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The purpose of this text is to offer an overview of the most popular do-
main decomposition methods for partial differential equations (PDE). The
presentation is kept as much as possible at an elementary level with a spe-
cial focus on the definitions of these methods in terms both of PDEs and
of the sparse matrices arising from their discretizations. We also provide
implementations written in an open source finite element software. In ad-
dition, we consider a number of methods that have not been presented in
other books. We think that this book will give a new perspective and that
it will complement those of Smith, Bjerstad and Gropp [176], Quarteroni
and Valli [166], Mathew [139] and Toselli and Widlund[185] as well as the
review article [22].

The book is addressed to computational scientists, mathematicians, physi-
cists and, in general, to people involved in numerical simulation of par-
tial differential equations. It can also be used as textbook for advanced
undergraduate/First- Year Graduate students. The mathematical tools needed
are basic linear algebra, notions of programming, variational formulation of
PDEs and basic knowledge in finite element discretization.

The value of domain decomposition methods is part of a general need
for parallel algorithms for professional and consumer use. We will focus on
scientific computing and more specifically on the solution of the algebraic
systems arising from the approximation of a partial differential equation.

Domain decomposition methods are a family of methods to solve prob-
lems of linear algebra on parallel machines in the context of simulation. In
scientific computing, the first step is to model mathematically a physical
phenomenon. This often leads to systems of partial differential equations
such as the Navier-Stokes equations in fluid mechanics, elasticity system
in solid mechanics, Schrédinger equations in quantum mechanics, Black and
Scholes equation in finance, Lighthill-Witham equations for traffic, ... Func-
tional analysis is used to study the well-posedness of the PDEs which is a
necessary condition for their possible numerical approximation. Numerical
analysis enables to design stable and consistant discretization schemes. This
leads to discrete equations F'(u) = b € R” where n is the number of degrees
of freedom of the discretization. If F' is linear, calculate w is a problem
of linear algebra. If F' is nonlinear, a method for solving is the classical
Newton’s method, which also leads to solving a series of linear systems.

In the past, improving performance of a program, either in speed or in
the amount of data processed, was only a matter of waiting for the next
generation processors. Every eighteen months, computer performance dou-
bled. As a consequence, linear solver research would take second place to the
search for new discretization schemes. But since approximately year 2005
the clock speed stagnates at 2-3 GHz. The increase in performance is almost
entirely due to the increase in the number of cores per processor. All ma-
jor processor vendors are producing multicore chips and now every machine
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is a parallel machine. Waiting for the next generation machine does not
guarantee anymore a better performance of a software. To keep doubling
performance parallelism must double. It implies a huge effort in algorithmic
development. Scientific computing is only one illustration of this general
need in computer science. Visualization, data storage, mesh generation,
operating systems, ... must be designed with parallelism in mind.

We focus here on parallel linear iterative solvers. Contrary to direct
methods, the appealing feature of domain decomposition methods is that
they are naturally parallel. We introduce the reader to the main classes of
domain decomposition algorithms: Schwarz, Neumann-Neumann/FETT and
Optimized Schwarz. For each method we start by the continuous formula-
tion in terms of PDEs for two subdomains. We then give the definition in
terms of stiffness matrices and their implementation in a free finite element
package in the many subdomain case. This presentation reflects the dual na-
ture of domain decomposition methods. They are solvers of linear systems
keeping in mind that the matrices arise from the discretization of partial
differential operators. As for domain decomposition methods that directly
address non linearities, we refer the reader to e.g. |16] or [17] and references
therein. As for iterative solvers non related to domain decomposition we
refer the reader to [12] or [141] e.g. .

In Chapter [If we start by introducing different versions of Schwarz algo-
rithms at continuous level, having as a starting point H. Schwarz method
(see |[175]): Jacobi Schwarz Method (JSM), Additive Schwarz Method (ASM)
and Restricted Additive Schwarz (RAS) which the default parallel solver in
PETSc. The first natural feature of these algorithms are that they are equiv-
alent to a Block-Jacobi method when the overlap is minimal. We move on
to the algebraic versions of the Schwarz methods. In order to do this, sev-
eral concepts are necessary: restriction and prolongation operators as well as
partitions of unity which make possible the global definition. These concepts
are explained in detail in the case of different type of discretizations (finite
difference or finite element) and spatial dimensions. The convergence of the
Schwarz method in the two-subdomain case is illustrated for one-dimensional
problems and then for two-dimensional problems by using Fourier analysis. A
short paragraph introduces P.L. Lions algorithm that will be considered into
details in Chapter[2| The last part of the chapter is dedicated to the numer-
ical implementation by using FreeFem++ [108] for general decompositions
into subdomains.

In Chapter [2] we present Optimized Schwarz methods applied to the
Helmholtz equation which models acoustic wave propagation in the fre-
quency domain. We begin with the two subdomain case. We show the
need for the use of interface conditions different from Dirichlet or Neumann
boundary conditions. The Lions and Despres algorithms which are based
on Robin interface conditions are analyzed together with their implementa-
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tions. We also show that by taking even more general interface conditions,
much better convergence can be achieved at no extra cost compared to the
use of Robin interface conditions. We consider the many subdomain case
as well. These algorithms are the method of choice for wave propagation
phenomena in the frequency regime. Such situations occur in acoustics,
electromagnetics and elastodynamics.

In Chapter [3| we present the main ideas which justify the use of Krylov
methods instead of stationary iterations. Since Schwarz methods introduced
in Chapters [I] and [2| represent fixed point iterations applied to precondi-
tioned global problems, and consequently not providing the fastest conver-
gence possible, it is natural to apply Krylov methods instead. This provides
the justification of using Schwarz methods as preconditioners rather than
solvers. Numerical implementations and results using FreeFem+-+ are clos-
ing the chapter. Although some part of the presentation of some Krylov
methods is not standard, readers already familiar with Krylov methods may
as well skip it.

Chapter 4] is devoted to the introduction of two-level methods. In the
presence of many subdomains, the performance of Schwarz algorithms, i.e.
the iteration number and execution time will grow linearly with the number
of subdomains in one direction. From a parallel computing point of view this
translates into a lack of scalability. The latter can be achieved by adding a
second level or a coarse space. This is strongly related to multigrid methods
and to deflation methods from numerical linear algebra. The simplest coarse
space which belongs to Nicolaides is introduced and then implemented in
FreeFem++-.

In Chapter |5, we show that Nicolaides coarse space (see above) is a
particular case of a more general class of spectral coarse spaces which are
generated by vectors issued from solving some local generalized eigenvalue
problems. Then, a theory of these two-level algorithms is presented. First, a
general variational setting is introduced as well as elements from the abstract
theory of the two-level additive Schwarz methods (e.g. the concept of stable
decomposition). The analysis of spectral and classical coarse spaces goes
through some properties and functional analysis results. These results are
valid for scalar elliptic PDEs. This chapter is more technical than the others
and is not necessary to the sequel of the book.

Chapter [6] is devoted to the Neumann-Neumann and FETT algorithms.
We start with the two subdomain case for the Poisson problem. Then, we
consider the formulation in terms of stiffness matrices and stress the duality
of these methods. We also establish a connection with block factorization
of the stiffness matrix of the original problem. We then show that in the
many subdomains case Neumann-Neumann and FETT are no longer strictly
equivalent. For sake of simplicity, we give a FreeFem-++4 implementation of
only the Neumann-Neumann algorithm. The reader is then ready to delve
into the abundant litterature devoted to the use of these methods for solving



iv

complex mechanical problems.

In Chapter [7], we return to two level methods. This time, a quite recent
adaptive abstract coarse space, as well as most classical two-level methods
are presented in a different light, under a common framework. Moreover,
their convergence properties are proven in an abstract setting, provided
that the assumptions of the Fictitious Space Lemma are satisfied. The
new coarse space construction is based on solving GENeralized Eigenvalue
problems in the Overlap (GenEO). The construction is provable in the sense
that the condition number is given in terms of an explicit formula where the
constants that appear are the maximal number of neighbors of a subdomain
and a threshold prescribed by the user. The latter can be applied to a
broader class of elliptic equations, which include systems of PDEs such as
linear elasticity even with highly heterogeneous coefficients. From § [7.1] to
§ , we give all the materials necessary to build and analyze two-level
methods for Additive Schwarz methods. In section [7.7} we build a coarse
space for one level Optimized Schwarz methods of Chapter It is based
on introducing SORAS algorithm and two related generalized eigenvalue
problems. The resulting algorithm is named SORAS-GenEO-2. Section
is devoted to endow one level Neumann-Neumann algorithm of Chapter [6]
with a GenEO type coarse space.

In Chapter [§| we introduce the parallel computational framework used
in the parallel version of the free finite element package FreeFem++ which
is currently linked with HPDDM, a C++ framework for high-performance
domain decomposition methods, available at the following URL: https:
//github.com/hpddm/hpddm. For sake of simplicity we restrict ourselves to
the two-level Schwarz methods. Numerical simulations of very large scale
problems on high performance computers show the weak and strong scala-
bilities of the Schwarz methods for 2D and 3D Darcy and elasticity problems
with highly heterogeneous coeflicients with billions of degrees of freedom. A
self contained FreeFem++ parallel script is given.

We give in Figure [1| the dependency graph of the various chapters. For
instance in order to read Chapter [] it is necessary to be familiar with both
Chapters [3| and [I] From this graph, the reader is able to choose his way in
reading the book. We suggest some possible partial readings. A reader inter-
ested in having a quick and partial view and already familiar with Krylov
methods, may very well read only Chapter [I] followed by Chapter [ For
new comers to Krylov methods, reading of Chapter [3| must be intercalated
between Chapter [I] and Chapter
For a quick view on all Schwarz methods without entering into the technical
details of coarse spaces, one could consider beginning by Chapter [1] followed
by Chapter [2| and then by Chapter [3| on the use of Schwarz methods as
preconditioners, to finish with Chapter [4] on classical coarse spaces.

For the more advanced reader, Chapters[5| and [7] provide the technical frame-
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Figure 1: Dependency graph of chapters

work for the analysis and construction of more sophisticated coarse spaces.
And last, but not least Chapter [§] gives the keys of parallel implementation
and illustrates with large scale numerical results the previously introduced
methods.
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Chapter 1

Schwarz methods

1.1 Three continuous Schwarz Algorithms

Hermann Schwarz was a German analyst of the 19th century. He was in-
terested in proving the existence and uniqueness of the Poisson problem.
At his time, there were no Sobolev spaces nor Lax-Milgram theorem. The
only available tool was the Fourier transform, limited by its very nature to
simple geometries. In order to consider more general situations, H. Schwarz
devised an iterative algorithm for solving Poisson problem set on a union of
simple geometries, see [175]. For a historical presentation of these kind of
methods see [88].

Let the domain §2 be the union of a disk and a rectangle, see figure [1.1
Consider the Poisson problem which consists in finding u : 2 - R such that:

-A(u)

u

f inQ (1.1)
0 on 0N.

Definition 1.1.1 (Original Schwarz algorithm) The Schwarz algorithm
1s an iterative method based on solving alternatively sub-problems in domains

Ql QQ

Figure 1.1: A complex domain made from the union of two simple geometries
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Q1 and Qo. It updates (uf,uly) — (uP*, uf*™t) by:

AP = f in(y ~A(ustty = f in Qo
ut™t = 0 ondQ NN then, udtt = 0 on 9 NN
ut™t = ul on 091 N Q. udtt = wttt on 9909 N Q.
(1.2)

H. Schwarz proved the convergence of the algorithm and thus the well-
posedness of the Poisson problem in complex geometries.

With the advent of digital computers, this method also acquired a prac-
tical interest as an iterative linear solver. Subsequently, parallel computers
became available and a small modification of the algorithm [129] makes it
suited to these architectures. Its convergence can be proved using the max-
imum principle [128].

Definition 1.1.2 (Parallel Schwarz algorithm) [terative method which
solves concurrently in all subdomains, 1 =1,2:

Ay =f  in O
ultt =0 on 99N 0N (1.3)

3
n+l =uy,; on 0 NQ3,.

U;

It is easy to see that if the algorithm converges, the solutions u;°, i = 1,2
in the intersection of the subdomains take the same values. Indeed, in the
overlap (219 := 1 Ny, let €™ = uj® —u3’. By the last line of , we know
that e =0 on 0€215. By linearity of the Poisson equation, we also have that

e® is harmonic. Thus, e solves the homogeneous well-posed boundary
value problem (BVP):

—A(eoo) =0 in ng
e =0 on 009

and thus e =0 .

Algorithms and act on the local functions (u;);=1,2. In order
to write algorithms that act on global functions we need extension operators
and partitions of unity.

Definition 1.1.3 (Extension operators and partition of unity) Let the
extension operator E; such that E;(w;) : - R is the extension of a func-
tion w; : ; = R, by zero outside ;. We also define the partition of unity
functions x; : Q2 > R, x; >0 and x;(z) =0 for x € 9Q; N\ 0Q and such that:

2
w = ;Ei(Xi wig,) (1.4)

for any function w:Q ~ R.
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There are two ways to write related algorithms that act on global functions.

They are given in Definitions [T.1.4] and

Definition 1.1.4 (First global Schwarz iteration) Letu™ be an approz-
imation to the solution to the Poisson problem , ™ is computed by
solving first local sub-problems:

—A(w?”) =f in Qi wl=u"on 00N Qs

v 1.
w20 on 99009, (1)
and then gluing them together using the partition of unity functions:
2
u”” = Z E’L(X’L w?“) . (16)
i=1

We can prove the following property:

Lemma 1.1.1 Algorithm (1.5)-(1.6) which iterates on u™ and algorithm
(1.3) which iterates on (u},uy) are equivalent.

2

Proof Starting from initial guesses which satisfy u® = Y E;(x; u), we
i=1

prove by induction that

2
u" = ;Ei(Xi ug) - (1.7)

holds for all n > 0. Assume the property holds at step n of the algorithm.
Then, using the fact that x1 = 1 and x2 = 0 on 921 N2 we have by definition
that w]*! is a solution to BVP (I.3) (with i = 1):

—A(w{”l) =f in Q,

witt =0 on 005 NoQ, (1.8)

n+l _  n

wy u" =Y Ei(xiul) =uf on  0Q;n Q.

Mo

1l
=

)

n+l _ u711+1 1

and thus wj

have using (|1.6)):

. The proof is the same for wi*! = u5*!. Finally, we

9 2
W= Ei(gwl) = Y Bi(xiul) .
=1 =1

|
This result can be seen as a continuous version of the algebraic formulation
established in [71].

We introduce in Algorithm another formulation to algorithm —
in terms of the continuous residual r" := f + Au™. This way, we get closer
to the algebraic definition of domain decomposition methods. Algorithm
is named RAS which stands for Restricted Additive Schwarz.
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Lemma 1.1.2 (Equivalence between Schwarz’ algorithm and RAS)
The algorithm defined by (1.12)), (1.13)) and (1.14) is called the continuous
RAS algorithm. It is equivalent to the Schwarz’ algorithm (|1.3)).

Proof Here, we have to prove the equality

u” = Er(xau) + Ea(xauz)

where uy, is given by (1.3) and u™ is given by (1.12)-(L.13)-(1.14). We
assume that the property holds for the initial guesses:

u’ = By (x1u}) + E2(x2ud)

and proceed by induction assuming the property holds at step n of the
algorithm, i.e. u™ = Eq(x1ul) + E2(x2usy). From (1.14) we have

= B (u” + 0})) + Ba(xa(u” +13)) (L9)

We prove now that uﬁh + 07 = u™! by proving that u‘%l + v satisfies (|1.3)
as uf*! does. We first note that, using (T.13)-(T.12)) we have:

“A(u" + o) = =A@) + 1" = =A@") + f+A@™) = f in Q, (1.10)
u" + v =u™  on 9N Ny, |

It remains to prove that
u" =ul on 90 N Q.

By the induction hypothesis we have u" = E1(x1ul) + E2(x2uy). On 091 n
Qs, we have y1 =0 and thus y2 = 1. So that on 91 N s we have :

u" = xqul + xoulh = ub . (1.11)

Finally from ((1.10) and ([1.11)) we can conclude that ujgy, + 07 satisfies prob-
lem (1.3 and is thus equal to u}*1. The same holds for domain g, Uy, T3 =
u*l. Then equation (T.9) reads

uh = E1(autth) + By (xous™t)

which ends the proof of the equivalence between Schwarz’ algorithm and the

continuous RAS algorithm (1.12))—(1.14)). [ |

Another global variant of the parallel Schwarz algorithm ([1.3]) consists
in replacing formula ((1.6)) by a simpler formula not based on the partition
of unity.
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Algorithm 1 RAS algorithm at the continuous level

1. Compute the residual v : 2 — R:

P f o Au™) (1.12)

2. For i = 1,2 solve for a local correction v;":

-A(l') = ™ inQ, v'=0on 0 (1.13)

3. Compute an average of the local corrections and update u™:

n+1

u" = u" + Er(xavl) + Ea(xavy) (1.14)

where (x;)i-12 and (E;);-12 define a partition of unity as in defined

in section equation (1.4)).

Definition 1.1.5 (Second global Schwarz iteration) Let u” be an ap-
proximation to the solution to the Poisson problem , u™ s computed
by solving first local sub-problems and then gluing them together with-
out the use of the partition of unity functions:

= ZEi(w?”). (1.15)

It is easy to check that this algorithm is equivalent to Algorithm [2| which is
called ASM (Additive Schwarz method).

Algorithm 2 ASM algorithm at the continuous level

1. Compute the residual 7" : Q2 - R:

= f o Au™) (1.16)

2. For i = 1,2 solve for a local correction v;":

-A(v?') = r"inQ;, v!'=0on Y (1.17)

3. Update u™:
u"™ = u™ + By (0]) + Ea (vl . (1.18)

To sum up, starting from the original Schwarz algorithm (1.2]) that is
sequential, we have thus three continuous algorithms that are essentially
parallel:
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e Algorithm (1.3)) Jacobi Schwarz Method (JSM)

e Algorithm (1.12)-(1.13))-(1.14)) Restricted Additive Schwarz (RAS)

e Algorithm (1.16])-(1.17)-(1.18) Additive Schwarz Method (ASM)

The discrete version of the first algorithm is seldom implemented since
it involves duplication of unknowns. The discrete version of the second
algorithm is the restricted additive Schwarz method (RAS, see[19, 20]) which
is the default parallel solver in the package PETSC [7]. The discrete version
of the third algorithm is the additive Schwarz method (ASM) for which many
theoretical results have been derived, see [185] and references therein. The
latter term was introduced first by Dryja and Widlund in [66] for a variant
of the algorithm firstly introduced at continuous level in [140].

1.2 Connection with the Block Jacobi algorithm

In the previous section we have noticed that the three methods illustrate
different points of view of the Schwarz iteration, the continuous aspect em-
phasized the interest of the overlap (see §, which is hidden in the discrete
formulation. When going to the discrete level, we will see that Schwarz al-
gorithm is, from a linear algebra point of view, a variation of a block-Jacobi
algorithm.

We first recall the definition of a block Jacobi algorithm and then es-
tablish a connection with the Schwarz algorithms. Let us consider a linear

system:
AU=F (1.19)

with a matrix A of size m x m, a right-hand side F ¢ R™ and a solution
U € R™ where m is an integer. The set of indices {1,...,m} is partitioned
into two sets

Ni={1,....ms} and No:={mg+1,...,m}.

Let Uy := (Ur)kens = Uy, Uz = (Uk)kens, = Upny, and similarly Fy = F
F2 = ,F|N2
The linear system has the following block form:

Al App U ) (K
Axr Ago U, F,

where Ajj := Apnjan;, 1<, <2

Definition 1.2.1 (Jacobi algorithm) Let D be the diagonal of A, the Ja-
cobi algorithm reads:

DU™! = DU" + (F - AU"),
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or equivalently,
U™ =U"+ D N(F-AU")=U"+D't",
where v = F — AU" is the residual of the equation.

We now define a block Jacobi algorithm.

Definition 1.2.2 (Block-Jacobi algorithm) The block-Jacobi algorithm
reads:

Ay 0 Ut (An 0 Ui ()4 Ur
0 A Uyt 7L 0 Ay uy Fy Uy

(1.20)

Ay 0 Ut [ Fi- AU 121)

0 A Ut Fy— Ay UT
In order to have a more compact form of the previous algorithm, we in-
troduce Ry the restriction operator from A into Nj and similarly Ry the

restriction operator from A into As. The transpose operator RiT are exten-
sions operators from N; into N. Note that A;; = RiARZ-T.

or equivalently

Lemma 1.2.1 (Compact form of a block-Jacobi algorithm) The al-
gorithm can be re-written as

U™ =U" + (R{ (RIAR]) "Ry + R} (ReAR]) ' Ro)x". | (1.22)

Proof Let U” = (UYT, U3T)T, algorithm (1.21) becomes

A 0 L 0 A
Ul p o u". (1.23)
0 A Ay O

On the other hand, equation (1.20)) can be rewritten equivalently

-1
Ut _ (U ) (Ao 0 ry wet ey Al 0\ e
(Ug+1 | ur 1 I Aoy v < U =U"+ 0 A r
(1.24)
where r} := r"j\/i, 1=1,2. By taking into account that

Al 0 _ .
( oo )leTAlllRl = R{ (R1AR]) 'Ry

and

0 O - -
( 0 A ) Ry A5y Ry = Ry (R AR3) ™' Ry,
22
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X1 X2

Q]. Ims xms-&-l Qz
Figure 1.2: Domain decomposition with minimal overlap and partition of
unity
the conclusion follows easily. |

In order to establish a connection with the Schwarz algorithms, consider
the following BVP on Q := (0,1): Find u such that

-Au = f, in
u(0) u(l) = 0.

We discretize it by a three point finite difference scheme on the grid z; := j h,
1 < j <m where h :=1/(m+1). Let uj ~ u(z;), fj = f(z;), 1 <j<m
and U = (u;)1<j<m, F = (fj)1<jem satisfy equation where A is the
tridiagonal matrix A;; := 2/h2 and Ajj1 = Ajej=-1/h%

Let domains € := (0, (ms+1)h) and Qy := (msh,1) define an overlap-
ping decomposition with a minimal overlap of width h. The discretization
of for domain 27 reads

n+1 n+1 n+1
uyiy m2ury Ul L<i
- h2 - f]7 < J < ms
ugt = 0
n+l’ _ n
Ul ms+l = U2 mg+l
Solving for U’f*l = (u?;l)lgjgms corresponds to solving a Dirichlet boundary

value problem in subdomain §2; with Dirichlet data taken from