

Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems

Lucas Bueno Ruas de Oliveira, Diogo Martins, Felipe Amaral, Flavio Oquendo, Elisa Yumi Nakagawa

▶ To cite this version:

Lucas Bueno Ruas de Oliveira, Diogo Martins, Felipe Amaral, Flavio Oquendo, Elisa Yumi Nakagawa. Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems. Doctoral. 11th Latin American Robotics Symposium (LARS), São Carlos, Brazil. 2014, pp.20. cel-01113218

HAL Id: cel-01113218

https://hal.science/cel-01113218

Submitted on 4 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright

Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems

Lucas Bueno R. Oliveira^{1,2}, Diogo B. Martins¹, Felipe A. Amaral¹, Flavio Oquendo², and Elisa Yumi Nakagawa¹

buenolro@icmc.usp.br, dbrdem@usp.br, felipeaa@usp.br, flavio.oquendo@irisa.fr, and elisa@icmc.usp.br

¹ Dept. of Computer Systems, University of São Paulo - USP, São Carlos, Brazil

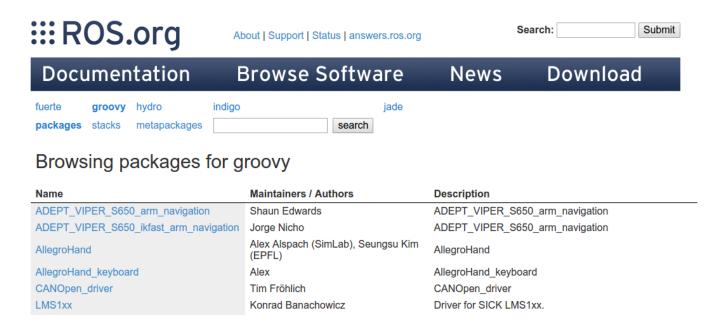
² IRISA Research Institute University of South Brittany, Vannes, France

LARS 2014, São Carlos/SP

Agenda

Introduction

Developing RoboSeT


Case Study

Discussion

Conclusion and Future Work

- Robots have been used in several areas of the society
- Complexity and diversity challenge the development of robotic systems
- Service-Oriented Architecture (SOA) promotes better reusability and flexibility to robotic systems
- Several Service-Oriented Robotic Systems (SORS) can be found in the literature
- Development environments for SORS are also available

- Motivation:
 - SORS development environments do not provide facilities for location and selection of services

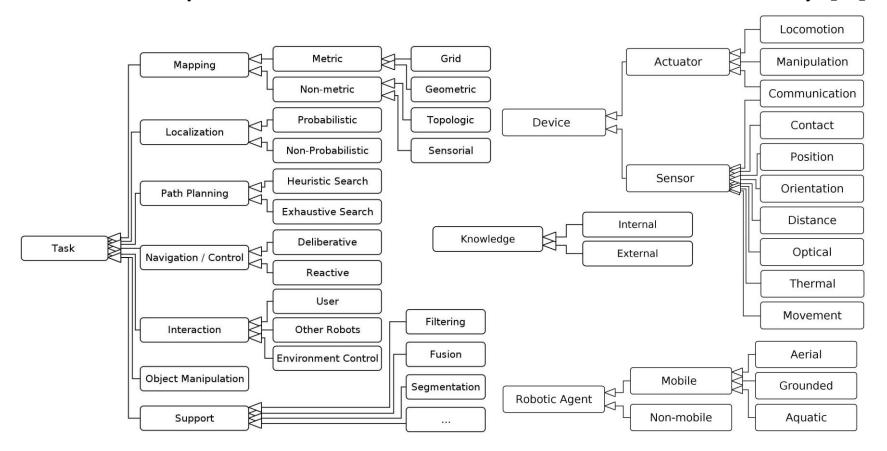
- Motivation:
 - SORS development environments do not provide facilities for location and selection of services

Water of the Country Service C

Browsing packages for groovy

Name	Maintainers / Authors	Description
ADEPT_VIPER_S650_arm_navigation	Shaun Edwards	ADEPT_VIPER_S650_arm_navigation
ADEPT_VIPER_S650_ikfast_arm_navigation	Jorge Nicho	ADEPT_VIPER_S650_arm_navigation
AllegroHand	Alex Alspach (SimLab), Seungsu Kim (EPFL)	AllegroHand
AllegroHand_keyboard	Alex	AllegroHand_keyboard
CANOpen_driver	Tim Fröhlich	CANOpen_driver
LMS1xx	Konrad Banachowicz	Driver for SICK LMS1xx.

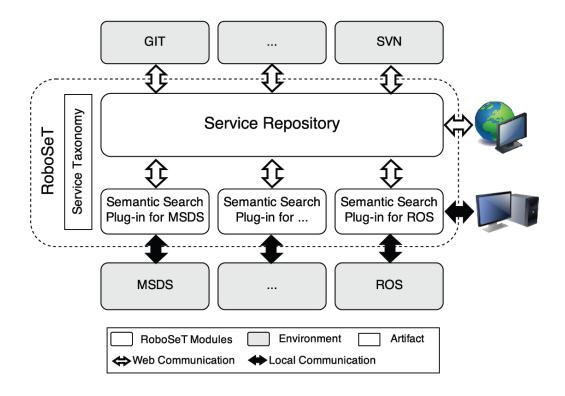
- Motivation:
 - SORS development environments do not provide facilities for location and selection of services


Browsing packages for groovy

Name	Maintainers / Authors	Description
ADEPT_VIPER_S650_arm_navigation	Shaun Edwards	ADEPT_VIPER_S650_arm_navigation
ADEPT_VIPER_S650_ikfast_arm_navigation	Jorge Nicho	ADEPT_VIPER_S650_arm_navigation
AllegroHand	Alex Alspach (SimLab), Seungsu Kim (EPFL)	AllegroHand
AllegroHand_keyboard	Alex	AllegroHand_keyboard
CANOpen_driver	Tim Fröhlich	CANOpen_driver
LMS1xx	Konrad Banachowicz	Driver for SICK LMS1xx.
	•	

- Main goal:
 - To present RoboSeT (<u>Robo</u>tics <u>Services Semantic Search</u>
 <u>Tool</u>), a mechanism that supports cataloging and discovery
 of services for robotic systems using semantic information.

Developing RoboSeT


• First step: Establishment of a common vocabulary [1]

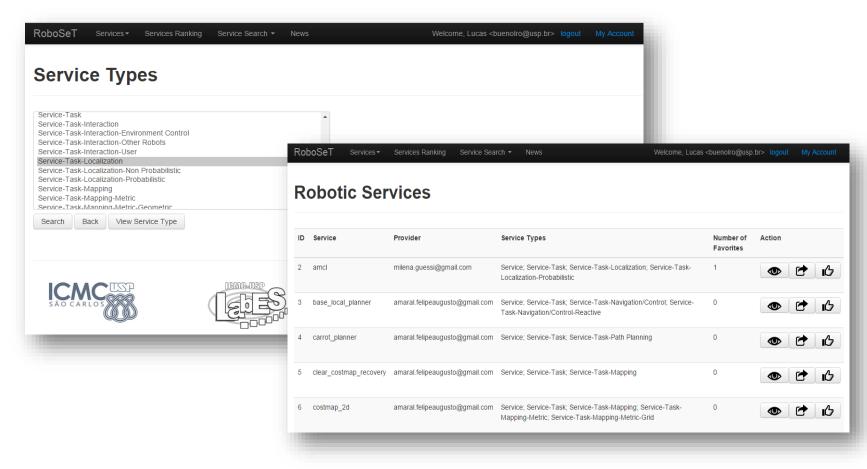
[1] Oliveira, L. B. R.; Osório, F. S.; Oquendo, F.; Nakagawa, E. Y.; Towards a Taxonomy of Services for Developing Service-Oriented Robotic Systems. In: *SEKE'14*, 2014, Vancouver, Canada, p. 344-349.

Developing RoboSeT

- RoboSeT is divided into two main subsystems:
 - Service repository (Web Interface)
 - Service plug-ins (GUI or command line)

Developing RoboSeT

- Service repository:
 - Account management
 - Service publication
 - Service search and detailing
 - Service management
 - News about services
- Plug-ins:
 - Service search
 - Service identification
 - Service obtaining and deployment
 - Feedback about services (quality, bugs, comments)

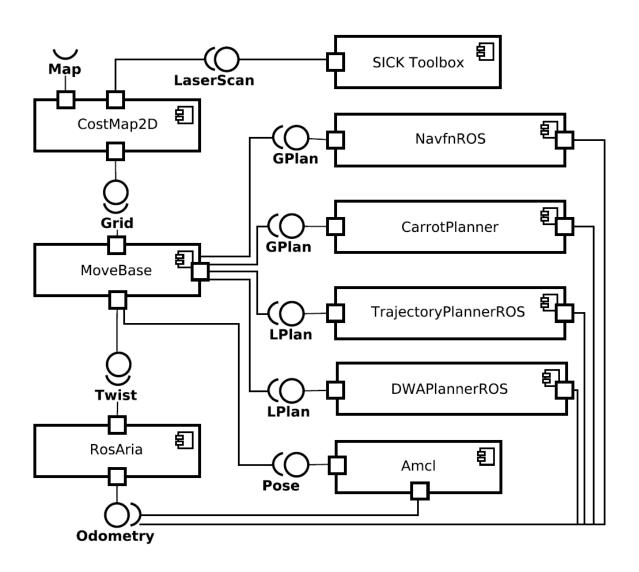


- Design of a robotic system for robust navigation
 - Motion Planning
 - Trajectory generation
 - Obstacle detection and representation
 - Obstacle avoidance
 - Position and velocity control
 - Localization
 - Laser controller
 - Pioneer P3-DX controller

Mapping requirements into service types

Functionality	Service type
Motion Planning	Service/Task/Path planning
Trajectory generation	Service/Task/Path planning
Obstacle detection and representation	Service/Task/Mapping
Obstacle avoidance	Service/Task/Path planning
Position and velocity control	Service/Task/Navigation
Localization	Service/Task/Localization
Encoder controller	Service/Device/Sensor/Movement
Differential drive controller	Service/Device/Actuator/Locomotion
Laser controller	Service/Device/Sensor/Distance

Searching for ROS services



Searching for ROS services (Part I)

Functionality	Task service type	ROS Service
Motion Planning	Path planning/Heuristic Search	NavfnROS, CarrotPlanner
Trajectory generation	Path planning/Heuristic Search	TrajectoryPlannerROS, DWAPlannerROS
Obstacle detection and representation	Mapping/Metric/Grid	CostMap2D
Obstacle avoidance	Path planning/Heuristic Search	TrajectoryPlannerROS, DWAPlannerROS
Position and velocity control	Navigation	MoveBase
Localization	Localization/Probabilistic	Amcl

Searching for ROS services (Part II)

Functionality	Device service type	ROS Service
Encoder controller	Sensor/Movement	RosAria
Differential drive controller	Actuator/Locomotion	RosAria
Laser controller	Sensor/Distance	SICK Toolbox

Discussion

- Advantages:
 - Services can be transparently shared and discovered
 - Services that are easier to be found are more likely to be reused
 - Structured information can support identification of more suitable services
 - Reuse improvements positively influence productivity in software systems development
 - Community feedback can guide the development of services of better quality

Discussion

- Main limitation:
 - RoboSeT is depended on community adoption and cooperation
- Current initiatives to mitigate such limitation:
 - To promote RoboSeT in the robotics community
 - To release an open source version of RoboSeT

Conclusion and Future Work

- SOA is a promising architectural style for robotics
- A mechanism for supporting cataloging, publishing, and discovery of services can contribute to the SORS development
- Results indicate that RoboSeT can ease the discovery of services for SORS
- Future work:
 - To perform an experiment
 - To develop new functionalities and plug-ins

Automating Cataloging and Discovery of Services for Service-Oriented Robotic Systems

Lucas Bueno R. Oliveira^{1,2}, Diogo B. Martins¹, Felipe A. Amaral¹, Flavio Oquendo², and Elisa Yumi Nakagawa¹

buenolro@icmc.usp.br, dbrdem@usp.br, felipeaa @usp.br, flavio.oquendo@irisa.fr, and elisa@icmc.usp.br

¹ Dept. of Computer Systems, University of São Paulo - USP, São Carlos, Brazil

² IRISA Research Institute University of South Brittany, Vannes, France

LARS 2014, São Carlos/SP

