](\sigma t,t) \varphi(\sigma t,t) dt.$$

Comme $\partial_t u + \partial_x (f(u)) = 0$ sur D_1 et D_2 , on a donc :

$$X = X_1 + X_2 = -\int_{\mathbb{R}} u(x,0)\varphi(x,0) dx + \int_{\mathbb{R}_+} (\sigma[u](\sigma t,t) - [f(u)](\sigma t,t))\varphi(\sigma t,t) dt.$$

On en déduit bien que u est solution faible de (5.3) si et seulement si (5.10) est vérifiée.

Notons qu'il existe souvent plusieurs solutions faibles. La notion de solution entropique nous permettra d'obtenir l'unicité. Donnons tout d'abord un exemple de non-unicité de la solution faible. Pour cela on va considérer une équation modèle, appelée équation de Burgers ⁴, qui s'écrit

$$\partial_t u + \partial_x (u^2) = 0, (5.12)$$

et des données initiales particulières, sous la forme

$$u_0(x) = \begin{cases} u_g & \text{si } x < 0, \\ u_d & \text{si } x > 0, \end{cases}$$

^{4.} Johannes Martinus Burgers (1895–1981), physicien néerlandais.

avec $u_g, u_d \in \mathbb{R}$. Ces données initiales définissent un problème de Cauchy particulier, qu'on appelle problème de Riemann 5 .

Nous considérons maintenant l'exemple simple obtenu avec $u_g = -1$ et $u_d = 1$. Le problème considéré est donc le problème suivant, avec $f(u) = u^2$, $u_q = -1$, $u_d = 1$:

$$\begin{cases} \partial_t u + \partial_x (f(u)) = 0, \\ u_0(x) = \begin{cases} u_g & \text{si } x < 0, \\ u_d & \text{si } x > 0. \end{cases} \end{cases}$$
 (5.13)

On cherche tout d'abord une solution faible de la forme :

$$u(x,t) = \begin{cases} u_g \text{ si } x < \sigma t, \\ u_d \text{ si } x > \sigma t. \end{cases}$$
 (5.14)

Cette éventuelle solution est discontinue au travers de la droite d'équation $x = \sigma t$ dans le plan (x,t). On remplace u(x,t) par ces valeurs dans (5.9). D'après la proposition 5.6 on sait que u est solution faible si la condition suivante (condition de Rankine-Hugoniot) est vérifiée :

$$\sigma(u_d - u_g) = (f(u_d) - f(u_g)), \tag{5.15}$$

ce qui avec la condition initiale particulière choisie ici, donne $2\sigma = 1^2 - (-1)^2 = 0$.

Mais on peut trouver d'autres solutions faibles. Si u est solution régulière, on sait que sur les courbes caractéristiques, qui ont pour équation $x(t) = x_0 + f'(u_0(x_0))t$, la fonction u est constante. Comme f'(u) = 2u, les courbes caractéristiques sont donc des droites de pente -2 si $x_0 < 0$, et de pente 2 si $x_0 > 0$. Construisons ces caractéristiques sur la figure 5.3 : Dans la zone du milieu, où l'on a représenté un point d'interrogation, on cherche

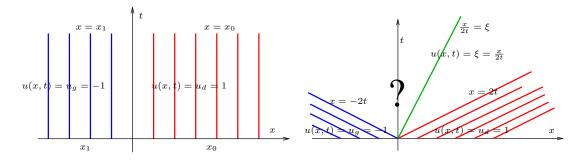


FIGURE 5.3 – Problème de Riemann pour l'équation de Burgers

u sous la forme $u(x,t)=\varphi\left(\frac{x}{t}\right)$ et telle que u soit continue sur $\mathbb{R}\times\mathbb{R}_+^*$. La fonction u suivante convient :

$$u(x,t) = \begin{cases} -1 \text{ si } x < -2t, \\ \frac{x}{2t} \text{ si } -2t < x < 2t, \\ 1 \text{ si } x > 2t. \end{cases}$$
 (5.16)

^{5.} Georg Friedrich Bernhard Riemann (1826–1866), mathématicien allemand qui a apporté de nombreuses contributions importantes en particulier en topologie, analyse, et géométrie différentielle

5.1.3 Solution entropique

On vient de voir qu'il peut y avoir non unicité des solutions faibles. Comment choisir la "bonne" solution faible, entre (5.14) et (5.16)? Comme les problèmes hyperboliques sont souvent obtenus en négligeant les termes de diffusion dans des équations paraboliques, une technique pour choisir la solution est de chercher la limite du problème de diffusion associé qui s'écrit :

$$\partial_t u + \partial_x (f(u)) - \varepsilon \partial_{xx} u = 0, \tag{5.17}$$

lorsque le terme de diffusion devient négligeable, c'est-à-dire lorsque ε tend vers 0. Soit u_{ε} la solution de (5.17) avec la condition initiale $u_{\varepsilon}(\cdot,0)=u_0(\cdot)$ (on admet pour l'instant l'existence et l'unicité de u_{ε}). On peut montrer que u_{ε} tend vers u (en un sens convenable) lorsque ε tend vers 0, où u est la "solution faible entropique" de (5.3), définie comme suit.

Remarque 5.7 Le fait que la solution entropique de (5.3) est la limite (en un sens convenable) de la solution de (5.17) permet aussi de montrer des propriétés intéressantes sur cette solution. C'est, par exemple, un moyen de montrer le principe du maximum, proposition 5.19.

Définition 5.8 (Solution entropique) Soit $u_0 \in L^{\infty}(\mathbb{R})$ et $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$. Soit $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$. On dit que u est solution faible entropique de (5.3) si pour toute fonction η de \mathbb{R} dans \mathbb{R} , convexe, appelée "entropie", et pour Φ définie par $\Phi(s) = \int_0^s f'(\tau) \eta'(\tau) d\tau$ (pour $s \in \mathbb{R}$), appelé "flux d'entropie", on a:

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} (\eta(u)\partial_t \varphi + \Phi(u)\partial_x \varphi)(x,t) \, dx \, dt + \int_{\mathbb{R}} \eta(u_0(x))\varphi(x,0) \, dx \ge 0, \forall \varphi \in C_c^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+). \quad (5.18)$$

On rappelle que si la fonction η (de \mathbb{R} dans \mathbb{R}) est convexe, elle est localement lipschitzienne (ce qui permet de remarquer que Φ est bien définie). Il est intéressant aussi de remarquer que dans la définition 5.8 on peut se limiter à des fonctions η de classe C^2 (il suffit de régulariser η avec une famille de noyaux régularisants pour s'en convaincre). Si f et η sont des fonctions de classe C^1 , la fonction Φ est simplement une fonction de classe C^1 telle que $\Phi' = \eta' f'$. Enfin, bien sûr, si u est solution faible entropique alors u est solution faible (proposition 5.11).

Remarque 5.9 (Condition initiale) Noter que dans la définition 5.8, on prend une fois de plus $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+)$ de manière à bien prendre en compte la condition initiale, formulation introduite dans [19]; ceci n'est pas toujours fait de cette manière dans les travaux plus anciens sur le sujet, où la condition initiale était assurée par la condition supplémentaire, $u(t) \to u_0$ dans L^1_{loc} quand $t \to 0$ (voir par exemple [12, Definition 5.11]). Si la condition initiale est prise en compte seulement dans la définition de solution faible (et n'est pas reprise dans la condition d'entropie), le choix de l'espace fonctionnel dans lequel on recherche la solution devient crucial pour ne pas perdre l'unicité de la solution entropique. Un exemple est donné dans l'exercice 5.12. On peut remarquer que si u est solution entropique au sens de la définition 5.8, alors $u \in C([0,+\infty[,L^1_{loc}(\mathbb{R})))$ et $u(t) \to u_0$ dans L^1_{loc} quand $t \to 0$.

Nous démontrerons plus loin le théorème 5.25 dans le cadre multidimensionnel (mais avec la variable spatiale dans un domaine borné plutôt que dans tout l'espace). Ce théorème affirme que si $u_0 \in L^{\infty}(\mathbb{R})$ et $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$ alors il existe une unique solution entropique de (5.3) au sens de la définition 5.8. Voyons maintenant les liens entre solution classique, solution faible et solution entropique.

Proposition 5.10 (Solution classique et solution faible entropique) Soit $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R}) \cap C^1(\mathbb{R}, \mathbb{R})$. Si u est solution classique de (5.3), alors u est solution (faible) entropique.

Démonstration Soit u une solution classique de (5.3). Soit $\eta \in C^1(\mathbb{R})$ (la convexité de η est inutile ici) et Φ tel que $\Phi' = f'\eta'$ (Φ est la fonction flux associée à η). Multiplions (5.3) par $\eta'(u)$:

$$\eta'(u)\partial_t u + f'(u)\partial_x u\eta'(u) = 0$$

Soit encore, puisque $\Phi' = f'\eta'$,

$$\partial_t(\eta(u)) + \Phi'(u)\partial_x u = 0$$

On a donc finalement:

$$\partial_t(\eta(u)) + \partial_x(\Phi(u)) = 0 \tag{5.19}$$

De plus, comme $u(x,0)=u_0(x)$, on a aussi : $\eta(u(x,0))=\eta(u_0(x))$. Soit $\varphi\in C^1_c(\mathbb{R}\times\mathbb{R}_+,\mathbb{R})$, on multiplie (5.19) par φ , on intègre sur $\mathbb{R}\times\mathbb{R}_+$ et on obtient (5.18) (avec égalité) en intégrant par parties. Dans le cas d'une solution classique, l'inégalité d'entropie est une égalité.

Une solution faible entropique est solution faible :

Proposition 5.11 Soit $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$. Si u est solution faible entropique de (5.3), alors u est solution faible de (5.3).

Démonstration Il suffit de prendre $\eta(u) = u$ et $\eta(u) = -u$ dans (5.18) pour se convaincre du résultat.

On déduit de la proposition 5.10 et du théorème 5.25 de Kruzhkov que si on a plusieurs solutions faibles au problème (5.3) et que l'une d'entre elles est régulière, alors cette dernière est forcément la solution entropique. La caractérisation suivante, que l'on admettra, est souvent utilisée en pratique :

Proposition 5.12 (Entropies de Kruzhkov) Soit $u_0 \in L^{\infty}(\mathbb{R})$ et $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$. Soit $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$. La fonction u est solution entropique de (5.3) (au sens de la définition 5.8) si et seulement si pour tout $k \in \mathbb{R}$ (5.18) est vérifiée avec η définie par $\eta(s) = |s - k|$, et Φ , flux d'entropie associé, défini par :

$$\Phi(u) = f(\max(u, k)) - f(\min(u, k)).$$

Notons que la fonction η , dite "entropie de Kruzhkov", n'est pas de classe C^1 .

Nous examinons maintenant le cas particulier des solutions ayant une ligne de discontinuité, comme dans la dernière partie de la proposition 5.6.

Proposition 5.13 Soient $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$. Soit $\sigma \in \mathbb{R}$, $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x > \sigma t\}$. On suppose que $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$ (i = 1, 2), que la première équation de (5.3) est vérifiée pour tout $(x,t) \in D_i$ (i = 1, 2) et que la condition initiale (de (5.3)) est satisfaite p.p.. Pour $t \in \mathbb{R}_+$, on pose

$$u_{+}(\sigma t, t) = \lim_{x \downarrow \sigma t} u(x, t) \text{ et } u_{-}(\sigma t, t) = \lim_{x \uparrow \sigma t} u(x, t),$$
$$[u](\sigma t, t) = u_{+}(\sigma t, t) - u_{-}(\sigma t, t),$$
$$[f(u)](\sigma t, t) = f(u_{+}(\sigma t, t)) - f(u_{-}(\sigma t, t)).$$

Alors u est solution faible entropique de (5.3) si et seulement si

$$\sigma[u](\sigma t, t) = [f(u)](\sigma t, t) \text{ pour tout } t \in \mathbb{R}_+$$
(5.20)

et, pour toute fonction $\eta \in C^1(\mathbb{R})$ convexe et $\Phi \in C^1$ telle que $\Phi' = f'\eta'$,

$$\sigma[\eta(u)](\sigma t, t) \ge [\Phi(u)](\sigma t, t) \text{ pour tout } t \in \mathbb{R}_+. \tag{5.21}$$

Démonstration La proposition 5.6 montre que u est solution faible si et seulement si (5.20) est satisfaite. En reprenant la démonstration de la proposition 5.6, on montre que u est solution faible entropique si et seulement si (5.20) et (5.21) sont satisfaites. Ceci fait l'objet de l'exercice 5.13.

Dans le cas où la fonction f est strictement convexe, la proposition 5.13 peut être précisée. Ceci est fait dans la proposition 5.15 donnée ci après, dont la démonstration repose sur le petit lemme technique suivant.

Lemme 5.14 (Un résultat pour des fonctions convexes) Soient f et η deux fonctions convexes de \mathbb{R} dans \mathbb{R} . Soient $a,b \in \mathbb{R}$, a < b, et $\sigma = \frac{f(b) - f(a)}{b - a}$. Soit Φ défini par $\Phi(s) = \int_0^s \eta'(t) f'(t) dt$ pour $s \in \mathbb{R}$ (de sorte que $\Phi' = \eta' f'$ p.p. sur \mathbb{R}). Alors,

- 1. $\sigma(\eta(b) \eta(a)) \leq (\Phi(b) \Phi(a)),$
- 2. $si \eta$ est strictement convexe et f est convexe et non affine entre a et b, alors $\sigma(\eta(b)-\eta(a))<(\Phi(b)-\Phi(a))$.

Démonstration Rappelons d'abord que si φ est une fonction convexe de $\mathbb R$ dans $\mathbb R$, alors c'est une fonction localement lipschitzienne. Elle est donc dérivable presque partout, sa dérivée est localement bornée et $\varphi(\alpha) - \varphi(\beta) = \int_{\alpha}^{\beta} \varphi'(t) dt$ pour tout $(\alpha, \beta) \in \mathbb R^2$. Pour tout $\gamma \in \mathbb R$,

$$(\Phi(b) - \Phi(a)) - \sigma(\eta(b) - \eta(a)) = \int_{a}^{b} \eta'(t)(f'(t) - \sigma)dt = \int_{a}^{b} (\eta'(t) - \gamma)(f'(t) - \sigma)dt$$
 (5.22)

Puisque f est convexe, la fonction f' est croissante. Puisque σ est la valeur moyenne de f' sur]a,b[, il existe $c \in]a,b[$ tel que

$$f'(t) \le \sigma$$
 pour presque tout $t \in]a, c[, f'(t) \ge \sigma$ pour presque tout $t \in [c, b[]$.

Soit maintenant $\gamma = \sup\{\eta'(s), s \leq c\}$ dans (5.22) de sorte que $\eta'(s) \leq \gamma$ si $s \leq c$ et $\eta'(s) \geq \gamma$ si s > c. Bien sûr, si η' est continu, on a $\gamma = \eta'(c)$). Comme $(\eta'(t) - \gamma)(f'(t) - \sigma) \geq 0$ pour presque tout $t \in]a, b[$, on obtient

$$(\Phi(b) - \Phi(a)) - \sigma(\eta(b) - \eta(a)) = \int_a^b (\eta'(t) - \gamma)(f'(t) - \sigma)dt \ge 0,$$

ce qui donne le premier point du lemme.

Pour le deuxième point, on remarque que $\sigma(\eta(b) - \eta(a)) = (\Phi(b) - \Phi(a))$ donne $(\eta'(t) - \gamma)(f'(t) - \sigma) = 0$ p.p. sur]a,b[. Puisque η est strictement convexe, on a $(\eta' - \gamma) \neq 0$ p.p. sur]a,b[. On a alors $f' = \sigma$ p.p. sur]a,b[et cela donne que f est affine sur]a,b[, ce qui contredit l'hypothèse.

Proposition 5.15 (Solution entropique, cas strictement convexe) Sous les hypothèses de la proposition 5.13, on suppose que u est solution faible de (5.3). On suppose de plus que f est strictement convexe, les trois conditions suivantes sont alors équivalentes :

- 1. u est solution faible entropique,
- 2. $u_{-}(\sigma t, t) \geq u_{+}(\sigma t, t)$ pour tout $t \in \mathbb{R}^{+}$,
- 3. il existe η strictement convexe (de \mathbb{R} dans \mathbb{R}) tel que (5.21) est vérifiée (avec Φ telle que $\Phi' = f'\eta'$).

Démonstration Prouvons d'abord l'équivalence entre les deux premiers points.

Si u est une solution faible entropique, on a (5.21) pour tout t et pour toute fonction C^1 convexe η . En prenant pour η une fonction strictement convexe, le lemme 5.14 donne nécessairement, grâce au fait que f est aussi strictement convexe, $u_-(\sigma t, t) \ge u_+(\sigma t, t)$ pour $t \in \mathbb{R}^+$.

Réciproquement, si u satisfait $u_-(\sigma t, t) \ge u_+(\sigma t, t)$ pour $t \in \mathbb{R}^+$, alors le lemme 5.14 donne (5.21) pour tout t et toute fonction C^1 convexe η (et c'est également vrai si f n'est qu'une fonction convexe). Ceci conclut l'équivalence entre les points 1 et 2.

Pour conclure la preuve de la proposition 5.15, on remarque que le premier point implique bien sûr le troisième. Réciproquement, si u satisfait le troisième point, le lemme 5.14 donne nécessairement, grâce au fait que f est également strictement convexe, que $u_-(\sigma t,t) \geq u_+(\sigma t,t)$ pour $t \in \mathbb{R}^+$, et u est donc une solution faible entropique.

Remarque 5.16 (Contre-exemple si f n'est pas strictement convexe)

L'équivalence entre les deux premiers points de la proposition 5.15 est fausse si l'on remplace l'hypothèse "f strictement convexe" par "f convexe". Bien sûr, cela est évident si u_0 prend ses valeurs dans un intervalle où f est une fonction affine mais c'est aussi le cas pour les u_0 plus généraux. On commence par donner un exemple qui apparaît dans certains articles concernant la modélisation de la circulation routière. Ensuite, nous adaptons légèrement cet exemple afin d'être exactement dans les hypothèses de la proposition 5.15.

Soit $\alpha > 0$, $\beta < 0$ et $a = -\frac{\beta}{\alpha - \beta}$ (noter que $a \in]0,1[$ et $a\alpha = \beta(a-1)$). On définit f par $f(s) = \alpha s$ pour $s \in [0,a]$, $f(s) = \beta(s-1)$ $s \in]a,1[$. Soit $u_g \in]a,1[$ et $u_d \in]0,a[$ et $u_0 = u_g$ en \mathbb{R}_+ , $u_0 = u_d$ en \mathbb{R}_+ . Dans ce cas, il est assez facile de prouver que la solution faible entropique de (5.3) est la fonction u définie par

$$u(x,t) = \begin{cases} u_g & \text{if } x < \beta t, \\ a & \text{if } \beta t < x < \alpha t, \\ u_d & \text{if } x > \alpha t. \end{cases}$$

Puisque $u_g > a$ (et aussi $a > u_d$) et puisque f est concave, cette solution semble en contradiction avec la proposition 5.15.

Dans cet exemple, la fonction f est lipschitzienne et la solution comporte deux lignes de discontinuités. En moditiant légèrement cet exemple, on va obtenir une fonction $f \in C^1(\mathbb{R})$ et une seule discontinuité. On prend $a = \frac{1}{2}$ et $f(s) = \alpha s$ pour $s \in [0,a]$, $f(s) = \beta s - \gamma s^2 + \delta$ avec $\alpha = \gamma = \frac{4}{3}$, $\beta = \frac{8}{3}$, $\delta = -\frac{1}{3}$. La fonction f est de la classe C^1 , strictement concave sur [a,1], affine sur [0,a]. Comme précédemment, on prend $u_g \in]a,1[$ et $u_d \in]0,a[$ et $u_0 = u_g$ dans \mathbb{R}_- , $u_0 = u_d$ dans \mathbb{R}_+ . Alors la solution faible entropique de (5.3) est la fonction u définie par (puisque $f'(a) = \alpha$)

$$\begin{split} u(x,t) &= u_g \text{ if } x < f'(u_g)t,\\ u(x,t) &= \xi \text{ if } f'(u_g)t < x < f'(a)t \text{ et } f'(\xi) = \frac{x}{t}, \, \xi \in]a, u_g[,\\ u(x,t) &= u_d \text{ if } x > f'(a)t = \alpha t. \end{split}$$

Ici aussi, puisque $a > u_d$ et f est concave, cette solution semble en contradiction avec la proposition 5.15 (mais en fait non, puisque les hypothèses de la proposition ne sont pas respectées).

Les propositions 5.13 et 5.15 peuvent être généralisées aux cas de courbes de discontinuité.

Proposition 5.17 (Rankine-Hugoniot, cas courbe) Soient $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$. On suppose qu'il existe un nombre fini d'ouverts à frontière lipschitzienne, D_i , i = 1, ..., N, tels que

- 1. $\mathbb{R} \times \mathbb{R}_+ = \bigcup_{i=1}^N \bar{D}_i$.
- 2. Pour $i \neq j$, $\bar{D}_i \cap \bar{D}_j = \{(\sigma_{i,j}(t),t), t \in I_{i,j}\}$ où $I_{i,j}$ est un intervalle de \mathbb{R}_+ et $\sigma_{i,j}$ une fonction lipschitzienne de $I_{i,j}$ dans \mathbb{R} .
- 3. Pour tout i, $u_{|D_i}$ appartient à $C^1(\bar{D}_i, \mathbb{R})$ et est solution (classique) de la première équation de (5.3) et satisfait (p.p.) la condition initiale (de (5.3)) lorsque \bar{D}_i rencontre l'axe t=0.

Pour $i, j \in \{1, ..., N\}$ et $t \in I_{i,j}$, on pose

$$u_{+}(\sigma_{i,j}(t),t) = \lim_{x \downarrow \sigma_{i,j}(t)} u(x,t) \text{ et } u_{-}(\sigma_{i,j}(t),t) = \lim_{x \uparrow \sigma_{i,j}(t)} u(x,t),$$

$$[u](\sigma_{i,j}(t),t) = u_{+}(\sigma_{i,j}(t),t) - u_{-}(\sigma_{i,j}(t),t),$$

$$[f(u)](\sigma_{i,j}(t),t) = f(u_{+}(\sigma_{i,j}(t),t)) - f(u_{-}(\sigma_{i,j}(t)t)).$$

Alors u est solution faible entropique de (5.3) si et seulement si

$$\sigma'_{i,j}(t)[u](\sigma_{i,j}(t),t) = [f(u)](\sigma_{i,j}(t),t) \text{ pour presque tout } t \in I_{i,j},$$
(5.23)

et, pour toute fonction $\eta \in C^1(\mathbb{R})$ convexe et $\Phi \in C^1$ telle que $\Phi' = f'\eta'$,

$$\sigma'_{i,j}(t)[\eta(u)](\sigma_{i,j}(t)t,t) \ge [\Phi(u)](\sigma_{i,j}(t),t) \text{ pour presque tout } t \in I_{i,j}.$$
(5.24)

Démonstration La démonstration peut se faire en utilisant la formule de Stokes (espace temps) sur chaque D_i . En notant u_i le prolongement par continuité de u sur \bar{D}_i , la formule de Stokes fait apparaître pour tout couple (i,j), $i \neq j$ (lorsque $I_{i,j}$ est non vide),

$$\int_{I_{i,j}} \begin{bmatrix} f(u_i(x,t)) \\ u_i(x,t) \end{bmatrix} \cdot \boldsymbol{n}_{i,j} d\gamma(x,t),$$

où γ désigne la mesure de Lebesgue 1-dimensionnelle sur $I_{i,j}$ et $\boldsymbol{n}_{i,j}$ est le vecteur normal à $I_{i,j}$ extérieur à D_i . Pour que u soit solution faible, il faut et il suffit que le terme correspondant à i sur $I_{i,j}$ se compense avec le terme correspondant à j. Comme $\boldsymbol{n}_{i,j}(\sigma_{i,j}(t),t)$ est colinéaire au vecteur $\begin{bmatrix} -1 \\ \sigma'_{i,j}(t) \end{bmatrix}$ (et que $\boldsymbol{n}_{i,j}=-\boldsymbol{n}_{j,i}$), on obtient la condition (5.23).

Un raisonnement analogue avec le vecteur
$$\begin{bmatrix} \Phi(u_i) \\ \eta(u_i) \end{bmatrix}$$
 donne la condition (5.24).

Dans le cas où f est strictement convexe ou concave, on peut vérifier qu'une solution faible est entropique grâce à la condition de Lax [24] : cette condition énonce qu'une solution faible discontinue est entropique si les caractéristiques issues de part et d'autre d'une courbe de discontinuité rencontrent la ligne de discontinuité. Elle s'écrit de la manière suivante :

Théorème 5.18 (Condition de Lax, équation scalaire) On se place sous les hypothèses et notations de la proposition 5.17, et on suppose de plus que f est strictement convexe ou strictement concave; une solution faible u (c'est-à-dire satisfaisant (5.23)) est entropique si et seulement si elle vérifie la condition de Lax, qui s'écrit

$$f'(u_{-}(\sigma_{i,j}(t),t)) > \sigma'_{i,j}(t) > f'(u_{+}(\sigma_{i,j}(t),t))$$
 pour presque tout $t \in I_{i,j}, \ \forall i,j=1,\ldots,N.$ (5.25)

Pour une discontinuité le long d'une droite $x = \sigma t$ séparant un état constant u_g et u_d , cette condition s'écrit simplement : $f'(u_g) > \sigma > f'(u_d)$. Si la condition de Lax est vérifiée, on dit que la ligne de discontinuité est un choc (ou une discontinuité entropique).

La démonstration du fait qu'une solution faible vérifiant la condition de Lax est une solution faible entropique fait l'objet de l'exercice 5.2. Attention, il est fondamental de supposer que la solution est faible. Si tel n'est pas le cas, la condition de Lax n'implique pas que la solution soit entropique, voir la question 3 de l'exercice sus-mentionné. Remarquons que les solutions d'une équation hyperbolique non linéaire respectent les bornes de la solution initiale.

Proposition 5.19 (Principe du maximum) Soit $u_0 \in L^{\infty}(\mathbb{R})$ et soient A et $B \in \mathbb{R}$ tels que $A \leq u_0 \leq B$ p.p.. Soit $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$, alors la solution entropique $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ de (5.3) vérifie : $A \leq u(x) \leq B$ p.p. dans $\mathbb{R} \times \mathbb{R}_+$.

Cette propriété se démontre en passant à la limite soit sur les solutions de l'équation visqueuse associée, équation (5.17) (remarque 5.7), soit sur les solutions approchées par schéma numérique; il faut pour cela avoir pris soin de mettre au point un schéma qui respecte les bornes, mais ceci est de toutes façon souhaitable pour respecter les bornes naturelles pour ce problème.

Remarque 5.20 (Domaine borné) Que faire si le domaine spatial est différent de \mathbb{R} , par exemple si le problème (5.3) est posé pour $x \in I$ où I est un intervalle de \mathbb{R} . Si f' ne change pas de signe, il est assez facile de donner une bonne définition de solution entropique et de montrer un théorème d'existence et d'unicité de la solution entropique. Dans le cas où f' change de signe (et ce cas est très intéressant pour de nombreux problèmes), le problème est beaucoup plus difficile. Le premier résultat sur la question est celui de Bardos-Leroux-Nedelec (1979). Dans sa thèse (1996), Otto donne une très jolie formulation pour les conditions aux limites, dont l'intérêt considérable est qu'elle est très pratique pour montrer la convergence des schémas numériques. Dans le cas multidimensionnel de la section suivante, on s'intéressera à un problème similaire à (5.3) posé dans un domaine borné de \mathbb{R}^N (N > 1) mais sans aborder vraiment ce délicat problème des conditions aux limites (car dans le théorème 5.25 on considère un champ de vecteurs b nul sur le bord du domaine considéré).

On termine ce paragraphe en introduisant les notions de "discontinuité de contact", "onde de choc" et "onde de détente".

Si f est linéaire (ou affine, ce qui revient au même car on peut supposer f(0) = 0) et si $u_0 \in L^{\infty}(\mathbb{R})$, la solution faible de (5.3) est unique (voir l'exercice 5.4), c'est donc la solution entropique. On peut aussi montrer dans ce cas que les inégalités d'entropie (5.18) sont des égalités. Si la solution u a une courbe de discontinuité (nécessairement une demi droite en fait), on parle alors de "discontinuité de contact".

Si f est strictement convexe (ou concave) et que la solution faible entropique u de (5.3) a une courbe de discontinuité, on parle d'un choc ou d'une onde de choc. On peut montrer dans ce cas que les inégalités d'entropie (5.18) sont strictes pour certains η et φ . Toujours dans le cas f où est strictement convexe ou concave, si u_0 a une discontinuité en un point mais que cette discontinuité ne se propage pas dans la solution faible entropique, on parle d'une détente" ou d'une onde de détente.

5.1.4 Conditions limites

On donne maintenant un résultat d'existence et d'unicité pour une équation hyperbolique avec conditions aux limites en utilisant la formulation due à Otto [29].

On s'intéresse donc au problème :

$$\partial_t u + \partial_x (f(u)) = 0, \quad (x, t) \in]0, 1[\times \mathbb{R}_+,$$
 (5.26a)

$$u(x,0) = u_0(x), \quad x \in]0,1[,$$
 (5.26b)

$$u(0,t) = \bar{u}(t), \ u(1,t) = \overline{\bar{u}}(t), \quad t \in \mathbb{R}_{+}.$$
 (5.26c)

Mais, comme nous le verrons, les conditions aux limites ne sont que partiellement prises en compte dans la formulation faible entropique du problème.

Définition 5.21 (Solution entropique avec conditions aux limites, Otto) Soient $u_0 \in L^{\infty}([0,1])$, $\bar{u}, \overline{\bar{u}} \in L^{\infty}(]0, +\infty[)$ et $f \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{R}, \mathbb{R})$. Soient A, B tels que $A \leq u_0$, $\bar{u}, \overline{\bar{u}} \leq B$ p.p.. On dit que $u \in L^{\infty}(]0, 1[\times \mathbb{R}_+)$ est solution

entropique de (5.26) si il existe $M \ge 0$ tel que

$$\int_{0}^{+\infty} \int_{0}^{1} \eta(u(x,t)) \partial_{t} \varphi(x,t) \, dx \, dt + \int_{0}^{1} \eta(u_{0}(x)) \varphi(x,0) \, dx
+ \int_{0}^{+\infty} \int_{0}^{1} \Phi(u(x,t)) \partial_{x} \varphi(x,t) \, dx \, dt + M \int_{\mathbb{R}_{+}} \varphi(0,t) \eta(\overline{u}(t)) \, dt
+ M \int_{0}^{+\infty} \varphi(1,t) \eta(\overline{\overline{u}}(t)) \, dt \ge 0,$$
(5.27)

pour tout $\varphi \in C^1_c([0,1] \times \mathbb{R}_+, \mathbb{R}_+)$ et pour toute fonction η convexe positive telle qu'il existe $s_0 \in [A,B]$ avec $\eta(s_0) = 0$, et Φ telle que $\Phi(s) = \int_{s_0}^s \eta'(t) f'(t) \, \mathrm{d}t$. (On rappelle qu'une fonction convexe de \mathbb{R} dans \mathbb{R} est localement lipschitzienne et donc dérivable p.p..)

Théorème 5.22 (Existence and unicité, avec conditions limites) Soient $u_0 \in L^{\infty}([0,1])$, $\bar{u}, \overline{\bar{u}} \in L^{\infty}(]0, +\infty[)$ et $f \in \operatorname{Lip_{loc}}(\mathbb{R}, \mathbb{R})$. Soit A, B tels que $A \leq u_0 \leq B$ p.p. et $A \leq \bar{u}, \overline{\bar{u}} \leq B$ p.p.. Soit $M \geq \max_{s \in [A,B]} |f'(s)|$. Alors il existe une et une seule fonction $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ solution entropique de (5.26). De plus,

$$A \le u(x,t) \le B \ p.p. \ (x,t) \in]0,1[\times \mathbb{R}_+.$$

La démonstration de l'existence de solution dans le théorème 5.22 s'obtient en prenant $M \ge \max_{s \in [A,B]} |f'(s)|$ (la solution u prend ses valeurs dans [A,B]). Un moyen assez simple de prouver cette existence est de passer à la limite sur des schémas numériques à flux monotone, voir la démonstration du théorème 5.31 dans le cas multidimensionnel. L'unicité est vraie pour toute valeur de M (mais, évidemment, n'est intéressante que si il y a existence) et la solution (qui existe donc si $M \ge \max_{s \in [A,B]} |f'(s)|$) ne dépend pas de M.

Si la solution est de classe C^1 , cette solution est solution entropique sur]0,1[, c'est-à-dire est solution de (5.27) pour tout $\varphi \in C_c^1(]0,1[\times\mathbb{R}_+,\mathbb{R}_+)$ et pour toute fonction η convexe, et vérifie les conditions aux limites au sens donné par [6].

Ceci est encore vrai si la solution est encore de classe BV (on dit aussi à variation bornée) en espace pour tout t, de sorte à ce que la solution ait, pour tout t, une limite en x=0 et x=1). On rappelle que l'espace BV([0,1]) est défini de la manière suivante, avec $\Omega=]0,1[$.

Définition 5.23 (Fonction à variation bornée, espace BV) Soit Ω un ouvert de \mathbb{R}^N , $N \geq 1$. On dit qu'une fonction $v: \Omega \to \mathbb{R}$ est à variation bornée, ce qu'on note $v \in BV(\overline{\Omega})$, si $v \in L^1(\Omega)$ et si $|v|_{BV(\overline{\Omega})} < +\infty$, avec

$$|v|_{BV(\bar{\Omega})} = \sup\{ \int_{\Omega} v \operatorname{div} \varphi \, dx, \varphi \in C_c^{\infty}(\mathbb{R}^N, \mathbb{R}^N), \|\varphi\|_{L^{\infty}(\Omega)} \le 1 \}.$$
 (5.28)

Bien sûr, si $u \in L^{\infty}(]0,1[\times\mathbb{R}_+)$ est solution de (5.27) comme dans la définition 5.21, la fonction u est aussi solution de (5.27) avec les entropies de Kruzhkov, c'est-à-dire η définie (pour $k \in [A,B]$) par $\eta(s) = |s-k|$ (et donc Φ , flux d'entropie associé, définie par $\Phi(s) = f(\max(s,k)) - f(\min(s,k))$). Par contre, le fait que $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ vérifie (5.27) pour toutes les entropies de Kruzhkov n'est pas suffisant pour assurer l'unicité (alors que c'était suffisant dans le cas du problème posé sur tout \mathbb{R} , sans conditions aux limites). Un exemple de non unicité est donné dans la remarque 5.24. On obtient toutefois l'unicité si $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ vérifie (5.27) pour toutes les "semi-entropies de Kruzhkov", c'est-à-dire les fonctions η définies (pour $k \in [A,B]$) par $\eta(s) = (s-k)^+$ (et donc $\Phi(s) = f(s) - f(k)$ si $s \ge k$ et 0 sinon) et $\eta(s) = (s-k)^-$ (et donc $\Phi(s) = f(k) - f(s)$ si $s \le k$ et 0 sinon).

Remarque 5.24 (Contre exemple à l'unicité avec les entropies de Kruzhkov)

Nous donnons dans cette remarque un exemple de non unicité si on se limite dans la definition 5.21 aux entropies de Kruzhkov, c'est-à-dire aux fonctions η définies (pour $k \in [A,B]$) par $\eta(s) = |s-k|$ (et donc Φ , flux d'entropie associé, défini par $\Phi(s) = f(\max(s,k)) - f(\min(s,k))$).

Pour cet exemple, $f(s) = s^2$, $u_0 = 1$ p.p. dans]0,1[, $\overline{u} = -1$ p.p. sur \mathbb{R}_+ et $\overline{\overline{u}} = 1$ p.p. sur \mathbb{R}_+ . Il est donc possible de prendre A = -1, B = 1 et M = 2. Le théorème 5.22 nous donne une solution entropique de (5.26) avec ces valeurs de A, B and M. On peut vérifier que cette solution est la fonction u définie par

$$u(x,t) = \frac{x}{2t}$$
 si $x < 2t, u(x,t) = 1$, si $x > 2t$.

Elle corespond à une onde de détente. Cette solution reste donc aussi solution de (5.27) en se limitant aux entropies de Kruzhkov.

On considère maintenant la fonction constante u=1 p.p. dans $]0,1[\times\mathbb{R}_+]$. Cette fonction constante est aussi solution de (5.27) si on se limite dans cette définition aux entropies de Kruzhkov. Cette solution consiste en fait à propager une discontinuité non entropique au point x=0.

On a ainsi deux fonctions qui vérifient (5.27) si on se limite dans cette définition aux entropies de Kruzhkov.

5.2 Cas multidimensionnel

Soit $\Omega \subset \mathbb{R}^N$, N=2,3,T>0, $\boldsymbol{b} \in C^1(\bar{\Omega} \times [0,T])^N$ et $f \in C^1(\mathbb{R},\mathbb{R})$ (mais on pourrait aussi considérer le cas $f \in \operatorname{Lip}_{\operatorname{loc}}(\mathbb{R},\mathbb{R})$). On étudie maintenant le problème suivant :

$$\partial_t u + \operatorname{div}(\boldsymbol{b} f(u)) = 0 \text{ dans } \Omega \times]0, T[,$$

$$u(x,0) = u_0(x) \text{ dans } \Omega. \tag{5.29}$$

Plus précisément, nous allons démontrer, avec des hypothèses convenables sur les données, le théorème d'existence et d'unicité des solutions entropiques de ce problème, d'abord dans le cas sans conditions limites (Sect. 5.2.1), puis dans le cas d'un problème avec conditions limites (Sect. 5.2.2).

5.2.1 Cas sans condition limite

On suppose ici que b = 0 sur $\partial\Omega \times [0, T]$, et donc on n'a pas besoin de conditions aux limites sur $\partial\Omega$.

Théorème 5.25 (Kruzhkov, en domaine borné) Soit Ω un ouvert borné de \mathbb{R}^N (N>1) à frontière lipschitzienne. Soit T>0 et $\mathbf{b}\in C^1(\bar{\Omega}\times[0,T])^N$ t.q. $\mathbf{b}=0$ sur $\partial\Omega\times[0,T]$ et $\mathrm{div}\mathbf{b}=0$ dans $\Omega\times[0,T]$. Soit $u_0\in L^\infty(\Omega)$ et $f\in C^1(\mathbb{R},\mathbb{R})$. Alors il existe une unique solution entropique de (5.29), c'est-à-dire solution de

$$u \in L^{\infty}(\Omega \times]0, T[),$$

$$\int_{0}^{T} \int_{\Omega} (\eta(u)\partial_{t}\varphi + \Phi(u) \mathbf{b} \cdot \nabla \varphi) \, dx \, dt + \int_{\Omega} \eta(u_{0}(x))\varphi(x, 0) \, dx \geq 0,$$

$$\forall \varphi \in C_{c}^{\infty}(\Omega \times [0, T[, \mathbb{R}_{+}), \forall \eta \in C^{2}(\mathbb{R}, \mathbb{R}) \text{ convexe et } \Phi \text{ tel que } \Phi' = \eta' f'. \tag{5.30}$$

De plus, si $A \le 0$ et $B \ge 0$ sont t.q. $A \le u_0 \le B$ p.p. sur Ω , on a alors $A \le u \le B$ p.p. sur $\Omega \times]0, T[$.

Démonstration

Etape 1 Construction d'une solution approchée. Soient $n \in \mathbb{N}^{\star}$ et $u^{(n)}$ solution de

$$u^{(n)} \in L^{2}(]0, T[, H_{0}^{1}(\Omega)),$$

$$-\int_{0}^{T} \int_{\Omega} u^{(n)} \partial_{t} \varphi \, dx \, dt - \int_{0}^{T} \int_{\Omega} \mathbf{b} f(u^{(n)}) \cdot \nabla \varphi \, dx \, dt + \frac{1}{n} \int_{0}^{T} \int_{\Omega} \nabla u^{(n)} \cdot \nabla \varphi \, dx \, dt$$

$$-\int_{\Omega} u_{0}(x) \varphi(x, 0) \, dx = 0, \forall \varphi \in C_{c}^{\infty}(\Omega \times [0, +\infty[). \quad (5.31)$$

On connait l'existence et l'unicité de $u^{(n)}$ par l'étude de l'équation de convection-diffusion faite au chapitre 4. (Le fait d'avoir $\frac{1}{n}$ au lieu de 1 ne pose aucune difficulté dans cette étude.)

On a vu aussi au chapitre 4 que cette formulation est équivalente au problème suivant :

$$u^{(n)} \in L^{2}(]0, T[, H_{0}^{1}(\Omega)), \partial_{t}u^{(n)} \in L^{2}(]0, T[, H^{-1}(\Omega)), u^{(n)}(0) = u_{0},$$

$$\int_{0}^{T} \langle \partial_{t}u^{(n)}, v \rangle_{H^{-1}, H_{0}^{1}} dt - \int_{0}^{T} \int_{\Omega} \mathbf{b}f(u^{(n)}) \cdot \nabla v \, dx \, dt + \frac{1}{n} \int_{0}^{T} \int_{\Omega} \nabla u^{(n)} \cdot \nabla v \, dx \, dt = 0,$$

$$\forall v \in L^{2}(]0, T[, H_{0}^{1}(\Omega)). \quad (5.32)$$

On va se servir fortement de cette équivalence.

Etape 2 Estimations sur la solution approchée.

Soit $u_0 \in L^{\infty}(\Omega)$, il existe A et $B \in \mathbb{R}$, $A \le 0 \le B$, tels que $A \le u_0 \le B$ p.p. (A et B sont donc indépendants de n). On en déduit (remarque 4.39 du chapitre 4) que pour tout $t \in [0,T]$, $A \le u^{(n)} \le B$ p.p.. La suite $(u^{(n)})_{n \in \mathbb{N}}$ est donc bornée dans $L^{\infty}(\Omega \times]0,T[)$. On prend maintenant $v=u^{(n)}$ dans (5.32), on obtient, en utilisant $\int_{\Omega} \boldsymbol{b} f(u^{(n)}) \cdot \nabla u^{(n)} \, \mathrm{d}x = 0$ p.p. (grâce à $\mathrm{div}\boldsymbol{b} = 0$, voir (3.12)) :

$$\frac{1}{2} \left(\|u^{(n)}(T)\|_{L^2(\Omega)}^2 - \|u_0\|_{L^2(\Omega)}^2 \right) + \frac{1}{n} \int_0^T \int_{\Omega} |\nabla u^{(n)}|^2 dx dt = 0.$$

On en déduit que

$$\frac{1}{n} \int_{0}^{T} \int_{\Omega} |\nabla u^{(n)}|^{2} dx dt \le \frac{1}{2} ||u_{0}||_{L^{2}(\Omega)}^{2} < +\infty$$
(5.33)

ce qui donne une estimation $L^2(\Omega \times]0,T[)^d$ sur $(\frac{1}{\sqrt{n}}\nabla u^{(n)})_{n\in\mathbb{N}}$. Cette estimation ne donne rien pour la compacité, mais elle est utile pour passer à la limite (quand $n\to+\infty$).

Grâce à la première estimation (l'estimation de $u^{(n)}$ dans $L^{\infty}(\Omega \times]0,T[)$), après extraction d'une sous-suite, on peut supposer que $u^{(n)} \to u$ *-faiblement dans $L^{\infty}(\Omega \times]0,T[)$.

Si f(u)=u, on montre assez facilement que u est solution faible de (5.29) (c'est-à-dire solution de 5.30 avec seulement $\eta(s)=s$ mais avec tout φ dans $C_c^\infty(\Omega\times[0,T[,\mathbb{R}])$ et avec = au lieu de \geq). Puis on peut montrer (un peu moins facilement) que u est solution de (5.30) et cela termine la partie "existence" du théorème 5.25. Si la fonction f' est non constante, la situation est beaucoup plus difficile, même pour montrer seulement que u est solution faible de (5.29), car la convergence de $u^{(n)}$ vers u n'est que faible et donc on ne sait pas si $f(u^{(n)})$ tend vers f(u) (et, plus généralement, on ne sait pas si $\eta(u^{(n)})$ tend vers $\eta(u)$ et $\Phi(u^{(n)})$ tend vers $\Phi(u)$). Pour résoudre cette difficulté, deux méthodes ont été développées.

Une première méthode, essentuellement due à Kruzhkov (pour le cas $\Omega=\mathbb{R}^N$), suppose, dans un premier temps, que la donnée initiale u_0 appartient à l'espace $BV(\overline{\Omega})$ (c'est-à-dire que u_0 est "à variation bornée", définition 5.23), on rappelle que ceci signifie que $u_0 \in L^1(\Omega)$ et que $|u_0|_{BV(\overline{\Omega})} < +\infty$, où $|u_0|_{BV(\overline{\Omega})}$ désigne la semi-norme BV définie par (5.28). On démontre alors que la suite $(u^{(n)})_{n\in\mathbb{N}}$ est bornée dans $BV(\overline{\Omega}\times[0,T])$. L'idée, pour

montrer cette borne sur $u^{(n)}$, est de dériver la première équation de (5.29) par rapport à x_i et de multiplier par $sign(\partial_i u)$. Grâce à cette estimation sur $u^{(n)}$, on peut appliquer ensuite le théorème de Helly ⁶ donné ci après.

Théorème 5.26 (Helly) Soient $d \ge 1$ et $(u_n)_{n \in \mathbb{N}}$ une suite bornée dans $L^1(Q)$ et bornée dans BV(Q) où Q est un compact de \mathbb{R}^d , alors $(u_n)_{n \in \mathbb{N}}$ est relativement compact dans $L^1(Q)$.

On applique donc le théorème de Helly avec $Q = \bar{\Omega} \times [0,T]$ (et d = N+1). Puisque $u^{(n)} \to u$ dans $L^1(Q)$, à une sous-suite près, on a $u^{(n)} \to u$ dans $L^p(Q)$ pour tout $p < +\infty$ et on peut aussi supposer (toujours après extraction éventuelle d'une sous-suite) que $u^{(n)} \rightarrow u$ p.p.. On peut alors montrer que u est solution de (5.30) (ce qu'on fera à l'étape 3 plus loin), ce qui donne l'existence d'une solution à (5.30) si $u_0 \in BV(\bar{\Omega})$. Si u_0 n'est que dans $L^{\infty}(\Omega)$ (et c'est probablement ici l'apport majeur de Kruzhkov), on peut approcher u_0 par une suite d'éléments de $L^{\infty}(\Omega) \cap BV(\overline{\Omega})$ et montrer que la suite des solutions entropiques associées converge (en un sens convenable, après extraction d'une sous-suite) vers une solution entropique associée à u_0 . On peut également montrer l'unicité de la solution de (5.30) (étape 4 ci après). L'inconvénient majeur de cette méthode est qu'elle ne semble pas marcher pour montrer la convergence des schémas numériques car même si la condition initiale est supposée être dans $BV(\Omega)$, la solution approchée obtenue par un schéma numérique n'est pas bornée dans $BV(\Omega \times [0,T])$ indépendamment des paramètres de discrétisation (sauf dans le cas des maillages cartésiens). C'est pour cela qu'on peut lui préférer la deuxième méthode, qui ne passe par l'estimation BV. On prend uniquement u_0 dans $L^{\infty}(\Omega)$, et on ne cherche pas à montrer directement une compacité de la suite $u^{(n)}$ dans $L^1(\Omega \times]0,T[)$. Grâce à l'estimation de $u^{(n)}$ dans $L^\infty(\Omega \times]0,T[)$, on montre que (après extraction d'une soussuite) $u^{(n)} \to \tilde{u}$, en un sens convenable, où \tilde{u} dépend d'une variable supplémentaire. (Il s'agit donc d'un théorème de compacité un peu inhabituel donnant une convergence que nous appelons "convergence non linéaire faible-*"). Puis, on montre que \tilde{u} est une solution du problème en un sens plus général que (5.30), que nous appelons "sens processus". Cette preuve est très voisine de celle de l'étape 3 ci après. On démontre ensuite l'unicité de la solution au sens processus et que la solution processus est solution entropique (c'est-à-dire solution de (5.30)). Cette preuve d'unicité est très voisine de celle donnée dans l'étape 4 ci après. Ceci termine la démonstration de l'existence d'une solution à (5.30) (directement avec u_0 dans $L^{\infty}(\Omega)$). (L'unicité est toujours donnée par l'étape 4.) Un sous produit de cette démonstration est la convergence (forte) de $u^{(n)}$ vers u dans tout les espaces $L^p(\Omega \times]0,T[),p<+\infty$, y compris si f est linéaire (ou est linéaire sur des intervalles de IR). L'idée essentielle a donc été de remplacer le théorème de compacité (forte) de Helly par un théorème de compacité plus faible combiné avec un résulat d'unicité de la solution "au sens processus" de (5.29) (voir, par exemple, [18]).

Etape 3. On reprend ici la méthode 1, et on va effectuer le passage à la limite, quand $n \to +\infty$, en supposant que $u_0 \in BV$ et donc que $u^{(n)} \to u$ p.p. (pour une sous-suite). On admet donc la partie "estimation BV de $u^{(n)}$ ".

1. Montrons que u est solution faible. Soit $\varphi\in C_c^\infty(\Omega\times[0,+\infty[),$ on a

$$\int_0^T \!\! \int_\Omega (u^{(n)} \partial_t \varphi + \boldsymbol{b} f(u^{(n)}) \cdot \nabla \varphi) \, \mathrm{d}x \, \mathrm{d}t + \int_\Omega u_0(x) \varphi(x,0) \, \mathrm{d}x - \frac{1}{n} \int_0^T \!\! \int_\Omega \nabla u^{(n)} \cdot \nabla \varphi \, \mathrm{d}x \, \mathrm{d}t = 0$$

On remarque tout d'abord que le dernier terme du membre de gauche tend vers 0, grâce à l'estimation (5.33) et à l'inégalité de Cauchy-Schwarz, en effet

$$\left| \frac{1}{n} \int_{0}^{T} \int_{\Omega} \nabla u^{(n)} \cdot \nabla \varphi \, dx \, dt \right| \leq \frac{1}{\sqrt{n}} \left\| \frac{1}{\sqrt{n}} \left| \nabla u^{(n)} \right| \right\|_{L^{2}(\Omega \times]0, T[)} \left\| \left| \nabla \varphi \right| \right\|_{L^{2}(\Omega \times]0, T[)}$$

^{6.} Eduard Helly (1884–1943), mathématicien autrichien, prisonnier en Sibérie pendant et après la première guerre mondiale, il n'obtient pas de poste universitaire en raison de sa judéité et il s'exile aux USA après l'Anschluss en 1938. Il a donné de nombreuses contributions en Analyse fonctionnelle.

et $\|\frac{1}{\sqrt{n}}|\nabla u^{(n)}|\|_{L^2(\Omega\times]0,T[)} \leq \frac{1}{\sqrt{2}}\|u_0\|_{L^2(\Omega)}$ par (5.33) et donc $\frac{1}{n}\int\int\nabla u^{(n)}\cdot\nabla\varphi\to 0$ lorsque $n\to 0$. Les autres termes convergent par convergence dominée, et donc en passant à la limite, on obtient

$$\int_{0}^{T} \int_{\Omega} (u \partial_{t} \varphi + \mathbf{b} f(u) \cdot \nabla \varphi) \, dx \, dt + \int_{\Omega} u_{0}(x) \varphi(x, 0) \, dx = 0.$$
 (5.34)

2. Montrons que u est solution entropique. Comme $u^{(n)}$ est solution faible de

$$u_t^{(n)} + \operatorname{div}(\mathbf{b}f(u^{(n)})) - \frac{1}{n}\Delta u^{(n)} = 0,$$
(5.35)

on peut montrer (on l'admettra) que $u^{(n)} \in C^2(\Omega \times]0, T[)$ (c'est ce que l'on appelle l'effet régularisant pour une équation parabolique). La fonction $u^{(n)}$ est donc solution classique de (5.35). On peut alors multiplier cette équation par $\eta'(u^{(n)})$ avec $\eta \in C^2(\mathbb{R}, \mathbb{R})$ convexe. Comme $\mathrm{div} \boldsymbol{b} = 0$, on obtient

$$\partial_t(\eta(u^{(n)})) + \boldsymbol{b}f'(u^{(n)})\eta'(u^{(n)}) \cdot \nabla u_n - \frac{1}{n}\eta'(u^{(n)})\Delta u^{(n)} = 0 \text{ sur } \Omega \times]0, T[.$$

On en déduit :

$$\partial_t(\eta(u^{(n)})) + \boldsymbol{b} \cdot \nabla(\Phi(u^{(n)}) - \frac{1}{n} \operatorname{div}(\eta'(u^{(n)}) \nabla u^{(n)}) + \frac{1}{n} \eta''(u^{(n)}) |\nabla u^{(n)}|^2 = 0.$$

Mais $\frac{1}{n}\eta^{\prime\prime}(u^{(n)})|\nabla u^{(n)}|^2\geq 0,$ on a donc

$$\partial_t(\eta(u^{(n)})) + \boldsymbol{b} \cdot \nabla(\Phi(u^{(n)}) - \frac{1}{n} \operatorname{div}(\eta'(u^{(n)}) \nabla u^{(n)})) \le 0.$$

En multipliant cette équation par φ , avec $\varphi \in C_c^{\infty}(\Omega \times [0, T[, \mathbb{R}_+), \text{ on obtient, toujours sur } \Omega \times]0, T[,$

$$\varphi \partial_t (\eta(u^{(n)})) + \varphi \mathbf{b} \cdot \nabla (\Phi(u^{(n)}) - \frac{1}{n} \varphi \operatorname{div}(\eta'(u^{(n)}) \nabla u^{(n)})) \le 0$$

On intègre sur $[\varepsilon, T] \times \Omega$ avec $\varepsilon > 0$ et, après intégration par parties, on obtient :

$$-\int_{\varepsilon}^{T} \int_{\Omega} (\eta(u^{(n)})) \partial_{t} \varphi - \int_{\Omega} \eta(u^{(n)}(\varepsilon)) \varphi(x, \epsilon) \, dx - \int_{\varepsilon}^{T} \int_{\Omega} \left(\boldsymbol{b} \Phi(u^{(n)}) \cdot \nabla \varphi + \frac{1}{n} \eta'(u^{(n)}) \nabla u^{(n)} \cdot \nabla \varphi \right) \, dx \, dt \leq 0.$$

 $\text{Mais on a, quand } \varepsilon \to 0, \ u^{(n)}(\varepsilon) \to u^{(n)}(0) = u_0 \ \text{dans } L^2(\Omega) \ \text{et } \eta(u^{(n)}(\varepsilon)) \to \eta(u_0) \ \text{dans } L^2(\Omega) \ \text{et donc} = 0$

$$-\int_0^T \int_{\Omega} (\eta(u^{(n)})) \partial_t \varphi - \int_{\Omega} \eta(u_0) \varphi(x,0) \, \mathrm{d}x - \int_0^T \int_{\Omega} \left(\boldsymbol{b} \Phi(u^{(n)}) \cdot \nabla \varphi + \frac{1}{n} \eta'(u^{(n)}) \nabla u^{(n)} \cdot \nabla \varphi \right) \, \mathrm{d}x \, \mathrm{d}t \le 0.$$

Lorsque $n \to \infty$, on a $\eta(u^{(n)}) \to \eta(u)$ et $\Phi(u^{(n)}) \to \Phi(u)$ dans $L^2(\Omega \times]0,T[)$ et, avec $C_{\eta,A,B} = \max\{|\eta'(s)|, A \le s \le B\}$,

$$\left| \frac{1}{n} \int_{0}^{T} \int_{\Omega} \eta'(u^{(n)}) \nabla u^{(n)} \cdot \nabla \varphi \, dx \, dt \right| \leq C_{\eta, A, B} \frac{1}{\sqrt{n}} \left\| \frac{1}{\sqrt{n}} |\nabla u^{(n)}| \right\|_{L^{2}(\Omega \times]0, T[)} \||\nabla \varphi||_{L^{2}(\Omega \times]0, T[)} \to 0$$

lorsque $n \to +\infty$.

On obtient ainsi, finalement,

$$\int_0^T \int_{\Omega} (\eta(u)) \partial_t \varphi + \boldsymbol{b} \cdot \Phi(u^{(n)}) \nabla \varphi \, dx \, dt + \int_{\Omega} \eta(u_0) \varphi(x, 0) \, dx \ge 0$$

pour tout $\varphi \in C_c^\infty(\Omega \times [0,T[,\mathrm{I\!R}_+),$ ce qui termine la preuve de l'existence.

Etape 4. Unicité

Soit u une solution de (5.30). On montre tout d'abord que l'on peut prendre $\varphi \in C_c^{\infty}(\mathbb{R}^N \times [0, T[, \mathbb{R}_+)])$ dans (5.30). C'est ici que l'hypothèse $\mathbf{b} = 0$ sur le bord de Ω est utile.

On admet ici que l'on peut construire une suite $(\varphi_n)_{n\in\mathbb{N}}$ appartenant à $\mathcal{D}(\Omega)$ et telle que $\varphi_n=1$ sur $K_n=\{x\in\Omega;d(x,\partial\Omega)\geq\frac{1}{n}\},0\leq\varphi_n\leq1$ et $|\nabla\varphi_n|\leq C_\Omega n$, où C_Ω ne dépend que de Ω (la régularité lipschitzienne de Ω est importante ici). Soit $\varphi\in C_c^\infty(\mathbb{R}^N\times[0,T[,\mathbb{R}_+)]$, on prend alors $\varphi(x,t)\varphi_n(x)$ comme fonction test dans (5.30), on obtient

$$\int_0^T\!\!\!\int_\Omega \left(\varphi_n \eta(u) \partial_t \varphi + \varphi_n \Phi(u) \boldsymbol{b} \cdot \nabla \varphi\right) \,\mathrm{d}x \,\mathrm{d}t + \int_\Omega \eta(u_0(x)) \varphi_n(x) \varphi(x,0) \,\mathrm{d}x + \int_0^T\!\!\!\int_\Omega \boldsymbol{b} \Phi(u) \varphi \cdot \nabla \varphi_n \,\mathrm{d}x \,\mathrm{d}t \geq 0.$$

Les premiers termes convergent par convergence dominée. Appelons R_n le dernier terme. On va montrer sa convergence assez facilement grâce au fait qu'on a supposé b nul sur le bord.

$$R_n = \int_0^T \int_{\Omega} \boldsymbol{b} \Phi(u) \varphi \cdot \nabla \varphi_n \, dx \, dt = \int_0^T \int_{C_n} \boldsymbol{b} \Phi(u) \varphi \cdot \nabla \varphi_n,$$

où $C_n = \Omega \setminus K_n$. On a donc

$$|R_n| \leq T \|\boldsymbol{b}\|_{L^{\infty}(C_n)} C_{u,\Phi} \|\varphi\|_{\infty} C_{\Omega} n \operatorname{mes}(C_n),$$

où $C_{u,\Phi} = \max\{|\Phi(s)|, s \in [-\gamma, \gamma]\}$, avec $\gamma = \|u\|_{L^{\infty}(\Omega \times]0, T[)}$. Comme $\boldsymbol{b} = 0$ sur $\partial \Omega \times [0, T]$ (et \boldsymbol{b} continue), on a $\|\boldsymbol{b}\|_{L^{\infty}(C_n)} \to 0$ quand $n \to +\infty$. Enfin, la suite $(n \operatorname{mes}(C_n))_{n \in \mathbb{N}}$ est bornée. On a donc $\lim_{n \to +\infty} R_n = 0$ et on obtient donc

$$\int_0^T \int_{\Omega} \eta(u) \partial_t \varphi + \boldsymbol{b} \Phi(u) \cdot \nabla \varphi \, dx \, dt + \int_{\Omega} \eta(u_0) \varphi(x,0) \, dx \ge 0 \, \forall \varphi \in C_c^{\infty}(\mathbb{R}^N \times [0,T[,\mathbb{R}_+),$$

pour tout $\eta \in C^2(\mathbb{R}, \mathbb{R})$, η convexe.

Par un procédé de régularisation, il est alors assez facile de montrer que l'hypothèse de régularité sur η (c'est-à-dire η de classe C^2) peut être remplacée par l'hypothèse plus faible " η localement lipschitzienne", ce qui a l'intérêt de pouvoir utiliser les entropies de Kruzhkov.

On peut maintenant montrer l'unicité de la solution de (5.30). Soient u et v deux solutions de (5.30). On va utiliser (5.30) en prenant pour η une entropie de Kruzhkov et des fonctions $\varphi \in C_c^\infty(\mathbb{R}^N \times [0,T[,\mathbb{R}_+)$ (on vient de montrer que cela est possible). On reprend ici une idée de Kruzhkov, dite de dédoublement de variables. Elle consiste tout d'abord à choisir, dans (5.30), k=v(y,s) et à prendre $\varphi(x,t)=\psi(t)\rho_n(x-y)\overline{\rho}_n(t-s)$ avec $\psi \in C_c^\infty([0,T[,\mathbb{R}_+),\rho_n(x)=n^N\rho(nx))$ et $\overline{\rho}_n(t)=n\overline{\rho}(nt)$, où ρ et $\overline{\rho}$ sont des noyaux régularisants, et à intégrer par rapport à y et s. La fonction ρ est à valeurs positives, elle est de classe C^∞ sur \mathbb{R}^N , elle a son support dans la boule de rayon 1 et son intégrale sur \mathbb{R}^N vaut 1. De même, la fonction $\overline{\rho}$ est à valeurs positives, elle est de classe C^∞ sur \mathbb{R}^N , elle a son support dans la boule de rayon 1 et son intégrale sur \mathbb{R}^N vaut 1. De plus, on choisit $\overline{\rho}$ de manière à ce que son support soit dans \mathbb{R}_- . Avec ce choix de fonction test (et n assez grand pour que la fonction test soit admissible dans (5.30)) écrit avec des éléments $\varphi \in C_c^\infty(\mathbb{R}^N \times [0,T[,\mathbb{R}))$, on obtient :

$$A_{1,n} + A_{2,n} + A_{3,n} + A_{4,n} \ge 0, (5.36)$$

avec

$$A_{1,n} = \int_0^T \int_\Omega \int_0^T \int_\Omega |u(x,t) - v(y,s)| \psi'(t) \rho_n(x-y) \bar{\rho}_n(t-s) dx dt dy ds,$$

$$\begin{split} A_{2,n} &= \int_0^T \int_\Omega \int_\Omega^T \int_\Omega |u(x,t) - v(y,s)| \psi(t) \rho_n(x-y) \bar{\rho}_n'(t-s) \, \mathrm{d}x \, \mathrm{d}t \, \mathrm{d}y \, \mathrm{d}s, \\ A_{3,n} &= \int_0^T \int_\Omega \int_\Omega^T \int_\Omega (f(u(x,t)) - f(v(y,s))(sign(u(x,t) - v(y,s))\psi(t) \boldsymbol{b} \cdot \nabla \rho_n(x-y) \bar{\rho}_n(t-s) \, \mathrm{d}x \, \mathrm{d}t \, \mathrm{d}y \, \mathrm{d}s, \\ A_{4,n} &= \int_0^T \int_\Omega \int_\Omega |u_0(x) - v(y,s)| \psi(0) \rho_n(x-y) \bar{\rho}_n(-s) \, \mathrm{d}x \, \mathrm{d}y ds. \end{split}$$

On passe maintenant à limite quand $n \to +\infty$ dans (5.36). Il n'est pas difficile de montrer que

$$\lim_{n \to +\infty} A_{1,n} = \int_0^T \int_{\Omega} |u(x,t) - v(x,t)| |\psi'(t)| dx dt.$$

On montre ensuite que $A_{2,n}+A_{3,n}\leq 0$. Pour cela, on considère la formulation entropique pour v, écrite avec y et s comme variables. On choisit l'entropie de Kruzhkov associée à k=u(x,t) et $\varphi(y,s)=\psi(t)\rho_n(x-y)\overline{\rho}_n(t-s)$. Enfin, en intégrant par rapport à $x\in\Omega$ et $t\in\mathbb{R}_+$, on obtient

$$\begin{split} &-\int_0^T\int_\Omega\int_0^T\int_\Omega|v(y,s)-u(x,t)|\psi(t)\rho_n(x-y)\bar{\rho}_n'(t-s)\;\mathrm{d}y\;\mathrm{d}s\;\mathrm{d}x\;\mathrm{d}t\\ &-\int_0^T\int_\Omega\int_0^T\int_\Omega(f(v(y,s))-f(u(x,t))(sign(v(y,s)-u(x,t))\psi(t)\boldsymbol{b}\cdot\nabla\rho_n(x-y)\bar{\rho}_n(t-s)\;\mathrm{d}y\;\mathrm{d}s\;\mathrm{d}x\;\mathrm{d}t\geq 0. \end{split}$$

Ce qui donne $A_{2,n}+A_{3,n}\leq 0$. On notera que le terme associé à la condition initiale est nul car $\bar{\rho}_n(t)=0$ si $t\geq 0$. Il suffit maintenant de montrer que $\lim_{n\to+\infty}A_{4,n}=0$ pour conclure en passant à limite dans (5.36) que

$$\int_{0}^{T} \int_{\Omega} |u(x,t) - v(x,t)| \psi'(t) \, dx \, dt \ge 0.$$
 (5.37)

Pour montrer que $\lim_{n\to +\infty} A_{4,n}=0$, on reprend la formulation entropique pour v écrite avec y et s comme variables. On choisit l'entropie de Kruzhkov associée à $k=u_0(x)$ et $\varphi(y,s)=\psi(0)\rho_n(x-y)\int_s^\infty \overline{\rho}_n(-\tau)d\tau$ (avec n assez grand pour que cette fonction test φ soit admissible). Enfin, on intègre par rapport à $x\in\Omega$. On obtient

$$-A_{4,n} - \int_0^T \int_{\Omega} \int_{\Omega} (f(v(y,s)) - f(u_0(x))(sign(v(y,s) - u_0(x))\psi(0)\boldsymbol{b} \cdot \nabla \rho_n(x-y)) \int_s^{\infty} \bar{\rho}_n(-\tau)d\tau) \, \mathrm{d}y \, \mathrm{d}s \, \mathrm{d}x$$
$$+ \int_{\Omega} \int_{\Omega} |u_0(y) - u_0(x)|\psi(0)\rho_n(x-y) \, \mathrm{d}x \, \mathrm{d}y \ge 0.$$

On a donc

$$0 \le A_{4,n} \le A_{5,n} + A_{6,n}$$

avec

$$A_{5,n} = -\int_0^T \int_{\Omega} \int_{\Omega} (f(v(y,s)) - f(u_0(x))(sign(v(y,s) - u_0(x))\psi(0)\boldsymbol{b} \cdot \nabla \rho_n(x-y)) \int_s^{\infty} \bar{\rho}_n(-\tau)d\tau) dy ds dx,$$

$$A_{6,n} = \int_{\Omega} \int_{\Omega} |u_0(y) - u_0(x)|\psi(0)\rho_n(x-y) dx dy.$$

Il n'est pas difficile de montrer que $\lim_{n\to+\infty} A_{5,n} = \lim_{n\to+\infty} A_{6,n} = 0$. On en déduit que $\lim_{n\to+\infty} A_{4,n} = 0$ et, finalement, on obtient (5.37).

On peut maintenant conclure. Soit $0 < \varepsilon < T$, on choisit $\psi \in C_c^\infty([0,T[,\mathbb{R}_+)$ telle que $\psi' < 0$ sur $]0,T-\varepsilon]$. L'inégalité (5.37) donne alors u=v p.p. sur $\Omega \times]0,T-\varepsilon[$. Comme ε est arbitrairement petit, on en conclut que u=v p.p. sur $\Omega \times]0,T[$, ce qui termine la preuve de l'unicité.

Remarque 5.27 (Pour le cas où Ω est non borné) Dans la partie "unicité" (Etape 4) de la démonstration précédente, il aurait été possible de prendre une fonction ψ dépendant aussi de x. On aurait alors obtenu

$$\int_{0}^{T} \int_{\Omega} |u - v| \psi_{t} \, dx \, dt + \int_{0}^{T} \int_{\Omega} \boldsymbol{b}(f(u) - f(v) \operatorname{sign}(u - v) \cdot \nabla \psi \, dx \, dt \ge 0 \, \forall \psi \in C_{c}^{\infty}(\mathbb{R}^{N} \times [0, T[, \mathbb{R}_{+}).$$
(5.38)

Ceci est intéressant pour montrer alors l'unicité dans le cas où l'ouvert Ω est non borné (par exemple, $\Omega = \mathbb{R}^N$) en profitant de la propriété de "propagation à vitesse finie" pour les problèmes hyperboliques. Plus précisément, on prend dans (5.38)

$$\psi(x,t) = r(t)\varphi_a(|x| + \omega t) \text{ avec } \omega = L_f \|\boldsymbol{b}\|_{\infty},$$

où L_f est un majorant de |f'| sur l'intervalle $[-\gamma, \gamma]$, avec

$$\begin{split} \gamma &= \max\{\|u\|_{\infty}, \|v\|_{\infty}\}, \ r(t) = \frac{1}{T}(T-t)^{+} \\ \varphi_{a} &\in C_{c}^{\infty}([0,\infty[,\mathrm{I\!R}_{+}), \ \mathrm{avec} \ \varphi_{a} = 1 \ \mathrm{sur} \ [0,a] \ \mathrm{avec} \ a > 0 \ \mathrm{donn\acute{e}} \ \mathrm{et} \ \varphi_{a} \ \mathrm{d\acute{e}croissante} \ ; \end{split}$$

on peut remarquer qu'un argument simple de régularisation autorise à prendre une telle fonction ψ dans (5.38). On obtient alors

$$-\frac{1}{T} \int_0^T \!\! \int_{\mathbb{R}^N} |u - v| \varphi_a(|x| + \omega t) \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} |u - v| r(t) \varphi_a'(|x| + \omega t) \omega \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} \boldsymbol{b}(f(u) - f(v)) \operatorname{sign}(u - v) r(t) \varphi_a'(|x| + \omega t) \frac{x}{|x|} dx \, dt \ge 0.$$

Mais

$$\int_{0}^{T} \int_{\mathbb{R}^{N}} \boldsymbol{b}(f(u) - f(v)\operatorname{sign}(u - v)r(t)\varphi'_{a}(|x| + \omega t) \frac{x}{|x|} \leq -\int_{0}^{T} \int_{\mathbb{R}^{N}} \|\boldsymbol{b}\| L_{f}|u - v|r(t)\varphi'_{a}(|x| + \omega t) \, dx \, dt$$
$$\leq -\int_{0}^{T} \int_{\mathbb{R}^{N}} |u - v|r(t)\varphi'_{a}(|x| + \omega t) \omega dx dt,$$

car $\omega = L_f || \boldsymbol{b} ||$. On a donc

$$-\frac{1}{T} \int_0^T \int_{\mathbb{R}^N} |u - v| \varphi_a(|x| + \omega t) \, \mathrm{d}x \, \mathrm{d}t \ge 0.$$

On en déduit, avec $B_{a,t} = \{x \text{ t.q. } |x| + \omega t \leq a\}$ que $\int_0^T (\int_{B_{a,t}} |u-v| \, \mathrm{d}x) dt = 0$. On fait tendre maintenant a vers $+\infty$. On obtient, par convergence monotone, $\int_0^T \int_\Omega |u-v| \, \mathrm{d}x \, \mathrm{d}t = 0$ et donc u=v p.p. sur $\Omega \times]0, T[$.

Remarque 5.28 (hypothèses sur b)

- 1. On a utilisé la régularité C^1 de ${\bf b}$ pour obtenir l'estimation BV sur les solutions approchées. Si on n'utilise pas l'estimation BV, on utilise quand même la régularité C^1 de ${\bf b}$ pour l'unicité. En fait, on peut remarquer que les démonstrations de l'estimation BV et de l'unicité restent justes dès que ${\bf b}$ est localement lipschitzienne.
- 2. On a supposé $\operatorname{div} \boldsymbol{b} = 0$. On pourrait remplacer cette hypothèse par $\operatorname{div} \boldsymbol{b} \in L^{\infty}$ à condition de supposer que f soit lipschitzienne. On a aussi supposé que $\boldsymbol{b} = 0$ sur $\partial\Omega$ (pour ne pas traiter le cas, difficile, des conditions aux limites) mais on pourrait remplacer cette condition par $\boldsymbol{b} \cdot \boldsymbol{n} = 0$ sans grande difficulté supplémentaire. Le problème des conditions aux limites interviendrait si $\boldsymbol{b} \cdot \boldsymbol{n} \neq 0$.

5.2.2 Cas des conditions aux limites

Cette section est consacrée à une généralisation du théorème 5.22 dans le cas scalaire multidimensionnel ainsi qu'à une esquisse de preuve. Nous considérons le problème (5.29) et ne supposons plus que b = 0 sur la frontière.

Définition 5.29 (Solution faible entropique, avec conditions limites, [29]) Soit Ω un sous-ensemble ouvert borné de \mathbb{R}^N ($N \ge 1$) avec une frontière de Lipschitz. Soit T > 0, $f \in C^1(\mathbb{R}, \mathbb{R})$ (ou $f : \mathbb{R} \to \mathbb{R}$ lipschitzienne) et $\mathbf{b} \in C^1(\bar{\Omega} \times [0,T])^N$. Soit $u_0 \in L^{\infty}(\Omega)$ et $\bar{u} \in L^{\infty}(\partial \Omega \times]0,T[)$. Soient $A,B \in \mathbb{R}$ tels que $A \le u_0 \le B$ p.p. sur Ω et $A \le \bar{u} \le B$ p.p. sur $\partial \Omega \times]0,T[$.

Une fonction $u: \Omega \times]0, T[\to \mathbb{R}$ est une solution entropique faible de (5.29) satisfaisant (faiblement) la condition limite \overline{u} si

$$u \in L^{\infty}(\Omega \times]0, T[) \text{ and } \forall \kappa \in [A, B], \ \forall \varphi \in C_{c}^{1}(\overline{\Omega} \times [0, T), \mathbb{R}_{+}),$$

$$\int_{0}^{T} \int_{\Omega} [(u - \kappa)^{\pm} \partial_{t} \varphi + sign_{\pm}(u - \kappa)(f(u) - f(\kappa)) \boldsymbol{b} \cdot \operatorname{grad} \varphi] \, \mathrm{d}x \, \mathrm{d}t$$

$$+ M \int_{0}^{T} \int_{\partial \Omega} (\overline{u}(t) - \kappa)^{\pm} \varphi(x, t) \, \mathrm{d}\gamma(x) \, \mathrm{d}t + \int_{\Omega} (u_{0} - \kappa)^{\pm} \varphi(x, 0) \, \mathrm{d}x \geq 0,$$

$$(5.39)$$

où $d\gamma(x)$ représente l'intégration par rapport à la mesure de Lebesgue (N-1)-dimensionnelle sur la frontière de Ω introduite au paragraphe 1.5, et M est tel que $\|\mathbf{b}\|_{\infty}|f(s_1)-f(s_2)|\leq M|s_1-s_2|$ pour tous $s_1,s_2\in[A,B]$, où $\|\mathbf{b}\|_{\infty}=\sup_{(x,t)\in\Omega\times[0,T]}|\mathbf{b}(x,t)|$ (et $|\cdot|$ désigne ici la norme euclidienne dans \mathbb{R}^2).

Remarque 5.30

1. Si u satisfait la famille d'inégalités (5.39)), on peut prouver que u est une solution d'une forme faible de (5.29) et qu'elle satisfait certaines inégalités d'entropie dans $\Omega \times]0, T[$, à savoir

$$|u - \kappa|_t + \operatorname{div}(\boldsymbol{b}(f(\max(u, \kappa)) - f(\min(u, \kappa)))) \le 0$$
 pour tout $\kappa \in \mathbb{R}$,

mais aussi sur la frontière $\partial\Omega$ et au temps t=0. La solution faible entropique u satisfait la condition initiale $(u(\cdot,0)=u_0)$ et satisfait partiellement les conditions aux limites. Par exemple, si f'>0 et si u et Ω sont suffisamment réguliers, alors $u(x,t)=\overline{u}(x,t)$ si $x\in\partial\Omega$, $t\in]0,T[$ et $b(x,t)\cdot n(x,t)<0$, où n est le vecteur normal extérieur à $\partial\Omega$.

2. Soit $\overline{M} \geq 1$. Il est intéressant de remarquer que u est une solution de (5.39) si et seulement si u est solution de (5.39) où le terme $\int_{\Omega} (u_0 - \kappa)^{\pm} \varphi(x, 0) \, dx$ est remplacé par $\overline{M} \int_{\Omega} (u_0 - \kappa)^{\pm} \varphi(x, 0) \, dx$.

Théorème 5.31 (Existence et unicité, Otto, 1996) Sous les hypothèses de la définition 5.29, supposons que $\operatorname{div} \boldsymbol{b} = 0$ dans $\Omega \times [0, T]$; alors il existe une solution entropique unique $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ satisfaisant (5.39). De plus,

$$A < u(x,t) < B \ p.p. \ (x,t) \in]0,1[\times \mathbb{R}_{+}.$$

Démonstration Nous ne donnons ici qu'une esquisse de la preuve dans le cas où Ω est un sous-ensemble ouvert borné polygonal (ou polyédrique) de \mathbb{R}^N ; cette preuve est basée sur la convergence des approximations numériques [36].

ÉTAPE 1 : SOLUTIONS APPROCHÉES. En considérant un maillage assez général de Ω (avec des triangles, par exemple dans le cas bidimensionnel), noté \mathcal{T} , et un pas de temps k, une solution approchée $u_{\mathcal{T},k}$ du problème (5.29) peut être définie en utilisant des flux numériques à deux points (sur les bords des mailles) construits avec une fonction de flux numérique g telle que

- \bullet g est croissante par rapport à son premier argument et décroissante par rapport à son second argument,
- g(s,s) = f(s), pour tout $s \in [A, B]$,
- g est localement lipschitzienne (ou localement "Lip-diag", voir [21, Définition 3.1]).

On note h la borne supérieure des diamètres des éléments du maillage. Sous une condition dite de CFL, du type $k \le (1-\zeta)\frac{h}{L}$ avec $\zeta > 0$, il est facile de prouver que

$$A \leq u_{\mathcal{T},k} \leq B$$
 p.p. sur $\Omega \times]0,T[$.

Malheureusement, il ne semble pas facile d'obtenir directement un résultat de compacité sur la famille des solutions approchées (bien que ce résultat de compacité soit vrai, comme nous le verrons plus loin).

ÉTAPE 2 : COMPACITÉ FAIBLE. En utilisant seulement cette borne L^{∞} sur $u_{\mathcal{T},k}$, on peut supposer (à une soussuite près) que $u_{\mathcal{T},k} \to u$, lorsque le pas du maillage tend vers 0 (avec la condition CFL), dans un "sens non linéaire faible" (similaire à la convergence vers une mesure de Young, voir [18, Section 30] par exemple), c'est-àdire $u \in L^{\infty}(\Omega \times |0, T[\times (0, 1)))$ et

$$\int_0^T \int_\Omega \Phi(u_{\mathcal{T},k}(x,t)) \varphi(x,t) \; \mathrm{d}x \; \mathrm{d}t \to \int_0^1 \int_0^T \int_\Omega \Phi(u(x,t,\alpha)) \varphi(x,t) \; \mathrm{d}x \; \mathrm{d}t \; \mathrm{d}\alpha,$$

$$\forall \varphi \in L^1(\Omega \times]0,T[), \; \forall \Phi \in C(\mathbb{R},\mathbb{R}).$$

ÉTAPE 3 : PASSAGE À LA LIMITE. En utilisant la monotonie des flux numériques, les solutions approchées satisfont certaines inégalités d'entropie discrète. En passant à la limite sur ces inégalités, on obtient que u (définie à l'étape 2) satisfait certaines inégalités très similaires à (5.39), à savoir :

$$u \in L^{\infty}(\Omega \times]0, T[\times(0,1)),$$

$$\int_{0}^{1} \int_{0}^{T} \int_{\Omega} [(u-\kappa)^{\pm} \partial_{t} \varphi + \operatorname{sign}_{\pm}(u-\kappa)(f(u)-f(\kappa))\boldsymbol{b} \cdot \operatorname{grad}\varphi] \, \mathrm{d}x \, \mathrm{d}t \, \mathrm{d}\alpha$$

$$+ M \int_{0}^{T} \int_{\partial \Omega} (\overline{u}(t)-\kappa)^{\pm} \varphi(x,t) \, \mathrm{d}\gamma(x) \, \mathrm{d}t$$

$$+ \int_{\Omega} (u_{0}-\kappa)^{\pm} \varphi(x,0) \, \mathrm{d}x \geq 0,$$

$$\forall \kappa \in [A,B], \ \forall \varphi \in C_{c}^{1}(\overline{\Omega} \times [0,T), \mathbb{R}_{+}),$$

$$(5.40)$$

Nous choisissons ici M non seulement plus grand que la constante de Lipschitz de $\| {m b} \|_{\infty} f$ sur [A,B], mais aussi plus grand que la constante de Lipschitz (sur $[A,B]^2$) des flux numériques associés aux bords des mailles. Ce choix de M est possible car la solution unique de (5.39) ne dépend pas de M à condition que M soit supérieur à la constante de Lipschitz de $\| {m b} \|_{\infty} f$ sur [A,B] et car la fonction de flux numérique peut être choisie avec une constante de Lipschitz bornée par la constante de Lipschitz de $\| {m b} \|_{\infty} f$ (le flux de Godunov par exemple). Cette méthode conduit à un résultat d'existence avec M seulement supérieur à la constante de Lipschitz de $\| {m b} \|_{\infty} f$ sur $s \in [A,B]$, en passant à la limite sur les solutions approchées données avec ces flux numériques.

ÉTAPE 4 : UNICITÉ DE LA SOLUTION DE (5.40). Dans cette étape, la méthode de "dédoublement de variables" de Krushkov est utilisée pour prouver l'unicité de la solution de (5.40). En effet, si u et w sont deux solutions de (5.40), la méthode de dédoublement de variables conduit à :

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{T} \int_{\Omega} |u(x,t,\alpha) - w(x,t,\beta)| \partial_{t}\varphi \, dx \, dt \, d\alpha \, d\beta
+ \int_{0}^{1} \int_{0}^{1} \int_{0}^{T} \int_{\Omega} (f(\max(u,w)) - f(\min(u,w))) \boldsymbol{b} \cdot \operatorname{grad}\varphi \, dx \, dt \, d\alpha \, d\beta \ge 0
\forall \varphi \in C_{c}^{1}(\overline{\Omega} \times [0,T), \mathbb{R}_{+}),$$
(5.41)

En prenant $\varphi(x,t) = (T-t)^+$ dans (5.41) (ce qui est en effet possible), on obtient que u ne dépend pas de α , w ne dépend pas de β et u = w p.p. sur $\Omega \times]0,T[$. Par conséquent, u est également la solution unique de (5.39).

ÉTAPE 5 : CONCLUSION. L'étape 4 donne, en particulier, l'unicité de la solution de (5.39). Elle donne également que la limite faible-⋆ non linéaire des suites de solutions approchées est solution de (5.39) et, par conséquent, l'existence de la solution de (5.39).

De plus, puisque la limite faible non linéaire des suites de solutions approchées ne dépend pas de α , il est assez facile de déduire que cette limite est "forte" dans $L^p(\Omega \times]0,T[)$ pour tout $p\in [1,\infty)$ (voir [18], par exemple); grâce à l'unicité de la limite, la convergence a lieu sans extraction de sous-suite.

5.3 Systèmes hyperboliques

5.3.1 Définitions

On s'intéresse dans ce paragraphe aux systèmes hyperboliques dans le cas unidimensionnel, c'est-à-dire que la variable dite "d'espace", généralement notée x, appartient à \mathbb{R} (et la variable dite "de temps", notée t, appartient à \mathbb{R}_+) et référons à [8] pour l'étude des systèmes multidimensionnels.

Soit $p \in \mathbb{N}$ le nombre d'équations (scalaires) aux dérivées partielles du système considéré (p=1) dans le cas des équations scalaires considérées dans les paragraphes précédents) et soit D le domaine des valeurs admissibles, défini comme le sous-ensemble de \mathbb{R}^p dans lequel l'inconnue vectorielle de ce système de p équations prend ses valeurs. Soient $F \in C^1(D, \mathbb{R}^p)$ et $U_0 \in (L^\infty(\mathbb{R}))^p$, à valeurs dans D, ce que noterons parfois $L^\infty(\mathbb{R}; D)$; on cherche une fonction vectorielle $U : \mathbb{R} \times \mathbb{R}_+ \to D$ solution, en un sens à définir, du système

$$\partial_t U + \partial_x (F(U)) = 0, \ x \in \mathbb{R}, t \in \mathbb{R}_+, \tag{5.42a}$$

$$U(x,0) = U_0(x), x \in \mathbb{R}.$$
 (5.42b)

Par exemple, dans le cas des équations d'Euler pour un écoulement compressible isentropique, on a p=2, $U=\begin{bmatrix} \rho \\ \rho u \end{bmatrix}$ où ρ est la masse volumique ($\rho>0$) et u la vitesse (ρu est donc la quantité de mouvement) et donc le

domaine des valeurs admissibles est $D = \mathbb{R}_+ \times \mathbb{R} \subset \mathbb{R}^2$. La fonction F est donnée par $F(U) = \begin{bmatrix} \rho u \\ (\rho u^2 + p) \end{bmatrix}$, avec $p = \rho^{\gamma}$, où $\gamma > 1$ est un nombre réel donné.

Le système (5.42) n'est pas toujours bien posé, et sa nature hyperbolique dépend des valeurs propres de la matrice jacobienne de F, ce que l'on précise dans la définition qui suit.

Définition 5.32 (Système hyperbolique et strictement hyperbolique) Soient p > 1, D un domaine de \mathbb{R}^p et $F \in C^1(D, \mathbb{R}^p)$. Le système (5.42a) est dit :

- "hyperbolique" (plus précisément "hyperbolique dans D") si, pour tout $U \in D$, la matrice jacobienne $J_F(U) \in \mathcal{M}_p(\mathbb{R})$ de l'application F au point U est diagonalisable dans \mathbb{R} (rappelons que les coefficients de la matrice jacobienne de F sont $(J_F(U))_{i,j} = \partial_j F_i(U)$);
- "strictement hyperbolique" si, pour tout $U \in D$, la matrice jacobienne $J_F(U)$ admet p valeurs propres réelles distinctes.

L'exemple le plus simple de fonction F est le cas linéaire : F(U) = AU où $A \in \mathcal{M}_p(\mathbb{R})$ et $D = \mathbb{R}^p$. D'après la définition 5.32, le système (5.42a) est alors hyperbolique si A est diagonalisable dans \mathbb{R} , c'est-à-dire s'il existe une base $(\varphi_1, \dots, \varphi_p)$ de \mathbb{R}^p et une famille $(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$ telles que $A\varphi_i = \lambda_i \varphi_i$ pour tout $i = 1, \dots, p$. Dans ce cas, on peut décomposer la condition initiale U_0 sur la base $(\varphi_1, \dots, \varphi_p)$; en notant $\alpha_1, \dots, \alpha_p$ les composantes de U_0 dans cette base, on a donc :

$$U_0(x) = \sum_{i=1}^{p} \alpha_i(x)\varphi_i$$

et l'unique solution faible du système (5.42) s'écrit alors

$$U(x,t) = \sum_{i=1}^{p} \alpha_i(x - \lambda_i t) \varphi_i,$$

voir à ce sujet l'exercice 5.3.

5.3.2 Solutions faibles, solutions entropiques

On se place dans ce paragraphe dans le cadre de la definition 5.32. Comme dans le cas scalaire (qui en est de fait un exemple particulier), le problème (5.42) n'admet en général pas de solution classique (c'est-à-dire une fonction régulière qui satisfait la condition initiale (5.42b) et le système (5.42a)). On définit donc la notion de solution faible, qui revient, comme dans le cas scalaire (voir définition 5.5), à porter les dérivées sur les fonctions test.

Définition 5.33 (Solution faible d'un système hyperbolique) Soient $p \ge 1$, $U_0 \in (L^{\infty}(\mathbb{R}))^p$ une fonction (vectorielle) de \mathbb{R} à valeurs dans le domaine D de \mathbb{R}^p et $F \in C^1(D, \mathbb{R}^p)$. On dit que U est solution faible du système (5.42) si $U \in (L^{\infty}(\mathbb{R} \times \mathbb{R}_+; D))$ et vérifie

$$\iint_{\mathbb{R}\times\mathbb{R}_+} U(x,t)\partial_t \varphi(x,t) \, \mathrm{d}x \, \mathrm{d}t + \iint_{\mathbb{R}\times\mathbb{R}_+} F(U(x,t))\partial_x \varphi(x,t) \, \mathrm{d}x \, \mathrm{d}t \\ + \int_{\mathbb{R}} U_0(x)\varphi(x,0) \, \mathrm{d}x = 0, \ \forall \varphi \in C^1_c(\mathbb{R}\times\mathbb{R}_+;\mathbb{R}).$$

Considérons par exemple le cas d'un problème de Riemann, c'est-à-dire le système (5.42) avec comme condition initiale

$$U_0 = \begin{cases} U_g \text{ pour } x < 0, \\ U_d \text{ pour } x > 0, \end{cases}$$

$$(5.43)$$

avec $U_g, U_d \in D$. Comme dans le cas scalaire (p = 1), on peut montrer qu'une fonction de la forme suivante, avec $\sigma \in \mathbb{R}$.

$$U(x,t) = \begin{cases} U_g \text{ pour } x < \sigma t, \\ U_d \text{ pour } x > \sigma t, \end{cases}$$

est solution faible si et seulement si la relation de Rankine-Hugoniot est vérifée, c'est-à-dire si et seulement si

$$\sigma[U] = [F(U)]$$

(on rappelle que $[U] = U_d - U_g$ désigne le saut de U). La démonstration de cette équivalence utilise la preuve du même résultat dans le cas p=1, pour chacune des p équations scalaires du système (indépendamment des autres équations).

Voyons maintenant le cas du problème de Riemann pour un système hyperbolique linéaire, c'est-à-dire pour le système (5.42) avec F(U) = AU, où A est une matrice diagonalisable dans \mathbb{R} , et avec une condition initiale de la forme (5.43). Soient $\lambda_1, \ldots, \lambda_p$ les valeurs propres (réelles) de A et $\varphi_1, \ldots, \varphi_p$ une base (de \mathbb{R}^p) de vecteurs propres associés. On décompose U_0 sur la base des vecteurs propres :

$$U_0 = \sum_{i=1}^p \alpha_i \varphi_i \text{ avec } \alpha_i = \begin{cases} \alpha_{g,i} \text{ pour } x < 0, \\ \alpha_{d,i} \text{ pour } x > 0. \end{cases}$$

On peut alors montrer (voir exercice 5.3) que la fonction U définie par

$$U(x,t) = \sum_{i=1}^{p} \alpha_i (x - \lambda_i t) \varphi_i$$

est l'unique solution faible. Examinons un peu la structure de cette solution : elle est formée de p états constants, et on change d'état à chaque fois que l'on traverse une droite $x = \lambda_i t$, puisque

$$\alpha_i(x - \lambda_i t) = \begin{cases} \alpha_{g,i} \text{ pour } x < \lambda_i t, \\ \alpha_{d,i} \text{ pour } x > \lambda_i t. \end{cases}$$

Revenons au cas général du système (5.42). Comme dans le cas scalaire, pour un système non linéaire, on n'a pas unicité des solutions faibles. On imite le cas scalaire et on introduit la notion de solution entropique. Pour cela, on commence par définir la notion d'entropie pour un système hyperbolique.

Définition 5.34 (Entropie et flux d'entropie) Soient p > 1, D un domaine de \mathbb{R}^p et $F \in C^1(D, \mathbb{R}^p)$. Une fonction η de D dans \mathbb{R} est une entropie pour le système (5.42) si

- 1. $\eta \in C^1(D, \mathbb{R})$ et η est convexe;
- 2. il existe une fonction $\Phi \in C^1(D, \mathbb{R})$, appelée flux d'entropie, telle que, pour tout $U \in D$,

$$\nabla \Phi(U) = J_F(U)^t \, \nabla \eta(U),$$

ce qui s'écrit encore, composante par composante :

$$\partial_i \Phi(U) = \sum_{i=1}^p \partial_i F_j(U) \partial_j \eta(U).$$

Existe-t-il des entropies ? La réponse est évidemment oui, il suffit de prendre η et Φ constantes (ce qui ne donne pas beaucoup d'information sur les solutions), ou encore $\eta(U)=U_i$ et $\Phi(U)=F_i(U)$ (ce qui nous ramène aux solutions faibles). Ce sont des entropies dites "triviales". En existe-t-il des non triviales ? La réponse est différente selon la valeur de p:

- p=1 (cas scalaire). Toute fonction η convexe est une entropie, et le flux associé est une primitive de $\eta' F'$.
- p = 2. Des entropies non triviales existent (voir, par exemple, [31]).
- p ≥ 3. Pour un système hyperbolique quelconque, il n'existe pas en général pas d'entropie (autre que les entropies triviales). Toutefois, de nombreux systèmes modélisant des phénomènes physiques possèdent une entropie, bien connue de la physicienne (qui l'indique généreusement à la mathématicienne).

Définition 5.35 (Solution entropique d'un système hyperbolique) Soit $U_0 \in (L^{\infty}(\mathbb{R}))^p$ une fonction (vectorielle) de \mathbb{R} à valeurs dans $D \subset \mathbb{R}^p$. On dit que U est solution entropique du système (5.42) si $U \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+; D)$ et vérifie

$$\iint_{\mathbb{R}\times\mathbb{R}_{+}} \eta(U(x,t))\partial_{t}\varphi(x,t) \,dx \,dt + \iint_{\mathbb{R}\times\mathbb{R}_{+}} \Phi(U(x,t))\partial_{x}\varphi(x,t) \,dx \,dt \\ + \int_{\mathbb{R}} \eta(U_{0}(x))\varphi(x,0) \,dx \geq 0, \ \forall \varphi \in C^{1}_{c}(\mathbb{R}\times\mathbb{R}_{+};\mathbb{R}_{+}), \ \textit{pour}\ (\eta,\Phi) \ \textit{entropie et flux d'entropie associé}.$$

Notons qu'une solution entropique est forcément une solution faible. Il suffit pour s'en convaincre de prendre η linéaire.

Comme dans le cas p=1, on peut montrer qu'une solution de la forme, avec $U_q, U_d \in D, \sigma \in \mathbb{R}$,

$$U(x,t) = \begin{cases} U_g \text{ pour } x < \sigma t, \\ U_d \text{ pour } x > \sigma t. \end{cases}$$

est solution entropique si et seulement si, pour toute entropie η de flux associé Φ , les conditions de Rankine-Hugoniot

(i)
$$\sigma[U] = [F(U)],$$

(ii) $\sigma[\eta(U)] \ge [\Phi(U)],$

sont vérifiées (on rappelle que $[V] = V_d - V_g$). Notons que $(ii) \Rightarrow (i)$. La démonstration de cette équivalence est ici aussi identique à cette faite pour p = 1 car (ii) est une équation scalaire (et (i) est équivalent à dire que U est solution faible).

A t-on existence et unicité de la solution entropique? On a vu le théorème de Kruzhkov qui nous permet de répondre par l'affirmative dans le cas p=1. Dans le cas p>1 la situation est plus complexe parce qu'un système strictement hyperbolique n'admet pas toujours une entropie (non triviale). On utilise alors, en particulier lors de l'étude du problème de Riemann (section 5.3.3), la condition d'entropie de Lax déjà vue dans le cas scalaire (condition (5.25)). Rappelons que dans le cas p=1 et si F est strictement convexe ou strictement concave, cette condition énonce qu'une solution faible discontinue présente un choc (c'est-à-dire une discontinuité entropique) si les caractéristiques issues de part et d'autre d'une courbe de discontinuité, rencontrent cette courbe, voir le théorème 5.18. Toujours dans ce cas, la condition de Lax est équivalente à la condition d'entropie, voir l'exercice 5.2. Cette équivalence est encore vraie pour certains cas avec p>1. Ceci est démontré dans l'exercice 5.20 pour les équations de Saint-Venant 7 . La démonstration est faite dans le cas d'une ligne de discontinuité de la solution autosimilaire du problème de Riemann mais se généralise au cas d'une courbe régulière de discontinuité.

5.3.3 Résolution du problème de Riemann

La résolution du problème de Riemann pour certains problèmes issus de la physique est intéressante d'une part parce qu'elle permet de comprendre la structure des solutions entropiques, et d'autre part parce que certains schémas numériques d'approximation de ces systèmes sont fondés sur cette résolution. Dans ce paragraphe, on se place dans le cadre des systèmes hyperboliques décrits dans définition 5.32.

Définitions

On rappelle que le problème de Riemann s'écrit

$$\partial_t U + \partial_x (F(U)) = 0, \ x \in \mathbb{R}, t \in \mathbb{R}_+, \tag{5.44a}$$

$$U(x,0) = \begin{cases} U_g \text{ pour } x < 0, \\ U_d \text{ pour } x > 0, \end{cases}$$
 (5.44b)

^{7.} Adhémar Jean Claude Barré de Saint-Venant (1797–1886), ingénieur et mathématicien spécialiste de mécanique des fluides.

avec $F \in C^1(D, \mathbb{R}^p)$ et $U_g, U_d \in D$. La solution en est connue lorsque F(U) = AU (et $D = \mathbb{R}^p$, voir le paragraphe précédent). On cherche une solution "autosimilaire" c'est-à-dire une solution de la forme $U(x,t) = V(\frac{x}{t})$. On rappelle qu'une telle solution définie par zone est solution faible si et seulement si

- 1. elle est solution classique sur chaque zone
- 2. elle satisfait les conditions de Rankine-Hugoniot au passage de chaque discontinuité $x = \sigma t$ entre deux zones : $\sigma[U] = [F(U)]$.

A cette notion de solution faible, il faut ajouter une condition d'entropie. Si le système contient une entropie (ou des entropies) non triviale(s) naturelle(s), la solution faible est entropique si et seulement si elle vérifie $\sigma[\eta(U)] \ge [\Phi(U)]$ pour toute entropie et flux associé au passage de chaque discontinuité $x = \sigma t$. En pratique, on utilise aussi la condition d'entropie de Lax, condition (5.43) (qui ne demande pas l'existence d'une entropie). Le lien entre ces deux conditions d'entropie est étudié dans l'exercice 5.20 pour les équations de Saint-Venant.

Dans la suite de ce paragraphe sur l'étude du problème de Riemann, nous considérerons des systèmes strictement hyperboliques, au sens de la définition 5.32.

Nous nous placerons sous les hypothèses et notations suivantes :

```
\begin{cases} F \in C^2(D, \mathbb{R}^p). \\ \text{Le problème (5.44) est strictement hyperbolique, et on note } \lambda_1(U) < \ldots < \lambda_p(U) \text{ les valeurs} \\ \text{propres de } J_F(U) \text{ et } (\varphi_1(U), \ldots, \varphi_p(U)) \text{ une base de } \mathbb{R}^p \text{ formée de vecteurs propres associés.} \end{cases}  (5.45)
```

On admettra que pour tout $i=1,\ldots,p,$ $\lambda_i(U)\in C^1(D,\mathbb{R}),$ et qu'il est possible de choisir la fonction φ_i pour que $\varphi_i\in C^1(D,\mathbb{R}^p).$

Définition 5.36 (Champ vraiment non linéaire, champ linéairement dégénéré)

Sous les hypothèses (5.45), on dit que le i-ème champ associé à la fonction non linéaire F est

— "vraiment non linéaire" (VNL) si

$$\nabla \lambda_i(U) \cdot \varphi_i(U) \neq 0, \ \forall U \in D,$$

et on normalise alors $\varphi_i(U)$ de manière à ce que $\nabla \lambda_i(U) \cdot \varphi_i(U) = 1$,

— "linéairement dégénéré" (LD) si

$$\nabla \lambda_i(U) \cdot \varphi_i(U) = 0, \ \forall U \in D.$$

(On admet ici aussi qu'il est possible de choisir $\varphi_i \in C^1(D, \mathbb{R}^p)$.)

Pour l'étude du problème de Riemann, nous utiliserons fortement le fait que le système étudié est strictement hyperbolique et que tous les champs soient VNL ou LD. Remarquons que dans le cas d'un système linéaire, les valeurs propres λ_i ne dépendent pas de U et tous les champs sont linéairement dégénérés.

Dans le cas scalaire p=1, il n'y a qu'une seule valeur propre $\lambda_1(U)=F'(U)$, on peut choisir $\varphi_1(U)=1$, et

- le cas VNL correspond au cas où F'' ne s'annule jamais, auquel cas F est strictement convexe ou concave (et c'est alors cette hypothèse un peu plus générale qui est importante).
- le cas LD correspond au cas F''(u) = 0 pour tout u, auquel cas la fonction F est linéaire.

Ce ne sont évidemment pas les seuls cas possibles. Un exemple est donné par l'équation de Buckley-Leverett (exercice 5.9). Un exemple plus simple, avec p=1 et $D={\rm I\!R}$, consiste à prendre $F(s)=s^2{\rm sign}(s)$. Le problème dans cet exemple est que F'(0)=0 (Le système est strictement hyperbolique mais le champ n'est ni VNL ni LD). Comme dans le cas de l'équation de Buckley-Leverett, la solution du problème de Riemann avec ε non nul comme donnée initiale sur $]-\infty,0[$ et $-\varepsilon$ sur $]0,+\infty[$ est formée d'une partie "choc" et d'une partie "détente".

Il est intéressant aussi de remarquer que pour p > 2, il est possible que tous les champs soient VNL ou LD sans que le système soit strictement hyperbolique, voir exercice 5.16.

Un exemple intéressant est le système des équations d'Euler pour l'écoulement des fluides compressibles. Pour le système complet (conservation de la masse, de la quantité de mouvement et de l'énergie) avec la loi d'état des gaz parfaits, on peut montrer qu'on a deux champs VNL et un champ LD. Le cas des équations d'Euler barotrope (la pression ne dépend que de ρ) est un peu plus simple. Pour ce système, on a $D = \mathbb{R}_+^+ \times \mathbb{R}$ et le système s'écrit :

$$\partial_t \rho + \partial_x (\rho u) = 0, \tag{5.46a}$$

$$\partial_t(\rho u) + \partial_x(\rho u^2 + p) = 0, (5.46b)$$

où p est relié à ρ par une fonction donnée \mathcal{P} strictement croissante convexe dérivable de \mathbb{R}_+^* dans \mathbb{R}_+^* , c'est-à-dire $p = \mathcal{P}(\rho)$. Notons que les équations de Saint-Venant pour les écoulements en eau peu profonde rentrent dans ce cadre, avec ρ la hauteur d'eau, et $p = \alpha \rho^2$, avec $\alpha > 0$ (voir exercice (5.17)).

Posons $q = \rho u$ (la quantité de mouvement); le système (5.46) s'écrit alors :

$$\partial_t U + \partial_x (F(U)) = 0$$
, avec $U = \begin{bmatrix} \rho \\ q \end{bmatrix}$, $F(U) = \begin{bmatrix} q \\ \frac{q^2}{\rho} + \mathcal{P}(\rho) \end{bmatrix}$.

On pose $c = \sqrt{\mathcal{P}'(\rho)}$. La matrice jacobienne de F est alors :

$$J_F(U) = \begin{bmatrix} 0 & 1 \\ -\frac{q^2}{\rho^2} + \mathcal{P}'(\rho) & \frac{2q}{\rho} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -u^2 + c^2 & 2u \end{bmatrix}$$

Le polynôme caractéristique de $J_F(U)$ sécrit donc

$$P_{J_F(U)}(X) = X^2 - 2\frac{q}{\rho}X + \frac{q^2}{\rho^2} - \mathcal{P}'(\rho)$$

= $X^2 - 2uX + u^2 - c^2$

Les valeurs propres et des vecteurs propres associés (non normalisés) sont donc

$$\lambda_1(U) = u - c, \ \lambda_2(U) = u + c, \ \varphi_1(U) = \begin{bmatrix} 1 \\ u - c \end{bmatrix}, \ \varphi_2(U) = \begin{bmatrix} 1 \\ u + c \end{bmatrix}.$$

On a donc, pour tout $U \in D = \{(\rho, q)^t; \rho > 0\},\$

$$\nabla \lambda_1(U) \cdot \varphi_1(U) = -\frac{c}{\rho} - \frac{\mathcal{P}''(\rho)}{2c} < 0, \ \nabla \lambda_2(U) \cdot \varphi_2(U) = \frac{c}{\rho} + \frac{\mathcal{P}''(\rho)}{2c} > 0,$$

car $\mathcal{P}' > 0$ et $\mathcal{P}'' \geq 0$. Les deux champs sont donc vraiment non linéaires.

Etude d'un système découplé

L'étude d'un système découplé strictement hyperbolique dont tous les champs sont soit LD soit VNL est facile et instructif, donc nous n'allons pas nous en priver... Un système découplé s'écrit sous la forme

$$\partial_t u_i + \partial_x (f_i(u_i(x,t))) = 0, \ x \in \mathbb{R}, t \in \mathbb{R}_+, \ i = 1, \dots, p$$

$$(5.47a)$$

$$u_i(x,0) = u_i(0), x \in \mathbb{R}, i = 1,\dots, p,$$
 (5.47b)

où chaque composante f_i de la fonction F ne dépend donc que de la composante u_i de l'inconnue. Le domaine D dans lequel l'inconnue vectorielle U (dont les composantes sont u_1, \ldots, u_p) est ici égal à \mathbb{R}^p .

Pour $U=(u_1,\ldots,u_p)^t\in\mathbb{R}^p$ les valeurs propres de la matrice jacobienne de F au point U (notée $J_F(U)$) sont $f_i'(u_i), i=1,\ldots,p$. Comme le système est strictement hyperbolique et que $D=\mathbb{R}^p$, on a donc, pour tout $i\neq j$ et tout $u,v\in\mathbb{R}, f_i'(u)\neq f_j'(v)$. Quitte à changer l'ordre des équations on peut donc supposer $f_i'(u)< f_j'(v)$ pour tout $i\neq j$ et tout $u\neq v$ (avec $u,v\in\mathbb{R}$).

Comme tous les champs sont soit VNL soit LD, chaque fonction f_i est soit strictement convexe, soit strictement concave, soit linéaire.

Prenons par exemple le cas p=2 et f_1 et f_2 strictement convexes. Considérons le problème de Riemann associé, c'est-à-dire

$$U(x,0) = \begin{cases} U_g \text{ pour } x < 0, \\ U_d \text{ pour } x > 0. \end{cases}, \text{ avec } \begin{cases} u_{g,1} < u_{d,1} \\ u_{g,2} < u_{d,2}. \end{cases}$$

Nous avons donc pour chaque composante de U un problème de Riemann scalaire. Ces deux problèmes de Riemann correspondent à des détentes. En notant u_1 et u_2 les composantes d'un vecteur U de \mathbb{R}^2 , les valeurs propres de la matrice jacobienne du flux de ce système sont $f_1'(u_1)$ et $f_2'(u_2)$. On rappelle que la stricte hyperbolicité du système nous permet alors d'affirmer (quitte à changer l'ordre des équations) que

$$f_1'(u_1) = \lambda_1(U) < \lambda_2(U) = f_2'(u_2), \text{ pour tout } u_1, u_2 \in \mathbb{R}.$$
 (5.48)

En particulier $f_1'(u_{d,1}) < f_2'(u_{g,2})$, et donc les zones de détentes (dans le plan $\mathbb{R} \times \mathbb{R}_+^*$) pour les inconnues u_1 et u_2 sont complètement séparées, la solution du problème de Riemann, dans le plan $\mathbb{R} \times \mathbb{R}_+^*$, apparaît comme la superposition des solutions des deux problèmes de Riemann sur u_1 et u_2 .

On peut noter que sans la condition de stricte hyperbolicité, les ondes de détente ne sont plus séparées. (On peut toutefois construire la solution du problème de Riemann en profitant du fait que les deux équations du système sont découplées, ceci sera moins facile pour les systèmes où les équations sont couplées.)

Les autres cas des positions relatives entre $u_{g,1}$, $u_{d,1}$ et $u_{g,2}$, $u_{d,2}$ se traitent de manière similaire. Par exemple, si $u_{g,1}>u_{d,1}$ et $u_{g,2}< u_{d,2}$, la solution est formée (dans le plan $\mathbb{R}\times\mathbb{R}_+^\star$) d'un choc, que l'on appellera "1-choc", situé sur la droite $x=\sigma t$, avec $\sigma=\frac{f_1(u_{g,1})-f_1(u_{d,1})}{u_{g,1})-u_{d,1}}$ (correspondant à la première équation), et d'une détente, que l'on appellera "2-détente", située entre les droites $x=f_2'(u_{g,2})t$ et $x=f_2'(u_{d,2})t$ (correspondant à la deuxième équation). Le 1-choc n'est pas dans la zone de 2-détente car $\sigma\in]f_1'(u_{d,1}),f_1'(u_{g,1})[$ et, grâce à (5.48), $f_1'(u_{g,1})< f_2'(u_{g,2}).$

Attention, ici encore, sans la condition de stricte hyperbolicité, les ondes ne sont pas forcément séparées (voir exercice 5.16).

Dans le cas d'un système non découplé, on se sert des relations de Rankine-Hugoniot pour construire les solutions discontinues, appelées "ondes de choc", correspondant aux champs VNL, comme dans le cas scalaire. Pour déterminer les solutions continues correspondant aux champs VNL, qui sont les "ondes de détente" (on dit aussi "ondes de raréfaction"), on va se servir des invariants de Riemann qui sont définis ci-après. Enfin pour déterminer les "ondes de contact", qui correspondent aux champs LD et sont discontinues, on se servira soit des relations de Rankine-Hugoniot soit des invariants de Riemann (car une onde de contact peut être vue comme le cas limite d'une onde de détente ou d'une onde de choc).

Invariants de Riemann et ondes de détente

On rappelle que l'on se place toujours dans le cadre des systèmes hyperboliques (definition 5.32) avec les hypothèses et notations 5.45.

Définition 5.37 (Invariant de Riemann) Soit $1 \le i \le p$, on appelle i-invariant de Riemann pour le système (5.42a) une application $r \in C^1(D, \mathbb{R})$ non constante telle que $\nabla r(U) \cdot \varphi_i(U) = 0$ pour tout $U \in D$.

La notion d'invariant de Riemann n'a d'intérêt que pour $p \ge 2$. En effet pour p = 1, $\varphi_1(U)$ est n'importe quel réel non nul. Il n'y a pas d'invariant de Riemann.

Dans le cas du système découplé vu précédemment, on a $\lambda_i(U)=f_i'(u_i)$ et φ_i est colinéaire au i-ème vecteur de la base canonique. Donc toutes les applications $U\mapsto u_j,\,j\neq i$, sont des i-invariants de Riemann. On a ainsi pour chaque champ (p-1) invariants de Riemann indépendants (au sens que ces (p-1) applications sont linéairement indépendantes). On peut montrer que cette situation se généralise de la manière suivante (voir, par exemple, [31]): pour tout $U_0\in D$, il existe un voisinage $\mathcal V$ de U_0 et (p-1) i-invariants de Riemann définis sur $\mathcal V$ et linéairement indépendants, ce qui est équivalent à dire que leurs gradients sont indépendants.

Calculons les invariants de Riemann pour les équations d'Euler barotrope (5.46). On rappelle que les valeurs propres et des vecteurs propres (non normalisés) de la jacobienne $J_F(U)$ sont

$$\lambda_1(U) = u - c, \ \lambda_2(U) = u + c, \ \varphi_1(U) = \begin{bmatrix} 1 \\ u - c \end{bmatrix}, \ \varphi_2(U) = \begin{bmatrix} 1 \\ u + c \end{bmatrix}.$$

Cherchons un 1-invariant de Riemann sous la forme $r(U) = \frac{q}{\rho} + h(\rho)$. On a alors

$$\nabla r(U) = \begin{bmatrix} -\frac{q}{\rho^2} + h'(\rho) \\ \frac{1}{\rho} \end{bmatrix},$$

et donc

$$\nabla r(U) \cdot \varphi_1(U) = -\frac{q}{\rho^2} + h'(\rho) + \frac{1}{\rho} (\frac{q}{\rho} - c) = h'(\rho) - \frac{c}{\rho}.$$

La fonction r est donc un 1-invariant de Riemann si (et seulement si) $h'(\rho) = \frac{c}{\rho}$.

Il suffit donc de prendre pour h une primitive de la fonction $\rho \mapsto \frac{\sqrt{\mathcal{P}'(\rho)}}{\rho}$. Dans le cas du système des équations de Saint-Venant (pour lequel $\mathcal{P}(\rho) = \alpha \rho^2$, $\alpha > 0$), on a $c = \sqrt{2\alpha\rho}$, et un 1-invariant de Riemann est $r_1(U) = \frac{q}{\rho} + 2c = u + 2c$, voir aussi l'exercice 5.17.

De la même manière, on calcule un 2-invariant de Riemann : $r_2(U) = \frac{q}{\rho} - h(\rho)$, avec pour h une primitive de la fonction $\rho \mapsto \frac{\sqrt{\mathcal{P}'(\rho)}}{\rho}$. Dans le cas des équations de Saint-Venant, ce 2-invariant de Riemann s'écrit : $r_2(U) = u - 2c$.

Sous des hypothèses de régularité, pour un système de p équations, un invariant de Riemann commun à p-1 ondes satisfait une équation particulièrement simple, comme le montre la proposition suivante (voir aussi, par exemple, [31]).

Proposition 5.38 (Equation d'évolution pour un invariant de Riemann) Soit p > 1; on considère un système strictement hyperbolique (définition 5.32) de la forme (5.42). On note $\lambda_i(U)$, $i = 1, \ldots, p$, les p valeurs propres réelles distinctes de la matrice jacobienne de F au point $U \in D$. Soit $i \in \{1, \ldots, p\}$; on suppose qu'il existe une application $r \in C^1(D, \mathbb{R})$ qui soit un j-invariant de Riemann pour tout $j \neq i$. Alors, pour toute fonction $U \in C^1(\mathbb{R} \times R_+, D)$ satisfaisant (5.42a), on a

$$\partial_t(r(U)) + \lambda_i(U)\partial_x(r(U)) = 0.$$

Démonstration : Pour simplifier les notations, on note $A = J_F$. Pour tout $V \in D$, on note $\{\varphi_1(V), \dots, \varphi_p(V)\}$ une base de \mathbb{R}^p telle que $A(V)\varphi_j(V) = \lambda_j\varphi_j(V)$ pour tout $j \in \{1, \dots, n\}$. Comme les valeurs propres de $A(V)^t$ sont les mêmes que celles de A(V), il existe aussi $\{\psi_1(V), \dots, \psi_p(V)\}$ base de \mathbb{R}^p telle que $A(V)^t\psi_j(V) = \lambda_j\psi_j(V)$ pour tout $j \in \{1, \dots, n\}$.

Soit $k \neq j$, comme $\lambda_k(V) \neq \lambda_j(V)$, on a

$$\lambda_i(V)\psi_i(V)\cdot\varphi_k(V) = A(V)^t\psi_i(V)\cdot\varphi_k(V) = \psi_i(V)\cdot A(V)\varphi_k(V) = \lambda_k(V)\psi_i(V)\cdot\varphi_k(V),$$

et donc $(\lambda_i(V) - \lambda_k(V))\psi_i(V) \cdot \varphi_k(V) = 0$. Ceci entraîne que $\psi_i(V) \cdot \varphi_k(V) = 0$.

On en déduit aussi, comme $\{\varphi_1(V), \dots, \varphi_p(V)\}$ et $\{\psi_1(V), \dots, \psi_p(V)\}$ sont des bases de \mathbb{R}^n , que $\psi_j(V) \cdot \varphi_j(V) \neq 0$ pour tout $j \in \{1, \dots, n\}$.

On utilise maintenant la régularité de r, et on décompose $\nabla r(V)$ dans la base $\{\psi_1(V),\ldots,\psi_p(V)\}$, $\nabla r(V) = \sum_{k=1}^n \alpha_k(V)\psi_k(V)$. Comme r est un j-invariant de Riemann pour $j\neq i$, on a, pour tout $j\neq i$,

$$0 = \nabla r(V) \cdot \varphi_j(V) = \sum_{k=1}^n \alpha_k(V) \psi_k(V) \cdot \varphi_j(V) = \alpha_j(V) \psi_j(V) \cdot \varphi_j(V),$$

et donc $\alpha_j(V) = 0$, ce qui prouve que $\nabla r(V) = \alpha_i(V)\psi_i(V)$. On utilise enfin la régularité de la fonction U,

$$\begin{split} \partial_t r(U) &= \nabla r(U) \cdot \partial_t U = \alpha_i(U) \psi_i(U)^t \partial_t U \\ &= -\alpha_i(U) \psi_i(U)^t A(U) \partial_x U = -\alpha_i(U) (\partial_x U)^t A(U)^t \psi_i(U) = -\alpha_i(U) \lambda_i(U) (\partial_x U)^t \psi_i(U) \\ &= -\lambda_i(U) (\partial_x U)^t (\alpha_i(U) \psi_i(U)) = -\lambda_i(U) \nabla r(U) \cdot \partial_x U = -\lambda_i(U) \partial_x r(U). \end{split}$$

La proposition 5.38 permet en quelque sorte d'obtenir un système diagonal avec les fonctions $r_i(U)$ comme inconnues (où r_i est un j-invariant de Riemann pour tout $j \neq i$).

Supposons par exemple p=2 dans la proposition 5.38, l'application r_1 est un 1-invariant de Riemann et l'application r_2 est un 2-invariant de Riemann. La proposition 5.38 donne, si U est régulière,

$$\partial_t(r_1(U)) + \lambda_2(U)\partial_x(r_1(U)) = 0,$$

$$\partial_t(r_2(U)) + \lambda_1(U)\partial_x(r_2(U)) = 0.$$

Si l'application $U\mapsto R(U)=\begin{bmatrix}r_1(U)\\r_2(U)\end{bmatrix}$ est un difféomorphisme (de D dans son image), on note s son application réciproque, de sorte que U=s(R). Les fonctions $(x,t)\mapsto r_1(U(x,t))$ et $(x,t)\mapsto r_2(U(x,t))$, que l'on note \bar{r}_1 et \bar{r}_2 ci après, sont alors solution du problème de transport suivant :

$$\partial_t(\bar{r}_1) + \lambda_2(s(\bar{R}))\partial_x(\bar{r}_1) = 0,$$

$$\partial_t(\bar{r}_2) + \lambda_1(s(\bar{R}))\partial_x(\bar{r}_2) = 0,$$

où \bar{R} est la fonction vectorielle dont les composantes sont \bar{r}_1 et \bar{r}_2 .

Ceci permet par exemple d'obtenir des estimations sur les invariants de Riemann en les considérant comme solution de ce problème de transport.

Les invariants de Riemann vont nous permettre de construire les ondes de détente, qui sont des solutions continues sur $\mathbb{R} \times \mathbb{R}_+^*$ et autosimilaires du problème de Riemann, c'est-à-dire qu'il existe $-\infty < a < b < +\infty$ tels que $U = U_g$ sur $D_1 = \{(x,t), \, x \leq at\}, \, U(x,t) = V(\frac{x}{t})$ sur $D_2 = \{(x,t), \, at < x < bt\}, \, U(x,t) = U_d$ sur $D_3 = \{(x,t), \, x \geq bt\}$ et U solution classique dans D_2 . La continuité de U impose donc que $V(a) = U_g$ et $V(b) = U_d$.

On fixe a et b (a < b). On cherche donc $V \in C([a,b]) \cap C^1(]a,b[)$ tels que $V(a) = U_g$, $V(b) = U_d$, et U solution classique de (5.44a) dans D_2 avec $U(x,t) = V(\frac{x}{t})$. On a, dans D_2 ,

$$\partial_t U(x,t) = -\frac{x}{t^2} V'(\frac{x}{t}) \text{ et } \partial_x (F(U(x,t))) = J_F(U(x,t)) \partial_x (U(x,t)) = \frac{1}{t} J_F(V(\frac{x}{t})) V'(\frac{x}{t}).$$

Donc, dans D_2 ,

$$\partial_t U(x,t) + \partial_x (F(U(x,t))) = \frac{1}{t} \left(J_F(V(\frac{x}{t})) - \frac{x}{t} \right) V'(\frac{x}{t}).$$

Si on se limite à chercher une solution avec $V' \neq 0$ sur]a, b[, pour que $\partial_t U + \partial_x (F(U)) = 0$ dans D_2 , il faut donc que, pour tout $\frac{x}{t} \in]a, b[$,

$$\frac{x}{t}$$
 soit valeur propre de $J_F(V(\frac{x}{t}))$, et $V'(\frac{x}{t})$ soit vecteur propre associé non nul.

Il existe donc $i \in [1, p]$ tel que $\frac{x}{t} = \lambda_i(V(\frac{x}{t}))$. On est sûr que i ne dépend pas de $\frac{x}{t}$, parce qu'on a supposé V continue et que le système est strictement hyperbolique.

Noter que l'existence et l'unicité de i est encore valable si V' s'annule en un point entre]a,b[(toujours grâce au fait que le système est strictement hyperbolique). Par contre si V' est nul sur tout un intervalle [c,d], a < c < d < b, i peut être différent sur]a,c[et sur]d,b[. Cette situation apparaîtra lorsque le problème de Riemann considéré aura une solution formée de deux détentes (chaque détente correspondant à une valeur de i).

Finalement, sous cette condition $V' \neq 0$ (ou si V' ne s'annule qu'en des points isolés), pour que la fonction V recherchée convienne, il faut et il suffit qu'il existe $i \in [1, p]$ tel que

$$\forall s \in]a, b[, \lambda_i(V(s)) = s \text{ et } V'(s) = \alpha(s)\varphi_i(V(s)), \text{ avec } \alpha(s) \in \mathbb{R},$$
 (5.49)

$$V(a) = U_q, V(b) = U_d.$$
 (5.50)

On rappelle que l'on cherche $V \in C([a,b]) \cap C^1([a,b[))$. Noter que la condition (5.50) et le fait que $\lambda_i(V(s)) = s$ (pour $s \in]a,b[$ et donc aussi $s \in [a,b]$) donne $\lambda_i(U_g) = a$ et $\lambda_i(U_d) = b$.

La condition (5.49) implique que le champ i est VNL. En effet, comme l'application $U \mapsto \lambda_i(U)$ est dérivable et que l'on cherche V de classe C^1 sur]a,b[, les égalités précédentes donnent que

$$1 = \nabla \lambda_i(V(s)) \cdot V'(s) = \alpha(s) \nabla \lambda_i(V(s)) \cdot \varphi_i(V(s)), \ \forall s \in]a, b[.$$
 (5.51)

Ceci prouve que $\nabla \lambda_i(V(s)) \cdot \varphi_i(V(s)) \neq 0$ (et aussi $\alpha(s) \neq 0$) et donc que le champ i est VNL. Enfin, en normalisant $\varphi_i(U)$ par la condition $\nabla \lambda_i(U) \cdot \varphi_i(U) = 1$, l'égalité (5.51) donne $\alpha(s) = 1$ et $V'(s) = \varphi_i(V(s))$ pour tout $s \in]a,b[$.

La condition nécessaire et suffisante sur V est donc que V soit solution de l'équation différentielle (avec condition initiale et finale) suivante :

$$V \in C([a, b], D) \cap C^{1}([a, b], D), \tag{5.52}$$

$$V'(s) = \varphi_i(V(s)), \text{ pour tout } s \in]a, b[, \tag{5.53}$$

$$V(a) = U_q, \ \lambda_i(U_q) = a, \ V(b) = U_d.$$
 (5.54)

En effet, on vient de montrer que cette condition est bien nécessaire. Pour voir qu'elle est suffisante, il suffit de remarquer que si V est solution de cette équation différentielle, on a bien $\lambda_i(V(s)) = s$ pour tout $s \in]a,b[$ car $\lambda_i(V(a)) = \lambda_i(U_g) = a$ et $\lambda_i(V(s))' = \nabla \lambda_i(V(s)) \cdot V'(s) = \nabla \lambda_i(V(s)) \cdot \varphi_i(V(s)) = 1$ pour tout $s \in]a,b[$. En particulier, on rappelle que ceci donne $\lambda_i(U_d) = \lambda_i(V(b)) = b$.

Définition 5.39 (Onde de détente) Une i-onde de détente du système (5.44) est une solution de (5.44) telle que

- 1. $U(x,t) = U_q \text{ si } x \leq \lambda_i(U_q)t$,
- 2. $U(x,t) = U_d \text{ si } x \geq \lambda_i(U_d)t \text{ (on a donc } \lambda_i(U_d) > \lambda_i(U_g)$),
- 3. $U(x,t) = V(\frac{x}{4})$ si $\lambda_i(U_a)t < x < \lambda_i(U_d)t$, avec $\frac{x}{4} = \lambda_i(V(\frac{x}{4}))$,
- 4. $V \in C([\lambda_i(U_a), \lambda_i(U_d)], \mathbb{R}), V(\lambda_i(U_a)) = U_q \text{ et } V(\lambda_i(U_d)) = U_d.$

5.
$$V \in C^1(]\lambda_i(U_q), \lambda_i(U_d)[, D), V'(\frac{x}{t}) = \varphi_i((V(\frac{x}{t})) \text{ pour } \lambda_i(U_q)t < x < \lambda_i(U_d)t.$$

On dit alors que U_d est reliable a U_g par une i-détente (noter que cette relation est non symétrique car $\lambda_i(U_g) < \lambda_i(U_d)$).

(On rappelle que $\varphi_i(U)$ est normalisé par la condition $\nabla \lambda_i(U) \cdot \varphi_i(U) = 1$.)

Le calcul précédent montre donc que U_d est reliable à U_g par une i-détente si et seulement si $U_d \in \Gamma_i(U_g) = \{V(s), s > a, V \text{ solution de (5.55)-(5.56), avec } a = \lambda_i(U_g)\},$

$$V'(s) = \varphi_i(V(s)), s > a, \tag{5.55}$$

$$V(a) = U_a. (5.56)$$

En effet, si U_d est reliable à U_g par une i-détente, la fonction V donnée par la définition 5.39 est solution de (5.55)-(5.56) sur l'intervalle [a,b] avec $b=\lambda_i(U_d)$ et $U_d=V(\lambda_i(U_d))=V(b)\in\Gamma_i(U_g)$. Réciproquement si $U_d\in\Gamma_i(U_g)$, il existe b t.q $U_d=V(b)$ avec V solution de (5.55)-(5.56) sur l'intervalle [a,b] et donc V est solution (5.52)-(5.54), ce qui donne bien que U_d est reliable à U_g par une i-détente.

Comme la fonction φ_i est de classe C^1 , l'équation différentielle (5.55) admet avec la condition initiale (5.56) une unique solution locale. L'ensemble $\Gamma_i(U_g)$ est donc la trajectoire (dans \mathbb{R}^p) de la solution de cette équation différentielle. Le vecteur $\varphi_i(U_g)$ est un vecteur tangent à cette trajectoire au point U_g . Ceci est résumé dans le théorème 5.40.

Théorème 5.40 (Courbe de détente) Soient i un champ VNL et $U_g \in D$. Alors $\Gamma_i(U_g)$ est une courbe (dans l'espace \mathbb{R}^p) partant de U_g et le vecteur $\varphi_i(U_g)$ est un vecteur tangent à cette trajectoire au point U_g .

Lorqu'on veut résoudre le problème de Riemann, on veut déterminer s'il existe des ondes de détente, et si un état U_d à droite est reliable à un état U_g à gauche par une onde de détente, c'est-à-dire si $U_d \in \Gamma_i(U_g)$. Pour cela, un moyen assez simple est de faire intervenir les invariants de Riemann. Supposons que U soit une i-onde de détente. En reprenant les notations de la définition 5.39, $U(x,t) = V(\frac{x}{t})$ pour $a = \lambda_i(U_g) < \frac{x}{t} < \lambda_i(U_d) = b$, $V \in C^1(]a,b[) \cap C([a,b])$. Soit r un i-invariant de Riemann, alors $r(U_g) = r(U_d)$, puisque r(U) est constant dans la zone de détente : en effet, pour tout $\xi \in]a,b[$,

$$r(V(\xi))' = \nabla r(V(\xi)) \cdot V'(\xi) = 0 \text{ car } V'(\xi) = \varphi_i(V(\xi)).$$

Ceci montre que

$$\Gamma_i(U_a) \subset \bar{\Gamma}_i(U_a) = \{U_d \in D : r(U_d) = r(U_a), \text{ pour tout } r \text{ invariant de Riemann}\}.$$

Comme on a en général p-1 i-invariants de Riemann indépendants, $\bar{\Gamma}_i(U_g)$ est une courbe de \mathbb{R}^p passant par U_d et U_q .

D'autre part si $U_d \in \Gamma_i(U_g)$, on a nécessairement $\lambda_i(U_g) < \lambda_i(U_d)$. L'ensemble $\Gamma_i(U_g)$ correspond donc à "la moitié" de la courbe $\bar{\Gamma}_i(U_g)$. Plus précisément,

$$\Gamma_i(U_q) \subset \{U_d \in \bar{\Gamma}_i(U_q) \text{ tel que } \lambda_i(U_q) < \lambda_i(U_d)\} = \tilde{\Gamma}_i(U_q).$$

On a en général $\Gamma_i(U_q) = \tilde{\Gamma}_i(U_q)$ (si il y a bien p-1 *i*-invariants de Riemann indépendants).

Résoudre un problème de Riemann passe donc par la construction des courbes $\Gamma_i(U_g)$. En pratique, on construit l'ensemble $\bar{\Gamma}_i(U_g)$, et on ne conserve que la partie telle que $\lambda_i(U_g) < \lambda_i(U_d)$.

Commençons par l'exemple simple d'un système découplé, avec p=2. Dans ce cas on a vu qu'un 1-invariant de Riemann est u_2 , et donc l'ensemble $\bar{\Gamma}_i(U_q)$ est la droite $u_2=u_{q,2}$. Si f_1 est strictement convexe, la condition

 $\lambda_1(U_g) < \lambda_1(U_d)$ donne que $u_{g,1} < u_{d,1}$, ce qui donne une demi droite. L'ensemble des points U_d reliables à U_g sont les points tel que $u_{d,2} = u_{g,2}$ et $u_{d,1} > u_{g,1}$. La solution U est alors une fonction dont la seconde composante est constante (et égale à $u_{g,2}$) et dont la première composante correspond à une détente pour une équation scalaire.

Considérons maintenant le cas du système des équations d'Euler barotrope (5.46). On a vu qu'un 1-invariant de Riemann est $r_1(U)=u+h(\rho)$, où h est une primitive de $\rho\mapsto \frac{\sqrt{\mathcal{P}'(\rho)}}{\rho}$. Pour les équations de Saint-Venant $\mathcal{P}(\rho)=\alpha\rho^2$, $\alpha>0$, on a donc $r_1(U)=u+2c$ (on rappelle que $c=\sqrt{2\alpha\rho}$); on peut tracer la courbe $\bar{\Gamma}_1(U_g)=\{U_d\in D: r(U_d)=r(U_g) \text{ pour tout } r \text{ 1-invariant de Riemann}\}$; dans les variables ρ,u , en posant $\beta_g=u_g+2\sqrt{2\alpha\rho_g}$, $r_1(U_d)=r_2(U_g)$ revient à écrire que $u+2\sqrt{2\alpha\rho}=\beta_g$ soit encore

$$u = \beta_g - 2\sqrt{2\alpha}\sqrt{\rho}.$$

On obtient alors la demi courbe $\tilde{\Gamma}_1(U_g)$ en imposant que $\lambda_1(U_g) < \lambda_1(U_d)$, c'est-à-dire $u_g - c_g < u - c$ ou encore $\frac{q_g}{\rho_g} - \sqrt{2\alpha\rho_g} < \frac{q}{\rho} - \sqrt{2\alpha\rho}$.

Ondes de choc, discontinuités de contact

On s'intéresse toujours au problème de Riemann (5.44). Comme pour l'étude des ondes de détentes, on fixe U_g et on cherche une éventuelle solution autosimilaire reliant U_g et U_d avec une discontinuité, c'est-à-dire qu'il existe $\sigma \in \mathbb{R}$ tel que la fonction U définie par $U(x,t) = U_g$ si $x < \sigma t$ et $U(x,t) = U_d$ si $x > \sigma t$ soit solution de (5.44). On a déjà vu que pour qu'une telle fonction U soit solution faible de (5.44) il faut et il suffit que

$$\sigma[U] = \sigma(U_d - U_g) = (F(U_d) - F(U_g)) = [F(U)]. \tag{5.57}$$

La relation (5.57) donne de nombreux couples (U_g,U_d) possibles, et en particulier des couples pour lesquels il existe une valeur propre λ_i de la matrice jacobienne vérifiant $\lambda_i(U_g) < \lambda_i(U_d)$ avec un certain i correspondant à un champ VNL; dans ce cas, il y a une solution sous forme de détente et il n'y a pas unicité de la solution faible. Le problème est le même que dans le cas scalaire, il faut ajouter une condition supplémentaire pour tenter d'assurer l'unicité. Dans le cas général des systèmes étudiés ici, il n'existe pas toujours d'entropie au sens de la définition (5.44); l'idée, due à Lax [24], est d'utiliser condition d'entropie de Lax déjà introduite pour les équations scalaires, voir Théorème 5.18.

Définition 5.41 (Condition de Lax, cas système) *Soit U une solution faible du problème* (5.13); *on se place sous les hypothèses* (5.45). *On dit que U vérifie la condition de Lax s'il existe* $i \in 1, ..., p$ t,q.

$$\lambda_i(U_g) > \sigma > \lambda_i(U_d)$$
 si le champ i est VNL, (5.58)

$$\lambda_i(U_a) = \sigma = \lambda_i(U_d)$$
 si le champ i est LD. (5.59)

Pour un système comme celui de Saint-Venant, cette condition de Lax est équivalente à la condition d'entropie de la definition (5.35). Ceci est démontré dans l'exercice 5.20.

En éliminant σ par l'une des équations (5.57) et en le remplaçant dans les autres, on obtient (p-1) équations sur U_d . Les solutions de ces p-1 équations donnent en général, au moins dans un voisinage de U_g , p courbes dans le plan \mathbb{R}^d . (Ceci n'est pas démontré dans ce cours mais un exemple est donné dans l'exercice 5.17.) On peut alors déterminer comment ces courbes se comportent au point U_g . Soit $V:[0,\bar{\varepsilon}[\to (\mathbb{R}^d)^*$ une application telle que $\lim_{s\to 0}V(s)=0$ et telle que, pour tout $s\in[0,\bar{\varepsilon}[,U_d=U_g+V(s)$ est reliable à U_g par une discontinuité, c'est-à-dire que (5.57) est vérifiée pour un certain $\sigma=\sigma(s)$.

On considère une suite $(s_n)_{n\in\mathbb{N}}$ de $]0,\bar{\varepsilon}[$ telle que $\lim_{n\to+\infty} s_n=0$. Quitte à extraire une sous-suite, on peut supposer que

$$\lim_{n \to +\infty} \frac{V(s_n)}{\|V(s_n)\|} = \varphi,$$

avec $\varphi \in \mathbb{R}^d$ (et $\|\varphi\| = 1$). On écrit la relation de Rankine-Hugoniot (5.57) avec $U_d = U_g + V(s_n)$; en utilisant le caractère C^1 de F, on obtient donc

$$\sigma(s_n)V(s_n) = F(U_q + V(s_n)) - F(U_q) = DF(U_q)(V(s_n)) + ||V(s_n)|| \varepsilon_n,$$

avec $\lim_{n\to+\infty} \varepsilon_n = 0$, et donc

$$\sigma(s_n) \frac{V(s_n)}{\|V(s_n)\|} = DF(U_g) \frac{V(s_n)}{\|V(s_n)\|} + \varepsilon_n.$$

Ceci montre que la suite $(\sigma(s_n))_{n\in\mathbb{N}}$ a une limite, que l'on note λ et que $\lambda\varphi=DF(U_g)\varphi$. Comme $\varphi\neq 0$, il existe donc $i\in\{1,\ldots,p\}$ tel que $\lambda=\lambda_i(U_g)$ et φ est colinéaire à $\varphi_i(U_g)$ (et non nul). Les vecteurs $\varphi_1(U_g),\ldots,\varphi_p(U_g)$ sont donc des vecteurs tangents (au point U_g) aux p courbes de vecteurs U_d reliables à U_g par une discontinuité. On note $\Gamma_i(U_g)$ la courbe associée au champ i (c'est-à-dire que le vecteur $\varphi_i(U_g)$ est tangent à cette courbe au point U_g) et on suppose que ce champ est VNL. La condition de Lax (5.58) nous donne alors $\lambda_i(U_g) > \sigma(s_n) > \lambda_i(U_d)$ au moins pour n assez grand et pour $\|U_g-U_d\|$ assez petit (pour assurer, grâce à la condition de stricte hyperbolicité et au fait que $\sigma(s_n) \to \lambda_i(U_g)$, que cette condition de Lax ne puisse pas être vérifiée pour une autre valeur de i). En utilisant le caractère C^1 de λ_i , cette condition de Lax donne alors

$$\lambda_i(U_d) = \lambda_i(U_g) + \nabla \lambda_i(U_g) \cdot V(s_n) + ||V(s_n)|| \varepsilon_n < \sigma(s_n) < \lambda_i(U_g),$$

avec $\lim_{n\to+\infty} \varepsilon_n = 0$, et donc

$$\nabla \lambda_i(U_g) \cdot \frac{V(s_n)}{\|V(s_n)\|} + \varepsilon_n < 0.$$

Quand $n \to +\infty$ on en déduit $\nabla \lambda_i(U_g) \cdot \varphi \leq 0$, ce qui prouve que $\varphi = \alpha \varphi_i(U_g)$ avec $\alpha < 0$ (car $\varphi_i(U_g)$ est normalisé par $\nabla \lambda_i(U_g) \cdot \varphi_i(U_g) = 1$ et φ est non nul colinéaire à $\varphi_i(U_g)$).

La courbe $\Gamma_i(U_g)$ a donc la même tangente au point U_g que la courbe $\Gamma_i(U_g)$ vue dans le cas des détentes mais ces deux courbes partent de U_g dans des directions opposées.

Dans le cas des équations de Saint-Venant, $\mathcal{P}(\rho) = \alpha \rho^2$ avec $\alpha = \frac{1}{2}$, l'exercice 5.17 donne l'ensemble des états U reliable à U_g par un 1-choc (resp. 2-choc) Avec les inconnues (h,u), c'est l'ensemble des couples (h,u) tels que $h > h_g$ (resp. $h < h_g$) et $u = u_g - S$, $S = \sqrt{(h - h_g)(h^2 - h_g^2)/(2h_g h)}$. Etant donnés deux états U_g et U_d , on peut alors constuire, pour les équations de Saint-Venant, tous les états reliables à U_g par un 1-choc ou une 1-détente et tous les états reliables à U_d par un 2-choc ou une 2-détente. On obtient ainsi deux courbes (l'une passant par U_g et l'autre par U_d). L'intersection de ces deux courbes donne un état, appelé état intermédiaire, qui permet de construire la solution du problème de Riemann. Celle ci est formée d'une 1-onde reliant U_g à l'état intermédiaire suivie par une 2-onde reliant l'état intermédiaire à U_d . La figure 5.4 donnent ces courbes avec un choix particulier de U_g et U_d .

A partir de cette étude (ondes de choc, ondes de détentes et discontinuités de contact), il est possible de démontrer le théorème 5.42, dû à P. D. Lax, voir [24, Theorem 5.4] pour l'énoncé initial et la démonstration.

Théorème 5.42 (Solution du problème de Riemann, Lax) On considère un système strictement hyperbolique, avec des champs VNL ou LD, et $U_g \in D$. Alors il existe $\varepsilon > 0$ tel que si $|U_g - U_d| < \varepsilon$, il existe une solution au problème de Riemann (5.44), formée d'au plus p+1 états constants reliés par p ondes (détentes, discontinuités de contact ou chocs) et vérifiant la condition de Lax.

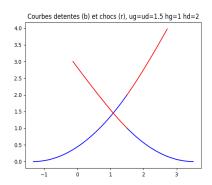


FIGURE 5.4 – La vitesse (u) est en abscisse et la hauteur (h) en ordonnée. L'état intermédiaire est donné par l'intersection de la courbe rouge partant de U_g et de la courbe bleue partant de U_d

5.4 Exercices

Exercice 5.1 $(L^1(\mathbb{R}) \cap BV(\mathbb{R}) \subset L^{\infty}(\mathbb{R}))$ Corrigé en page 327. Pour $u \in L^1_{loc}(\mathbb{R})$ on pose

$$|u|_{BV} = \sup\{\int_{\Omega} u(x)\varphi'(x) dx, \varphi \in C_c^{\infty}(\mathbb{R}, \mathbb{R}), \|\varphi\|_{L^{\infty}(\Omega)} \le 1\},$$

et on rappelle que $u \in BV(\mathbb{R})$ si $|u|_{BV} < +\infty$.

Soit $u\in L^1(\mathbb{R})\cap BV(\mathbb{R}).$ Montrer que $u\in L^\infty(\mathbb{R})$ et

$$||u||_{\infty} \le |u|_{BV}.$$

Exercice 5.2 (Condition de Lax) *Corrigé en page 327.* Soit f une fonction strictement convexe; on considère le problème de Riemann

$$\partial_t u + \partial_x (f(u)) = 0 \text{ sur } \mathbb{R} \times \mathbb{R}_+,$$
$$u(x,0) = \begin{cases} u_g \text{ si } x < 0, \\ u_d \text{ sinon.} \end{cases}$$

On considère une solution faible de la forme

$$u(x,t) = \begin{cases} u_g \text{ si } x < \sigma t, \\ u_d \text{ sinon.} \end{cases}$$
 (5.60)

- 1. Exprimer σ en fonction de f, u_q , u_d .
- 2. Montrer que cette solution est entropique si et seulement si la condition de Lax $f'(u_g) > \sigma > f'(u_d)$ est vérifiée.
- 3. On suppose toujours que la solution est de la forme (5.60), mais on ne suppose plus que c'est une solution faible. Montrer par un contre-exemple que dans ce cas on n'a plus équivalence entre solution entropique et condition de Lax.

Exercice 5.3 (Système hyperbolique linéaire) Corrigé en page 328. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})^n$. On suppose A diagonalisable dans \mathbb{R} et on cherche $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)^n$ solution faible du problème suivant :

$$\partial_t u(x,t) + A \partial_x u(x,t) = 0, \ x \in \mathbb{R}, \ t \in]0, +\infty[, \tag{5.61a}$$

$$u(x,0) = u_0(x), x \in \mathbb{R}.$$
 (5.61b)

Soit $\{v_i, i \in \{1, \dots, n\}\}$ une base de \mathbb{R}^n formée de vecteurs propres de A. On a donc $Av_i = \lambda_i v_i$ pour tout $i \in \{i, \dots, n\}$ avec $\lambda_i \in \mathbb{R}$. Pour $x \in \mathbb{R}$, on décompose $u_0(x)$ sur la base $\{v_i, i \in \{i, \dots, n\}\}$. On a donc $u_0 = \sum_{i=1}^n a_i v_i$ p.p. avec $a_i \in L^{\infty}(\mathbb{R})$ Montrer que u défini presque partout par $u(x,t) = \sum_{i=1}^n a_i (x - \lambda_i t) v_i$ est solution faible de (5.61).

Exercice 5.4 (Unicité de la solution faible du problème linéaire par dualité) Soient $c \in \mathbb{R}$ et $u_0 \in L^{\infty}(\mathbb{R})$. L'objet de cet exercice est de prouver l'unicité de la solution faible u (dans $L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$) du problème de transport suivant :

$$\partial_t u(x,t) + c\partial_x u(x,t) = 0, \ x \in \mathbb{R}, \ t \in]0, +\infty[, \tag{5.62a}$$

$$u(x,0) = u_0(x), x \in \mathbb{R}.$$
 (5.62b)

1. Montrer qu'il suffit de prouver l'unicité de la solution pour $u_0 = 0$ p.p..

On suppose dès lors que u est une solution faible de (5.62) avec $u_0 = 0$ p.p..

- 2. Soit $\psi \in C_c(\mathbb{R} \times \mathbb{R})$. Pour $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$ on pose $\varphi(x,t) = -\int_t^{+\infty} \psi(x c(t-s), s) ds$.
 - (a) Montrer que $\varphi \in C^1_c(\mathbb{R} \times [0, +\infty[))$ et que $\partial_t \varphi + c \partial_x \varphi = \psi$ in $\mathbb{R} \times [0, +\infty[)$.
 - (b) Montrer que $\int_0^{+\infty} \int_{\rm I\!R} u(x,t) \psi(x,t) \, {\rm d}x \, {\rm d}t = 0$.
- 3. Montrer que u = 0 p.p..
- 4. En déduire que la solution faible du problème (5.62) est unique, ainsi que que celle du système (5.61) de l'exercice 5.3.

Exercice 5.5 (Construction d'une solution faible entropique, I) Corrigé en page 329.

On considère dans cet exercice l'équation de Burgers avec une condition initiale :

$$\begin{cases} \partial_t u + \partial_x (u^2) = 0 \text{ dans } \mathbb{R} \times \mathbb{R}_+^*, \\ u(\cdot, 0) = u_0 \text{ dans } \mathbb{R}. \end{cases}$$
 (5.63)

Construire une solution faible de (5.63) pour u_0 définie par :

$$u_0(x) = \begin{cases} 1 & \text{si } x < 0, \\ 1 - x & \text{si } 0 < x < 1, \\ 0 & \text{si } x > 1. \end{cases}$$
 (5.64)

Exercice 5.6 (Non unicité des solutions faibles) On considère l'équation

$$\begin{cases}
\partial_t u + \partial_x(u^2) = 0 \\
u(0, x) = \begin{cases}
u_g & \text{si } x < 0 \\
u_d & \text{si } x > 0
\end{cases}$$
(5.65)

avec $u_g < u_d$.

1. Montrer qu'il existe $\sigma \in \mathbb{R}$ tel que si (pour t > 0 et $x \in \mathbb{R}$)

$$\begin{cases} u(x,t) = u_g & si \ x < \sigma t, \\ u(x,t) = u_d & si \ x > \sigma t, \end{cases}$$

alors u est solution faible de (5.65). Vérifier que u n'est pas solution entropique de (5.65).

Corrigé -

Soit $\sigma \in \mathbb{R}$. On définit u presque partout sur $\mathbb{R} \times \mathbb{R}_+$ par $u(x,t) = u_g$ si $x < \sigma t$ et $u(x,t) = u_d$ si $x > \sigma t$. On note $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*, x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*, x > \sigma t\}$. La fonction $u_{|D_i} \in C^1(\overline{D}_i,\mathbb{R})$ (c'est-à-dire restriction à D_i d'une fonction C^1 sur \mathbb{R}^2) et est solution classique dans les domaines D_i , i=1,2 et vérifie (presque partout) la condition initiale. Elle est discontinue sur la droite $x=\sigma t$. D'après la proposition 5.6 (question 3b) elle est solution faible de (5.65) si et seulement si elle vérifie la relation de Rankine-Hugoniot sur la droite $x=\sigma t$. Cette relation s'écrit ici

$$u_d^2 - u_q^2 = \sigma(u_d - u_q).$$

On prend donc $\sigma = (u_q + u_d)$, la fonction u est alors solution faible de (5.65).

Comme la fonction $s \mapsto s^2$ est strictement convexe, d'après la proposition 5.15 la fonction u n'est pas solution entropique car $u_g < u_d$.

2. Montrer que u définie (sur $\mathbb{R} \times \mathbb{R}_+$) par :

$$\begin{cases} u(x,t) = u_g & si \ x < 2u_g t, \\ u(x,t) = \frac{x}{2t} & si \ 2u_g t \le x \le 2u_d t, \\ u(x,t) = u_d & si \ x > 2u_d t, \end{cases}$$
 (5.66)

est solution faible entropique de (5.65).

Corrigé – On note $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*, x < 2u_gt\}$, $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*, 2u_gt < x < 2u_dt\}$ et $D_3 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*, x > 2u_dt\}$. La fonction $u_{|D_i} \in C^1(\overline{D}_i, \mathbb{R})$ et est solution classique dans les domaines D_i , i = 1, 2, 3. Elle vérifie (presque partout) la condition initiale.

Elle est continue sur les droites $x = 2u_g t$ et $x = 2u_d t$. La proposition 5.13 donne alors qu'elle est solution entropique.

Exercice 5.7 (Construction d'une solution faible entropique, II) Corrigé en page 330.

On considère dans cet exercice l'équation de Burgers avec une condition initiale :

$$\begin{cases} \partial_t u + \partial_x(u^2) = 0 \text{ dans } \mathbb{R} \times \mathbb{R}_+^*, \\ u(\cdot, 0) = u_0 \text{ dans } \mathbb{R}. \end{cases}$$
 (5.67)

Construire la solution entropique de (5.67) pour u_0 définie par :

$$u_0(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - x & \text{si } 0 < x < 1, \\ 1 & \text{si } x > 1. \end{cases}$$

Exercice 5.8 (Problème de Riemann (1)) Soient u_d et u_g des nombres réels et f une fonction de \mathbb{R} dans \mathbb{R} de classe C^1 .

- 1. On suppose que f est strictement convexe.
 - (a) Calculer la solution entropique du problème de Riemann (5.13) avec données u_d et u_g , $u_g < u_d$. pour cette question on supposera que f est de classe C^2 et f''(s) > 0 pour tout $s \in \mathbb{R}$.

Corrigé – Comme f' est strictement croissante, $f'(u_q) < f'(u_d)$ et donc les courbes caractéristiques issues de l'axe t = 0 ne se rencontrent pas

On définit alors les zones D_i , i=1,2,3, par $D_1=\{(x,t)\in\mathbb{R}\times\mathbb{R}_+^\star,\,x< f'(u_g)t\}$, $D_2=\{(x,t)\in\mathbb{R}_+^\star,\,x< f'(u_g)t\}$, $D_1=\{(x,t)\in\mathbb{R}_+^\star,\,x< f'(u_g)t\}$, $D_2=\{(x,t)\in\mathbb{R}_+^\star,\,x< f'(u_g)t\}$ $\mathbb{R} \times \mathbb{R}_+^*, f'(u_g)t < x < f'(u_d)t\} \text{ et } D_3 = \{(x, t) \in \mathbb{R} \times \mathbb{R}_+^*, x > f'(u_d)t\}.$

Comme cela est suggéré par les courbes caractéristiques issues de l'axe t=0, on définit u dans D_1 par $u(x)=u_g$ et u dans D_3 par $u(x)=u_d$. On a alors, pour $i=1,3,\,u_{|D_i}\in C^1(\overline{D}_i,\mathbb{R})$ et est solution classique (de l'équation du problème de Riemann (5.13)) dans le domaine D_i . La fonction u vérifie aussi (presque partout) la condition initiale de (5.13) (quelquesoit la valeur de u dans D_2).

On cherche maintenant u dans D_2 sous la forme $u(x,t)=\phi(\frac{x}{t})$. Si ϕ est de classe C^1 , pour que u soit solution classique de l'équation du problème de Riemann (5.13) il faut et il suffit que

$$(\frac{-x}{t^2}+f'(\phi(\frac{x}{t}))\frac{1}{t})\phi'(\frac{x}{t})=0\ \ \textit{pour tout}(x,t)\in D^2.$$

ceci suggère donc de prendre u telle que $f'(u(x,t)) = \frac{x}{t}$ pour tout $(x,t) \in D^2$. La fonction f' est strictement croissante continue de \mathbb{R} sur son image $\mathrm{Im}(f')$. Elle est donc inversible et d'inverse continue. On note g cette fonction inverse et on choisit alors $u(x,t) = g(\frac{x}{t})$ pour tout $(x,t) \in D^2$.

Comme on a supposé f est de classe C^2 et f''(s) > 0 pour tout $s \in \mathbb{R}$, la fonction g est de classe C^1 . Pour le voir, il suffit de remarquer que, pour $s \in \operatorname{Im} f'$ et $h \in \mathbb{R}^*$ tel que $s + h \in \operatorname{Im} f'$,

$$\frac{g(s+h)-g(s)}{h} = \frac{g(s+h)-g(s)}{f'(g(s+h))-f'(g(s))} = \frac{\varepsilon(h)}{f'(g(s)+\varepsilon(h))-f'(g(s))},$$
 avec $\lim_{h\to 0} \varepsilon(h) = 0$ (car g est continue). On en déduit que g est dérivable au point s et $g'(s) = \frac{1}{f''(g(s))}$.

Ceci donne bien que g est de classe C^1 (de $\mathrm{Im} f'$ dans \mathbb{R}).

On en déduit que $u_{|D_2} \in C^1(\overline{D}_2,\mathbb{R})$ et est solution classique (de l'équation du problème de Riemann (5.13)) dans le domaine D_2 .

Enfin, on remarque que u est continu sur les droites $x = f'(u_q)t$ (ce qui donne $u_q = g(\frac{x}{t})$) et $x = f'(u_d)t$ (ce qui donne $u_d = g(\frac{x}{t})$). La proposition 5.13 donne alors qu'elle est la solution entropique de (5.13) et elle est continue de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} .

N.B. On a supposé f est de classe C^2 et f''(s) > 0 pour tout $s \in \mathbb{R}$ pour obtenir dans D_2 une solution classique. Si f est seulement de classe C^1 , un raisonnement par régularisation permet de montrer que le même choix de u dans D_2 ($u(x,t)=g(\frac{x}{t})$) donne une solution faible dans D_2 et donne donc aussi finalement *la solution entropique de* (5.13).

(b) Calculer la solution entropique du problème de Riemann (5.13) avec données u_d et u_q , $u_q > u_d$.

Corrigé – Comme f' est strictement croissante, $f'(u_q) > f'(u_d)$ et donc les courbes caractéristiques issues de l'axe t=0 se rencontrent. On va alors chercher une solution avec une discontinuité.

Soit $\sigma \in \mathbb{R}$. On définit u presque partout sur $\mathbb{R} \times \mathbb{R}_+$ par $u(x,t) = u_g$ si $x < \sigma t$ et $u(x,t) = u_d$ si $x > \sigma t$.

On note $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^{\star}, x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^{\star}, x > \sigma t\}$. La fonction $u_{|D_i} \in C^1(\overline{D}_i, \mathbb{R})$ (c'est-à-dire restriction à D_i d'une fonction C^1 sur \mathbb{R}^2) et est solution classique dans les domaines D_i , i=1,2 et vérifie (presque partout) la condition initiale. Elle est discontinue sur la droite $x = \sigma t$. D'après la proposition 5.6 (question 3b) elle est solution faible de (5.65) si et seulement si elle vérifie la relation de Rankine-Hugoniot sur la droite $x = \sigma t$. Cette relation s'écrit ici

$$f(u_d) - f(u_g) = \sigma(u_d - u_g).$$

On prend donc $\sigma = \frac{f(u_d) - f(u_g)}{u_d - u_g}$, la fonction u est alors solution faible de (5.65).

Comme la fonction f est strictement convexe, d'après la proposition 5.15 la fonction u est la solution entropique car $u_g < u_d$.

2. On suppose que f est strictement concave. Peut-on se ramener au cas de la première question pour calculer la solution entropique du problème de Riemann (5.13) avec données u_d et u_q ?

Corrigé - On peut effectivement se ramener au cas de la première question.

Avec la fonction u de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} , on définit la fonction v par v(x,t) = u(-x,t). la fonction u est alors solution entropique du problème de Riemann (5.13) avec données u_d et u_g si et seulement si la fonction v est alors solution entropique du problème de Riemann (5.13) avec données u_d pour x < 0 et u_g pour x > 0 et avec -f au lieu de f. On est ramené au cas de la première question car -f est strictement convexe.

Le problème de Riemann (5.13) aura donc une solution continue si $u_d < u_g$ et une solution discontinue si $u_d > u_q$.

Exercice 5.9 (Equation de Buckley-Leverett) Corrigé en page 331.

On s'intéresse au problème de Riemann

$$\partial_t u + \partial_x (f(u)) = 0 \text{ sur } \mathbb{R} \times \mathbb{R}_+, \tag{5.68}$$

$$u(x,0) = u_q \text{ pour } x < 0, \ u(x,0) = u_d \text{ pour } x > 0.$$
 (5.69)

On suppose ici que la fonction f de $\mathbb R$ dans $\mathbb R$ est convexe puis concave : plus précisément, on considère $f\in C^2(\mathbb R,\mathbb R)$ avec

- (i) f(0) = 0, f'(0) = f'(1) = 0
- (ii) $\exists a \in]0,1[$, tel que f est strictement convexe sur]0,a[, f est strictement concave sur]a,1[.

On suppose de plus que $u_q = 1$, $u_d = 0$.

1. Montrer qu'il existe un unique point b de l'intervalle a, a [tel que $\frac{f(b)}{b} = f'(b)$. Puis, montrer qu'il existe un unique point a de a]0, a [tel que a]1, a]2.

On conserve dans la suite cette notation des points b et c.

2. On définit (p.p.) la fonction u de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} par

$$\begin{cases} u(x,t) = 1 & si \ x \le 0 \\ u(x,t) = \xi & si \ x = f'(\xi)t, \ b < \xi < 1 \\ u(x,t) = 0 & si \ x > f'(b)t \end{cases}$$

Montrer que u est la solution faible entropique de (5.13).

[Pour montrer que la condition d'entropie est satisfaite, on pourra commencer par remarquer que pour toute fonction η (de $\mathbb R$ dans $\mathbb R$) de classe C^1 et convexe, on a $\int_0^b (f'(b)-f'(x))(\eta'(x)-\eta'(c)) \,\mathrm{d} x \leq 0.$]

On peut ainsi construire la solution entropique du problème de Riemann dans le cas intéressant pour l'ingénierie pétrolière, celui de l'équation de Buckley-Leverett, c'est-à-dire pour

$$f(u) = \frac{u^2}{u^2 + \frac{(1-u)^2}{4}}$$
 et $u_g, \ u_d \in [0,1]$.

Pour cela, on distingue les cas où la fonction f est convexe-concave ou convexe ou concave entre u_g et u_d , selon les valeurs de u_g et u_d .

Exercice 5.10 (Construction d'une solution faible entropique, III) Corrigé en page 332.

Construire la solution entropique du problème

$$\begin{cases} \partial_t u + \partial_x (u^2) = 0 \\ u(x,0) = u_0(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \in [0,1] \\ 0 & \text{si } > 1 \end{cases}$$

Vérifier que pour tout t>0 on a bien $\int_{\mathbb{R}} u(x,t) dx = \int_{\mathbb{R}} u_0(x) dx$.

Exercice 5.11 (Construction d'une solution faible entropique, IV) Corrigé en page 333.

Construire la solution entropique du problème

$$\begin{cases} \partial_t u + \partial_x (u^2) = 0 \\ u(x,0) = u_0(x) = \begin{cases} 1 & \text{si } x < -1, \\ 0 & \text{si } -1 < x < 0, \\ 2 & \text{si } 0 < x < 1, \\ 0 & \text{si } x > 1. \end{cases}$$

Exercice 5.12 (Solution non entropique) Corrigé en page 335.

On s'intéresse à l'équation de Burgers.

$$\partial_t u(x,t) + \partial_x (u^2)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+,$$

$$u(x,0) = 0, \ x \in \mathbb{R}.$$
(5.70)

1. Ecrire le sens de "u solution faible de (5.70)-(5.71)" et le sens de "u solution entropique de (5.70)-(5.71)". On définit u de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} par :

$$u(x,t) = \begin{cases} 0 \text{ pour } x \in \mathbb{R}, \ t \in \mathbb{R}_+, \ x < -\sqrt{t}, \\ \frac{x}{2t} \text{ pour } x \in \mathbb{R}, \ t \in \mathbb{R}_+^\star, \ -\sqrt{t} < x < \sqrt{t}, \\ 0 \text{ pour } x \in \mathbb{R}, \ t \in \mathbb{R}_+, \ x > \sqrt{t}. \end{cases}$$

- 2. Montrer que $u^2 \in L^1_{\mathrm{loc}}(\mathbb{R} \times \mathbb{R}_+)$ et $u \in L^1_{\mathrm{loc}}(\mathbb{R} \times \mathbb{R}_+)$. (On rappelle qu'une fonction v de $\mathbb{R} \times \mathbb{R}_+$ dans \mathbb{R} appartient à $L^1_{\mathrm{loc}}(\mathbb{R} \times \mathbb{R}_+)$ si $v\mathbf{1}_K \in L^1(\mathbb{R} \times \mathbb{R}_+)$ pour tout $K \subset \mathbb{R} \times \mathbb{R}_+ = \mathbb{R} \times [0, \infty[$, K compact.)
- 3. (Solution faible (1)) Montrer que u vérifie :

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} \left(u(x,t) \partial_t \varphi(x,t) + u^2(x,t) \partial_x \varphi(x,t) \right) dx dt = 0, \ \forall \varphi \in C_c^1(\mathbb{R}_+^* \times \mathbb{R}, \mathbb{R}). \tag{5.72}$$

4. (Solution faible (2)) Montrer que u est solution faible de (5.70)-(5.71), c'est-à-dire que u vérifie :

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left(u(x,t) \partial_t(x,t) + u^2(x,t) \partial_x \varphi(x,t) \right) dx dt = 0, \ \forall \varphi \in C_c^1(\mathbb{R}_+ \times \mathbb{R}, \mathbb{R}). \tag{5.73}$$

5. (Solution entropique?) Soit η une fonction convexe de $\mathbb R$ dans $\mathbb R$, de classe C^1 . On définit Φ de $\mathbb R$ dans $\mathbb R$ par : $\Phi(s) = \int_0^s \eta'(\xi) 2\xi d\xi$, pour tout $s \in \mathbb R$. Montrer que u vérifie :

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} (\eta(u)(x,t)\partial_t \varphi(x,t) + \Phi(u)(x,t)\partial_x \varphi(x,t)) \, dx \, dt \ge 0, \ \forall \varphi \in C_c^1(\mathbb{R} \times \mathbb{R}_+^*, \mathbb{R}_+).$$
 (5.74)

[On pourra commencer par étudier, grâce à la convexité de η , le signe de $\Phi(s) - s(\eta(s) - \eta(0))$.]

6. Montrer que la fonction u n'est pas la solution entropique de (5.70)-(5.71).

N.B : La question 5 montre que $\partial_t \eta(u) + \partial_x \Phi(u) \leq 0$ au sens des dérivées par transposition dans $\mathbb{R} \times \mathbb{R}_+^*$. Mais on ne peut pas montrer (5.74) (en ajoutant $\int_{\mathbb{R}} \eta(0) \varphi(x,0) \, \mathrm{d}x$ si $\eta(0) \neq 0$) pour tout $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+)$, même en se limitant à considérer les entropies de Krushkov. Ceci est dû au fait que $u(\cdot,t) \not\to 0$ dans $L^1_{\mathrm{loc}}(\mathbb{R})$ quand $t \to 0$ (cette convergence dans $L^1_{\mathrm{loc}}(\mathbb{R})$ serait d'ailleurs vraie si u était solution entropique de (5.70)-(5.71)). On a seulement $u(\cdot,t) \to 0$ dans $\mathcal{D}^\star(\mathbb{R})$ et c'est ce qui a été utilisé dans la question 4 pour démontrer que u est solution faible.

Exercice 5.13 (Discontinuité et entropie) Dans cet exercice, on démontre la proposition 5.13. Soient $f \in C^1(\mathbb{R}, \mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$. On s'intéresse à la solution entropique du problème suivant :

$$\begin{cases}
\partial_t u + \partial_x (f(u)) = 0, & (x, t) \in \mathbb{R} \times \mathbb{R}_+, \\
u(x, 0) = u_0(x).
\end{cases} (5.75)$$

Soient $\sigma \in \mathbb{R}$, $D_1 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x < \sigma t\}$ et $D_2 = \{(x,t) \in \mathbb{R} \times \mathbb{R}_+^*; x > \sigma t\}$. On suppose que $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$ (i = 1, 2) et que u est solution faible de (5.75). En particulier, on a donc (voir la proposition 5.6)

$$\sigma[u](\sigma t, t) = [f(u)](\sigma t, t) \text{ pour tout } t \in \mathbb{R}_+.$$
 (5.76)

Montrer que u est solution entropique de (5.75) si et seulement si

$$\sigma[\eta(u)](\sigma t, t) \ge [\Phi(u)](\sigma t, t) \text{ pour tout } t \in \mathbb{R}_+, \tag{5.77}$$

pour toute fonction $\eta \in C^1(\mathbb{R}, \mathbb{R})$ convexe et $\Phi \in C^1(\mathbb{R}, \mathbb{R})$ telle que $\Phi' = f'\eta'$.

Corrigé – Selon la définition de solution entropique 5.8, u est solution entropique si pour toute fonction η de \mathbb{R} dans \mathbb{R} , convexe et pour Φ définie par $\Phi(s) = \int_0^s f'(\tau) \eta'(\tau) d\tau$ (pour $s \in \mathbb{R}$)

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} (\eta(u)\partial_t \varphi + \Phi(u)\partial_x \varphi)(x,t) \, dx \, dt + \int_{\mathbb{R}} \eta(u_0(x))\varphi(x,0) \, dx \ge 0, \forall \varphi \in C_c^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+).$$

Comme cela a été dit lors de la définition de solution entropique, on peut se limiter à considérer η de classe C^1 .

Pour démontrer que cette condition sur u est équivalente à (5.77), on reprend la preuve de la question 3b de la la proposition 5.6.

Soit $\eta \in C^1(\mathbb{R}, \mathbb{R})$ et Φ définie par $\Phi(s) = \int_0^s f'(\tau) \eta'(\tau) d\tau$. Soit $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+)$. On pose (noter que grâce au théorème de Fubini on peut intégrer par rapport à x puis t ou par rapport à t puis x)

$$X_{1} = \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} \eta(u(x,t)) \partial_{t} \varphi(x,t) dt dx,$$
$$X_{2} = \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \Phi(u(x,t)) \partial_{x} \varphi(x,t) dx dt.$$

On suppose par exemple $\sigma > 0$ (un raisonnement anlogue traite les cas $\sigma < 0$ et $\sigma = 0$). Comme $u_{|D_i} \in C^1(\bar{D}_i, \mathbb{R})$ (i = 1, 2), u est solution classique de (5.75) dans D_i , i = 1, 2 et on peut faire des intégrations par parties dans D_i (i = 1, 2).

Comme

$$X_{1} = \int_{\mathbb{R}_{+}} \left(\int_{0}^{\frac{x}{\sigma}} \eta(u(x,t)) \partial_{t} \varphi(x,t) \, dt \right) dx + \int_{\mathbb{R}_{+}} \left(\int_{\frac{x}{\sigma}}^{+\infty} \eta(u(x,t)) \partial_{t} \varphi(x,t) \, dt \right) dx + \int_{\mathbb{R}_{-}} \left(\int_{\mathbb{R}_{+}} \eta(u(x,t)) \partial_{t} \varphi(x,t) \, dt \right) dx$$

Les intégrations par parties donnent

$$X_{1} = \int_{\mathbb{R}_{+}} \eta(u_{+}(x, \frac{x}{\sigma}))\varphi(x, \frac{x}{\sigma}) dx - \int_{\mathbb{R}_{+}} \eta(u(x, 0))\varphi(x, 0) dx - \int_{\mathbb{R}_{+}} \int_{0}^{\frac{x}{\sigma}} \eta'(u(x, t))\partial_{t}u(x, t)\varphi(x, t) dt dx$$
$$- \int_{\mathbb{R}_{+}} \eta(u_{-}(x, \frac{x}{\sigma}))\varphi(x, \frac{x}{\sigma}) dx - \int_{\mathbb{R}_{+}} \int_{\frac{x}{\sigma}}^{+\infty} \eta'(u(x, t))\partial_{t}u(x, t)\varphi(x, t) dt dx$$
$$- \int_{\mathbb{R}_{-}} \eta(u(x, 0))\varphi(x, 0) dx - \int_{\mathbb{R}_{-}} \int_{\mathbb{R}_{+}} \eta'(u(x, t))\partial_{t}u(x, t)\varphi(x, t) dt dx.$$

En regroupant, il vient:

$$X_{1} = -\int_{\mathbb{R}} \eta(u(x,0))\varphi(x,0) dx - \int \int_{D_{1}} \eta'(u(x,t))\partial_{t}u(x,t)\varphi(x,t) dt dx - \int \int_{D_{2}} \eta'(u(x,t))\partial_{t}u(x,t)\varphi(x,t) dt dx + \int_{\mathbb{R}_{+}} [\eta(u)](x,\frac{x}{\sigma})\varphi(x,\frac{x}{\sigma}) dx.$$

Dans la dernière intégrale, on effectue le changement de variable $t=\frac{x}{z}$. On obtient

$$X_{1} = -\int_{\mathbb{R}} \eta(u(x,0))\varphi(x,0) dx - \int \int_{D_{1}} \eta'(u(x,t))\partial_{t}u(x,t)\varphi(x,t) dt dx$$
$$-\int \int_{D_{2}} \eta'(u(x,t))\partial_{t}u(x,t)\varphi(x,t) dt dx + \sigma \int_{\mathbb{R}_{+}} [u](\sigma t,t)\varphi(\sigma t,t) dt.$$

Le calcul pour X_2 est plutôt plus simple

$$X_2 = \int_{\mathbb{R}_+} \left(\int_{-\infty}^{\sigma t} \Phi(u(x,t)) \partial_x \varphi(x,t) \, dx \right) dt + \int_{\mathbb{R}_+} \left(\int_{\sigma t}^{+\infty} \phi(u(x,t)) \partial_x \varphi(x,t) \right) dx \, dt.$$

Les intégrations par parties donnent

$$X_{2} = -\int \int_{D_{1}} \Phi'(u) \partial_{x} u(x,t) \varphi(x,t) \, dx \, dt - \int \int_{D_{2}} \Phi'(u) \partial_{x} u(x,t) \varphi(x,t) \, dx \, dt - \int_{\mathbb{R}_{+}} [\Phi(u)] (\sigma t,t) \varphi(\sigma t,t) \, dt.$$

Comme $\eta'(u)\partial_t u + \Phi'(u)\partial_x u = 0$ sur D_1 et D_2 , on a donc :

$$X_1 + X_2 = -\int_{\mathbb{R}} \eta(u(x,0))\varphi(x,0) dx + \int_{\mathbb{R}_+} (\sigma[\eta(u)](\sigma t,t) - [\Phi(u)](\sigma t,t))\varphi(\sigma t,t) dt,$$

c'est-à-dire, pour tout $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+)$,

$$\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} (\eta(u)\partial_{t}\varphi + \Phi(u)\partial_{x}\varphi)(x,t) \, dx \, dt + \int_{\mathbb{R}} \eta(u_{0}(x))\varphi(x,0) \, dx$$

$$= \int_{\mathbb{R}_{+}} (\sigma[\eta(u)](\sigma t, t) - [\Phi(u)](\sigma t, t))\varphi(\sigma t, t) \, dt. \quad (5.78)$$

Si (5.77) est vérifiée, le second membre de (5.78) est positif et u est donc solution entropique.

Réciproquement, si u est solution entropique, (5.78) donne

$$\int_{\mathbb{R}_+} (\sigma[\eta(u)](\sigma t, t) - [\Phi(u)](\sigma t, t))\varphi(\sigma t, t) dt \ge 0$$

pour toute fonction $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+)$. La fonction $t \mapsto \varphi(\sigma t, t)$ est une fonction arbitraire de $C^1_c(\mathbb{R}_+, \mathbb{R}_+)$, Comme la fonction $t \mapsto ([\eta(u)](\sigma t, t) - [\Phi(u)](\sigma t, t))$ est continue, on en déduit que $[\eta(u)](\sigma t, t) - [\Phi(u)](\sigma t, t) \geq 0$ pour tout $t \geq 0$.

On rappelle que $u_+(\sigma t,t) = \lim_{x\downarrow\sigma t} u(x,t), \ u_-(\sigma t,t) = \lim_{x\uparrow\sigma t} u(x,t), \ [u](\sigma t,t) = u_+(\sigma t,t) - u_-(\sigma t,t)$ et $[g(u)](\sigma t,t) = g(u_+(\sigma t,t)) - g(u_-(\sigma t,t))$ pour $g=f,\eta$ ou Φ .

Exercice 5.14 (Effet Landau) Corrigé en page 336.

Soit f une fonction borélienne bornée et périodique de $\mathbb R$ dans $\mathbb R$ (pour simplifier, on peut supposer que f est continue périodique de $\mathbb R$ dans $\mathbb R$). On s'intéresse dans cet exercice à la limite quand $t\to +\infty$ de la solution (faible) du problème suivant :

$$\frac{\partial u}{\partial t}(x,y,t) + y \frac{\partial u}{\partial x}(x,y,t) = 0, \ x,y \in \mathbb{R}, \ t \in \mathbb{R}_+^{\star}, \tag{5.79a}$$

$$u(x, y, 0) = f(x), x, y \in \mathbb{R}.$$
 (5.79b)

1. Donner explicitement en fonction de f l'unique solution faible de (5.79).

Dans la suite, on note u cette solution faible.

On remarquera que u est continue de \mathbb{R}_+ dans $L^p_{loc}(\mathbb{R}^2)$ pour tout $p < \infty$.

On note aussi m la moyenne de f sur une période. Enfin, pour tout $y \in \mathbb{R}$ et r > 0, on pose

$$F(y,r) = \frac{1}{2r} \int_{y-r}^{y+r} f(z) dz.$$

- 2. (Question liminaire) Montrer que $\lim_{r\to+\infty} F(y,r)=m$, uniformément par rapport à $y\in\mathbb{R}$.
- 3. Soient $a, b \in \mathbb{R}$ et $\delta > 0$. Montrer que

$$\lim_{t \to +\infty} \int_{b-\delta}^{b+\delta} \int_{a-\delta}^{a+\delta} u(x,y,t) \, \mathrm{d}x \, \mathrm{d}y = 4\delta^2 m.$$

[On pourra remarquer que $\int_{b-\delta}^{b+\delta} f(x-yt) \; \mathrm{d}y = 2\delta F(x-bt,\delta t)$.]

- 4. Montrer que $u(\cdot,\cdot,t)\to m$ *-faiblement dans $L^{\infty}(\mathbb{R}^2)$, quand $t\to +\infty$.
- 5. Montrer que le résultat de la question 4 reste vrai si on remplace dans (5.79) $y\frac{\partial u}{\partial x}$ par $a(y)\frac{\partial u}{\partial x}$ où $a\in C^1(\mathbb{R},\mathbb{R})$ et $a'(y)\neq 0$ pour tout $y\in \mathbb{R}$. (Plus généralement, ce résultat reste vrai sous l'hypothèse plus faible demandant que l'ensemble des points ou a' s'annule soit de mesure nulle.)

N.B. Cet exercice montre que les oscillations de u à l'instant 0 disparaissent quand $t \to +\infty$. On ne peut donc pas retrouver avec cette limite à l'infini la fonction u à l'instant 0 alors que la connaissance de u à un instant t > 0 permet de retrouver u à l'instant 0 (grâce à l'équation (5.79a)). Ceci fait partie de ce qui est appelé l'effet Landau 8 .

Exercice 5.15 (Principe du maximum et positivité) Soit $v \in C^1(\mathbb{R}, \mathbb{R})$ telle que v' est bornée et soit $u_0 \in C_b(\mathbb{R}, \mathbb{R})$. On s'intéresse aux deux problèmes suivants :

$$\frac{\partial u}{\partial t}(x,t) + v \frac{\partial u}{\partial x}(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_{+}^{\star},$$

$$u(x,0) = u_0(x), \ x \in \mathbb{R}.$$

$$(5.80)$$

$$\frac{\partial u}{\partial t}(x,t) + \frac{\partial vu}{\partial x}(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_{+}^{\star},$$

$$u(x,0) = u_0(x), \ x \in \mathbb{R}.$$

$$(5.81)$$

^{8.} Lev Davidovitch Landau (1908–1968), physicien théoricien soviétique, lauréat du prix Nobel de physique de 1962.

1. Soient $A, B \in \mathbb{R}$ tel que $A \le u_0(x) \le B$ pour tout $x \in \mathbb{R}$. Soit $u \in C^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ solution de (5.80), montrer que $A \le u(x,t) \le B$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$. Montrer (en donnant un exemple) que cette propriété peut être fausse si u est solution de (5.81).

[On pourra considérer, pour tout $a \in \mathbb{R}$, l'équation différentielle x'(t) = v(x(t)) avec donnée initiale x(0) = a.]

Corrigé – Soit $a \in \mathbb{R}$, on considère l'équation différentielle

$$x'(t) = v(x(t)),$$
 (5.82)

$$x(0) = a. (5.83)$$

Comme v est une fonction lipschitzienne de \mathbb{R} dans \mathbb{R} , cette équation différentielle admet une solution maximale et celle ci est définie pour tout $t \geq 0$. on note x_a cette solution maximale (et donc $x_a \in C^1([0, +\infty[), \mathbb{R})$).

On définit maintenant $\varphi_a \in C^1(\mathbb{R}_+, \mathbb{R})$ par $\varphi_a(t) = u(x_a(t), t)$ de sorte que, pour tout t > 0,

$$\varphi_a'(t) = \partial_x u(x_a(t), t) x_a'(t) + \partial_t u(x_a(t), t) = \partial_t u(x_a(t), t) + v(x_a(t)) \partial_x u(x_a(t), t) = 0.$$

La fonction φ_a est donc constante et donc $\varphi_a(t) = \varphi_a(0) = u(a, 0) = u_0(a)$.

Ceci prouve que $A \leq u(x_a(t), t) \leq B$ pour tout t > 0 et tout $a \in \mathbb{R}$.

Il reste à prouver que $\{(x_a(t), t), t \in \mathbb{R}_+, a \in \mathbb{R}\} = \mathbb{R}_+ \times \mathbb{R}$.

Soit t>0. La solution de l'équation differentielle (5.82) dépend continûment de la donnée initiale, l'application ψ_t définie par $\psi_t(a)=x_a(t)$ est donc continue de $\mathbb R$ dans $\mathbb R$. D'autre part $\lim_{a\to+\infty}x_a(t)=+\infty$ car $x_a(t)\geq a-\|v'\|_{\infty}t$ et $\lim_{a\to-\infty}x_a(t)=-\infty$ car $x_a(t)\leq a+\|v'\|_{\infty}t$. Le théorème des valeurs intermédiaires donne alors $\mathrm{Im}(\psi_t)=\mathbb R$.

On a donc bien $\{(x_a(t),t), t \in \mathbb{R}_+, a \in \mathbb{R}\} = \mathbb{R}_+ \times \mathbb{R}$ et donc $A \leq u(x,t) \leq B$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$.

Cette propriété est en général fausse si u est solution de (5.81) dés que $v' \neq 0$. Il suffit de considérer par exemple $u_0(x) = 1$ pour tout $x \in \mathbb{R}$ et prendre A = B = 1. La fonction u(x,t) = 1 pour tout $x \in \mathbb{R}$ et tout $t \in \mathbb{R}_+$ n'est pas solution de (5.81) car $v' \neq 0$.

2. On suppose que $u_0(x) \ge 0$ pour tout $x \in \mathbb{R}$. Soit $u \in C^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ solution de (5.81), montrer que $u(x,t) \ge 0$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$.

Corrigé – L'équation (5.81) s'écrit aussi

$$\frac{\partial u}{\partial t}(x,t) + v(x)\frac{\partial u}{\partial x}(x,t) + v'(x)u(x,t) = 0.$$

Soit $a \in \mathbb{R}$. Avec les mêmes fonctions x_a et φ_a que dans la question précédente, on obtient maintenant

$$\varphi'_{a}(t) = \partial_{x} u(x_{a}(t), t) x'_{a}(t) + \partial_{t} u(x_{a}(t), t) = \partial_{t} u(x_{a}(t), t) + v(x_{a}(t)) \partial_{x} u(x_{a}(t), t)$$

$$= -v'(x_{a}(t)) u(x_{a}(t), t) = -v'(x_{a}(t)) \varphi_{a}(t).$$

En posant $g(t) = -v'(x_a(t))$ (de sorte que $g \in C(\mathbb{R}_+, \mathbb{R})$), la fonction φ_a est donc solution de

$$\varphi'_a(t) = g(t)\varphi_a(t),$$

 $\varphi_a(0) = u_0(a).$

 $\varphi_a(0) = u_0(a)$

En notant G la primitive de g s'annulant en 0, on a donc $\varphi_a(t) = u_0(a)e^{G(t)}$ pour tout $t \ge 0$. Comme $u_0(a) \ge 0$, on en déduit $\varphi_a(t) \ge 0$ pour tout $t \ge 0$.

On a donc, finalement $0 \le u(x_a(t), t)$ pour tout t > 0 et tout $a \in \mathbb{R}$.

Comme à la question précédente $\{(x_a(t),t), t \in \mathbb{R}_+, a \in \mathbb{R}\} = \mathbb{R}_+ \times \mathbb{R}$ et donc $0 \le u(x,t)$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$.

Exercice 5.16 (Exemple de système non strictement hyperbolique) Corrigé en page 339.

Soient p = 2, $D = \mathbb{R}^2$. Pour $U = (u_1, u_2)^t$, on définit $F = (f_1, f_2)^t$ par $f_1(U) = u_1^2$, $f_2(U) = (u_2 + 1)^2$.

- 1. Montrer que le système $\partial_t U + \partial_x (F(U)) = 0$ est hyperbolique mais non strictement hyperbolique, et qu'il existe existe deux champs VNL associée à la fonction F.
- 2. On considère maintenant le problème de Riemann avec comme données initiales $U_g = (-1, -1)^t$ pour x < 0 et $U_d = (0, -2)^t$ pour x > 0. Montrer que la solution est alors constituée par une onde de choc (pour la 2eme équation) située dans une onde de détente (pour la 1ere équation).

Exercice 5.17 (Equations de Saint-Venant) Corrigé en page 340.

On considère, dans cet exercice, le système des équations de Saint-Venant à une dimension d'espace, c'est-à-dire le système suivant :

$$\partial_t h(x,t) + \partial_x (hu)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+, \tag{5.84}$$

$$\partial_t(hu)(x,t) + \partial_x(hu^2 + \frac{g}{2}h^2)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+,$$
 (5.85)

où g est un nombre réel donné, g>0. Le système (5.86) est une modélisation simple du problème de l'écoulement d'un fluide en eau peu profonde. L'inconnue h(x,t) est la hauteur de la colonne d'eau située au point x à l'instant t. L'inconnue u(x,t) est la vitesse de cette colonne d'eau (située au point x à l'instant t). Le nombre g correspond à l'intensité de la gravité.

La fonction h prend ses valeurs dans \mathbb{R}_+^* et la fonction u prend ses valeurs dans \mathbb{R} .

On introduit deux nouvelles inconnues :

- la quantité de mouvement, $q: {\rm I\!R} \times {\rm I\!R}_+ \to {\rm I\!R}$ définie par q=hu,
- la célérité des ondes, $c: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}_+^*$, définie par $c = \sqrt{gh}$.

On note également

$$U = \begin{bmatrix} h \\ q \end{bmatrix}, \ V = \begin{bmatrix} u \\ 2c \end{bmatrix}, \ p = \frac{gh^2}{2} \text{ et } D = \big\{ \begin{bmatrix} h \\ q \end{bmatrix} \in \mathbb{R}^2, h > 0 \big\}.$$

1. (Forme équivalente) En définissant $F:D\to {\rm I\!R}^2$ convenablement, montrer que le système (5.84)-(5.85) s'écrit aussi

$$\partial_t U(x,t) + \partial_x (F(U))(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+. \tag{5.86}$$

Dans toute la suite de l'exercice, F est la fonction définie dans cette première question.

2. (Hyperbolicité) Pour tout $U \in D$, calculer les valeurs propres de la matrice jacobienne de F au point U et donner une base de \mathbb{R}^2 formée de vecteurs propres de cette matrice jacobienne. Montrer que le système (5.86) est strictement hyperbolique dans le domaine D.

Dans la suite, on note $\lambda_1(U)$ et $\lambda_2(U)$ (avec $\lambda_1(U) < \lambda_2(U)$) les deux valeurs propres de la matrice jacobienne de F au point U.

- 3. (Nature des champs) Montrer que les deux champs du système (5.86) sont VNL (c'est-à-dire vraiment non linéaires, au sens de la definition 5.36) dans tout le domaine *D*.
- 4. (Invariants) Calculer des invariants de Riemann (non triviaux) associés à chacun des deux champs du système (5.86) (voir définition 5.37). On pourra les chercher de la forme $u + \psi(h)$.
- 5. (Entropie) Pour tout $U = \begin{bmatrix} h \\ q \end{bmatrix} \in D$, on pose $\eta(U) = \frac{1}{2}hu^2 + p$ (on rappelle que q = hu et $p = g\frac{h^2}{2}$). Montrer que $\eta(U)$ est une entropie du système, c'est-à-dire que η est convexe et qu'il existe une fonction Φ telle que $\partial_t \eta(U) + \partial_x(\Phi(U)) = 0$ pour toute solution régulière de (5.84)-(5.85) (et donc de (5.86)).

- N.B. On peut remarquer que pour le système de Saint-Venant (5.86), la quantité $\eta(U(x,t))$ est l'énergie totale de cette colonne d'eau située au point x à l'instant t, c'est-à-dire la somme de l'énergie cinétique et de l'énergie potentielle.
- 6. (Limite de solutions visqueuses.) On ajoute des termes de régularisation dans le système (5.84)-(5.85), plus précisément $-\varepsilon \partial_x^2 h$ dans la première équation et $-\varepsilon \partial_x^2 q$ dans la deuxième équation (avec $\epsilon > 0$). On note h_ε et u_ε (et donc $q_\varepsilon = h_\varepsilon u_\varepsilon$) les solutions de ce nouveau système. On suppose que ce sont des fonctions régulières, bornées dans $L^\infty(\mathbb{R} \times \mathbb{R}_+)$ indépendamment de ε , et qu'elles convergent dans $L^1_{loc}(\mathbb{R} \times \mathbb{R}_+)$, quand $\varepsilon \to 0$ vers des fonctions h et u respectivement (avec h > 0). On suppose aussi que $\sqrt{\varepsilon} \partial_x h$ et $\sqrt{\varepsilon} \partial_x q$ sont bornées dans $L^2_{loc}(\mathbb{R} \times \mathbb{R}_+)$. Montrer que le couple (h,u) est solution de (5.84)-(5.85) et vérifie, au sens de la négativité d'un élément de \mathcal{D}^* (définition 1.4),

$$\partial_t \eta(U) + \partial_x \Phi(U) \le 0.$$

7. (Forme équivalente de (5.84)-(5.85) pour des solutions régulières). Soit (h,u) une solution régulière de (5.84)-(5.85). Montrer que $V=\begin{bmatrix} u\\2c\end{bmatrix}$ est solution du système

$$\partial_t V(x,t) + B(V)\partial_x V(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+, \ \text{avec} \ B(V) = \begin{bmatrix} u & c \\ c & u \end{bmatrix}. \tag{5.87}$$

On s'intéresse maintenant au problème de Riemann, c'est-à-dire au système (5.84)-(5.85) (équivalent à (5.86)) avec la condition initiale

$$h(x,0) = h_g, \ u(x,0) = u_g, \ x < 0,$$
 (5.88)

$$h(x,0) = h_d, u(x,0) = u_d, x > 0,$$
 (5.89)

où h_g , $h_d \in \mathbb{R}_+^*$ et u_d , $u_g \in \mathbb{R}$ sont donnés. On pose $q_g = h_g u_g$, $q_d = h_d u_d$, $c_g = \sqrt{gh_g}$, $c_d = \sqrt{gh_d}$. On suppose que $u_d - u_g < 2(c_g + c_d)$ (cette condition est nécessaire pour que le problème (5.86), (5.88)-(5.89) ait une solution prenant ses valeurs dans D, c'est la condition de "non apparition du vide").

- 8. (Deux détentes) On suppose, dans cette question, que $2|c_g c_d| \le u_d u_g$. Construire la solution du problème de Riemann (5.86), (5.88)-(5.89). [Cette solution est formée de 2 détentes reliées par un état dit intermédiaire, noté (h_\star, u_\star) , avec $h_\star > 0$. On pourra chercher la solution dans les zones de détente avec u et c sous la forme de fonctions affines de $\frac{x}{t}$.]
- 9. (Détente-choc, choc-détente et choc-choc) On suppose, dans cette question, que $2|c_g c_d| > u_d u_g$ et on pose

$$S = \sqrt{\frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d}}.$$

(a) (Calcul d'un choc) On suppose dans cette question qu'il existe $\sigma \in {\rm I\!R}$, tel que

$$U(x,t) = U_q \text{ si } x < \sigma t, \ U(x,t) = U_d \text{ si } x > \sigma t.$$

i. Montrer que U est solution faible de (5.86), (5.88)-(5.89) si et seulement si $u_d=u_g\pm S$ et $\sigma(h_d-h_g)=(q_d-q_g)$.

Définition 5.43 (Condition de Lax) Cette solution faible est un 1-choc si $\lambda_1(U_g) > \sigma > \lambda_1(U_d)$ et c'est un 2-choc si $\lambda_2(U_q) > \sigma > \lambda_2(U_d)$.

Montrer que U est un 1-choc si et seulement si $u_d=u_g-S$ et $h_g< h_d$. Montrer que U est un 2-choc si et seulement si $u_d=u_g-S$ et $h_g>h_d$.

[On pourra commencer par montrer que la condition de Lax et la valeur de σ imposent $u_d < u_g$.]

Pour
$$x \ge 1$$
, on pose $\varphi(x) = \sqrt{\frac{(x-1)(x^2-1)}{x}}$.

- ii. Montrer que φ est strictement croissante.
 - Montrer que pour tout u_g , h_g et h_d , avec $h_d > h_g$, il existe un seul u_d tel que U soit un 1-choc.
- (b) (Détente-choc) On suppose dans cette question que $u_g u_d < S$ et $h_d < h_g$. Montrer qu'on peut construire une solution de (5.86), (5.88)-(5.89) formée d'une 1-détente et d'un 2-choc reliés par un état dit intermédiaire, noté (h_\star, u_\star) .
 - [Remarquer qu'on cherche (h_\star,u_\star) tel que $u_\star+2c_\star=u_g+2c_g, u_\star=u_d+\sqrt{gh_d/2}\varphi(\frac{h_\star}{h_d}), h_\star>h_d$ et qu'il faut $u_g-c_g< u_\star-c_\star<\sigma$ où σ est la vitesse du 2-choc.]
- (c) (Choc-détente) On suppose dans cette question que $u_g u_d < S$ et $h_d > h_g$. Montrer qu'on peut construire une solution de (5.86), (5.88)-(5.89) formée d'un 1-choc et d'une 2-détente.
- (d) (Choc-choc) On suppose dans cette question que $u_g u_d > S$. Montrer qu'on peut construire une solution de (5.86), (5.88)-(5.89) formée d'un 1-choc et d'un 2-choc.
- 10. (Problème de Riemann linéarisé) On pose $\overline{V}=\begin{bmatrix}\overline{u}\\2\overline{c}\end{bmatrix}$, $\overline{u}=(u_g+u_d)/2$ et $\overline{c}=(c_g+c_d)/2$.

On remplace dans le problème de Riemann (5.86), (5.88)-(5.89), l'équation (5.86) par l'équation suivante :

$$\partial_t V(x,t) + B(\overline{V})\partial_x V(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+$$
 (5.90)

où B est définie par (5.87). Construire la solution du problème de Riemann linéarisé (5.90), (5.88)-(5.89). N.B. : On remarque que, grâce à la condition $u_d - u_g < 2(c_g + c_d)$, ce nouveau problème de Riemann admet une solution avec un état intermédiaire $(u_\star, 2c_\star)$ tel que $c_\star > 0$, et donc $c_\star = \sqrt{gh_\star}$ avec un $h_\star > 0$. (Ceci n'est pas le cas si $u_d - u_g \geq 2(c_g + c_d)$.) Le fait que $h_\star > 0$ est important lorsque que l'on remplace dans le schéma de Godunov la résolution du problème de Riemann par la résolution de ce problème de Riemann linéarisé.

Exercice 5.18 (Entropie pour les équations de Saint-Venant avec gradient de fond) Corrigé page 347

On s'intéresse dans cet exercice au système d'équations (à une dimension d'espace) modélisant un écoulement d'eau sur un fond non plat. On note z la fonction régulière de ${\rm I\!R}$ dans ${\rm I\!R}_+$ donnant la cote du fond et g l'intensité de la gravité. Le système considéré sécrit alors

$$\partial_t h(x,t) + \partial_x (hu)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+, \tag{5.91}$$

$$\partial_t(hu)(x,t) + \partial_x(hu^2 + g\frac{h^2}{2})(x,t) + ghz'(x) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+,$$
 (5.92)

On reprend ici les questions 5 et 6 de l'exercice 5.17.

1. (Entropie) Pour tout $U=\begin{bmatrix} h \\ q \end{bmatrix}\in D$, on pose $\eta(U)=\frac{1}{2}hu^2+p+ghz$ (avec q=hu et $p=gh^2/2$).

Montrer que $\eta(U)$ est une entropie du système, c'est-à-dire que η est convexe et qu'il existe une fonction Φ telle que $\partial_t \eta(U) + \partial_x (\Phi(U)) = 0$ pour toute solution régulière de (5.91)-(5.92).

N.B. Comme dans l'exercice 5.17, question 5, la quantité $\eta(U(x,t))$ est l'énergie totale de la colonne d'eau située au point x à l'instant t (c'est-à-dire la somme de l'énergie cinétique et de l'énergie potentielle).

2. (Limite de solutions visqueuses) On ajoute des termes de régularisation dans le système (5.91)-(5.92), c'est-à-dire $-\varepsilon\partial_x^2h$ pour la première équation et $-\varepsilon\partial_x^2q$ pour la deuxième équation (avec $\varepsilon>0$). On note h_ε et u_ε (et donc $q_\varepsilon=h_\varepsilon u_\varepsilon$) les solutions de ce nouveau système. On suppose que ce sont des fonctions régulières bornées dans $L^\infty(\mathbb{R}\times\mathbb{R}_+)$ indépendamment de ε , et qu'elles convergent dans $L^1_{\mathrm{loc}}(\mathbb{R}\times\mathbb{R}_+)$, quand $\varepsilon\to0$, vers des fonctions h et u (avec h>0). On suppose aussi que $\varepsilon\partial_x h$ et $\varepsilon\partial_x q$ sont bornées dans $L^2_{\mathrm{loc}}(\mathbb{R}\times\mathbb{R}_+)$. Montrer que le couple (h,u) est solution de (5.91)-(5.92) et vérifie, au sens de la négativité d'un élément de \mathcal{D}^* (définition 1.4),

$$\partial_t \eta(U) + \partial_x \Phi(U) \le 0.$$

Exercice 5.19 (Solutions stationnaires régulières pour les équations de Saint-Venant) Corrigé en page 348. On cherche à construire, dans cet exercice, des solutions stationnaires régulières au système d'équations (à une dimension d'espace) modélisant un écoulement d'eau sur un fond non plat. On note z la fonction régulière de \mathbb{R} dans \mathbb{R}_+ donnant la cote du fond et g l'intensité de la gravité. Le système considéré sécrit alors

$$\partial_t h(x,t) + \partial_x (hu)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+, \tag{5.93}$$

$$\partial_t(hu)(x,t) + \partial_x(hu^2 + g\frac{h^2}{2})(x,t) + ghz'(x) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+,$$
 (5.94)

Dans la suite de cet exercice, on note q la fonction hu et ψ la fonction $\frac{u^2}{2} + gh + gz$.

Dans la suite, on appelle "solution stationnaire régulière" un couple de fonctions de classe C^1 , notée (h, u), de \mathbb{R} dans $\mathbb{R}_+^{\star} \times \mathbb{R}$, solution stationnaire de (5.93)-(5.94) (noter que h(x) > 0 pour tout $x \in \mathbb{R}$). On suppose aussi que z est de classe C^1 .

1. Montrer que le couple (h, u) (de \mathbb{R} dans $\mathbb{R}_+^* \times \mathbb{R}$) est une solution stationnaire régulière de (5.93)-(5.94) si et seulement si les fonctions q et ψ sont des fonctions constantes.

On se donne donc deux nombres positifs α et β et on cherche un couple de fonctions (h,u) tel que $q(x)=\alpha$ et $\psi(x)=\beta$ pour tout $x\in\mathbb{R}$.

On note z_m le maximum de la fonction z, et on suppose (bien sûr) que $z_m < +\infty$.

2. (Lac au repos) On suppose, dans cette question, que $\alpha=0$. Montrer qu'il n'y a pas de solution stationnaire régulière si $\beta \leq gz_m$ (on rappelle que la fonction h doit être à valeurs strictement positives) et que la seule solution stationnaire régulière est donnée par $h(x)=\beta/g-z(x)$ (pour tout $x\in\mathbb{R}$) si $\beta>gz_m$.

Dans la suite de l'exercice, on suppose $\alpha > 0$ et on pose $\beta_m = gz_m + (3/2)(\alpha g)^{2/3}$.

- 3. Montrer que:
 - (a) Si $\beta < \beta_m$, il n'y pas de solution stationnaire régulière associée au couple (α, β) ,
 - (b) Si $\beta > \beta_m$, il y a (exactement) deux solutions stationnaires régulières associées au couple (α, β) ,
- 4. On suppose, dans cette question, que $\beta = \beta_m$. Montrer que :
 - (a) si z est une fonction constante, il y a (exactement) une solution stationnaire régulière associée au couple (α, β) ,
 - (b) si $z(x) \neq z_m$ pour tout x (et donc z est non constante), il y a (exactement) deux solutions stationnaires régulières associées au couple (α, β) .

Dans la suite de l'exercice, on fixe α et β avec $\alpha > 0$ et $\beta > \beta_m$. On note (h_i, u_i) , i = 1, 2, les deux couples de solutions stationnaires régulières.

- 5. Montrer que $h_1 h_2$ a un signe constant. On peut donc supposer $h_1(x) < h_2(x)$ pour tout x. Montrer qu'il existe des fonctions régulières φ_1 et φ_2 telle que $h_i(x) = \varphi_i(z(x))$ pour tout x.
 - Montrer que $h_2 + z$ est décroissante quand z est croissante (et croissante quand z est décroissante)
 - Montrer que $h_1 + z$ est croissante quand z est décroissante (et croissante quand z est décroissante)
- 6. Pour i=1,2, donner le signe de $u_i-\sqrt{gh_i}$. (on rappelle que $\alpha>0$ et $\beta>\beta_m$). N.B. Si $u_i>\sqrt{gh_i}$, on dit que l'écoulement est supersonique. Si $u_i<\sqrt{gh_i}$, on dit que l'écoulement est subsonique.

Exercice 5.20 (Equations de Saint-Venant, entropie au sens de Lax)

On considère une nouvelle fois le système des équations de Saint-Venant à une dimension d'espace, c'est-à-dire le système suivant :

$$\partial_t h(x,t) + \partial_x (hu)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+, \tag{5.95}$$

$$\partial_t(hu)(x,t) + \partial_x(hu^2 + \frac{g}{2}h^2)(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_+,$$
 (5.96)

où g est un nombre réel donné, g > 0. On pose q = hu.

Soient $u_g, u_d \in \mathbb{R}, h_g, h_d \in \mathbb{R}^*$ et $\sigma \in \mathbb{R}$. On pose $q_g = h_g u_g, q_d = h_d u_d$. On définit la fonction $U = \begin{bmatrix} h \\ q \end{bmatrix}$ de $\mathbb{R} \times \mathbb{R}_+$ dans $\mathbb{R}_+^* \times \mathbb{R}$ par

$$U(x,t) = \begin{bmatrix} h_g \\ q_g \end{bmatrix} \text{ si } x < \sigma t, \tag{5.97}$$

$$U(x,t) = \begin{bmatrix} h_d \\ q_d \end{bmatrix} \text{ si } x > \sigma t.$$
 (5.98)

On suppose que U est solution faible discontinue de (5.95)-(5.96) avec la condition initiale $U_0 = \begin{bmatrix} h_g \\ q_g \end{bmatrix}$ si x < 0, $U_0 = \begin{bmatrix} h_d \\ a_d \end{bmatrix}$ si x > 0.

- 1. Montrer que U est solution entropique au sens de la définition 5.35 avec l'entropie $\eta(U) = hu^2/2 + gh^2/2$ si et seulement si $u_d < u_q$.
- 2. En utilisant l'exercice 5.17 question 9a, montrer que U est solution entropique au sens de la définition 5.35 avec l'entropie $\eta(U) = hu^2/2 + gh^2/2$ si et seulement si U vérifie la condition de Lax 5.43.

Exercice 5.21 (Equation linéaire avec terme source singulier) Corrigé en page 351.

Soient $a,b,c,u_g,u_d\in {\rm I\!R}.$ On définit la mesure μ sur ${\rm I\!R}\times {\rm I\!R}_+$ par :

$$\int_{\mathbb{R}\times\mathbb{R}_+} \varphi d\mu = b \int_0^{+\infty} \varphi(ct, t) dt \text{ pour tout } \varphi \in C_c^{\infty}(\mathbb{R}\times\mathbb{R}_+, \mathbb{R}).$$
 (5.99)

La mesure μ est donc une mesure portée par la demi-droite $\Gamma_c = \{(ct,t), t \in \mathbb{R}_+\}$. On définit u_0 par $u_0(x) = u_g$ si x < 0 et $u_0(x) = u_d$ si x > 0. On s'intéresse au problème

$$\partial_t u + a \partial_x u = \mu \text{ dans } \mathbb{R} \times \mathbb{R}_+,$$
 (5.100)

$$u(\cdot,0) = u_0 \text{ dans } \mathbb{R}. \tag{5.101}$$

Une solution faible de (5.100)-(5.101) est une fonction $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ telle que

$$\int_{\mathbb{R}\times\mathbb{R}_{+}} u(\partial_{t}\varphi + a\partial_{x}\varphi)d(x,t) + \int_{\mathbb{R}} u_{0}(x)\varphi(x,0) dx = -b\int_{0}^{+\infty} \varphi(ct,t)dt$$

$$\text{pour tout } \varphi \in C_{c}^{\infty}(\mathbb{R}\times\mathbb{R}_{+},\mathbb{R}). \quad (5.102)$$

- 1. **Unicité** Montrer que (5.100)-(5.101) a au plus une solution faible. [On pourra se ramener à l'exercice 5.4.]
- 2. **Existence** On suppose dans cette question que $c \neq a$. Montrer que (5.100)-(5.101) a une (unique) solution faible et la construire.
- 3. Non existence On suppose dans cette question que c=a et $b\neq 0$. Montrer que (5.100)-(5.101) n'a pas de solution faible.

5.5 Corrigés des exercices

Exercice 5.1 page 312 $(L^1(\mathbb{R}) \cap BV(\mathbb{R}) \subset L^{\infty}(\mathbb{R}))$

Soient x, y des points de Lebesgue de u, x < y. Pour n tel que 2/n < y - x, on choisit φ continue et telle que

$$\begin{cases} \varphi(z) = 0 \text{ si } z \leq x - \frac{1}{2}n \text{ ou } z \leq x - \frac{1}{2}n, \\ \varphi(z) = 1 \text{ si } z \leq x + \frac{1}{2}n \text{ ou } z \leq x - \frac{1}{2}n, \\ \varphi \text{ affine sur } [x - \frac{1}{2}n, x + \frac{1}{2}n] \text{ et } [y - \frac{1}{2}n, y + \frac{1}{2}n\frac{1}{2}n]. \end{cases}$$

On a $|\int u(z)\varphi'(z) dz| \leq |u|_{BV}$.

En faisant tendre $n \to +\infty$, on obtient $|u(x) - u(y)| \le |u|_{BV}$ et donc

$$|u(x)| \le |u|_{BV} + |u(y)|,$$

pour tous x, y points de Lebesgue.

Mais comme $u \in L^1(\mathbb{R})$, pour tout $\varepsilon > 0$, il existe y point de Lebesgue tel que $|u(y)| \le \varepsilon$ (sinon $\int |u(y)| dy \ge \varepsilon (+\infty) = +\infty$). On en déduit que $|u(x)| \le |u|_{BV}$ pour tout x point de Lebesgue et donc

$$||u||_{\infty} \leq |u|_{BV}$$
.

Exercice 5.2 page 312 (Condition de Lax)

- 1. La condition de Rankine-Hugoniot donne $\sigma = \frac{f(u_g) f(u_d)}{u_g u_d}.$
- 2. D'après la relation de Rankine-Hugoniot, il existe ξ combinaison convexe de u_g et u_d tel que $f'(\xi) = \sigma$. Si la condition de Lax est vérifiée, on a donc en particulier $f'(u_g) > f'(u_d)$ Comme f est strictement convexe, f' est strictement croissante, ce qui entraîne que $u_g > u_d$; la proposition 5.15 permet alors de conclure que u est solution entropique.

Réciproquement, supposons u est solution entropique, alors $u_g > u_d$ et donc d'après la relation de Rankine-Hugoniot, il existe $\xi \in]u_d, u_g[\ f'(\xi) = \sigma.$ Comme f' est strictement croissante, on a bien $f'(u_g) > \sigma > f'(u_d)$.

3. Considérons l'équation de Burgers $f(u) = u^2$, et la fonction

$$u(x,t) = \begin{cases} 1 \text{ si } x < t, \\ -1 \text{ si } x > t. \end{cases}$$

Cette fonction vérifie bien la condition de Lax, car f'(1) = 2 et f'(-1) = -2, mais ce n'est pas la solution entropique; ce n'est d'ailleurs pas une solution faible, car elle ne vérifie pas la relation de Rankine-Hugoniot. La solution entropique de ce problème est la fonction stationnaire

$$u(x,t) = \begin{cases} 1 \text{ si } x < 0, \\ -1 \text{ si } x > 0. \end{cases}$$

Exercice 5.3 page 313 (Système hyperbolique linéaire)

Soit $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)^n$; décomposons u sur la base des vecteurs propres $\{v_i, i \in \{1, \dots, n\}:$

$$u(x,t) = \sum_{i=1}^n u_i(x,t) v_i, \text{ et donc } \partial_t u(x,t) = \sum_{i=1}^n \partial_t u_i(x,t) v_i \text{ et } A \partial_x u(x,t) = \sum_{i=1}^n \lambda_i \partial_x u_i(x,t) v_i.$$

On en déduit que $u = \sum_{i=1}^{n} u_i(x,t)v_i$ est solution faible de (5.61) si et seulement si pour tout $i = 1, \dots, n$,

$$\partial_t u_i(x,t) + \lambda_i \partial_x u_i(x,t) = 0, \ x \in \mathbb{R}, \ t \in]0, +\infty[, \tag{5.103a}$$

$$u_i(x,0) = a_i(x), x \in \mathbb{R}.$$
 (5.103b)

Montrons que la fonction $u_i \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ définie par $u_i(x,t) = a_i(x-\lambda t)$ est une solution faible de (5.103). Remarquons d'abord que si a_i est une fonction régulière, alors u_i ainsi définie est solution classique, donc faible et on a terminé. Maintenant si a_i est seulement L^{∞} , on a bien $u_i \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+)$ et il nous reste à montrer que pour toute fonction $\varphi \in C^1_c(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$, la fonction u_i satisfait :

$$\int \int_{\mathbb{R} \times \mathbb{R}_+} \left[u_i(x,t) \partial_t \varphi(x,t) + \lambda_i u_i(x,t) \partial_x \varphi(x,t) \right] dx dt + \int_{\mathbb{R}} a_i(x) \varphi(x,0) dx = 0.$$

Posons

$$X = \int \int_{\mathbb{R} \times \mathbb{R}_+} \left[u_i(x,t) \partial_t \varphi(x,t) + \lambda_i u_i(x,t) \partial_x \varphi(x,t) \right] dx dt.$$

Puisque $u_i(x,t) = a_i(x-ct)$, on a donc :

$$X = \int \int_{\mathbb{R} \times \mathbb{R}_+} \left[u_0(x - ct) \partial_t \varphi(x, t) + c u_0(x - ct) \partial_x \varphi(x, t) \right] dx dt.$$

En appliquant le changement de variable $y=x-\lambda_i t$ et en utilisant le théorème de Fubini, on obtient :

$$X = \int_{\mathbb{R}} a_i(y) \int_{\mathbb{R}_+} \left[\partial_t \varphi(y + \lambda_i t, t) + \lambda_i \partial_x \varphi(y + \lambda_i t, t) \right] dt dy.$$

Posons alors

$$\psi_{y}(t) = \varphi(y + \lambda_{i}t, t).$$

On a donc:

$$X = \int_{\mathbb{R}} \left(a_i(y) \int_0^{+\infty} \psi_y'(t) \, dt \right) \, dy,$$

et comme ψ est à support compact sur $[0,+\infty[,$ on a

$$X = -\int_{\mathbb{R}} a_i(y)\psi_y(0) dy = -\int_{\mathbb{R}} a_i(y)\varphi(y,0) dy.$$

On a ainsi démontré que la fonction u définie par $u(x,t)=a_i(x-\lambda_i t)$ est solution faible de l'équation (5.103). On en déduit que la fonction $u:(x,t)\mapsto \sum_{i=1}^n a_i(x-\lambda_i t)$ est solution faible du système (5.61).

Exercice 5.4 page 313 (Unicité de la solution faible du problème linéaire par dualité)

- 1. Soient u_1 et u_2 des solutions faibles de (5.62), alors $u_1 u_2$ est solution faible de (5.62) avec $u_0 = 0$; on en déduit qu'il est équivalent de montrer qu'il existe une unique solution à (5.62) que de montrer que la fonction nulle est l'unique solution faible de (5.62) avec $u_0 = 0$.
- 2. (a) Montrer que $\varphi \in C_c^1(\mathbb{R} \times [0, +\infty[))$ et que $\partial_t \varphi + c \partial_x \varphi = \psi$ dans $\mathbb{R} \times [0, +\infty[)$.

Exercice 5.5 (Construction d'une solution faible entropique, I)

On commence par construire, pour chaque x_0 , la courbe caractéristique issue de x_0 .

- Pour $x_0 < 0$, la courbe caractéristique est la demi-droite $\{(x_0 + 2t, t), t \ge 0\}$.
- Pour $0 \le x_0 \le 1$, la courbe caractéristique est la demi-droite $\{(x_0+2(1-x_0)t,t),t\ge 0\}$, car $f'(u_0(x_0))=2(1-x_0)$.
- Pour $x_0 > 1$, la courbe caractéristique est la demi-droite $\{(x_0, t), t \ge 0\}$.

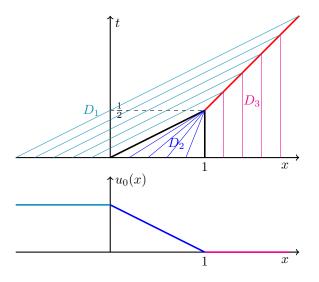


FIGURE 5.5 – Exercice 5.5 page 313. En haut : Droites caractéristiques pour l'équation de Burgers avec condition initiale (5.64) En rouge la ligne de choc, en noir les lignes de discontinuité C^1 . – En bas : allure de la condition initiale u_0 .

Pour $0 < t < \frac{1}{2}$, les courbes caractéristiques ne se rencontrent pas, comme indiqué sur la figure 5.5. La solution est donc continue pour $0 < t < \frac{1}{2}$ et elle est constante sur chaque courbe caractéristique.

Par exemple, si $0 < t < \frac{1}{2}$ et $x = x_0 + 2(1 - x_0)t$ avec $x_0 \in [0, 1]$, on a $u(x, t) = u_0(x_0) = 1 - x_0 = (1 - x)/(1 - 2t)$ car $x_0(1 - 2t) = x - 2t$.

En $t=\frac{1}{2}$, les courbes caractéristiques issues des points x_0 de l'intervalle [0,1] se rencontrent (au point x=1); une discontinuité apparaît et se propage à une vitesse conforme à la relation de Rankine-Hugoniot. Ceci nous permet de construire la solution u(x,t) pour tout $(x,t) \in \mathbb{R} \times R_+$ de la manière suivante. On pose :

$$u(x,t) = 1$$
 $\operatorname{si}(x,t) \in D_1 = \{(x,t), 0 < t \le \frac{1}{2}, x < 2t\} \cup \{(x,t), t > \frac{1}{2}, x < t + \frac{1}{2}\},$ (5.104)

$$u(x,t) = \frac{1-x}{1-2t} \quad \text{si } (x,t) \in D_2 = \{(x,t), 0 < t < \frac{1}{2}, 2t < x < 1\},$$
 (5.105)

$$u(x,t) = 0 si (x,t) \in D_3 = \{(x,t), 0 < t \le \frac{1}{2}, 1 < x\} \cup \{(x,t), t > \frac{1}{2}, t + \frac{1}{2} < x\}. (5.106)$$

La fonction u est bien solution faible de (5.63). Cette solution est même entropique (voir la proposition 5.15).

Exercice 5.7 (Construction d'une solution faible entropique, II)

Comme dans le corrigé de l'exercice 5.5, on commence par construire, pour tout $x_0 \in \mathbb{R}$, la courbe caractéristique issue de x_0 .

- Pour $x_0 < 0$, la courbe caractéristique est la demi-droite $\{(x_0, t), t \ge 0\}$.
- Pour $0 \le x_0 \le 1$, la courbe caractéristique est la demi-droite $\{(x_0+2(1-x_0)t,t),t\ge 0\}$, car $f'(u_0(x_0))=2(1-x_0)$.
- Pour $x_0 > 1$, la courbe caractéristique est la demi-droite $\{(x_0 + 2t, t), t \ge 0\}$.

Pour $0 < t < \frac{1}{2}$, les courbes caractéristiques ne se rencontrent pas, comme indiqué sur la figure 5.6. La solution est donc continue pour $0 < t < \frac{1}{2}$ et elle est constante sur chaque courbe caractéristique.

Comme dans le corrigé de l'exercice 5.5, on a, par exemple, si $0 < t < \frac{1}{2}$ et $x = x_0 + 2(1 - x_0)t$ avec $x_0 \in [0, 1]$, $u(x,t) = u_0(x_0) = 1 - x_0 = (1-x)/(1-2t)$ car $x_0(1-2t) = x - 2t$.

La différence avec l'exercice 5.5 est que la solution comporte maintenant deux détentes prenant leur origine aux points 0 et 1.

Dans la zone de détente issue du point 0, on a $u(x,t)=\xi$ pour $x=2\xi t$ et $\xi\in[0,1]$ (et donc u(x,t)=x/(2t)). Dans la zone de détente issue du point 1, on a $u(x,t)=\xi$ pour $x=2\xi t+1$ et $\xi\in[0,1]$ (et donc u(x,t)=(x-1)/(2t)).

Puis, en $t = \frac{1}{2}$, un choc apparaît. En utilisant la relation de Rankine-Hugoniot, on montre (avec le calcul de la solution sur les caractéristiques de l'équation, voir ci après) que ce choc se propage à vitesse 1. La solution est bien entropique (grâce à la proposition 5.15).

En résumé, ceci donne la solution suivante :

$$\begin{split} u(x,t) &= 0 & \text{sur } D_1 = \{(x,t), 0 < t, x < 0\}, \\ u(x,t) &= \frac{x}{2t} & \text{sur } D_2 = \{(x,t), 0 < t \le \frac{1}{2}, 0 < x < 2t\} \cup \{(x,t), t > \frac{1}{2}, 0 < x < t + \frac{1}{2}\}, \\ u(x,t) &= \frac{1-x}{1-2t} & \text{sur } D_3 = \{(x,t), 0 < t < \frac{1}{2}, 2t < x < 1\}, \\ u(x,t) &= \frac{x-1}{2t} & \text{sur } D_4 = \{(x,t), 0 < t \le \frac{1}{2}, 1 < x < 1 + 2t\} \cup \{(x,t), t > \frac{1}{2}, t + \frac{1}{2} < x < 1 + 2t\}, \\ u(x,t) &= 1 & \text{sur } D_5 = \{(x,t), 0 < t, 1 + 2t < x\}. \end{split}$$

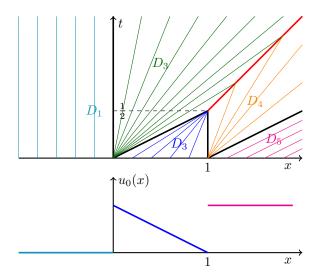


FIGURE 5.6 - 5.7 - En haut : Droites caractéristiques pour l'équation de Burgers avec condition initiale u_0 ; en rouge la ligne de choc, en noir les lignes de discontinuité C^1 - En bas : allure de la condition initiale u_0 .

La fonction u est discontinue sur l'ensemble $\{(x,t), t>\frac{1}{2}, x=t+\frac{1}{2}\}$ (ligne de choc, en rouge sur la figure). On vérifie que la relation de Rankine-Hugoniot est satisfaite en tout point de cet ensemble. En effet, soit $t>\frac{1}{2}$ et $x=t+\frac{1}{2}$. Avec les notations de la proposition 5.15, on a

$$u_{-}(x,t) = \frac{x}{2t} = \frac{t + \frac{1}{2}}{2t} = \frac{1}{2} + \frac{1}{4t} \text{ (on utilise ici } D_2\text{)},$$

$$u_{+}(x,t) = \frac{x-1}{2t} = \frac{t - \frac{1}{2}}{2t} = \frac{1}{2} - \frac{1}{4t} \text{ (on utilise ici } D_4\text{)}.$$

Ceci donne $u_-(x,t) + u_+(x,t) = 1$ et la relation de Rankine-Hugoniot est bien vérifiée. D'autre part, la solution contruite est bien entropique car $u_- > u_+$.

Exercice 5.9 (Equation de Buckley-Leverett)

1. On remarque tout d'abord que f' est strictement croissante sur [0,a] puis strictement décroissante sur [a,1]. On a donc f'(x) > 0 et f(x) > 0 pour tout $x \in]0,1]$.

Comme la fonction f est strictement convexe sur]0, a[(et de classe C^1 sur \mathbb{R}),

$$0 > f(x) + (0 - x)f'(x)$$
, pour tout $x \in]0, a]$,

et donc f'(x) > f(x)/x pour tout $x \in]0, a]$. En particulier f'(a) > f(a)/a.

Pour $x \in [a, 1]$, on pose h(x) = f(x) - xf'(x), de sorte que h(a) < 0 et h(1) = f(1) > 0. Puis, comme h'(x) = -xf''(x), la fonction h est strictement croissante sur [a, 1]. Il existe donc un et un seul point $b \in]a, 1[$ tel que h(b) = 0, c'est-à-dire f'(b) = f(b)/b.

Enfin comme la fonction f' est strictement croissante de 0 à f'a) sur [0, a] puis strictement décroissante de f'(a) à 0 sur [a, 1], il existe un unique point $c \in]0, a[$ tel que f'(c) = f'(b) (car $b \in]a, 1[$).

2. On décompose le demi-plan $\mathbb{R} \times \mathbb{R}_+$ en 3 zones,

$$D_1 = \{(x,t), t \ge 0, x < 0\},\$$

$$D_2 = \{(x,t), t \ge 0, x = f'(\xi)t, b < \xi < 1\},\$$

$$D_3 = \{(x,t), t \ge 0, x > f'(b)t\}.$$

Dans chacune de ces trois zones, la fonction u est une solution classique de (5.68) (et vérifie bien (5.69)). La fonction u est continue à la frontière entre D_1 et D_2 (elle vaut 1, on rappelle que f'(1) = 0). La fonction u est discontinue à la frontière entre D_2 et D_3 . Du coté de D_2 , elle vaut b et elle vaut 0 dans D_3 . La frontière entre D_2 et D_3 est la demi-droite d'équation x = f'(b)t. Comme f'(b) = f(b)/b = (f(b) - f(0))/(b - 0), la relation de Rankine-Hugoniot est bien vérifiée à la frontière entre D_2 et D_3 . Ceci montre que u est solution faible de (5.68)-(5.69).

Il reste à vérifier la condition d'entropie à la frontière entre D_2 et D_3 .

Soit η une fonction de $\mathbb R$ dans $\mathbb R$ de classe C^1 et convexe. Comme $(f'(b)-f'(x))(\eta'(x)-\eta'(c))\leq 0$ pour presque tout $x\in [0,b]$ (pour le voir, il suffit de distinguer les cas x< c et x> c et d'utiliser f'(b)=f'(c)), on a bien $\int_0^b (f'(b)-f'(x))(\eta'(x)-\eta'(c)) \,\mathrm{d} x\leq 0$.

En notant Φ la primitive de $\eta'f'$, ceci donne

$$f'(b)(\eta(b) - \eta(0)) - f'(b)\eta'(c)b - (\Phi(b) - \Phi(0)) + f(b)\eta'(c) \le 0.$$

Comme bf'(b) = f(b), on en déduit $(\Phi(0) - \Phi(b)) \le f'(b)(\eta(0) - \eta(b))$, ce qui est bien la condition d'entropie à la frontière entre D_2 et D_3 .

Exercice 5.10 (Construction d'une solution faible entropique, III)

Au vu de la condition initiale, on peut se douter que la solution entropique contient une discontinuité issue du point x=1. On cherche donc la solution sous la forme d'une fonction continue à gauche et à droite d'une ligne de discontinuité notée L (en rouge sur la figure 5.7), définie par $L=\{(x,t),t>0,x=\sigma(t)\}$, où σ est une fonction de classe C^1 croissante telle que $\sigma(0)=1$ et $\sigma'(t)<2$ pour tout t>0. On pose (voir figure 5.7) :

$$D_1 = \{(x,t), 0 < t, x < 0\},\$$

$$D_2 = \{(x,t), 0 < t, 0 < x < \sigma(t)\},\$$

$$D_3 = \{(x,t), 0 < t, \sigma(t) < x\}.$$

On prend u(x,t)=0 si $(x,t)\in D_1$. Dans D_2 , u est construite en utilisant les caractéristiques, ce qui donne u(x,t)=x/(1+2t) si $(x,t)\in D_2$. Enfin, on pose u(x,t)=0 si $(x,t)\in D_3$.

Pour que u soit solution faible du problème considéré, il suffit de vérifer la relation de Rankine-Hugoniot sur L, c'est-à-dire (avec les notations de la proposition 5.15) que

$$\sigma'(t) = u_{-}(x, t) + u_{+}(x, t)$$
 pour tout $(x, t) \in L$.

Soient t>0 et $x=\sigma(t)$, on a $u_-(x,t)+u_+(x,t)=\sigma(t)/(1+2t)$. Il suffit donc que

$$\sigma'(t) = \sigma(t)/(1+2t)$$
 pour tout $t > 0$, $\sigma(0) = 1$.

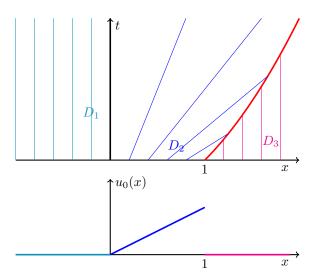


FIGURE 5.7 – En haut : Droites caractéristiques pour l'équation de Burgers avec condition initiale u_0 ; en rouge la ligne de choc, en noir les lignes de discontinuité C^1 – En bas : allure de la condition initiale u_0 .

La solution de cette équation différentielle est $\sigma(t) = \sqrt{1+2t}$ (pour tout t>0). Avec ce choix de la fonction σ , la fonction u ainsi construite est solution faible du problème considéré. Cette fonction est même solution entropique car $u_->u_+$ sur L (voir la proposition 5.15).

Pour
$$t > 0$$
, $\int_{\mathbb{R}} u(x,t) dx = \int_{0}^{\sqrt{1+2t}} \frac{x}{1+2t} dt = \frac{1}{2} = \int_{\mathbb{R}} u_0(x) dx$.

Exercice 5.11 (Construction d'une solution faible entropique, IV)

L'allure de la solution entropique est donnée sur la figure 5.8. La discontinuité de u_0 en x=-1, commence par se propager à la vitesse 1 (c'est-à-dire sur la droite x=-1+t), c'est une onde de choc; elle sépare les régions D_1 et D_2 sur la figure. Noter que, conformément à la théorie, les caractéristiques "rentrent" dans la ligne de choc. La discontinuité de u_0 en x=1, commence par se propager à la vitesse 2 (c'est-à-dire sur la droite x=1+2t), c'est aussi une onde de choc. La discontinuité de u_0 en x=0 disparaît, elle donne une onde de détente (région D_3). Dans cette onde de détente, on a u(x,t)=x/(2t).

Puis, en $t=\frac{1}{2}$, la "tête" de l'onde détente rattrape l'onde de choc de droite (au point x=2) qui alors "ralentit" et continue sur une courbe que nous notons L_1 , avec $L_1=\{(x,t),\,t>\frac{1}{2},\,x=\sigma_1(t)\}$. En t=1, l'onde de choc de gauche rattrape le "pied" de l'onde de détente (au point x=0). L'onde de choc "ralentit" et continue sur une courbe que notons L_2 , avec $L_2=\{(x,t),\,t>1,\,x=\sigma_1(t)\}$. Les fonctions σ_1 et σ_2 se calculent grâce aux relations de Rankine-Hugoniot.

1. Calcul de σ_1 . Soit $(x,t) \in L_1$. L'ensemble L_1 sépare l'onde de détente D_2 de la zone D_5 dans laquelle u=0. On a donc, avec la relation de Rankine-Hugoniot,

$$\sigma'_1(t) = u_-(x,t) + u_+(x,t) = \frac{x}{2t} = \frac{\sigma_1(t)}{2t}.$$

Comme $\sigma_1(\frac{1}{2})=2$, la résolution de cette équation différentielle donne $\sigma_1(t)=2\sqrt{2t}$ pour tout $t>\frac{1}{2}$.

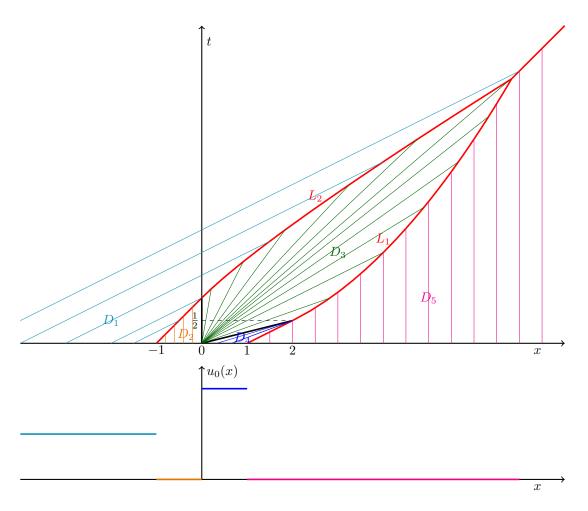


FIGURE 5.8 – En haut : Droites caractéristiques pour l'équation de Burgers avec condition initiale u_0 ; en rouge la ligne de choc, en noir les lignes de discontinuité C^1 – En bas : allure de la condition initiale u_0 .

2. Calcul de σ_2 . Soit $(x,t) \in L_2$. L'ensemble L_2 sépare la zone D_1 dans laquelle u=1 de l'onde de détente D_2 . On a donc, avec la relation de Rankine-Hugoniot,

$$\sigma'_2(t) = u_-(x,t) + u_+(x,t) = 1 + \frac{x}{2t} = 1 + \frac{\sigma_2(t)}{2t}.$$

Comme $\sigma_2(1) = 0$, la résolution de cette équation différentielle donne $\sigma_2(t) = 2(t - \sqrt{t})$ pour tout t > 1.

Les courbes L_1 et L_2 se rencontrent pour en t tel que $1+\frac{\sigma_2(t)}{2t}=\frac{\sigma_1(t)}{2t}$, c.à.d. $t=3+2\sqrt{2}$, pour donner naissance à une seule discontinuité qui se propage à la vitesse 1, car cette discontinuité sépare la zone D_1 dans laquelle u=1 de la zone D_5 dans laquelle u=0.

La solution ainsi construite est bien entropique car sur chaque courbe de discontinuité on a $u_g > u_d$, or la fonction flux $s \mapsto s^2$ de l'équation de Burgers est bien convexe.

Exercice 5.12 (Solution non entropique)

- 1. voir cours.
- 2. Comme $L^1_{loc} \subset L^2_{loc}$, il suffit de montrer que $u^2 \in L^1_{loc}(\mathbb{R} \times \mathbb{R}_+)$. Soit T > 0. Pour 0 < t < T,

$$\int_{\mathbb{R}} u^2(x,t) \, \mathrm{d}x = \int_{-\sqrt{t}}^{\sqrt{t}} \frac{x^2}{4t^2} dx = \frac{1}{6t^{\frac{1}{2}}},$$

et donc

$$\int_0^T (\int_{\rm I\!R} u^2(x,t) \; \mathrm{d}x) \; \mathrm{d}t = \int_0^T \frac{1}{6t^{\frac{1}{2}}} \; \mathrm{d}t < +\infty.$$

Ce qui prouve que $u^2 \in L^1_{loc}(\mathbb{R} \times \mathbb{R}_+)$.

3. Une démonstration (rapide) de cette question consiste à utiliser la proposition 5.17 avec, pour tout $\varepsilon > 0$, $\mathbb{R} \times [\varepsilon, +\infty[$ au lieu de $\mathbb{R} \times \mathbb{R}_+$. Nous donnons ici une autre démonstration, plus proche de celle donnée dans la proposition 5.13.

Soit $\varphi \in C_c^1(\mathbb{R} \times \mathbb{R}_+^*, \mathbb{R})$. En utilisant une intégration par parties, on obtient, pour tout $x \in \mathbb{R}$,

$$\int_0^\infty u(x,t)(x,t)\partial_t \varphi(x,t) dt = \int_{x^2}^{+\infty} \frac{x}{2t^2} \varphi(x,t) dt - \frac{1}{2x} \varphi(x,x^2).$$

En notant que les deux termes de droite sont intégrables (car $\varphi(x,t)=0$ pour t proche de 0),

$$\int_{\mathbb{R}} \int_0^\infty u(x,t)(x,t) \partial_t \varphi(x,t) \, \mathrm{d}t = \int_{\mathbb{R}} \int_{x^2}^{+\infty} \frac{x}{2t^2} \varphi(x,t) \, \mathrm{d}t \, \mathrm{d}x - \int_{\mathbb{R}} \frac{1}{2x} \varphi(x,x^2) \, \mathrm{d}x. \tag{5.107}$$

De même, avec une intégration par parties, on obtient, pour tout $t \in \mathbb{R}_+^*$,

$$\int_{\mathbb{R}} u^2(x,t)\partial_x \varphi(x,t) \, \mathrm{d}x = -\int_{-\sqrt{t}}^{\sqrt{t}} \frac{x}{2t^2} \, \mathrm{d}x + \frac{1}{4t} \varphi(\sqrt{t},t) - \frac{1}{4t} \varphi(-\sqrt{t},t).$$

Ici encore les termes de droite sont intégrables (car $\varphi(x,t)=0$ pour t proche de 0),

$$\int_{0}^{+\infty} \int_{\mathbb{R}} u^{2}(x,t) \partial_{x} \varphi(x,t) dx = -\int_{0}^{+\infty} \int_{-\sqrt{t}}^{\sqrt{t}} \frac{x}{2t^{2}} dx dt + \int_{0}^{+\infty} \frac{1}{4t} (\varphi(\sqrt{t},t) - \varphi(-\sqrt{t},t)) dt.$$
(5.108)

Le théorème de Fubini nous donne $\int_{\mathbb{R}} \int_{x^2}^{+\infty} \frac{x}{2t^2} \varphi(x,t) dt dx = \int_0^{+\infty} \int_{-\sqrt{t}}^{\sqrt{t}} \frac{x}{2t^2} dx dt$. Puis le changement de variable $t=x^2$ donne

$$\int_0^{+\infty} \frac{1}{4t} \varphi(\sqrt{t}, t) dt = \int_0^{+\infty} \frac{1}{4x^2} \varphi(x, x^2) 2x \, dx = \int_0^{+\infty} \frac{1}{2x} \varphi(x, x^2) \, dx$$
$$\int_0^{+\infty} \frac{1}{4t} \varphi(-\sqrt{t}, t) dt = -\int_{-\infty}^0 \frac{1}{4x^2} \varphi(x, x^2) 2x \, dx = -\int_{-\infty}^0 \frac{1}{2x} \varphi(x, x^2) \, dx.$$

En additionnant (5.107) et (5.108) on obtient (5.72).

4. On se donne une fonction $\psi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ telle que $\psi(t) = 0$ pour $t \in]-\infty, 1]$ et $\psi(t) = 1$ pour $t \in [2, +\infty[$. Puis, pour $n \in \mathbb{N}^*$, on pose $\psi_n(t) = \psi(nt)$.

Soit $\varphi \in C_c^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$. Comme la fonction $(x, t) \mapsto \varphi(x, t) \psi_n(t)$ est un élément de $\mathcal{D}(\mathbb{R} \times \mathbb{R}_+^*)$, la question précédente donne

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} (u(x,t)\partial_t(\varphi\psi_n)(x,t) + u^2(x,t)\partial_x(\varphi\psi_n)(x,t)) dx dt = 0,$$

et donc

$$\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} u(x,t) \partial_{t} \varphi(x,t) \psi_{n}(x,t) \, dx \, dt + n \int_{\frac{1}{n}}^{2/n} \int_{\mathbb{R}} u(x,t) \varphi(x,t) \psi'(nt) \, dx \, dt + \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} u^{2}(x,t) \partial_{x} \varphi(x,t) \psi_{n}(x,t) \, dx \, dt = 0. \quad (5.109)$$

La question 2 donne $u\partial_t \varphi$, $u^2\partial_x \varphi \in L^1(\mathbb{R} \times \mathbb{R}_+)$. On en déduit, par le théorème de convergence dominée,

$$\lim_{n \to +\infty} \int_{\mathbb{R}_+} \int_{\mathbb{R}} u(x,t) \partial_t \varphi(x,t) \psi_n(x,t) \, dx \, dt = \int_{\mathbb{R}_+} \int_{\mathbb{R}} u(x,t) \partial_t \varphi(x,t) \, dx \, dt,$$
$$\lim_{n \to +\infty} \int_{\mathbb{R}_+} \int_{\mathbb{R}} u^2(x,t) \partial_x \varphi(x,t) \psi_n(x,t) \, dx \, dt = \int_{\mathbb{R}_+} \int_{\mathbb{R}} u^2(x,t) \partial_x \varphi(x,t) \, dx \, dt.$$

Puis,

$$n\int_{\frac{1}{x}}^{2/n} \int_{\mathbb{R}} u(x,t)\varphi(x,t)\psi'(nt) dx dt = n\int_{\frac{1}{x}}^{2/n} \int_{0}^{\sqrt{t}} \frac{x}{2t} (\varphi(x,t) - \varphi(-x,t))\psi'(nt) dx dt.$$

En notant par M un majorant de $\psi' \partial_x \varphi$, on obtient

$$\left| n \int_{\frac{1}{n}}^{2/n} \int_{\mathbb{R}} u(x,t) \varphi(x,t) \psi'(nt) \, dx \, dt \right| \le n M \int_{\frac{1}{n}}^{2/n} \int_{0}^{\sqrt{t}} \frac{x^{2}}{t} dx \, dt \le n M \int_{\frac{1}{n}}^{2/n} \sqrt{t} \, dt \le M \sqrt{2/n}.$$

En passant à limite quand $n \to +\infty$ dans (5.109), on en déduit (5.73).

5. On peut supposer $\eta(0)=0$, cela ne change pas les termes de (5.74). On pose $\psi(s)=\Phi(s)-s\eta(s)$ de sorte que $\psi'(s)=s\eta'(s)-\eta(s)$. La convexité de η donne alors $\psi'(s)\geq 0$ pour $s\geq 0$ et donc $\psi(s)\geq 0$ pour $s\geq 0$.

Pour démontrer (5.74), on peut alors utiliser la proposition 5.17 avec, pour tout $\varepsilon > 0$, $\mathbb{R} \times [\varepsilon, +\infty[$ au lieu de $\mathbb{R} \times \mathbb{R}_+$ ou reprendre la démontration de la question 3 en remplaçant u par $\eta(u)$ et u^2 par $\Phi(u)$.

6. La solution entropique de (5.70)-(5.71) est la fonction identiquement nulle sur $\mathbb{R} \times \mathbb{R}_+$. La fonction u n'est pas la solution entropique de (5.70)-(5.71).

Exercice 5.14 (Effet Landau)

1. La première équation de (5.79) peut s'écrire $\frac{\partial u}{\partial t}(x,y,t) + \frac{\partial yu}{\partial x}(x,y,t) = 0$. La notion de solution faible pour cette équation est donc parfaitement définie.

Etape 1, construction d'une solution

Le problème (5.79) correspond à une équation de transport dans la direction x, la vitesse du transport dépendant de la variable y (que l'on peut voir ici comme un paramètre). Le début du chapitre 5 nous suggère alors la forme de la solution faible. Pour $(x, y, t) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_+$, on pose

$$u(x, y, t) = f(x - yt).$$

La fonction u ainsi définie appartient bien à $L^{\infty}(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+)$. On montre maintenant que u est solution faible de (5.79).

Soit $\varphi \in C_c^1(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R})$. On va montrer que

$$\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \int_{\mathbb{R}} u(x, y, t) (\partial_{t} \varphi(x, y, t) + y \partial_{x} \varphi(x, y, t)) \, dx \, dy \, dt = -\int_{\mathbb{R}} f(x) \varphi(x, y, 0) \, dx \, dy. \quad (5.110)$$

Ceci montrera bien que u est solution faible de (5.79). On considère de terme de gauche de (5.110) en remplaçant u(x,y,t) par f(x-yt) et on utilise dans l'intégrale par rapport à x le changement de variable x-yt=z (pour y et t fixés, on profite aussi ici du théorème de Fubini). On obtient

$$\int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - yt) (\partial_{t} \varphi(x, y, t) + y \partial_{x} \varphi(x, y, t)) \, dx \, dy \, dt$$

$$= \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \int_{\mathbb{R}} f(z) (\partial_{t} \varphi(z + yt, y, t) + y \partial_{x} \varphi(z + yt, y, t)) \, dz \, dy \, dt.$$

(Noter que $\partial_x \varphi$ désigne toujours la dérivée de φ par rapport à sa première variable et $\partial_t \varphi$ désigne toujours la dérivée de φ par rapport à sa troisième variable.)

Pour $z,y\in\mathbb{R}$ et $t\in\mathbb{R}_+$, on pose $\psi(z,y,t)=\varphi(z+yt,y,t)$, de sorte que $\psi_t(z,y,t)=y\partial_x\varphi(z+yt,y,t)+\partial_t\varphi(z+yt,y,t)$. On obtient ainsi

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - yt) (\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t)) dx dy dt = \int_{\mathbb{R}_+} \int_{\mathbb{R}} \int_{\mathbb{R}} f(z) \psi_t(z, y, t) dz dy dt.$$

On peut maintenant intégrer le terme de droite d'abord par rapport à t (grâce au théorème de Fubini), on obtient

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - yt) (\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t)) dx dy dt = -\int_{\mathbb{R}} \int_{\mathbb{R}} f(z) \psi(z, y, 0) dz dy.$$

Ce qui donne

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - yt) (\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t)) dx dy dt = -\int_{\mathbb{R}} \int_{\mathbb{R}} f(z) \varphi(z, y, 0) dz dy.$$

On a bien montré (5.110). La fonction u est donc bien une solution faible de (5.79).

Unicité de la solution faible de (5.79)

Grâce à la linéarité de la première équation de (5.79), il suffit de montrer que si u est solution de (5.110) (pour tout $\varphi \in C^1_c(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R})$) avec f = 0 p.p., alors u = 0 p.p.. On suppose donc que u appartient à $L^\infty(\mathbb{R}^2 \times \mathbb{R}_+)$ et vérifie

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} \int_{\mathbb{R}} u(x, y, t) (\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t)) \, dx \, dy \, dt = 0 \text{ pour tout } \varphi \in C_c^1(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R}).$$
(5.111)

On va montrer que u=0 p.p..

Soit $\psi \in C^1_c(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R})$. Pour $x, y \in \mathbb{R}$ et $t \in \mathbb{R}_+$, on pose

$$\varphi(x, y, t) = -\int_{t}^{+\infty} \psi(x - y(t - s), y, s) \, \mathrm{d}s.$$

On a aussi $\varphi \in C^1_c(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R})$ et on remarque que pour tout $x, y \in \mathbb{R}$ et tout t > 0 on a

$$\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t) = \psi(x, y, t) + y \int_t^{+\infty} \psi_x(x - y(t - s), y, s) \, ds$$
$$-y \int_t^{+\infty} \psi_x(x - y(t - s), y, s) \, ds$$

et donc

$$\partial_t \varphi(x, y, t) + y \partial_x \varphi(x, y, t) = \psi(x, y, t).$$

En prenant cette fonction φ dans (5.111) on obtient

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} \int_{\mathbb{R}} u(x,y,t) \psi(x,y,t) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t = 0 \text{ pour tout } \psi \in C^1_c(\mathbb{R}^2 \times \mathbb{R}_+, \mathbb{R}).$$

On en déduit que u=0 p.p..

N.B. La méthode que nous venons d'utiliser est une méthode classique pour obtenir l'unicité d'un problème par la résolution du problème adjoint (qui est ici $\partial_t \varphi + y \partial_x \varphi = \psi$ avec $\varphi = 0$ comme donnée "finale".)

2. Soit T>0 tel que f(z+T)=f(z) pour tout $z\in {\rm I\!R}$ (la fonction f est donc de période T). Soit $y\in {\rm I\!R}$ et r>T. Il existe $p,q\in \mathbb{Z}$ tel que $(p-1)T< y-r\leq pT< qT\leq y+r< (q+1)T$. On a alors

$$2rF(y,r) = \int_{y-r}^{pT} f(z) \, \mathrm{d}z + \int_{pT}^{qT} f(z) \, \mathrm{d}z + \int_{qT}^{y+r} f(z) \, \mathrm{d}z = \int_{y-r}^{pT} f(z) \, \mathrm{d}z + (q-p)mT + \int_{qT}^{y+r} f(z) \, \mathrm{d}z.$$

Ceci donne

$$F(y,r) = m + \left(\frac{(q-p)T}{2r} - 1\right)m + \frac{1}{2r} \int_{y-r}^{pT} f(z) dz + \frac{1}{2r} \int_{qT}^{y+r} f(z) dz.$$

Comme $0 \le 2r - (q - p)T \le 2T$ et que, avec $M = \max\{|f(z)|, z \in \mathbb{R}\},\$

$$\Big| \int_{y-r}^{pT} f(z) \, dz \Big| \le \int_{y-r}^{pT} |f(z)| \, dz \le MT, \ \Big| \int_{qT}^{y+r} f(z) \, dz \Big| \le \int_{qT}^{y+r} |f(z)| \, dz \le MT,$$

on a donc

$$|F(y,r) - m| \le \frac{(|m| + M)T}{r}.$$

ce qui prouve bien que $\lim_{r\to+\infty} F(y,r)=m$, uniformément par rapport à $y\in\mathbb{R}$.

3. Soit $x \in \mathbb{R}$ et t > 0. En utilisant le changement de variable z = x - yt, c'est-à-dire y = (x - z)/t, on obtient

$$\int_{b-\delta}^{b+\delta} f(x-yt) \, \mathrm{d}y = \int_{x-bt-\delta t}^{x-bt+\delta t} \frac{f(z)}{t} \, \mathrm{d}z = 2\delta F(x-bt,\delta t).$$

Soit maintenant t > 0. On sait que u(x, y, t) = f(x - yt), on a donc

$$\int_{b-\delta}^{b+\delta} \int_{a-\delta}^{a+\delta} u(x,y,t) \, dx \, dy = \int_{b-\delta}^{b+\delta} \int_{a-\delta}^{a+\delta} f(x-yt) \, dx \, dy.$$

Avec le théorème de Fubini, on a donc

$$\int_{b-\delta}^{b+\delta} \int_{a-\delta}^{a+\delta} u(x,y,t) \, \mathrm{d}x \, \mathrm{d}y = \int_{a-\delta}^{a+\delta} \left(\int_{b-\delta}^{b+\delta} f(x-yt) \, \mathrm{d}y \right) \mathrm{d}x = 2\delta \int_{a-\delta}^{a+\delta} F(x-bt,\delta t) \, \mathrm{d}x.$$

La deuxième question donne $\lim_{t\to\infty} F(x-bt,\delta t)=m$, uniformément par rapport à x, on a donc bien

$$\lim_{t \to +\infty} \int_{b-\delta}^{b+\delta} \int_{a-\delta}^{a+\delta} u(x,y,t) \, \mathrm{d}x \, \mathrm{d}y = 4\delta^2 m.$$

4. On remarque d'abord que (avec $M = \max\{|f(z)|, z \in \mathbb{R}\}$)

$$||u(\cdot,\cdot,t)||_{L^{\infty}(\mathbb{R}^2)} \leq M$$
 pour tout $t>0$.

On pose

$$\mathcal{C} = \{1_{|a-\delta,a+\delta[\times]b-\delta,d+\delta[},\ a,b \in \mathbb{R},\ \delta > 0\}.$$

La question précédente montre que pour tout $\varphi \in \mathcal{C}$ on a

$$\lim_{t \to \infty} \int_{\mathbb{R}} \int_{\mathbb{R}} u(x, y, t) \varphi(x, y) \, dx \, dy = m \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi(x, y) \, dx \, dy.$$
 (5.112)

On note maintenant E l'espace vectoriel engendré par C. Par linéarité de l'intégrale, on a alors (5.112) pour tout $\varphi \in E$.

L'espace vectoriel E est dense dans $L^1(\mathbb{R}^2)$ (pour la mesure de Lebesgue). Pour montrer ceci, il suffit, par exemple, d'utiliser la densité de $C_c(\mathbb{R}^2,\mathbb{R})$ dans $L^1(\mathbb{R}^2)$ puis de remarquer que tout élément de $C_c(\mathbb{R}^2,\mathbb{R})$ peut être approché d'aussi près que l'on veut pour la norme de $L^1(\mathbb{R}^2)$ par un élément de E. On en déduit bien que E est dense dans $L^1(\mathbb{R}^2)$. Grâce à cette densité et à la borne $L^\infty(\mathbb{R}^2)$ sur $u(\cdot,\cdot,t)$, on conclut facilement que (5.112) est vrai pour tout $u\in L^1(\mathbb{R}^2)$. Ceci donne bien que $u(\cdot,\cdot,t)\to m$ *-faiblement dans $L^\infty(\mathbb{R}^2)$, quand $t\to +\infty$.

Exercice 5.16 (Exemple de système non strictement hyperbolique)

1. La jacobienne $J_F(U)$ est une matrice diagonale et ses valeurs propres sont $f_1'(u_1) = 2u_1$ et $f_2'(u_2) = 2(u_2 + 1)$, qui sont réelles, donc le système est bien hyperbolique. Ces valeurs propres sont égales pour $u_1 = u_2 + 1$, ce qui montre que le système n'est pas strictement hyperbolique (même si on a $f_1'(u) < f_2'(u)$ pour tout $u \in \mathbb{R}$).

De plus, avec les notations de la définition 5.36, on a $\nabla \lambda_i \cdot \phi_i = 2$ pour i = 1, 2 et donc les champs associés à F sont VNL.

2. Le système est constituée de deux équations scalaires dont le flux non linéaire est strictement convexe. Pour la première, on a $u_{1,g}=-1 < u_{1,d}=0$ et donc la solution est une détente, comprise entre les droites $x=f_1'(u_{1,g})t=-2t$ et $x=f_1'(u_{1,d})t=0$. Pour la deuxième, on a $u_{2,g}=1>u_{2,d}=-2$ (choix 1) ou $u_{2,g}=-1>u_{2,d}=-2$ (choix 2) donc on a un choc, dont la vitesse σ est donnée par la relation de Rankine-Hugoniot :

$$\sigma = \frac{f_2(u_{2,d}) - f_2(u_{2,g})}{u_{2,d} - u_{2,g}} = \frac{1 - 4}{-2 - 1} = 1(choix1)ou\frac{1 - 0}{-2 + 1} = -1(choix2)$$

Pour que le choc soit au milieu de la détente, il me semble qu'il faut donc prendre le choix 2. Yes?

Exercice 5.17 (Equations de Saint-Venant)

- 1. La fonction F est définie (sur D) par $F(U) = \begin{bmatrix} q \\ \frac{q^2}{h} + \frac{g}{2}h^2 \end{bmatrix}$.
- 2. La matrice jacobienne de F au point U est

$$DF(U) = \begin{bmatrix} 0 & 1 \\ -u^2 + gh & 2u \end{bmatrix}.$$

Le polynôme caractéristique de cette matrice est $P_U(\lambda) = \lambda^2 - 2u\lambda + u^2 - gh = (u - \lambda)^2 - gh$. Les valeurs propres de DF(U) sont donc $\lambda_1(U) = u - c$ et $\lambda_2(U) = u + c$. Elles sont réelles et distinctes, et le système est donc strictement hyperbolique. Une base de \mathbb{R}^2 formée de vecteurs propres de cette matrice jacobienne est alors $\{\varphi_1(U), \varphi_2(U)\}$ avec

$$\varphi_1(U) = \begin{bmatrix} 1 \\ u-c \end{bmatrix} \text{ et } \varphi_2(U) = \begin{bmatrix} 1 \\ u+c \end{bmatrix}.$$

3. Soit $U \in D$. Par la question précédente, on a $\lambda_1(U) = u - c = q/h - \sqrt{gh}$ et donc

$$\nabla \lambda_1(U) = \begin{bmatrix} -\frac{q}{h^2} + \frac{g}{2\sqrt{gh}} \\ \frac{1}{h} \end{bmatrix} = \begin{bmatrix} -\frac{u}{h} + \frac{g}{2c} \\ \frac{1}{h} \end{bmatrix},$$

ce qui donne, avec les notations précédentes :

$$\nabla \lambda_1(U) \cdot \varphi_1(U) = -\frac{u}{h} + \frac{g}{2c} + \frac{u-c}{h} = -\frac{g}{2c} \neq 0.$$

Comme $\lambda_2(U) = u + c$, on a

$$\nabla \lambda_2(U) = \begin{bmatrix} -\frac{u}{h} - \frac{g}{2c} \\ \frac{1}{h} \end{bmatrix} \text{ et } \nabla \lambda_2(U) \cdot \varphi_1(U) = -\frac{u}{h} - \frac{g}{2c} + \frac{u+c}{h} = \frac{g}{2c} \neq 0.$$

Les deux champs sont donc VNL.

4. Un 1-invariant de Riemann est une fonction r_1 de D dans \mathbb{R} de classe C^1 telle que $\nabla r_1(U) \cdot \varphi_1(U) = 0$ pour tout U dans D. Si on cherche r_1 sous la forme $r_1(U) = u + \psi(h)$ (parce que ça marche!), la condition sur r_1 devient

$$\begin{bmatrix} -\frac{q}{h^2} + \psi'(h) \\ \frac{1}{h} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ u - c \end{bmatrix} = -\frac{u}{h} + \psi'(h) + \frac{u}{h} - \frac{c}{h} = \psi'(h) - \frac{c}{h} = 0,$$

Une solution consiste à prendre $\psi(h)=2c$, ceci donne bien $\psi'(h)=\frac{g}{c}=\frac{c}{h}$. On choisit donc $r_1(U)=u+2c$.

De manière analogue, un 2-invariant de Riemann est $r_2(U) = u - 2c$.

5. On considère une solution régulière de (5.84)-(5.85). On multiplie (5.84) par gh et (5.85) par u, on obtient

$$\begin{split} \partial_t (\frac{gh^2}{2}) + gh^2 \partial_x u + u \partial_x (\frac{gh^2}{2}) &= 0 \\ h \partial_t (\frac{u^2}{2}) + u^2 \partial_t h + u^2 \partial_x (hu) + hu^2 \partial_x u + u \partial_x p &= 0. \end{split}$$

On additionne ces deux équations. En utilisant (5.84) et $p = gh^2/2$, on obtient

$$\partial_t p + h\partial_t (\frac{u^2}{2}) + hu^2 \partial_x u + 2p\partial_x u + 2u\partial_x p = 0.$$

En utilisant encore (5.84), $h\partial_t(\frac{u^2}{2})=\partial_t(h\frac{u^2}{2})-\frac{u^2}{2}\partial_t h=\partial_t(h\frac{u^2}{2})+\frac{u^2}{2}\partial_x(hu)$ et l'égalité précédente donne

$$\partial_t \eta(U) + \frac{u^2}{2} \partial_x (hu) + hu^2 \partial_x u + \partial_x (2pu) = 0.$$

En posant $\Phi(U) = (\frac{1}{2})hu^3 + 2pu$, l'égalité précédente s'écrit

$$\partial_t \eta(U) + \partial_x \Phi(U) = 0. \tag{5.113}$$

Un autre moyen d'obtenir ce résultat (et nous prendrons cette méthode plus générale dans la question suivante) est de remarquer que

$$\eta(U) = \frac{1}{2}hu^2 + p = \frac{q^2}{2h} + \frac{gh^2}{2},$$

de sorte que

$$\nabla \eta(U) = \begin{bmatrix} -\frac{u^2}{2} + gh \\ u \end{bmatrix},$$

On multiplie alors (5.84) par $\partial_h \eta(U) = -\frac{u^2}{2} + gh$ et (5.85) par $\partial_q \eta(U) = u$ et par des manipulations semblables aux précédentes on obtient aussi (5.113).

Noter que $\partial_h \eta$ et $\partial_q \eta$ désignent les dérivées partielles de la fonction η , c'est-à-dire de la fonction $U \mapsto \eta(U)$ (de D dans $\mathbb R$) et donc que $\partial_h \eta(U)$ et $\partial_q \eta(U)$ sont ces dérivées partielles prises au point U (appartenant à D), alors que $\partial_t \eta(U)$ et $\partial_x \eta(U)$ désignent les dérivées partielles de la fonction $\eta \circ U$, c'est-à-dire de la fonction $(x,t) \mapsto \eta(U(x,t))$ (de $\mathbb R \times \mathbb R^+_+$ dans $\mathbb R$).

Il reste à vérifier que η est une fonction convexe de D dans \mathbb{R} , ce qui est équivalent à montrer que sa matrice hessienne H(U) est positive pour tout $U \in D$, ou encore que $\xi^t H(U) \xi \geq 0$ pour tout $U \in D$ et $\xi \in \mathbb{R}^2$.

$$\text{Comme } \nabla \eta(U) = \begin{bmatrix} -\frac{q^2}{2h^2} + gh \\ \frac{q}{h} \end{bmatrix} \text{, on a } H(U) = \begin{bmatrix} \frac{u^2}{h} + g & -\frac{u}{h} \\ -\frac{u}{h} & \frac{1}{h} \end{bmatrix} \text{, et donc } \text{tr} H(U) = \frac{u^2}{h} + g + \frac{1}{h} > 0$$

et $\det H(U) = \frac{u^2}{h^2} + \frac{g}{h} - \frac{u^2}{h^2} = \frac{g}{h} > 0$. Ceci montre que H(U) est bien positive pour tout $U \in D$.

6. Comme h_{ε} et u_{ε} convergent vers h et u dans $L^1_{\mathrm{loc}}(\mathbb{R} \times \mathbb{R}_+)$, les dérivées $\partial_x^2 h_{\varepsilon}$ et $\partial_x^2 u_{\varepsilon}$ convergent vers $\partial_x^2 h$ et $\partial_x^2 u$ au moins au sens de la convergence dans \mathcal{D}^* et donc $\varepsilon \partial_x^2 h_{\varepsilon}$ et $\varepsilon \partial_x^2 u_{\varepsilon}$ convergent vers 0 au sens de la convergence dans \mathcal{D}^* . Ceci prouve que (h, u) est solution faible de (5.84)-(5.85).

On note $U_{\varepsilon} = \begin{bmatrix} h_{\varepsilon} \\ q_{\varepsilon} \end{bmatrix}$. On remarque tout d'abord que $\eta(U_{\varepsilon})$ et $\Phi(U_{\varepsilon})$ convergent dans $L^1_{\mathrm{loc}}(\mathbb{R} \times \mathbb{R}_+)$, quand $\varepsilon \to 0$, vers $\eta(U)$ et $\Phi(U)$ respectivement.

En reprenant la méthode de la question précédente, c'est-à-dire la multiplication de (5.84) par $\partial_h \eta(U_\varepsilon)$ et (5.85) par $\partial_q \eta(U_\varepsilon)$, on obtient

$$\partial_t \eta(U_\varepsilon) + \partial_x \Phi(U_\varepsilon) + R_\varepsilon = 0, \tag{5.114}$$

avec $R_{\varepsilon} = -\varepsilon \partial_h \eta(U_{\varepsilon}) \partial_x^2 h_{\varepsilon} - \varepsilon \partial_q \eta(U_{\varepsilon}) \partial_x^2 q_{\varepsilon} = S_{\varepsilon} + T_{\varepsilon}$, et

$$S_{\varepsilon} = -\sqrt{\varepsilon} \partial_x (\partial_h \eta(U_{\varepsilon}) \sqrt{\varepsilon} \partial_x h_{\varepsilon}) - \sqrt{\varepsilon} \partial_x (\partial_q \eta(U_{\varepsilon}) \sqrt{\varepsilon} \partial_x q_{\varepsilon}),$$

$$T_{\varepsilon} = \varepsilon \partial_x (\partial_h \eta(U_{\varepsilon})) \partial_x h_{\varepsilon} + \varepsilon \partial_x (\partial_q \eta(U_{\varepsilon})) \partial_x q_{\varepsilon}.$$

D'une part, $S_{\varepsilon} \to 0$ au sens de la convergence dans \mathcal{D}^{\star} quand $\varepsilon \to 0$ car $\partial_{h}\eta(U_{\varepsilon})$) et $\partial_{q}\eta(U_{\varepsilon})$) sont bornées dans $L^{\infty}(\mathbb{R} \times \mathbb{R}_{+})$ et $\sqrt{\varepsilon}\partial_{x}h$ et $\sqrt{\varepsilon}\partial_{x}q$ sont bornées dans $L^{1}_{loc}(\mathbb{R} \times \mathbb{R}_{+})$.

D'autre part $T_{\varepsilon}=(\partial_x U_{\varepsilon})^t H(U_{\varepsilon})\partial_x U_{\varepsilon}$, où $H(U_{\varepsilon})$ désigne la matrice hessienne de η au point U_{ε} . Or, on a montré à la question précédente que cette matrice hessienne est positive, on a donc $T_{\varepsilon}\geq 0$ et donc, en passant à la limite dans (5.114) quand $\varepsilon \to 0$, on obtient qu'au sens de la négativité dans \mathcal{D}^{\star} (definition 1.4, U vérifie,

$$\partial_t \eta(U) + \partial_x \Phi(U) \le 0.$$

7. L'équation (5.85) donne

$$h\partial_t u + u\partial_t h + u\partial_x (hu) + hu\partial_x u + gh\partial_x h = 0.$$

En utilisant (5.84) et en divisant par h (on rappelle que h > 0),

$$\partial_t u + u \partial_x u + g \partial_x h = 0.$$

Comme $\partial_x(2c) = \frac{c}{h}\partial_x h$ on a $g\partial_x h = \frac{gh}{c}\partial_x(2c) = c\partial_x(2c)$ et donc

$$\partial_t u + u \partial_x u + c \partial_x (2c) = 0.$$

L'équation (5.84) donne

$$q\partial_t h + q(\partial_x h)u + qh\partial_x u = 0.$$

On a déjà vu que $g\partial_x h = c\partial_x(2c)$. De même $g\partial_t h = c\partial_t(2c)$. On en déduit

$$c\partial_t(2c) + cu\partial_x(2c) + c^2\partial_x u = 0.$$

Ce qui donne, en divisant par c,

$$\partial_t(2c) + u\partial_x(2c) + c\partial_x u = 0,$$

et donc (5.87).

8. On cherche une solution sous la forme d'une 1-détente et d'une 2-détente séparées par un état intermédiaire noté (h_{\star}, u_{\star}) . On note U_q , U_d et U_{\star} les états constants de cette solution.

On sait qu'un *i*-invariant de Riemann est constant dans une *i*-détente. On a donc $u_g + 2c_g = u_\star + 2c_\star$ et $u_d - 2c_d = u_\star - 2c_\star$. Ceci permet de calculer h_\star et c_\star ,

$$u_{\star} = \frac{u_g + u_d}{2} + c_g - c_d,$$

$$c_{\star} = \frac{u_g - u_d}{4} + \frac{c_g + c_d}{2}.$$

On a bien $c_{\star} > 0$ car $u_d - u_g < 2(c_g + c_d)$ (qui est justement la condition de non apparition du vide).

Pour construire la solution, on sait que la 1-détente correspond à la zone $\{\lambda_1(U_g)t \leq x \leq \lambda_1(U_\star)t\}$ et que la 2-détente correspond à la zone $\{\lambda_2(U_\star)t \leq x \leq \lambda_2(U_d)\}$. La construction de cette solution formée de deux détentes est donc possible si et seulement si

$$\lambda_1(U_q) = u_q - c_q \le u_\star - c_\star = \lambda_1(U_\star)$$
 (5.115)

$$\lambda_2(U_{\star}) = u_{\star} + c_{\star} \le u_d + c_d = \lambda_2(U_d)$$
 (5.116)

La condition (5.115) est équivalente à $u_g - u_d \le 2(c_g - c_d)$ et la condition (5.116) est équivalente à $u_g - u_d \le 2(c_d - c_g)$. Ces deux conditions sont satisfaites grâce à la condition $2|c_g - c_d| \le u_d - u_g$. La solution du problème de Riemann (5.86), (5.88)-(5.89) est donc bien formée de deux détentes. On la construit en distinguant cinq zones D_i , $i = 1, \ldots, 5$; avec

$$\begin{split} D_1 &= \{x \leq (u_g - c_g)t\}, \\ D_2 &= \{(u_g - c_g)t < x < (u_\star - c_\star)t\}, \\ D_3 &= \{(u_\star - c_\star)t < x < (u_\star + c_\star)t\}, \\ D_4 &= \{(u_\star + c_\star)t < x < (u_d + c_d)t\}, \\ D_5 &= \{(u_d + c_d)t < x\}. \end{split}$$

- Sur D_1 , on a $U = U_q$.
- Sur D_3 , on a $U = U_{\star}$.
- Sur D_5 , on a $U = U_d$.
- Sur D_2 , on a affaire à une 1-détente. On cherche la solution sous la forme $U(x,t)=V(\frac{x}{t})$. Donc sur la droite $x=\alpha t$ avec $(u_g-c_g)<\alpha<(u_\star-c_\star)$, la solution U(x,t) est donnée par $\alpha=\frac{x}{t}=\lambda_1(V(\alpha))=u-c$. En écrivant de plus l'invariance du 1-invariant de Riemann, on obtient la solution en résolvant le système

$$u - c = \alpha,$$

$$u + 2c = u_q + 2c_q,$$

- ce qui donne $3u = 2\alpha + u_g + 2c_g$, $3c = u_g + 2c_g \alpha$.
- Enfin sur D_4 , on a affaire à une 2-détente. Donc pour $x=\alpha t$ avec $(u_\star+c_\star)<\alpha<(u_d+c_d)$, la solution U(x,t) est donnée par $\alpha=\frac{x}{t}=\lambda_2(V(\alpha))$, et par invariance du 2-invariant de Riemann, on obtient donc la solution en résolvant le système

$$u + c = \alpha,$$

$$u - 2c = u_d - 2c_d,$$

- ce qui donne $3u = 2\alpha + u_d 2c_d$, $3c = -u_d + 2c_d + \alpha$.
- 9. (Détente-choc, choc-détente et choc-choc) Dans cette question on suppose que $2|c_g c_d| > u_d u_g$. Si U est solution faible on a donc $h_g \neq h_d$ (en effet, si $h_g = h_d$, la relation de Rankine-Hugoniot sur la droite $x = \sigma t$ donne, avec les notations du cours, $\sigma[h] = [hu]$ et donc $u_g = u_d$ en contradiction avec $2|c_g c_d| > u_d u_g$).
 - (a) (Calcul d'un choc)
 - i. La fonction U est solution faible si et seulement si les conditions de Rankine-Hugoniot sont satisfaites sur la droite $x=\sigma t$, c'est-à-dire, avec les notations du cours, $\sigma[h]=[hu]$ et $\sigma[hu]=[hu^2+p]$, ce qui est equivalent à $[hu]^2=[h][hu^2+p]$ et $\sigma[h]=[hu]$.

Comme

$$[hu]^2 = (h_d u_d - h_g u_g)^2 = h_d^2 u_d^2 + h_g^2 u_g^2 - 2h_g h_d u_g u_d \text{ et}$$

$$[h][hu^2 + p] = h_d^2 u_d^2 + h_g^2 u_g^2 - h_d h_g (u_g^2 + u_d^2) + [h][p],$$

la fonction U est solution faible si et seulement si $h_d h_g (u_g - u_d)^2 = [h][p]$ et $\sigma[h] = [hu]$. Ceci correspond bien à $(u_g - u_d)^2 = S$ et $\sigma[h] = [hu]$.

On montre maintenant que U est un 1-choc si et seulement si $u_d = u_q - S$ et $h_q < h_d$.

Condition nécessaire. On suppose que U est un 1-choc. La condition de Lax donne alors, en utilisant $\sigma[h] = [hu]$,

$$u_g - c_g > \sigma = u_g + \frac{h_d(u_g - u_d)}{h_g - h_d} = u_d + \frac{h_g(u_g - u_d)}{h_g - h_d} > u_d - c_d.$$
 (5.117)

La première inégalité donne que u_g-u_d et h_g-h_d sont non nuls et de signe contraire (car $c_g>0$). Comme $u_g-c_g>u_d-c_d$, on a aussi $u_g-u_d>c_g-c_d$. Comme c_g-c_d a le même signe que h_g-h_d , et donc le signe contraire de celui de u_g-u_d , on en déduit $u_g-u_d>0>h_g-h_d$. Ceci donne bien $u_d=u_g-S$ et $h_g< h_d$.

Condition suffisante. On suppose maintenant que $u_d = u_g - S$ et $h_g < h_d$ et on veut montrer que U est un 1-choc, c'est-à-dire que (5.117) est vérifiée. La première inégalité est vraie si

$$gh_g < \frac{h_d^2(u_g - u_d)^2}{(h_g - h_d)^2} = \frac{h_d^2}{(h_g - h_d)^2}S^2 = \frac{h_d^2}{(h_g - h_d)^2} \frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d} = g\frac{h_d}{h_g} \frac{h_g + h_d}{2}.$$

Ceci est vrai car $h_g < h_d$.

La deuxième inégalité est vraie si

$$gh_d > \frac{h_g^2(u_g - u_d)^2}{(h_g - h_d)^2} = \frac{h_g^2}{(h_g - h_d)^2} S^2 = \frac{h_g^2}{(h_g - h_d)^2} \frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d} = g\frac{h_g}{h_d} \frac{h_g + h_d}{2}.$$

Ceci est vrai car $h_d > h_q$.

De manière analogue on montre que U est un 2-choc si et seulement si $u_d = u_g - S$ et $h_g > h_d$. La condition de Lax (qui est (5.117) pour les 1-choc) devient

$$u_g + c_g > \sigma = u_g + \frac{h_d(u_g - u_d)}{h_g - h_d} = u_d + \frac{h_g(u_g - u_d)}{h_g - h_d} > u_d + c_d.$$
 (5.118)

La deuxième inégalité donne que u_g-u_d et h_g-h_d sont non nuls et de même signe (car $c_d>0$). Comme $u_g+c_g>u_d+c_d$, on a aussi $u_g-u_d>c_d-c_g$. Comme c_d-c_g a le même signe que h_d-h_g et donc le signe contraire de celui de u_g-u_d , on en déduit $u_g-u_d>0>h_d-h_g$. Ceci donne bien $u_d=u_g-S$ et $h_g>h_d$. Ceci montre que la condition $u_d=u_g-S$ et $h_g>h_d$ est nécessaire pour avoir un 2-choc.

On montre maintenant que cette condition est suffisante. On suppose donc que $u_d = u_g - S$ et $h_q > h_d$ et on veut montrer (5.118).

Montrer la première inégalité est équivalent à montrer que

$$gh_g > \frac{h_d^2(u_g - u_d)^2}{(h_g - h_d)^2} = \frac{h_d^2}{(h_g - h_d)^2} S^2 = \frac{h_d^2}{(h_g - h_d)^2} \frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d} = g\frac{h_d}{h_g} \frac{h_g + h_d}{2}.$$

Ceci est vrai car $h_q > h_d$.

Montrer la deuxième inégalité est équivalent à montrer que

$$gh_d < \frac{h_g^2(u_g - u_d)^2}{(h_q - h_d)^2} = \frac{h_g^2}{(h_q - h_d)^2} S^2 = \frac{h_g^2}{(h_q - h_d)^2} \frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_q h_d} = g\frac{h_g}{h_d} \frac{h_g + h_d}{2}.$$

Ceci est vrai car $h_d < h_q$.

ii. La fonction $x\mapsto (1-1/x)(x^2-1)$ est strictement croissante sur $[1,+\infty[$ (comme produit de fonctions strictement croissantes positives); la fonction $x\mapsto \sqrt{x}$ étant strictement croissante sur R_+ , on en déduit que φ est strictement croissante.

Soient $u_g \in \mathbb{R}$, h_g , $h_d \in \mathbb{R}_+^*$ avec $h_d > h_g$. Pour que U soit un 1-choc, il faut et il suffit que $u_d = u_g - S$ (et $\sigma = [hu]/[h]$), c'est-à-dire

$$u_d = u_g - \sqrt{\frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d}} = u_g - \sqrt{\frac{gh_g}{2}}\varphi(\frac{h_d}{h_g}).$$

Bien sûr le raisonnement est complètement semblable pour un 2-choc. Soient $u_g \in \mathbb{R}$, h_g , $h_d \in \mathbb{R}_+^*$ avec $h_d < h_g$. Pour que U soit un 2-choc, il faut et il suffit que $u_d = u_g - S$ (et $\sigma = [hu]/[h]$), c'est-à-dire

$$u_d = u_g - \sqrt{\frac{g(h_g - h_d)(h_g^2 - h_d^2)}{2h_g h_d}} = u_g - \sqrt{\frac{gh_d}{2}}\varphi(\frac{h_g}{h_d}).$$

(b) (Détente-choc) On note U la solution recherchée. Dans la zone $D_1 = \{x \leq (u_g - c_g)t\}$, on a $U = U_g$. La zone $D_2 = \{(u_g - c_g)t < x < (u_\star - c_\star)t\}$ correspond à la 1-détente, la solution peut être calculée comme cela a été fait dans la question 8. L'invariance des 1-invariants de Riemann dans cette zone donne $u_g + 2c_g = u_\star + 2c_\star$. Dans la zone $D_3 = \{(u_\star - c_\star)t \leq x < \sigma t\}$, la solution est $U = U_\star$. Dans la zone $D_4 = \{x > \sigma t\}$, la solution est $U = U_d$ et la question 9a montre que la condition nécessaire et suffisante pour qu'il s'agisse bien d'un 2-choc est que $h_\star > h_d$, $u_d = u_\star - \sqrt{\frac{gh_d}{2}}\varphi(\frac{h_\star}{h_d})$ et $\sigma = (h_d u_d - h_\star u_\star)/(h_d - h_\star)$.

En résumé, la construction d'une solution formée d'une 1-détente et d'un 2-choc reliés par un état intermédiaire (h_{\star}, u_{\star}) , est possible si et seulement si

$$u_q - c_q < u_\star - c_\star, \tag{5.119}$$

$$u_q + 2c_q = u_{\star} + 2c_{\star},\tag{5.120}$$

$$h_{\star} > h_d, \tag{5.121}$$

$$u_{\star} = u_d + \sqrt{\frac{gh_d}{2}}\varphi(\frac{h_{\star}}{h_d}),\tag{5.122}$$

$$u_{\star} - c_{\star} < \sigma = \frac{h_d u_d - h_{\star} u_{\star}}{h_d - h_{\star}}.$$
(5.123)

Pour $h \in [h_d, h_g]$, on pose $F(h) = u_d + \sqrt{\frac{gh_d}{2}} \varphi(\frac{h}{h_d}) + 2\sqrt{gh}$. La fonction F est continue, strictement croissante, $F(h_d) = u_d + 2c_d$ et $F(h_g) = u_d + S + 2c_g > u_g + 2c_g$. Comme $u_g + 2c_g > u_d + 2c_d$ (car $2(c_g - c_d) = 2|c_g - c_d| > u_d - u_g$), il existe donc un (unique) $h_\star \in]h_d, h_g[$ tel que $F(h_\star) = u_g + 2c_g$. On pose alors $u_\star = u_d + \sqrt{\frac{gh_d}{2}} \varphi(\frac{h_\star}{h_d})$ et les équations (5.120), (5.121) et (5.122) sont bien vérifiées. Compte tenu de (5.120), l'inégalité (5.119) est équivalente à $c_\star < c_g$, ce qui est bien vrai car $h_\star < h_g$.

Il reste à montrer (5.123). Comme

$$\sigma = \frac{h_{\star}u_{\star} - h_d u_d}{h_{\star} - h_d} = u_{\star} + \frac{h_d}{h_{\star} - h_d} (u_{\star} - u_d),$$

la condition (5.123) est vérifiée car $c_{\star} > 0$, $h_{\star} > h_d$ et $u_{\star} > u_d$ (par (5.122)).

(c) (Choc-détente) Le raisonnement est ici très voisin du précédent. On note U la solution recherchée et (h_{\star}, u_{\star}) l'état intermédiaire.

Dans la zone $D_1=\{x\leq\sigma t\}$, on a $U=U_g$ et la question 9a montre que la condition nécessaire et suivante pour qu'il s'agisse bien d'un 1-choc est que $h_g< h_\star$, $u_\star=u_g-\sqrt{\frac{gh_g}{2}}\varphi(\frac{h_\star}{h_g})$ et $\sigma=(h_gu_g-h_\star u_\star)/(h_g-h_\star)$. Dans la zone $D_2=\{\sigma t< x<(u_\star+c_\star)t\}$, la solution est $U=U_\star$. La zone $D_3=\{(u_\star+c_\star)t< x<(u_d+c_d)t\}$ correspond à la 2-détente, la solution peut être calculée comme cela été fait dans la question 8 (zone D_4 de la question 8). L'invariance des 2-invariants de Riemann dans cette zone donne $u_d-2c_d=u_\star-2c_\star$. Dans la zone $D_4=\{(u_d+c_d)t\leq x\}$, la solution est $U=U_d$.

En résumé, la construction d'une solution formée d'une 1-choc et d'un 2-détente reliés par un état intermédiaire noté (h_{\star}, u_{\star}) est possible si et seulement si

$$h_{\star} > h_g, \tag{5.124}$$

$$u_{\star} = u_g - \sqrt{\frac{gh_g}{2}}\varphi(\frac{h_{\star}}{h_g}),\tag{5.125}$$

$$\sigma = \frac{h_g u_g - h_\star u_\star}{h_g - h_\star} < u_\star + c_\star, \tag{5.126}$$

$$u_{\star} + c_{\star} < u_d + c_d, \tag{5.127}$$

$$u_d - 2c_d = u_\star - 2c_\star, (5.128)$$

Pour $h \in [h_g, h_d]$, on pose $F(h) = u_g - \sqrt{\frac{gh_g}{2}} \varphi(\frac{h}{h_g}) - 2\sqrt{gh}$. La fonction F est continue, strictement décroissante, $F(h_g) = u_g - 2c_g$ et $F(h_d) = u_g - S - 2c_d < u_d - 2c_d$. Comme $u_d - 2c_d < u_g - 2c_g$ (car $2(c_d - c_g) = 2|c_g - c_d| > u_d - u_g$), il existe un (unique) $h_\star \in]h_g, h_d[$ tel que $F(h_\star) = u_d - 2c_d$. On pose alors $u_\star = u_g - \sqrt{\frac{gh_g}{2}} \varphi(\frac{h_\star}{h_g})$ et les équations (5.128), (5.124) et (5.125) sont bien vérifiées. Compte tenu de (5.128), l'inégalité (5.127) est équivalente à $c_\star < c_d$, ce qui est bien vrai car $h_\star < h_d$. Il reste à montrer (5.126). Comme

$$\sigma = \frac{h_{\star}u_{\star} - h_g u_g}{h_{\star} - h_g} = u_{\star} + \frac{h_g}{h_{\star} - h_g} (u_{\star} - u_g),$$

la condition (5.126) est vérifiée car $c_{\star} > 0$, $h_{\star} > h_q$ et $u_{\star} < u_q$ (par (5.125)).

(d) (Choc-choc) Pour que la solution U soit formée de deux chocs séparés par un état intermédiaire noté (h_{\star}, u_{\star}) , il faut et il suffit, d'après la question 9a, d'avoir les conditions suivantes

$$u_{\star} = u_g - \sqrt{\frac{gh_g}{2}} \varphi(\frac{h_{\star}}{h_g}), h_g < h_{\star}, \tag{5.129}$$

$$u_{\star} = u_d + \sqrt{\frac{gh_d}{2}}\varphi(\frac{h_{\star}}{h_d}), h_d < h_{\star}, \tag{5.130}$$

$$\frac{h_g u_g - h_\star u_\star}{h_g - h_\star} < \frac{h_d u_d - h_\star u_\star}{h_d - h_\star}.$$
(5.131)

La condition (5.131) indique que la vitesse du 1-choc est inférieure à vitesse du 2-choc.

On note $h_m = \min(h_d, h_g)$. Pour $h \ge h_m$, on pose $G(h) = \sqrt{\frac{gh_d}{2}} \varphi(\frac{h}{h_d}) + \sqrt{\frac{gh_g}{2}} \varphi(\frac{h}{h_g})$. Les conditions (5.129)-(5.130) donnent

$$u_g - u_d = G(h_\star).$$

La fonction G est continue et strictement croissante sur l'intervalle $[h_m, +\infty[$. Comme $G(h_m) = S$, $u_g - u_d > S$ et que $\lim_{h \to \infty} G(h) = +\infty$, il existe un (unique) $h_\star \in]h_m, +\infty[$ tel que $G(h_\star) = u_g - u_d$. On définit alors u_\star avec les conditions (5.129)-(5.130) (qui sont identiques avec ce choix de h_\star). Il reste à vérifier (5.131). Ceci découle de $h_\star > \max(h_g, h_d), u_g - u_\star > 0$ et $u_d - u_\star < 0$ car

$$\frac{h_g u_g - h_{\star} u_{\star}}{h_g - h_{\star}} = u_{\star} + h_g \frac{u_g - u_{\star}}{h_g - h_{\star}} < u_{\star} + h_d \frac{u_d - u_{\star}}{h_d - h_{\star}} = \frac{h_d u_d - h_{\star} u_{\star}}{h_d - h_{\star}}.$$

NB. Si $u_g - u_d = S$, on trouve une solution de (5.86), (5.88)-(5.89) contenant seulement un 1-choc dans le cas $h_g < h_d$ et contenant seulement un 2-choc dans le cas $h_g > h_d$.

10. (Problème de Riemann linéarisé) Les valeurs propres de la matrice $B(\bar{V})$ sont $\lambda_1 = \bar{u} - \bar{c}$ et $\lambda_2 = \bar{u} + \bar{c}$. Une base de \mathbb{R}^2 de vecteurs propres associés est $\varphi_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\varphi_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. La décomposition du vecteur $V = \begin{bmatrix} u \\ 2c \end{bmatrix}$ dans la base $\{\varphi_1, \varphi_2\}$ est

$$V = \frac{u - 2c}{2}\varphi_1 + \frac{u + 2c}{2}\varphi_2;$$

La solution de ce nouveau problème de Riemann est donc $(u,c) = (u_g,c_g)$ pour $x < (\bar{u} - \bar{c})t$, $(u,c) = (u_d,c_d)$ pour $x > (\bar{u} + \bar{c})t$ et $(u,c) = (u_\star,c_\star)$ pour $(\bar{u} - \bar{c})t < x < (\bar{u} + \bar{c})t$ avec

$$u_{\star} + 2c_{\star} = u_g + 2c_g,$$

 $u_{\star} - 2c_{\star} = u_d - 2c_d,$

c'est-à-dire $u_{\star} = \frac{u_g + u_d}{2} + (c_g - c_d), c_{\star} = \frac{u_g - u_d}{4} + \frac{c_g + c_d}{2}.$

Exercice 5.18 (Entropie pour les équations de Saint-Venant avec gradient de fond)

1. (Entropie)

Comme $\eta(U) = \frac{1}{2}hu^2 + p + ghz = \frac{q^2}{2h} + g\frac{h^2}{2} + ghz$, on a

$$\nabla \eta(U) = \begin{bmatrix} -\frac{u^2}{2} + gh + gz \\ u \end{bmatrix}.$$

On multiplie (5.91) par $-\frac{u^2}{2}+gh+gz$ et (5.92) par u. On obtient

$$-\left(\frac{u^2}{2}\right)\partial_t h + \partial_t\left(\frac{gh^2}{2}\right) + gz\partial_t h - \left(\frac{u^3}{2}\right)\partial_x h - h\frac{u^2}{2}\partial_x u + gh^2\partial_x u + u\partial_x\left(\frac{gh^2}{2}\right) + gz\partial_x(hu) = 0$$

et

$$h\partial_t(\frac{u^2}{2}) + u^2\partial_t h + u^3\partial_x h + u^2h\partial_x u + hu^2\partial_x u + u\partial_x(\frac{gh^2}{2}) + ghuz' = 0.$$

En additionnant ces deux équations, on obtient

$$\partial_t \eta(U) + \partial_x \Phi(U) = 0,$$

avec
$$\Phi(U)=\frac{1}{2}hu^3+guh^2+ghuz=u(\frac{1}{2}hu^2+2p+ghz).$$

La démonstration du fait que η est une fonction convexe de D dans $\mathbb R$ est identique à celle de l'exercice 5.17, question 5, car la fonction η définie ici est la même que celle de l'exercice 5.17 au terme ghz près, qui, étant linéaire, est lui-même convexe.

2. Les termes de diffusion ajoutés sont les mêmes que ceux de la question 6 de l'exercice 5.17. Cette question se fait donc de manière identique à la question 6 de l'exercice 5.17.

Exercice 5.19 (Solutions stationnaires régulières pour les équations de Saint-Venant)

1. Soit (h, u) un couple de fonctions de classe C^1 de \mathbb{R} dans $\mathbb{R}_+^{\star} \times \mathbb{R}$. Le couple (h, u) est une solution stationnaire régulière si et seulement si q est une fonction constante et

$$u(x)g'(x) + h(x)u(x)u'(x) + gh(x)h'(x) + gh(x)z'(x) = 0$$
, pour tout $x \in \mathbb{R}$.

Comme q est une fonction constante et h(x)>0 pour tout x, cette dernière équation est équivalente à $\psi'(x)=0$ pour tout x, c'est-à-dire à ψ constante.

2. Soit (h, u) une solution stationnaire régulière avec $\alpha = 0$. On a donc u(x) = 0 pour tout x (car h(x) > 0) et donc $gh(x) = \beta - gz(x)$ pour tout x. Ceci n'est possible que si $\beta > gz_m$ et la solution stationnaire correspondante est alors donnée par u(x) = 0 et $h(x) = \beta/g - z(x)$ pour tout x.

N.B. Si on autorise h à prendre la valeur 0 et à être éventuellement une fonction non régulière, on peut construire, dans le cas ou z est une fonction non constante, une infinité d'autres solutions stationnaires avec u=0.

3. Soit (h,u) une solution stationnaire régulière associée au couple (α,β) . On a donc $u(x)=\alpha/h(x)$ pour tout x (on rappelle que h(x)>0). Comme $\psi(x)=\beta$ pour tout x, on a donc $\alpha^2/(2h^2)+gh+gz=\beta$, c'est-à-dire

$$gh^{3}(x) + h^{2}(x)(gz(x) - \beta) + \alpha^{2}/2 = 0$$
, pour tout $x \in \mathbb{R}$. (5.132)

Comme h(x)>0, l'équation (5.132) est impossible si $\beta\leq gz(x)$. Une première condition nécessaire (pour avoir une solution stationnaire régulière) est donc $\beta>gz_m$ (ce qui donne $\beta>gz(x)$ pour tout x). Pour $ga<\beta$, on définit le polynôme P_a par $P_a(y)=gy^3+y^2(ga-\beta)+\alpha^2/2$ de sorte que (5.132) sécrit $P_{z(x)}(h(x))=0$.

Comme $P_a'(y) = 3gy^2 + 2y(ga - \beta)$, le polynôme P_a a un maximum local (strictement positif) en 0 et un minimum local au point y_a donné par $y_a = (2/(3g))(\beta - ga)$. La valeur de ce minimum local est

$$P_a(y_a) = g(\frac{2}{3q})^3(\beta - ga)^3 - (\frac{2}{3q})^2(\beta - ga)^3 + \alpha^2/2 = -(\frac{4}{27q^2})(\beta - ga)^3 + \alpha^2/2.$$

On a donc $P_a(y_a) > 0$ si $0 < (\beta - ga) < (3/2)(\alpha g)^{2/3}$ et $P_a(y_a) < 0$ si $(\beta - ga) > (3/2)(\alpha g)^{2/3}$. Ceci explique l'introduction de $\beta_m = gz_m + (3/2)(\alpha g)^{2/3}$.

(a) On suppose $\beta < \beta_m$. Dans ce cas, il existe des points x de \mathbb{R} pour lesquels $\beta - gz(x) < (3/2)(\alpha g)^{2/3}$. Pour tous ces points, $P_{z(x)}(y) > 0$ pour y > 0. On ne peut donc pas avoir $P_{z(x)}(h(x)) = 0$. Ceci prouve qu'il n'y a pas de solution stationnaire régulière associée au couple (α, β) .

(b) On suppose $\beta > \beta_m$. Dans ce cas, pour tout $a \le z_m$, l'équation $P_a(y) = 0$ a deux solutions strictement positives notées $\varphi_1(a)$ et $\varphi_2(a)$ avec $\varphi_1(a) < y_a = (2/(3g))(\beta - ga) < \varphi_2(a)$. Pour tout $x \in \mathbb{R}$, on a $h(x) \in \{\varphi_1(z(x)), \varphi_2(z(x))\}$. Comme h est continue, on doit donc avoir $h(x) = \varphi_1(z(x))$ pour tout $x \in \mathbb{R}$ ou $h(x) = \varphi_2(z(x))$ pour tout $x \in \mathbb{R}$.

Ceci suggère deux solutions stationnaires (h_1,u_1) et (h_2,u_2) avec, pour i=1,2, $h_i(x)=\varphi_i(z(x))$ et $u_i(x)=\alpha/h_i(x)$. Pour montrer que ces deux solutions sont bien des solutions stationnaires régulières, il reste à vérifier que h_1 et h_2 sont des fonctions de classe C^1 . Ceci est une conséquence du fait que φ_1 et φ_2 sont des fonctions de classe C^1 au voisinage du point a pour a tel que $(\beta-ga)>(3/2)(\alpha g)^{2/3}$. En effet, on pose $F(a,y)=P_a(y)$ et on remarque que $\partial_y F(a,y)=3gy^2+2y(ga-\beta)\neq 0$ pour $y=\varphi_i(a)$ (i=1 ou 2, $(\beta-ga)>(3/2)(\alpha g)^{2/3}$. Le théorème des fonctions implicites appliqué à l'équation F(a,y)=0 au voisinage des points $(a,\varphi_i(a))$ donne alors le caractère C^1 des fonctions φ_i . Comme on a supposé que z était de classe C^1 , on en déduit bien que les fonctions h_i sont de classe C^1 (et donc les fonctions u_i le sont aussi).

Enfin, comme on a raisonné par condition nécessaire, il y a bien seulement deux solutions stationnaires régulières. La figure 5.9 donne un exemple de solutions stationnaires régulières.

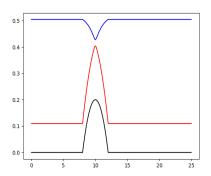


FIGURE 5.9 – Solutions stationnaires pour $\beta = \beta_m + 0.001$ et $\alpha = 0.1$. Solution surcritique (u > c) en rouge et souscritique (u < c) en bleu. Le fond est en noir

- 4. Comme dans la question 3 et avec les mêmes notations, pour tout $a < z_m$, l'équation $P_a(y)$ a deux solutions strictement positives notées $\varphi_1(a)$ et $\varphi_2(a)$ avec $\varphi_1(a) < y_a = (2/(3g))(\beta ga) < \varphi_2(a)$. Mais pour $a = z_m$, on a $\varphi_1(a) = y_a = (2/(3g))(\beta ga) = \varphi_2(a)$. Les deux solutions données dans la question 3 semblent exister encore ici et sont d'ailleurs confondues si z est une fonction constante. la seule question restante est sur la régularité des fonctions h_i .
 - (a) Si z est une fonction constante (donc $z=z_m$), il y a une solution unique qui est $h(x)=y_{z_m}=(2/(3g))(\beta_m-gz_m)$ pour tout x.
 - (b) Si $z(x) \neq z_m$ pour tout x, il y a exactement deux solutions stationnaires régulières associées au couple (α, β) . Ce sont celles calculées pour le cas $\beta > \beta_m$ (et la preuve est identique).

Si z est une fonction non constante et qu'il existe x tel que $z(x)=z_m$ (et toujours $\beta=\beta_m$) la situation est un peu plus complexe. Le problème est dû ici au fait que les fonctions φ_i ne sont pas dérivables au point z_m . Plus précisément $\lim_{z\to z_m, z< z_m} |\varphi_i'(z)| = +\infty$. Toutefois, si le maximum de z est atteint en un point unique noté x_m et que $z''(x_m) < 0$, on peut montrer qu'il y a (exactement) deux solutions stationnaires

régulières associées au couple (α, β) , obtenues en prenant i différent selon que $x < x_m$ et $x > x_m$. Ce cas n'est pas détaillé ici.

5. La première partie de cette question a été résolue à la question 3b. Avec les notations de la question 3b, on a bien, pour i=1,2, $h_i(x)=\varphi_i(z(x))$ pour tout $x\in\mathbb{R}$ et les fonctions φ_i sont régulières. Enfin, on a bien $h_1< h_2$.

Pour la seconde partie de la question on remarque que $h_i(x) + z(x) = \psi_i(z(x))$ avec $\psi_i(a) = \varphi_i(a) + a$ (noter que $\psi_i(a)$ est définie, comme $\varphi_i(a)$, pour tout a tel que $ga < \beta - (3/2)(\alpha g)^{2/3}$).

Comme $h_i'(x) + z'(x) = \psi_i'(z(x))z'(x)$, la seconde partie de la question est une conséquence du fait que $\psi_2'(a) < 0$ et $\psi_1'(a) > 0$ pour tout $a \le z_m$. Pour montrer ce fait, soit $a \le z_m$. On a $ga < \beta - (3/2)(\alpha g)^{2/3}$ } et

$$g\varphi_i^3(a) + \varphi_i^2(a)(ga - \beta) + \alpha^2/2 = 0.$$

Cette première égalité donne en particulier $g\varphi_i(a) + (ga - \beta) < 0$. D'autre part, en dérivant cette équation par rapport à a, on obtient

$$\varphi_i'(a)\varphi_i(a)(3g\varphi_i(a) + 2(ga - \beta)) = -g\varphi_i^2(a). \tag{5.133}$$

Pour i=2, on utilise $g\varphi_2(a)+ga-\beta<0$ et $y_a=(2/(3g))(\beta-ga)< g\varphi_2(a)$, cela donne $0<(3g\varphi_2(a)+2(ga-\beta))< g\varphi_2(a)$. On en déduit, avec (5.133), $\varphi_2'(a)<-1$ et donc $\psi_2'(a)<0$.

Pour i = 1, on utilise $y_a = (2/(3g))(\beta - ga) > \varphi_1(a)$, cela donne $(3g\varphi_1(a) + 2(ga - \beta)) < 0$. On en déduit, avec (5.133), $\varphi_1'(a) > 0$ et donc $\psi_1'(a) > 1 > 0$.

6. On reprend les notations des corrigés des questions précédentes. Pour i=1 ou $2, u_i^2=\alpha^2/h_i^2$, ce qui donne avec (5.132)

$$2gh_i(x) + 2(gz(x) - \beta) + u_i^2(x) = 0$$
, pour tout $x \in \mathbb{R}$,

et donc

$$3gh_i(x) + 2(gz(x) - \beta) = gh_i(x) - u_i^2(x), \text{ pour tout } x \in \mathbb{R}.$$
 (5.134)

On rappelle que le choix de φ_1 et φ_2 est tel que $\varphi_1(a) < (2/(3g))(\beta - ga) < \varphi_2(a)$ pour tout $a \le z_m$. Pour i=2, ceci donne, avec $a=z(x), u_2^2(x) < gh_2(x)$ et donc $0 < u_2(x) < \sqrt{gh_2(x)}$ pour tout $x \in \mathbb{R}$. L'écoulement est ici subsonique (on rappelle que \sqrt{gh} est, pour ce système, la "vitesse du son").

Pour i=1, ceci donne, avec a=z(x), $u_1^2(x)>gh_1(x)$ et donc $u_1(x)>\sqrt{gh_1(x)}$ pour tout $x\in\mathbb{R}$. L'écoulement est ici supersonique.

Corrigé de l'exercice 5.20 (Equations de Saint-Venant, entropie au sens de Lax)

1. La fonction U est solution faible si et seulement les conditions de Rankine-Hugoniot sont satisfaites sur la droite $x=\sigma t$, c'est-à-dire, avec les notations du cours, $\sigma[h]=[hu]$ et $\sigma[hu]=[hu^2+p]$. On remarque tout d'abord que $h_d\neq h_g$, sinon $\sigma[h]=[hu]$ donne $u_g=u_d$ en contradiction avec le fait que U est discontinue. On a alors aussi $u_g\neq u_d$ car $u_g=u_d$ donne $\sigma=u_g$ et $\sigma[hu]=[hu^2+p]$ donne alors [p]=0 et donc $h_g=h_d$, en contradiction avec le fait que U est discontinue.

On suppose, par simple souci de lisibilité, que g=1 et on pose $v_g=\bar{v}, v_d=v$ pour v=h, u et p $(p=h^2/2)$. Les conditions de Rankine-Hugoniot s'écrivent

$$\sigma(h - \bar{h}) = (hu - \bar{h}\bar{u})$$
$$\sigma(hu - \bar{h}\bar{u}) = (hu^2 + p - \bar{h}\bar{u}^2 - \bar{p}).$$

On multiplie la 1ere équation par $(h + \bar{h})/2 - (u + \bar{u})^2/8$, la 2eme par $(u + \bar{u})/2$ et on additionne, on obtient

$$\sigma[p + \frac{1}{2}hu^2] - \sigma\frac{[h]}{8}(u - \bar{u})^2 = \left[\frac{1}{2}hu^3 + 2pu\right] - \frac{[hu]}{8}(u - \bar{u})^2 - \frac{[u]}{4}[h]^2,$$

et donc, comme $\sigma[h]=[hu]$, avec $\eta(U)=\frac{1}{2}hu^2+p$ et $\Phi(U)=\frac{1}{2}hu^3+2pu$,

$$\sigma[\eta(U)] = [\Phi(U)] - \frac{[u]}{4}[h]^2.$$

Ceci prouve que est solution entropique au sens de la définition 5.35 avec l'entropie $\eta(U) = hu^2/2 + gh^2/2$ si et seulement si $[u] \le 0$, c'est-à-dire $u_d < u_g$ (car on sait déjà que $u_g \ne u_d$).

2. Si U est solution entropique au sens de la définition 5.35 avec l'entropie $\eta(U) = hu^2/2 + gh^2/2$, la question précedente nous montre que $u_d < u_g$, c'est-à-dire, avec les notations de l'exercice 5.17 question 9a, que $u_d = u_g - S$ (on a S > 0). La question 9a de l'exercice 5.17 donne alors que U est 1-choc si $h_g < h_d$ et un 2-choc si $h_d < h_g$. La fonction U vérifie donc la condition de Lax.

Réciproquement, si U est une solution faible qui vérifie la condition de Lax, on a nécessairement $u_d < u_g$, c'est la première étape de la démonstration de la question 9a de l'exercice 5.17 (et on montre ensuite dans cet exercice que c'est un 1-choc si $h_g < h_d$ et un 2-choc si $h_g > h_d$). La question précédente nous donne alors

$$\sigma[\eta(U)] = [\Phi(U)] - \frac{[u]}{4}[h]^2 > [\Phi(U)],$$

ce qui prouve que U est solution entropique au sens de la définition 5.35 avec l'entropie $\eta(U) = hu^2/2 + gh^2/2$.

Exercice 5.21 (Equation linéaire avec terme source singulier)

- 1. Soient u, v deux solutions faibles de (5.100)-(5.101). On pose w = u v. La fonction w est alors solution faible de (5.100)-(5.101) avec b = 0 et $u_0 = 0$. L'exercice 5.4 donne alors w = 0 p.p.. Ceci prouve l'unicié de la solution faible (5.100)-(5.101).
- 2. On suppose c > a (le cas c < a est similaire). On pose $D_1 = \{(x,t), t > 0, x < at\}$, $D_2 = \{(x,t), t > 0, at < x < ct\}$ et $D_3 = \{(x,t), t > 0, x > ct\}$. On va chercher la solution faible u de (5.100)-(5.101) sous la forme :

$$u = u_g \operatorname{dans} D_1, \ u = \overline{u} \operatorname{dans} D_2, \ u = u_d \operatorname{dans} D_3,$$
 (5.135)

avec $\overline{u} \in \mathbb{R}$. On cherche donc \overline{u} pour que u défini par (5.135) vérifie (5.102).

Soit $\varphi \in C_c^{\infty}(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$. On pose

$$E(\varphi) = \int_{\mathbb{R} \times \mathbb{R}_+} u(\partial_t \varphi + a \partial_x \varphi) d(x, t) + \int_{\mathbb{R}} u_0(x) \varphi(x, 0) \, dx + b \int_0^{+\infty} \varphi(ct, t) dt.$$

On cherche donc \overline{u} (indépendant de φ) pour que $E(\varphi) = 0$.

On pose $v = \begin{bmatrix} a \\ 1 \end{bmatrix}$. On note n_i le vecteur normal extérieur au domaine D_i , div l'opérateur divergence dans le plan $\mathbb{R} \times \mathbb{R}_+$ et y le point (x,t); on a alors

$$\int_{\mathbb{R}\times\mathbb{R}_+} u(\partial_t \varphi + a\partial_x \varphi) d(x,t) = \int_{\mathbb{R}\times\mathbb{R}_+} u \operatorname{div}(v\varphi) d(x,t) = \sum_{i=1}^3 \int_{\partial D_i} u(y) \varphi(y) v \cdot n_i(y) \, d\gamma(y),$$

où γ désigne la mesure de Lebesgue 1-dimensionnelle sur ∂D_i (qui est le bord de D_i) et la valeur de u dans l'intégrale sur ∂D_i est prise du coté de D_i . En posant $\Gamma_a = \{(at, t), t \in \mathbb{R}_+\}$, on en déduit que

$$\int_{\mathbb{R}\times\mathbb{R}_{+}} u(\partial_{t}\varphi + a\partial_{x}\varphi)d(x,t) + \int_{\mathbb{R}} u_{0}(x)\varphi(x,0) dx = \int_{\Gamma_{a}} (u_{g} - \overline{u})\varphi(y)v \cdot n_{1}(y) d\gamma(y) + \int_{\Gamma} (\overline{u} - u_{d})\varphi(y)v \cdot n_{2}(y) d\gamma(y).$$

On remarque maintenant que $n_1=(1/\sqrt{1+a^2})\begin{bmatrix}1\\-a\end{bmatrix}$ et $n_2=(1/\sqrt{1+c^2})\begin{bmatrix}1\\-c\end{bmatrix}$. On a donc

$$E(\varphi) = \int_{\Gamma_c} (\overline{u} - u_d) \frac{1}{\sqrt{1 + c^2}} \varphi(ct, t) (a - c) \, d\gamma(y) + b \int_0^{+\infty} \varphi(ct, t) dt.$$

En paramétrant Γ_c par t (ce qui correspond à un changement de variable), l'élément d'intégration $d\gamma(y)$ devient $\sqrt{1+c^2}dt$. On obtient donc

$$E(\varphi) = \int_0^{+\infty} (\overline{u} - u_d)(a - c)\varphi(ct, t)dt + b \int_0^{+\infty} \varphi(ct, t)dt.$$

On en déduit que $E(\varphi) = 0$ en prenant \overline{u} tel que $\overline{u} = u_d + \frac{b}{c-a}$.

3. Si c=a, on a, avec les notations de la question précédente, $D_2=\emptyset$. Le raisonnement d'unicité de l'exercice 5.4 permet alors de montrer que $u=u_g$ sur D_1 et $u=u_d$ sur D_3 . Le raisonnement de la question précédente donne alors, pour tout $\varphi\in C_c^\infty(\mathbb{R}\times\mathbb{R}_+,\mathbb{R})$,

$$E(\varphi) = b \int_0^{+\infty} \varphi(ct, t) dt.$$

Si $b \neq 0$, on en déduit qu'il existe $\varphi \in C_c^{\infty}(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ tel que $E(\varphi) \neq 0$. Le problème (5.100)-(5.101) n'a donc pas de solution faible.

Bibliographie

- [1] R. A. Adams and J. J. F. Fournier. *Sobolev spaces*, volume 140 of *Pure and Applied Mathematics (Amsterdam)*. Elsevier/Academic Press, Amsterdam, second edition, 2003.
- [2] H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. *Math. Z.*, 183(3):311–341, 1983.
- [3] W. Arendt, I. Chalendar, and Eymard. Sur une classe de problèmes paraboliques quasi-linéaires. 522(2), 2023.
- [4] M. Artola. Sur une classe de problèmes paraboliques quasi-linéaires. *Boll. Un. Mat. Ital. B* (6), 5(1):51–70, 1986.
- [5] J.-P. Aubin. Analyse mathématique un théorème de compacité. C. R. A. S., 256(24):5042–5044, 1963.
- [6] C. Bardos, A. LeRoux, and J. Nédélec. First order quasilinear equations with boundary conditions. *Comm. Partial Differential Equations*, 9:1017–1034, 1979.
- [7] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vázquez. An L^1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (4), 22(2):241–273, 1995. URL: http://www.numdam.org/item?id=ASNSP_1995_4_22_2_241_0.
- [8] S. Benzoni-Gavage and D. Serre. Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. First-order systems and applications.
- [9] H. Brezis. Analyse fonctionnelle. Masson, 1985.
- [10] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
- [11] L. E. J. Brouwer. Über Abbildung von Mannigfaltigkeiten. *Math. Ann.*, 71(4):598, 1912. doi:10.1007/BF01456812.
- [12] G. A. Chechkin and A. Y. Goritsky. S.N. Kruzhkov's lectures on first-order quasilinear PDEs. In E. Emmrich and P. Wittbold, editors, *De Gruyter Proceedings in Mathematics*, Analytical and Numerical Aspects of Partial Differential Equations, pages pp. 1–68. De Gruyter, July 2009. Traduit du russe par B. Andreianov. URL: https://hal.archives-ouvertes.fr/hal-00363287, doi:10.1515/9783110212105.1.
- [13] K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.
- [14] J. Droniou. Intégration et Espaces de Sobolev à Valeurs Vectorielles. Working paper or preprint, Apr. 2001. URL: https://hal.archives-ouvertes.fr/hal-01382368.
- [15] J. Droniou. Quelques Résultats sur les Espaces de Sobolev. working paper or preprint, Apr. 2001. URL: https://hal.archives-ouvertes.fr/hal-01382370.

BIBLIOGRAPHIE BIBLIOGRAPHIE

[16] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin. *The gradient discretization method*, volume 82 of *Mathématiques & Applications (Paris) [Mathematics and Applications]*. Springer, 2018.

- [17] L. Evans. Partial differential equations, second edition. Graduate studies in Mathematics, vol 19, AMS, 2010.
- [18] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In *Handbook of numerical analysis, Vol. VII*, Handb. Numer. Anal., VII, pages 713–1020. North-Holland, Amsterdam, 2000. doi:10.1086/phos. 67.4.188705.
- [19] R. Eymard, T. Gallouët, and R. Herbin. Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. *Chin. Ann. of Math.*, 16B(1):1–14, 1995.
- [20] T. Gallouët and R. Herbin. *Mesure, intégration, probabilités.* Ellipses, 2013. URL: https://www.i2m.univ-amu.fr/perso/thierry.gallouet/licence.d/mes-int-pro.pdf.
- [21] T. Gallouët, R. Herbin, and J.-C. Latché. Lax—Wendroff consistency of finite volume schemes for systems of non linear conservation laws: extension to staggered schemes. *SeMA*, 2021. doi:https://doi.org/10.1007/s40324-021-00263-0.
- [22] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi:10.1137/1.9781611972030.ch1.
- [23] O. Guibé, A. Mokrane, Y. Tahraoui, and G. Vallet. Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem. *Adv. Nonlinear Anal.*, 9(1):591–612, 2020. doi:10.1515/anona-2020-0015.
- [24] P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, pages 1-48. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611970562.chl, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611970562.chl, doi:10.1137/1.9781611970562.chl.
- [25] J. Leray. Sur le mouvement d'un liquide visqueux emplissant l'espace. *Acta Math.*, 63(1):193–248, 1934. doi:10.1007/BF02547354.
- [26] J. Leray and L. Jacques-Louis. Quelques résultats de višik sur les problèmes elliptiques non linéaires par les méthodes de minty-browder. *Bulletin de la S. M. F.*, 93:97–107, 1965. URL: http://www.numdam.org/item?id=BSMF_1965__93__97_0.
- [27] J. Leray and J. Schauder. Topologie et équations fonctionnelles. *Ann. Sci. École Norm. Sup.* (3), 51:45–78, 1934. URL: http://www.numdam.org/item?id=ASENS_1934_3_51__45_0.
- [28] N. G. Meyers. An L^p estimate for the gradient of solutions of second order elliptic divergence equations. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (3), 17:189–206, 1963.
- [29] F. Otto. Initial-boundary value problem for a scalar conservation law. *C. R. Acad. Sci. Paris Sér. I Math.*, 8:729–734, 1996.
- [30] A. Prignet. Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. *Rend. Mat. Appl.* (7), 15(3):321–337, 1995.
- [31] D. Serre. Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, 1999. doi:10.1017/CB09780511612374.
- [32] J. Serrin. Pathological solutions of elliptic differential equations. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (3), 18:385–387, 1964.
- [33] J. Simon. Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. (4), 146:65–96, 1987. doi: 10.1007/BF01762360.
- [34] J. Smoller. Shock waves and reaction-diffusion equations., volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1994.

BIBLIOGRAPHIE BIBLIOGRAPHIE

[35] G. Teschl. *Topics in Linear and Nonlinear Functional Analysis*, volume to appear of *Graduate Studies in Mathematics*. American Mathematical Society (AMS), Providence, Rhode Island, 2021,https://www.mat.univie.ac.at/gerald/ftp/book-fa/fa.pdf.

[36] J. Vovelle. Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. *Numer. Math.*, 90(3):563–596, 2002. doi:10.1007/s002110100307.

Abréviations

e.v. espace vectoriel s.e.v. sous-espace vectoriel p.p. presque partout t.q. tel(le)(s) que

CL conditions aux limites

EDP équation aux dérivées partielles

LD linéairement dégénéré (Définition 5.36) VNL vraiment non linéaire (Définition 5.36)

Notations

 L^p ensemble des (classes de) fonctions mesurables de puissance p-ième intégrable

 $x \cdot y$ produit scalaire de x et y dans \mathbb{R}^N

IR ensemble des nombres réels

IR₊ ensemble des nombres réels positifs ou nuls

 \mathbb{R}^* ensemble des nombres réels non nuls

 γ mesure sur le bord d'un ouvert

 $\begin{array}{ll} \lambda & \text{mesure de Lebesgue sur les boréliens de (ou d'un sous-ensemble de) } \mathrm{I\!R} \\ \lambda_N & \text{mesure de Lebesgue sur les boréliens de (ou d'un sous-ensemble de) } \mathrm{I\!R}^N \end{array}$

 $(\cdot|\cdot)_E$ produit scalaire dans un espace de Hilbert E $\mathbb{1}_A$ fonction caractéristique d'un ensemble A

 $\partial_i \varphi$ dérivée partielle de la fonction φ par rapport à sa i-me variable (d'espace, si c'est uen fonction d'espace et du temps)