
HAL Id: cel-01100932
https://hal.science/cel-01100932v2

Submitted on 11 Jan 2015 (v2), last revised 17 Mar 2021 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Introduction to Domain Decomposition Methods:
algorithms, theory and parallel implementation

Victorita Dolean, Pierre Jolivet, Frédéric Nataf

To cite this version:
Victorita Dolean, Pierre Jolivet, Frédéric Nataf. An Introduction to Domain Decomposition Methods:
algorithms, theory and parallel implementation. Master. France. 2015. �cel-01100932v2�

https://hal.science/cel-01100932v2
https://hal.archives-ouvertes.fr

An Introduction to Domain Decomposition

Methods: algorithms, theory and parallel

implementation

Victorita Dolean Pierre Jolivet Frédéric Nataf

January 11, 2015

2

i

The purpose of this text is to offer an overview of the most popular do-
main decomposition methods for partial differential equations (PDE). The
presentation is kept as much as possible at an elementary level with a spe-
cial focus on the definitions of these methods in terms both of PDEs and
of the sparse matrices arising from their discretizations. We also provide
implementations written in an open source finite element software. In ad-
dition, we consider a number of methods that have not been presented in
other books. We think that this book will give a new perspective and that it
will complement those of Smith, Bjørstad and Gropp [165], Quarteroni and
Valli [155] and Toselli and Widlund[174] as well as the review article [20].

The book is addressed to computational scientists, mathematicians, physi-
cists and, in general, to people involved in numerical simulation of par-
tial differential equations. It can also be used as textbook for advanced
undergraduate/First-Year Graduate students. The mathematical tools needed
are basic linear algebra, notions of programming, variational formulation of
PDEs and basic knowledge in finite element discretization.

The value of domain decomposition methods is part of a general need
for parallel algorithms for professional and consumer use. We will focus on
scientific computing and more specifically on the solution of the algebraic
systems arising from the approximation of a partial differential equation.

Domain decomposition methods are a family of methods to solve prob-
lems of linear algebra on parallel machines in the context of simulation. In
scientific computing, the first step is to model mathematically a physical
phenomenon. This often leads to systems of partial differential equations
such as the Navier-Stokes equations in fluid mechanics, elasticity system
in solid mechanics, Schrödinger equations in quantum mechanics, Black and
Scholes equation in finance, Lighthill-Witham equations for traffic, . . . Func-
tional analysis is used to study the well-posedness of the PDEs which is a
necessary condition for their possible numerical approximation. Numerical
analysis enables to design stable and consistant discretization schemes. This
leads to discrete equations F (u) = b ∈ Rn where n is the number of degrees
of freedom of the discretization. If F is linear, calculate u is a problem of
linear algebra. If F is nonlinear, a method for solving classical Newton’s
method, which also leads to solving a series of linear systems.

In the past, improving performance of a program, either in speed or in
the amount of data processed, was only a matter of waiting for the next
generation processors. Every eighteen months, computer performance dou-
bled. As a consequence, linear solver research would take second place to the
search for new discretization schemes. But since approximately year 2005
the clock speed stagnates at 2-3 GHz. The increase in performance is almost
entirely due to the increase in the number of cores per processor. All ma-
jor processor vendors are producing multicore chips and now every machine
is a parallel machine. Waiting for the next generation machine does not

ii

guarantee anymore a better performance of a software. To keep doubling
performance parallelism must double. It implies a huge effort in algorithmic
development. Scientific computing is only one illustration of this general
need in computer science. Visualization, data storage, mesh generation,
operating systems, . . . must be designed with parallelism in mind.

We focus here on parallel linear iterative solvers. Contrary to direct
methods, the appealing feature of domain decomposition methods is that
they are naturally parallel. We introduce the reader to the main classes
of domain decomposition algorithms: Schwarz, Neumann-Neumann/FETI
and Optimized Schwarz. For each method we start by the continuous for-
mulation in terms of PDEs for two subdomains. We then give the definition
in terms of stiffness matrices and their implementation in a free finite ele-
ment package in the many subdomain case. This presentation reflects the
dual nature of domain decomposition methods. They are solvers of linear
systems keeping in mind that the matrices arise from the discretization of
partial differential operators. As for domain decomposition methods that
directly address non linearities, we refer the reader to e.g. [14] or [15] and
references therein.

In Chapter 1 we start by introducing different versions of Schwarz algo-
rithms at continuous level, having as a starting point H. Schwarz method
(see [164]): Jacobi Schwarz Method (JSM), Additive Schwarz Method (ASM)
and Restricted Additive Schwarz (RAS) which the default parallel solver in
PETSc. The first natural feature of these algorithms are that they are equiv-
alent to a Block-Jacobi method when the overlap is minimal. We move on
to the algebraic versions of the Schwarz methods. In order to do this, sev-
eral concepts are necessary: restriction and prolongation operators as well as
partitions of unity which make possible the global definition. These concepts
are explained in detail in the case of different type of discretizations (finite
difference or finite element) and spatial dimensions. The convergence of the
Schwarz method in the two-subdomain case is illustrated for one-dimensional
problems and then for two-dimensional problems by using Fourier analysis.
The last part of the chapter is dedicated to the numerical implementation
by using FreeFem++ [102] for general decompositions into subdomains.

In Chapter 2 we present the main ideas which justify the use of Krylov
methods instead of stationary iterations. Since Schwarz methods introduced
in Chapter 1 represent fixed point iterations applied to preconditioned global
problems, and consequently not providing the fastest convergence possible,
it is natural to apply Krylov methods instead. This provides the justification
of using Schwarz methods as preconditioners rather than solvers. Numerical
implementations and results using FreeFem++ are closing the chapter.

Chapter 3 is devoted to the introduction of two-level methods. In the
presence of many subdomains, the performance of Schwarz algorithms, i.e.
the iteration number and execution time will grow linearly with the number

iii

of subdomains in one direction. From a parallel computing point of view this
translates into a lack of scalability. The latter can be achieved by adding a
second level or a coarse space. This is strongly related to multigrid methods
and to deflation methods from numerical linear algebra. The simplest coarse
space which belongs to Nicolaides is introduced and then implemented in
FreeFem++. This is a particular case of a more general class of spectral
coarse spaces which are generated by vectors issued from solving some local
generalized eigenvalue problems.

In Chapter 4 the theory of the two-level algorithms of chapter 3 is pre-
sented. First, a general variational setting is introduced as well as elements
from the abstract theory of the two-level additive Schwarz methods (e.g.
the concept of stable decomposition). The analysis of spectral and classical
coarse spaces goes through some properties and functional analysis results.
These results are valid for scalar elliptic PDEs. Chapter 5 is devoted to
the Neumann-Neumann and FETI algorithms. We start with the two sub-
domain case for the Poisson problem. Then, we consider the formulation
in terms of stiffness matrices and stress the duality of these methods. We
also establish a connection with block factorization of the stiffness matrix
of the original problem. We then show that in the many subdomains case
Neumann-Neumann and FETI are no longer strictly equivalent. For sake
of simplicity, we give a FreeFem++ implementation of only the Neumann-
Neumann algorithm. The reader is then ready to delve into the abundant
litterature devoted to the use of these methods for solving complex mechan-
ical problems.

In Chapter 6 we present Optimized Schwarz methods applied to the
Helmholtz equation which models acoustic wave propagation in the fre-
quency domain. We begin with the two subdomain case. We show the
need for the use of interface conditions different from Dirichlet or Neumann
boundary conditions. The Lions and Desprès algorithms which are based
on Robin interface conditions are analyzed together with their implementa-
tions. We also show that by taking even more general interface conditions,
much better convergence can be achieved at no extra cost compared to the
use of Robin interface conditions. We consider the many subdomain case
as well. These algorithms are the method of choice for wave propagation
phenomena in the frequency regime. Such situations occur in acoustics,
electromagnetics and elastodynamics.

In Chapter 7, we return to two level methods. This time, a quite recent
adaptive abstract coarse space, as well as most classical two-level methods
are presented in a different light, under a common framework. Moreover,
their convergence is proven in an abstract setting, provided that the as-
sumptions of the Fictitious Space Lemma are satisfied. The new coarse
space construction is based on solving GENeralized Eigenvalue problems in
the Overlap (GenEO). The construction is provable in the sense that the
condition number is given in terms of an explicit formula where the con-

iv

stants that appear are the maximal number of neighbors of a subdomain
and a threshold prescribed by the user. The latter can be applied to a
broader class of elliptic equations, which include systems of PDEs such as
linear elasticity even with highly heterogeneous coefficients.

In Chapter 8 we introduce the parallel computational framework used
in the parallel version of the free finite element package FreeFem++ which
is currently linked with HPDDM, a C++ framework for high-performance
domain decomposition methods, available at the following URL: https:

//github.com/hpddm/hpddm. Numerical simulations of very large scale
problems on high performance computers show the weak and strong scala-
bilities of the Schwarz methods for 2D and 3D Darcy and elasticity problems
with highly heterogeneous coefficients with billions of degrees of freedom. A
self contained FreeFem++ parallel script is given.

https://github.com/hpddm/hpddm
https://github.com/hpddm/hpddm

Contents

1 Schwarz methods 1

1.1 Three continuous Schwarz Algorithms 1

1.2 Connection with the Block Jacobi algorithm 6

1.3 discrete partition of unity . 9

1.3.1 Two subdomain case in one dimension 11

1d Algebraic setting . 11

1d Finite element decomposition 12

1.3.2 Multi dimensional problems and many subdomains . . 14

Multi-D algebraic setting 14

Multi-D finite element decomposition 15

1.4 Iterative Schwarz methods: RAS, ASM 16

1.5 Convergence analysis . 16

1.5.1 1d case: a geometrical analysis 17

1.5.2 2d case: Fourier analysis for two subdomains 17

1.6 Schwarz methods using FreeFem++ 20

1.6.1 A very short introduction to FreeFem++ 20

1.6.2 Setting the domain decomposition problem 25

1.6.3 Schwarz algorithms as solvers 35

1.6.4 Systems of PDEs: the example of linear elasticity . . . 37

2 Krylov methods 43

2.1 Fixed point iterations . 43

2.2 Krylov spaces . 45

2.2.1 Gradient methods . 48

2.3 The Conjugate Gradient method 49

2.3.1 The Preconditioned Conjugate Gradient Method . . . 54

2.4 Krylov methods for non-symmetric problems 56

2.4.1 The GMRES method . 58

2.4.2 Convergence of the GMRES algorithm 61

2.5 Krylov methods for ill-posed problems 63

2.6 Schwarz preconditioners using FreeFem++ 66

1

2 CONTENTS

3 Coarse Spaces 75

3.1 Need for a two-level method . 75

3.2 Nicolaides coarse space . 80

3.2.1 Nicolaides coarse space using FreeFem++ 81

3.3 Introduction of a spectral coarse space 85

3.3.1 Spectral coarse spaces for other problems 88

4 Theory of two-level ASM 89

4.1 Variational setting . 89

4.2 Additive Schwarz setting . 90

4.3 Abstract theory for the two-level ASM 94

4.4 Definition and properties of coarse spaces 96

4.4.1 Nicolaides coarse space 96

4.4.2 Spectral coarse space . 97

4.5 Convergence theory for ASM with Nicolaides and spectral
coarse spaces . 100

4.6 Functional analysis results . 102

4.7 Theory of spectral coarse spaces for scalar heterogeneous prob-
lems . 104

5 Neumann-Neumann and FETI Algorithms 107

5.1 Direct and Hybrid Substructured solvers 107

5.2 Two-subdomains at the continuous level 110

5.2.1 Iterative Neumann-Neumann and FETI algorithms . . 111

5.2.2 Substructured reformulations 113

5.2.3 FETI as an optimization problem 116

5.3 Two subdomains case at the algebraic level 117

5.3.1 Link with approximate factorization 120

5.4 Many subdomains case . 121

5.4.1 Remarks on FETI . 124

5.5 Neumann-Neumann in FreeFem++ 126

5.5.1 FreeFem++ scripts . 129

5.6 Non-standard Neumann-Neumann type methods 132

5.6.1 Smith normal form of linear systems of PDEs 135

5.6.2 An optimal algorithm for the bi-harmonic operator . . 138

5.6.3 Some optimal algorithms 139

6 Optimized Schwarz methods (OSM) 141

6.1 P.L. Lions’ Algorithm . 141

6.1.1 Computation of the convergence factor 143

6.1.2 General convergence proof 145

6.2 Helmholtz problems . 148

6.2.1 Convergence issues for Helmholtz 149

6.2.2 Després’ Algorithm for the Helmholtz equation 152

CONTENTS 3

6.3 Implementation issues . 155

6.3.1 Two-domain non-overlapping decomposition 156

6.3.2 Overlapping domain decomposition 160

6.4 Optimal interface conditions . 163

6.4.1 Optimal interface conditions and ABC 163

6.4.2 Optimal Algebraic Interface Conditions 167

6.5 Optimized interface conditions 169

6.5.1 Optimized interface conditions for η −∆ 169

6.5.2 Optimized IC for Helmholtz 172

Optimized Robin interface conditions 175

Optimized Second order interface conditions 177

Numerical results . 179

6.5.3 Optimized IC for other equations 184

6.6 FreeFem++ implementation of ORAS 185

7 GenEO Coarse Space 189

7.1 Reformulation of the Additive Schwarz Method 190

7.2 Mathematical Foundation . 193

7.2.1 Fictitious Space Lemma 193

7.2.2 Symmetric Generalized Eigenvalue problem 195

7.2.3 Auxiliary lemma . 200

7.3 Finite element setting . 202

7.4 GenEO coarse space for Additive Schwarz 203

7.4.1 Some estimates for a stable decomposition with RASM,2204

7.4.2 Definition of the GenEO coarse space 206

7.5 Hybrid Schwarz with GenEO . 209

7.5.1 Efficient implementation 211

7.6 FreeFem++ Implementation . 213

7.7 Balancing Neumann-Neumann 219

7.7.1 Easy Neumann-Neumann 220

7.7.2 Neumann-Neumann with ill-posed subproblems 223

7.7.3 GenEO BNN . 227

7.7.4 Efficient implementation of the BNNG method 231

8 Implementation of Schwarz methods 233

8.1 A parallel FreeFem++ script . 233

8.1.1 Three dimensional elasticity problem 233

8.1.2 Native DDM solvers and PETSc Interface 237

FreeFem++ interface 238

PETSc interface 239

8.1.3 Validation of the computation 239

8.1.4 Parallel Script . 240

8.2 Numerical experiments . 246

8.2.1 Small scale computations 246

4 CONTENTS

8.2.2 Large Scale Computations 247
Strong scaling experiments 247
Weak scaling experiments 251

8.3 FreeFem++ Algebraic Formulation 253

Chapter 1

Schwarz methods

1.1 Three continuous Schwarz Algorithms

Hermann Schwarz was a German analyst of the 19th century. He was in-
terested in proving the existence and uniqueness of the Poisson problem.
At his time, there were no Sobolev spaces nor Lax-Milgram theorem. The
only available tool was the Fourier transform, limited by its very nature to
simple geometries. In order to consider more general situations, H. Schwarz
devised an iterative algorithm for solving Poisson problem set on a union of
simple geometries, see [164]. For a historical presentation of these kind of
methods see [83].

Let the domain Ω be the union of a disk and a rectangle, see figure 1.1.
Consider the Poisson problem which consists in finding u ∶ Ω→ R such that:

−∆(u) = f in Ω
u = 0 on ∂Ω.

(1.1)

Definition 1.1.1 (Original Schwarz algorithm) The Schwarz algorithm
is an iterative method based on solving alternatively sub-problems in domains

Ω1 Ω2

Figure 1.1: A complex domain made from the union of two simple geometries

1

2 CHAPTER 1. SCHWARZ METHODS

Ω1 and Ω2. It updates (un1 , un2) → (un+1
1 , un+1

2) by:

−∆(un+1
1) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on ∂Ω1 ∩Ω2.

then,

−∆(un+1
2) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩Ω1.
(1.2)

H. Schwarz proved the convergence of the algorithm and thus the well-
posedness of the Poisson problem in complex geometries.

With the advent of digital computers, this method also acquired a prac-
tical interest as an iterative linear solver. Subsequently, parallel computers
became available and a small modification of the algorithm made by P.L. Li-
ons in [121] makes it suited to these architectures. Its convergence can be
proved using the maximum principle [120].

Definition 1.1.2 (Parallel Schwarz algorithm) Iterative method which
solves concurrently in all subdomains, i = 1,2:

−∆(un+1
i) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un3−i on ∂Ωi ∩Ω3−i.

(1.3)

It is easy to see that if the algorithm converges, the solutions u∞i , i = 1,2
in the intersection of the subdomains take the same values. Indeed, in the
overlap Ω12 ∶= Ω1 ∩Ω2, let e∞ ∶= u∞1 −u∞2 . By the last line of (1.3), we know
that e∞ = 0 on ∂Ω12. By linearity of the Poisson equation, we also have that
e∞ is harmonic. Thus, e∞ solves the homogeneous well-posed BVP:

−∆(e∞) = 0 in Ω12

e∞ = 0 on ∂Ω12

and thus e∞ = 0 .
Algorithms (1.2) and (1.3) act on the local functions (ui)i=1,2. In order

to write algorithms that act on global functions in H1(Ω), the space in which
problem (1.1) is naturally posed, we need extension operators and partitions
of unity.

Definition 1.1.3 (Extension operators and partition of unity) Let the
extension operator Ei such that Ei(wi) ∶ Ω → R is the extension of a func-
tion wi ∶ Ωi ↦ R, by zero outside Ωi. We also define the partition of unity
functions χi ∶ Ωi → R, χi ≥ 0 and χi(x) = 0 for x ∈ ∂Ωi ∖ ∂Ω and such that:

w =
2

∑
i=1

Ei(χiw∣Ωi) . (1.4)

for any function w ∶ Ω↦ R.

1.1. THREE CONTINUOUS SCHWARZ ALGORITHMS 3

There are two ways to write related algorithms that act on functions un ∈
H1(Ω).

Definition 1.1.4 (First global Schwarz iteration) Let un be an approx-
imation to the solution to the Poisson problem (1.1), un+1 is computed by
solving first local sub-problems:

−∆(wn+1
i) = f in Ωi, wn+1

i = un on ∂Ωi ∩Ω3−i

wn+1
i = 0 on ∂Ωi ∩ ∂Ω .

(1.5)

and then gluing them together using the partition of unity functions:

un+1 ∶=
2

∑
i=1

Ei(χiwn+1
i) . (1.6)

We can prove the following property:

Lemma 1.1.1 Algorithm (1.5)-(1.6) which iterates on un and algorithm
(1.3) which iterates on (un1 , un2) are equivalent.

Proof Starting from initial guesses which satisfy u0 =
2

∑
i=1

Ei(χi u0
i), we

prove by induction that

un =
2

∑
i=1

Ei(χi uni) . (1.7)

holds for all n ≥ 0. Assume the property holds at step n of the algorithm.
Then, using the fact that χ1 = 1 and χ2 = 0 on ∂Ω1∩Ω̄2 we have by definition
that wn+1

1 is a solution to BVP (1.3):

−∆(wn+1
1) = f in Ω1,
wn+1

1 = 0 on ∂Ω1 ∩ ∂Ω,

wn+1
1 = un =

2

∑
i=1

Ei(χi uni) = un2 on ∂Ω1 ∩Ω2.

(1.8)

and thus wn+1
1 = un+1

1 . The proof is the same for wn+1
2 = un+1

2 . Finally, we
have using (1.6):

un+1 =
2

∑
i=1

Ei(χiwni) =
2

∑
i=1

Ei(χi uni) .

We introduce another formulation to algorithm (1.5)-(1.6) in terms of the
continuous residual rn ∶= f +∆un. This way, we get closer to the algebraic
definition of domain decomposition methods.

4 CHAPTER 1. SCHWARZ METHODS

Lemma 1.1.2 (Equivalence between Schwarz’ algorithm and RAS)
The algorithm defined by (1.12), (1.13) and (1.14) is called the continuous
RAS algorithm. It is equivalent to the Schwarz’ algorithm (1.3).

Proof Here, we have to prove the equality

un = E1(χ1u
n
1) +E2(χ2u

n
2) ,

where un1,2 is given by (1.3) and un is given by (1.12)-(1.13)-(1.14). We
assume that the property holds for the initial guesses:

u0 = E1(χ1u
0
1) +E2(χ2u

0
2)

and proceed by induction assuming the property holds at step n of the
algorithm, i.e. un = E1(χ1u

n
1) +E2(χ2u

n
2). From (1.14) we have

un+1 = E1(χ1(un + vn1)) +E2(χ2(un + vn2)) . (1.9)

We prove now that un
∣Ω1

+ vn1 = un+1
1 by proving that un

∣Ω1
+ vn1 satisfies (1.3)

as un+1
1 does. We first note that, using (1.13)-(1.12) we have:

−∆(un + vn1) = −∆(un) + rn = −∆(un) + f +∆(un) = f in Ω1,

un + vn1 = un on ∂Ω1 ∩Ω2,
(1.10)

It remains to prove that

un = un2 on ∂Ω1 ∩Ω2 .

By the induction hypothesis we have un = E1(χ1u
n
1) +E2(χ2u

n
2). On ∂Ω1 ∩

Ω2, we have χ1 ≡ 0 and thus χ2 ≡ 1. So that on ∂Ω1 ∩Ω2 we have :

un = χ1u
n
1 + χ2u

n
2 = un2 . (1.11)

Finally from (1.10) and (1.11) we can conclude that un
∣Ω1

+vn1 = un+1
1 satisfies

problem (1.3) and is thus equal to un+1
1 . The same holds for domain Ω2,

un
∣Ω2

+ vn2 = un+1
2 . Then equation (1.9) reads

un+1 = E1(χ1u
n+1
1) +E2(χ2u

n+1
2)

which ends the proof of the equivalence between Schwarz’ algorithm and the
continuous RAS algorithm (1.12)-(1.13)-(1.15).

A second possibility consists in replacing the above formula by a simpler
formula not based on the partition of unity.

1.1. THREE CONTINUOUS SCHWARZ ALGORITHMS 5

Algorithm 1 RAS algorithm at the continuous level

1. Compute the residual rn ∶ Ω→ R:

rn ∶= f +∆(un) (1.12)

2. For i = 1,2 solve for a local correction vni :

−∆(vni) = rn in Ωi , vni = 0 on ∂Ωi (1.13)

3. Compute an average of the local corrections and update un:

un+1 = un +E1(χ1v
n
1) +E2(χ2v

n
2) . (1.14)

where (χi)i=1,2 and (Ei)i=1,2 define a partition of unity as in defined
in section 1.1 equation (1.4).

Algorithm 2 ASM algorithm at the continuous level

1. Compute the residual rn ∶ Ω→ R:

rn ∶= f +∆(un) (1.16)

2. For i = 1,2 solve for a local correction vni :

−∆(vni) = rn in Ωi , vni = 0 on ∂Ωi (1.17)

3. Update un:
un+1 = un +E1(vn1) +E2(vn2) . (1.18)

6 CHAPTER 1. SCHWARZ METHODS

Definition 1.1.5 (Second global Schwarz iteration) Let un be an ap-
proximation to the solution to the Poisson problem (1.1), un+1 is computed
by solving first local sub-problems (1.12)-(1.13) and then gluing them to-
gether without the use of the partition of unity functions:

un+1 ∶=
2

∑
i=1

Ei(un+1
i) . (1.15)

Starting from the original Schwarz algorithm (1.2) that is sequential, we
have thus three continuous algorithms that are essentially parallel:

• Algorithm (1.3) Jacobi Schwarz Method (JSM)

• Algorithm (1.12)-(1.13)-(1.14) Restricted Additive Schwarz (RAS)

• Algorithm (1.16)-(1.17)-(1.18) Additive Schwarz Method (ASM)

The discrete version of the first algorithm is seldom implemented since
it involves duplication of unknowns. The discrete version of the second
algorithm is the restricted additive Schwarz method (RAS, see[17, 18]) which
is the default parallel solver in the package PETSC. The discrete version of
the third algorithm is the additive Schwarz method (ASM) for which many
theoretical results have been derived, see [174] and references therein. The
latter term was introduced first by Dryja and Widlund in [63] for a variant
of the algorithm firstly introduced at continuous level in [130].

1.2 Connection with the Block Jacobi algorithm

In the previous section we have noticed that the three methods illustrate
different points of view of the Schwarz iteration, the continuous aspect em-
phasized the interest of the overlap, which can be often hidden by the dis-
cretization. When going to the discrete level, we will see that Schwarz al-
gorithm is, from a linear algebra point of view a variation of a block-Jacobi
algorithm.

We first recall the definition of a block Jacobi algorithm and then es-
tablish a connection with the Schwarz algorithms. Let us consider a linear
system:

AU = F (1.19)

with a matrix A of size m ×m, a right-hand side F ∈ Rm and a solution
U ∈ Rm where m is an integer. The set of indices {1, . . . ,m} is partitioned
into two sets

N1 ∶= {1, . . . ,ms} and N2 ∶= {ms + 1, . . . ,m} .

1.2. CONNECTION WITH THE BLOCK JACOBI ALGORITHM 7

Let U1 ∶= (Uk)k∈N1 ∶= U∣N1
, U2 ∶= (Uk)k∈N2 ∶= U∣N2

and similarly F1 ∶= F∣N1
,

F2 ∶= F∣N2
.

The linear system has the following block form:

(A11 A12

A21 A22
)(U1

U2
) = (F1

F2
)

where Aij ∶= A∣Ni×Nj
, 1 ≤ i, j ≤ 2.

Definition 1.2.1 (Jacobi algorithm) Let D be the diagonal of A, the Ja-
cobi algorithm reads:

DUn+1 =DUn + (F −AUn) ,

or equivalently,

Un+1 = Un +D−1(F −AUn) = Un +D−1rn ,

where rn = F −AUn is the residual of the equation.

We now define a block Jacobi algorithm.

Definition 1.2.2 (Block-Jacobi algorithm) The block-Jacobi algorithm
reads:

(A11 0
0 A22

)(Un+1
1

Un+1
2

) = (A11 0
0 A22

)(Un
1

Un
2

) + (F1

F2
) −A(Un

1

Un
2

)

(1.20)
or equivalently

⎛
⎝
A11 0

0 A22

⎞
⎠
⎛
⎝

Un+1
1

Un+1
2

⎞
⎠
=
⎛
⎝
F1 −A12 Un

2

F2 −A21 Un
1

⎞
⎠
. (1.21)

In order to have a more compact form of the previous algorithm, we in-
troduce R1 the restriction operator from N into N1 and similarly R2 the
restriction operator from N into N2. The transpose operator RTi are exten-
sions operators from Ni into N . Note that Aii = RiARTi .

Lemma 1.2.1 (Compact form of a block-Jacobi algorithm) The al-
gorithm (1.21) can be re-written as

Un+1 = Un + (RT1 (R1AR
T
1)−1R1 +RT2 (R2AR

T
2)−1R2) rn . (1.22)

Proof Let Un = (Un
1
T ,Un

2
T)T , algorithm (1.21) becomes

⎛
⎝
A11 0

0 A22

⎞
⎠

Un+1 = F −
⎛
⎝

0 A12

A21 0

⎞
⎠

Un . (1.23)

8 CHAPTER 1. SCHWARZ METHODS

On the other hand, equation (1.20) can be rewritten equivalently

(Un+1
1

Un+1
2

) = (Un
1

Un
2

)+(A11 0
0 A22

)
−1

(rn1
rn2

)⇔Un+1 = Un+(A−1
11 0
0 A−1

22
) rn

(1.24)
where rni ∶= rn

∣Ni
, i = 1,2 . By taking into account that

(A−1
11 0
0 0

) = RT1 A−1
11R1 = RT1 (R1AR

T
1)−1R1

and

(0 0
0 A−1

22
) = RT2 A−1

22R2 = RT2 (R2AR
T
2)−1R2 ,

the conclusion follows easily.

In order to establish a connection with the Schwarz algorithms, consider
the following BVP on Ω ∶= (0,1): Find u such that

−∆u = f, in Ω
u(0) = u(1) = 0 .

We discretize it by a three point finite difference scheme on the grid xj ∶= j h,
1 ≤ j ≤ m where h ∶= 1/(m + 1). Let uj ≃ u(xj), fj ∶= f(xj), 1 ≤ j ≤ m
and U = (uj)1≤j≤m, F = (fj)1≤j≤m satisfy equation (1.19) where A is the
tridiagonal matrix Aj j ∶= 2/h2 and Aj j+1 = Aj+1 j ∶= −1/h2.

Let domains Ω1 ∶= (0, (ms + 1)h) and Ω2 ∶= (ms h,1) define an overlap-
ping decomposition with a minimal overlap of width h. The discretization
of (1.5) for domain Ω1 reads

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
un+1

1,j−1 − 2un+1
1,j + un+1

1,j+1

h2
= fj , 1 ≤ j ≤ms

un+1
1,0 = 0

un+1
1,ms+1 = un2,ms+1

.

Solving for Un+1
1 = (un+1

1,j)1≤j≤ms corresponds to solving a Dirichlet boundary
value problem in subdomain Ω1 with Dirichlet data taken from the other
subdomain at the previous step. With the notations introduced previously,
Un+1

1 satisfies

A11U
n+1
1 +A12U

n
2 = F1 .

Similarly, we have

A22U
n+1
2 +A21U

n
1 = F2 .

These two equations are equivalent to (1.21) and represent the discretization
of the JSM method (1.3).

1.3. DISCRETE PARTITION OF UNITY 9

Ω1 Ω2
xms xms+1

χ1 χ2

Figure 1.2: Domain decomposition with minimal overlap and partition of
unity

The discrete counterpart of the extension operator E1 (resp. E2) is de-
fined by E1(U1) = (UT

1 ,0)T (resp. E2(U2) = (0,UT
2)T). The discretization

of the ASM (1.5)-(1.15) is then given by equation (1.23). Thus when the
overlap is minimal, the ASM method reduces to the block Jacobi algorithm.

Let χi, i = 1,2 be the piecewise linear functions that define a partition
of unity on the domain decomposition, see Figure 1.2. In this very simple
configuration,

χ1(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if 0 ≤ x ≤ xms
xms+1 − x

h
if xms ≤ x ≤ xms+1

and

χ2(x) =
⎧⎪⎪⎨⎪⎪⎩

x − xms
h

if xms ≤ x ≤ xms+1

1 if xms+1 ≤ x ≤ 1
.

Functions χi, i = 1,2 define a partition of unity in the sense of (1.4). Since
the overlap is minimal, the discretization of (1.6) is equivalent to that of
(1.15). Thus RAS reduces, in this case, to ASM.

Remark 1.2.1 In conclusion when the overlap is minimal the discrete coun-
terparts of the three Schwarz methods of section 1.1 are equivalent to the
same block Jacobi algorithm. Notice here a counter-intuitive feature: a non
overlapping decomposition of the set of indices N corresponds to a geometric
decomposition of the domain Ω with minimal overlap.

1.3 Algebraic algorithms: discrete partition of unity

Our goal is to introduce the algebraic counterparts of algorithms RAS and
ASM defined in § 1.1 in the general case. The simplest way to do so is to
write the iterative method in terms of residuals as is done in equation (1.22).
In order to do this, we need to settle some elements necessary in this writing.
One of them is the proper definition of the partition of unity.

At the continuous level (partial differential equations), the main ingre-
dients of the partition of unity are

10 CHAPTER 1. SCHWARZ METHODS

• An open domain Ω and an overlapping decomposition into N open
subsets Ω = ∪Ni=1Ωi.

• A function u ∶ Ω→ R.

• The extension operator Ei of a function Ωi → R to a function Ω → R
equals to zero in Ω/Ωi.

• The partition of unity functions χi, 1 ≤ i ≤ N introduced in for-
mula (1.4) which verify for all functions u ∶ Ω→ R:

u =
2

∑
i=1

Ei(χi u∣Ωi).

We can give a similar definition at the discrete level.

Definition 1.3.1 (Algebraic partition of unity) At the discrete level,
the main ingredients of the partition of unity are

• A set indices of degrees of freedom N and a decomposition into N
subsets N = ∪Ni=1Ni.

• A vector U ∈ R#N .

• The restriction of a vector U ∈ R#N to a subdomain Ωi, 1 ≤ i ≤ N
can be expressed as RiU where Ri is a rectangular #Ni×#N Boolean
matrix. The extension operator will be the transpose matrix RTi .

• The partition of unity “functions” at discrete level correspond to diag-
onal matrices of size #Ni × #Ni with non negative entries such that
for all vectors U ∈ R#N

U =
N

∑
i=1

RTi DiRiU ,

or in other words

Id =
N

∑
i=1

RTi DiRi (1.25)

where Id ∈ R#N×#N is the identity matrix.

As pointed out in Remark 1.2.1 an overlapping decomposition of a domain
Ω might correspond to a partition of the set of indices.

In the following we will give some simple examples where all the ingre-
dients of the Definition 1.3.1 are detailed and we will check that (1.25) is
verified in those cases.

1.3. DISCRETE PARTITION OF UNITY 11

1.3.1 Two subdomain case in one dimension

1d Algebraic setting

We start from the 1d example of § 1.2 with n = 5, ns = 3 so that the set of
indices N ∶= {1, . . . ,5} is partitioned into two sets, see Figure 1.3

N1 ∶= {1,2,3} and N2 ∶= {4,5} .

Then, matrix R1 is of size 3 × 5 and matrix R2 is of size 2 × 5:

N1 N2

1 2 3 4 5

Figure 1.3: Algebraic partition of the set of indices

R1 =
⎛
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎞
⎟
⎠

and R2 = (0 0 0 1 0
0 0 0 0 1

) ,

and

RT1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and RT2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0
0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

We also have

D1 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

and D2 = (1 0
0 1

) .

It is clear that relation (1.25) holds.

N δ=1
1

N δ=1
2

1 2 3 4 5

Figure 1.4: Algebraic decomposition of the set of indices into overlapping
subsets

12 CHAPTER 1. SCHWARZ METHODS

Consider now the case where each subset is extended with a neighboring
point, see Figure 1.4:

N δ=1
1 ∶= {1,2,3,4} and N δ=1

2 ∶= {3,4,5} .

Then, matrices R1 and R2 are:

R1 =
⎛
⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟
⎠

and R2 =
⎛
⎜
⎝

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎠
.

The simplest choices for the partition of unity matrices are

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠

or

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1/2

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜
⎝

1/2 0 0
0 1/2 0
0 0 1

⎞
⎟
⎠
.

Again, it is clear that relation (1.25) holds.

Ω1 Ω2

1 2 3 4 5

Figure 1.5: Finite element partition of the mesh

1d Finite element decomposition

We still consider the 1d example with a decomposition into two subdomains
but now in a finite element spirit. A partition of the 1D mesh of Figure 1.5
corresponds to an overlapping decomposition of the set of indices:

N1 ∶= {1,2,3} and N2 ∶= {3,4,5} .

Then, matrices R1 and R2 are:

R1 =
⎛
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎞
⎟
⎠

and R2 =
⎛
⎜
⎝

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎠
.

1.3. DISCRETE PARTITION OF UNITY 13

In order to satisfy relation (1.25), the simplest choice for the partition of
unity matrices is

D1 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1/2

⎞
⎟
⎠

and D2 =
⎛
⎜
⎝

1/2 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Consider now the situation where we add a mesh to each subdomain, see

Ωδ=1
1 Ωδ=1

2

1 2 3 4 5

Figure 1.6: Finite element decomposition of the mesh into overlapping sub-
domains

Figure 1.6. Accordingly, the set of indices is decomposed as:

N δ=1
1 ∶= {1,2,3,4} and N δ=1

2 ∶= {2,3,4,5} .

Then, matrices R1 and R2 are:

R1 =
⎛
⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟
⎠

and R2 =
⎛
⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟
⎠
.

In order to satisfy relation (1.25), the simplest choice for the partition of
unity matrices is

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 1/2 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

Another possible choice that will satisfy relation (1.25) as well is

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜⎜⎜
⎝

1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

14 CHAPTER 1. SCHWARZ METHODS

1.3.2 Multi dimensional problems and many subdomains

In the general case, the set of indices N can be partitioned by an automatic
graph partitioner such as METIS[115] or SCOTCH [24]. From the input ma-
trix A, a connectivity graph is created. Two indices i, j ∈ N are connected
if the matrix coefficient Aij ≠ 0. Usually, even if matrix A is not symmet-
ric, the connectivity graph is symmetrized. Then algorithms that find a
good partitioning of highly unstructured graphs are used. This distribution
must be done so that the number of elements assigned to each processor is
roughly the same, and the number of adjacent elements assigned to different
processors is minimized. The goal of the first condition is to balance the
computations among the processors. The goal of the second condition is
to minimize the communication resulting from the placement of adjacent
elements to different processors.

Multi-D algebraic setting

Let us consider a partition into N subsets (see Figure 1.7):

N ∶=
N

⋃
i=1

Ni, Ni ∩Nj = ∅ for i ≠ j . (1.26)

Let Ri be the restriction matrix from set N to the subset Ni and Di the
identity matrix of size #Ni × #Ni, 1 ≤ i ≤ N . Then, relation (1.25) is
satisfied.

N δ=1
2

N δ=1
1

N δ=1
3N2

N1

N3

Figure 1.7: Partition and overlapping decomposition of the set of indices

Consider now the case where each subset Ni is extended with its direct
neighbors to formN δ=1

i , see Figure 1.7. Let Ri be the restriction matrix from
setN to the subsetN δ=1

i and Di be a diagonal matrix of size #N δ=1
i ×#N δ=1

i ,
1 ≤ i ≤ N . For the choice of the coefficients of Di there are two main options.

1.3. DISCRETE PARTITION OF UNITY 15

Figure 1.8: Left: Finite element partition; Right: one layer extension of the
right subdomain

The simplest one is to define it as a Boolean matrix:

(Di)jj ∶= { 1 if j ∈ Ni,
0 if j ∈ N δ=1

i /Ni.

Then, relation (1.25) is satisfied. Another option is to introduce for all j ∈ N
the set of subsets having j as an element:

Mj ∶= {1 ≤ i ≤ N ∣ j ∈ N δ=1
i } .

Then, define
(Di)jj ∶= 1/#Mj , for j ∈ N δ=1

i .

Then, relation (1.25) is satisfied.

Multi-D finite element decomposition

Partitioning a set of indices is well adapted to an algebraic framework. In
a finite element setting, the computational domain is the union of elements
of the finite element mesh Th. A geometric partition of the computational
domain is natural. Here again, graph partitioning can be used by first
modeling the finite element mesh by a graph, and then partitioning it into
N parts, see Figure 1.8. By adding to each part layers of elements, it is
possible to create overlapping subdomains resolved by the finite element
meshes:

Ωi = ⋃
τ∈Ti,h

τ for 1 ≤ i ≤ N . (1.27)

Let {φk}k∈N be a basis of the finite element space. We define

Ni ∶= {k ∈ N ∶ supp (φk) ∩Ωi ≠ ∅}1 ≤ i ≤ N. (1.28)

For each degree of freedom k ∈ N , let

µk ∶= #{j ∶ 1 ≤ j ≤ N and supp (φk) ∩Ωj ≠ ∅} .

16 CHAPTER 1. SCHWARZ METHODS

Let Ri be the restriction matrix from set N to the subset Ni and Di be a
diagonal matrix of size #Ni ×#Ni, 1 ≤ i ≤ N such that

(Di)kk ∶= 1/µk, k ∈ Ni.

Then, relation (1.25) is satisfied.

1.4 Iterative Schwarz methods: RAS, ASM

In a similar way to what was done for the block Jacobi algorithm in equa-
tion (1.22), we can define RAS (the counterpart of Algorithm (1.5)-(1.6))
and ASM algorithms (the counterpart of Algorithm (1.5)-(1.15)).

Definition 1.4.1 (RAS algorithm) The iterative RAS algorithm is the
preconditioned fixed point iteration defined by

Un+1 = Un +M−1
RASrn, rn ∶= F −AUn

where the matrix

M−1
RAS ∶=

N

∑
i=1

RTi Di (RiARTi)
−1
Ri (1.29)

is called the RAS preconditioner.

Definition 1.4.2 (ASM algorithm) The iterative ASM algorithm is the
preconditioned fixed point iteration defined by

Un+1 = Un +M−1
ASMrn, rn ∶= F −AUn

where the matrix

M−1
ASM ∶=

N

∑
i=1

RTi (RiARTi)
−1
Ri (1.30)

is called the ASM preconditioner.

1.5 Convergence analysis

In order to have an idea about the convergence of these methods, we perform
a simple yet revealing analysis. We consider in § 1.5.1. a one dimensional
domain decomposed into two subdomains. This shows that the size of the
overlap between the subdomains is key to the convergence of the method. In
§ 1.5.2 an analysis in the multi dimensional case is carried out by a Fourier
analysis. It reveals that the high frequency component of the error is very
quickly damped thanks to the overlap whereas the low frequency part will
demand a special treatment, see chapter 3 on coarse spaces and two-level
methods.

1.5. CONVERGENCE ANALYSIS 17

1.5.1 1d case: a geometrical analysis

In the 1D case, the original sequential Schwarz method (1.2) can be ana-
lyzed easily. Let L > 0 and the domain Ω = (0, L) be decomposed into two
subodmains Ω1 ∶= (0, L1) and Ω2 ∶= (l2, L) with l2 ≤ L1. By linearity of the
equation and of the algorithm the error eni ∶= uni − u∣Ωi , i = 1,2 satisfies

−d
2en+1

1

dx2
= 0 in (0, L1)

en+1
1 (0) = 0

en+1
1 (L1) = en2(L1)

then,
−d

2en+1
2

dx2
= 0 in (l2, L)

en+1
2 (l2) = en+1

1 (l2)
en+1

2 (L) = 0 .
(1.31)

Thus the errors are affine functions in each subdomain:

en+1
1 (x) = en2(L1)

x

L1
and en+1

2 (x) = en+1
1 (l2)

L − x
L − l2

.

Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L −L1

L − l2
= en2(L1)

l2
L1

L −L1

L − l2
.

Let δ ∶= L1 − l2 denote the size of the overlap, we have

en+1
2 (L1) =

l2
l2 + δ

L − l2 − δ
L − l2

en2(L1) =
1 − δ/(L − l2)

1 + δ/l2
en2(L1) .

We see that the following quantity is the convergence factor of the algorithm

ρ1 =
1 − δ/(L − l2)

1 + δ/l2

It is clear that δ > 0 is a sufficient and necessary condition to have con-
vergence. The convergence becomes faster as the ratio of the size of the
overlap over the size of a subdomain is bigger. A geometric illustration of
the history of the convergence can be found in figure 1.9.

1.5.2 2d case: Fourier analysis for two subdomains

For sake of simplicity we consider the plane R2 decomposed into two half-
planes Ω1 = (−∞, δ) × R and Ω2 = (0,∞) × R with an overlap of size δ > 0.
We choose as an example a symmetric positive definite problem (η > 0)

(η −∆)(u) = f in R2,

u is bounded at infinity ,

The Jacobi-Schwarz method for this problem is the following iteration

(η −∆)(un+1
1) = f(x, y), (x, y) ∈ Ω1

un+1
1 (δ, y) = un2(δ, y), y ∈ R

(1.32)

18 CHAPTER 1. SCHWARZ METHODS

L1l2 L

e1
1 e1

2

e2
1

e2
2

e3
1

0

x

δ

e0
2

Figure 1.9: Convergence of the Schwarz method

and
(η −∆)(un+1

2) = f(x, y), (x, y) ∈ Ω2

un+1
2 (0, y) = un1(0, y), y ∈ R

(1.33)

with the local solutions un+1
j , j = 1,2 bounded at infinity.

In order to compute the convergence factor, we introduce the errors

eni ∶= uni − u∣Ωi , i = 1,2.

By linearity, the errors satisfy the above algorithm with f = 0:

(η −∆)(en+1
1) = f(x, y), (x, y) ∈ Ω1

en+1
1 (δ, y) = en2(δ, y), y ∈ R

(1.34)

and
(η −∆)(en+1

2) = f(x, y), (x, y) ∈ Ω2

en+1
2 (0, y) = en1(0, y), y ∈ R

(1.35)

with en+1
j bounded at infinity.

By taking the partial Fourier transform of the first line of (1.34) in the
y direction we get:

(η − ∂2

∂x2
+ k2)(ên+1

1 (x, k)) = 0 in Ω1.

1.5. CONVERGENCE ANALYSIS 19

For a given Fourier variable k, this is an ODE whose solution is sought in
the form

ên+1
1 (x, k) = ∑

j

γj(k) exp(λj(k)x).

A simple computation gives

λ1(k) = λ+(k), λ2(k) = λ−(k), with λ±(k) = ±
√
η + k2.

Therefore we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x) + γn+1
− (k) exp(λ−(k)x).

Since the solution must be bounded at x = −∞, this implies that γn+1
− (k) ≡ 0.

Thus we have
ên+1

1 (x, k) = γn+1
+ (k) exp(λ+(k)x)

or equivalently, by changing the value of the coefficient γ+,

ên+1
1 (x, k) = γn+1

1 (k) exp(λ+(k)(x − δ))

and similarly, in domain Ω2 we have:

ên+1
2 (x, k) = γn+1

2 (k) exp(λ−(k)x)

with γn+1
1,2 to be determined. From the interface conditions we get

γn+1
1 (k) = γn2 (k) exp(λ−(k)δ)

and
γn+1

2 (k) = γn1 (k) exp(−λ+(k)δ).
Combining these two and denoting λ(k) = λ+(k) = −λ−(k), we get for i = 1,2,

γn+1
i (k) = ρ(k;α, δ)2 γn−1

i (k)

with ρ the convergence factor given by:

ρ(k;α, δ) = exp(−λ(k)δ), λ(k) =
√
η + k2. (1.36)

A graphical representation can be found in Figure 1.10 for some values of
the overlap. This formula deserves a few remarks.

Remark 1.5.1 We have the following properties:

• For all k ∈ R, ρ(k) < exp(−√η δ) < 1 so that γni (k) → 0 uniformly as n
goes to infinity.

• ρ→ 0 as k tends to infinity, high frequency modes of the error converge
very fast.

• When there is no overlap (δ = 0), ρ = 1 and there is stagnation of the
method.

20 CHAPTER 1. SCHWARZ METHODS

k

ρ

exp ��sqrt�.1�k^ 2 ��, exp ��0.5�sqrt�.1�k^ 2 �� , k from 0 to 7

Input in terpre ta tion :

p lot
exp �� 0.1 � k 2 �
exp �� 0.5 0.1 � k 2 � k � 0 to 7

Plo t:

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

�� k 2�0.1

��0.5 k 2�0.1

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on October 26 , 2011 from Cham paign, IL.
© Wolfram Alpha LLC—A Wolfram Research Company

1

Figure 1.10: Convergence rate of the Schwarz method for η = .1, δ = 0.5 (red
curve) or δ = 1 (blue curve).

1.6 Schwarz methods using FreeFem++

The aim of this part is to illustrate numerically the previously defined
Schwarz methods applied to second order elliptic boundary value problems
(e.g Laplace equation and elasticity). In order to do this we will use the
free finite element software FreeFem++ [102] developed at the Laboratoire
Jacques-Louis Lions at Université Pierre et Marie Curie (Paris 6).

1.6.1 A very short introduction to FreeFem++

FreeFem++ allows a very simple and natural way to solve a great variety
of variational problems by finite element type methods including Discon-
tinuous Galerkin (DG) discretizations. It is also possible to have access to
the underlying linear algebra such as the stiffness or mass matrices. In this
section we will provide only a minimal number of elements of this software,
necessary for the understanding of the programs in the next section, see also
http://www.cmap.polytechnique.fr/spip.php?article239. A very de-
tailed documentation of FreeFem++ is available on the official website
http://www.freefem.org/ff++, at the following address
http://www.freefem.org/ff++/ftp/freefem++doc.pdf . The standard
implementation includes tons of very useful examples that make a tutorial
by themselves.

To start with, suppose we want to solve a very simple homogeneous
Dirichlet boundary value problem for a Laplacian defined on a unit square

http://www.cmap.polytechnique.fr/spip.php?article239
http://www.freefem.org/ff++

1.6. SCHWARZ METHODS USING FREEFEM++ 21

Ω =]0,1[2:

{ −∆u = f in Ω
u = 0 on ∂Ω

(1.37)

The variational formulation of this problem reads:

Find u ∈H1
0(Ω) ∶= {w ∈H1(Ω) ∶ w = 0 on ∂Ω} such that

∫
Ω
∇u.∇vdx − ∫

Ω
f v dx = 0,∀v ∈H1

0(Ω) .

A feature of FreeFem++ is to penalize Dirichlet boundary conditions. The
above variational formulation is first replaced by

Find u ∈H1(Ω) such that

∫
Ω
∇u.∇vdx − ∫

Ω
fv dx = 0,∀v ∈H1(Ω) .

Then the finite element approximation leads to a system of the type

M

∑
j=1

Aijuj − Fj = 0, i = 1, ...,M, Aij = ∫
Ω
∇φi.∇φjdx,Fi = ∫

Ω
φi dx

where (φi)1≤i≤M are the finite element functions. Note that the discretized
system corresponds to a Neumann problem. Dirichlet conditions of the type
u = g are then implemented by penalty, namely by setting

Aii = 1030, Fi = 1030 ⋅ gi
if i is a boundary degree of freedom. The penalty number 1030 is called
TGV1 and it is possible to change this value. The keyword on imposes the
Dirichlet boundary condition through this penalty term.

The following FreeFem++ script is solving this problem in a few lines.
The text after // symbols are comments ignored by the FreeFem++ lan-
guage. Each new variable must be declared with its type (here int designs
integers).

3 // Number of mesh points in x and y directions
int Nbnoeuds=10;

Listing 1.1: ./FreefemCommon/survival.edp

The function square returns a structured mesh of the square: the first two
arguments are the number of mesh points according to x and y directions
and the third one is a parametrization of Ω for x and y varying between 0
and 1 (here it is the identity). The sides of the square are labeled from 1 to
4 in trigonometrical sense (see Figure 1.2).

1Très Grande Valeur (Terrifically Great Value) = Very big value in French

22 CHAPTER 1. SCHWARZ METHODS

Ω

Γ3

Γ2

Γ1

Γ4

Figure 1.11: Numbering of square borders in FreeFem++

//Mesh definition
mesh Th=square(Nbnoeuds,Nbnoeuds,[x,y]);

Listing 1.2: ./FreefemCommon/survival.edp

We define the function representing the right-hand side using the keyword
func

// Functions of x and y
14 func f=x∗y;

func g=1.;

Listing 1.3: ./FreefemCommon/survival.edp

and the P1 finite element space Vh over the mesh Th using the keyword
fespace

// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh

22 Vh uh,vh;

Listing 1.4: ./FreefemCommon/survival.edp

The functions uh and vh belong to the P1 finite element space Vh which is
an approximation to H1(Ω). Note here that if one wants to use P2 instead
P1 finite elements, it is enough to replace P1 by P2 in the definition of Vh.

1.6. SCHWARZ METHODS USING FREEFEM++ 23

26 // variational problem definition
problem heat(uh,vh,solver=LU)=

int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
−int2d(Th)(f∗vh)

30 +on(1,2,3,4,uh=0);

Listing 1.5: ./FreefemCommon/survival.edp

The keyword problem allows the definition of a variational problem, here
called heat which can be expressed mathematically as:
Find uh ∈ Vh such that

∫
Ω
∇uh.∇vhdx − ∫

Ω
fvhdx = 0,∀vh ∈ Vh .

Afterwards, for the Dirichlet boundary condition the penalization is
imposed using TGV which is usually is equal to 1030.

Note that keyword problem defines problem (1.37) without solving it. The
parameter solver sets the method that will be used to solve the resulting
linear system, here a Gauss factorization. In order to effectively solve the
finite element problem, we need the command

34 //Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);

Listing 1.6: ./FreefemCommon/survival.edp

The FreeFem++ script can be saved with your favorite text editor (e.g.
under the name heat.edp). In order to execute the script FreeFem++, it
is enough to write the shell command FreeFem++ heat.edp. The result
will be displayed in a graphic window.

One can easily modify the script in order to solve the same kind of problems
but with mixed Neumann and Fourier boundary conditions such as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∆u + u = f in Ω
∂u

∂n
= 0 on Γ1

u = 0 on Γ2
∂u
∂n + αu = g on Γ3 ∪ Γ4.

(1.38)

where f and g are arbitrary functions and α a positive real.
The new variational formulation consists in determining uh ∈ Vh such that

∫
Ω
∇uh.∇vhdx + ∫

Γ3∪Γ4

αuhvh − ∫
Γ3∪Γ4

gvh − ∫
Ω
fvhdx = 0,

24 CHAPTER 1. SCHWARZ METHODS

for all vh ∈ Vh. Here again the Dirichlet boundary condition will be
penalized. The FreeFem++ definition of the problem reads:

// Changing boundary conditions to Neumann or Robin
42 real alpha =1.;

problem heatRobin(uh,vh)=
int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
+int1d(Th,3,4)(alpha∗uh∗vh)

46 −int1d(Th,3,4)(g∗vh)
−int2d(Th)(f∗vh)
+on(2,uh=0);

Listing 1.7: ./FreefemCommon/survival.edp

In the variational formulation of (1.38) the extra boundary integral
on Γ3 ∪ Γ4 is defined by the keyword int1d(Th,3,4)(function to

integrate).

The keyword varf allows the definition of a variational formulation

// Using linear algebra package
varf varheatRobin(uh,vh)=

54 int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
+int1d(Th,3,4)(alpha∗uh∗vh)
−int1d(Th,3,4)(g∗vh)
−int2d(Th)(f∗vh)

58 +on(2,uh=0);

Listing 1.8: ./FreefemCommon/survival.edp

If one wants to use some linear algebra package to solve the linear system
resulting from the finite element discretisation, the program below shows
how one can retrieve first the stiffness matrix and the vector associated
to the right-hand side of the variational formulation. As a general rule,
this procedure can be very useful if one wants to use other solvers such
as domain decomposition methods. Here, the linear system is solved by
UMFPACK [37].

1.6. SCHWARZ METHODS USING FREEFEM++ 25

62 // Retrieving the stiffness matrix
matrix Aglobal; // sparse matrix
Aglobal = varheatRobin(Vh,Vh,solver=UMFPACK); // stiffness matrix

// UMFPACK direct solver
66 // Retrieving the right hand side

Vh rhsglobal;
rhsglobal[] = varheatRobin(0,Vh); //right hand side vector of d.o.f’s
// Solving the problem by a sparse LU solver

70 uh[] = Aglobal−1∗rhsglobal[];

Listing 1.9: ./FreefemCommon/survival.edp
Here rhsglobal is a finite element function and the associated vector of
degrees of freedom is denoted by rhsglobal[].

1.6.2 Setting the domain decomposition problem

According to the description of the Schwarz algorithms in the previous
chapters, we need a certain number of data structures which will be built in
the sequel. The file data.edp contains the declaration of these structures
as well as the definition of the global problem to be solved.

26 CHAPTER 1. SCHWARZ METHODS

1 load ”metis” // mesh partitioner
load ”medit” // OpenGL−based scientific visualization software
int nn=8,mm=8; // number of the domains in each direction
int npart= nn∗mm; // total number of domains

5 int nloc = 10; // local no of dof per domain in one direction
bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 1; // size of the geometric overlap between subdomains, algebraic ⤸

Ç overlap is sizeovr+1
real allong = real(nn)/real(mm); // aspect ratio of the global domain

9 // Mesh of a rectangular domain
mesh Th=square(nn∗nloc,mm∗nloc,[x∗allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);

13 Ph part; // piecewise constant function
int[int] lpart(Ph.ndof); // giving the decomposition
// Domain decomposition data structures
mesh[int] aTh(npart); // sequence of subdomain meshes

17 matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
int[int] Ndeg(npart); // number of dof for each mesh
real[int] AreaThi(npart); // area of each subdomain

21 matrix[int] aA(npart),aN(npart); // local matrices
Vh[int] Z(npart); // coarse space, see Chapter 3
// Definition of the problem to solve
// Delta (u) = f, u = 1 on the global boundary

25 int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1];
Th=change(Th,refe=chlab); // all label borders are set to one
macro Grad(u) [dx(u),dy(u)] // EOM
func f = 1; // right hand side

29 func g = 1 ; // Dirichlet data
func kappa = 1.; // viscosity
func eta = 0;
Vh rhsglobal,uglob; // rhs and solution of the global problem

33 varf vaglobal(u,v) = int2d(Th)(eta∗u∗v+kappa∗Grad(u)’∗Grad(v))
+on(1,u=g) + int2d(Th)(f∗v);

matrix Aglobal;
// Iterative solver parameters

37 real tol=1e−7; // tolerance for the iterative method
int maxit=300; // maximum number of iterations

Listing 1.10: ./FreefemCommon/data.edp

Afterwards we have to define a piecewise constant function part which
takes integer values. The isovalues of this function implicitly defines a non
overlapping partition of the domain. We have a coloring of the subdomains.

Suppose we want a decomposition of a rectangle Ω into nn×mm domains with
approximately nloc points in one direction, or a more general partitioning
method, using for example METIS [115] or SCOTCH [24]. In order to
perform one of these decompositions, we make use of one of the routines
decompunif or decompMetis defined in the script decomp.idp which will

1.6. SCHWARZ METHODS USING FREEFEM++ 27

IsoValue
-0.157895
0.0789474
0.236842
0.394737
0.552632
0.710526
0.868421
1.02632
1.18421
1.34211
1.5
1.65789
1.81579
1.97368
2.13158
2.28947
2.44737
2.60526
2.76316
3.15789

uniform decomposition
IsoValue
-0.157895
0.0789474
0.236842
0.394737
0.552632
0.710526
0.868421
1.02632
1.18421
1.34211
1.5
1.65789
1.81579
1.97368
2.13158
2.28947
2.44737
2.60526
2.76316
3.15789

Metis decomposition

Figure 1.12: Uniform and Metis decomposition

return a vector defined on the mesh, that can be recasted into the piecewise
function part that we are looking for.

if (withmetis)
2 {

metisdual(lpart,Th,npart); // FreeFem++ interface to Metis
for(int i=0;i<lpart.n;++i)

part[][i]=lpart[i];
6 }

else
{
Ph xx=x,yy=y;

10 part= int(xx/allong∗nn)∗mm + int(yy∗mm);
}

Listing 1.11: ./FreefemCommon/decomp.idp

The isovalues of these two part functions correspond to respectively uniform
or Metis non-overlapping decompositions as shown in Figure 1.12.

Using the function part defined as above as an argument into the routine
SubdomainsPartitionUnity, we’ll get as a result, for each subdomain
labeled i the overlapping meshes aTh[i]:

28 CHAPTER 1. SCHWARZ METHODS

31 func bool SubdomainsPartitionUnity(mesh & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & AreaThi)

{
int npart=partdof.max+1;
mesh Thi=Th; // freefem’s trick, formal definition

35 fespace Vhi(Thi,P1); // freefem’s trick, formal definition
Vhi[int] pun(npart); // local fem functions
Vh sun=0, unssd=0;
Ph part;

39 part[]=partdof;
for(int i=0;i<npart;++i)
{

Ph suppi= abs(part−i)<0.1; // boolean 1 in the subdomain 0 elswhere
43 AddLayers(Th,suppi[],sizeoverlaps,unssd[]); // ovr partitions by adding layers

Thi=aTh[i]=trunc(Th,suppi>0,label=10,split=1);// ovr mesh interfaces label ⤸
Ç 10

Rih[i]=interpolate(Vhi,Vh,inside=1); // Restriction operator : Vh −> Vhi
pun[i][]=Rih[i]∗unssd[];

47 pun[i][] = 1.;// a garder par la suite
sun[] += Rih[i]’∗pun[i][];
Ndeg[i] = Vhi.ndof;
AreaThi[i] = int2d(Thi)(1.);

51 }
for(int i=0;i<npart;++i)
{

Thi=aTh[i];
55 pun[i]= pun[i]/sun;

Dih[i]=pun[i][]; //diagonal matrix built from a vector
}

return true;
59 }

Listing 1.12: ./FreefemCommon/createPartition.idp

Note that in the CreatePartition.idp script, the function AddLayers is
called:

1.6. SCHWARZ METHODS USING FREEFEM++ 29

func bool AddLayers(mesh & Th,real[int] &ssd,int n,real[int] &unssd)
{

// build a continuous function uussd (P1) and modifies ssd :
5 // IN: ssd in the caracteristics function on the input subdomain.

// OUT: ssd is a boolean function, unssd is a smooth function
// ssd = 1 if unssd >0; add n layer of element and unssd = 0 ouside of this layer
Ph s;

9 assert(ssd.n==Ph.ndof);
assert(unssd.n==Vh.ndof);
unssd=0;
s[]= ssd;

13 Vh u;
varf vM(uu,v)=int2d(Th,qforder=1)(uu∗v/area);
matrix M=vM(Ph,Vh);
for(int i=0;i<n;++i)

17 {
u[]= M∗s[];
u = u>.1;
unssd+= u[];

21 s[]= M’∗u[];
s = s >0.1;

}
unssd /= (n);

25 u[]=unssd;
ssd=s[];
return true;

}

Listing 1.13: ./FreefemCommon/createPartition.idp
These last two functions are tricky. The reader does not need to understand
their behavior in order to use them. They are given here for sake of
completeness. The restriction/interpolation operators Rih[i] from the
local finite element space Vh[i] to the global one Vh and the diagonal local
matrices Dih[i] are thus created.

Afterwards one needs to build the overlapping decomposition and the
associated algebraic partition of unity, see equation (1.25). Program
testdecomp.edp (see below) shows such an example by checking that the
partition of unity is correct.

30 CHAPTER 1. SCHWARZ METHODS

load ”medit”
include ”data.edp”

3 include ”decomp.idp”
include ”createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);
// check the partition of unity

7 Vh sum=0,fctone=1;
for(int i=0; i < npart;i++)
{

Vh localone;
11 real[int] bi = Rih[i]∗fctone[]; // restriction to the local domain

real[int] di = Dih[i]∗bi;
localone[] = Rih[i]’∗di;
sum[] +=localone[] ;

15 plot(localone,fill=1,value=1, dim=3,wait=1);
}
plot(sum,fill=1,value=1, dim=3,wait=1);

Listing 1.14: ./FreefemCommon/testdecomp.edp

Suppose we want to do now the same thing in a three-dimensional
case.

load ”msh3”
func mesh3 Cube(int[int] & NN,real[int,int] &BB ,int[int,int] & L)

3 // basic functions to build regular mesh of a cube
// int[int] NN=[nx,ny,nz]; the number of seg in the 3 direction
// real [int,int] BB=[[xmin,xmax],[ymin,ymax],[zmin,zmax]]; bounding bax
// int [int,int] L=[[1,2],[3,4],[5,6]]; label of the 6 faces left,right, front, back, down, up

7 {
// first build the 6 faces of the cube.
real x0=BB(0,0),x1=BB(0,1);
real y0=BB(1,0),y1=BB(1,1);

11 real z0=BB(2,0),z1=BB(2,1);
int nx=NN[0],ny=NN[1],nz=NN[2];
mesh Thx = square(nx,ny,[x0+(x1−x0)∗x,y0+(y1−y0)∗y]);

15 int[int] rup=[0,L(2,1)], rdown=[0,L(2,0)],
rmid=[1,L(1,0), 2,L(0,1), 3, L(1,1), 4, L(0,0)];

mesh3 Th=buildlayers(Thx,nz, zbound=[z0,z1],
labelmid=rmid, labelup = rup, labeldown = rdown);

19 return Th;
}

Listing 1.15: ./FreefemCommon/cube.idp

We would like to build a cube or a parallelepiped defined by calling the
function Cube defined in the script cube.idp and then to split it into
several domains. Again we need a certain number of data structures which
will be declared in the file data3d.edp

1.6. SCHWARZ METHODS USING FREEFEM++ 31

load ”metis”
load ”medit”
int nn=2,mm=2,ll=2; // number of the domains in each direction

4 int npart= nn∗mm∗ll; // total number of domains
int nloc = 11; // local no of dof per domain in one direction
bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 2; // size of the overlap

8 real allongx, allongz;
allongx = real(nn)/real(mm);
allongz = real(ll)/real(mm);
// Build the mesh

12 include ”cube.idp”
int[int] NN=[nn∗nloc,mm∗nloc,ll∗nloc];
real [int,int] BB=[[0,allongx],[0,1],[0,allongz]]; // bounding box
int [int,int] L=[[1,1],[1,1],[1,1]]; // the label of the 6 faces

16 mesh3 Th=Cube(NN,BB,L); // left,right,front, back, down, right
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part; // piecewise constant function

20 int[int] lpart(Ph.ndof); // giving the decomposition
// domain decomposition data structures
mesh3[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators

24 matrix[int] Dih(npart); // partition of unity operators
int[int] Ndeg(npart); // number of dof for each mesh
real[int] VolumeThi(npart); // volume of each subdomain
matrix[int] aA(npart); // local Dirichlet matrices

28 Vh[int] Z(npart); // coarse space
// Definition of the problem to solve
// Delta (u) = f, u = 1 on the global boundary
Vh intern;

32 intern = (x>0) && (x<allongx) && (y>0) && (y<1) && (z>0) && (z<allongz);
Vh bord = 1−intern;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
func f = 1; // right hand side

36 func g = 1; // Dirichlet data
Vh rhsglobal,uglob; // rhs and solution of the global problem
varf vaglobal(u,v) = int3d(Th)(Grad(u)’∗Grad(v))

+on(1,u=g) + int3d(Th)(f∗v);
40 matrix Aglobal;

// Iterative solver
real tol=1e−10; // tolerance for the iterative method
int maxit=200; // maximum number of iterations

Listing 1.16: ./FreefemCommon/data3d.edp

Then we have to define a piecewise constant function part which takes inte-
ger values. The isovalues of this function implicitly defines a non overlapping
partition of the domain. Suppose we want a decomposition of a rectangle Ω
into nn×mm ×ll domains with approximately nloc points in one direction,
or a more general partitioning method. We will make then use of one of

32 CHAPTER 1. SCHWARZ METHODS

Figure 1.13: Uniform and Metis decomposition

the decomposition routines which will return a vector defined on the mesh,
that can be recasted into the piecewise function part that we are looking for.

1 if (withmetis)
{

metisdual(lpart,Th,npart);
for(int i=0;i<lpart.n;++i)

5 part[][i]=lpart[i];
}

else
{

9 Ph xx=x,yy=y, zz=z;
part= int(xx/allongx∗nn)∗mm∗ll + int(zz/allongz∗ll)∗mm+int(y∗mm);
}

Listing 1.17: ./FreefemCommon/decomp3d.idp

The isovalues of these two functions part correspond to non-overlapping
decompositions as shown in Figure 1.13.

Using the function part defined as above, it calls the routine
SubdomainsPartitionUnity3 which builds for each subdomain labeled i

the overlapping meshes aTh[i]

1.6. SCHWARZ METHODS USING FREEFEM++ 33

31 func bool SubdomainsPartitionUnity3(mesh3 & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh3[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & VolumeThi)

{
int npart=partdof.max+1;
mesh3 Thi=Th; // freefem’s trick, formal definition

35 fespace Vhi(Thi,P1); // freefem’s trick, formal definition
Vhi[int] pun(npart); // local fem functions
Vh sun=0, unssd=0;
Ph part;

39 part[]=partdof;
for(int i=0;i<npart;++i)
{

// boolean function 1 in the subdomain 0 elswhere
43 Ph suppi= abs(part−i)<0.1;

AddLayers3(Th,suppi[],sizeoverlaps,unssd[]); // overlapping partitions by ⤸
Ç adding layers

Thi=aTh[i]=trunc(Th,suppi>0,label=10,split=1); // overlapping mesh, ⤸
Ç interfaces have label 10

Rih[i]=interpolate(Vhi,Vh,inside=1); // Restriction operator : Vh −> Vhi
47 pun[i][]=Rih[i]∗unssd[];

sun[] += Rih[i]’∗pun[i][];
Ndeg[i] = Vhi.ndof;
VolumeThi[i] = int3d(Thi)(1.);

51 }
for(int i=0;i<npart;++i)
{

Thi=aTh[i];
55 pun[i]= pun[i]/sun;

Dih[i]=pun[i][];//diagonal matrix built from a vector
}

return true;
59 }

Listing 1.18: ./FreefemCommon/createPartition3d.idp

by making use of the function AddLayers3 in the CreatePartition3d.idp.

34 CHAPTER 1. SCHWARZ METHODS

func bool AddLayers3(mesh3 & Th,real[int] &ssd,int n,real[int] &unssd)
{

// build a continuous function uussd (P1) and modifies ssd :
5 // IN: ssd in the caracteristics function on the input subdomain.

// OUT: ssd is a boolean function, unssd is a smooth function
// ssd = 1 if unssd >0; add n layer of element and unssd = 0 ouside of this layer
Ph s;

9 assert(ssd.n==Ph.ndof);
assert(unssd.n==Vh.ndof);
unssd=0;
s[]= ssd;

13 Vh u;
varf vM(uu,v)=int3d(Th,qforder=1)(uu∗v/volume);
matrix M=vM(Ph,Vh);
for(int i=0;i<n;++i)

17 {
u[]= M∗s[];
u = u>.1;
unssd+= u[];

21 s[]= M’∗u[];
s = s >0.1;

}
unssd /= (n);

25 u[]=unssd;
ssd=s[];
return true;

}

Listing 1.19: ./FreefemCommon/createPartition3d.idp

As in the 2D case, these last two functions are tricky. The reader does not
need to understand their behavior in order to use them. They are given
here for sake of completeness.

The restriction/interpolation operators Rih[i] from the local finite element
space Vh[i] to the global one Vh and the diagonal local matrices Dih[i] are
thus created. Afterwards one needs to build the overlapping decomposition
and the associated algebraic partition of unity, see equation (1.25). The
program testdecomp3d.edp (see below) shows such an example by checking
that the partition of unity is correct.

1.6. SCHWARZ METHODS USING FREEFEM++ 35

include ”data3d.edp”
include ”decomp3d.idp”

3 include ”createPartition3d.idp”
medit(”part”, Th, part, order = 1);
SubdomainsPartitionUnity3(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,VolumeThi);
// check the partition of unity

7 Vh sum=0,fctone=1;
for(int i=0; i < npart;i++)
{

Vh localone;
11 real[int] bi = Rih[i]∗fctone[]; // restriction to the local domain

real[int] di = Dih[i]∗bi;
localone[] = Rih[i]’∗di;
sum[] +=localone[] ;

15 medit(”loc”,Th, localone, order = 1);
medit(”subdomains”,aTh[i]);

}
medit(”sum”,Th, sum, order = 1);

Listing 1.20: ./FreefemCommon/testdecomp3d.edp

1.6.3 Schwarz algorithms as solvers

We are now in a position to code Schwarz solvers. In program
schwarz-solver.edp (see below) the RAS method (see eq. (1.29)) is im-
plemented as a solver. First we need to split the domains into subdo-
mains

include ”../../FreefemCommon/data.edp”
3 include ”../../FreefemCommon/decomp.idp”

include ”../../FreefemCommon/createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);

Listing 1.21: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

Then we need to define the global data from the variational formula-
tion.

Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
9 rhsglobal[] = vaglobal(0,Vh); // global rhs

uglob[] = Aglobal−1∗rhsglobal[];
plot(uglob,value=1,fill=1,wait=1,cmm=”Solution by a direct method”,dim=3);

Listing 1.22: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

Afterwords we build the local problem matrices

36 CHAPTER 1. SCHWARZ METHODS

for(int i = 0;i<npart;++i)
{

cout << ” Domain :” << i << ”/” << npart << endl;
17 matrix aT = Aglobal∗Rih[i]’;

aA[i] = Rih[i]∗aT;
set(aA[i],solver = UMFPACK);// direct solvers

}

Listing 1.23: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

and finally the Schwarz iteration

ofstream filei(”Conv.m”);
Vh un = 0; // initial guess

25 Vh rn = rhsglobal;
for(int iter = 0;iter<maxit;++iter)
{

real err = 0, res;
29 Vh er = 0;

for(int i = 0;i<npart;++i)
{

real[int] bi = Rih[i]∗rn[]; // restriction to the local domain

33 real[int] ui = aA[i] −1∗ bi; // local solve
bi = Dih[i]∗ui;
// bi = ui; // uncomment this line to test the ASM method as a solver
er[] += Rih[i]’∗bi;

37 }
un[] += er[]; // build new iterate
rn[] = Aglobal∗un[]; // computes global residual
rn[] = rn[] − rhsglobal[];

41 rn[] ∗= −1;
err = sqrt(er[]’∗er[]);
res = sqrt(rn[]’∗rn[]);
cout << ”Iteration: ” << iter << ” Correction = ” << err << ” Residual = ” ⤸

Ç << res << endl;
45 plot(un,value=1,fill=1,dim=3,cmm=”Approximate solution at step ” + iter);

int j = iter+1;
// Store the error and the residual in Matlab/Scilab/Octave form
filei << ”Convhist(”+j+”,:)=[” << err << ” ” << res <<”];” << endl;

49 if(err < tol) break;
}

plot(un,wait=1,value=1,fill=1,dim=3,cmm=”Final solution”);

Listing 1.24: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

The convergence history of the algorithm is stored in a Matlab file (also
compatible with Scilab or Octave) Conv.m, under the form of a two-column
matrix containing the error evolution as well as the residual one.

1.6. SCHWARZ METHODS USING FREEFEM++ 37

0 10 20 30 40 50 60
10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

overlap=2
overlap=5
overlap=10

Figure 1.14: Solution and RAS convergence as a solver for different overlaps

The result of tracing the evolution of the error is shown in Figure 1.14 where
one can see the convergence history of the RAS solver for different values of
the overlapping parameter.

Remark 1.6.1 Previous tests have shown a very easy use of the RAS iter-
ative algorithm and some straightforward conclusions from this.

• The convergence of RAS, not very fast even in a simple configuration
of 4 subdomains, improves when the overlap is getting bigger.

• Note that it is very easy to test the ASM method, see eq. (1.30), when
used as a solver. It is sufficient to uncomment the line bi = ui;.

• Running the program shows that the ASM does not converge. For this
reason, the ASM method is always used a preconditioner for a Krylov
method such as CG, GMRES or BiCGSTAB, see chapter 2.

• In the the three-dimensional case the only part that changes is the
decomposition into subdomains. The other parts of the algorithm are
identical.

include ”../../FreefemCommon/data3d.edp”
include ”../../FreefemCommon/decomp3d.idp”
include ”../../FreefemCommon/createPartition3d.idp”

5 SubdomainsPartitionUnity3(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,VolumeThi);

Listing 1.25: ./SCHWARZ/FreefemProgram/schwarz-solver3d.edp

1.6.4 Systems of PDEs: the example of linear elasticity

Suppose we want to solve now another kind of problem, such a linear elas-
ticity. A few changes will be necessary.

38 CHAPTER 1. SCHWARZ METHODS

load ”metis”
2 load ”medit”

int nn=3,mm=3; // number of the domains in each direction
int npart= nn∗mm; // total number of domains
int nloc = 20; // local no of dof per domain in one direction

6 bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 2; // size of the overlap
real allong = real(nn)/real(mm); // aspect ratio of the global domain
func E = 2∗10ˆ11; // Young modulus ans Poisson ratio

10 func sigma = 0.3;
func lambda = E∗sigma/((1+sigma)∗(1−2∗sigma)); // Lame coefficients
func mu = E/(2∗(1+sigma));
real sqrt2=sqrt(2.);

14 func eta = 1.0e−6;
// Mesh of a rectangular domain
mesh Th=square(nn∗nloc,mm∗nloc,[x∗allong,y]);
fespace Vh(Th,[P1,P1]); // vector fem space

18 fespace Uh(Th,P1); // scalar fem space
fespace Ph(Th,P0);
Ph part; // piecewise constant function
int[int] lpart(Ph.ndof); // giving the decomposition

22 // Domain decomposition data structures
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators

26 int[int] Ndeg(npart); // number of dof for each mesh
real[int] AreaThi(npart); // area of each subdomain
matrix[int] aA(npart); // local Dirichlet matrices
// Definition of the problem to solve

30 int[int] chlab=[1,11 ,2,2 ,3,33 ,4,1]; //Dirichlet conditions for label = 1
Th=change(Th,refe=chlab);
macro Grad(u) [dx(u),dy(u)] // EOM
macro epsilon(u,v) [dx(u),dy(v),(dy(u)+dx(v))/sqrt2] // EOM

34 macro div(u,v) (dx(u)+dy(v)) // EOM
func uboundary = (0.25 − (y−0.5)ˆ2);
varf vaBC([u,v],[uu,vv]) = on(1, u = uboundary, v=0) + on(11, u = 0, v=0) + ⤸

Ç on(33, u=0,v=0);
// global problem

38 Vh [rhsglobal,rrhsglobal], [uglob,uuglob];
macro Elasticity(u,v,uu,vv) eta∗(u∗uu+v∗vv) + ⤸

Ç lambda∗(div(u,v)∗div(uu,vv))+2.∗mu∗(epsilon(u,v)’∗epsilon(uu,vv)) // ⤸
Ç EOM

varf vaglobal([u,v],[uu,vv]) = int2d(Th)(Elasticity(u,v,uu,vv)) + vaBC; // ⤸
Ç on(1,u=uboundary,v=0)

matrix Aglobal;
42 // Iterative solver parameters

real tol=1e−6; // tolerance for the iterative method
int maxit=200; // maximum number of iterations

Listing 1.26: ./FreefemCommon/dataElast.edp

1.6. SCHWARZ METHODS USING FREEFEM++ 39

First of all, the file dataElast.edp contains now the declarations
and data. The definition of the partition is done like before using
decomp.idp. The SubdomainsPartitionUnityVec is the vector adapta-
tion of SubdomainsPartitionUnity and will provide the same type of re-
sult

func bool SubdomainsPartitionUnityVec(mesh & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & AreaThi)

{
int npart=partdof.max+1;

34 mesh Thi=Th; // freefem’s trick, formal definition
fespace Vhi(Thi,[P1,P1]); // freefem’s trick, formal definition
Vhi[int] [pun,ppun](npart); // local fem functions
Vh [unssd,uunssd], [sun,ssun]=[0,0];

38 Uh Ussd = 0;
Ph part;
int[int] U2Vc=[0,1]; // no component change
part[]=partdof;

42 for(int i=0;i<npart;++i)
{

Ph suppi= abs(part−i)<0.1; // boolean 1 in the subdomain 0 elswhere
AddLayers(Th,suppi[],sizeoverlaps,Ussd[]); // ovr partitions by adding layers

46 [unssd,uunssd] =[Ussd,Ussd];
Thi=aTh[i]=trunc(Th,suppi>0,label=10,split=1); // ovr mesh interfaces label ⤸

Ç 10
Rih[i]=interpolate(Vhi,Vh,inside=1,U2Vc=U2Vc); // Restriction operator : ⤸

Ç Vh −> Vhi
pun[i][]=Rih[i]∗unssd[];

50 sun[] += Rih[i]’∗pun[i][];
Ndeg[i] = Vhi.ndof;
AreaThi[i] = int2d(Thi)(1.);

}
54 for(int i=0;i<npart;++i)

{
Thi=aTh[i];
[pun[i],ppun[i]] = [pun[i]/sun, ppun[i]/sun];

58 Dih[i]=pun[i][]; //diagonal matrix built from a vector
}

return true;
}

Listing 1.27: ./FreefemCommon/createPartitionVec.idp

Note that in the CreatePartitionVec.idp script, the function AddLayers

is called:

40 CHAPTER 1. SCHWARZ METHODS

func bool AddLayers(mesh & Th,real[int] &ssd,int n,real[int] &unssd)
3 {

// build a continuous function uussd (P1) and modifies ssd :
// IN: ssd in the caracteristics function on the input subdomain.
// OUT: ssd is a boolean function, unssd is a smooth function

7 // ssd = 1 if unssd >0; add n layer of element and unssd = 0 ouside of this layer
Ph s;
Uh u;
assert(ssd.n==Ph.ndof);

11 assert(unssd.n==Uh.ndof);
unssd=0;
s[]= ssd;
varf vM(uu,v)=int2d(Th,qforder=1)(uu∗v/area);

15 matrix M=vM(Ph,Uh);
for(int i=0;i<n;++i)
{

u[]= M∗s[];
19 u = u>.1;

unssd+= u[];
s[]= M’∗u[];
s = s >0.1;

23 }
unssd /= (n);
u[]=unssd;
ssd=s[];

27 return true;
}

Listing 1.28: ./FreefemCommon/createPartitionVec.idp

The restriction/interpolation operators Rih[i] from the local finite element
space Vh[i] to the global one Vh and the diagonal local matrices Dih[i]

are thus created.

We are now in a position to code Schwarz solvers. In program
schwarz-solver-elast.edp (see below) the RAS method (see eq. (1.29))
is implemented as a solver following the same guidelines as in the case of the
Laplace equation. First we need to split the domains into subdomains

include ”../../FreefemCommon/dataElast.edp”
include ”../../FreefemCommon/decomp.idp”

4 include ”../../FreefemCommon/createPartitionVec.idp”
SubdomainsPartitionUnityVec(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);

Listing 1.29: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp

Then we need to define the global data from the variational formula-
tion.

1.6. SCHWARZ METHODS USING FREEFEM++ 41

Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
9 rhsglobal[] = vaglobal(0,Vh); // global rhs

uglob[] = Aglobal−1∗rhsglobal[];
real coeff2 = 1;
mesh Thmv=movemesh(Th,[x+coeff2∗uglob,y+coeff2∗uuglob]);

13 medit(”Thmv”, Thmv);
medit(”uex”, Th, uglob, Th, uuglob, order=1);

Listing 1.30: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp
Afterwords, the local problem matrices are built in the same way as before
and finally the Schwarz iteration

27 ofstream filei(”Conv.m”);
Vh [un,uun] = [0,0]; // initial guess
Vh [rn,rrn] = [rhsglobal,rrhsglobal];
for(int iter = 0;iter<maxit;++iter)

31 {
real err = 0, res;
Vh [er,eer] = [0,0];
for(int i = 0;i<npart;++i)

35 {
real[int] bi = Rih[i]∗rn[]; // restriction to the local domain

real[int] ui = aA[i] −1∗ bi; // local solve
bi = Dih[i]∗ui;

39 // bi = ui; // uncomment this line to test the ASM method as a solver
er[] += Rih[i]’∗bi;

}
un[] += er[]; // build new iterate

43 rn[] = Aglobal∗un[]; // computes global residual
rn[] = rn[] − rhsglobal[];
rn[] ∗= −1;
err = sqrt(er[]’∗er[]);

47 res = sqrt(rn[]’∗rn[]);
cout << ”Iteration: ” << iter << ” Correction = ” << err << ” Residual = ” ⤸

Ç << res << endl;
int j = iter+1;
// Store the error and the residual in Matlab/Scilab/Octave form

51 filei << ”Convhist(”+j+”,:)=[” << err << ” ” << res <<”];” << endl;
if(res < tol) break;

}
mesh Thm=movemesh(Th,[x+coeff2∗un,y+coeff2∗uun]);

55 medit(”Thm”, Thm);
medit(”uh”, Th, un, Th, uun, order=1);

Listing 1.31: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp

42 CHAPTER 1. SCHWARZ METHODS

Chapter 2

Krylov methods

In chapter 1, we introduced Schwarz methods as iterative solvers. The
aim of this chapter is to explain the benefit of using domain method
decomposition methods as preconditioners for Krylov type methods such as
CG (conjugate gradient), GMRES or BICGSTAB. In § 2.2, we show that
for any iterative solver, it is more suitable to consider it as a preconditioner
for Krylov type methods. In § 2.6, we apply this principle to domain
decomposition methods.

Recall first that the iterative versions of the Schwarz methods introduced in
chapter 1 can be written as preconditioned fixed point iterations

Un+1 = Un +M−1rn, rn ∶= F −AUn

where M−1 is depending on the method used (RAS or ASM). The key point
in what follows is to prove that fixed point methods (2.3) are intrinsically
slower than Krylov methods, for more details see [39]. Since this result is
valid for any fixed point method, we will start by placing ourselves in an
abstract linear algebra framework and then apply the results to the Schwarz
methods.

2.1 Fixed point iterations

Consider the following well-posed but difficult to solve linear system

Ax = b, x ∈ RN (2.1)

and M an “easy to invert” matrix of the same size than A. Actually by
easy to invert, we mean that the matrix-vector of M−1 by a residual vector
r = b − Ax is cheap. Then, equation (2.1) can be solved by an iterative
method

M xn+1 =M xn + (b −Axn) ⇔M xn+1 =M xn + rn . (2.2)

43

44 CHAPTER 2. KRYLOV METHODS

This suggests the following definition.

Definition 2.1.1 (Fixed point method) The following algorithm equiv-
alent to (2.2)

xn+1 = xn +M−1(b −Axn) ⇔ xn+1 = xn +M−1rn (2.3)

is called a fixed point algorithm and the solution x of (2.1) is a fixed point
of the operator:

xz→ x +M−1(b −Ax) .
The difference between matrices A and M is denoted by P ∶=M −A. When
convergent the iteration (2.3) will converge to the solution of the precondi-
tioned system

M−1Ax =M−1b .

The above system which has the same solution as the original system is
called a preconditioned system; here M−1 is called the preconditioner. In
other words, a splitting method is equivalent to a fixed-point iteration on a
preconditioned system. We see that the fixed point iterations (2.3) can be
written as

xn+1 = xn +M−1(b −Axn)

= (I −M−1(M − P))xn +M−1b

= M−1Pxn +M−1b

= M−1Pxn +M−1Ax =M−1Pxn +M−1(M − P)x

= x +M−1P (xn − x) .

(2.4)

From (2.4) it is easy to see that the error vector en ∶= xn − x verifies

en+1 =M−1Pen

so that
en+1 = (M−1P)n+1e0. (2.5)

For this reason M−1P is called the iteration matrix associated with (2.4)
and since the expression of the iteration doesn’t change w.r.t. to n, we call
(2.4) a stationary iteration.
We recall below the well-known convergence results in the case of stationary
iterations.

Lemma 2.1.1 (Convergence of the fixed point iterations) The fixed
point iteration (2.4) converges for arbitrary initial error e0 (that is en → 0
as n→∞) if and only if the spectral radius of the iteration matrix is inferior
to 1, that is ρ(M−1P) < 1 where

ρ(B) = max{∣λ∣, λ eigenvalue of B}.

2.2. KRYLOV SPACES 45

For the detailed proof see for example [98].

In general, it is not easy to ensure that the spectral radius of the iteration
matrix M−1P is smaller than one. Except for M -matrices (A non-singular
and A−1 non-negative), for which any regular splitting A =M − P (M non-
singular, M−1 and P non-negative) leads to a convergent fixed point itera-
tion. (see Chapter 4 in [159] for details).

2.2 Krylov spaces

In this section we will show that the solution of a fixed point method belongs
to an affine space called Krylov space. We start by showing that the solution
of a fixed point iteration can be written as a series.

Lemma 2.2.1 (Fixed point solution as a series) Let

zn ∶=M−1rn =M−1(b −Axn)

be the residual preconditioned by M at the iteration n for the fixed point
iteration

xn+1 = xn + zn = xn +M−1(b −Axn) (2.6)

Then, the fixed point iteration is equivalent to

xn+1 = x0 +
n

∑
i=0

(M−1P)i z0 . (2.7)

Proof Note that we have that

xn+1 = xn +M−1rn = xn + zn ⇒ xn+1 = x0 + z0 + z1 +⋯ + zn. (2.8)

From (2.5) we see that the residual vector rn = b−Axn = −A(xn−x) verifies

rn = −Aen = (P −M)(M−1P)ne0 = (PM−1)nPe0 − (PM−1)n−1Pe0

= (PM−1)n(Pe0 −Me0) = (PM−1)nr0.
(2.9)

From (2.9) we have that

zn =M−1rn =M−1(PM−1)nr0 =M−1(PM−1)nMz0 = (M−1P)nz0. (2.10)

From (2.8) and (2.10) we obtain

xn+1 = x0 + z0 + (M−1P)z1 +⋯ + (M−1P)nzn = x0 +
n−1

∑
i=0

(M−1P)i z0. (2.11)

46 CHAPTER 2. KRYLOV METHODS

which leads to the conclusion. Thus the error xn+1 −x0 is a geometric series
of common ratio M−1P . Note that (2.11) can be also written in terms of
the residual vector.

xn+1 = x0 +M−1r0 + (M−1P)M−1r1 +⋯ + (M−1P)nM−1rn

= x0 +
n−1

∑
i=0

(M−1P)iM−1 r0.
(2.12)

The previous result leads to the following remark.

Remark 2.2.1 The correction xn+1 − x0 is given by

xn+1 − x0 = Sn(M−1P)M−1 r0 = Sn(M−1P)z0 , (2.13)

where Sn is the polynomial given by Sn(t) = 1 + t + ⋯ + tn. Moreover, from
(2.12) we see that

xn+1 − x0 ∈ Span{M−1r0, (M−1P)M−1r0,⋯, (M−1P)nM−1r0}

= Span{z0, (M−1P)z0,⋯, (M−1P)nz0}
(2.14)

In conclusion the solution of a fixed point iteration is generated in a space
spanned by powers of the iteration matrix M−1P = I −M−1A applied to a
given vector. The main computational cost is thus given by the multiplica-
tion by the matrix A and by the application of M−1. At nearly the same
cost, we could generate better approximations in the same space (or better
polynomials of matrices).

Definition 2.2.1 (Krylov spaces) For a given matrix B and a vector y
we define the Krylov subspaces of dimension n associated to B and y by

Kn(B,y) ∶= Span{y, By, . . . ,Bn−1y} .

Therefore, a Krylov space is a space of polynomials of a matrix times a
vector.

According to the previous definition, we see from (2.14) that

xn − x0 ∈ Kn(M−1P,M−1r0) = Kn(M−1P,z0).

By the same kind of reasoning, we also have that

en = (M−1P)ne0 ⇒ en ∈ Kn+1(M−1P,e0),

zn = (M−1P)nz0 ⇒ zn ∈ Kn+1(M−1P,z0).

2.2. KRYLOV SPACES 47

But since M−1P = I −M−1A we see that

Kn(M−1P,z0) = Kn(M−1A,z0).

A reasonable way to compute iteratively a solution would be to look for
an optimal element in the above mentioned space. This element will be
necessarily better and will approach faster the solution than a fixed point
method. Krylov type methods differ by the way an “optimality” condition
is imposed in order to uniquely define xn and by the actual algorithm that
implements it.

Remark 2.2.2 Note also that the difference between two successive iterates
is given by

xn+1 − xn = (M−1P)zn = (M−1P)nM−1r0

= (I −M−1A)nM−1r0 ∈ Kn+1(M−1A,M−1r0)

This sequence can be further improved by searching for a better solution in
this Krylov space.

Example 2.2.1 From the family of fixed point methods we can mention the
Richardson iterations with a relaxation parameter.

xn+1 = xn + αrn = xn + α(b −Axn). (2.15)

The parameter α can be chosen in such a way to have the best convergence
factor over the iterations. In the case of a symmetric positive definite matrix,
the value of α which minimizes the convergence rate of the algorithm is

αopt =
2

λmin(A) + λmax(A)

and in this case the error behaves as

∥en∥A ≤ (κ2(A) − 1

κ2(A) + 1
)
n

∥e0∥A

where

κ2(A) = λmax(A)
λmin(A)

is the condition number of A, λmax(A) and λmin(A) being the extreme eigen-
values of A. In practice, it is very difficult to estimate accurately λmin or
λmax and thus αopt. This motivates the introduction of the gradient method
in the next paragraph.

48 CHAPTER 2. KRYLOV METHODS

2.2.1 Gradient methods

This suggests the definition of a new class of methods for symmetric positive
matrices.

Definition 2.2.2 (Gradient methods) A descent method is an iteration
of the form

xn+1 = xn + αnpn, αn ≥ 0 (2.16)

where αn is chosen such that it minimizes ∥en+1∥2
A = ∥xn+1 − x∥2

A (the
square of the A-norm for the error norm at each iteration, ∥en+1∥2

A ∶=
(Aen+1, en+1)2) and vector pn is called the descent direction. If pn = rn,
the resulting method is called optimal gradient method.

Consider function f :

α z→ f(α) ∶= ∥xn + αpn − x∥2
A

and the minimization problem

f(αn) ∶= ∥xn + αnpn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xn+1

−x∥2
A

= min
α

∥xn + αpn − x∥2
A = min

α
(A(xn + αpn − x),xn + αpn − x)

= min
α

[α2(Apn,pn) + 2α(Apn,xn − x) + (A(xn − x),xn − x)]

= min
α

[α2(Apn,pn) − 2α(pn,A(x − xn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

)] + (A(xn − x),xn − x).

We have that the optimal parameter αn is characterized by:

∂f

∂α
(αn) = 0⇒ αn =

(pn, rn)
(Apn,pn) . (2.17)

Note that in the case of the gradient method (pn = rn) αn becomes

αn =
∥rn∥2

2

∥rn∥2
A

= (en, rn)A
∥rn∥2

A

. (2.18)

We have the following convergence result.

Lemma 2.2.2 (Optimal gradient convergence) The optimal step gra-
dient method xn+1 = xn + αnrn, with αn chosen in (2.18) converges and the
error estimate is verifying the estimate

∥en∥A ≤ (1 − 1

κ2(A))
n
2

∥e0∥A

where κ2(A) = λmax(A)

λmin(A)
is the condition number of A.

2.3. THE CONJUGATE GRADIENT METHOD 49

Proof From (2.16) we see that

∥en+1∥2
A = ∥en + αnrn∥2

A = ∥en∥2
A + 2αn (en, rn)A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−αn∥rn∥2

A

+α2
n∥rn∥2

A

= ∥en∥2
A − α2

n∥rn∥2
A = ∥en∥2

A − α2
n(Arn, rn) = ∥en∥2

A −
(rn, rn)2

(Arn, rn)
= ∥en∥2

A (1 − (rn, rn)
(A−1rn, rn) ⋅

(rn, rn)
(Arn, rn)) ,

where we have used the identity:

∥en∥2
A = (en,Aen) = (A−1rn, rn) .

Matrix A being symmetric positive definite we have

λmin(A) ≤ (rn, rn)
(A−1rn, rn) ≤ λmax(A) and

1

λmax(A) ≤ (rn, rn)
(Arn, rn) ≤ 1

λmin(A)
which leads to the estimate

∥en+1∥2
A ≤ (1 − λmin(A)

λmax(A)) ∥en∥2
A ⇒ ∥en∥A ≤ (1 − 1

κ2(A))
n
2

∥e0∥A

and this ends the proof.

2.3 The Conjugate Gradient method

We present here a Krylov method that applies to symmetric positive definite
(SPD) matrices. Suppose that we want to solve Ax = b with A a SPD
matrix. The idea is that the solution at each iteration solves a minimization
problem in the A-norm over a Krylov space:

Find yn ∈ Kn(A, r0) such that

∥en∥A = ∥x − (x0 + yn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xn

∥A = min
w∈Kn(A,r0)

∥x − (x0 +w)∥A . (2.19)

In the following we will define a new method that extends the idea of gradient
methods and will prove afterwards that is exactly the Krylov method whose
iterates are given by (2.19).

Definition 2.3.1 (Conjugate Gradient) Starting from an initial guess
x0 and an initial descent direction p0 = r0 = b −Ax0, a conjugate gradient
method is an iteration of the form

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

pn+1 = rn+1 + βn+1p
n,

(2.20)

50 CHAPTER 2. KRYLOV METHODS

where αn and βn are chosen such that they minimize the norm of the error
∥en+1∥2

A = ∥xn+1 − x∥2
A at each iteration.

Coefficients αn and βn+1 are easy to find. First, from (2.18) we see that the
coefficient αn which minimizes ∥en+1∥2

A is necessarily given by

αn =
(pn, rn)

(Apn,pn) . (2.21)

By taking the dot product of the second relation of (2.20) by pn and by
using (2.21) into it, we see that

(rn+1,pn) = (rn,pn) − αn(Apn,pn) = 0.

By taking the dot product of the third relation of (2.20) by rn+1 and by
using the previous orthogonality relation we obtain

(pn+1, rn+1) = (rn+1, rn+1) + βn+1(rn+1,pn) = (rn+1, rn+1), ∀n ≥ 0.

By replacing the last relation taken in n into (2.21) we get

αn =
(rn, rn)

(Apn,pn) = ∥rn∥2
2

∥pn∥2
A

. (2.22)

In a similar way we can find βn+1. If we replace the (2.22) taken in n + 1
into ∥en+2∥2

A and use the third relation of (2.20) to replace pn+1 we get

∥en+2∥2
A = ∥xn+2 − x∥2

A = ∥xn+1 − x + αn+1p
n+1∥2

A

= ∥en+1∥2
A + 2(Aen+1

´¹¹¹¹¸¹¹¹¹¹¶
−rn+1

, αn+1p
n+1) + α2

n+1∥pn+1∥2
A

= ∥en+1∥2
A − 2αn+1(rn+1, rn+1) + α2

n+1∥pn+1∥2
A

= ∥en+1∥2
A −

(rn+1, rn+1)4

(Apn+1,pn+1)
= ∥en+1∥2

A −
(rn+1, rn+1)4

(A(rn+1 + βn+1pn), (rn+1 + βn+1pn))
.

Therefore, minimizing ∥en+2∥2
A with respect to βn+1 is equivalent to mini-

mizing the quadratic form (A(rn+1 +βn+1p
n), (rn+1 +βn+1p

n)) with respect
to βn+1, which gives

βn+1 = −
(Arn+1,pn)
(Apn,pn) . (2.23)

By taking the A-dot product of the third relation of (2.20) by pn and by
using (2.23) into it see that

(Apn+1,pn) = (Arn+1,pn) + βn+1(Apn,pn) = 0 .

2.3. THE CONJUGATE GRADIENT METHOD 51

Using this identity and taking the A-dot product of the third relation of
(2.20) by pn+1 we get

(Apn+1,pn+1) = (Arn+1,pn+1) + βn(Apn+1,pn)
= (Arn+1,pn+1) = (Apn+1, rn+1) (2.24)

By using (2.24) into the dot product of the second relation of (2.20) by rn

(rn+1, rn) = (rn, rn) − αn(Apn, rn) = (rn, rn) − αn(Apn,pn) = 0. (2.25)

Finally by taking the dot product of the second relation of (2.20) by rn+1

and by using (2.25)

(rn+1,Apn) = −∥rn+1∥2
2

αn
. (2.26)

By plugging (2.26) into (2.23) we conclude by using the expression of (2.22)
that

βn+1 =
∥rn+1∥2

2

∥rn∥2
2

. (2.27)

The resulting algorithm is given in Algorithm 3, see [9].

Algorithm 3 CG algorithm

Compute r0 ∶= b −Ax0, p0 = r0

for i = 0,1, . . . do
ρi = (ri, ri)2

qi = Api
αi =

ρi
(pi,qi)2

xi+1 = xi + αipi
ri+1 = ri − αiqi
ρi+1 = (ri+1, ri+1)2

βi+1 =
ρi+1

ρi
pi+1 = ri+1 + βi+1pi
check convergence; continue if necessary

end for

We can see that the conjugate gradient algorithm has a few remarkable
properties that can be stated in the following lemma.

Lemma 2.3.1 (Conjugate Gradient as a Krylov method) The
descent directions pn are A-orthogonal or conjugate

(Apk,pl) = 0, ∀k, l, k ≠ l

and the residual vectors are orthogonal between them and to the descent
directions

(rk, rl) = 0, ∀k, l, k ≠ l and (pk, rl) = 0, ∀k, l, k < l

52 CHAPTER 2. KRYLOV METHODS

Moreover, both the descent directions and the residuals span the Krylov
space:

Kn+1(A, r0) = Span{r0, r1,⋯, rn} = Span{p0,p1,⋯,pn} (2.28)

and vector xn from (2.20) minimizes the error norm ∥en∥2
A on the affine

space x0 + Kn(A, r0). The algorithm will converge in at most N iterations,
N being the size of matrix A.

Proof The proof is a direct consequence of the algebraic manipulations
performed previously to find the coefficients αn and βn+1. The property
(2.28) can be obtained by recurrence on the relations (2.20) and in the
same way the fact that xn ∈ x0 + Kn(A, r0). Moreover, the matrix A being
symmetric positive definite, there exists an A-orthogonal basis of size N ,
which explains why we cannot have more than N conjugate descent vectors.
This leads to a convergence in at most N iterations.

Lemma 2.3.2 (Convergence of the Conjugate Gradient method)
The conjugate gradient method defined in (2.20) converges to the solution
of the linear system Ax = b and we have the error estimate:

∥en∥A ≤ 2
⎛
⎝

√
κ2(A) − 1

√
κ2(A) + 1

⎞
⎠

n

∥e0∥A (2.29)

where κ2(A) is the condition number of the matrix A.

Proof As we have seen previously, the conjugate gradient method is a
Krylov method. Since

en ∈ Kn(A, r0) = Kn+1(A,e0)

this means that building a sequence of iterates xn is equivalent to build a
sequence of polynomials Pn ∈ Pn with real coefficients such that

• en = Pn(A)e0.

• Pn(0) = 1.

• Pn minimizes J(Q) = ∥Q(A)e0∥2
A over all the polynomials Q ∈ Pn such

that Q(0) = 1.

Matrix A can be diagonalized using orthonormal eigenvectors A = TΛT t.
For any given polynomial Q,

Q(A) = TQ(Λ)T t.

2.3. THE CONJUGATE GRADIENT METHOD 53

Therefore we have for any monic (coefficient of the leading term is equal to
one) polynomial Q of degree n

∥en∥A = ∥Pn(A)e0∥A ≤ ∥Q(A)e0∥A = ∥TQ(Λ)T te0∥A ≤ max
λ∈σ(A)

∣Q(λ)∣∥e0∥A

and the estimate yields

∥en∥A ≤ min
Q∈Pn,Q(0)=1

max
λ∈[λ1,λ2]

∣Q(λ)∣∥e0∥A, (2.30)

where λ1 = λmin(A) and λ2 = λmax(A). We know from [23] that

max
x∈[λ1,λ2]

Q∗(x) = min
Q∈Pn,Q(0)=1

max
x∈[λ1,λ2]

∣Q(x)∣,

where

Q∗(x) =
Tn (2x−λ1−λ2

λ2−λ1
)

Tn (−λ1−λ2

λ2−λ1
)
,

with Tn being the Chebyshev polynomial of the first kind

Tn(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x +
√
x2 − 1)n + (x −

√
x2 − 1)n

2
, ∣x∣ > 1,

cos(narccos(x)) , ∣x∣ ≤ 1.

We see that

max
x∈[λ1,λ2]

∣Q∗(x)∣ = 1

∣Tn (−λ1−λ2

λ2−λ1
)∣

= 1

Tn (κ2(A)+1
κ2(A)−1)

= 2

(
√
κ2(A)−1

√
κ2(A)+1

)
−n

+ (
√
κ2(A)−1

√
κ2(A)+1

)
n ≤ 2

⎛
⎝

√
κ2(A) − 1

√
κ2(A) + 1

⎞
⎠

n

(2.31)
From (2.31) and (2.30) the conclusion follows.

Remark 2.3.1 We estimate the iteration counts to reach a reduction factor
of the error by a factor ε ≪ 1 for a poorly conditioned system, κ2(A) ≫
1. From Lemma 2.2.2, the optimal gradient method will converge in nOG
iterations with :

ε = (1 − 1

κ2(A))
nOG

2

.

Thus, we have

log ε = nOG
2

log(1 − 1

κ2(A)) ,

54 CHAPTER 2. KRYLOV METHODS

that is
nOG ≃ 2κ2(A) (− log ε) .

From Lemma 2.3.2, the conjugate gradient method will converge in nCG
iterations with:

nCG ≃
√
κ2(A)

2
(− log ε) .

These estimates are clearly in favor of the CG algorithm over the optimal
gradient method.

2.3.1 The Preconditioned Conjugate Gradient Method

In order to have a faster convergence, a SPD preconditioner denoted here
M is often used. In order to preserve the SPD properties, we use the fact
that M−1 admits a SPD square root denoted M−1/2 such that

M−1/2 ⋅ M−1/2 =M−1 .

The CG method is applied to the symmetrized preconditioned system

(M−1/2AM−1/2)M1/2x =M−1/2 b.

instead of simply M−1A since the latter is generally non-symmetric, but
its spectrum is the same as of matrix M−1/2AM−1/2. A naive and costly
implementation would require the quite expensive computation of the square
root of the inverse of operator M . Once again, a detailed analysis reveals
that it can be bypassed.

Lemma 2.3.3 (Preconditioned Conjugate Gradient) The conjugate
gradient method applied to the system

Ãx̃ = b̃, (2.32)

with
Ã =M−1/2AM−1/2, x̃ =M1/2x, b̃ =M−1/2 b

can be rewritten as the following iterative method: starting from and initial
guess x0 and of an initial descent direction

p0 =M−1r0 =M−1(b −Ax0),

compute the sequence of approximations as

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

pn+1 = M−1rn+1 + βn+1p
n,

(2.33)

2.3. THE CONJUGATE GRADIENT METHOD 55

where αn and βn+1 are given by

αn =
(M−1rn, rn)

∥pn∥2
A

, βn+1 =
(M−1rn+1, rn+1)

(M−1rn, rn) . (2.34)

Proof Suppose we apply now the conjugate gradient method (2.20) to the
system (2.32). This gives

x̃n+1 = x̃n + αnp̃n,

r̃n+1 = r̃n − αnÃp̃n,

p̃n+1 = r̃n+1 + βn+1p̃
n,

(2.35)

with

x̃n =M1/2xn, p̃n =M1/2pn, r̃n =M−1/2rn, Ã =M−1/2AM−1/2. (2.36)

and the coefficients

αn = (r̃n, r̃n)
∥p̃n∥2

Ã

= (M−1/2rn,M−1/2rn)
((M−1/2AM−1/2)M1/2pn,M1/2pn)

= (M−1rn, rn)
∥pn∥2

A

,

βn = (r̃n+1, r̃n+1)
(r̃n, r̃n) = (M−1/2rn+1,M−1/2rn+1)

(M−1/2rn,M−1/2rn)
= (M−1rn+1, rn+1)

(M−1rn, rn)
(2.37)

which are exactly the coefficients from (2.34).
By replacing now (2.36) into the three relations of (2.35), we obtain the
iterations (2.33). The initial descent direction p0 is derived from

p̃0 = r̃0 ⇔M1/2p0 =M−1/2r0 ⇔ p0 =M−1r0.

which ends the proof.

We have just proved the the preconditioned conjugate gradient requires
only the application of the preconditioner M−1 and the computation of
M−1/2 is thus not required. Moreover, since the spectrum of M−1/2AM−1/2

and M−1A is the same, in the convergence estimate (2.29) we simply have
to replace κ2(A) by κ2(M−1A).

The resulting iterative procedure is given in Algorithm 4.

Remark 2.3.2 There is another way of deriving the preconditioned form of
the Conjugate Gradient Method by noting that even if M−1A is not symmet-
ric, it is self-adjoint for the M -inner product (recall that M is symmetric
positive definite), that is

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M ,

56 CHAPTER 2. KRYLOV METHODS

Algorithm 4 PCG algorithm

Compute r0 ∶= b −Ax0, z0 =M−1r0, p0 = z0.
for i = 0,1, . . . do
ρi = (ri,zi)2

qi = Api
αi =

ρi
(pi,qi)2

xi+1 = xi + αipi
ri+1 = ri − αiqi
zi+1 =M−1ri+1

ρi+1 = (ri+1,zi+1)2

βi+1 =
ρi+1

ρi
pi+1 = zi+1 + βi+1pi
check convergence; continue if necessary

end for

where (x, y)M ∶= (Mx,y). Therefore, an alternative is to replace the usual
Euclidean inner product in the Conjugate Gradient algorithm by the M -inner
product. This idea is considered by Saad (see Chapter 9 of [159] for details).

2.4 Krylov methods for non-symmetric problems

If either operator A or preconditioner M is not symmetric positive definite
positive, PCG algorithm cannot be used. The bad news is that in the
unsymmetric case there is no method with a fixed cost per iteration that
leads to an optimal choice for xn. In this case, two popular methods are the
GMRES [160] and BICGSTAB [175]. With a left preconditioning, they are
applied to preconditioned system

M−1Ax =M−1b

These methods differ by the way they pick an approximation xn to the
solution x in the Krylov subspace Kn((M−1A),z0) with z0 = M−1r0 =
M−1(b −Ax0) being the initial preconditioned residual.
In order to fix the ideas we will concentrate on the solution of the unprecon-
ditioned system Ax = b, in the preconditioned case A needs to be replaced
by M−1A and b by M−1b.
Note that it makes sense to minimize the residual, because the error is in
general unknown, and we can only directly minimize special norms of the
error. Moreover, the norm of the error is bounded by a constant times the
norm of the residual

∥en∥2 = ∥A−1rn∥2 ≤ ∥A−1∥∥rn∥2

2.4. KRYLOV METHODS FOR NON-SYMMETRIC PROBLEMS 57

and finally we can note that

∥rn∥2 = (Aen,Aen) = (A∗Aen,en) = ∥en∥2
A∗A.

In what follows we will concentrate on the GMRES method by explaining
in detail the principles on which it is based and some ideas about its conver-
gence properties. Let us introduce first the general framework of a minimal
residual method.

Definition 2.4.1 (Minimal residual method) Given an initial iterate
x0 and the initial residual r0 = b −Ax0, a minimal residual method applied
to a system Ax = b will build the iterates xn = x0 + yn where

yn ∈ Kn(A, r0) such that

∥rn∥2 = ∥r0 −Ayn∥2 = min
w∈Kn(A,r0)

∥Aw − r0∥2 .
(2.38)

We say that they minimize the euclidean norm of the residual.

We see from the previous definition that we look for the vector xn = x0 +yn

such that yn achieves the minimum of ∥r0 − Ay∥ over Kn(A, r0). If the
dimension of Kn(A, r0) is n and {v1,v2,⋯,vn} is a basis of it, then we can
look for yn under the form

yn =
n

∑
j=1

yjvj .

If we denote the function to minimize by

f(y1, y2,⋯, yn) = ∥r0 −A
n

∑
i=1

yivi∥
2

2

= ∥r0 −
n

∑
i=1

yiAvi∥
2

2

then the optimality conditions ∂f
∂yi

= 0 translates into

n

∑
j=1

(Avj ,Avi)yj = (r0,Avi). (2.39)

If V denotes the matrix containing the column vectors vj then (2.39) is
equivalent to the system

(V ∗A∗AV)Yn = F where Yn = (y1, y2,⋯, yn)T . (2.40)

Note that the size of the system (2.40) increases with the number of itera-
tions, which means the algorithmic complexity to compute the solution of
(2.40) increases as the number of iterations becomes larger. On the other
side, if the basis of Kn(A, r0) has no particular structure then the system
(2.40) can be too ill-conditioned. The GMRES method proposes a cheap
solution by building a special basis of the Krylov space which makes the
system easy to solve.

58 CHAPTER 2. KRYLOV METHODS

2.4.1 The GMRES method

The idea of the GMRES method is to build an orthonormal basis of the
Krylov space by using a Gram-Schmidt algorithm. That is,

Starting from v1 =
r0

∥r0∥2
,

Compute vn+1 =
Avn −

n

∑
i=1

(Avn,vi)vi

∥Avn −
n

∑
i=1

(Avn,vi)vi∥
2

, n ≥ 1.
(2.41)

Computing the Gram-Schmidt orthogonalisation of the basis of a Krylov
space is called Arnoldi method.
Supposing that the recurrence from (2.41) is well-defined (that is the de-
nominator is non-null), then it is equivalent to

Avn =
n

∑
i=1

(Avn,vi)vi + ∥Avn −
n

∑
i=1

(Avn,vi)vi∥
2

vn+1 (2.42)

If we denote by Vn the unitary matrix (V ∗
n Vn = In) having as columns the first

n already computed orthonormal vectors v1,⋯,vn, then Vn+1 is obtained
from Vn by adding the column vector vn+1. Thus equation (2.42) can be
re-written as

AVn = Vn+1Hn, (2.43)

where the entries of the rectangular matrix Hn ∈ Mn+1,n(C) are

(Hn)i,n = (Avn,vi), i ≤ n,

(Hn)n+1,n = ∥Avn −
n

∑
i=1

(Hn)i,nvi∥
2

.
(2.44)

Moreover, since (Hn)l,m = 0, l >m+1, we say that Hn is a upper Hessenberg
matrix. Note also that the matrix Hn+1 is obtained from Hn by adding a
column given by the elements (Hn+1)i,n+1 from (2.44) and a line whose only
non-zero element is (Hn+1)n+2,n+1.
With these notations and by using (2.43) we see that the problem (2.40) is
equivalent to finding Yn such that

V ∗
n A

∗AVnY
n = ∥r0∥[(A∗v1,v1), (A∗v1,v2),⋯, (A∗v1,vn)]T ⇔

H∗
n V

∗
n+1Vn+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
In

HnY
n = ∥r0∥ [(H∗

n)1,1, (H∗
n)2,1⋯, (H∗

n)n,1]
T

(2.45)
and consequently

H∗
nHnY

n = βH∗
nη1,n+1, where β = ∥r0∥2 (2.46)

2.4. KRYLOV METHODS FOR NON-SYMMETRIC PROBLEMS 59

where η1,n+1 is the first column vector of the canonical basis of Rn+1. Solving
such a system is straightforward if one knows the QR decomposition of Hn

Hn = QnRn

with Qn being a unitary matrix of order n+ 1 and Rn and upper triangular
matrix of size (n + 1) × n where the last line is null. This factorization is
quite easy to compute in the case of an upper Hessenberg matrix (since it
“almost” upper triangular). Supposing that this factorization is available
then (2.46) reduces to the system

R∗
n (Q∗

nQn)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

In

RnY
n = βR∗

nQ
∗
nη1,n+1 ⇔ R∗

nRnY
n = βR∗

nQ
∗
nη1,n+1. (2.47)

If we denote by R̃n is the main bloc of size n×n of Rn obtained by deleting
the last row we have that

R∗
nRn = R̃∗

nR̃n (2.48)

(last row of Rn is zero). In the same way R∗
nQ

∗
n is obtained from R̃∗

nQ̃
∗
n by

appending a column vector (Q̃n is the main bloc of size n×n of Qn obtained
by deleting the last row and column). Thus

βR∗
nQ

∗
nη1,n+1 = βR̃∗

nQ̃
∗
nη1,n, (2.49)

where η1,n is the first column vector of the canonical basis of Rn. We can
conclude from (2.48) and (2.49) that solving (2.47) reduces to solving an
upper triangular system of order n

R̃nY
n = g̃n, g̃n = βQ̃∗

nη1,n. (2.50)

The complexity of solving (2.50) is known to be of order n2 operations.
To summarize, the iterate n obtained from the optimization problem (2.38)
is given by

xn = x0 +
n

∑
i=1

yivi = x0 + Vnyn = x0 + R̃−1
n g̃n. (2.51)

By using (2.43) and the fact that Yn is a solution of (2.50), we see that the
residual norm at iteration n verifies

∥rn∥2 = ∥b −Axn∥2 = ∥b −A(x0 + VnYn)∥2 = ∥r0 −AVnYn∥2

= ∥Vn+1(βη1,n+1 −AVnYn∥2 = ∥βVn+1η1,n+1 − Vn+1HnY
n∥2

= ∥βVn+1 (QnQ∗
n)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
In

η1,n+1 − Vn+1 (QnQ∗
n)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
In

QnRn
´¹¹¹¹¸¹¹¹¹¶
Hn

Yn∥2

= ∥Vn+1Qn [βQ∗
nη1,n+1 −RnYn] ∥2 = ∥Vn+1Qn([g̃n, γn+1]T − [R̃nYn,0]T)∥2

= ∥Vn+1Qn[0,0,⋯, γn+1]T ∥2 = ∣γn+1∣,
(2.52)

60 CHAPTER 2. KRYLOV METHODS

where γn+1 is the last element of βQ∗
nη1,n+1 (we used the fact matrices Vn+1

and Qn are unitary). See [159] for more details of the proof.

The resulting iterative procedure is given in Algorithm 5.

Algorithm 5 GMRES algorithm

Compute r0 ∶= b −Ax0, β = ∥r0∥2, v1 = r0/β, ξ1 = β.
for n = 1,2, . . . do

wn+1 = Avn
for i = 1,2, . . . , n do

(Hn)i,n = (wn,vi).
wn+1 = vn+1 − (Hn)i,nvi

end for
(Hn)n+1,n = ∥wn+1∥2.
if (Hn)n+1,n ≠ 0 then

vn+1 = wn+1/(Hn)n+1,n.
end if
for i = 1,2, . . . , n − 1 do

((Hn)i,n
(Hn)i+1,n

) = (ci si
−si ci

)((Hn)i,n
(Hn)i+1,n

)

end for
Compute Givens rotation

cn = (Hn)n,n/
√

(Hn)2
n,n + (Hn)2

n+1,n, sn = (Hn)n+1,n/
√

(Hn)2
n,n + (Hn)2

n+1,n.

Update (Hn)n,n = cn(Hn)n,n + sn(Hn)n+1,n, (Hn)n+1,n = 0.
Update (ξn, ξn+1) = (cnξn,−snξn).
Solve the triangular system H̃y = (ξ1, ξ2,⋯, ξn)T .
xn = x0 + [v1v2⋯vn]y
check convergence on residual norm ξn+1; continue if necessary

end for

Remark 2.4.1 The GMRES method has the following properties:

• As in the case of the conjugate gradient, the GMRES method converges
in maximum N iterations, where N is the dimension of the linear
system to solve.

• The method requires the storage in memory at the iteration n, the
matrix Vn and the QR factorization of Hn: the cost of such a method
is quite high (or order nN for n iterations). When n is small w.r.t.

2.4. KRYLOV METHODS FOR NON-SYMMETRIC PROBLEMS 61

N , the cost is marginal. When the iteration counts gets large, its cost
can be a problem.

• We can write a restarted version of the algorithm after each j iterations
by using the current approximation of the solution as starting point.
In this case, however, we the convergence property in a finite number
of iterations is lost.

2.4.2 Convergence of the GMRES algorithm

In the case where A is diagonalizable we can derive an estimate of the
convergence based on the eigenvalues of A. Note that the GMRES method
builds a sequence of polynomials Pn ∈ Pn which minimize at each iteration
the quantity ∥Q(A)r0∥2, where Q ∈ Pn and Q(0) = 1.
In the case where A is diagonalizable we have

A =WΛW −1 ⇒ Q(A) =WQ(Λ)W −1

and we have the estimate on the residual

∥rn∥2 = min
Q∈Pn,Q(0)=1

∥WQ(Λ)W −1r0∥2

≤ ∥W ∥2∥W −1∥2∥r0∥2 min
Q∈Pn,Q(0)=1

∥Q(Λ)∥2

= κ2(W)∥r0∥2 min
Q∈Pn,Q(0)=1

max
λ∈σ(A)

∣Q(Λ)∣

(2.53)

Estimate (2.53) might be very inaccurate since the polynomial minimizing
∥WQ(Λ)W −1∥2 might be very different of that minimizing ∥Q(Λ)∥2. We
can distinguish the following cases

• A is a normal matrix that is A commutes with its transpose. In this
case there exists a unitary matrix W such that A =WΛW −1 (see e.g.
[95] or [105]), which means that

∥WQ(Λ)W −1∥2 = ∥Q(Λ)∥2 and κ2(W) = 1.

In this case the estimate (2.53) is very precise

∥rn∥2 ≤ ∥r0∥2 min
Q∈Pn,Q(0)=1

max
λ∈σ(A)

∣Q(Λ)∣.

Estimating the convergence rate is equivalent to find a polynomial
with Q(0) = 1 which approximates 0 on the spectrum of A. If A has a
big number of eigenvalues close to 0 then the convergence will be very
slow.

• If A is not a normal matrix, but is diagonalizable such that the matrix
W is well conditioned, then the estimate (2.53) remains reasonable.

62 CHAPTER 2. KRYLOV METHODS

• In the general case, there is no relation between the convergence rate
of the GMRES algorithm and the eigenspectrum only, see [99]. Some
supplementary information is needed.

The BiConjuguate Gradient Stabilized (BICGSTAB) method [175], see
Algorithm 6, takes a different approach with a fixed cost per iteration but at
the expense of loosing optimal properties of xn. Two mutually orthogonal
sequences are computed and xn is such that the residual is orthogonal to
one of the sequence.

Algorithm 6 preconditioned BICGSTAB algorithm

Compute r0 ∶= b −Ax0

Choose r̃ (for example, r̃ = r0)
for i = 1,2, . . . do
ρi−1 = (r̃, ri−1)2

if ρi−1 = 0 then
method fails

end if
if i = 1 then

p1 = r0

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)

end if
solve M p̂ = pi
vi = Ap̂

αi =
ρi−1

(r̃,vi)2
s = ri−1 − αivi
if norm of s is small enough then

xi = xi−1 + αip̂ and stop
end if
solve M ŝ = s
t = Aŝ
ωi = (t, s)2/(t, t)2

xi = xi−1 + αip̂ + ωiŝ
ri = s − ωit
check convergence; continue if necessary

end for

Other facts:

• As in the case of the conjugate gradient, in order to have a faster
convergence, a preconditioner denoted here M is often used. Since one

2.5. KRYLOV METHODS FOR ILL-POSED PROBLEMS 63

doesn’t need to preserve some symmetry, the preconditioned iteration
is simply derived from the unpreconditioned one by replacing A by
M−1A into Algorithm (5).

• Krylov methods do not need the explicit form of the operators A nor
of the preconditioner M . They are based on applying these operators
to vectors (so called matrix vector product operations) as it is the case
for the fixed point method (2.3). These are matrix free methods.

• There exist Matlab functions for the main Krylov methods: pcg for
the Conjugate Gradient and gmres for the GMRES method.

In conclusion fixed point iterations (2.3) generate an approximate solution
xn that belongs to the same Krylov space as CG or GMRES iterate xnK but
with “frozen” coefficients. Thus we have that xn is less (actually much much
less) optimal than xnK . In conclusion, it is convenient to replace the fixed
point method by a Krylov type method. For more details on these Krylov
methods, see [159] for a complete overview including implementation issues,
[9] for their templates and for a more mathematical introduction [98] and
for finite precision effects [131].

2.5 Krylov methods for ill-posed problems

Since it will be needed in some sub-structuring methods § 5.5, we consider
here the case where the linear system

Ax = b (2.54)

is square but ill-posed. In order to have existence of a solution, we assume
that b ∈ range(A). A solution is unique up to any element of ker(A). We
shall see that if A is symmetric, Krylov method will converge to a solution.
When A is non symmetric, we may not converge to a solution.
We start with the symmetric case. It is known in this case that

RN = ker(A) ⊕⊥ range(A)

and that there is a unique solution x ∈ range(A) to (2.54) denoted A†b in
the sequel. Thus we have that A† is an isomorphism from range(A) onto
itself.
The idea at the origin of Krylov methods can be found in the following
lemma which is true for an invertible matrix.

Lemma 2.5.1 Let C be an invertible matrix of size N × N . Then, there
exists a polynomial P of degree p < N such that

C−1 = P(C) .

64 CHAPTER 2. KRYLOV METHODS

Proof Let

M(X) ∶=
d

∑
i=0

aiX
i

be a minimal polynomial of C of degree d ≤ N . We have that

d

∑
i=0

aiC
i = 0

and there is no non zero polynomial of lower degree that annihilates C.
Thus, a0 cannot be zero. Otherwise, we would have

C
d

∑
i=1

aiC
i−1 = 0 .

and since C is invertible:
d

∑
i=1

aiC
i−1 = 0 .

Then, ∑d−1
i=0 ai+1X

i would be an annihilating polynomial of C of degree lower
than d. By definition of a minimal polynomial, this is impossible. This
proves that a0 ≠ 0 and we can divide by a0:

Id +C
d

∑
i=1

ai
a0
Ci−1 = 0

that is

C−1 = P(C), P(C) ∶= −
d

∑
i=1

ai
a0
Ci−1 . (2.55)

Our first step is to extend Lemma 2.5.1 to the non invertible symmetric
case.

Lemma 2.5.2 Let A be a symmetric indefinite matrix of size N ×N . Then
there exist coefficients (ai)2≤i≤p with p ≤ N such that

A =
p

∑
i=2

aiA
i . (2.56)

Proof Let Λ denote the set of the eigenvalues of A without taking into
account their multiplicities. Since matrix A is non invertible, we have 0 ∈ Λ.
Moreover, since it is symmetric, it is diagonalizable and it is easy to check
that A cancels its characteristic polynomial, that is

∏
λ∈Λ

(λId −A) = 0 . (2.57)

2.5. KRYLOV METHODS FOR ILL-POSED PROBLEMS 65

The zero-th order term of the above polynomial is zero and the next term
is non zero since it takes the following value:

−
⎛
⎝ ∏
λ∈Λ∖{0}

λ
⎞
⎠
A.

Then, it suffices to expand polynomial from the left-hand side of (2.57),
divide it by ∏λ∈Λ∖{0} λ and rearrange terms to end the proof.
The consequence of this is the following lemma

Lemma 2.5.3 The unique solution to Ay = r that belongs to range(A), for
a given r ∈ range(A) can be written as

y =
p

∑
i=2

aiA
i−2 r (2.58)

where the coefficients ai are given in (2.56).

Proof Let r = At ∈ range(A) for some t ∈ RN . Note that since t may have
a non zero component in ker(A), we may have y ≠ t. We apply Lemma 2.5.2
and right multiply (2.56) by vector t:

A (
p

∑
i=2

aiA
i−2) r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y∶=

= r .

Thus, we conclude that y given by (2.58) is the unique solution to Ay = r
that belongs to range(A).

We apply now these results to the solving of Ax = b ∈ range(A) by a Krylov
method with x0 as an initial guess. This result does not depend on the
actual implementation of the Krylov method.

Lemma 2.5.4 (Krylov method for undefinite symmetric systems)
Let x0 be the initial guess decomposed into its component in kerA and
range(A):

x0 = x0
ker + x0

range .

Then, the solution x to equation (2.54) provided by the Krylov method is

x = x0
ker +A†b

In other words, the solution to equation (2.54) “selected” by a Kryolv method
is the one whose component in the kernel of A is x0

ker.

66 CHAPTER 2. KRYLOV METHODS

Proof At step n, a Krylov method will seek an approximate solution to

Ay = b −Ax0 ∶= r0 ∈ range(A)

in Kn(A, r0). From (2.58), the method will converge in at most p − 1 itera-
tions and then the final solution is

x = x0 + y = x0
ker + x0

range + y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ỹ

with ỹ ∈ range(A). It is then obvious to see that

Aỹ = A(x0
range + y) = Ax0

range + r0 = b.

so that ỹ = A†b.

Thus, we have proved that a Krylov method applied to an indefinite sym-
metric linear system makes sense since for n large enough a solution to
Ax = b ∈ range(A) can be found in {x0} + Kn(A, r0).
Remark 2.5.1 This is not generally true in the non symmetric case. We
give now a counter-example. Consider the following system:

⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠

x = b =
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠

(2.59)

whose solutions are

x =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
+R

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
.

In particular, the first component of any solution is equal to 1. For sake
of simplicity, assume x0 = 0. Then, the first residual r0 = b has its first
component equal to zero. The same holds for Ak r0 for all k ≥ 1. Thus for
all n, any vector in the space {x0}+Kn(A, r0) has its first component equal
to zero and cannot be a solution to system (2.59).

2.6 Schwarz preconditioners using FreeFem++

In order to use Schwarz algorithms as a preconditioner in Krylov methods,
in addition to the usual ingredients (partition of the mesh, local matrices
and restriction operators), we need only the associated matrix-vector
product to the global problem as well as the preconditioning method used.

In the following program Aglobal corresponds to the finite element dis-
cretization of the variational formulation of the problem to be solved. We
then need the matrix-vector product of the operator Aglobal with a vector
l.

2.6. SCHWARZ PRECONDITIONERS USING FREEFEM++ 67

func real[int] A(real[int] &x)
{

4 // Matrix vector product with the global matrix
Vh Ax;
Ax[]= Aglobal∗x;
return Ax[];

8 }

Listing 2.1: ./FreefemCommon/matvecAS.idp

The preconditioning method can be Additive Schwarz (AS) which can be
found in the routine

// and the application of the preconditioner
func real[int] AS(real[int] &l)

13 {
// Application of the ASM preconditioner
// Mˆ{−1}∗y = \sum RiˆT∗Aiˆ{−1}∗Ri∗y
// Ri restriction operators, Ai =Ri∗A∗RiˆT local matrices

17 Vh s = 0;
for(int i=0;i<npart;++i)
{

real[int] bi = Rih[i]∗l; // restricts rhs

21 real[int] ui = aA[i] −1∗ bi; // local solves
s[] += Rih[i]’∗ui; // prolongation
}

return s[];
25 }

Listing 2.2: ./FreefemCommon/matvecAS.idp

68 CHAPTER 2. KRYLOV METHODS

// Preconditioned Conjugate Gradient Applied to the system
3 // A(un[]) = rhsglobal[]

// preconditioned by the linear operator
// AS: r[] −> AS(r[])
func real[int] myPCG(real[int] xi,real eps, int nitermax)

7 {
ofstream filei(”Convprec.m”);
ofstream fileignu(”Convprec.gnu”);

Vh r, un, p, zr, rn, w, er;
11 un[] = xi;

r[] = A(un[]);
r[] −= rhsglobal[];
r[] ∗= −1.0;

15 zr[] = AS(r[]);
real resinit=sqrt(zr[]’∗zr[]);
p = zr;
for(int it=0;it<nitermax;++it)

19 {
//plot(un,value=1,wait=1,fill=1,dim=3,cmm=”Approximate solution at ⤸

Ç iteration ”+it);
real relres = sqrt(zr[]’∗zr[])/resinit;
cout << ”It: ”<< it << ” Relative residual = ” << relres << endl;

23 int j = it+1;
filei << ”relres(”+j+”)=” << relres << ”;” << endl;
fileignu << relres << endl;
if(relres < eps)

27 {
cout << ”CG has converged in ” + it + ” iterations ” << endl;
cout << ”The relative residual is ” + relres << endl;
break;

31 }
w[] = A(p[]);
real alpha = r[]’∗zr[];
real aux2 = alpha;

35 real aux3 = w[]’∗p[];
alpha /= aux3; // alpha = (rj,zj)/(Apj,pj);
un[] += alpha∗p[]; // xj+1 = xj + alpha∗p;
r[] −= alpha∗w[]; // rj+1 = rj − alpha∗Apj;

39 zr[] = AS(r[]); // zj+1 = M−1∗rj+1;
real beta = r[]’∗zr[];
beta /= aux2; // beta = (rj+1,zj+1)/(rj,zj);
p[] ∗= beta;

43 p[] += zr[];
}

return un[];
}

Listing 2.3: ./KRYLOV/FreefemProgram/PCG.idp

The Krylov method applied in this case is the Conjugate Gradient (we are in
the symmetric case since both the original problem and the preconditioner
are symmetric positive definite) The whole program where these routines

2.6. SCHWARZ PRECONDITIONERS USING FREEFEM++ 69

are called is AS-PCG.edp.

/∗# debutPartition #∗/
2 include ”../../FreefemCommon/data.edp”

include ”../../FreefemCommon/decomp.idp”
include ”../../FreefemCommon/createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);

6 /∗# endPartition #∗/
/∗# debutGlobalData #∗/
Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
rhsglobal[] = vaglobal(0,Vh); // global rhs

10 uglob[] = Aglobal−1∗rhsglobal[];
/∗# finGlobalData #∗/
/∗# debutLocalData #∗/
for(int i = 0;i<npart;++i)

14 {
cout << ” Domain :” << i << ”/” << npart << endl;
matrix aT = Aglobal∗Rih[i]’;
aA[i] = Rih[i]∗aT;

18 set(aA[i],solver = UMFPACK); // direct solvers using UMFPACK
}

/∗# finLocalData #∗/
/∗# debutPCGSolve #∗/

22 include ”../../FreefemCommon/matvecAS.idp”
include ”PCG.idp”
Vh un = 0, sol; // initial guess un and final solution
cout << ”Schwarz Dirichlet algorithm” << endl;

26 sol[] = myPCG(un[], tol, maxit); // PCG with initial guess un
plot(sol,cmm=” Final solution”, wait=1,dim=3,fill=1,value=1);
Vh er = sol−uglob;
cout << ” Final error: ” << er[].linfty << endl;

30 /∗# finPCGSolve #∗/

Listing 2.4: ./KRYLOV/FreefemProgram/AS-PCG.edp

In the three-dimensional case the only thing that changes with respect to
the main script is the preparation of the data

include ”../../FreefemCommon/data3d.edp”
3 include ”../../FreefemCommon/decomp3d.idp”

include ”../../FreefemCommon/createPartition3d.idp”
SubdomainsPartitionUnity3(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,VolumeThi);

Listing 2.5: ./KRYLOV/FreefemProgram/AS-PCG3d.edp

We can also use RAS as a preconditioner in GMRES or BiCGSTAB,
by slightly modifying the program as described in the following rou-
tines:

70 CHAPTER 2. KRYLOV METHODS

0 10 20 30 40 50 60
10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

overlap=2
overlap=5
overlap=10

0 2 4 6 8 10 12 14 16
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

overlap=2
overlap=5
overlap=10

Figure 2.1: Schwarz convergence as a solver (left) and as a preconditioner
(right) for different overlaps

func real[int] RAS(real[int] &l)
29 {

// Application of the RAS preconditioner
// Mˆ{−1}∗y = \sum RiˆT∗Di∗Aiˆ{−1}∗Ri∗y
// Ri restriction operators, Ai =Ri∗A∗RiˆT local matrices

33 Vh s = 0;
for(int i=0;i<npart;++i) {

real[int] bi = Rih[i]∗l; // restricts rhs

real[int] ui = aA[i] −1∗ bi; // local solves
37 bi = Dih[i]∗ui; // partition of unity

s[] += Rih[i]’∗bi; // prolongation
}

return s[];
41 }

Listing 2.6: ./FreefemCommon/matvecAS.idp

2.6. SCHWARZ PRECONDITIONERS USING FREEFEM++ 71

func real[int] GMRES(real[int] x0, real eps, int nbiter)
7 {

ofstream filei(”Convprec.m”);
Vh r, z, v,w,er, un;
Vh[int] V(nbiter); // orthonormal basis

11 real[int,int] Hn(nbiter+2,nbiter+1); // Hessenberg matrix
real[int,int] rot(2,nbiter+2);
real[int] g(nbiter+1),g1(nbiter+1);
r[]=A(x0);

15 r[] −= rhsglobal[];
r[] ∗= −1.0;
z[] = RAS(r[]); // z= Mˆ{−1}(b−A∗x0)
g[0]=sqrt(z[]’∗z[]); // initial residual norm

19 filei << ”relres(”+1+”)=” << g[0] << ”;” << endl;
V[0][]=1/g[0]∗z[]; // first basis vector
for(int it =0;it<nbiter;it++) {

v[]=A(V[it][]);
23 w[]=RAS(v[]); // w = Mˆ{−1}A∗V it

for(int i =0;i<it+1;i++) {
Hn(i,it)=w[]’∗V[i][];
w[] −= Hn(i,it)∗V[i][]; }

27 Hn(it+1,it)= sqrt(w[]’∗w[]);
real aux=Hn(it+1,it);
for(int i =0;i<it;i++){ // QR decomposition of Hn
real aa=rot(0,i)∗Hn(i,it)+rot(1,i)∗Hn(i+1,it);

31 real bb=−rot(1,i)∗Hn(i,it)+rot(0,i)∗Hn(i+1,it);
Hn(i,it)=aa;
Hn(i+1,it)=bb; }

real sq = sqrt(Hn(it+1,it)ˆ2+Hn(it,it)ˆ2);
35 rot(0,it)=Hn(it,it)/sq;

rot(1,it)=Hn(it+1,it)/sq;
Hn(it,it)=sq;
Hn(it+1,it)=0;

39 g[it+1] = −rot(1,it)∗g[it];
g[it] = rot(0,it)∗g[it];
real[int] y(it+1); // Reconstruct the solution
for(int i=it;i>=0;i−−) {

43 g1[i]=g[i];
for(int j=i+1;j<it+1;j++)

g1[i]=g1[i]−Hn(i,j)∗y[j];
y[i]=g1[i]/Hn(i,i); }

47 un[]=x0;
for(int i=0;i<it+1;i++)

un[]= un[]+ y[i]∗V[i][];
er[]=un[]−uglob[];

51 real relres = abs(g[it+1]);
cout << ”It: ”<< it << ” Residual = ” << relres << ” Error = ”<< ⤸

Ç sqrt(er[]’∗er[]) << endl;
int j = it+2;
filei << ”relres(”+j+”)=” << relres << ”;” << endl;

55 if(relres < eps) {
cout << ”GMRES has converged in ” + it + ” iterations ” << endl;
cout << ”The relative residual is ” + relres << endl;
break; }

59 V[it+1][]=1/aux∗w[]; }
return un[];

}

72 CHAPTER 2. KRYLOV METHODS

Listing 2.7: ./KRYLOV/FreefemProgram/GMRES.idp

2.6. SCHWARZ PRECONDITIONERS USING FREEFEM++ 73

func real[int] BiCGstab(real[int] xi, real eps, int nbiter){
7 ofstream filei(”Convprec.m”);

Vh r, rb, rs, er, un, p, yn, zn, z, v, t, tn;
un[]=xi;
r[]=A(un[]);

11 r[] −= rhsglobal[];
r[] ∗= −1.0;
rb[]=r[];
real rho=1.;

15 real alpha=1.;
real omega=1.;
z[] = RAS(r[]);
real resinit=sqrt(z[]’∗z[]);

19 p[]=0; v[]=0;
real rhonew, beta;
for(int it =1;it<nbiter;it++){

real relres = sqrt(z[]’∗z[])/resinit;
23 cout << ”It: ”<< it << ” Relative residual = ” << relres << endl;

int j = it+1;
filei << ”relres(”+j+”)=” << relres << ”;” << endl;
if(relres < eps){

27 cout << ”BiCGstab has converged in ” + it + ” iterations ” << endl;
cout << ”The relative residual is ” + relres << endl;
break;
}

31 rhonew=rb[]’∗r[]; // rhoi = (rb,rim1);
beta=(rhonew/rho)∗(alpha/omega); // beta = (rhoi/rhoim1)∗(alpha/omega);
p[] −=omega∗v[]; // pi = rim1 + beta∗(pim1 − omega∗vim1);
p[] ∗= beta;

35 p[] += r[];
yn[] = RAS(p[]); // y = Mm1∗pi; vi = A∗y;
v[] = A(yn[]);
alpha = rhonew/(rb[]’∗v[]); // alpha = rhoi/(rb’∗vi);

39 rs[] = r[]; // s = rim1 − alpha∗vi;
rs[] −= alpha∗v[];
zn[] = RAS(rs[]); // z = Mm1∗s; t = A∗z;
t[] = A(zn[]);

43 tn[] = RAS(t[]); // tn = Mm1∗t;
omega = (tn[]’∗zn[])/(tn[]’∗tn[]); // omega = ⤸

Ç (Mm1∗t,Mm1∗s)/(Mm1∗t,Mm1∗t);
un[] += alpha∗yn[]; // xi = xim1 + alpha∗y + omega∗z;
un[] += omega∗zn[];

47 r[] = rs[];
r[] −= omega∗t[];
z[] = RAS(r[]);
rho = rhonew;

51 }
return un[];

}

Listing 2.8: ./KRYLOV/FreefemProgram/BiCGstab.idp

74 CHAPTER 2. KRYLOV METHODS

The whole program where the GMRES is called is similar to AS-PCG.edp

where the last part is modified RAS-GMRES.edp.

include ”../../FreefemCommon/matvecAS.idp”
23 include ”GMRES.idp”

Vh un = 0, sol, er; // initial guess, final solution and error
sol[] = GMRES(un[], tol, maxit);
plot(sol,dim=3,wait=1,cmm=”Final solution”,value =1,fill=1);

27 er[] = sol[]−uglob[];
cout << ”Final error = ” << er[].linfty/uglob[].linfty << endl;

Listing 2.9: ./KRYLOV/FreefemProgram/RAS-GMRES.edp

In the case of the use of BiCGstab, only the last part has to be modi-
fied

include ”../../FreefemCommon/matvecAS.idp”
include ”BiCGstab.idp”

24 Vh un = 0, sol, er; // initial guess, final solution and error
sol[] = BiCGstab(un[], tol, maxit);
plot(sol,dim=3,wait=1,cmm=”Final solution”,value =1,fill=1);
er[] = sol[]−uglob[];

28 cout << ”Final error = ” << er[].linfty/uglob[].linfty << endl;

Listing 2.10: ./KRYLOV/FreefemProgram/RAS-BiCGstab.edp

In the three dimensional case we have to use the specific preparation of the
data as for the case of the ASM. The performance of Krylov methods is now
much less sensitive to the overlap size compared to the iterative version as
shown in Figure 2.1. Note also that in the case of the use of BiCGStab, an
iteration involves two matrix-vector products, thus the cost of a BICGStab
iteration is twice the cost of a CG iteration. In all previous scripts the
convergence residuals can be stored in a file in Matlab/Octave/Scilab form
and then the convergence histories can be plotted in one of these numeric
languages.

Chapter 3

Coarse Spaces

Theoretical and numerical results show that domain decomposition methods
based solely on local subdomain solves are not scalable with respect to the
number of subdomains. This can be fixed by using a two-level method in
which the preconditioner is enriched by the solve of a coarse problem whose
size is of the order of the number of subdomains.
In § 3.1, we see that one level Schwarz methods are not scalable since the
iteration count grows as the number of subdomains in one direction. We
introduce a fix introduced in Nicolaides [141]. A numerical implementa-
tion is given in § 3.2.1. In § 3.3 we introduce a more general coarse space
construction that reduces to that of Nicolaides for a particular choice of
parameters

3.1 Need for a two-level method

The results presented so far concern only a small number of subdomains,
two for the theoretical results of § 1.5 and four for the numerical results
of § 2.6. When the number of subdomains is large, plateaus appear in the
convergence of Schwarz domain decomposition methods. This is the case
even for a simple model such as the Poisson problem:

{ −∆u = f, in Ω,
u = 0, on ∂Ω.

Figure 3.1: Decomposition into many subdomains

75

76 CHAPTER 3. COARSE SPACES

The problem of one level method comes from the fact that in the Schwarz
methods of § 1 there is a lack of a global exchange of information. Data are
exchanged only from one subdomain to its direct neighbors. But the solution
in each subdomain depends on the right-hand side in all subdomains. Let
us denote by Nd the number of subdomains in one direction. Then, for
instance, the leftmost domain of Figure 3.1 needs at least Nd iterations
before being aware about the value of the right-hand side f in the rightmost
subdomain. The length of the plateau is thus typically related to the number
of subdomains in one direction and therefore to the notion of scalability met
in the context of high performance computing.
To be more precise, there are two common notions of scalability.

Definition 3.1.1 (Strong scalability) Strong scalability is defined as
how the solution time varies with the number of cores for a fixed total prob-
lem size. Ideally, the elapsed time is inversely proportional to the number of
cores.

Definition 3.1.2 (Weak scalability) Weak scalability is defined as how
the solution time varies with the number of cores for a fixed problem size per
core. Ideally the elapsed time is constant for a fixed ratio between the size
of the problem and the number of cores.

A mechanism through which the scalability can be achieved (in this case the
weak scalability) consists in the introduction of a two-level preconditioner
via a coarse space correction. In two-level methods, a small problem of size
typically the number of subdomains couples all subdomains at each iteration.
For instance, in Figure 3.2 we consider a 2D problem decomposed into 2×2,
4 × 4 and 8 × 8 subdomains. For each domain decomposition, we have two
curves: one with a one-level method which has longer and longer plateaus
and the second curve with a coarse grid correction which is denoted by M2
for which plateaus are much smaller. The problem of one level methods and
its cure are also well illustrated in Figure 3.3 for a domain decomposition into
64 strips as well as in Table 3.1. The one level method has a long plateau
in the convergence whereas with a coarse space correction convergence is
quite fast. We also see that for the one-level curves, the plateau has a size
proportional to the number of subdomains in one direction. This can be
understood by looking at Figure 3.4 where we plot the slow decrease of the
error for a one dimensional Poisson problem.
From the linear algebra point of view, stagnation in the convergence of one-
level Schwarz methods corresponds to a few very low eigenvalues in the
spectrum of the preconditioned problem. Using preconditioners M−1

ASM or
M−1
RAS , we can remove the influence of very large eigenvalues of the coeffi-

cient matrix, which correspond to high frequency modes. It has been proved
that for a SPD (symmetric positive definite) matrix, the largest eigenvalue

3.1. NEED FOR A TWO-LEVEL METHOD 77

-7

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60 70 80

L
o
g
_
1
0
 (

E
rr

o
r)

Number of iterations (GCR)

M2
2x2

2x2 M2
4x4

M2
8x8

4x4 8x8

Figure 3.2: Japhet, Nataf, Roux (1998)

of the preconditioned system by M−1
ASM is bounded by the number of col-

ors needed for the overlapping decomposition such that different colors are
used for adjacent subdomains, see [174] or [159] for instance. But the small
eigenvalues still exist and hamper the convergence. These small eigenvalues
correspond to low frequency modes and represent a certain global informa-
tion with which we have to deal efficiently.
A classical remedy consists in the introduction of a coarse grid or coarse
space correction that couples all subdomains at each iteration of the iterative
method. This is closely related to deflation technique classical in linear
algebra, see Nabben and Vuik’s paper [173] and references therein. This is
connected as well to augmented or recycled Krylov space methods, see e.g.
[72], [144] [158] or [21] and references therein.
Suppose we have identified the modes corresponding to the slow convergence
of the iterative method used to solve the linear system:

Ax = b

with a preconditioner M , in our case a domain decomposition method. That
is, we have some a priori knowledge on the small eigenvalues of the precondi-
tioned system M−1A. For a Poisson problem, these slow modes correspond
to constant functions that are in the null space (kernel) of the Laplace op-
erators. For a homogeneous elasticity problem, they correspond to the rigid
body motions.
Let us call Z the rectangular matrix whose columns correspond to these
slow modes. There are algebraic ways to incorporate this information to
accelerate the method. We give here the presentation that is classical in
domain decomposition, see e.g. [129] or [174]. In the case where A is SPD,

78 CHAPTER 3. COARSE SPACES

the starting point is to consider the minimization problem

min
β

∥A(y +Zβ) − b∥A−1 .

It corresponds to finding the best correction to an approximate solution y
by a vector Zβ in the vector space spanned by the nc columns of Z. This
problem is equivalent to

min
β∈Rnc

2(Ay − b, Zβ)2 + (AZβ,Zβ)2

and whose solution is:

β = (ZTAZ)−1ZT (b −Ay) .

Thus, the correction term is:

Zβ = Z (ZTAZ)−1ZT (b −Ay)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

.

This kind of correction is called a Galerkin correction. Let R0 ∶= ZT and
r = b−Ay be the residual associated to the approximate solution y. We have
just seen that the best correction that belongs to the vector space spanned
by the columns of Z reads:

Zβ = RT0 β = RT0 (R0AR
T
0)−1R0r .

When using such an approach with an additive Schwarz method (ASM) as
defined in eq. (1.29), it is natural to introduce an additive correction to the
additive Schwarz method.

Definition 3.1.3 (Two-level additive Schwarz preconditioner) The
two-level additive Schwarz preconditioner is defined as

M−1
ASM,2 ∶= RT0 (R0AR

T
0)−1

R0 +
N

∑
i=1

RTi (RiARTi)
−1
Ri (3.1)

where the Ri’s (1 ≤ i ≤ N) are the restriction operators to the overlapping
subdomains and R0 = ZT .

Remark 3.1.1 This definition suggests the following remarks.

• The structure of the two level preconditioner M−1
ASM,2 is the same that

of the one level method.

• Compared to the one level Schwarz method where only local subprob-
lems have to be solved in parallel, the two-level method adds the solving
of a linear system of matrix R0AR

T
0 which is global in nature. This

global problem is called coarse problem.

3.1. NEED FOR A TWO-LEVEL METHOD 79

N subdomains Schwarz With coarse grid

4 18 25

8 37 22

16 54 24

32 84 25

64 144 25

Table 3.1: Iteration counts for a Poisson problem on a domain decomposed
into strips. The number of unknowns is proportional to the number of
subdomains (weak scalability).

• The coarse problem couples all subdomains at each iteration but its
matrix is a small O(N ×N) square matrix and the extra cost is neg-
ligible compared to the gain provided the number of subdomains is not
too large.

In Table 3.1 we display the iteration counts for a decomposition of the
domain in an increasing number of subdomains. In figure 3.3, we see that
without a coarse grid correction, the convergence curve of the one level
Schwarz method has a very long plateau that can be bypassed by a two-
level method.

0 50 100 150
10−8

10−6

10−4

10−2

100

102

104

X: 25
Y: 1.658e−08

SCHWARZ

additive Schwarz
with coarse gird acceleration

Figure 3.3: Convergence curves with and without a coarse space correction
for a decomposition into 64 strips

80 CHAPTER 3. COARSE SPACES

L1l20 x

� �

l3 L2

� � � � �

. . .

. . .

e1
1

e4
1

e4
4

e0
1 e0

2 e0
3 e0

i

Figure 3.4: Convergence of the error for the one level Schwarz method in
the 1D case.

3.2 Nicolaides coarse space

We give here a precise definition to the rectangular matrix Z for a Poisson
problem. This construction was introduced in Nicolaides [141]. We take Z so
that it has a domain decomposition structure. Z is defined by vectors which
have local support in the subdomains and so that the constant function 1
belongs to the vector space spanned by the columns of Z.
Recall first that we have a discrete partition of unity (see § 1.3) in the
following sense: let Ni be subsets of indices, Di be diagonal matrices, 1 ≤
i ≤ N :

Di ∶ R#Ni z→ R#Ni (3.2)

so that we have:
N

∑
i=1

RTi DiRi = Id .

With these ingredients we are ready to provide the definition of what we
will further call classical or Nicolaides coarse space.

Definition 3.2.1 (Nicolaides coarse space) We define Z as the matrix
whose i-th column is

Zi ∶= RTi DiRi1 for 1 ≤ i ≤ N (3.3)

where 1 is the vector of dimension N full of ones. The global structure of
Z is thus the following:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1R11 0 ⋯ 0
0 D2R21 ⋱
⋮ ⋱ ⋱ 0
0 0 0 DNRN1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

3.2. NICOLAIDES COARSE SPACE 81

Numerical results of Figures 3.3 and Table 3.1 have been obtained by a two-
level Schwarz preconditioner (3.1) where R0 = ZT with Z being defined by
(3.4).

3.2.1 Nicolaides coarse space using FreeFem++

We provide FreeFem++ scripts that will illustrate numerically the perfor-
mance of the Nicolaides coarse space. We need first to build matrix Z whose
expression is given in (3.4),

// Build coarse space
for(int i=0;i<npart;++i)

4 {
Z[i]=1.;
Z[i][] = Z[i][].∗intern[];
real[int] zit = Rih[i]∗Z[i][];

8 real[int] zitemp = Dih[i]∗zit;
Z[i][]=Rih[i]’∗zitemp;

}

Listing 3.1: ./FreefemCommon/coarsespace.idp

then the coarse matrix A0 = ZTAZ = R0AR
T
0 ,

13 real[int,int] Ef(npart,npart); // E = ZˆT∗A∗Z
for(int i=0;i<npart;++i)
{

real[int] vaux = A(Z[i][]);
17 for(int j=0;j<npart;++j)

{
Ef(j,i) = Z[j][]’∗vaux;
}

21 }
matrix E;
E = Ef;
set(E,solver=UMFPACK);

Listing 3.2: ./FreefemCommon/coarsespace.idp

the coarse solver Q = RT0 (R0AR
T
0)−1R0

82 CHAPTER 3. COARSE SPACES

func real[int] Q(real[int] &l) // Q = Z∗E−1∗ZˆT
{

29 real[int] res(l.n);
res=0.;
real[int] vaux(npart);
for(int i=0;i<npart;++i)

33 {
vaux[i]=Z[i][]’∗l;

}
real[int] zaux=E−1∗vaux; // zaux=E−1∗ZˆT∗l

37 for(int i=0;i<npart;++i) // Z∗zaux
{

res +=zaux[i]∗Z[i][];
}

41 return res;
}

Listing 3.3: ./FreefemCommon/coarsespace.idp

the projector outside the coarse space P = I −QA and its transpose P T =
I −AQ.

45 func real[int] P(real[int] &l) // P = I − A∗Q
{

real[int] res=Q(l);
real[int] res2=A(res);

49 res2 −= l;
res2 ∗= −1.;
return res2;

}
53 func real[int] PT(real[int] &l) // PˆT = I−Q∗A

{
real[int] res=A(l);
real[int] res2=Q(res);

57 res2 −= l;
res2 ∗= −1.;
return res2;

}

Listing 3.4: ./FreefemCommon/coarsespace.idp

Based on the previous quantities, we can build two versions of the additive
Schwarz preconditioner. First the classical one, called AS2 corresponding to
the formula (3.1) and then, the alternative version Q+P TM−1

AS,1P

3.2. NICOLAIDES COARSE SPACE 83

func real[int] AS2(real[int] & r){
real[int] z = Q(r);

8 real[int] aux = AS(r);
z += aux;
return z;

}
12 func real[int] BNN(real[int] &u) // precond BNN

{
real[int] aux1 = Q(u);
real[int] aux2 = P(u);

16 real[int] aux3 = AS(aux2);
aux2 = PT(aux3);
aux2 += aux1;

return aux2;
20 }

Listing 3.5: ./COARSEGRID/FreefemProgram/PCG-CS.idp

After that we can use one of these inside a preconditioned conjugate gradient.
Finally the main program script is given by AS2-PCG.edp, whose first part
is identical as in the case of the one-level method.

include ”../../FreefemCommon/matvecAS.idp”
include ”../../FreefemCommon/coarsespace.idp”

24 include ”PCG−CS.idp”
Vh un = 0, sol; // initial guess un and final solution
cout << ”Schwarz Dirichlet algorithm” << endl;
sol[] = myPCG(un[], tol, maxit); // PCG with initial guess un

28 plot(sol,cmm=” Final solution”, wait=1,dim=3,fill=1,value=1);
Vh er = sol−uglob;
cout << ” Final error: ” << er[].linfty << endl;

Listing 3.6: ./COARSEGRID/FreefemProgram/AS2-PCG.edp

An identical thing can be performed for the non-symmetric preconditioner,
by simply replacing AS by RAS in the two versions of the preconditon-
ers.

84 CHAPTER 3. COARSE SPACES

Figure 3.5: Decomposition into subdomains

0 10 20 30 40 50 60 70
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

R
es

id
ua

l n
or

m
 (l

og
sc

al
e)

2x2 subdomains
4x4 subdomains
8x8 subdomains

0 5 10 15 20 25
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration
R

es
id

ua
l n

or
m

 (l
og

sc
al

e)

2x2 subdomains
4x4 subdomains
8x8 subdomains

Figure 3.6: Convergence history without and with coarse space for various
domain decompositions

6 func real[int] RAS2(real[int] & r){
real[int] z = Q(r);
real[int] aux = RAS(r);
z += aux;

10 return z;
}
func real[int] BNN(real[int] &u) // precond BNN
{

14 real[int] aux1 = Q(u);
real[int] aux2 = P(u);
real[int] aux3 = RAS(aux2);
aux2 = PT(aux3);

18 aux2 += aux1;
return aux2;

}

Listing 3.7: ./COARSEGRID/FreefemProgram/BiCGstab-CS.idp

After that we can use one of these inside a BiCGstab or a GMRES.
We perform now the following numerical experiment: consider a uniform
decomposition into n×n square subdomains where each domain has 20× 20
discretization points with two layers of overlap. We see that in the absence
of the coarse space, the iteration number of a Schwarz method used as
a preconditioner in a Krylov method, depends linearly on the number of
subdomains in one direction. By introducing the Nicolaides coarse space we

3.3. INTRODUCTION OF A SPECTRAL COARSE SPACE 85

Ω1 Ω2

Figure 3.7: Coefficient α varying along and across the interface.

remove this dependence on the number of subdomains.

3.3 Introduction of a spectral coarse space

In this section we introduce a more general coarse space construction that
reduces to that of Nicolaides for a particular choice of a threshold parameter.
This new construction answers to the natural question on how to enrich
the coarse space by allowing it to have a size larger than the number of
subdomains. This enrichment is mainly motivated by the complexity of the
problem to solve, which is often a result of highly heterogeneous coefficients.
We will try to keep it for the moment as elementary as possible without any
theoretical convergence proof in this chapter.
Classical coarse spaces are known to give good results when the jumps in
the coefficients are across subdomain interfaces (see e.g. [61, 125, 46, 47])
or inside the subdomains and not near their boundaries (cf. [150, 149]).
However, when the discontinuities are along subdomain interfaces, classical
methods do not work anymore. In [137], we proposed the construction
of a coarse subspace for a scalar elliptic positive definite operator, which
leads to a two-level method that is observed to be robust with respect
to heterogeneous coefficients for fairly arbitrary domain decompositions,
e.g. provided by an automatic graph partitioner such as METIS or SCOTCH
[114, 24]. This method was extensively studied from the numerical point
of view in [138]. The main idea behind the construction of the coarse
space is the computation of the low-frequency modes associated with
a generalized eigenvalue problem based on the Dirichlet-to-Neumann
(DtN) map on the boundary of each subdomain. We use the harmonic
extensions of these low-frequency modes to the whole subdomain to
build the coarse space. With this method, even for discontinuities along
(rather than across) the subdomain interfaces (cf. Fig. 3.7), the iteration
counts are robust to arbitrarily large jumps of the coefficients leading
to a very efficient, automatic preconditioning method for scalar hetero-
geneous problems. As usual with domain decomposition methods, it is
also well suited for parallel implementation as it has been illustrated in [112].

86 CHAPTER 3. COARSE SPACES

We first motivate why the use of spectral information local to the sub-
domains is the key ingredient in obtaining an optimal convergence. A
full mathematical analysis of the two-level method will be given in chapter 4.

We now propose a construction of the coarse space that will be suitable for
parallel implementation and efficient for arbitrary domain decompositions
and highly heterogeneous problems such as the Darcy problem with Dirichlet
boundary conditions:

−div(α∇u) = f, in Ω

where α can vary of several orders of magnitude, typically between 1 and 106.

We still choose Z such that it has the form

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

W 1 0 ⋯ 0
⋮ W 2 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ WN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (3.5)

where N is the number of overlapping subdomains. But W i is now a
rectangular matrix whose columns are based on the harmonic extensions
of the eigenvectors corresponding to small eigenvalues of the DtN map in
each subdomain Ωi multiplied by the local component of the partition of
unity, see definition 4.4.1. Note that the sparsity of the coarse operator
E = ZTAZ is a result of the sparsity of Z. The nonzero components of E
correspond to adjacent subdomains.

More precisely, let us consider first at the continuous level the Dirichlet to
Neumann map DtNΩi .

Definition 3.3.1 (Dirichlet-to-Neumann map) For any function de-
fined on the interface uΓi ∶ Γi ↦ R, we consider the Dirichlet-to-Neumann
map

DtNΩi(uΓi) =
∂v

∂ni
∣
Γi

,

where Γi ∶= ∂Ωi ∖ ∂Ω and v satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(α∇v) = 0, in Ωi,
v = uΓi , on Γi,
v = 0, on ∂Ωi ∩ ∂Ω.

(3.6)

If the subdomain is not a floating one (i.e. ∂Ωi ∩ ∂Ω ≠ ∅), we use on
∂Ωi ∩ ∂Ω the boundary condition from the original problem v = 0.

3.3. INTRODUCTION OF A SPECTRAL COARSE SPACE 87

Ωi Ωi+1Ωi−1 en
i

en+1
i−1 en+1

i+1

Ωi Ωi+1Ωi−1 en
i

en+1
i−1 en+1

i+1

Figure 3.8: Fast or slow convergence of the Schwarz algorithm.

To construct the coarse grid subspace, we use some low frequency modes of
the DtN operator by solving the following eigenvalue problem

DtNΩi(u) = λu. (3.7)

In order to obtain the variational formulation of (3.7) we multiply (3.6) by
a test function w, equal to zero on ∂Ωi ∩ ∂Ω

∫
Ωi
α∇v ⋅ ∇w − ∫

Γi
α
∂v

∂ni
w = 0.

By using the fact that

α
∂v

∂ni
= λαv on Γi and w = 0 on ∂Ωi ∩ ∂Ω

we get the variational formulation of the eigenvalue problem of the local
Dirichlet-to-Neumann map

Find (v, λ) such that ∫
Ωi
α∇v ⋅ ∇w = λ∫

∂Ωi
αvw, ∀w. (3.8)

We now motivate our choice of this coarse space based on DtN map. We
write the original Schwarz method at the continuous level, where the domain
Ω is decomposed in a one-way partitioning. The error eni between the current
iterate at step n of the algorithm and the solution u∣Ωi (eni ∶= uni − u∣Ωi) in
subdomain Ωi at step n of the algorithm is harmonic

− div(α∇en+1
i) = 0 in Ωi . (3.9)

On the 1D example sketched in Figure 3.8, we see that the rate of conver-
gence of the algorithm is related to the decay of the harmonic functions eni in
the vicinity of ∂Ωi via the subdomain boundary condition. Indeed, a small
value for this BC leads to a smaller error in the entire subdomain thanks
to the maximum principle. That is, a fast decay for this value corresponds
to a large eigenvalue of the DtN map whereas a slow decay corresponds to
small eigenvalues of this map because the DtN operator is related to the
normal derivative at the interface and the overlap is thin. Thus the small
eigenvalues of the DtN map are responsible for the slow convergence of the
algorithm and it is natural to incorporate them in the coarse grid space.

88 CHAPTER 3. COARSE SPACES

3.3.1 Spectral coarse spaces for other problems

Construction of coarse spaces is also a challenge for other class of problems,
such as compressible and incompressible flows in [3] and to indefinite prob-
lems such as Helmholtz equations in [34]. In the latter, the construction
of the coarse space is completely automatic and robust. The construction
of the DtN coarse space inherently respects variations in the wave number,
making it possible to treat heterogeneous Helmholtz problems. Moreover,
it does not suffer from ill-conditioning as the standard approach based on
plane waves (see [74],[73], [116]).

Chapter 4

Theory of two-level Additive
Schwarz methods

The estimate of the condition number of the preconditioned matrix
M−1
ASM,2A requires a functional analysis framework. In this chapter we give a

functional analysis of the condition number of the two-level Schwarz method
with the spectral coarse space.

4.1 Variational setting

We consider the variational formulation of a Poisson boundary value problem
with Dirichlet boundary conditions: Find u ∈ H1

0(Ω), for a given polygonal
(polyhedral) domain Ω ⊂ IRd (d = 2 or 3) and a source term f ∈ L2(Ω), such
that

∫
Ω
∇u ⋅ ∇v

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ a(u, v)

= ∫
Ω
f(x)v(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ (f, v)

, for all v ∈H1
0(Ω). (4.1)

For any domain D ⊂ Ω we need the usual norm ∥ ⋅ ∥L2(D) and seminorm
∣ ⋅ ∣H1(D), as well as the L2 inner product (v,w)L2(D). To simplify notations
we write:

∥v∥2
0,D = ∫

D
v2 ,

and the seminorm ∣ ⋅ ∣a,D is defined by

∣v∣2a,D = ∫
D

∣∇v∣2 .

When D = Ω we omit the domain from the subscript and write ∥ ⋅ ∥0 and
∣ ⋅ ∣a instead of ∥ ⋅ ∥0,Ω and ∣ ⋅ ∣a,Ω respectively. Note that the seminorm ∣ ⋅ ∣a
becomes a norm on H1

0(Ω).

89

90 CHAPTER 4. THEORY OF TWO-LEVEL ASM

Finally, we will also need averages and norms defined on (d−1)–dimensional
manifolds X ⊂ IRd, namely for any v ∈ L2(X) we define

vX ∶= 1

∣X ∣ ∫X u and ∥v∥2
0,X ∶= ∫

X
v2.

where ∣X ∣ is the measure of the manifold X.
We consider a discretization of the variational problem (4.1) with P1 con-
tinuous, piecewise linear finite elements (FE). To define the FE spaces and
the approximate solution, we assume that we have a shape regular, sim-
plicial triangulation Th of Ω. The standard space of continuous and piece-
wise linear (w.r.t Th) functions is then denoted by Vh, and the subspace of
functions from Vh that vanish on the boundary of Ω by Vh,0. Note that
Vh,0 = Vh ∩H1

0(Ω). Denote by {φk}k∈N the basis of Vh,0 and {xk}k∈N the
associated nodes in Ω. Let us write the discrete FE problem that we want
to solve: Find uh ∈ Vh,0 such that

a(uh, vh) = (f, vh), for all vh ∈ Vh,0. (4.2)

which gives the matrix form

AU = F, Aij = a(φj , φi), Fi = (f, φi), ∀i, j ∈ N .

so that uh = ∑k∈N Uk φk where U = (Uk)k∈N .
For technical reasons, we also need the standard nodal value interpolation
operator Ih from C(Ω̄) to Vh(Ω):

Ih(v) ∶= ∑
k∈N

v(xk)φk .

This interpolant is known to be stable in the sense that there exists a con-
stant CIh > 0 such that for all continuous, piecewise quadratic (w.r.t. Th)
function v, we have:

∥Ih(v)∥a ≤ CIh ∥v∥a . (4.3)

4.2 Additive Schwarz setting

In order to automatically construct a robust two-level Schwarz precondi-
tioner, we first partition our domain Ω into a set of non-overlapping subdo-
mains {Ω′

j}Nj=1 resolved by Th using for example a graph partitioner such as
METIS [114] or SCOTCH [24]. Each subdomain Ω′

j is then extended to a
domain Ωj by adding one or several layers of mesh elements in the sense of
Definition 4.2.1, thus creating an overlapping decomposition {Ωj}Nj=1 of Ω
(see Figure 1.8).

4.2. ADDITIVE SCHWARZ SETTING 91

Definition 4.2.1 Given an open subset D′ ⊂ Ω which is resolved by Th, the
extension of D′ by one layer of elements is

D = Int(⋃
k∈dof(D′)

supp(φk)), where dof(D′) ∶= {k ∈ N ∶ supp(φk)∩D′ ≠ ∅},

and Int(⋅) denotes the interior of a domain. Extensions by more than one
layer can then be defined recursively.

The proof of the following lemma is a direct consequence of Definition 4.2.1.

Lemma 4.2.1 For every degree of freedom k, with k ∈ N , there is a subdo-
main Ωj, with 1 ≤ j ≤ N , such that supp(φk) ⊂ Ωj .

Note that in the case of P1 finite elements the degrees of freedom are in fact
the values of the unknown function in the vertices of the mesh.

Definition 4.2.2 (Number of overlapping domains) We define

k0 = max
τ∈Th

(#{Ωj ∶ 1 ≤ j ≤ N, τ ⊂ Ωj}).

as the maximum number of subdomains to which one cell can belong.

Another ingredient of a decomposition is the following:

Definition 4.2.3 (Number of colors) We define the number Nc as the
minimum number of colors we can use to color a decomposition such as any
two neighboring domains have different colors.

Note that there is an obvious relation: k0 ≤ Nc.

Definition 4.2.4 (Overlapping parameter) We define for each domain
the overlapping parameter as

δj ∶= inf
x∈Ωj∖∪i≠jΩ̄i

dist(x, ∂Ωj ∖ ∂Ω). (4.4)

Lemma 4.2.2 (Partition of unity) With k0 as in Definition 4.2.2, there
exist functions {χj}Nj=1 ⊂ Vh(Ω) such that

• χj(x) ∈ [0,1], ∀x ∈ Ω̄,

• supp(χj) ⊂ Ω̄j,

• ∑Nj=1 χj(x) = 1, ∀x ∈ Ω̄,

• ∣∇χj ∣ ≤ Cχδ−1
j .

92 CHAPTER 4. THEORY OF TWO-LEVEL ASM

Proof Let

dj(x) ∶= { dist(x, ∂Ωj ∖ ∂Ω), x ∈ Ωj ,
0,x ∈ Ω ∖Ωj

Then it is enough to set

χj(x) ∶= Ih
⎛
⎝

dj(x)
∑Nj=1 dj(x)

⎞
⎠
.

The first three properties are obvious, the last one can be found in [174],
page 57.

Note that with the help of partition of unity of functions {χj}Nj=1 defined on

Ω, subordinate to the overlapping decomposition {Ωj}Nj=1 we can define

Ω○
j ∶= {x ∈ Ωj ∶ χj(x) < 1}

as the boundary layer of Ωj that is overlapped by neighboring domains.
Now, for each j = 1, . . . ,N , let

Vh(Ωj) ∶= {v∣Ωj ∶ v ∈ Vh}

denote the space of restrictions of functions in Vh to Ωj . Furthermore, let

Vh,0(Ωj) ∶= {v∣Ωj ∶ v ∈ Vh, supp (v) ⊂ Ω̄j}

denote the space of finite element functions supported in Ωj . By definition,
the extension by zero of a function v ∈ Vh,0(Ωj) to Ω lies again in Vh. We
denote the corresponding extension operator by

Ej ∶ Vh,0(Ωj) → Vh . (4.5)

Lemma 4.2.1 guarantees that Vh = ∑Nj=1EjVh,0(Ωj). The adjoint of Ej

E⊺
j ∶ V ′

h → Vh,0(Ωj)′ ,

called the restriction operator, is defined by ⟨E⊺
j g, v⟩ = ⟨g,Ejv⟩ (where

< ⋅, ⋅ > denotes the duality pairing), for v ∈ Vh,0(Ωj), g ∈ V ′
h. However, for

the sake of simplicity, we will often leave out the action of Ej and view
Vh,0(Ωj) as a subspace of Vh.

The final ingredient is a coarse space V0 ⊂ Vh which will be defined later.
Let E0 ∶ V0 → Vh denote the natural embedding and E⊺

0 its adjoint. Then
the two-level additive Schwarz preconditioner (in matrix form) reads

M−1
ASM,2 = RT0 A−1

0 R0 +
N

∑
j=1

RTj A
−1
j Rj , A0 ∶= R0AR

T
0 and Aj ∶= RjARTj , (4.6)

4.2. ADDITIVE SCHWARZ SETTING 93

where Rj , R0 are the matrix representations of E⊺
j and E⊺

0 with respect to
the basis {φk}k∈N and the chosen basis of the coarse space V0 which will be
specified later.

As usual for standard elliptic BVPs, Aj corresponds to the original (global)
system matrix restricted to subdomain Ωj with Dirichlet conditions on the
artificial boundary ∂Ωj ∖ ∂Ω.

On each of the local spaces Vh,0(Ωj) the bilinear form aΩj(⋅, ⋅) is positive
definite since

aΩj(v,w) = a(Ejv,Ejw), for all v,w ∈ Vh,0(Ωj),

and because a(⋅, ⋅) is coercive on Vh. For the same reason, the matrix Aj
in (4.6) is invertible. An important ingredient in the definition of Schwarz
algorithms are the following operators:

P̃j ∶ Vh → Vh,0(Ωj), aΩj(P̃ju, vj) = a(u,Ejvj), ∀vj ∈ Vh,0(Ωj).

and
Pj = EjP̃j ∶ Vh → Vh, j = 1⋯N.

Lemma 4.2.3 (Properties of Pi) The operators Pj are projectors which
are self-adjoint with respect to the scalar product induced by a(⋅, ⋅) and pos-
itive semi-definite.

Proof By definition of P̃j , Pj and aΩj we have

a(Pju, v) = a(EjP̃ju, v) = a(v,EjP̃ju)
= aΩj(P̃ju, P̃jv) = a(EjP̃ju,EjP̃jv) = a(Pju,Pjv).

(4.7)

Similarly we have a(u,Pjv) = a(Pjv, u) = a(Pjv,Pju) which proves that
a(Pju, v) = a(u,Pjv), that is Pj is self-adjoint w.r.t a scalar product.

They are also projectors since by (4.7)

a(Pju, v) = a(Pju,Pjv) = a(P2
j u,Pjv) = a(P2

j u, v).

As a consequence of the coercivity of the bilinear forms aΩj we have

a(Pju,u) = a(EjP̃ju,u) = a(u,EjP̃ju) = aΩj(P̃ju, P̃ju) ≥ 0.

We will denote the additive Schwarz operator by

Pad =
N

∑
i=0

Pi =
N

∑
i=0

EjP̃j

94 CHAPTER 4. THEORY OF TWO-LEVEL ASM

We can give an interpretation for the above from the linear algebra point of
view. In this case if we denote by P̃j and Pj the matrix counterparts of P̃j
and Pj w.r.t. the finite element basis {φk}k∈N we get

P̃j = A−1
j RjA, Pj = RTj A−1

j RjA.

Taking into account (4.6), then the additive matrix which corresponds to
the “parallel” or block-Jacobi version of the original Schwarz method is
then given

Pad ∶=M−1
ASM,2A =

N

∑
i=0

Pi. (4.8)

A measure of the convergence is the condition number of Pad, κ(Pad) which
can be computed using its biggest and the smallest eigenvalues (which are
real since Pad is self-adjoint w.r.t to the a-inner product):

λmax(Pad) = sup
u∈Vh

a(Padu,u)
a(u,u) , λmin(Pad) = inf

u∈Vh

a(Padu,u)
a(u,u) .

4.3 Abstract theory for the two-level ASM

We present here the abstract framework for additive Schwarz methods (see
[174, Chapter 2]). In the following we summarize the most important ingre-
dients.

Lemma 4.3.1 (Upper bound of the eigenvalues of Pad) With Nc as
in Definition 4.2.3, the largest eigenvalue of the additive Schwarz operator
preconditioned operator Pad =M−1

ASM,2A is bounded as follows

λmax(Pad) ≤ Nc + 1.

Proof We start by proving that

λmax(Pad) ≤ N + 1.

By using the fact that Pi are a-orthogonal projectors, we get for all u ∈ Vh:

a(Piu,u)
∥u∥2

a

= a(Piu,Piu)∥u∥2
a

≤ 1

which implies:

λmax(Pad) = sup
u∈Vh

N

∑
i=0

a(Piu,u)
∥u∥2

a

≤
N

∑
i=0

sup
u∈Vh

a(Piu,u)
∥u∥2

a

≤ N + 1.

As for the estimate with a bound on the maximum number colors, we pro-
ceed in the following way. By assumption, there are Nc sets of indices Θi,

4.3. ABSTRACT THEORY FOR THE TWO-LEVEL ASM 95

i = 1, . . . ,Nc, such that all subdomains Ωj for j ∈ Θi have no intersection
with one another. Then,

PΘi ∶= ∑
j∈Θi

Pj , i = 1,⋯,Nc.

are again an a-orthogonal projectors to which we can apply the same
reasoning to get to the conclusion. Note that this result can be further
improved to λmax(Pad) ≤ k0 where k0 is the maximum multiplicity of the
intersection between subdomains, see[174].

Definition 4.3.1 (Stable decomposition) Given a coarse space V0 ⊂ Vh,
local subspaces {Vh,0(Ωj)}1≤j≤N and a constant C0, a C0-stable decomposi-
tion of v ∈ Vh is a family of functions {vj}0≤j≤N that satisfies

v =
N

∑
j=0

Ejvj , with v0 ∈ V0 , vj ∈ Vh,0(Ωj), for j ≥ 1, (4.9)

and N

∑
j=0

∥vj∥2
a,Ωj

≤ C2
0 ∥v∥2

a . (4.10)

Theorem 4.3.1 If every v ∈ Vh admits a C0-stable decomposition (with
uniform C0), then the smallest eigenvalue of M−1

ASM,2A satisfies

λmin(M−1
ASM,2A) ≥ C−2

0 . (4.11)

Proof We use the projector properties of Pj and the definitions of Pj and
P̃j to get

a(Padu,u) =
N

∑
j=0

a(Pju,u) =
N

∑
j=0

a(Pju,Pju)

=
N

∑
j=0

a(EjP̃ju,EjP̃ju) =
N

∑
j=0

aΩj(P̃ju, P̃ju)

=
N

∑
j=0

∥P̃ju∥
2

a,Ωj
.

(4.12)

On the other hand, by using the same properties, the decomposition of
u = ∑Nj=0Ejuj and a repeated application of the Cauchy-Schwarz inequality
we get:

∥u∥2
a = a(u,u) =

N

∑
j=0

a(u,Ejuj) =
N

∑
j=0

aΩj(P̃ju,uj)

≤
N

∑
j=0

∥P̃ju∥a,Ωj ∥uj∥a,Ωj ≤
⎛
⎝
N

∑
j=0

∥P̃ju∥
2

a,Ωj

⎞
⎠

1/2
⎛
⎝
N

∑
j=0

∥uj∥2
a,Ωj

⎞
⎠

1/2

.

(4.13)

96 CHAPTER 4. THEORY OF TWO-LEVEL ASM

From (4.13) we get first that

∥u∥4
a ≤

⎛
⎝
N

∑
j=0

∥P̃ju∥
2

a,Ωj

⎞
⎠
⎛
⎝
N

∑
j=0

∥uj∥2
a,Ωj

⎞
⎠
.

which can be combined with (4.12) to conclude that:

a(Padu,u)
∥u∥2

a

=
∑Nj=0 ∥P̃ju∥

2

a,Ωj

∥u∥2
a

≥ ∥u∥2
a

∑Nj=0 ∥uj∥
2
a,Ωj

We can clearly see that if the decomposition u =
N

∑
j=0

Ejuj is C2
0 -stable that

is (4.10) is verified, then the smallest eigenvalue of Pad satisfies:

λmin(Pad) = inf
u∈Vh

a(Padu,u)
∥u∥2

a

≥ C−2
0 .

From Lemma 4.3.1 and (4.11) we get the final condition number estimate.

Corollary 4.3.1 The condition number of the Schwarz preconditioner (4.6)
can be bounded by

κ(M−1
ASM,2A) ≤ C2

0(Nc + 1).

4.4 Definition and properties of the Nicolaides
and spectral coarse spaces

In the following, we will construct a C0-stable decomposition in a specific
framework, but prior to that we will provide in an abstract setting, a suffi-
cient and simplified condition of stability.

4.4.1 Nicolaides coarse space

The Nicolaides coarse space is made of local components associated to
piecewise constant functions per subdomain. These functions are not in
Vh,0(Ωj) since they do not vanish on the boundary. To fix this problem, we
have to distinguish between so called floating subodmains Ωj which do not
touch the global boundary where a Dirichlet boundary condition is imposed
(∂Ω ∩ ∂Ωj = ∅) and subdomains that have part of their boundary on ∂Ω.
For floating subdomains, we’ll make use of the partition of unity functions
whereas the other subdomains will not contribute to the coarse space. More
precisely, we define

ΠNico
j u ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1

∣Ωj ∣ ∫Ωj
u)1Ωj = ūΩj1Ωj if Ωj floating

0 otherwise .

4.4. DEFINITION AND PROPERTIES OF COARSE SPACES 97

Functions 1Ωj are not in Vh,0(Ωj) so we’ll use the partition of unity functions
χj to build the global coarse space. Recall that Ih denotes the standard
nodal value interpolation operator from C(Ω̄) to Vh(Ω) and define

ΦH
j ∶= Ih(χj1Ωj) .

The coarse space is now defined as

V0 ∶= span{ΦH
j ∶ Ωj is a floating subdomain} .

The use of the standard nodal value interpolation operator Ih is made nec-
essary by the fact that χj1Ωj is not a P1 finite element function. By con-
struction each of the functions Φj ∈ Vh,0, so that as required V0 ⊂ Vh,0. The
dimension of V0 is the number of floating subdomains.

4.4.2 Spectral coarse space

As motivated in § 3.3, the coarse space is made of local components associ-
ated to generalized eigenvalue problems in the subdomains glued together
with the partition of unity functions except that in this section we have
a constant coefficient operator, see [60] for the theory with heterogeneous
coefficients.

Consider the variational generalized eigenvalue problem:

Find (v, λ) ∈ Vh(Ωj) ×R such that

∫
Ωj

∇v ⋅ ∇w = λ∫
∂Ωj

v w, ∀w ∈ Vh(Ωj) . (4.14)

Let n∂Ωj be the number of degrees of freedom on ∂Ωj . Since the right-hand
side of the generalized eigenvalue problem is an integral over the boundary
of the subdomain Ωj , we have at most n∂Ωj eigenpairs in (4.14). Let

(v(j)` , λ
(j)
`)1≤`≤n∂Ωj

, denote these eigenpairs.

For some mj (1 ≤ mj ≤ n∂Ωj) the local coarse space is now defined as the

span of the first mj finite element functions v
(j)
` ∈ Vh(Ωj), 1 ≤ ` ≤ mj . For

any u ∈ Vh(Ωj), we can define the projection on span{v(j)` }mj`=1 by

Πspec
j u ∶=

mj

∑
`=1

aj (v(j)` , u) v(j)` . (4.15)

where aj is the local bilinear form associated to the Laplace operator on the
local domain Ωj

aj(v,w) ∶= ∫
Ωj

∇v ⋅ ∇w, ∀v, w ∈ Vh(Ωj)

98 CHAPTER 4. THEORY OF TWO-LEVEL ASM

where the eigenvectors are normalized: aj(v(j)` , v
(j)
`) = 1. Functions v

(j)
` are

not in Vh,0(Ωj) so we’ll use the partition of unity functions χj to build the
global coarse space.

Definition 4.4.1 (Spectral coarse space) The spectral coarse space is
defined as

V0 ∶= span{ΦH
j,` ∶ 1 ≤ j ≤ N and 1 ≤ ` ≤mj} , where ΦH

j,` ∶= Ih(χjv
(j)
`).

Remark 4.4.1 The structure of this coarse space imposes the following re-
marks

• As in the case of the Nicolaides coarse space, the use of the standard

nodal value interpolation operator Ih is justified by the fact that χjv
(j)
`

is not a P1 finite element function.

• The dimension of V0 is ∑Nj=1mj.

• By construction each of the functions Φj,` ∈ Vh,0, so that as required
V0 ⊂ Vh,0.

• When mj = 1 and the subdomain does not touch the boundary of Ω, the
lowest eigenvalue of the DtN map is zero and the corresponding eigen-
vector is a constant vector. Thus Nicolaides and the spectral coarse
spaces are then identical.

In the following we will illustrate some very natural properties of the pro-
jection operators defined before.

Lemma 4.4.1 (Stability of the local projections) There exists con-
stants CP and Ctr independent of δj and of the size of the subdomain such
that for any u ∈ Vh(Ωj), and for Πj = ΠNico

j or Πj = Πspec
j

∣Πju∣a,Ωj ≤ ∣u∣a,Ωj , (4.16)

∥u −Πju∥0,Ω○
j

≤ 2
√
cj δj ∣u∣a,Ωj . (4.17)

where

cj ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C2
P + (δjλ(j)

mj+1)
−1
, for Πj = Πspec

j ,

C2
P +C−1

tr (Hjδj) , for Πj = ΠNico
j ,

(4.18)

Hj denotes the diameter of the domain Ωj.

Proof The results in the first part of the proof are true for both cases, that
is Πj = ΠNico

j or Πj = Πspec
j . Stability estimate (4.16) follows immediately

from the fact that Πspec
j is an a(j)-orthogonal projection and from the

4.4. DEFINITION AND PROPERTIES OF COARSE SPACES 99

consideration that ∣ΠNico
j u∣a,Ωj = 0 since ΠNico

j u is a constant function.

To prove (4.17) let us first apply Lemma 4.6.2, i.e.

∥u −Πju∥2
0,Ω○

j
≤ 2C2

P δ
2
j ∣u −Πju∣2a,Ω○

j
+ 4 δj∥u −Πju∥2

0,∂Ωj
, (4.19)

It follows from the triangle inequality and (4.16) that

∣u −Πju∣2a,Ω○
j
≤ ∣u −Πju∣2a,Ωj ≤ 2 ∣u∣2a,Ωj (4.20)

and so it only remains to bound ∥u −Πju∥2
0,∂Ωj

.

At this point we have to distinguish between the Nicolaides and spectral
coarse spaces.

So if Πj = ΠNico
j and Ωj is a floating subdomain, under some regularity

assumptions of the subdomains, we have the following inequality (see [174]
for this type of result)

∥u −Πju∥2
0,∂Ωj

≤ CtrHj ∣u∣2a,Ωj .

When Ωj is not floating, Πju = 0 and the above inequality becomes a
classical trace inequality.

In the case of the spectral coarse space, that is Πj = Πspec
j , let us extend

the set {v(j)` }
n∂Ωj

`=1 to an aj-orthonormal basis of Vh(Ωj) by adding nj =
dimVh,0(Ωj) suitable functions v

(j)
n∂Ωj

+`, ` = 1, . . . , nj , and write

u =
nj+n∂Ωj

∑
`=1

aj (v(j)` , u) v(j)` . (4.21)

The restriction of the functions {v(j)` }
n∂Ωj

`=1 to the boundary ∂Ωj forms a

complete basis of Vh(∂Ωj). This implies that v
(j)
n∂Ωj

+` ≡ 0 on ∂Ωj , for all ` =
1, . . . , nj . Moreover, it follows from the definition of the eigenproblem that

the functions {v(j)` }
n∂Ωj

`=1 are orthogonal also in the (⋅, ⋅)0,∂Ωj inner product.
Therefore

∥u −Πju∥2
0,∂Ωj

=
n∂Ωj

∑
`=mj+1

a(v(j)` , u)
2
∥v(j)` ∥2

0,∂Ωj
(4.22)

=
n∂Ωj

∑
`=mj+1

1

λ
(j)
`

a (v(j)` , u)
2

(4.23)

≤ 1

λ
(j)
mj+1

n∂Ωj

∑
`=1

a (v(j)` , u)
2
= 1

λ
(j)
mj+1

∣u∣2a,Ωj

100 CHAPTER 4. THEORY OF TWO-LEVEL ASM

and the result follows from (4.19), (4.20) and (4.22). Note that this estimate
does not require any regularity assumption on the subdomain.

4.5 Convergence theory for ASM with Nicolaides
and spectral coarse spaces

We are now ready to state the existence of a stable splitting for the previously
build coarse spaces.

Lemma 4.5.1 (Existence of a stable splitting) For any u ∈ Vh,0, let
{uj}0≤j≤N be defined by

u0 ∶= Ih
⎛
⎝
J

∑
j=1

χjΠju∣Ωj
⎞
⎠
∈ V0 and uj ∶= Ih(χj(u −Πju)). (4.24)

where Πj is ΠNico
j or Πspec

j . Then {uj}0≤j≤N form a C2
0 -stable decomposition

of u in the sense of the Definition 4.3.1 with

C2
0 ∶= (8 + 8 C2

χ
N

max
j=1

cj) k0 CIh (k0 + 1) + 1 ,

where cj depends on the choice of the coarse space and is given by for-
mula (4.18).

Proof Note that the proof is the same for both cases, that is Πj = ΠNico
j

and Πj = Πspec
j .

In the following, to ease the presentation when there is no confusion and
it is clear from the context, we will simply denote the restriction u∣Ωj of u
onto Ωj by u, and write, e.g., Πju instead of Πju∣Ωj . Reversely where is no
confusion we will simply write uj instead of its extension to Ω, Ejuj .

Let’s show first (4.9), that is u = ∑Nj=0 uj ,

N

∑
j=1

uj =
N

∑
j=1

Ih(χj(u −Πju)) = Ih
⎛
⎝
N

∑
j=1

χju
⎞
⎠
−

J

∑
j=1

Ih (χjΠju) = u − u0 .

We go now to the second part, that is to the proof of (4.10). From a simple
application of the triangle inequality it follows that

N

∑
j=0

∥uj∥2
a ≤ ∥u − u0∥2

a + ∥u∥2
a +

N

∑
j=1

∥uj∥2
a (4.25)

4.5. CONVERGENCE THEORY FORASMWITH NICOLAIDES AND SPECTRAL COARSE SPACES101

Since the interpolant Ih is stable with respect to the a-norm (see (4.3)) and
since each cell is overlapped by at most k0 domains, we have

∥u − u0∥2
a = ∥Ih(

J

∑
j=1

χj(u −Πju))∥
2

a
≤ CIh ∥

N

∑
j=1

χj(u −Πju)∥
2

a

≤ CIhk0

N

∑
j=1

∥χj(u −Πju)∥2
a .

Substituting this into (4.25) and using the definition of uj as well as the
a-stability of the interpolant Ih we get

N

∑
j=0

∥uj∥2
a ≤ CIh(k0 + 1)

N

∑
j=1

∥χj(u −Πju)∥2
a + ∥u∥2

a. (4.26)

Note that supp{χj} = Ωj and supp{∇χj} = Ω
○

j . Thus, using triangle in-
equality and product rule

N

∑
j=1

∥χj(u −Πju)∥2
a ≤ 2

N

∑
j=1

∥χj∥2
∞∣u −Πju∣2a,Ωj + ∥∇χj∥2

∞∥u −Πju∥2
0,Ω○

j

≤
N

∑
j=1

4∣u∣2a,Ωj + 4∣Πju∣2a,Ωj + 2C2
χδ

−2
j ∥u −Πju∥2

0,Ω○
j
.

(4.27)
Note that in the last part we used the last property of the partition of unity
stated in Lemma 4.2.2.

We have:

N

∑
j=1

∥χj(u −Πju)∥2
a ≤

N

∑
j=1

4∣u∣2a,Ωj + 4∣Πju∣2a,Ωj + 2C2
χδ

−2
j ∥u −Πju∥2

0,Ω○
j
.

≤
N

∑
j=1

∣u∣2a,Ωj(8 + 8 C2
χ cj)

≤ (8 + 8 C2
χ

N
max
j=1

cj)
N

∑
j=1

∣u∣2a,Ωj

≤ (8 + 8 C2
χ

N
max
j=1

cj) k0 ∣u∣2a.
(4.28)

The last inequality comes from the assumption that each point x ∈ Ω is
contained in at most k0 subdomains.
From (4.26) and (4.28) we conclude that

N

∑
j=0

∥uj∥2
a ≤ [(8 + 8 C2

χ
N

max
j=1

cj) k0 CIh (k0 + 1) + 1]∥u∥2
a ,

which ends the proof and yields the following formula for the constant C0

C2
0 ∶= (8 + 8 C2

χ
N

max
j=1

cj) k0 CIh (k0 + 1) + 1 . (4.29)

102 CHAPTER 4. THEORY OF TWO-LEVEL ASM

From the abstract Schwarz theory, we have the condition number estimates
in the two cases (see Corollary 4.3.1).

Theorem 4.5.1 (Convergence of the ASM with Nicolaides coarse space)
The condition number of the two-level Schwarz algorithm with the Nicolaides
coarse space can be bounded by

κ(M−1
ASM,2A) ≤

[(8 + 8 C2
χ

N
max
j=1

(C2
P +C−1

tr (Hj

δj
)))k0CIh(k0 + 1) + 1] (Nc + 1).

Theorem 4.5.2 (Convergence of the ASM with spectral coarse space)
The condition number of the two-level Schwarz algorithm with a coarse
space based on local DtN maps can be bounded by

κ(M−1
ASM,2A) ≤

[(8 + 8 C2
χ

N
max
j=1

(C2
P + (1

δjλmj+1
)))k0CIh(k0 + 1) + 1] (Nc + 1).

Remark 4.5.1 Note that, by choosing the number mj of modes per subdo-

main in the coarse space such that λ
(j)
mj+1 ≥H−1

j , the preconditioned problem
using the coarse space verifies

κ(M−1
ASM,2A) ≤

[(8 + 8 C2
χ

N
max
j=1

(C2
P + (Hj

δj
)))k0CIh(k0 + 1) + 1] (Nc + 1).

Hence, we have the same type of estimate as for the Nicolaides coarse space.
An interesting observation is that the bound depends only in an additive
way on the constant CP and on the ratio of subdomain diameter to overlap.

4.6 Functional analysis results

We prove Lemma 4.6.2 that was used to establish estimate (4.17). We start
by stating an assumption on the overlapping subregions.

Assumption 4.6.1 We assume that each Ω○
j , j = 1, . . . ,N , can be subdi-

vided into regions Djk, k = 1, . . . ,Kj (see Figure 4.1), such that diam(Djk) ≂
δj and ∣Djk∣ ≂ δdj , and such that, for each k, the (d−1)–dimensional manifold

Xjk ∶= ∂Ωj ∩Djk has the following properties:

4.6. FUNCTIONAL ANALYSIS RESULTS 103

Djk

Xjk

Ωj

Ω0
j

Figure 4.1: Assumption on the overlapping region

(i) ∣Xjk∣ ≂ δd−1
j .

(ii)
∣Djk ∣

∣Xjk ∣
≤ 2δj .

We assume as well that the triangulation Th resolves each of the regions Djk

and each of the manifolds Xjk.

In [151], the following uniform Poincaré inequality is proved:

Lemma 4.6.1 There exists a uniform constant CP > 0, such that the fol-
lowing Poincaré–type inequality holds for all j = 1, . . . ,N and k = 1, . . . ,Kj:

∥v − vXjk∥0,Djk ≤ CP δj ∣v∣a,Djk , for all v ∈ Vh(Djk).

The constant CP is independent of h and δj.

We then prove the following result:

Lemma 4.6.2 We have

∥u∥2
0,Ω○

j
≤ 2C2

P δ
2
j ∣u∣2a,Ω○

j
+ 4δj∥u∥2

0,∂Ωj
, for all u ∈ Vh(Ω○

j).

Proof It follows from Lemma 4.6.1, as well as the triangle and the Cauchy-
Schwarz inequalities, that

1
2∥u∥

2
0,Djk

≤ ∥u − uXjk∥2
0,Djk

+ ∥uXjk∥2
0,Djk

≤ C2
P δ

2
j ∣u∣2a,Djk +

∣Djk∣
∣Xjk∣2

(∫
Xjk

u)
2

≤ C2
P δ

2
j ∣u∣2a,Djk +

∣Djk∣
∣Xjk∣∫Xjk

u2

≤ C2
P δ

2
j ∣u∣2a,Djk + 2δj ∥u∥2

0,Xjk
.

The final result follows by summing over k = 1, . . . ,Kj .

104 CHAPTER 4. THEORY OF TWO-LEVEL ASM

4.7 Theory of spectral coarse spaces for scalar het-
erogeneous problems

The analysis of the spectral coarse space introduced in [137] for highly het-
erogeneous Darcy equation

−div(α∇u) = f, in Ω

where α can vary of several orders of magnitude, typically between 1 and
106 was analyzed in [60]. A similar but different approach is developed in
[79]. These results generalize the classical estimates of overlapping Schwarz
methods to the case where the coarse space is richer than just the kernel
of the local operators (which is the set of constant functions) [141], or
other classical coarse spaces (cf. [174]). It is particularly well suited to
the small overlap case. In the case of generous overlap, our analysis relies
on an assumption on the coefficient distribution that may not be satisfied
for small scale coefficient variation. This assumption does not seem to be
necessary in practice, see also [138] for more extensive numerical results.

The idea of a coarse space based on spectral information that allows to
achieve any a priori chosen target convergence rate was developed and
implemented in the spectral AMGe method in [22]. More recently, in the
framework of two-level overlapping Schwarz, [79, 78, 137, 138, 67] also build
coarse spaces for problems with highly heterogeneous coefficients by solving
local eigenproblems. However, compared to the earlier works in the AMG
context the recent papers all focus on generalized eigenvalue problems. We
can distinguish three sets of methods that all differ by the choice of the
bilinear form on the right-hand side of the generalized eigenproblem. In
[79, 78], the right-hand side is the local mass matrix, or a “homogenized”
version obtained by using a multiscale partition of unity. In [137, 138] the
right-hand side corresponds to an L2-product on the subdomain boundary,
so that the problem can be reduced to a generalized eigenproblem for the
DtN operator on the subdomain boundary. The latest set of papers, [67],
uses yet another type of bilinear form on the right-hand side, inspired by
theoretical considerations. In [163], the construction of energy-minimizing
coarse spaces that obey certain functional constraints are used to build
robust coarse spaces for elliptic problems with large variations in the
coefficients.

All these approaches have their advantages and disadvantages, which depend
on many factors, in particular the type of coefficient variation and the size
of the overlap. When the coefficient variation is on a very small scale many
of the above approaches lead to rather large (and therefore costly) coarse
spaces, and it is still an open theoretical question how large the coarse space

4.7. THEORYOF SPECTRAL COARSE SPACES FOR SCALAR HETEROGENEOUS PROBLEMS105

will have to become in each case to achieve robustness for an arbitrary
coefficient variation and how to mitigate this.

106 CHAPTER 4. THEORY OF TWO-LEVEL ASM

Chapter 5

Neumann-Neumann and
FETI Algorithms

The last decade has shown, that Neumann-Neumann type and FETI algo-
rithms, as well as their variants such as BDDC algorithms, are very efficient
domain decomposition methods. Most of the early theoretical and numeri-
cal work has been carried out for symmetric positive definite second order
problems, see for example [38, 124, 127, 76, 128]. Then, the method was
extended to different other problems, like the advection-diffusion equations
[90, 1], plate and shell problems [171, 118] or the Stokes equations [145, 172].

These methods require pseudo inverses for local Neumann solves which can
be ill-posed either in the formulation of the domain decomposition problem
or in the domain decomposition preconditioner. FETI methods are based on
the introduction of Lagrange multipliers on the interfaces to ensure a weak
continuity of the solution. We present here an alternative formulation of the
Neumann-Neumann algorithm with the purpose of simplifying the numerical
implementation. This is made at the expense of minor modifications to the
original algorithm while keeping its main features. We start with a historical
and heuristic presentation of these methods.

5.1 Direct and Hybrid Substructured solvers

Neumann-Neumann and FETI methods originated from parallel direct
solvers. For a general matrix, direct methods consist in performing its
Gauss decomposition into a lower triangular matrix and an upper triangular
one, a.k.a. LU decomposition. For a symmetric positive definite matrix, a
Cholesky decomposition into a lower triangular matrix times its transpose
is cheaper (a.k.a. LLT decomposition). In order to benefit from the spar-
sity of the matrix arising from a finite element discretization of a partial
differential equation, a variant of Gauss elimination, the frontal method,

107

108 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

U�

�
U1

�
U2

Figure 5.1: Degrees of freedom partition for a multifrontal method

that automatically avoids a large number of operations involving zero terms
was developed. A frontal solver builds a LU or Cholesky decomposition
of a sparse matrix given as the assembly of element matrices by eliminat-
ing equations only on a subset of elements at a time. This subset is called
the front and it is essentially the transition region between the part of the
system already finished and the part not touched yet. These methods are
basically sequential since the unknowns are processed the one after another
or one front after another. In order to benefit from multicore processors, a
multifrontal solver (see Duff and Reid [66]) is an improvement of the frontal
solver that uses several independent fronts at the same time. The fronts can
be worked on by different processors, which enables parallel computing.
In order to simplify the presentation of a multifrontal solver, we consider the
two subdomain case for a matrix arising from a finite element discretization.
As we have repeatedly shown in the previous chapters, a variational problem
discretized by a finite element method yields a linear system of the form
AU = F, where F is a given right-hand side and U is the set of unknowns.
The set of degrees of freedom N is partitioned into interior d.o.f.s N1 and N2

and interface d.o.f.s NΓ, see § 5.4 for a complete definition of this intuitive
notion and Figure 5.1 as an illustration of the two-subdomain case.
The vector of unknowns, U (resp. F) is accordingly partitioned into interior

unknowns
○
U1 and

○
U2 (resp.

○
F1,

○
F2), and into interface unknowns, UΓ

(resp. FΓ). By numbering interface equations last, this leads to a block
decomposition of the linear system which has the shape of an arrow (pointing

5.1. DIRECT AND HYBRID SUBSTRUCTURED SOLVERS 109

down to the right):

⎛
⎜
⎝

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

⎞
⎟
⎠

⎛
⎜⎜
⎝

○
U1
○
U2

UΓ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

○
F1
○
F2

FΓ

⎞
⎟⎟
⎠
. (5.1)

A simple computation shows that we have a block factorization of matrix A

A =
⎛
⎜
⎝

I
0 I

AΓ1A
−1
11 AΓ2A

−1
22 I

⎞
⎟
⎠

⎛
⎜
⎝

A11

A22

S

⎞
⎟
⎠

⎛
⎜
⎝

I 0 A−1
11A1Γ

I A−1
22A2Γ

I

⎞
⎟
⎠
. (5.2)

Here, the matrix

S ∶= AΓΓ −AΓ1A
−1
11A1Γ −AΓ2A

−1
22A2Γ (5.3)

is a Schur complement matrix and it is dense. It corresponds to an elimina-

tion of the interior unknowns
○
Ui, i = 1,2.

From (5.2) we can see that the inverse of A can be easily computed from its
factorization

A−1 =
⎛
⎜
⎝

I 0 −A−1
11A1Γ

I −A−1
22A2Γ

I

⎞
⎟
⎠

⎛
⎜
⎝

A−1
11

A−1
22

S−1

⎞
⎟
⎠

⎛
⎜
⎝

I
0 I

−AΓ1A
−1
11 −AΓ2A

−1
22 I

⎞
⎟
⎠
.

(5.4)
Note that in practice, the three matrices A−1

11 , A−1
22 and S−1 are never evalu-

ated explicitly. From the above formula, it appears that applying A−1 to the
right-hand side F is equivalent to solving linear systems for the three above
matrices which can be done by factorizing them. The parallelism comes
from the fact that matrices A11 and A22 can be factorized concurrently. We
say we advance two fronts in parallel. Once it is done, matrix S can be
computed and then factorized.
By considering more than two fronts and recursive variants, it is possible
to have numerical efficiency for one or possibly two dozens of cores and
problems of size one or two millions of unknowns in two dimensions and
hundreds of thousands degrees of freedom in three dimensions. Although
these figures improve over time, it is generally accepted that purely direct
solvers cannot scale well on large parallel platforms. The bottleneck comes
from the fact that S is a full matrix which is costly to compute and
factorize. This is unfortunate since direct solvers have the advantage over
iterative solvers to be very predictable, reliable and easy to integrate via
third-party libraries. There is thus a great amount of effort in developing
hybrid direct/iterative solvers that try to take advantage of the two worlds.

110 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

n1n2

Figure 5.2: Non overlapping decomposition into two subdomains

A first approach consists in avoiding the factorization of the Schur comple-
ment matrix S by replacing every application of its inverse to some vector
bΓ ∈ R#NΓ by an iterative solve of a Schur complement equation

xΓ = S−1 bΓ ⇔ (AΓΓ −AΓ1A
−1
11A1Γ −AΓ2A

−1
22A2Γ)xΓ = bΓ (5.5)

with a conjugate gradient (CG) algorithm (see chapter 2 on Krylov meth-
ods). An extra advantage of using Krylov type methods is that they only
require matrix-vector products S times some vector rΓ which can be per-
formed mostly in parallel without computing the entries of the Schur com-
plement matrix. Both the computation and factorization S are avoided.
This way, the method combines direct solvers in the subdomain with iter-
ative solver for the interface between subdomains. This is an example of a
hybrid direct/iterative solver.
We are now left with the efficiency of the CG method. It means there
is a need for a preconditioner. Finding a good parallel preconditioner for
problem (5.5) is not easy at the algebraic level. In the next section we
will consider substructuring at the continuous level. It will enable to us
to propose the Neumann-Neumann/FETI preconditioners at the continuous
level in § 5.2.2 and then to define its algebraic counterpart in § 5.3.

5.2 Two subdomains case at the continuous level

As an example for our methods, we consider a Poisson problem defined on
a domain Ω:

Find u ∶ Ω↦ R such that

{ −∆u = f, in Ω
u = 0, on ∂Ω.

(5.6)

In order to simplify the presentation, we forget about the boundary condition
on ∂Ω. Suppose that the domain Ω is decomposed into two non-overlapping
subdomains Ω1 and Ω2. Let the interface between the subdomains be Γ =

5.2. TWO-SUBDOMAINS AT THE CONTINUOUS LEVEL 111

Ω̄1 ∩ Ω̄2, and (ni)i=1,2 be the outward normal to the artificial boundary Γ
corresponding to Ω1,2.
It is known that u1 (resp. u2) is the restriction of the solution to (5.6) to
subdomain Ω1 (resp. Ω2) if and only if:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆ui = f, in Ωi, i = 1,2 ,

u1 = u2, on Γ ,

∂u1

∂n1
+ ∂u2

∂n2
= 0, on Γ .

(5.7)

In other words, the local functions must satisfy the Poisson equation in the
subdomains and match at the interface. Since the Poisson equation is a
scalar second order partial differential equations, we have two continuity
equations on the interface one for the unknown and the second one for the
normal derivatives. Recall that for overlapping subdomains, a matching
condition of the unknown on the interfaces is sufficient, see chapter 1 on
Schwarz methods.

5.2.1 Iterative Neumann-Neumann and FETI algorithms

In this section we will write iterative methods for solving eq. (5.7). They are
very naturally derived from (5.7) by relaxing then correcting the continuity
relations on the interface. When the flux continuity is relaxed, we obtain
what is called a Neumann-Neumann method and when the continuity on
the Dirichlet data is relaxed we obtain an iterative version of the FETI
algorithm. Both Neumann-Neumann and FETI methods will be investigated
at the algebraic level in the sequel in § 5.3.

Definition 5.2.1 (Iterative Neumann-Neumann algorithm) Let uni
denote an approximation to the solution u in a subdomain Ωi, i = 1,2 at
the iteration n. Starting from an initial guess u0

i , the Neumann-Neumann
iteration computes the approximation (un+1

1 , un+1
2) from (un1 , un2) by solving

a local Dirichlet problem with a continuous data at the interface

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆(un+
1
2

i) = f, in Ωi,

u
n+ 1

2
i = 1

2
(unj + uni), on Γ.

(5.8)

followed by a correction for the jump of the fluxes on the interface

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∆(en+1
i) = 0, in Ωi,

∂en+1
i

∂ni
= −1

2

⎛
⎜
⎝
∂u

n+ 1
2

1

∂n1
+ ∂u

n+ 1
2

2

∂n2

⎞
⎟
⎠

on Γ.
(5.9)

112 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

l L0

x

u0
1

u0
2

u
1
2
2u

1
2
1

u1
1 u1

2

Figure 5.3: First iteration of a Neumann-Neumann algorithm

The next iteration is then given by

un+1
i = un+

1
2

i + en+1
i , i = 1,2. (5.10)

The rationale for the first step (5.8) is to satisfy the Poisson equation in the
subdomains while ensuring the continuity of the solution on the interface Γ.
After this step, the solution is continuous on the interfaces but the fluxes
may not match. The jump on the fluxes is corrected after (5.10). On Γ we
have

∂un+1
1

∂n1
+ ∂u

n+1
2

∂n2
= ∂

∂n1
(un+

1
2

1 + en+1
1) + ∂

∂n2
(un+

1
2

2 + en+1
2)

=
∂u

n+ 1
2

i

∂ni
− 1

2

⎛
⎜
⎝
∂u

n+ 1
2

1

∂n1
+ ∂u

n+ 1
2

2

∂n2

⎞
⎟
⎠
+ ∂u

n+ 1
2

2

∂n2
− 1

2

⎛
⎜
⎝
∂u

n+ 1
2

1

∂n1
+ ∂u

n+ 1
2

2

∂n2

⎞
⎟
⎠
= 0.

Then, functions un+1
i , i = 1,2 may not match on the interface. In order to

correct this misfit correction (5.8) is applied again and so on.

Definition 5.2.2 (Iterative FETI algorithm) Let uni denote an approx-
imation to the solution u in a subdomain Ωi, i = 1,2 at the iteration n.
Starting from the initial guess u0

i , FETI iteration computes the approxima-
tion (un+1

1 , un+1
2) from (un1 , un2) by first correcting the jump of the normal

derivatives on the interface

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆(un+
1
2

i) = f, in Ωi,

∂u
n+ 1

2
i

∂ni
= ∂uni

∂ni
− 1

2
(∂u

n
1

∂n1
+ ∂u

n
2

∂n2
) on Γ.

(5.11)

5.2. TWO-SUBDOMAINS AT THE CONTINUOUS LEVEL 113

and then the discontinuity of the solution:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆(en+1
i) = 0, in Ωi,

en+1
i = 1

2(u
n+ 1

2
j − un+

1
2

i) on Γ for j ≠ i .
(5.12)

The next iteration is then given by:

un+1
i = un+

1
2

i + en+1
i , ı = 1,2, . (5.13)

5.2.2 Substructured reformulations

It consists in reformulating the algorithms from the Definitions 5.2.1 and
5.2.2 in term of the interface unknowns on Γ and operators acting on these
interface unknowns.

Definition 5.2.3 (Interface operators for the Neumann-Neumann algorithm)
Let the operators S1,S2 be defined as

Si(uΓ, f) ∶=
∂ui
∂ni

, i = 1,2, (5.14)

where ui solve the local problems

⎧⎪⎪⎨⎪⎪⎩

−∆ui = f, in Ωi,

ui = uΓ, on Γ.
(5.15)

Let also S be defined as the operator

S(uΓ, f) ∶= S1(uΓ, f) + S2(uΓ, f) =
∂u1

∂n1
+ ∂u2

∂n2
(5.16)

which quantifies the jump of the normal derivative at the interface. Define
also operator T by

T (gΓ) ∶=
1

2
(S−1

1 (gΓ,0) + S−1
2 (gΓ,0))

1

2
= 1

4
(e1 ∣Γ + e2 ∣Γ) . (5.17)

where the ei ∣Γ ∶= S−1
i (uΓ,0) are obtained by solving Neumann local problems

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆ei = 0, in Ωi,

∂ei
∂ni

= gΓ on Γ .
(5.18)

With this notations, steps (5.9)-(5.10) can be re-written in terms of interface
unknowns.

114 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

Lemma 5.2.1 (Neumann-Neumann interface iterative version)
The substructured counterpart of the Neumann-Neumann algorithm from
Definition 5.2.1 will compute un+1

Γ from unΓ by the following iteration

un+1
Γ = unΓ − (T ○ S) (unΓ, f) . (5.19)

This defines what we call the iterative interface version of the Neumann-
Neumann algorithm.

In order to accelerate this fixed point method by a Krylov algorithm, we
identify this equation with formula (2.3) of chapter 2 on Krylov methods.
It is then more efficient to use a Krylov method to solve the substructured
problem.

Definition 5.2.4 (Substructuring formulation for Neumann-Neumann)
The substructured formulation of the Neumann-Neumann iteration consists
in solving, typically by a PCG algorithm, the interface problem

Find uΓ ∶ Γ→ R such that
S(.,0)(uΓ) = −S(0, f)

(5.20)

preconditioned by the linear operator T .

It can be checked that both operators S(.,0) and T are symmetric positive
definite and thus the preconditioned conjugate gradient algorithm (PCG)
can be used. Moreover the action of both operators S(.,0) and T can
be computed mostly in parallel. This very popular preconditioner for the
operator S(0, .) was proposed in [12].

Remark 5.2.1 There are at least three point of views that indicate the rel-
evance of this simply derived preconditioner

• Symmetry considerations In the special case where Γ is a symmetry
axis for domain Ω (see fig. 5.2), we have S−1

1 (.,0) = S−1
2 (.,0) and thus

T is an exact preconditioner for S(.,0) since it is easy to check that
(T ○ S)(.,0) = Id.

• Mechanical interpretation The unknown u may be the temperature
in domain Ω that obeys a Poisson equation with a source term f .
Operator S(.,0) acts on temperature on the interface and returns a
heat flux across the interface. A good preconditioner should act on a
heat flux and return a temperature. If the Poisson equation is replaced
by the elasticity system, the notion of temperature is replaced by that
of displacement and that of the normal flux by that of a normal stress
to the interface (or a force).

5.2. TWO-SUBDOMAINS AT THE CONTINUOUS LEVEL 115

• Functional analysis considerations A classical setting for the in-
terface operator S(.,0) is to define it as continuous linear operator

from the Sobolev space H
1/2
00 (Γ) with values in H−1/2(Γ). Operator

T is a continuous linear operator from H−1/2(Γ) with values into

H
1/2
00 (Γ). Thus, the preconditioned operator T ○ S(.,0) is a contin-

uous from H
1/2
00 (Γ) into itself. Any meaningful discretizations of this

product of operators is then expected to lead to a condition number
independent of the mesh size.

It is possible to consider the Neumann-Neumann preconditioner the other
way round. The unknown is the flux at the interface between the subdo-
mains. In this case we will obtain the FETI iterative algorithm. Note that
due to the opposite signs of the outward normal ni to subdomain Ωi, the
definition of the normal flux is arbitrary up to a flip of sign. In this case
we will have to define first interface operators acting on fluxes (or dual vari-
ables) which will be preconditioned by operators acting on “displacements”
(or the primal variables).

Definition 5.2.5 (Interface operator for the FETI algorithm) Let
λ be a function that lives on the interface Γ and Tfeti be a function of f
and λ defined by

Tfeti(λ, f) ∶= v2 − v1 (5.21)

where the vi are solutions of the Neumann BVP’s (i = 1,2):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆vi = f in Ωi,

∂vi
∂ni

= (−1)iλ on Γ.
(5.22)

This function quantifies the jump of the solutions across the interface.

Note that we have Tfeti(λ,0) = 4T (λ) (defined by (5.17)), which means the
operator

Sfeti =
1

2
S(.,0)1

2
(5.23)

is a good preconditioner for Tfeti. By using a similar argument as in the
case of the Neumann-Neumann algorithm, we can state the following result.

Lemma 5.2.2 (FETI interface iterative version) The substructured
counterpart of the FETI algorithm from Definition 5.2.2 will compute λn+1

Γ

from λnΓ by the following iteration

λn+1
Γ = λnΓ − (Sfeti ○ Tfeti) (λnΓ, f) . (5.24)

This defines what we call the iterative interface version of the FETI algo-
rithm.

116 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

In order to accelerate this fixed point method by a Krylov algorithm, we
identify this equation with formula (2.3) of chapter 2 on Krylov methods.
It is then more efficient to use a Krylov method to solve the substructured
problem.

Definition 5.2.6 (Substructuring formulation for FETI) The sub-
structured formulation of the FETI iteration iteration consists in solving
the interface problem

Find λ ∶ Γ↦ R such that
Tfeti(λ,0) = −Tfeti(0, f) .

(5.25)

preconditioned by the operator Sfeti which involves the solving in parallel of
a Dirichlet boundary value problem in each subdomain.

Problem (5.25) is solved by a PCG algorithm with (5.23) as a preconditioner.
This approach has been developed in [75, 35, 117].

5.2.3 FETI as an optimization problem

As explained in the sequel, equation (5.25) can be interpreted as the dual
problem of a minimization problem under equality constraints. First note
that the original boundary value problem (5.6) is equivalent to the following
minimization problem:

min
u∈H1(Ω)

JΩ(u), JΩ(u) ∶= 1

2
∫

Ω
∣∇u∣2 − ∫

Ω
f u (5.26)

where H1(Ω) is the Sobolev space of functions that are square integrable and
their derivatives are square integrable as well. In order to introduce domain
decomposition methods, we make use of a functional analysis result that
proves that space H1(Ω) is isomorphic to the “domain decomposed space”
(local H1 functions with Dirichlet traces continuous at the interface):

H1(Ω1,Ω2) ∶= {(u1, u2) ∈H1(Ω1) ×H1(Ω2)/ u1 = u2 on Γ} ,
see e.g. [13] or [28]. This allows the “splitting” of the functional of optimiza-
tion problem (5.26) into local contributions constrained by the continuity
condition at the interface. We have thus the following

Lemma 5.2.3 (Dual optimization problem) Minimization prob-
lem (5.26) is equivalent to

min
(u1,u2)∈H1(Ω1,Ω2)

J(u1, u2) ∶= min
(u1,u2)∈H1(Ω1,Ω2)

JΩ1(u1) + JΩ(u2)

= min
u1 ∈H1(Ω1)
u2 ∈H2(Ω2)
u1 = u2,on Γ

1

2
∫

Ω1

∣∇u1∣2 +
1

2
∫

Ω2

∣∇u2∣2 − ∫
Ω1

f u1 − ∫
Ω2

f u2.

(5.27)

5.3. TWO SUBDOMAINS CASE AT THE ALGEBRAIC LEVEL 117

Note that a Lagrangian function of this constrained optimization problem
can be written as

L(u1, u2, λ) ∶= JΩ1(u1) + JΩ(u2) + ∫
Γ
λ (u1 − u2) .

By computing the differential of L with respect to the ui’s we get that the
critical points satisfy weakly the local boundary value problems, on one hand

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆ui = f, in Ω1

∂ui
∂ni

= (−1)iλ, on Γ
(5.28)

and the continuity condition
u1 = u2 (5.29)

on the other hand. We see that (5.28) and (5.29) can be rewritten equiva-
lently by using the relations (5.21) and (5.22) from Definition 5.2.5,

Tfeti(λ, f) = 0

which is equivalent to the substructured formulation (5.25).

5.3 Two subdomains case at the algebraic level

The goal of this section is to write the algebraic counterpart of the algorithms
defined in the previous section at the continuous level. This way, we shall be
able to propose a good preconditioner for the algebraic Schur complement
equation (5.5). This will be done in a finite element framework.
As we have seen in the beginning of this chapter, a variational problem
discretized by a finite element method yields a linear system of the form
AU = F, where F is a given right-hand side and U is the set of unknowns.
The set of degrees of freedom N is decomposed into interior d.o.f.s N1 and
N2 and interface d.o.f.sNΓ, see § 5.4 for a complete definition of this intuitive
notion and Figure 5.1 as an illustration of the two-subdomain case.
The vector of unknowns U (resp. F) is decomposed into interior unknowns
○
U1 and

○
U2 (resp.

○
F1,

○
F2), and into interface unknowns, UΓ (resp. FΓ). By

numbering interface equations last, we obtain a block decomposition of the
linear system which has the shape of an arrow (pointing down to the right):

⎛
⎜
⎝

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

⎞
⎟
⎠

⎛
⎜⎜
⎝

○
U1
○
U2

UΓ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

○
F1
○
F2

FΓ

⎞
⎟⎟
⎠
. (5.30)

The algebraic counterpart of the continuous substructured problem (5.20)

amounts simply to an elimination of the interior unknowns
○
Ui, i = 1,2 in

118 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

(5.30) which leads to a Schur complement equation:

S(UΓ,F) ∶= (AΓΓ −AΓ1A
−1
11A1Γ −AΓ2A

−1
22A2Γ) (UΓ)

−(FΓ −AΓ1A
−1
11

○
F1 −AΓ2A

−1
22

○
F2) = 0

(5.31)

The natural algebraic form of operator S by (5.16) is thus defined by S
in the above formula. In order to find the algebraic counterparts of the
continuous preconditioner T (eq.(5.17)) and thus of the continuous opera-
tors Si (eq.(5.14)), i = 1,2 we need somehow to split the operator into two
contributions coming from the subdomains.
For this purpose, we first of all note that there is a natural decomposi-
tion of AΓΓ = (aklΓΓ)k,l∈NΓ

into its contribution coming from each subdomain
AΓΓ = A1

ΓΓ + A2
ΓΓ. More precisely, let k, l be the indices of two degrees of

freedom on the interface associated with two basis functions φk and φl. The
corresponding entry aklΓΓ can be decomposed into a sum aklΓΓ = a1,kl

ΓΓ + a2,kl
ΓΓ ,

where

ai,klΓΓ = ∫
Ωi
∇φk∇φl, i = 1,2.

In the same spirit, we define for i = 1,2 and k ∈ NΓ:

f
(i),k
Γ ∶= ∫

Ωi
f φk

and F
(i)
Γ ∶= (f (i),k

Γ)k∈NΓ
. In order to make things simple, we have only

considered the Poisson problem. Other partial differential equations such as
the elasticity equations can be handled in the same manner.
Finally, we have a decomposition of matrix AΓΓ into

AΓΓ = A(1)
ΓΓ +A(2)

ΓΓ (5.32)

and of FΓ into

FΓ = F
(1)
Γ +F

(2)
Γ .

We can infer that for each domain i = 1,2, the local operators

Si(UΓ,F) ∶= (A(i)
ΓΓ −AΓiA

−1
ii AiΓ) (UΓ) − (F(i)

Γ −AΓiA
−1
ii

○
Fi) .

are discretizations of the continuous operators Si, i = 1,2 and let Si ∶= Si(.,0)
be local Schur complements. Note that from (5.32) we have as in the con-
tinuous case that:

S(UΓ,F) = S1(UΓ,F) + S2(UΓ,F) and S = S1 + S2.

Coming back to the substructuring, we obtain now natural a very natural
definition.

5.3. TWO SUBDOMAINS CASE AT THE ALGEBRAIC LEVEL 119

Definition 5.3.1 (Substructuring formulation for Neumann-Neumann)
Since S = S(⋅,0), the substructured formulation reads

Find UΓ ∈ R#NΓ , such that
S(UΓ) = −S(0,F) (5.33)

The preconditioner T analogous to (5.17) is the weighted sum:

T ∶= 1

2
(S1(.,0)−1 + S2(.,0)−1)1

2
. (5.34)

The action of Si(.,0)−1 on some interface vector gΓ, vi,Γ = Si(.,0)−1gΓ can
be computed by solving the discretized Neumann problem related to (5.18):

(
Aii AiΓ

AΓi A
(i)
ΓΓ

)(
○
vi
vi,Γ

) =
⎛
⎝

0

gΓ

⎞
⎠
. (5.35)

To sum up, the Neumann-Neumann method consists in solving for UΓ the
Schur complement equation (5.31) or (5.33) by the PCG method using oper-
ator T (5.34) as a preconditioner. At convergence, the algorithm will provide
the interface values. Interior values in each subdomain can be computed by
solving local Dirichlet problems:

Aii
○
Ui=

○
F i −AiΓUΓ . (5.36)

Parallelism is natural since all these steps can mostly be computed concur-
rently on two processors. Matrix-vector products with operators S and T
are both defined as sums of local computations and are therefore essentially
parallel with a very high ratio of local computations over data transfer be-
tween processors. As for the step defined by equation (5.36), it is purely
parallel.

As in the continuous case, it is possible to invert the role of the Neumann
and Dirichlet problems and thus obtain the FETI algorithm.

Definition 5.3.2 (FETI interface operator) Let the operator

Tfeti ∶ R#NΓ ×R#N Ð→ R#NΓ

be defined for some λ ∈ R#NΓ and F ∈ R#N as

Tfeti(λ,F) ∶= V2,Γ −V1,Γ ,

where (
○
Vi, Vi,Γ) are the solutions of

(
Aii AiΓ

AΓi A
(i)
ΓΓ

)(
○
Vi

Vi,Γ

) =
⎛
⎝

Fi

F
(i)
Γ + (−1)iλ

⎞
⎠
. (5.37)

120 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

It can be checked that Tfeti(λ,0) = 4T. We can infer from this that since T is
a good preconditioner for S, 1

4S is a good preconditioner for Tfeti. This leads
to the following definition of the discrete FETI substructured formulation.

Definition 5.3.3 (Substructuring formulation for FETI) The sub-
structured formulation of the FETI algorithm reads

Find λ ∈ R#NΓ , such that
Tfeti(λ,0) = −Tfeti(0,F) .

This problem is solved by the PCG algorithm, using the operator

1

2
S

1

2

as a preconditioner.

This approach has been developed in [75, 35, 117].

5.3.1 Link with approximate factorization

Following [165], we will establish a connection between the Neumann-
Neumann algorithm and a block approximate factorization of the original
system (5.30). Recall first that an exact block factorization of matrix A is
given by equation (5.2) so that its inverse is given by the formula in equation
(5.4)

A−1 =
⎛
⎜
⎝

I 0 −A−1
11A1Γ

I −A−1
22A2Γ

I

⎞
⎟
⎠

⎛
⎜
⎝

A−1
11

A−1
22

S−1

⎞
⎟
⎠

⎛
⎜
⎝

I
0 I

−AΓ1A
−1
11 −AΓ2A

−1
22 I

⎞
⎟
⎠
.

This suggests the approximation M−1 ≃ A−1 of the inverse, which naturally
provides a preconditioner

M−1 ∶=
⎛
⎜
⎝

I 0 −A−1
11A1Γ

I −A−1
22A2Γ

I

⎞
⎟
⎠

⎛
⎜
⎝

A−1
11

A−1
22

T

⎞
⎟
⎠

⎛
⎜
⎝

I
0 I

−AΓ1A
−1
11 −AΓ2A

−1
22 I

⎞
⎟
⎠
.

(5.38)
where T is given by (5.34). A direct computation shows that the precondi-
tioned system M−1A has the following form:

M−1A =
⎛
⎜
⎝

I 0 0
0 I 0
0 0 TS

⎞
⎟
⎠

Due to the properties of matrices S and T we can state some remarkable
features.

5.4. MANY SUBDOMAINS CASE 121

Figure 5.4: Non overlapping geometric partition

Remark 5.3.1 This preconditioner has a few properties:

• In the case of exact solves in the subdomains, that is for the computa-
tion of the exact factorization of Aii, the application of this precondi-
tioner is equivalent to that of the Schur complement approach, except
that it is performed at global level.

• Inexact solvers can be used in the subdomains since the application of
M−1 requires the repeated application of A−1

ii .

• The preconditioner is symmetric and this symmetry can be preserved
in the case of inexact solves, provided that the same inexact solves are
used in the first and the last terms of (5.38).

• The bad news is that even if we have the spectral equivalence of the
preconditioner with the diagonal blocks A−1

ii , M−1 is not necessarily
spectrally equivalent to matrix A. Whereas with overlapping Schwarz
methods when the local subdomain solvers are replaced by a spectrally
equivalent solver the convergence behavior of the ASM is asymptotically
equivalent to that of ASM with exact solvers, see [165].

5.4 Many subdomains case

In a finite element setting, the computational domain is the union of elements
of the finite element mesh Th. A geometric partition of the computational
domain is natural. Here again, graph partitioning can be used by first
modeling the finite element mesh by a graph, and then partitioning it into
N parts, see Figure 5.4.
As in section 1.3.2, we define a partition of unity for the non overlapping
decomposition of the domain Ω into subdomains Ωi, i = 1, . . . ,N . We recall

122 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

that it corresponds to an overlapping decomposition of the set of d.o.f.s
N since some basis functions have a support that intersects two or more
subdomains. Let {φk}k∈N be a basis of the finite element space. For 1 ≤ i ≤
N , we define

Ni ∶= {k ∈ N ∶ supp (φk) ∩Ωi ≠ ∅}
the set of degrees of freedom whose associated basis function intersects sub-
domain Ωi. For each degree of freedom k ∈ N , let

µk ∶= #{j ∶ 1 ≤ j ≤ N and k ∈ Nj}

be the number of subdomains that “interact” with function φk. For exam-
ple, for a P1 finite element method and an interface point shared by two
subdomains, we have µk = 2. If the point is a cross point shared by four
subdomains, we have µk = 4.
The global set of d.o.f’s can be decomposed into unknowns interior to sub-
domains Ωi, 1 ≤ i ≤ N :

○
N i∶= {k ∈ Ni/ µk = 1}

and the set of interface unknowns, also called the skeleton, defined as:

NΓ ∶= {k ∈ N/ µk > 1} .

Let
○
Ri and RΓ be the restriction boolean matrices from the global set N

to subsets
○
N i and NΓ. For U ∈ R#N , let

○
Ui∶=

○
Ri U = (Uk)

k∈
○
N i

be the set

of interior degrees of freedom of subdomain Ωi and UΓ ∶= RΓU = (Uk)k∈NΓ

denote the set of interface degrees of freedom. Note that the sets (
○
N i)1≤i≤N

and NΓ form a partition of N

N = (
N

⋃
i=1

○
N i)⋃NΓ.

For a finite element discretization of partial differential equations, the matrix
has a sparse structure:

○
Ri A

○
Rj

T
= 0, for i ≠ j .

If the skeleton unknowns are numbered last, the corresponding block form
of the global problem is thus:

⎛
⎜⎜⎜⎜⎜⎜
⎝

A11 0 ⋯ 0 A1Γ

0 A22 ⋮ A2Γ

⋮ 0 ⋱ 0 ⋮
0 0 ANN ANΓ

AΓ1 AΓ2 ⋯ AΓN AΓΓ

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

○
U1
○
U2

⋮
○
UN

UΓ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

○
F1
○
F2

⋮
○
FN

FΓ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(5.39)

5.4. MANY SUBDOMAINS CASE 123

As in the two-subdomain case for matrix (5.1), it has an arrow shape which
allows a multifrontal direct factorization.
In order to define a Neumann-Neumann preconditioner for the substructured
problem

SUΓ = FΓ −
N

∑
i=1

AΓiA
−1
ii

○
Fi, where S ∶= AΓΓ −

N

∑
i=1

AΓiA
−1
ii AiΓ , (5.40)

we make use of the decomposition induced on the skeleton NΓ by the geo-
metrical domain decomposition. We have thus the following decomposition
of the skeleton:

NΓ = ⋃
1≤i≤N

NΓi .

where the set of indices of interface unknowns of subdomain Ωi is

NΓi ∶= {k ∈ Ni/ µk > 1} = NΓ ∩Ni 1 ≤ i ≤ N.

Let RΓi be the restriction Boolean matrix from the skeleton NΓ to NΓi . For
a vector of skeleton d.o.f. UΓ ∈ R#NΓ , let UΓi ∶= RΓiUΓ = (UΓk)k∈NΓi

denote
the set of interface degrees of freedom of subdomain Ωi.
Let DΓi be a diagonal matrix of size R#NΓi ×R#NΓi whose entries are

(DΓi)kk ∶=
1

µk
, ∀k ∈ NΓi .

We have clearly partition of unity on the skeleton:

N

∑
i=1

RTΓiDΓiRΓi = IdΓ .

In order to define a Neumann-Neumann preconditioner for (5.40), we first
decompose AΓΓ into its local contributions coming from the subdomains:

AΓΓ =
N

∑
i=1

A
(i)
ΓΓ

as it was done in the two subdomain case in eq. (5.32). More precisely for
a Poisson problem, let k, l be the indices of two degrees of freedom on the
interface associated with two basis functions φk and φl. The corresponding
entry aklΓΓ can be decomposed into a sum ai,klΓΓ , where

ai,klΓΓ = ∫
Ωi
∇φk∇φl, i = 1, . . . ,N .

This yields a decomposition of S:

S =
N

∑
i=1

Si, Si ∶= A(i)
ΓΓ −AΓiA

−1
ii AiΓ . (5.41)

124 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

Remark 5.4.1 Note that contrarily to the two subdomain case, matrices Si
have many zero columns and lines and are thus non invertible. The original
matrix A arising from a finite element discretization of a partial differential
operator, all lines and columns related to indices that do not belong to the
set NΓi are zeros. It is thus not possible to define directly the preconditioner
as a weighted sum of the inverses of the local Schur complement Si as in the
two subdomain case (5.34).

Definition 5.4.1 (Neumann-Neumann for many subdomains) We
define local Schur complement matrices Si ∈ RNΓi

×NΓi by

Si ∶= RΓiSiR
T
Γi .

From the above remark, we have:

Si = RTΓiSiRΓi .

From (5.41), we have:

S =
N

∑
i=1

RTΓiSiRΓi . (5.42)

The substructuring Neumann-Neumann method consists in solving the in-
terface problem (5.40) by a conjugate gradient algorithm preconditioned by
the interface operator

T ∶=
N

∑
i=1

RTΓiDΓiS
−1
i DΓiRΓi . (5.43)

Note that it is not necessary to compute the matrix S−1
i . As seen in for-

mula (5.35), it is sufficient to solve a Neumann problem in the subdomains.

5.4.1 Remarks on FETI

In the two subdomain case, we have seen at both the continuous and alge-
braic levels in previous sections that Neumann-Neumann and FETI algo-
rithms are very similar. At the algebraic levels the substructured operators
S(.,0) and Tfeti(.,0) are both square and have the same size: the number
of interface unknowns. When there are cross points (points that belong to
three or more subdomains which is typical in the many subdomain case),
things are more involved and the number of Lagrange multipliers will exceed
the number of (non duplicated) interface unknowns. This is exemplified in
Figures 5.5 and 5.6. We have a domain decomposed into four subdomains.
The cross point belongs to the four subdomains. Figure 5.5 corresponds
to the Neumann-Neumann method where the unknowns related to the sub-
structured operator S(.,0) are the degrees of freedom located on the inter-
faces without any duplication. Figure 5.6 corresponds to the FETI method

5.4. MANY SUBDOMAINS CASE 125

xx x
x
x

x
x

x x
�1

�4 �3

�2

Figure 5.5: Skeleton and BNN interface unknowns for four subdomains

xx
x
x

x x x
x
x

x
xx
x
x

x x x
x
x

x
�C

12

�C
23

�C
34

�1 �2

�3�4

uC
1 uC

2

uC
3uC

4

Figure 5.6: FETI duplicated interfaces and non redundant Lagrange multi-
pliers for four subdomains

where the unknowns related to the FETI operator Tfeti(.,0) are the links
between the duplicated interface unknowns. They are Lagrange multipliers
of the equality constraints on the duplicated interface unknowns. When a
d.o.f. belongs to two and only two subdomains, there is one associated La-
grange multiplier. The duplication of the cross point of Figure 5.6 yields
four unknowns, denoted uC1 , uC2 , uC3 and uC4 . The subscript indicates the
subdomain it comes from. In order to minimize the number of Lagrange
multipliers, we choose to impose non redundant equality constraints such
as uC1 = uC2 , uC2 = uC3 and uC3 = uC4 . They yield three Lagrange multipliers
labeled λ12, λ23 and λ34. Thus we have two more unknowns in the FETI
method than in the Neumann-Neumann method. An equivalence between
a correct generalization of the FETI method and the Neumann-Neumann
method although possible cannot be simple. We refer the interested reader
to e.g. [174] [148].

126 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

5.5 Neumann-Neumann method in FreeFem++

From the point of view of a practical implementation, formulas (5.40) and
(5.43) raise two difficulties. First the need for a data structure adapted to the
interface and second the well-posedness of the local Neumann problems as
in the case of floating subdomains for Poisson problems where the constant
function 1 is in the kernel of Si for 1 ≤ i ≤ N .
We overcome the first difficulty by an implementation based on the global
unknowns. It enables us to use the formalism already introduced for the
Schwarz method, chapter 1, based on a global partition of unity (see § 1.3):

Id =
N

∑
i=1

RTi DiRi . (5.44)

As for the second difficulty, we regularize the Neumann problems. Since
they are involved only in the preconditioning step, the converged solution
is not affected. In section 7.7.2, we present a more classical approach to
handle a possible kernel in matrix Si.

We detail here our FreeFem++ implementation. As explained in § 1.6, a
Dirichlet boundary condition is penalized with a parameter denoted here
tgv. Denote the matrix of a local “Dirichlet” problem by AiD:

AiD ∶= (
Aii AiΓi
AΓi i A

(i)
ΓiΓi

+ tgv Id) . (5.45)

For the sake of simplicity, we suppose that tgv is sufficiently large so that:

(AiD)−1 (
○
F i

F iΓ + tgv UΓi

) = (A−1
ii (

○
F i −AiΓiUΓi)
UΓi

) . (5.46)

Let ε be a small positive parameter and M i = (mi,kl)k,l∈Ni denote the local
mass matrix of the subdomain Ωi. More precisely, for k, l ∈ Ni, we define

mi,kl ∶= (∫
Ωi
φkφl) .

The regularized local Neumann problem AiN is defined by:

AiN ∶= εM i + (
Aii AiΓi
AΓi i A

(i)
ΓiΓi

) . (5.47)

For the sake of simplicity, we assume that the regularizing parameter ε is
small enough so that the following formula holds:

(AiN)−1 ∶=
⎛
⎝
A−1
ii (Id +AiΓiS−1

i AΓi iA
−1
ii) −A−1

ii AiΓiS
−1
i

−S−1
i AΓi iA

−1
ii S−1

i

⎞
⎠
. (5.48)

Using the algebraic partition of unity, we now define the global counterpart
of the interface operator S (see eq. (5.31)).

5.5. NEUMANN-NEUMANN IN FREEFEM++ 127

Definition 5.5.1 Let U,F ∈ R#N , we define S̃(U,F) by the following for-
mula:

S̃(U,F) ∶= F −A∑
i

RTi Di (AiD)−1 (
○
F i

Fi
Γ + tgvUΓi

) (5.49)

This definition deserves some explanations.

• For each 1 ≤ i ≤ N , the application of (AiD)−1 to the vector (
○
Fi, Fi

Γ +
tgvUΓi)T returns a vector local to subdomain Ωi which is equal to
UΓi on the interface Γi and which verifies equation (5.39) for the nodes
interior to Ωi as seen from (5.46).

• The local values previously obtained are assembled in a global vector
using the partition of unity (5.44).

• The global vector obtained is equal to UΓ on the skeleton Γ and verifies
equation (5.39) for the interior nodes.

• Finally, S̃(U,F) is the corresponding global residual.

More precisely, we have the following property written in a compact form:

Result 5.5.1 The link between the global residual and the Schur comple-
ment residual is expressed by:

∀U, F ∈ R#N , S̃(U,F) = RTΓ S(RΓU,F)

where RΓ was defined as the restriction operator to the interface unknowns.

Proof From eq. (5.46) and (5.49), we have indeed:

S̃(U,F) = F −A∑
i

RTi Di (A−1
ii (

○
Fi −AiΓiUΓi)

UΓi

)

= F −A

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

A−1
11(

○
F1 −A1Γ1UΓ1)

A−1
22(

○
F2 −A2Γ2UΓ2)

⋮
A−1
NN(

○
FN −ANΓNUΓN)

UΓ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0

GΓ − S(UΓ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where we have used the partition of unity identity (5.44), the fact that the

diagonal entries of Di are one for interior d.o.f’s of subdomain Ωi (
○
N i) and

the equality
AiΓiRΓiU = AiΓRΓU.

Thus we have seen that solving

S̃(⋅,0)(U) = −S̃(0,F) (5.50)

amounts to solving equation (5.40). From Result 5.5.1, it is clear that

128 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

• System (5.50) is not invertible since the kernel of S̃(⋅,0) is made of
vectors U ∈ R#N such that RΓU = 0.

• The range of S̃(⋅,0) is made of vectors whose interior values are so
that −S̃(0,F) ∈ range(S̃(⋅,0)).

• Solutions to equation (5.50) exist and are unique up to an arbitrary
element of ker(S̃(⋅,0)).

In other words, only the interface values of a solution to (5.50) are unique.
The correct interior values can be obtained by a parallel post processing
consisting in setting the interior values to

A−1
ii (

○
Fi −AiΓiUΓi), ∀1 ≤ i ≤ N.

A preconditioner for equation (5.50) is defined by:

T̃(r) ∶= (
N

∑
i=1

RTi Di (AiN)−1
DiRi) r for r ∈ R#N . (5.51)

Result 5.5.2 We have the following link between T̃ defined by eq. (5.51)
and T defined by eq. (5.43). For all rΓ ∈ R#NΓ,

RΓ(T̃RTΓrΓ) = T(rΓ)

Proof We first prove the following identity

T̃

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
rΓ

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−A−1
11A1 ΓS−1

1 DΓ rΓ

−A−1
22A2 ΓS−1

2 DΓ rΓ

⋮
−A−1

NNAN ΓS−1
N DΓ rΓ

T(rΓ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This shows that the action of T̃ on the interface component of the residual
amounts to that of T defined by formula (5.43). Then, for each subdomain
i,1 ≤ i ≤ N , we have

(AiN)−1
DiRi

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
rΓ

⎞
⎟⎟⎟⎟⎟⎟
⎠

= (AiN)−1 (0
DΓirΓi

) = (−A
−1
ii AiΓ S−1

i DΓ rΓ

RΓi S−1
i DΓ rΓ

) .

For the interior unknowns to the subdomains Di is the identity so that

Di(AiN)−1
DiRi

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
rΓ

⎞
⎟⎟⎟⎟⎟⎟
⎠

= (−A
−1
ii AiΓ S−1

i DΓ rΓ

DΓiRΓi S−1
i DΓ rΓ

) .

5.5. NEUMANN-NEUMANN IN FREEFEM++ 129

Finally, due to the fact that the global partition of unity (5.50) induces an
interface partition of unity , we have by left multiplying by RTi and summing
over the subdomains:

T̃

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
rΓ

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−A−1
11A1 ΓS−1

1 DΓ rΓ

−A−1
22A2 ΓS−1

2 DΓ rΓ

⋮
−A−1

NNAN ΓS−1
N DΓ rΓ

T(rΓ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

To summarize,

• We solve the (ill-posed) linear system (5.50) by a conjugate gradient
method preconditioned by operator T̃ (5.51).

• The solution returned by the Krylov method is correct on the interface
but interior values need to be corrected, see § 2.5 and the characteri-
zation of the kernel and range of S̃(.,0) above.

• This correction is achieved by the following post processing step:

○
Ui= A−1

ii (
○
Fi −AiΓiUΓi)

where UΓi is the restriction to Γi of the interface values UΓ.

5.5.1 FreeFem++ scripts

We are ready now to provide the FreeFem++ implementation. The
beginning is identical of those of the Schwarz routines, except that the
decomposition into subdomain is without overlap. Therefore we don’t need
to add layers to create an overlapping mesh and the different operators are
created accordingly. As in the case of the Schwarz algorithm, we still need
to create a partition of unity (based on the non-overlapping decomposition)
and the restriction and extension operators. Also, we provide the option
of building a coarse space, based on constant local vectors weighted by the
partition of unity. Afterwords we build the local Dirichlet and Neumann
problem matrices

130 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

mesh Thi=Th; // freefem’s trick, formal definition
fespace Vhi(Thi,P1); // freefem’s trick, formal definition

15 Vhi[int] rhsid(npart),rhsin(npart); // local right hand sides
Vhi[int] auntgv(npart);
plot(part, wait=1,fill=1,ps=”Decomp.eps”);
for(int i=0;i<npart;++i)

19 {
Thi=aTh[i];
varf vad(u,v) = int2d(Thi)(eta∗u∗v+kappa∗Grad(u)’∗Grad(v))

+ on(1,u=g) + int2d(Thi)(f∗v) // Dirichlet pb. −Delta ⤸
Ç (u)=f , u=g on the boundary

23 + on(10,u=0); // Dirichlet BC on the interface
varf van(u,v) = int2d(Thi)(etan∗u∗v+kappa∗Grad(u)’∗Grad(v))

+ on(1,u=g) + int2d(Thi)(f∗v) // Dirichlet pb. −Delta ⤸
Ç (u)=f , u=g on the boundary

; // Neumann BC on the interface
27 aA[i] = vad(Vhi,Vhi,solver=UMFPACK); // local ”Dirichlet” matrix

aN[i] = van(Vhi,Vhi,solver=UMFPACK); // local ”Neumann” matrix
rhsid[i][]= vad(0,Vhi); // local ”Dirichlet” rhs
rhsin[i][]= van(0,Vhi); // local ”Neumann” rhs

31 varf vaun(u,v) = on(10,u=1);
auntgv[i][] = vaun(0,Vhi); // array of tgv on Gamma intern, 0 elsewhere

}

Listing 5.1: ./FETI/FreefemProgram/FETI-BNN.edp

We need also the routine counterparts of the application of the operators S̃
and T̃. Before that, let us define the local Dirichlet solve for a homogeneous
and non-homogeneous problem defined on the global boundary.

func real[int] extendDir(real[int] ud, bool hom)
3 // Solve local Dirichlet problems with ud at the interface

// homogeneous on the real boundary (hom = 1) or not (hom = 0)
{

Vh s=0;
7 for(int i=0;i<npart;++i)

{
real[int] ui = Rih[i]∗ud; // local solution
real[int] bi = ui .∗ auntgv[i][]; // take into account the interface conditions

11 if (hom)
bi = auntgv[i][] ? bi : 0; // update rhs

else
bi = auntgv[i][] ? bi : rhsid[i][];

15 ui= aA[i] −1∗ bi; // solve local Dirichlet problem
bi = Dih[i]∗ui; // use the partition of unity
s[]+= Rih[i]’∗bi; // extend the local solution globally

}
19 return s[];

}

Listing 5.2: ./FreefemCommon/matvecDtNtD.idp

5.5. NEUMANN-NEUMANN IN FREEFEM++ 131

The effect of operator S̃ is given by

func real[int] A(real[int] &l) // DtN operator
{

26 Vh ui, rn, s;
ui[]=l.∗intern[];
s[] = extendDir(ui[],1);
rn[]= Aglobal∗s[];

30 rn[] = rn[] .∗ intern[];
return rn[];

}

Listing 5.3: ./FreefemCommon/matvecDtNtD.idp

and that of operator T̃ is given by

// and the application of the preconditioner
func real[int] Mm1(real[int] &l) // preconditionner = NtD operator

37 {
Vh s = 0,rn;
rn[] = l;
for(int i=0;i<npart;++i)

41 {
real[int] rb = Rih[i]∗rn[];
real[int] ri = Dih[i]∗rb; // local residual

real[int] ui = aN[i] −1∗ ri; // local solution of the Neumann problem
45 real[int] bi = Dih[i]∗ui;

s[]+= Rih[i]’∗bi; // extend the local solution globally
}

s[] = s[].∗intern[];
49 return s[];

}

Listing 5.4: ./FreefemCommon/matvecDtNtD.idp

The latter can be used simply as a preconditioner in a conjugate gradient
or one can add a second level, by thus obtaining the Balancing Neumann-
Neumann algorithm

6 func real[int] BNN(real[int] &u) // precond BNN
{

real[int] aux2=Mm1(u);
if(withBNN){

10 real[int] aux1 = Q(u);
aux2 = P(u);
real[int] aux3 = Mm1(aux2);
aux2 = PT(aux3);

14 aux2 += aux1;
}

return aux2;
}

132 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

Listing 5.5: ./FETI/FreefemProgram/PCG-BNN.idp

Finally, this is used in the main script in the following way

Vh s, b, un, gd;
37 include ”../../FreefemCommon/matvecDtNtd.idp”

include ”../../FreefemCommon/coarsespace.idp”
// compute rhs of the interface problem: b[]
un = 0;

41 gd[]=g;
un[]+= bord[].∗gd[];
s[] = extendDir(un[],0);
b[]= Aglobal∗s[];

45 b[]−= rhsglobal[];
b[] ∗= −1;
include ”PCG−BNN.idp”
Vh lam = 0,sol;

49 lam[] = lam[].∗intern[]; // insures that the first iterate verifies
lam[]+= bord[].∗gd[]; // the global BC, from iter=1 on this is true
sol[] = myPCG(lam[],tol,maxit);
sol[] = extendDir(sol[],0);

53 Vh err = sol−uglob;
plot(sol,cmm=” Final Solution”, wait=1,dim=3,fill=1,value=1);
cout << ” Final error: ” << err[].linfty << endl;

Listing 5.6: ./FETI/FreefemProgram/FETI-BNN.edp

In Figures 5.7 and 5.8, we report results for uniform and Metis decomposi-
tions into 4×4, 8×8 and 10×10 subdomains. We use the Neumann-Neumann
method as a preconditioner in a Krylov method. In the first set of tests the
method is used without a coarse space and we see that the iteration num-
ber depends linearly on the total number of domains and not only on the
number of domains in one direction as in the case of the Schwarz methods.
By adding a coarse space, the behavior becomes insensitive to the number
of subdomains as expected. Note that the convergence is better in the case
of uniform decompositions than in the case of decompositions using Metis.

5.6 Non-standard Neumann-Neumann type
methods

Some algorithmic aspects of systems of PDEs based simulations can be bet-
ter clarified by means of symbolic computation techniques. This is very
important since numerical simulations heavily rely on solving systems of
PDEs. Some domain decomposition methods are well understood and ef-
ficient for scalar symmetric equations (e.g., Laplacian, biLaplacian) and to
some extent for non-symmetric equations (e.g., convection-diffusion). But

5.6. NON-STANDARD NEUMANN-NEUMANN TYPE METHODS 133

0 20 40 60 80 100 120 140
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Comparison of convergence Neumann−Neumann

Iterations

R
es

id
ua

l

4x4
8x8
10x10

0 1 2 3 4 5 6 7
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Comparison of convergence Balancing Neumann−Neumann

Iterations

R
es

id
ua

l

4x4
8x8
10x10

Figure 5.7: Neumann-Neumann convergence without (left) and with (right)
coarse space for a uniform decomposition

0 50 100 150 200 250 300
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101
Comparison of convergence Neumann−Neumann − Metis

Iterations

R
es

id
ua

l

4x4
8x8
10x10

0 2 4 6 8 10 12 14
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Comparison of convergence Balancing Neumann−Neumann − Metis

Iterations

R
es

id
ua

l

4x4
8x8
10x10

Figure 5.8: Neumann-Neumann convergence without (left) and with (right)
coarse space for a Metis decomposition

134 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

they have poor performances and lack robustness when used for symmetric
systems of PDEs, and even more so for non-symmetric complex systems.
In particular, we shall concentrate on Neumann-Neumann and FETI
type algorithms. In some sense, these methods applied to systems of
PDEs (such as Stokes, Oseen, linear elasticity) are less optimal than the
domain decomposition methods for scalar problems. Indeed, in the case
of two subdomains consisting of the two half planes, it is well-known that
the Neumann-Neumann preconditioner is an exact preconditioner (the
preconditioned operator is the identity operator) for the Schur complement
equation for scalar equations like the Laplace problem. Unfortunately, this
does not hold in the vector case.

In order to achieve this goal, we have used in [29, 30] algebraic methods
developed in constructive algebra, D-modules (differential modules) and
symbolic computation such as the so-called Smith or Jacobson normal forms
and Gröbner basis techniques for transforming a linear system of PDEs into
a set of independent scalar PDEs. These algebraic and symbolic methods
provide important intrinsic information (e.g., invariants) about the linear
system of PDEs to solve. For instance we recover that the two-dimensional
Stokes system is in some sense equivalent to a biharmonic operator (5.56).
In fluid mechanics, it relates to the stream function formulation [11]. These
build-in properties need to be taken into account in the design of new
numerical methods, which can supersede the usual ones based on a direct
extension of the classical scalar methods to linear systems of PDEs. By
means of these techniques, it is also possible to transform the linear system
of PDEs into a set of decoupled PDEs under certain types of invertible
transformations. One of these techniques is the so-called Smith normal
form of the matrix of OD operators associated with the linear system.
The Smith normal form has already been successfully applied to open
problems in the design of Perfectly Matched Layers (PML). The theory of
PML for scalar equations was well-developed and the usage of the Smith
normal form allowed to extend these works to systems of PDEs. In [132],
a general approach is proposed and applied to the particular case of the
compressible Euler equations that model aero-acoustic phenomena and in
[10] for shallow-water equations.

For domain decomposition methods, several results have been obtained
on compressible Euler equations [56, 57], Stokes and Oseen systems [58,
59] or in [96] where a new method in the ”Smith” spirit has been derived.
Previously the computations were performed heuristically, whereas in [29,
30], a systematic way to build optimal algorithms for given PDE systems
was shown.

Notations. If R is a ring, then Rp×q is the set of p×q matrices with entries in

5.6. NON-STANDARD NEUMANN-NEUMANN TYPE METHODS 135

R and GLp(R) is the group of invertible matrices of Rp×p, namely GLp(R) ∶=
{E ∈ Rp×p ∣ ∃ F ∈ Rp×p ∶ EF = F E = Ip}. An element of GLp(R) is called an
unimodular matrix. A diagonal matrix with elements di’s will be denoted by
diag(d1, . . . , dp). If k is a field (e.g., k = Q, R, C), then k[x1, . . . , xn] is the
commutative ring of polynomials in x1, . . . , xn with coefficients in k. In what
follows, k(x1, . . . , xn) will denote the field of rational functions in x1, . . . , xn
with coefficients in k. Finally, if r, r′ ∈ R, then r′ ∣ r means that r′ divides r,
i.e., there exists r′′ ∈ R such that r = r′′ r′.

5.6.1 Smith normal form of linear systems of PDEs

We first introduce the concept of Smith normal form [166] of a matrix with
polynomial entries (see, e.g., [89] or [178], Theorem 1.4). The Smith nor-
mal form is a mathematical technique which is classically used in module
theory, linear algebra, symbolic computation, ordinary differential systems,
and control theory. It was first developed to study matrices with integer
entries.

Theorem 5.6.1 Let k be a field, R = k[s], p a positive integer and A ∈ Rp×p.
Then, there exist two matrices E ∈ GLp(R) and F ∈ GLp(R) such that

A = E S F,

where S = diag(d1, . . . , dp) and the di ∈ R satisfying d1 ∣d2 ∣⋯ ∣dp. In partic-
ular, we can take di =mi/mi−1, where mi is the greatest common divisor of
all the i× i-minors of A (i.e., the determinants of all i× i-submatrices of A),
with the convention that m0 = 1. The matrix S = diag(d1, . . . , dp) ∈ Rp×p is
called a Smith normal form of A.

We note that E ∈ GLp(R) is equivalent to det(E) is an invertible polyno-
mial, i.e., det(E) ∈ k ∖ {0}. Also, in what follows, we shall assume that the
di’s are monic polynomials, i.e., their leading coefficients are 1, which will
allow us to call the matrix S = diag(d1, . . . , dp) the Smith normal form of A.
But, the unimodular matrices E and F are not uniquely defined by A. The
proof of Theorem 5.6.1 is constructive and gives an algorithm for computing
matrices E, S and F . The computation of Smith normal forms is available
in many computer algebra systems such as Maple, Mathematica, Magma. . .

Consider now the following model problem in Rd with d = 2,3:

Ld(w) = g in Rd, ∣w(x)∣ → 0 for ∣x∣ → ∞. (5.52)

For instance, Ld(w) can represent the Stokes/Oseen/linear elasticity opera-
tors in dimension d. In the case of the Oseen equation, the diagonal matrix

136 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

S (5.57) is the product of a Laplace operator and a convection-diffusion op-
erator. We suppose that the inhomogeneous linear system of PDEs (5.52)
has constant coefficients, then it can be rewritten as

Adw = g, (5.53)

where Ad ∈ Rp×p, R = k[∂x, ∂y] (resp., R = k[∂x, ∂y, ∂z]) for d = 2 (resp.,
d = 3) and k is a field.
In what follows, we shall study the domain decomposition problem in which
Rd is divided into two half planes subdomains. We assume that the direction
normal to the interface of the subdomains is particularized and denoted by
∂x. If Rx = k(∂y)[∂x] for d = 2 or Rx = k(∂y, ∂z)[∂x] for d = 3, then,
computing the Smith normal form of the matrix Ad ∈ Rp×px , we obtain Ad =
E S F , where S ∈ Rp×px is a diagonal matrix, E ∈ GLp(Rx) and F ∈ GLp(Rx).
The entries of the matrices E, S, F are polynomials in ∂x, and E and
F are unimodular matrices, i.e., det(E), det(F) ∈ k(∂y) ∖ {0} if d = 2, or
det(E), det(F) ∈ k(∂y, ∂z) ∖ {0} if d = 3. We recall that the matrices E and
F are not unique contrary to S. Using the Smith normal form of Ad, we
get:

Adw = g ⇔ {ws ∶= F w, Sws = E−1 g}. (5.54)

In other words, (5.54) is equivalent to the uncoupled linear system:

Sws = E−1 g. (5.55)

Since E ∈ GLp(Rx) and F ∈ GLp(Rx), the entries of their inverses are still
polynomial in ∂x. Thus, applying E−1 to the right-hand side g of Adw = g
amounts to taking k-linear combinations of derivatives of g with respect to
x. If Rd is split into two subdomains R− × Rd−1 and R+ × Rd−1, then the
application of E−1 and F−1 to a vector can be done for each subdomain
independently. No communication between the subdomains is necessary.
In conclusion, it is enough to find a domain decomposition algorithm for
the uncoupled system (5.55) and then transform it back to the original one
(5.53) by means of the invertible matrix F over Rx. This technique can be
applied to any linear system of PDEs once it is rewritten in a polynomial
form. The uncoupled system acts on the new dependent variables ws, which
we shall further call Smith variables since they are issued from the Smith
normal form.

Remark 5.6.1 Since the matrix F is used to transform (5.55) to (5.53)
(see the first equation of the right-hand side of (5.54)) and F is not unique,
we need to find a matrix F as simple as possible (e.g., F has minimal degree
in ∂x) so that to obtain a final algorithm whose form can be used for practical
computations.

5.6. NON-STANDARD NEUMANN-NEUMANN TYPE METHODS 137

Example 5.6.1 Consider the two dimensional elasticity operator defined
by E2(u) ∶= −µ∆u − (λ + µ)∇divu. If we consider the commutative poly-
nomial rings R = Q(λ,µ)[∂x, ∂y], Rx = Q(λ,µ)(∂y)[∂x] = Q(λ,µ, ∂y)[∂x]
and

A2 = (
(λ + 2µ)∂2

x + µ∂2
y (λ + µ)∂x ∂y

(λ + µ)∂x ∂y µ∂2
x + (λ + 2µ)∂2

y

) ∈ R2×2

the matrix of PD operators associated with E2, i.e., E2(u) = A2 u, then the
Smith normal form of A2 ∈ R2×2

x is defined by:

SA2 = (
1 0

0 ∆2) . (5.56)

The particular form of SA2 shows that, over Rx, the system of PDEs for the
linear elasticity in R2 is algebraically equivalent to a bi-harmonic equation.

Example 5.6.2 Consider the two dimensional Oseen operator O2(w) =
O2(v, q) ∶= (cv−ν∆v+b ⋅∇v+∇q,∇⋅v), where b is the convection velocity.
If b = 0, then we obtain the Stokes operator S2(w) = S2(v, q) ∶= (cv −
ν∆v + ∇q,∇ ⋅ v). If R = Q(b1, b2, c, ν)[∂x, ∂y], Rx = Q(b1, b2, c, ν)(∂y)[∂x] =
Q(b1, b2, c, ν, ∂y)[∂x] and

O2 =
⎛
⎜⎜
⎝

−ν (∂2
x + ∂2

y) + b1 ∂x + b2 ∂y + c 0 ∂x

0 −ν (∂2
x + ∂2

y) + b1 ∂x + b2 ∂y + c ∂y

∂x ∂y 0

⎞
⎟⎟
⎠

the matrix of PD operators associated with O2, i.e., O2(w) = O2 w, then
the Smith normal form of O2 ∈ R3×3

x is defined by:

SO2 =
⎛
⎜⎜
⎝

1 0 0

0 1 0

0 0 ∆L2

⎞
⎟⎟
⎠
, L2 = c − ν∆ + b ⋅ ∇. (5.57)

From the form of SO2 we can deduce that the two-dimensional Oseen equa-
tions can be mainly characterized by the scalar fourth order PD operator
∆L2. This is not surprising since the stream function formulation of the
Oseen equations for d = 2 gives the same PDE for the stream function.

Remark 5.6.2 The above applications of Smith normal forms suggest that
one should design an optimal domain decomposition method for the bi-
harmonic operator ∆2 (resp., L2 ∆) in the case of linear elasticity (resp., the
Oseen/Stokes equations) for the two-dimensional problems, and then trans-
form it back to the original system.

138 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

5.6.2 An optimal algorithm for the bi-harmonic operator

We give here an example of Neumann-Neumann methods in its iterative
version for Laplace and biLaplace equations. For simplicity, consider a de-
composition of the domain Ω = R2 into two half planes Ω1 = R− × R and
Ω2 = R+ ×R. Let the interface {0} ×R be denoted by Γ and (ni)i=1,2 be the
outward normal of (Ωi)i=1,2.
We consider the following problem:

−∆u = f in R2,
∣u(x)∣ → 0 for ∣ x∣ → ∞. (5.58)

and the following Neumann-Neumann algorithm applied to (5.58):

Let unΓ be the interface solution at iteration n. We obtain un+1
Γ from unΓ by

the following iterative procedure

{
−∆ui,n = f, in Ωi,

ui,n = unΓ, on Γ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆ũi,n = 0, in Ωi,

∂ũi,n

∂ni
= −1

2
(∂u

1,n

∂n1
+ ∂u

2,n

∂n2
) , on Γ,

(5.59)
and then un+1

Γ = unΓ + 1
2
(ũ1,n + ũ2,n).

This algorithm is optimal in the sense that it converges in two iterations.

Since the bi-harmonic operator seems to play a key role in the design of a
new algorithm for both Stokes and elasticity problem in two dimensions, we
need to build an optimal algorithm for it. We consider the following problem:

Find φ ∶ R2 → R such that
∆2φ = g in R2, ∣φ(x)∣ → 0 for ∣x∣ → ∞. (5.60)

and the following “Neumann-Neumann” algorithm applied to (5.60):
This is a generalization of the Neumann-Neumann algorithm for the ∆
operator and is also optimal (the proof can be found in [58]).

Now, in the case of the two dimensional linear elasticity, φ represents the sec-
ond component of the vector of Smith variables, that is, φ = (ws)2 = (Fu)2,
where u = (u, v) is the displacement field. Hence, we need to replace φ
with (Fu)2 into the algorithm for the biLaplacian, and then simplify it
using algebraically admissible operations. Thus, one can obtain an optimal
algorithm for the Stokes equations or linear elasticity depending on the
form of F . From here comes the necessity of choosing in a proper way the
matrix F (which is not unique), used to define the Smith normal form,
in order to obtain a “good” algorithm for the systems of PDEs from the

5.6. NON-STANDARD NEUMANN-NEUMANN TYPE METHODS 139

Let (φnΓ,DφnΓ) be the interface solution at iteration n (suppose also that
φ0

Γ = φ0∣Γ, Dφ0
Γ = (∆φ0)Γ). We obtain (φn+1

Γ ,DφnΓ) from (φnΓ,DφnΓ) by the
following iterative procedure

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆2φi,n = f, in Ωi,

φi,n = φnΓ, on Γ,

∆φi,n = DφnΓ, on Γ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆2φ̃i,n = 0, in Ωi,

∂φ̃i,n

∂ni
= −1

2
(∂φ

1,n

∂n1
+ ∂φ

2,n

∂n2
) , on Γ,

∂∆φ̃i,n

∂ni
= −1

2
(∂∆φ1,n

∂n1
+ ∂∆φ2,n

∂n2
) , on Γ,

(5.61)
and then φn+1

Γ = φnΓ + 1
2
(φ̃1,n + φ̃2,n) , Dφn+1

Γ =DφnΓ + 1
2
(∆̃φ1,n + ∆̃φ2,n).

optimal one applied to the bi-harmonic operator. In [56] and [58], the
computation of the Smith normal forms for the Euler equations and the
Stokes equations was done by hand or using the Maple command Smith.
Surprisingly, the corresponding matrices F have provided good algorithms
for the Euler equations and the Stokes equations even if the approach was
entirely heuristic.

The efficiency of our algorithms heavily relies on the simplicity of the Smith
variables, that is on the entries of the unimodular matrix F used to com-
pute the Smith normal form of the matrix A. Within a constructive algebraic
analysis approach, we developed a method for constructing many possible
Smith variables (completion problem). Taking into account physical aspects,
the user can then choose the simplest one among them. Also, in the algo-
rithms presented in the previous sections, we have equations in the domains
Ωi and interface conditions on Γ obtained heuristically. We have designed
an automatic way to reduce the interface conditions with respect to the
equations in the domains (reduction problem). For more details and explicit
computations, we refer the reader to [29, 30].

5.6.3 Some optimal algorithms

After performing the completion and the reduction of the interface condi-
tions, we can give examples of optimal algorithms.

Example 5.6.3 Consider the elasticity operator:

Ed u = − div σ (u), σ(u) = µ (∇u + (∇u)T) + λ div u Id.

If d = 2, then the completion algorithm gives two possible choices for F :

F =
⎛
⎝
−∂x (µ∂2

x−λ∂
2
y)

(λ+µ)∂3
y

1

1 0

⎞
⎠
, F =

⎛
⎝

1 − (λ+µ)∂x ((3µ+2λ)∂2
y+(2µ+λ)∂

2
x)

∂3
y

0 1

⎞
⎠
.

(5.62)

140 CHAPTER 5. NEUMANN-NEUMANN AND FETI ALGORITHMS

By replacing φ into the Neumann-Neumann algorithm for the biLaplacian
by (Fu)2 and re-writing the interface conditions, using the equations inside
the domain like in [58], we get two different algorithms for the elasticity
system. Note that, in the first case of (5.62), φ = u, and, in the second one,
φ = v (where u = (u, v)). Below, we shall write in detail the algorithm in
the second case. To simplify the writing, we denote by uτ = u ⋅ τ , un = u ⋅n,
σnn(u) = (σ(u) ⋅ n) ⋅ n, σnτ(u) = (σ(u) ⋅ n) ⋅ τ .

Let (unΓ, σnΓ) be the interface solution at iteration n (suppose also that
u0

Γ = (u0
τ)∣Γ, σ0

Γ = (σsnn(u0))∣Γ). We obtain (un+1
Γ , σnΓ) from (unΓ, σnΓ) by

the following iterative procedure

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E2(ui,n) = f, in Ωi,

u1,n
τi = unΓ, on Γ,

σnini
(ui,n) = σnΓ, on Γ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E2(ũi,n) = 0, in Ωi,

ũi,nτi = −1

2
(u1,n

n1
+ u2,n

n2
) , on Γ,

σniτi(ũi,n) = −1

2
(σn1τ1(u1,n) + σn2τ2(u2,n)) ,

on Γ,
(5.63)

and un+1
Γ = unΓ + 1

2
(ũ1,n

τ1 + ũ2,n
τ2) , σn+1

Γ = σnΓ + 1
2
(σn1n1(ũ1,n) + σn2n2(ũ2,n)).

Remark 5.6.3 We found an algorithm with a mechanical meaning: Find
the tangential part of the normal stress and the normal displacement at the
interface so that the normal part of the normal stress and the tangential
displacement on the interface match. This is very similar to the original
Neumann-Neumann algorithm, which means that the implementation effort
of the new algorithm from an existing Neumann-Neumann is negligible (the
same type of quantities − displacement fields and efforts − are imposed at
the interfaces), except that the new algorithm requires the knowledge of some
geometric quantities, such as normal and tangential vectors. Note also that,
with the adjustment of the definition of tangential quantities for d = 3, the
algorithm is the same, and is also similar to the results in [58].

All algorithms and interface conditions are derived for problems posed on
the whole space, since for the time being, this is the only way to treat from
the algebraic point of view these problems. The effect of the boundary
condition on bounded domains cannot be quantified with the same tools.
All the algorithms are designed in the PDE level and it is very important
to choose the right discrete framework in order to preserve the optimal
properties. For example, in the case of linear elasticity a good candidate
would be the TDNNS finite elements that can be found in [147] and the
algorithms obtained by these algebraic techniques have been used to design
a FETI-TDNNS method [146].

Chapter 6

Optimized Schwarz methods
(OSM)

During the last decades, a new class of non-overlapping and overlapping
Schwarz methods was developed for scalar partial differential equations,
namely the optimized Schwarz methods. These methods are based on a
classical domain decomposition, but they use more effective transmission
conditions than the classical Dirichlet conditions at the interfaces between
subdomains.

We first introduce P.L. Lions’ domain decomposition method [122] in § 6.1.
Instead of solving a Dirichlet or Neumann boundary value problem (BVP)
in the subdomains as in Schwarz or FETI/BNN algorithms, a Robin (a.k.a
as mixed) BVP is solved. We compute the convergence factor of the method
and give a general convergence proof. This algorithm was extended to
Helmholtz problem by Després [43], see § 6.2. This extension is all the
more important that the original Schwarz method is not convergent in the
case of wave propagation phenomena in the frequency regime. Implementa-
tion issues are discussed in § 6.3. In particular, when subdomains overlap
OSM can be implemented simply by replacing the Dirichlet solves in ASM
with Robin solves. This justifies the “S” in OSM. Then, in sections 6.4 and
6.5, we show that it is possible to consider other interface conditions than
Robin conditions and optimize their choice with respect to the convergence
factor. This explains the “O” in OSM. In the last section 6.6, we explain a
FreeFem++ implementation.

6.1 P.L. Lions’ Algorithm

For elliptic problems, Schwarz algorithms work only for overlapping domain
decompositions and their performance in terms of iterations counts depends
on the width of the overlap. Substructuring algorithms such as BNN (Bal-

141

142 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

�1 �2
�n1

�n2
�1 �2�n1�n2

Figure 6.1: Outward normals for overlapping and non overlapping subdo-
mains for P.L. Lions’ algorithm.

ancing Neumann-Neumann [124]) or FETI (Finite Element Tearing and In-
terconnecting [75]) are defined for non overlapping domain decompositions
but not for overlapping subdomains. The algorithm introduced by P.L. Lions
[122] can be applied to both overlapping and non overlapping subdomains.
It is based on improving Schwarz methods by replacing the Dirichlet inter-
face conditions by Robin interface conditions. Let α be a positive number,
the modified algorithm reads

−∆(un+1
1) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(∂

∂n1
+ α) (un+1

1) = (∂

∂n1
+ α) (un2) on ∂Ω1 ∩Ω2 ,

(6.1)

and

−∆(un+1
2) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(∂

∂n2
+ α) (un+1

2) = (∂

∂n2
+ α) (un1) on ∂Ω2 ∩Ω1

(6.2)

where n1 and n2 are the outward normals on the boundary of the subdo-
mains, see Figure 6.1.

We use Fourier transform to analyze the benefit of the Robin interface con-
ditions in a simple case. The domain Ω = R2 is decomposed into two half-
planes Ω1 = (−∞, δ) × R and Ω2 = (0,∞) × R with δ ≥ 0. We consider the
example of a symmetric positive definite problem

(η −∆)(u) = f in R2,

with η being a positive constant. The algorithm can be written as:

(η −∆)(un+1
1) = f(x, y), (x, y) ∈ Ω1

un+1
1 is bounded at infinity

(∂

∂n1
+ α) (un+1

1)(δ, y) = (∂

∂n1
+ α) (un2)(δ, y), y ∈ R

(6.3)

6.1. P.L. LIONS’ ALGORITHM 143

and

(η −∆)(un+1
2) = f(x, y), (x, y) ∈ Ω2

un+1
2 is bounded at infinity

(∂

∂n2
+ α) (un+1

2)(0, y) = (∂

∂n2
+ α) (un1)(0, y), y ∈ R

(6.4)

6.1.1 Computation of the convergence factor

In order to compute the convergence factor of the algorithm given by (6.3)
and (6.4) we introduce the errors eni = uni − u∣Ωi , i = 1,2. By linearity, the
errors satisfy (6.3) and (6.4) with f = 0:

(η −∆)(en+1
1) = 0, (x, y) ∈ Ω1

en+1
1 is bounded at infinity

(∂

∂n1
+ α) (en+1

1)(δ, y) = (∂

∂n1
+ α) (en2)(δ, y), y ∈ R

(6.5)

and

(η −∆)(en+1
2) = 0, (x, y) ∈ Ω2

en+1
2 is bounded at infinity

(∂

∂n2
+ α) (en+1

2)(0, y) = (∂

∂n2
+ α) (en1)(0, y), y ∈ R

(6.6)

By taking the partial Fourier transform of the first line of (6.5) in the y
direction we get:

(η − ∂2

∂x2
+ k2)(ên+1

1 (x, k)) = 0 for x < δ and k ∈ R.

For a given k, this is an ODE whose solution is sought in the form

∑j γj(k) exp(λj(k)x). A simple calculation shows that lambda is neces-
sarily given by:

λ±(k) = ±
√
η + k2.

Therefore we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x) + γn+1
− (k) exp(λ−(k)x).

From the second line of (6.5), the solution must be bounded at x = −∞.
This implies that γn+1

− (k) ≡ 0. Thus we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x)

or equivalently, by changing the value of the coefficient γ+,

ên+1
1 (x, k) = γn+1

1 (k) exp(λ+(k)(x − δ))

144 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

and similarly for subdomain 2,

ên+1
2 (x, k) = γn+1

2 (k) exp(λ−(k)x)

with γn+1
1,2 to be determined. From the interface conditions we get

γn+1
1 (k)(λ+ + α) = γn2 (k)(λ− + α) exp(λ−(k)δ)

and

γn+1
2 (k)(−λ− + α) = γn1 (k)(−λ+ + α) exp(−λ+(k)δ).

Combining these two and denoting λ(k) = λ+(k) = −λ−(k), we get for i = 1,2,

γn+1
i (k) = ρ(k, δ;α)2γn−1

i (k)

with

ρ(k, δ;α) = ∣λ(k) − α
λ(k) + α ∣ exp(−λ(k)δ) (6.7)

where λ(k) =
√
η + k2 and α > 0.

Remark 6.1.1 Formula (6.7) deserves a few remarks.

• For all k ∈ R, ρ(k, δ;α) < 1 so that γni (k) → 0 as n goes to infinity.
The method is convergent.

• When domains overlap (δ > 0), ρ(k, δ;α) is uniformly bounded from
above by a constant smaller than one, ρ(k, δ;α) < exp(−√η δ) < 1 and
ρ→ 0 as k tends to infinity. Convergence is geometric.

• When there is no overlap (δ = 0), ρ→ 1 as k tends to infinity.

• Let kc ∈ R. By taking α = λ(kc), we have ρ(kc) = 0.

• For the original Schwarz method (1.3), the convergence factor is
exp(−λ(k)δ) and for δ = 0 we see once again that there is no con-
vergence. Replacing the Dirichlet interface conditions (ICs) by Robin
conditions enhances the convergence of the k-th component of the error
to zero by an improvement factor

ρ(k,0;α) = ∣λ(k) − α
λ(k) + α ∣ < 1 . (6.8)

6.1. P.L. LIONS’ ALGORITHM 145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
o

n
ve

rg
e

n
ce

 R
a

te

Fourier number

with Robin interface conditions
Dirichlet interface conditions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Fourier number

Improvement factor

Figure 6.2: Left: Convergence factor (dotted line: Dirichlet ICs, solid line:
Robin ICs) vs. Fourier number.
Right: Improvement factor due to Robin interface conditions (6.8) vs.
Fourier number

6.1.2 General convergence proof

The convergence proof given by P.L. Lions in the elliptic case [122] was
extended by B. Desprès [43] to Helmholtz equation and then to Maxwell
equations [45]. A general presentation for these equations is given in [33].
We treat here the elliptic case with interface conditions (IC) more general
than Robin IC since they involve second order tangential derivatives along
the interfaces. Our proof is formal since no functional analysis framework
is given. Nevertheless, this general convergence result shows the robustness
of this approach in the non overlapping case.

Let Ω be an open set, we consider the following problem:

η(x)u −∇ ⋅ (κ(x)∇u) = f in Ω,
u = 0 on ∂Ω,

where the functions x↦ η(x), κ(x) are positive functions.

The domain is decomposed into N non-overlapping subdomains (Ωi)1≤i≤N ,

Ω̄ = ∪Ni=1Ω̄i and Ωi ∩Ωj = ∅, for i ≠ j.
Let Γij denote the interface Γij = ∂Ωi ∩ ∂Ωj , i ≠ j. For two disjoints
subdomains, Γij = ∅.

For sake of simplicity in the writing of the interface conditions, we consider
the two dimensional case (Ω ⊂ R2) although the proof is valid in arbitrary
dimension. The interface conditions include second order tangential deriva-
tives and have the form

Bij ∶= κ(x)
∂

∂ni
+Λij , Λij ∶= αij(x) − ∂

∂τi
(βij(x)

∂

∂τi
) (6.9)

146 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

where αij and βij are functions from Γij into R that verify

αij(x) = αji(x) ≥ α0 > 0,

β(x)ij = β(x)ji ≥ 0

βij(x) = 0 on ∂Γij .

In this case the operators Λij = Λji defined in (6.9) have the following re-
markable properties

• Λij is SPD (symmetric positive definite).

• Λij has an invertible SPD square root, denoted by Λ
1/2
ij whose inverse

is denoted by Λ
−1/2
ij , which is SPD as well.

The algorithm consists in computing the iterates un+1
i of the local solutions

from the previous iterates uni by solving

η(x)un+1
i −∇ × (κ(x)∇un+1

i) = f in Ωi,

un+1
i = 0 on ∂Ω ∩ ∂Ωi

(κ(x) ∂

∂ni
+Λij)un+1

i = (−κ(x) ∂

∂nj
+Λij)unj on Γij .

(6.10)

The interface condition in the algorithm (6.10) can be rewritten as

Λ
−1/2
ij (κ(x)∂ui

∂ni
) +Λ

1/2
ij (ui) = −Λ

−1/2
ij (κ(x)∂uj

∂nj
) +Λ

1/2
ij (uj) on Γij .

The convergence proof of the algorithm (6.10) follows the arguments given
in [33] and is based on a preliminary result which is an energy estimate

Lemma 6.1.1 (Energy Estimate) Let u denote a function that satisfies

η(x)u −∇ ⋅ (κ(x)∇u) = 0 in Ωi

u = 0 on ∂Ωi ∩ ∂Ω,

Then,

∫
Ωi
η(x)∣ui∣2 + κ(x)∣∇ui∣2 +

1

4
∑
j≠i
∫
∂Γij

(Λ
−1/2
ij [κ(x)∂ui

∂ni
−Λij(ui)])

2

= 1

4
∑
j≠i
∫
∂Γij

(Λ
−1/2
ij [κ(x)∂ui

∂ni
+Λij(ui)])

2

6.1. P.L. LIONS’ ALGORITHM 147

Proof From the variational formulation of the local problem

η(x)ui −∇ ⋅ (κ(x)∇ui) = 0 in Ωi,

we get by choosing the test function equal to ui:

∫
Ωi
η(x)∣ui∣2 + κ(x)∣∇ui∣2 = ∫

∂Ωi
κ(x)∂ui

∂ni
ui = ∑

j≠i
∫
∂Γij

κ(x)∂ui
∂ni

ui

= ∑
j≠i
∫
∂Γij

κ(x)∂ui
∂ni

Λ
−1/2
ij Λ

1/2
ij (ui)

= ∑
j≠i
∫
∂Γij

Λ
−1/2
ij (κ(x)∂ui

∂ni
) Λ

1/2
ij (ui)

From the identity ab = 1
4
((a + b)2 − (a − b)2), we infer

∫
Ωi
η(x)∣ui∣2 + κ(x)∣∇ui∣2 +∑

j≠i

1

4
∫
∂Γij

(Λ
−1/2
ij (κ(x)∂ui

∂ni
) −Λ

1/2
ij (ui))

2

= ∑
j≠i

1

4
∫
∂Γij

(Λ
−1/2
ij (κ(x)∂ui

∂ni
) +Λ

1/2
ij (ui))

2

which leads to the conclusion.
We are ready to prove the following convergence result

Theorem 6.1.1 The algorithm (6.10) converges in H1, that is

lim
n→∞

∥uni − u∣Ωi∥H1(Ωi) = 0 for i = 1, . . . ,N

Proof In order to prove the convergence of the algorithm we prove that
eni = uni − uΩi converges to zero. By linearity of the equations and of the
algorithm, it is clear that the error en+1

i satisfies

η(x)en+1
i −∇ ⋅ (κ(x)∇en+1

i) = 0 in Ωi,
en+1
i = 0 on ∂Ω ∩ ∂Ωi

Λ
−1/2
ij (κ(x)∂e

n+1
i

∂ni
) +Λ

1/2
ij (en+1

i) = −Λ
−1/2
ij (κ(x) ∂e

n
j

∂nj
) +Λ

1/2
ij (enj) on Γij .

We apply the energy estimate to en+1
i and taking into account the interface

condition (6.1.2) and noticing that by assumption we have Λij = Λji, we get

∫
Ωi
η(x)∣en+1

i ∣2 + κ(x)∣∇un+1
i ∣2 = ∑

j≠i

1

4
∫
∂Γij

(Λ
−1/2
ji (−κ(x)

∂enj

∂nj
) +Λ

1/2
ji (enj))

2

− (Λ
−1/2
ij (κ(x)∂e

n+1
i

∂ni
) −Λ

1/2
ij (en+1

i))
2

(6.11)

148 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

We introduce the following notations:

En+1
i ∶= ∫

Ωi
η(x)∣en+1

i ∣2 + κ(x)∣∇en+1
i ∣2,

Cn+1
ij ∶= 1

4
∫
∂Γij

(Λ
−1/2
ij (κ(x)∂e

n+1
i

∂ni
) −Λ

1/2
ij (en+1

i))
2

En+1 =
N

∑
i=1

En+1
i , Cn = ∑

i,j(j≠i)

Cnji.

With these notations, estimate (6.11) can be re-written as

En+1
i +∑

j≠i

Cn+1
ij = ∑

j≠i

Cnji.

After summation over the subdomains, we have

N

∑
i=1

En+1
i + ∑

i,j(j≠i)

Cn+1
ij = ∑

i,j(j≠i)

Cnji = ∑
i,j(j≠i)

Cnij .

Let us denote

En+1 ∶=
N

∑
i=1

En+1
i and Cn ∶= ∑

i,j(j≠i)

Cnji ,

we have
En+1 + Cn+1 = Cn.

Hence, by summation over n, we get
∞

∑
n=0

En+1 ≤ C0.

This series is convergent only if En → 0 as n →∞, which proves that for all
subdomain 1 ≤ i ≤ N we have necessarily eni → 0 in H1 norm as n tends to
infinity.

The same kind of proof holds for the Maxwell system [45] and the convection-
diffusion equation [135].

6.2 Helmholtz problems

We have considered so far domain decomposition methods for Poisson or
elasticity problems which yield symmetric positive definite matrices. With a
suitable coarse space, Schwarz or BNN/FETI type methods are very power-
ful methods whose scalability can be proven. But, the numerical simulation
of propagation phenomena via Helmholtz equations, Maxwell and elasticity
systems in the frequency domain yield matrices which are symmetric but
not positive. The extension of P.L. Lions algorithm to Helmholtz problem
in [43], § 6.2.2, is the first iterative method with proven convergence for this
indefinite operator.

6.2. HELMHOLTZ PROBLEMS 149

6.2.1 Convergence issues of the Schwarz method for
Helmholtz

The Helmholtz equation is derived from the acoustic wave equation:

1

c2

∂2u

∂t2
−∆u = f(t, x, y)

which models for instance pressure variation with a source term f and a
sound velocity c. When the source is time periodic, it makes sense to look
for time periodic solutions as well. With some abuse of notation, let f =
f(x, y) exp(iωt) (i2 = −1) be a harmonic source term of frequency ω, we seek
the solution to the acoustic wave equation in the form u = u(x, y) exp(iωt).
Then, u must be a solution to the Helmholtz equation

L(u) ∶= (−ω
2

c2
−∆)(u) = f(x, y), x, y ∈ Ω

whose solution is in general complex valued.

An extra difficulty comes from the non positivity of the Helmholtz operator
due to the negative sign of the term of order zero. More precisely, a Schwarz
algorithm for solving Helmholtz equation involves the decomposition of do-
main Ω into N overlapping subdomains (Ωj)1≤j≤N , the solving of Dirichlet
problems in the subdomains:

(−ω2

c2
−∆)(un+1

j) = f(x, y), in Ωj , 1 ≤ j ≤ N
un+1
j = un, on ∂Ωj

(6.12)

and then using a partition of unity (ξj)1≤j≤N related to (Ωj)1≤j≤N :

un+1 ∶=
N

∑
j=1

ξj u
n+1
j .

The problem is that this algorithm is not necessarily well-posed. Indeed,
if ω2/c2 is an eigenvalue of the Poisson operator in a subdomain Ωk, there
exists a non zero function v ∶ Ωk → R such that:

−∆v = ω2

c2
v in Ωk

v = 0 on ∂Ωk .

Then, problem (6.12) is ill-posed in subdomain Ωk. Either there is no
solution to it or if there is one, it is possible to add to it any function
proportional to the eigenvalue v and still satisfy equation (6.12). We have
here what is called a Fredholm alternative.

150 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

Moreover, even when the local problems are well-posed, a bad convergence is
to be expected. We present the analysis in the case of the plane divided into
two subdomains although it is very similar to the elliptic case considered in
§ 1.5.2. We introduce the wave number

ω̃ ∶= ω
c
.

Consider the domain is Ω = R2 with the Sommerfeld radiation condition at
infinity,

lim
r→∞

√
r (∂u

∂r
+ iω̃u) = 0,

where r =
√
x2 + y2. We decompose it into two subdomains with or without

overlap, δ ≥ 0, Ω1 = (−∞, δ) × R and Ω2 = (0,∞) × R and consider the
Schwarz algorithm

−∆un+1
1 − ω̃2un+1

1 = f(x, y), x, y ∈ Ω1

un+1
1 (δ, y) = un2(δ, y) , ∀y ∈ R

lim
r→∞

√
r (∂u

n+1
1

∂r
+ iω̃un+1

1) = 0

(6.13)

and
−∆un+1

2 − ω̃2un+1
2 = f(x, y), x, y ∈ Ω2

un+1
2 (0, y) = un1(0, y) , ∀y ∈ R

lim
r→∞

√
r (∂u

n+1
2

∂r
+ iω̃un+1

2) = 0 .

(6.14)

For the convergence analysis it suffices by linearity to consider the case
f(x, y) = 0 and to analyze convergence to the zero solution. Let the Fourier
transform in y direction be denoted by

û(x, k) ∶= (Fu)(x, k) = ∫
R
u(x, y)e−ikydy,

Taking a Fourier transform of the algorithms (6.13) and (6.14) in the y
direction we obtain

−∂
2ûn+1

1

∂x2
− (ω̃2 − k2)ûn+1

1 = 0,

x < δ, k ∈ R (6.15)
ûn+1

1 (δ, k) = ûn2(δ, k)

and

−∂
2ûn+1

2

∂x2
− (ω̃2 − k2)ûn+1

2 = 0,

x > 0, k ∈ R (6.16)
ûn+1

2 (0, k) = ûn1(0, k)

6.2. HELMHOLTZ PROBLEMS 151

The general solutions of these ordinary differential equations are

ûn+1
j = Ajeλ(k)x +Bje−λ(k)x, j = 1,2,

where λ(k) denotes the root of the characteristic equation λ2 +(ω2 −k2) = 0
with positive real or imaginary part,

λ(k) = {
√
k2 − ω̃2 for ∣k∣ ≥ ω̃,

i
√
ω̃2 − k2 for ∣k∣ < ω̃.

(6.17)

Note that the main difference with the elliptic case is that λ(k) is a complex
valued function. It takes real values for the vanishing modes ∣k∣ ≥ ω̃ and
purely imaginary values for propagative modes ∣k∣ < ω̃. Since the Sommerfeld
radiation condition excludes growing solutions as well as incoming modes at
infinity, we obtain the local solutions

ûn+1
1 (x, k) = ûn+1

1 (δ, k)eλ(k)(x−δ)
ûn+1

2 (x, k) = ûn+1
2 (0, k)e−λ(k)x. (6.18)

Then, it is easy to check that

ûn+1
1 (δ, k) = exp (−2λ(k) δ) ûn−1

1 (δ, k).

Defining the convergence factor ρ by

ρ(k, δ) ∶= ∣ û
n+1
1 (δ, k)
ûn−1

1 (δ, k)∣
1/2

(6.19)

we find by plugging (6.18) into (6.13) and (6.14) that

ρ(k, δ) = exp (−λ(k) δ) (6.20)

where λ(k) is given by (6.17). By induction, the following result follows for
even n

ûn1(0, k) = ρ(k, δ)nû0
1(0, k), ûn2(0, k) = ρ(k, δ)nû0

2(0, k).

Remark 6.2.1 We can distinguish a few features from the expression of the
convergence factor, see Figure 6.3:

• The main difference with the elliptic case is that ρ(k, δ) is a complex
valued function. The convergence will occur if the modulus of ρ is
smaller than one, ∣ρ(k, δ)∣ < 1.

152 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

Fourier number

Convergence rate for omega = 10

Figure 6.3: Convergence factor (6.20) of the Schwarz method for Helmholtz
equation vs. Fourier number

• For vanishing modes ∣k∣ > ω̃, λ(k) is negative and real so that these
modes converge faster for larger overlaps. But we have ∣ρ(k, δ)∣ ≡ 1 for
propagative modes ∣k∣ < ω̃ whatever the overlap is since there λ(k) ∈
iR. This prevents the convergence of the Schwarz algorithm for the
Helmholtz equation.

• A possible fix is the use of a relaxation parameter θ:

un+1
i ∶= θun+1

i + (1 − θ)uni .
The choice of the optimal parameter θ is not easy and the overall
convergence rate is not good anyway.

It is thus clear that the Schwarz method cannot be used safely nor efficiently
as a solver for the Helmholtz equation.

6.2.2 Després’ Algorithm for the Helmholtz equation

The algorithm by P.L. Lions can be applied to the Helmholtz equation with
the choice α = iω̃ (i2 = −1). We give here a slight modification of the
original algorithm given in [42]. Domain Ω is decomposed intoN overlapping
subdomains (Ωj)1≤j≤N and at each iteration a subdomain solve reads

(−ω̃2 −∆)(un+1
j) = f(x, y) in Ωj , 1 ≤ j ≤ N

(∂

∂nj
+ iω̃)(un+1

j) = (∂

∂nj
+ iω̃)(un) on ∂Ωj

(6.21)

6.2. HELMHOLTZ PROBLEMS 153

and then using a partition of unity (ξj)1≤j≤N related to (Ωj)1≤j≤N :

un+1 ∶=
N

∑
j=1

ξj u
n+1
j .

This algorithm fixes the two drawbacks of the Schwarz algorithm explained
in § 6.2.1. First, note that the solution to the boundary value problem (6.21)
is unique even if ω̃2 is an eigenvalue of the Laplace operator with Dirichlet
boundary conditions. Indeed, suppose for some subdomain Ωk (1 ≤ k ≤ N)
we have a function v ∶ Ωk → C that satisfies:

−ω̃2v −∆v = 0 in Ωk

(∂

∂nk
+ iω̃) (v) = 0 on ∂Ωk .

Multiplying the equation by the conjugate of v and integrating by parts, we
get:

∫
Ωk
−ω̃2∣v∣2 + ∣∇v∣2 − ∫

∂Ωk

∂v

∂nk
v̄ = 0 .

Taking into account the Robin condition on ∂Ωk, we have:

∫
Ωk
−ω̃2∣v∣2 + ∣∇v∣2 + ∫

∂Ωk
i ω̃∣v∣2 = 0 .

Taking the imaginary part of the above equality, we get:

∫
∂Ωk

ω̃∣v∣2 = 0 ,

so that v is zero on ∂Ωk. Using again the Robin condition, we have that
∂v/∂nk = 0 as well on ∂Ωk. Together with the fact that −ω̃2v − ∆v = 0 in
Ωk, a unique continuation principle proves that v is identically zero in Ω.
Thus Desprès algorithm is always well defined.
The second point is that convergence of algorithm was proved in [44] for a
non overlapping decomposition of domain Ω. It is worth noticing that it was
the first time an iterative solver with proven convergence was proposed for
the Helmholtz and subsequently Maxwell equations [45]. For overlapping
subdomains, no general convergence proof is available. But, in the case of
the plane R2 decomposed into two overlapping half-planes, the convergence
factor can be computed and a convergence result follows. The algorithm
studied here can be written as

−∆un+1
1 − ω̃2un+1

1 = f(x, y), x, y ∈ Ω1

(∂

∂n1
+ iω̃) (un+1

1)(δ, y) = (∂

∂n1
+ iω̃)un2(δ, y) , ∀y ∈ R

lim
r→∞

√
r (∂u

n+1
1

∂r
+ iω̃un+1

1) = 0

(6.22)

154 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

Fourier number

Convergence rate for omega = 10

Figure 6.4: Convergence factor (6.24) of Després method for Helmholtz
equation vs. Fourier number (δ = 0.1)

and

−∆un+1
2 − ω̃2un+1

2 = f(x, y), x, y ∈ Ω2

(∂

∂n2
+ iω̃)un+1

2 (0, y) = (∂

∂n2
+ iω̃)un1(0, y) , ∀y ∈ R

lim
r→∞

√
r (∂u

n+1
2

∂r
+ iω̃un+1

2) = 0 .

(6.23)

Performing a convergence analysis as in § 6.1, the convergence factor is:

ρ(k, δ) = ∣λ(k) − iω̃
λ(k) + iω̃ ∣ ∣ exp(−λ(k) δ)∣ (6.24)

where λ(k) is given by formula (6.17). Note that we have

ρ(k, δ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣
√
ω̃2 − k2 − ω̃√
ω̃2 − k2 + ω̃

∣ , for ∣k∣ < ∣ω̃∣,

exp(−
√
k2 − ω̃2δ), for ∣k∣ < ∣ω̃∣ ,

see Figure 6.4. Note that for propagative modes ∣k∣ < ∣ω̃∣, ∣ exp(−λ(k)δ)∣ =
1 since λ(k) is purely imaginary. Therefore the convergence comes from
the Robin condition independently of the overlap. As for vanishing modes
∣k∣ > ∣ω̃∣, λ is real. The modulus of the rational fraction in (6.24) is 1 and

6.3. IMPLEMENTATION ISSUES 155

convergence comes from the overlap. Thus for all Fourier modes except ∣k∣ =
ω̃, the convergence factor is smaller than one. Thus, the method converges
for almost every Fourier number k.

6.3 Implementation issues

A Robin boundary value problem is different from standard Dirichlet or
Neumann problems but poses no difficulty as long as the right-hand side of
the Robin condition is known. But as we shall see, the discretization of the
right-hand side (6.25) on an interface is not a trivial task. Fortunately, it
may be eased by tricks explained in § 6.3.1 and 6.3.2.

Consider for example the problem (6.1) in Lions’ algorithm and let gn2 denote
the right-hand side on the interface of subdomain Ω1:

gn2 ∶= (∂

∂n1
+ α) (un2) on ∂Ω1 ∩ Ω̄2 . (6.25)

Then, the bilinear form associated to the variational formulation of (6.1) is:

aRobin ∶ H1(Ω1) ×H1(Ω1) Ð→ R
(u, v) z→ ∫

Ω1

(ηuv +∇u ⋅ ∇v) + ∫
∂Ω1∩Ω2

αuv .

(6.26)
Note that the boundary integral term containing α is positive when v = u.
Thus bilinear form aRobin is even more coercive than the one associated with
the Neumann boundary value problem which contains only the subdomain
integral term. The linear form related to (6.1) reads:

lRobin ∶ H1(Ω1) Ð→ R
v z→ ∫

Ω1

f v + ∫
∂Ω1∩Ω2

gn2 v .
(6.27)

The variational formulation of the Robin boundary value problem reads:

Find u ∈H1(Ω1) such that
∀v ∈H1(Ω1), aRobin(u, v) = lRobin(v) .

The finite element discretization is simply obtained by replacing the infinite
dimensional Sobolev space H1(Ω1) by a finite dimensional space for example
a classical P1 finite element space denoted Vh(Ω1):

Find u ∈ Vh(Ω1) such that
∀vh ∈ Vh(Ω1), aRobin(uh, vh) = lRobin(vh) .

From an algebraic point of view, we consider a finite element basis

{φk∣k ∈ N1} ⊂ Vh(Ω1)

156 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

where N1 is the set of degrees of freedom. The matrix form of aRobin,h is
denoted by ARobin,1:

[ARobin,1]kl ∶= aRobin,h(φl, φk) = ∫
Ω1

(ηφlφk +∇φl ⋅ ∇φk) + ∫
∂Ω1∩Ω2

αφl φk .

(6.28)
Matrix ARobin,1 is actually the sum of the mass matrix, a stiffness matrix
which corresponds to a Neumann problem and of a matrix that has zero

entries for interior degrees of freedom (
○

Supp φk ∩ (∂Ω1 ∩Ω2) = ∅), see equa-
tion (6.38) as well.
Note that the same technique can be applied in the case of the Després’
algorithm for the Helmholtz equation with minimal adjustements due to
the form of the problem. We simply replace η by −ω̃2 and multiply by the
complex conjugate of the test function in the variational form.

The only difficulty lies now in the discretization of the right-hand side gn2 on
the interface. Suppose we have a P1 (piecewise linear) finite element so that
we can identify a degree of freedom with a vertex of a triangular mesh in 2D.
The variational form aRobin implicitly defines a discretization scheme for the
outward normal derivative ∂un+1

1 /∂n1. The corresponding stencil can only
involve vertices that belong to domain Ω̄1, see Figure 6.5. In order to ensure
that the domain decomposition algorithm leads to a solution identical (up to
the tolerance of the iterative solver) to the one which would be obtained by
the original discretization scheme on the whole domain, it seems necessary
to discretize gn2 (= ∂un2 /∂n1) using the same stencil. But, the function un2 is
defined by degrees of freedom that are in Ω̄2 and thus cannot be the ones
defining ∂un+1

1 /∂n1. In the overlapping case, a discretization of the right-
hand side based on the same stencil points could be done but at the expense
of identifying the stencil implicitly defined by the variational formulation.
This is not so easy to implement in a code.
In the next two sections, we give two tricks that ease the implementation so
that the converged solution is equal to the one which would be obtained by
the original discretization scheme on the whole domain. One trick applies
to a non overlapping decomposition and the other one to the overlapping
case only.

6.3.1 Two-domain non-overlapping decomposition

This section is concerned with the Finite Element implementation of the
interface conditions of Robin type for a non-overlapping decomposition of
the domain. We present the discretization scheme for a decomposition of a
domain Ω into two non overlapping subdomains Ω1 and Ω2 with interface
Γ12. We consider first the optimized Schwarz algorithm at the continuous

6.3. IMPLEMENTATION ISSUES 157

�1 �2

Figure 6.5: Stencil for the outward normal derivative (∂u1/∂n1) at the in-
terface between two non overlapping subdomains Ω1 and Ω2

level,

(η −∆)un+1
1 = f in Ω1

∂un+1
1

∂n1
+ αun+1

1 = −∂u
n
2

∂n2
+ αun2 on Γ12

(6.29)
(η −∆)un+1

2 = f in Ω2

∂un+1
2

∂n2
+ αun+1

2 = −∂u
n
1

∂n1
+ αun1 on Γ12.

where we have used that on the interface between non overlapping subdo-
mains, we have n1 = −n2, see Figure 6.1. A direct discretization would
require the computation of the normal derivatives along the interfaces in or-
der to evaluate the right-hand sides in the transmission conditions of (6.29).
This can be avoided by re-naming the problematic quantities:

λn1 = −∂u
n
2

∂n2
+ αun2 and λn2 = −∂u

n
1

∂n1
+ αun1 .

158 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

The algorithm (6.29) becomes

(η −∆)un+1
1 = f in Ω1

∂un+1
1

∂n1
+ αun+1

1 = λn1 on Γ12

(6.30)
(η −∆)un+1

2 = f in Ω2

∂un+1
2

∂n2
+ αun+1

2 = λn2 on Γ12

λn+1
1 =−λn2 + 2αun+1

2

λn+1
2 =−λn1 + 2αun+1

1 .

The last two update relations of (6.30) follow from:

λn+1
1 ∶= −∂u

n+1
2

∂n2
+ αun+1

2 = −(∂u
n+1
2

∂n2
+ αun+1

2) + 2αun+1
2 = −λn2 + 2αun+1

2

(6.31)
and similarly

λn+1
2 ∶= −∂u

n+1
1

∂n1
+ αun+1

1 = −(∂u
n+1
1

∂n1
+ αun+1

1) + 2αun+1
1 = −λn1 + 2αun+1

1 .

(6.32)
Equations (6.31) and (6.32) can be interpreted as a fixed point algorithm in
the new variables λj , j = 1,2, to solve the substructured problem

λ1 = −λ2 + 2αu2(λ2, f) ,
λ2 = −λ1 + 2αu1(λ1, f) ,

(6.33)

where uj = uj(λj , f), j = 1,2, are solutions of:

(η −∆)uj = f in Ωj ,

∂uj

∂nj
+ αuj = λj on Γ12.

Instead of solving the substructured problem (6.33) by the fixed point itera-
tion (6.30), one usually uses a Krylov subspace method to solve the substruc-
tured problem. This corresponds to using the optimized Schwarz method as
a preconditioner for the Krylov subspace method.
At this point, we can introduce the algebraic counterparts of the continu-
ous quantities. A finite element discretization of the substructured prob-
lem (6.33) leads to the linear system

λ1 = −λ2 + 2αB2u2

λ2 = −λ1 + 2αB1u1
(6.34)

6.3. IMPLEMENTATION ISSUES 159

where uj = uj(λj ,fj), j = 1,2 are solutions of:

ARobin,1u1 = f1 +BT
1 λ1

ARobin,2u2 = f2 +BT
2 λ2

(6.35)

We detail now the new matrices and vectors we have introduced:

• Vectors u1, u2 contain the degrees of freedom of the subdomain solu-
tions.

• Vectors f1, f2 are the degrees of freedom related to f .

• Matrices B1 and B2 are the trace operators of the domains Ω1 and Ω2

on the interface Γ12.

In order to define matrices ARobin,j , we first split the two vectors u1 and u2

into interior and boundary degrees of freedom:

uj =
⎡⎢⎢⎢⎢⎣

uij

ubj

⎤⎥⎥⎥⎥⎦
, j = 1,2, (6.36)

where the indices i and b correspond to interior and interface degrees of
freedom respectively for domain Ωj . Then the discrete trace operators B1

and B2 are just the Boolean matrices corresponding to the decomposition
(6.36) and they can be written as

Bj = [0 I] , j = 1,2, (6.37)

where I denotes the identity matrix of appropriate size. For example,

B1u1 = ub1 and B2u2 = ub2.

Matrices ARobin,1 and ARobin,2 arise from the discretization of the local η−∆
operators along with the interface conditions ∂n + α,

ARobin,j =Kj +BT
j αMΓ12Bj , j = 1,2. (6.38)

Here Kj are local matrices of problem (as combination of stiffness and mass
matrices) and MΓ12 is the interface mass matrix

[MΓ12]nm = ∫
Γ12

φnφm dξ (6.39)

The functions φn and φm are the basis functions associated with the degrees
of freedom n and m on the interface Γ12.
For given λ1 and λ2, the functions u1 and u2 can be computed by solving
equations (6.35). By eliminating u1 and u2 in (6.34) using (6.35), we obtain
the substructured linear system

Fλ = d, (6.40)

160 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

where λ = (λ1,λ2) and the matrix F and the right-hand side d are

F = (I I − 2αB2A
−1
Robin,2B

T
2

I − 2αB1A
−1
Robin,1B

T
1 I

)

d = (2αB1A
−1
Robin,1f1

2αB2A
−1
Robin,2f2.

)
(6.41)

The linear system (6.40) is solved by a Krylov subspace method. The matrix
vector product amounts to solving a subproblem in each subdomain and to
send interface data between subdomains.
The general case of a decomposition into an arbitrary number of subdomains
is treated in [86] for the case of the Helmholtz equations. It is also possible to
discretize the interface conditions by using Lagrange multipliers the method
is then named FETI 2 LM (Two-Lagrange Multiplier), see [157].

6.3.2 Overlapping domain decomposition

The trick explained in the non overlapping case cannot be used in the
overlapping case, see Figure 6.1. Indeed, even in the simple case of two
subdomains, the normal derivatives are computed on two distinct interfaces
∂Ω1 ∩ Ω̄2 and ∂Ω2 ∩ Ω̄1. Here as well, it is possible to write an algorithm
equivalent to P.L. Lions’ algorithm (6.1)-(6.2) but where the iterate is a
function un ∶ Ω→ R i.e. it is not a pair of functions (un1 , un2).

Let a overlapping domain decomposition Ω = Ω1 ∪ Ω2 with a partition of
unity functions χ1 and χ2:

χ1 + χ2 = 1, suppχi ⊂ Ωi, i = 1,2.

Let un ∶ Ω→ R be an approximate solution to a Poisson equation. Then the
update un+1 is computed by the following algorithm which is the continuous
version of the Optimized Restricted Additive Schwarz (ORAS) algorithm,
see [36]. The solution will come from section 1.3 where an equivalence
between the original Schwarz algorithm and the RAS method was shown at
the continuous level.

Lemma 6.3.1 (Equivalence between Lions’ algorithm and ORAS)
The algorithm defined by (6.42), (6.43) and (6.44) is equivalent to the
Lions’ Schwarz algorithm

Proof The approach is very similar to what is done in Lemma 1.1.2
where we prove the equivalence between the Schwarz algorithm and the
RAS method. Here, we have to prove the equality

un = E1(χ1u
n
1) +E2(χ2u

n
2) ,

6.3. IMPLEMENTATION ISSUES 161

Algorithm 7 ORAS algorithm at the continuous level

1. Compute the residual rn ∶ Ω→ R:

rn ∶= f − (η −∆)un (6.42)

2. For i = 1,2 solve for a local correction vni :

(η −∆)vni = rn in Ωi

vni = 0 on ∂Ωi ∩ ∂Ω

(∂

∂ni
+ α) (vni) = 0 on ∂Ωi ∩ Ω̄3−i

(6.43)

3. Compute an average of the local corrections and update un:

un+1 = un +E1(χ1v
n
1) +E2(χ2v

n
2) . (6.44)

where (χi)i=1,2 and (Ei)i=1,2 define a partition of unity as in defined
in section 1.1 equation (1.4).

where un1,2 are given by (6.1)-(6.2) and un is given by (6.42)-(6.43)-(6.44).
We assume that the property holds for the initial guesses:

u0 = E1(χ1u
0
1) +E2(χ2u

0
2)

and proceed by induction assuming the property holds at step n of the
algorithm, i.e. un = E1(χ1u

n
1) +E2(χ2u

n
2). From (6.44) we have

un+1 = E1(χ1(un + vn1)) +E2(χ2(un + vn2)) . (6.45)

We prove now that un
∣Ω1

+ vn1 = un+1
1 by proving that un

∣Ω1
+ vn1 satisfies (6.1)

as un+1
1 does. We first note that, using (6.43)-(6.42) we have:

(η −∆)(un + vn1) = (η −∆)un + rn = (η −∆)un + f − (η −∆un) = f in Ω1,

(∂

∂n1
+ α) (un + vn1) = (∂

∂n1
+ α) (un) on ∂Ω1 ∩Ω2,

(6.46)
It remains to prove that

(∂

∂n1
+ α) (un) = (∂

∂n1
+ α) (un2) on ∂Ω1 ∩Ω2 .

By the induction hypothesis we have un = E1(χ1u
n
1) + E2(χ2u

n
2). On a

neighborhood of ∂Ω1 ∩Ω2 (zone (c) in Figure 6.6), we have χ1 ≡ 0 and thus

162 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

�1 �2�n1
�n2

(a) (b) (c)(a) (c)

Figure 6.6: Function of partition of unity χ1. In zone (a): χ1 ≡ 1, in zone
(b): 0 < χ1 < 1 and in zone (c): χ1 ≡ 0.

χ2 ≡ 1. In this neighborhood, their derivatives are zero as well, so that on
∂Ω1 ∩Ω2 we have :

(∂

∂n1
+ α) (un) = (∂

∂n1
+ α) (χ1u

n
1 + χ2u

n
2) = (∂

∂n1
+ α) (un2) . (6.47)

Finally from (6.46) and (6.47) we can conclude that un
∣Ω1

+vn1 = un+1
1 satisfies

problem (6.1) and is thus equal to un+1
1 . The same holds for domain Ω2,

un
∣Ω2

+ vn2 = un+1
2 . Then equation (6.45) reads

un+1 = E1(χ1u
n+1
1) +E2(χ2u

n+1
2)

which ends the proof of the equivalence between P.L. Lions’ algorithm the
continuous version of the ORAS algorithm.

The advantage of the ORAS method over a direct implementation of
P.L. Lions algorithm is that the Robin boundary condition (6.43) has
a zero right-hand side that needs no discretization. The only drawback
at the discretized level is that the actual overlap is reduced by a mesh
size compared to a full discretization of the original P.L. Lions algorithm,
see [36] for more details.

We now give the algebraic definition of the ORAS method by giving the
discrete counterparts of steps (6.42)-(6.43)-(6.44), see [36]. Let Un ∈ R#N

be an approximate solution to a linear system:

AU = F . (6.48)

The set of degrees of freedom N is decomposed into two subsets N1 and N2.
For i = 1,2, let Ri denote the Boolean restriction matrix to Ni and Di define
an algebraic partition of unity ∑2

i=1R
T
i DiRi = Id, as in (1.25).

The above three steps algorithm can be written more compactly as:

6.4. OPTIMAL INTERFACE CONDITIONS 163

The update Un+1 is computed in several steps by the following algorithm

1. Compute the residual rn ∈ R#N :

rn ∶= F −AUn (6.49)

2. For i = 1,2 solve for a local correction Vi
n:

Ai,RobinV
n
i = Ri rn (6.50)

where Ai,Robin is the discretization matrix of a Robin problem as ex-
plained in (6.28) or in (6.38).

3. Compute an average of the local corrections and update Un accord-
ingly:

Un+1 = Un +RT1 D1 Vn
1 +RT2 D2 Vn

2 . (6.51)

Definition 6.3.1 (ORAS algorithm) The iterative Optimized Restricted
Additive Schwarz (ORAS) algorithm is the preconditioned fixed point itera-
tion defined by

Un+1 = Un +M−1
ORASrn, rn ∶= F −AUn

where the matrix

M−1
ORAS ∶=

2

∑
i=1

RTi DiA
−1
i,RobinRi (6.52)

is called the ORAS preconditioner.

In short, the only difference with the RAS method (1.29) consists in replacing
the local Dirichlet matrices RiAR

T
i by matrices ARobin,i which correspond

to local Robin subproblems.
As explained in chapter 2, it is more profitable to use a Krylov method
in place of the above iterative fixed-point algorithm. It consists in solving
(6.48) by a Krylov method such as GMRES or BiCGSTAB preconditioned
by operator MORAS .

6.4 Optimal interface conditions

6.4.1 Optimal interface conditions and ABC

Robin boundary conditions are not the most general interface conditions.
Rather than give the general conditions in an a priori form, we shall derive
them in this section so as to have the fastest convergence. We establish
the existence of interface conditions which are optimal in terms of iteration

164 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

Ω1

Ω2

Ω1
cΩ2

c

Γ1

Γ2

Figure 6.7: Subdomains and their complements

counts. The corresponding interface conditions are pseudo-differential and
are not practical. Nevertheless, this result is a guide for the choice of
partial differential interface conditions. Moreover, this result establishes
a link between the optimal interface conditions and artificial boundary
conditions. This is also a help when dealing with the design of interface
conditions since it gives the possibility to use the numerous papers and
books published on the subject of artificial boundary conditions, see e.g.
[71, 94] or more generally on truncation of infinite domains via the PML
technique [113, 27].

We consider a general linear second order elliptic partial differential operator
L and the problem:

L(u) = f, Ω
u = 0, ∂Ω.

The domain Ω is decomposed into two subdomains Ω1 and Ω2. We suppose
that the problem is regular so that ui ∶= u∣Ωi , i = 1,2, is continuous and has
continuous normal derivatives across the interface Γi = ∂Ωi ∩ Ω̄j , i ≠ j. A
modified Schwarz type method is considered.

L(un+1
1) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

µ1∇un+1
1 .n1 + B1(un+1

1)
= −µ1∇un2 .n2 + B1(un2) on Γ1

L(un+1
2) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

µ2∇un+1
2 .n2 + B2(un+1

2)
= −µ2∇un1 .n1 + B2(un1) on Γ2

(6.53)
where µ1 and µ2 are real-valued functions and B1 and B2 are operators
acting along the interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 =
B2 = Id correspond to the original Schwarz algorithm (1.3); µ1 = µ2 = 1 and

6.4. OPTIMAL INTERFACE CONDITIONS 165

Bi = α ∈ R, i = 1,2, has been proposed in [122] by P. L. Lions.
The question to which we would like to answer is:

Are there other possibilities in order to have convergence in a
minimal number of steps?

In order to answer this question, we note that by linearity, the error e satisfies
(we supposed here with no loss of generality that µ1 = µ2 = 1)

L(en+1
1) = 0 in Ω1

en+1
1 = 0 on ∂Ω1 ∩ ∂Ω

∇en+1
1 .n1 + B1(en+1

1)
= −∇en2 .n2 + B1(en2) on Γ1

L(en+1
2) = 0 in Ω2

en+1
2 = 0 on ∂Ω2 ∩ ∂Ω

∇en+1
2 .n2 + B2(en+1

2)
= −∇en1 .n1 + B2(en1) on Γ2

The initial guess e0
i is arbitrary so that it is impossible to have convergence

at step 1 of the algorithm. Convergence needs at least two iterations. Having
e2

1 ≡ 0 requires

−∇e1
2.n2 + B1(e1

2) ≡ 0.

The only meaningful information on e1
2 is that

L(e1
2) = 0 in Ω2.

In order to use this information, we introduce the DtN (Dirichlet to Neu-
mann) map (a.k.a. Steklov-Poincaré):

u0 ∶ Γ1 → R
DtN2(u0) ∶= ∇v.n2∣∂Ω1∩Ω̄2

,
(6.54)

where n2 is the outward normal to Ω2 ∖ Ω̄1, and v satisfies the following
boundary value problem:

L(v) = 0 in Ω2 ∖ Ω̄1

v = 0 on ∂Ω2 ∩ ∂Ω
v = u0 on ∂Ω1 ∩ Ω̄2.

If we take

B1 ∶= DtN2

we see that this choice is optimal since we have

−∇e1
2.n2 + B1(e1

2) ≡ 0.

Indeed, in Ω2 ∖ Ω̄1 ⊂ Ω2, e1
2 satisfies

L(e1
2) = 0.

166 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

Hence,

∇e1
2.n2 = DtN2(e1

2)
∇e1

2.n2 = B1(e1
2) (B1 = DtN2)

We have formally proved

Result 6.4.1 The use of Bi = DtNj (i ≠ j) as interface conditions in (6.53)
is optimal: we have (exact) convergence in two iterations.

The two-domain case for an operator with constant coefficients has been
first treated in [101]. The multidomain case for a variable coefficient oper-
ator with both positive results [136] and negative conjectures for arbitrary
domain decompositions [142] has been considered as well.

Remark 6.4.1 The main feature of this result is to be very general since it
does not depend on the exact form of the operator L and can be extended to
systems or to coupled systems of equations as well with a proper care of the
well-posedness of the algorithm.

As an application, we take Ω = R2 and Ω1 =] − ∞,0 [×R. Using the same
Fourier technique that was used to study algorithm (6.5)-(6.6), it is possi-
ble to give the explicit form of the DtN operator for a constant coefficient
operator.

• If L = η −∆, the action of the DtN map can be computed as:

DtNu0 = ∫
R

√
η + k2 û0(k) eiky dk.

We say that DtN is a pseudo-differential operator whose symbol is

D̂tN ∶=
√
η + k2 .

• If L is a convection-diffusion operator L ∶= η + a∇− ν∆, the symbol of
the DtN map is

D̂tN ∶=
−a.n1 +

√
(a.n1)2 + 4ν(η + a.τ1kν + ν2k2)

2ν

where n1 is the outward normal to subdomain Ω1 and τ1 is the tan-
gential derivative along the interface.

• If L = −ω̃2 −∆ is the Helmholtz operator, the symbol of DtN is

D̂tN ∶=
√
k2 − ω̃2 .

6.4. OPTIMAL INTERFACE CONDITIONS 167

U�

�
U1

�
U2

Figure 6.8: Geometric Partition into two subdomains and corresponding
partition of the degrees of freedom

These symbols are not polynomials in the Fourier variable k so that the
corresponding operators and hence the optimal interface conditions are not
partial differential operators. They correspond to exact absorbing condi-
tions. These conditions are used on the artificial boundary resulting from
the truncation of a computational domain. The solution on the truncated
domain depends on the choice of this artificial condition. We say that it
is an exact absorbing boundary condition if the solution computed on the
truncated domain is the restriction of the solution of the original problem.
Surprisingly enough, the notions of exact absorbing conditions for domain
truncation and that of optimal interface conditions in domain decomposition
methods coincide.
As the above examples show, the optimal interface transmission conditions
are pseudodifferential. Therefore they are difficult to implement. More-
over, in the general case of a variable coefficient operator and/or a curved
boundary, the exact form of these operators is not known, although they can
be approximated by partial differential operators which are easier to imple-
ment. The approximation of the DtN has been addressed by many authors
since the seminal paper [71] by Engquist and Majda on this question.

6.4.2 Optimal Algebraic Interface Conditions

The issue of optimal interface conditions is considered here at the matrix
level for a non overlapping domain decomposition. When a partial differen-
tial problem is discretized by a finite element method for instance, it yields
a linear system of the form AU = F, where F is a given right-hand side and

168 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

U is the set of unknowns. Corresponding to the domain decomposition, the

set of unknowns U is decomposed into interior nodes of the subdomains
○
U1

and
○
U2, and to unknowns, UΓ, associated to the interface Γ. This leads to

a block decomposition of the linear system

⎛
⎜
⎝

A11 A1Γ 0
AΓ1 AΓΓ AΓ2

0 A2Γ A22

⎞
⎟
⎠

⎛
⎜⎜
⎝

○
U1

UΓ
○
U2

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

○
F1

FΓ
○
F2

⎞
⎟⎟
⎠
. (6.55)

In order to write an optimized Schwarz method, we have to introduce two
square matrices T1 and T2 which act on vectors of the type UΓ. Then the
OSM algorithm reads:

(A11 A1Γ

AΓ1 AΓΓ + T2
)
⎛
⎝

○
U
n+1

1

Un+1
Γ,1

⎞
⎠
=
⎛
⎝

F1

FΓ + T2U
n
Γ,2 −AΓ2

○
U
n

2

⎞
⎠

(6.56)

(A22 A2Γ

AΓ2 AΓΓ + T1
)
⎛
⎝

○
U
n+1

2

Un+1
Γ,2

⎞
⎠
=
⎛
⎝

F2

FΓ + T1U
n
Γ,1 −AΓ1

○
U
n

1

⎞
⎠

(6.57)

Lemma 6.4.1 Assume AΓΓ + T1 + T2 is invertible and problem (6.55) is
well-posed. Then if the algorithm (6.56)-(6.57) converges, it converges to

the solution of (6.55). That is, if we denote by (
○
U
∞

1 ,U
∞
Γ,1,

○
U
∞

2 ,U
∞
Γ,2) the

limit as n goes to infinity of the sequence (
○
U
n

1 ,U
n
Γ,1,

○
U
n

2 ,U
n
Γ,2)

n≥0
,

U∞
i = Ui and U∞

Γ,1 = U∞
Γ,2 = UΓ, i = 1,2.

Proof Note first that we have a duplication of the interface unknowns UΓ

into UΓ,1 and UΓ,2.
We subtract the last line of (6.56) to the last line of (6.57), take the limit
as n goes to infinity and get:

(AΓΓ + T1 + T2)(U∞
Γ,1 −U∞

Γ,2) = 0

which proves that U∞
Γ,1 = U∞

Γ,2. Then, taking the limit of (6.56) and (6.57)

as n goes to infinity shows that (
○
U
∞

1 ,U
∞
Γ,1 = U∞

Γ,2,
○
U
∞

2)
T

is a solution to

(6.55) which is unique by assumption.
As in § 6.4, we can use the optimal interface conditions

Lemma 6.4.2 Assume Aii is invertible for i = 1,2.
Then, in algorithm (6.56)-(6.57), taking

T1 ∶= −AΓ1A
−1
11A1Γ and T2 ∶= −AΓ2A

−1
22A2Γ

yields a convergence in two steps.

6.5. OPTIMIZED INTERFACE CONDITIONS 169

Proof Note that in this case, the bottom-right blocks of the two by two
bock matrices in (6.56) and (6.57)

AΓΓ −AΓ1A
−1
11A1Γ and AΓΓ −AΓ2A

−1
22A2Γ

are actually Schur complements. It is classical that the subproblems (6.56)
and (6.57) are well-posed. By linearity, in order to prove convergence, it is

sufficient to consider the convergence to zero in the case (
○
F1,FΓ,

○
F2)

T
= 0.

At step 1 of the algorithm, we have

A11

○
U

1

1 +A1ΓU1
Γ,1 = 0

or equivalently by applying −AΓ1A
−1
11 :

−AΓ1

○
U

1

1 −AΓ1A
−1
11A1ΓU1

Γ,1 = 0

So that the right-hand side of (6.57) is zero at step 2 (i.e. n = 1). We have
thus convergence to zero in domain 2. The same holds for domain 1.
Matrices T1 and T2 are in general dense matrices whose computation and
use as interface conditions is very costly. The relationship between optimal
algebraic interface conditions and the continuous ones is simply that last
line of block matrices in (6.56) and (6.57) are the correct discretizations of
the optimal interface introduced in § 6.4.1.

6.5 Optimized interface conditions

As we have already seen in the previous chapters, three different reasons
led to the development of the new transmission conditions. The first reason
was to obtain Schwarz algorithms that are convergent without overlap, see
[122]. The second motivation for changing the transmission conditions was
to obtain a convergent Schwarz method for the Helmholtz equation, where
the classical overlapping Schwarz algorithm is not convergent [41, 45]. The
third motivation was that the convergence of the classical Schwarz method
is rather slow and depends strongly on the size of the overlap. For an
introduction to optimized Schwarz methods, see [81].

6.5.1 Optimized interface conditions for η −∆

In section 6.1.2, we have proved convergence of the domain decomposition
method with interface conditions of the type

∂n + α − ∂τ (β∂τ) (6.58)

for a general but non overlapping domain decomposition.

170 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

In section 6.4, we have exhibited interface conditions which are optimal in
terms of iteration counts but are pseudo-differential operators difficult to use
in practice. These results are not sufficient for the design of effective bound-
ary conditions which for the sake of simplicity must have the form (6.58).
From section 6.4, we know that the parameters α and β must somehow be
such that (6.58) approximates the optimal interface conditions

∂

∂ni
+DtN.

At first sight, it seems that the approximations proposed in the field of
artificial boundary conditions are also relevant in the context of domain
decomposition methods. Actually this is not the case, as was proved for the
convection-diffusion equation, see [107, 108].
In order to clarify the situation, we need an estimate of the convergence
factor as a function of the parameters α and β, the size of the overlap
and the coefficients of the partial differential operator. In particular it will
provide a means for choosing the interface conditions in an optimal way.
This type of study is limited to a very simple situation: a constant coefficient
operator and a whole space decomposed into two half-spaces. But, let us
insist on the fact that these limitations concern only this theoretical study.
The optimized values of the parameters of the interface conditions can be
used with success in complex applications, see section 6.5.2. The robustness
of the approach comes from the general convergence result of section 6.1.2
and from the replacement of the fixed point algorithm on the interface by
a Krylov type method as explained for equations (6.40) and (6.48). The
efficiency comes from the study below which is made possible by the use of
Fourier techniques similar to the ones used in artificial boundary conditions.

Optimization of the interface conditions

It is possible to optimize the choice of the parameter α in Robin interface
conditions in order to minimize the maximum convergence factor in the
physical space

max
k
ρ(k, δ;α).

When the subdomains overlap we have seen that the convergence factor
(6.7) is bounded from above by a positive constant so that it can be checked
that the following min-max problem

max
k
ρ(k, δ;αopt) = min

α
max
k
ρ(k, δ;α)

admits a unique solution.
When the subdomains do not overlap, then for any choice of α we have

max
k
ρ(k,0;α) = 1,

6.5. OPTIMIZED INTERFACE CONDITIONS 171

so that the above min-max problem is ill-posed.
Anyhow, the purpose of domain decomposition methods is not to solve di-
rectly partial differential equations. They are used to solve the correspond-
ing linear systems arising from their discretizations. It is possible to study
the convergence factor of the related domain decomposition methods at the
discrete level based on the discretization scheme, see [133]. Fourier trans-
form is replaced by discrete Fourier series, i.e. the decomposition on the
vectors

Vk = (eij∆y k)
j∈Z , k ∈ π/(Z∆y)

with ∆y the mesh size in the y direction. This convergence factor depends as
before on the parameters of the continuous problem but also on the discrete
parameters: mesh size in x and y. The resulting formula is quite complex
and would be very difficult to optimize.
Nevertheless, comparison with the continuous case and numerical exper-
iments prove that a semi-continuous approach is sufficient for finding an
optimal value for the parameter α. This of course due to the fact that
as the discretization parameters go to zero, the discrete convergence factor
tends to its continuous counterpart.
For the sake of simplicity, we consider only the non-overlapping case, δ = 0.
We keep the formula of the convergence factor in the continuous case:

ρ(k,α) ∶= ∣λ(k) − α
λ(k) + α ∣ (6.59)

with λ(k) =
√
η + k2. But we observe that the mesh induces a truncation in

the frequency domain. We have ∣k∣ < π/∆y ∶= kmax. For a parameter α, the
convergence factor is approximated by

ρh(α) = max
∣k∣<π/∆y

ρ(k;α).

The optimization problem reads:

Find αsc
opt such that

ρh(αsc
opt) = min

α
max
k<π/∆y

ρ(k;α). (6.60)

It is easy to check that the optimum is given by the relation

ρ(0;αsc
opt) = ρ(kmax;αsc

opt).

Let λm = λ(0) and λM = λ(kmax), then we have

αsc
opt =

√
λmλM . (6.61)

It can then easily be checked that in the limit of small ∆y,

ρh(αsc
opt) ≃ 1 − 2

√√
η∆y

π
and αsc

opt ≃ η1/4 π

∆y
.

172 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

1/∆y 10 20 40 80

αsc
opt 6 7 10 16

α = 1 27 51 104 231

Table 6.1: Number of iterations for different values of the mesh size and two
possible choices for α

Whereas for α independent of ∆y, we have

ρh(α) ≃ 1 − 2
α∆y

π

for small ∆y. Numerical tests on the model problem of a rectangle divided
into two half-rectangles and a finite difference discretization shows a good
agreement with the above formulas. In Table 6.1, the iteration counts are
given for two possible choices of the parameter α, α = 1 or αsc

opt given by for-

mula (6.61) and for a reduction of the error by a factor of 10−6. For refined
mesh, the iteration count is reduced by a factor larger than ten. The opti-
mized Schwarz method is thus quite sensitive to the choice of the interface
condition. As we shall see in the next section, when the method is used as
a preconditioner in Krylov methods as explained in § 6.3.1, performance is
less dependent on the optimal choice of the interface condition. Typically,
the iteration count is reduced by a factor three, see Table 6.3. Since taking
optimal interface conditions is beneficial in terms of iteration counts and
has no extra cost, it is a good thing to do especially for wave propagation
phenomena that we consider in the sequel.

6.5.2 Optimized conditions for the Helmholtz

The complete study is found in [86] for a complete presentation. In order
to have a self-consistent paragraph, we set up once again the considered
Helmholtz equation

L(u) ∶= (−ω̃2 −∆)(u) = f(x, y), x, y ∈ Ω.

The difficulty comes from the negative sign of the term of order zero of the
operator.
Although the following analysis could be carried out on rectangular domains
as well, we prefer for simplicity to present the analysis in the domain Ω = R2

with the Sommerfeld radiation condition at infinity,

lim
r→∞

√
r (∂u

∂r
+ iω̃u) = 0,

where r =
√
x2 + y2. We decompose the domain into two non-overlapping

subdomains Ω1 = (−∞,0]×R and Ω2 = [0,∞)×R and consider the Schwarz

6.5. OPTIMIZED INTERFACE CONDITIONS 173

algorithm
−∆un+1

1 − ω̃2un+1
1 = f(x, y), x, y ∈ Ω1

B1(un+1
1)(0) = B1(un2)(0)

(6.62)

and
−∆un+1

2 − ω̃2un+1
2 = f(x, y), x, y ∈ Ω2

B2(un+1
2)(0) = B2(un1)(0)

(6.63)

where Bj , j = 1,2, are two linear operators. Note that for the classical
Schwarz method Bj is the identity, Bj = I and without overlap the algo-
rithm cannot converge. But even with overlap in the case of the Helmholtz
equation, only the evanescent modes in the error are damped, while the
propagating modes are unaffected by the Schwarz algorithm [86]. One pos-
sible remedy is to use a relatively fine coarse grid [19] or Robin transmission
conditions, see for example [43, 16]. We consider here transmission con-
ditions which lead to a convergent non-overlapping version of the Schwarz
method. We assume that the linear operators Bj are of the form

Bj ∶= ∂x + Tj , j = 1,2,

for two linear operators T1 and T2 acting in the tangential direction on the
interface. Our goal is to use these operators to optimize the convergence
factor of the algorithm. For the analysis it suffices by linearity to consider
the case f(x, y) = 0 and to analyze convergence to the zero solution. Taking
a Fourier transform in the y direction we obtain

−∂
2ûn+1

1

∂x2
− (ω̃2 − k2)ûn+1

1 = 0,

x < 0, k ∈ R (6.64)
(∂x + σ1(k))(ûn+1

1)(0) = (∂x + σ1(k))(ûn2)(0)

and

−∂
2ûn+1

2

∂x2
− (ω̃2 − k2)ûn+1

2 = 0,

x > 0, k ∈ R (6.65)
(∂x + σ2(k))(ûn+1

2)(0) = (∂x + σ2(k))(ûn1)(0)

where σj(k) denotes the symbol of the operator Tj , and k is the Fourier vari-
able, which we also call frequency. The general solutions of these ordinary
differential equations are

ûn+1
j = Ajeλ(k)x +Bje−λ(k)x, j = 1,2,

where λ(k) denotes the root of the characteristic equation λ2 +(ω̃2 −k2) = 0
with positive real or imaginary part,

λ(k) =
√
k2 − ω̃2 for ∣k∣ ≥ ω̃,

λ(k) = i
√
ω̃2 − k2 for ∣k∣ < ω̃.

(6.66)

174 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

Since the Sommerfeld radiation condition excludes growing solutions as well
as incoming modes at infinity, we obtain the solutions

ûn+1
1 (x, k) = ûn+1

1 (0, k)eλ(k)x

ûn+1
2 (x, k) = ûn+1

2 (0, k)e−λ(k)x.

Using the transmission conditions and the fact that

∂ûn+1
1

∂x
= λ(k)ûn+1

1

∂ûn+1
2

∂x
= −λ(k)ûn+1

2

we obtain over one step of the Schwarz iteration

ûn+1
1 (x, k) = −λ(k) + σ1(k)

λ(k) + σ1(k)
eλ(k)xûn2(0, k)

ûn+1
2 (x, k) = λ(k) + σ2(k)

−λ(k) + σ2(k)
e−λ(k)xûn1(0, k).

Evaluating the second equation at x = 0 for iteration index n and inserting
it into the first equation, we get after evaluating again at x = 0

ûn+1
1 (0, k) = −λ(k) + σ1(k)

λ(k) + σ1(k)
⋅ λ(k) + σ2(k)
−λ(k) + σ2(k)

ûn−1
1 (0, k).

Defining the convergence factor ρ by

ρ(k) ∶= −λ(k) + σ1(k)
λ(k) + σ1(k)

⋅ λ(k) + σ2(k)
−λ(k) + σ2(k)

(6.67)

we find by induction that

û2n
1 (0, k) = ρ(k)nû0

1(0, k),

and by a similar calculation on the second subdomain,

û2n
2 (0, k) = ρ(k)nû0

2(0, k).

Choosing in the Fourier transformed domain

σ1(k) ∶= λ(k), σ2(k) ∶= −λ(k)

corresponds to using exact absorbing boundary conditions as interface con-
ditions. So we get ρ(k) ≡ 0 and the algorithm converges in two steps inde-
pendently of the initial guess. Unfortunately this choice becomes difficult
to use in the real domain where computations take place, since the optimal

6.5. OPTIMIZED INTERFACE CONDITIONS 175

choice of the symbols σj(k) leads to non-local operators Tj in the real do-
main, caused by the square root in the symbols. We have to construct local
approximations for the optimal transmission conditions.
In Desprès algorithm [42], the approximation consists in Tj ≡ iω̃ (i2 = −1). In
[71], the approximation valid for the truncation of an infinite computational
domain is obtained via Taylor expansions of the symbol in the vicinity of
k = 0:

T app
j = ±i(ω̃ − 1

2ω̃
∂ττ) ,

which leads to the zeroth or second order Taylor transmission conditions,
depending on whether one keeps only the constant term or also the second
order term. But these transmission conditions are only effective for the low
frequency components of the error. This is sufficient for the truncation of a
domain since there is an exponential decay of the high frequency part (large
k) of the solution away from the artificial boundary.
But in domain decomposition, what is important is the convergence factor
which is given by the maximum over k of ρ(k). Since there is no overlap
between the subdomains, it is not possible to profit from any decay. We
present now an approximation procedure suited to domain decomposition
methods. To avoid an increase in the bandwidth of the local discretized
subproblems, we take polynomials of degree at most 2, which leads to trans-
mission operators T app

j which are at most second order partial differential
operators acting along the interface. By symmetry of the Helmholtz equa-
tion there is no interest in a first order term. We therefore approximate the
operators Tj , j = 1,2, in the form

T app
j = ±(a + b∂ττ)

with a, b ∈ C and where τ denotes the tangent direction at the interface.

Optimized Robin interface conditions

We approximate the optimal operators Tj , j = 1,2, in the form

T app
j = ±(p + qi), p, q ∈ R+. (6.68)

The non-negativity of p, q comes from the Shapiro-Lopatinski necessary con-
dition for the well-posedness of the local subproblems (6.13)–(6.14). Insert-
ing this approximation into the convergence factor (6.67) we find

ρ(p, q, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 + (q −
√
ω̃2 − k2)

2

p2 + (q +
√
ω̃2 − k2)

2
, ω̃2 ≥ k2

q2 + (p −
√
k2 − ω̃2)

2

q2 + (p +
√
k2 − ω̃2)

2
, ω̃2 < k2.

(6.69)

176 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

First note that for k2 = ω̃2 the convergence factor ρ(p, q, ω̃) = 1, no matter
what one chooses for the free parameters p and q. In the Helmholtz case
one can not uniformly minimize the convergence factor over all relevant
frequencies, as in the case of positive definite problems, see [106, 86, 108].
The point k = ω̃ represents however only one single mode in the spectrum,
and a Krylov method will easily take care of this when the Schwarz method
is used as a preconditioner, as our numerical experiments will show. We
therefore consider the optimization problem

min
p, q∈R+

(max
k∈(kmin, ω̃−)∪(ω̃+, kmax)

∣ρ(p, q, k)∣) , (6.70)

where ω̃− and ω̃+ are parameters to be chosen, and kmin denotes the smallest
frequency relevant to the subdomain, and kmax denotes the largest frequency
supported by the numerical grid. This largest frequency is of the order
π/h. For example, if the domain Ω is a strip of height L with homogeneous
Dirichlet conditions on top and bottom, the solution can be expanded in
a Fourier series with the harmonics sin(jπy/L), j ∈ N. Hence the relevant
frequencies are k = jπ/L. They are equally distributed with a spacing π/L
and thus choosing ω̃− = ω̃ − π/L and ω̃+ = ω̃ + π/L leaves precisely one
frequency k = ω̃ for the Krylov method and treats all the others by the
optimization. If ω̃ falls in between the relevant frequencies, say jπ/L < ω̃ <
(j + 1)π/L then we can even get the iterative method to converge by choosing
ω̃− = jπ/L and ω̃+ = (j + 1)π/L, which will allow us to directly verify our
asymptotic analysis numerically without the use of a Krylov method. How
to choose the optimal parameters p and q is given by the following:

Theorem 6.5.1 (Optimized Robin conditions) Under the three as-
sumptions

2ω̃2 ≤ ω̃2
− + ω̃2

+, ω̃− < ω̃ (6.71)

2ω̃2 > k2
min + ω̃2

+, (6.72)

2ω̃2 < k2
min + k2

max, (6.73)

the solution to the min-max problem (6.70) is unique and the optimal pa-
rameters are given by

p∗ = q∗ =

¿
ÁÁÀ

√
ω̃2 − ω̃2

−

√
k2

max − ω̃2

2
. (6.74)

The optimized convergence factor (6.70) is then given by

max
k∈(kmin, ω̃−)∪(ω̃+, kmax)

ρ(p∗, q∗, k) =
1 −

√
2 (ω̃2−ω̃2

−
k2

max−ω̃
2)

1/4
+
√

ω̃2−ω̃2
−

k2
max−ω̃

2

1 +
√

2 (ω̃2−ω̃2
−

k2
max−ω̃

2)
1/4

+
√

ω̃2−ω̃2
−

k2
max−ω̃

2

(6.75)

For the proof, see [86].

6.5. OPTIMIZED INTERFACE CONDITIONS 177

Optimized Second order interface conditions

We approximate the operators Tj , j = 1,2 in the form T app1 = −T app2 = a+b∂ττ
with a, b ∈ C and τ denoting the tangent direction at the interface. The
design of optimized second order transmission conditions is simplified by

Lemma 6.5.1 Let u1 and u2 be two functions which satisfy

L(uj) ≡ (−ω̃2 −∆)(u) = f in Ωj, j = 1,2

and the transmission condition

(∂

∂n1
+ α)(∂

∂n1
+ β) (u1) = (− ∂

∂n2
+ α)(− ∂

∂n2
+ β) (u2) (6.76)

with α,β ∈ C, α+β ≠ 0 and nj denoting the unit outward normal to domain
Ωj. Then the second order transmission condition

(∂

∂n1
+ αβ − ω̃

2

α + β − 1

α + β
∂2

∂τ 2
1

)(u1) = (− ∂

∂n2
+ αβ − ω̃

2

α + β − 1

α + β
∂2

∂τ 2
2

)(u2)

(6.77)
is satisfied as well.

Proof Expanding the transmission condition (6.76) yields

(∂
2

∂n2
1

+ (α + β) ∂

∂n1
+ αβ)(u1) = (∂

2

∂n2
2

− (α + β) ∂

∂n2
+ αβ)(u2).

Now using the equation L(u1) = f , we can substitute −(∂2

∂τ2
1
+ ω̃2)(u1) − f

for ∂2

∂n2
1
(u1) and similarly we can substitute −(∂2

∂τ2
2
+ ω̃2)(u2)−f for ∂2

∂n2
2
(u2).

Hence, we get

(− ∂
2

∂τ 2
1

− ω̃2 + (α + β) ∂

∂n1
+ αβ)(u1)−f = (− ∂

2

∂τ 2
2

− ω̃2 − (α + β) ∂

∂n2
+ αβ)(u2)−f.

Now the terms f on both sides cancel and a division by α+β yields (6.77).

Note that Higdon has already proposed approximations to absorbing bound-
ary conditions in factored form in [104]. In our case, this special choice of
approximating σj(k) by

σapp1 (k) = −σapp2 (k) = αβ − ω̃
2

α + β + 1

α + βk
2 (6.78)

leads to a particularly elegant formula for the convergence factor. Inserting
σappj (k) into the convergence factor (6.67) and simplifying, we obtain

ρ(k;α,β) ∶= (λ(k) − σ1

λ(k) + σ1
)

2

= (−(α + β)λ(k) + αβ + k
2 − ω̃2

(α + β)λ(k) + αβ + k2 − ω̃2
)

2

= (λ(k)
2 − (α + β)λ(k) + αβ

λ(k)2 + (α + β)λ(k) + αβ)
2

= (λ(k) − α
λ(k) + α)

2

(λ(k) − β
λ(k) + β)

2

(6.79)

178 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

where λ(k) is defined in (6.66) and the two parameters α,β ∈ C can be used
to optimize the performance. By the symmetry of λ(k) with respect to k, it
suffices to consider only positive k to optimize performance. We thus need
to solve the min-max problem

min
α,β∈C

(max
k∈(kmin, ω̃−)∪(ω̃+, kmax)

∣ρ(k;α,β)∣) (6.80)

where ω̃− and ω̃+ are again the parameters to exclude the frequency k = ω̃
where the convergence factor equals 1, as in the zeroth order optimization
problem. The convergence factor ρ(k;α,β) consists of two factors and λ is
real for vanishing modes and imaginary for propagative modes. If we chose
α ∈ iR and β ∈ R then for λ real the first factor is of modulus one and the
second one can be optimized using β. If λ is imaginary, then the second
factor is of modulus one and the first one can be optimized independently
using α. Hence for this choice of α and β the min-max problem decouples.
We therefore consider here the simpler min-max problem

min
α∈iR, β∈R

(max
k∈(kmin, ω̃−)∪(ω̃+, kmax)

∣ρ(k;α,β)∣) (6.81)

which has an elegant analytical solution. Note however that the original
minimization problem (6.80) might have a solution with better convergence
factor, an issue investigated in [82].

Theorem 6.5.2 (Optimized Second Order Conditions) The solution
of the min-max problem (6.81) is unique and the optimal parameters are
given by

α∗ = i ((ω̃2 − k2
min)(ω̃2 − ω̃2

−))
1/4 ∈ iR (6.82)

and

β∗ = ((k2
max − ω̃2)(ω̃2

+ − ω̃2))1/4 ∈ R. (6.83)

The convergence factor (6.81) is then for the propagating modes given by

max
k∈(kmin,ω̃−)

∣ρ(k,α∗, β∗)∣ = ((ω̃2 − ω̃2
−)1/4 − (ω̃2 − k2

min)1/4

(ω̃2 − ω̃2
−)1/4 + (ω̃2 − k2

min)1/4
)

2

(6.84)

and for the evanescent modes it is

max
k∈(ω̃+, kmax)

ρ(k,α∗, β∗) = ((k2
max − ω̃2)1/4 − (ω̃2

+ − ω̃2)1/4

(k2
max − ω̃2)1/4 + (ω̃2

+ − ω̃2)1/4
)

2

. (6.85)

Proof For k ∈ (kmin, ω̃−) we have ∣ i
√
ω̃2−k2−β

i
√
ω̃2−k2+β

∣ = 1 since β ∈ R and thus

∣ρ(k;α,β)∣ = ∣ i
√
ω̃2−k2−α

i
√
ω̃2−k2+α

∣
2

depends only on α . Similarly, for k ∈ (ω̃+, kmax)

6.5. OPTIMIZED INTERFACE CONDITIONS 179

we have ∣
√
k2−ω̃2−α√
k2−ω̃2+α

∣ = 1 since α ∈ iR and therefore ∣ρ(k;α,β)∣ = ∣
√
k2−ω̃2−β

√
k2−ω̃2+β

∣
2

depends only on β. The solution (α, β) of the minimization problem (6.81)
is thus given by the solution of the two independent minimization problems

min
α∈iR,

(max
k∈(kmin, ω̃−)

∣ i
√
ω̃2 − k2 − α

i
√
ω̃2 − k2 + α

∣) (6.86)

and

min
β∈R

(max
k∈(ω̃+, kmax)

∣
√
k2 − ω̃2 − β√
k2 − ω̃2 + β

∣) . (6.87)

We show the solution for the second problem (6.87) only, the solution
for the first problem (6.86) is similar. First note that the maximum of

∣ρβ ∣ ∶= ∣
√
k2−ω̃2−β

√
k2−ω̃2+β

∣ is attained on the boundary of the interval [ω̃+, kmax],
because the function ρβ (but not ∣ρβ ∣) is monotonically increasing with
k ∈ [ω̃+, kmax]. On the other hand as a function of β, ∣ρβ(ω̃+)∣ grows mono-
tonically with β while ∣ρβ(kmax)∣ decreases monotonically with β. The opti-
mum is therefore reached when we balance the two values on the boundary,
ρβ(ω̃+) = −ρβ(kmax) which implies that the optimal β satisfies the equation

√
k2

max − ω̃2 − β√
k2

max − ω̃2 + β
= −

√
ω̃2
+ − ω̃2 − β√
ω̃2
+ − ω̃2 + β

(6.88)

whose solution is given in (6.83).

The optimization problem (6.87) arises also for symmetric positive definite
problems when an optimized Schwarz algorithm without overlap and Robin
transmission conditions is used and the present solution can be found in
[177].
Note that the optimization of the interface conditions was performed for the
convergence factor of a fixed-point method and not for a particular Krylov
method applied to the substructured problem. In the positive definite case
one can show that minimizing the convergence factor is equivalent to mini-
mizing the condition number of the substructured problem [107]. Numerical
experiments in the next section indicate that for the Helmholtz equation
our optimization also leads to parameters close to the best ones for the
preconditioned Krylov method.

Numerical results

We present two sets of numerical experiments. The first set corresponds to
the model problem analyzed in this paper and the results obtained illustrate
the analysis and confirm the asymptotic convergence results. The second
numerical experiment comes from industry and consists of analyzing the

180 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

noise levels in the interior of a VOLVO S90.

We study a two dimensional cavity on the unit square Ω with homogeneous
Dirichlet conditions on top and bottom and on the left and right radiation
conditions of Robin type. We thus have the Helmholtz problem

−∆u − ω̃2u = f 0 < x, y < 1

u = 0 0 < x < 1, y = 0,1

∂u

∂x
− iω̃u = 0 x = 0, 0 < y < 1

−∂u
∂x

− iω̃u = 0 x = 1, 0 < y < 1.

(6.89)

We decompose the unit square into two subdomains of equal size, and we
use a uniform rectangular mesh for the discretization. We perform all our
experiments directly on the error equations, f = 0 and choose the initial
guess of the Schwarz iteration so that all the frequencies are present in the
error.

We show two sets of experiments: The first one with ω̃ = 9.5π, thus exclud-
ing ω̃ from the frequencies k relevant in this setting, k = nπ, n = 1,2,
This allows us to test directly the iterative Schwarz method, since with
optimization parameters ω̃− = 9π and ω̃+ = 10π we obtain a convergence
factor which is uniformly less than one for all k. Table 6.2 shows the
number of iterations needed for different values of the mesh parameter h
for both the zeroth and second order transmission conditions. The Taylor

Order Zero Order Two
Iterative Krylov Iterative Krylov

h Taylor Optimized Taylor Optimized Taylor Optimized Taylor Optimized

1/50 - 457 26 16 - 22 28 9
1/100 - 126 34 21 - 26 33 10
1/200 - 153 44 26 - 36 40 13
1/400 - 215 57 34 - 50 50 15
1/800 - 308 72 43 - 71 61 19

Table 6.2: Number of iterations for different transmission conditions and
different mesh parameter for the model problem

transmission conditions do not lead to a convergent iterative algorithm,
because for all frequencies k > ω̃, the convergence factor equals 1. However,
with Krylov acceleration, GMRES in this case, the methods converge.
Note however that the second order Taylor condition is only a little better
than the zeroth order Taylor conditions. The optimized transmission
conditions lead, in the case where ω̃ lies between two frequencies, already

6.5. OPTIMIZED INTERFACE CONDITIONS 181

to a convergent iterative algorithm. The iterative version even beats the
Krylov accelerated Taylor conditions in the second order case. No wonder
that the optimized conditions lead by far to the best algorithms when they
are accelerated by a Krylov method, the second order optimized Schwarz
method is more than a factor three faster than any Taylor method. Note
that the only difference in cost of the various transmission conditions
consists of different entries in the interface matrices, without enlarging
the bandwidth of the matrices. Fig. 6.9 shows the asymptotic behavior
of the methods considered, on the left for zeroth order conditions and on
the right for second order conditions. Note that the scale on the right

10
−3

10
−2

10
−1

10
1

10
2

10
3

h

ite
ra

tio
ns

Taylor 0 Krylov

Optimized 0

Optimized 0 Krylov

h0.5

h0.32

10
−3

10
−2

10
−1

10
0

10
1

10
2

h

ite
ra

tio
ns

Taylor 2 Krylov
Optimized 2

Optimized 2 Krylov

h0.5h0.27

Figure 6.9: Asymptotic behavior for the zeroth order transmission conditions
(left) and for the second order transmission conditions (right)

for the second order transmission conditions is different by an order of
magnitude. In both cases the asymptotic analysis is confirmed for the
iterative version of the optimized methods. In addition one can see that
the Krylov method improves the asymptotic rate by almost an additional
square root, as expected from the analysis in ideal situations. Note the
outlier of the zeroth order optimized transmission condition for h = 1/50. It
is due to the discrepancy between the spectrum of the continuous and the
discrete operator: ω̃ = 9.5π lies precisely in between two frequencies 9π and
10π at the continuous level, but for the discrete Laplacian with h = 1/50
this spectrum is shifted to 8.88π and 9.84π and thus the frequency 9.84π
falls into the range [9π,10π] neglected by the optimization. Note however
that this is of no importance when Krylov acceleration is used, so it is not
worthwhile to consider this issue further.

In the second experiment we put ω̃ directly onto a frequency of the model
problem, ω̃ = 10π, so that the iterative methods cannot be considered any
more, since for that frequency the convergence factor equals one. The Krylov
accelerated versions however are not affected by this, as one can see in
Table 6.3. The number of iterations does not differ from the case where ω̃

182 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

Order Zero Order Two
h Taylor Optimized Taylor Optimized

1/50 24 15 27 9
1/100 35 21 35 11
1/200 44 26 41 13
1/400 56 33 52 16
1/800 73 43 65 20

Table 6.3: Number of iterations for different transmission conditions and
different mesh parameter for the model problem when ω̃ lies precisely on a
frequency of the problem and thus Krylov acceleration is mandatory

was chosen to lie between two frequencies, which shows that with Krylov
acceleration the method is robust for any values of ω̃. We finally tested
for the smallest resolution of the model problem how well Fourier analysis
predicts the optimal parameters to use. Since we want to test both the
iterative and the Krylov versions, we need to put again the frequency ω̃
in between two problem frequencies, and in this case it is important to be
precise. We therefore choose ω̃ to be exactly between two frequencies of
the discrete problem, ω̃ = 9.3596π, and optimized using ω̃− = 8.8806π and
ω̃+ = 9.8363π. Fig. 6.10 shows the number of iterations the algorithm needs
to achieve a residual of 10e−6 as a function of the optimization parameters p
and q of the zeroth order transmission conditions, on the left in the iterative
version and on the right for the Krylov accelerated version. The Fourier

10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

q

p

35

35

40

40

40

4045

45

45

45

45

50

50

50
50

50

50

50

55

55

55

55

55

55

55

60

60

60

60

60

60

60

65

65

65

65

65 65

65

70

70

70

70

70

10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

q

p

17

17

17

17

17

18

18

18

18

18

19

19

19

1919

20

20

20

20
20

21

21

21

21

22

22

23

24
25

Figure 6.10: Number of iterations needed to achieve a certain precision as
function of the optimization parameters p and q in the zeroth order trans-
mission conditions, for the iterative algorithm (left) and for the Krylov ac-
celerated algorithm (right). The star denotes the optimized parameters p∗

and q∗ found by our Fourier analysis

analysis shows well where the optimal parameters lie and when a Krylov
method is used, the optimized Schwarz method is very robust with respect

6.5. OPTIMIZED INTERFACE CONDITIONS 183

to the choice of the optimization parameter. The same holds also for the
second order transmission conditions, as Fig. 6.11 shows.

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

beta

al
ph

a

17

17

18

18

18

18

19

19

19

19

19

20

20

20 20

20

20

21

21

21

21

21

2122
22

22 22

22

22

22

24
24

24 24

24

24

24

26

26

26 26

26

26

26

28

28

28 28
28

28

30
30

30 30 30

35
35

35 35
35

40
40

40 40
40

45
45

45 45
45

45

50
50

50

50

50

50

55
55

55

55

55

55

60
60

60

60

60

65

65

65
70

7075 7580 8590
5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

beta

al
ph

a

10

10

10

10

10

1011
11

11

11

11

12
12

12

12
12

13
13

13

14

14

14

15

15

1516

16
17

18
1920

Figure 6.11: Number of iterations needed to achieve a certain precision
as function of the optimization parameters α and β in the second order
transmission conditions, for the iterative algorithm (left) and for the Krylov
accelerated algorithm (right). The star denotes the optimized parameters
α∗ and β∗ found by our Fourier analysis

Noise levels in a VOLVO S90

We analyze the noise level distribution in the passenger cabin of a VOLVO
S90. The vibrations are stemming from the part of the car called firewall.
This example is representative for a large class of industrial problems where
one tries to determine the acoustic response in the interior of a cavity caused
by vibrating parts. We perform a two dimensional simulation on a verti-
cal cross section of the car. Fig. 6.12 shows the decomposition of the car
into 16 subdomains. The computations were performed in parallel on a net-
work of sun workstations with 4 processors. The problem is characterized

1
2

12 4 3 5
13

9
15

11
7

1610

14 6

8

Figure 6.12: Decomposition into 16 subdomains (left) and acoustic field in
the passenger compartment (right) of the VOLVO S90

by ω̃a = 18.46 which corresponds to a frequency of 1000 Hz in the car of

184 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

length a. To solve the problem, the optimized Schwarz method was used as
a preconditioner for the Krylov method ORTHODIR, and as convergence
criterion we used

∥K̃u − f∥L2 ≤ 10−6∥f∥L2 . (6.90)

When using zeroth order Taylor conditions and a decomposition into
16 subdomains, the method needed 105 iterations to converge, whereas
when using second order optimized transmission conditions, the method
converged in 34 iterations, confirming that also in real applications the
optimized Schwarz method is about a factor 3 faster, as we found for the
model problem earlier. Fig. 6.12 shows the acoustic field obtained in the
passenger compartment of the VOLVO S90.

6.5.3 Optimized conditions for other equations

Over the last years, a lot of results have been obtained for different classes of
equations and optimized algorithms based on carefully chosen parameters in
the transmission conditions, have been derived. For steady state symmetric
problems, we can cite [40, 81]. For advection-diffusion type problems, see
[109, 107, 108, 123, 133, 134]. As far as the Helmholtz equations are con-
cerned, optimized transmission conditions were developed in [25, 26, 32, 86,
84]. There are also works for problems involving discontinuous coefficients
in [64, 77, 91]. Other particular aspects has been discussed, such as the
influence of the geometry [80], coarse grid corrections [65], cross points
[85] or circular domains [88]. In fluid dynamics, optimized transmission
conditions have been studied in [53, 51, 52]. See also [177] for porous
flow media. Like the Helmholtz equations, high-frequency time-harmonic
Maxwell’s equations are difficult to solve by classical iterative methods
since they are indefinite in nature. Optimized methods have been developed
both for the first order formulation of Maxwell equations in [54, 55, 50] or
[68, 69] and also for the second order formulation in [25][section 4.7], [31, 4,
153, 152, 156].

All the previous methods were based on optimized polynomial approxima-
tions of the symbol of the transparent boundary conditions. An alternative
is the use of the rational approximations of Padé type, see [6]. Perfectly
matched layers (PML) [113] [27] are also used in domain decomposition
methods [161], [6]. Note as well that approximate factorization methods
for the Helmholtz operator can be designed using absorbing boundary
conditions [87] or PML [154]. For applications to real life problems using
a Discontinuous Galerkin method can be found in [54, 55, 70]. For finite-
element based non-overlapping and non-conforming domain decomposition
methods for the computation of multiscale electromagnetic radiation and
scattering problems we refer to [119, 153, 152, 156]. In a recent work

6.6. FREEFEM++ IMPLEMENTATION OF ORAS 185

the first order and second order formulations were presented in a unified
framework in [49, 48].

Note that the method of deriving optimized transmission conditions is quite
general and can be in principle applied to other types of equations.

6.6 FreeFem++ implementation of ORAS

As a numerical illustration, we solve the Helmholtz equation in a square Ω
of size 6 wavelengths with first order absorbing boundary condition:

−k2u −∆u = f in Ω ,
∂u

∂n
+ iku = 0 on ∂Ω .

The right handside f is a Gaussian function. The real part of the solu-
tion is plotted on Figure 6.13. After discretization, the resulting linear

Figure 6.13: Real part of a solution of a Helmholtz equation

system (6.48) is solved by a domain decomposition method. As explained
in chapter 2, it is more profitable to use a Krylov method preconditioned
by the ORAS operator M−1

ORAS (6.52) in place of the iterative fixed-point
algorithm (6.21). We solve (6.48) by a preconditioned GMRES. We need
to provide the FreeFem++ implementation for the ORAS preconditioner.
As in the case of the Schwarz algorithm, we need to create a specific data
file dataHelmholtz.edp and a partition of unity and the restriction and
extension operators.

186 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

load ”metis”
load ”medit”
int nn=6,mm=6; // number of the domains in each direction

4 int npart= nn∗mm; // total number of domains
int nloc = 40; // local no of dof per domain in one direction
bool withmetis = 0; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 2; // size of the overlap

8 real allong = real(nn)/real(mm); // aspect ratio of the global domain
// Mesh of a rectangular domain
mesh Th=square(nn∗nloc,mm∗nloc,[x∗allong,y]);
fespace Vh(Th,P1);

12 fespace Ph(Th,P0);
Ph part; // piecewise constant function
int[int] lpart(Ph.ndof); // giving the decomposition
// Domain decomposition data structures

16 mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rihreal(npart); // local restriction operators
matrix[int] Dihreal(npart); // partition of unity operators
matrix<complex>[int] Rih(npart); // local restriction operators

20 matrix<complex>[int] Dih(npart); // partition of unity operators
int[int] Ndeg(npart); // number of dof for each mesh
real[int] AreaThi(npart); // area of each subdomain
matrix<complex>[int] aA(npart); // local Dirichlet matrices

24 matrix<complex>[int] aR(npart); // local Robin matrices
// Definition of the problem to solve
// −kˆ2∗u − Delta (u) = f,
// u = g, Dirichlet boundary (top and bottom)

28 // dn(u) + i k u = 0, Robin boundary (left and right)
int Dirichlet=1, Robin=2;
int[int] chlab=[1, Robin, 2, Robin, 3, Robin, 4, Robin];
Th=change(Th,refe=chlab);

32 macro Grad(u) [dx(u),dy(u)] // EOM
real k=12.∗pi;
func f = exp(−((x−.5)ˆ2+(y−.5)ˆ2)∗120.);//1; // right hand side
func g = 0; // Dirichlet data

36 varf vaglobal(u,v) = int2d(Th)(−kˆ2∗u∗v+Grad(u)’∗Grad(v))
+ int1d(Th,Robin)(1i∗k∗u∗v) − int2d(Th)(f∗v)+ ⤸

Ç on(Dirichlet,u=g) ;
matrix<complex> Aglobal;
Vh<complex> rhsglobal,uglob; // rhs and solution of the global problem

40 complex alpha = 1i∗k; // Despres algorithm
// Optimal alpha:
// h12: the mesh size for a rectangular domain of dimension 2x1,
// that is obtained with nnxmm = 2x1,4x2,8x4

44 real h21 = 1./(mm∗nloc);
real kplus = k+pi/1; // the rectangle height is 1
real kminus = k−pi/1;
real Cw = min(kplusˆ2−kˆ2,kˆ2−kminusˆ2);

48 real alphaOptR = pow(Cw/h21,1/3.)/2;
complex alphaOpt = alphaOptR + 1i∗alphaOptR;
alpha = alphaOpt;
//alpha=1.0e30;

52 // Iterative solver
real tol=1e−4; // tolerance for the iterative method
int maxit=1000; // maximum number of iterations

6.6. FREEFEM++ IMPLEMENTATION OF ORAS 187

Listing 6.1: ./FreefemCommon/dataHelmholtz.edp

Script file (note that the GMRS routine has to be adapted to complex
types)

/∗# debutPartition #∗/
2 include ”../../FreefemCommon/dataHelmholtz.edp”

include ”../../FreefemCommon/decomp.idp”
include ”../../FreefemCommon/createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rihreal,Dihreal,Ndeg,AreaThi);

6 for (int i=0; i<npart; i++) {
Rih[i] = Rihreal[i];
Dih[i] = Dihreal[i];

}
10 /∗# endPartition #∗/

/∗# debutGlobalData #∗/
Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
rhsglobal[] = vaglobal(0,Vh); // global rhs

14 uglob[] = Aglobal−1∗rhsglobal[];
Vh realuglob = real(uglob);
plot(realuglob,dim=3,wait=1,cmm=”Exact solution”, value =1,fill=1);
/∗# finGlobalData #∗/

18 /∗# debutLocalData #∗/
for(int i = 0;i<npart;++i)
{

cout << ” Domain :” << i << ”/” << npart << endl;
22 mesh Thi = aTh[i];

fespace Vhi(Thi,P1);
varf RobinInt(u,v) = int2d(Thi)(−kˆ2∗u∗v+Grad(u)’∗Grad(v))

+ int1d(Thi,Robin)(1i∗k∗u∗v) + on(Dirichlet, ⤸
Ç u=g)

26 + int1d(Thi,10)(alpha∗u∗v);
aR[i] = RobinInt(Vhi,Vhi);
set(aR[i],solver = UMFPACK); // direct solvers using UMFPACK

}
30 /∗# finLocalData #∗/

/∗# debutGMRESsolve #∗/
include ”GMRES.idp”
Vh<complex> un = 0, sol, er; // initial guess, final solution and error

34 sol[] = GMRES(un[], tol, maxit);
plot(sol,dim=3,wait=1,cmm=”Final solution”,value =1,fill=1);
er[] = sol[]−uglob[];
cout << ”Final scaled error = ” << er[].linfty/uglob[].linfty << endl;

38 /∗# finGMRESsolve #∗/

Listing 6.2: ./CIO/FreefemProgram/ORAS-GMRES.edp

The domain is decomposed into 6 × 6 regular subdomains. Convergence
curves are displayed in Figure 6.14(left) using either Dirichlet interface con-
ditions (240 iterations) or first order absorbing boundary conditions (100

188 CHAPTER 6. OPTIMIZED SCHWARZ METHODS (OSM)

iterations). These results are obtained by a one level method that is with-
out a coarse space correction. We can improve them by adding a specially
designed coarse space for Helmholtz equations [34]. The effect can be seen in
Figure 6.14 (right). We plot the convergence curves for the one level Desprès
algorithm and its acceleration using either 5 or 10 vectors per subdomain in
the coarse space.

0 50 100 150 200 250
10−4

10−3

10−2

10−1

100

101

Iterations

R
es

id
ua

l

Dirichlet
Despres

0 10 20 30 40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

Iterations

R
es

id
ua

l

Despres
CS−5
CS−10

Figure 6.14: Left: Comparison between Schwarz and Desprès algorithms.
Right: Comparison between one level Desprès algorithm and its acceleration
with a coarse space [34]

Chapter 7

Robust Coarse Spaces via
Generalized Eigenproblems:
the GenEO method

We have already analyzed a two-level additive Schwarz methods for a
Poisson problem whose coarse space had been proposed in chapter 3 with
a rationale based on heuristic ideas. The condition number estimates were
based on a specific tool to domain decomposition methods namely the
notion of stable decomposition (definition 4.3.1) as well as on functional
analysis results such as Poincaré inequalities or trace theorems and on
a numerical analysis interpolation inequality (4.3). In this chapter, we
present the GenEO (Generalized Eigenvalue in the Overlap) method to
build coarse spaces for which any targeted convergence rate can be achieved.
The construction is as algebraic as possible. We shall make a heavy use of
a generalization of the stable decomposition notion, namely the Fictitious
Space Lemma, see § 7.2.1. This abstract result is based on writing domain
decomposition methods as a product of three linear operators.

As we also mentioned previously, the main motivation to build a robust
coarse space for a two-level additive Schwarz method is to achieve scalability
when solving highly heterogeneous problems i.e. for which the convergence
properties do not depend on the variation of the coefficient. Recently, for
scalar elliptic problems, operator dependent coarse spaces have been built
in the case where coefficients are not resolved by the subdomain partition,
see e.g. [60, 67, 79, 78, 97, 138, 150, 162, 163]. We have seen in the previous
chapters that a very useful tool for building coarse spaces for which the
corresponding two-level method is robust, regardless of the partition into
subdomains and of the coefficient distribution, is the solution of local
generalized eigenvalue problems. In this spirit, for the Darcy problem,
[79] proposes to solve local generalized eigenvalue problems on overlapping

189

190 CHAPTER 7. GENEO COARSE SPACE

coarse patches and local contributions are then ’glued together’ via a
partition of unity to obtain a global coarse space. More recently [78, 67]
and [138, 60] have built on these ideas and proposed different coarse spaces
based on different generalized eigenvalue problems. The theoretical results
in [60] rely on uniform (in the coefficients) weighted Poincaré inequalities
and they have two drawbacks: (i) at the theoretical level some assumptions
are needed on the coefficient distribution in the overlaps and (ii) the
arguments cannot be generalized easily to the case of systems of PDEs
because the maximum principle does not hold anymore.

As a remedy to these drawbacks, in [168], we proposed a coarse space
construction based on Generalized Eigenproblems in the Overlap (which
we will refer to as the GenEO coarse space); the method was previously
introduced in [167] by the same authors. This particular construction has
been applied successfully to positive definite systems of PDEs discretized by
finite elements with only a few extra assumptions. The resulting generalized
eigenvalue problems are closely related, but different to the ones proposed
in [67]. Which of the two approaches is better in practice in terms of
stability versus coarse space size is still the object of ongoing research, see
for example [176].

In this chapter, the GenEO method, as well as most classical two-level meth-
ods are presented in a different light, under a common framework. Moreover,
their convergence can be proven in an abstract setting, provided that the
assumptions of the Fictitious Space Lemma are satisfied. Before stating this
Lemma, we first reformulate the two-level ASM method in this framework.

7.1 Reformulation of the Additive Schwarz
Method

In this section we will show how the abstract theory of the “Fictitious Space
Lemma” 7.2.2 can be applied to better formalize the Additive Schwarz
Method (ASM). In order to simplify the presentation, we will place our-
selves directly in an algebraic setting where the set of degrees of freedom N
is decomposed into N subsets (Ni)1≤i≤N . In this framework we also have a
partition of unity

N

∑
i=1

RTi DiRi = Id

as defined in paragraph 1.3 equation (1.25). The coarse space is of size #N0

and spanned by the columns of a rectangular matrix RT0 of size #N ×#N0.
Note that most of the assumptions of this lemma are verified without the
precise definition of a coarse space. That is why, the latter will be specified
later on in Definition 7.4.2 only when the stable decomposition property

7.1. REFORMULATION OF THE ADDITIVE SCHWARZ METHOD191

requires it.

In the fictitious space lemma (see Lemma 7.2.2) a certain number of abstract
ingredients are needed. These ingredients can be easily identified in the case
of the ASM. This intuitive introduction will give the general flavour of the
methods exposed later on. We will come to the abstract framework after
this short presentation.

Definition 7.1.1 (ASM components in the Fictitious Space Lemma)
Two Hilbert spaces H, HD, two other associated bilinear forms and induced
scalar products as well as the RASM,2 operator between them are defined as
follows.

• Space H ∶= R#N endowed with the standard Euclidian scalar product.
We consider another bilinear form a defined by :

a ∶H ×H → R, (U,V) z→ a(U,V) ∶= VTAU. (7.1)

where A is the matrix of the problem we want to solve. Recall that
matrix A is symmetric positive definite.

• Space HD, defined as the product space

HD ∶= R#N0 ×
N

∏
i=1

R#Ni (7.2)

is endowed with standard scalar Euclidian product. For U = (Ui)0≤i≤N ,
V = (Vi)0≤i≤N with Ui,Vi ∈ R#Ni, the bilinear form b is defined by

b ∶HD ×HD Ð→ R

(U ,V) z→ b(U ,V) ∶=
N

∑
i=0

a(RTi Ui,R
T
i Vi) =

N

∑
i=0

VT
i (RiARTi)Ui

∶= VTBU ,
(7.3)

where B ∶HD →HD is the operator defined by

∀ U ∈HD B(U) ∶= (RiARTi Ui)0≤i≤N . (7.4)

Note that B is actually a block diagonal operator whose inverse is:

∀ U ∈HD B−1(U) ∶= ((RiARTi)−1Ui)0≤i≤N .

• The linear operator RASM,2 is defined as:

RASM,2 ∶HD Ð→H, (Ui)0≤i≤N ↦
N

∑
i=0

RTi Ui. (7.5)

192 CHAPTER 7. GENEO COARSE SPACE

After having settled these ingredients, we can proceed to the reformulation
of the Additive Schwarz Method.

Lemma 7.1.1 (ASM in terms of Fictitious Space Lemma) The
two-level ASM preconditioner

M−1
ASM,2 =

N

∑
i=0

RTi (RiARTi)−1Ri (7.6)

can be re-written as

M−1
ASM,2 = RASM,2B

−1R∗
ASM,2 , (7.7)

where the operator R∗
ASM,2 ∶H →HD is the adjoint of the operator RASM,2

with respect to the standard Euclidean scalar products and operator B is
defined in (7.4).

Proof First of all, note that by definition R∗
ASM,2 can be written as:

(R∗
ASM,2(U),V)2 ∶= (U,RASM,2(V))2, ∀U ∈H, V ∶= (Vi)0≤i≤N ∈HD.

or in other words:

N

∑
i=0

VT
i (R∗

ASM,2(U))i ∶= UTRASM,2(V) ,

that is
N

∑
i=0

VT
i (R∗

ASM,2(U))i ∶= UT
N

∑
i=0

RTi Vi =
N

∑
i=0

VT
i RiU .

Since this equality is valid for arbitrary Vi, we have the identification:

R∗
ASM,2(U) = (RiU)0≤i≤N . (7.8)

which leads to the re-writing (7.7) of the Additive Schwarz Method.
The explanation of the application of the preconditionner in term of these
operators is the following

• According to (7.8), the right most operator R∗
ASM,2 decomposes a

global vector in H into local components in HD

• The middle operator B−1 corresponds to solving a coarse problem and
N local Dirichlet problems

• RASM,2 interpolates the modified local components into a global vector
in H.

As we shall see in the sequel of the chapter, this abstract form is also valid
for many domain decomposition methods such as the balancing Neumann-
Neumann preconditioner (BNN). It will enable us to both analyze their
condition number and propose new coarse space constructions.

7.2. MATHEMATICAL FOUNDATION 193

7.2 Mathematical Foundation

In this paragraph we present a few abstract lemmas that are needed in
the sequel. Lemmas 7.2.2 and 7.2.7 are at the core of the study of many
multilevel methods. Lemma 7.2.5 is specific to the GenEO method we will
introduce.

7.2.1 Fictitious Space Lemma

We first state the lemma proved in [140, 139] as it is written in [100]. In its
proof we need the following auxiliary result:

Lemma 7.2.1 (Auxiliary result) Let m be an integer, A1,A2 ∈ Rm×m be
two symmetric positive definite matrices. Suppose there exists a constant c
such that

(A1u,u) ≤ c (A2u,u), ∀u ∈ Rm .
Then, A−1

2 A1 has real eigenvalues that are bounded by constant c.

Lemma 7.2.2 (Fictitious Space Lemma) Let H and HD be two Hilbert
spaces, with the scalar products denoted by (⋅, ⋅) and (⋅, ⋅)D. Let the sym-
metric positive bilinear forms a ∶ H × H → R and b ∶ HD × HD → R,
generated by the s.p.d. operators A ∶ H → H and B ∶ HD → HD, respec-
tively (i.e. (Au, v) = a(u, v) for all u, v ∈H and (BuD, vD)D = b(uD, vD) for
all uD, vD ∈ HD). Suppose that there exists a linear operator R ∶ HD → H,
such that

• R is surjective.

• there exists a positive constant cR such that

a(RuD,RuD) ≤ cR ⋅ b(uD, uD) ∀uD ∈HD . (7.9)

• there exists a positive constant cT such that for all u ∈ H there exists
uD ∈HD with RuD = u and

cT ⋅ b(uD, uD) ≤ a(RuD,RuD) = a(u,u) . (7.10)

We introduce the adjoint operator R∗ ∶ H →HD by (RuD, u) = (uD, R∗u)D
for all uD ∈HD and u ∈H. Then we have the following spectral estimate

cT ⋅ a(u,u) ≤ a (RB−1R∗Au, u) ≤ cR ⋅ a(u,u) , ∀u ∈H (7.11)

which proves that the eigenvalues of operator RB−1R∗A are bounded from
below by cT and from above by cR with sharp bounds for the spectrum of
RB−1R∗A given by the best possible constants cT and cR in the above in-
equalities.

194 CHAPTER 7. GENEO COARSE SPACE

Proof We will give a proof of the spectral estimates only in the finite
dimensional case. First note that operator RB−1R∗ ∶ H ↦ H is symmetric
by definition. Its positive definiteness, is easy to check. For any u ∈ H, we
have:

(RB−1R∗u, u) = (B−1R∗u, R∗u)D ≥ 0 .

Since B is S.P.D. the above term is zero iff R∗u = 0. Since R is surjective,
it follows that R∗ is one-to-one. Thus, R∗u = 0 implies that u = 0.
We first prove the upper bound of the spectral estimate (7.11). First note
that (7.9) is equivalent to

(R∗ARuD, uD)D ≤ cR(BuD, uD)D , ∀uD ∈HD .

Using Lemma 7.2.1, the eigenvalues of B−1R∗AR ∶ HD ↦ HD are real and
bounded from above by cR. This bound carries over to operator RB−1R∗A ∶
H ↦H. Indeed, for any positive integer n we have:

(RB−1R∗A)n = R(B−1R∗AR)n−1B−1R∗A.

Thus, for any u ∈H ∖ {0}

∥(RB−1R∗A)nu∥1/n = ∥R(B−1R∗AR)n−1B−1R∗Au∥1/n

≤ ∥R∥1/n
HD↦H

∥(B−1R∗AR)n−1∥1/n ∥B−1R∗Au∥1/n
H↦HD

.

By taking the limit as n tends to infinity of the previous inequelity, we
obtain that the spectral radius of RB−1R∗A is bounded from above by that
of B−1R∗AR which is itself less than or equal to cR.
We now prove the lower bound cT . For all u ∈ H, let uD ∈ HD such that
R(uD) = u satisfies estimate (7.10) we have:

a(u,u) = a(R(uD), u) = (R(uD),Au) = (uD,R∗Au)D
= (uD,B B−1R∗Au)D = b(uD,B−1R∗Au)
≤ b(uD, uD)1/2 b(B−1R∗Au,B−1R∗Au)1/2

≤ 1
√
cT
a(u,u)1/2 b(B−1R∗Au,B−1R∗Au)1/2

(7.12)

Dividing by a(u,u)1/2/√cT and squaring we get

cT a(u,u) ≤ (R∗Au,B−1R∗Au)D
= (Au,RB−1R∗Au) = a(u,RB−1R∗Au) .

For a proof valid in the infinite dimensional case as well and for a proof of
the optimality of the spectral estimate see [140, 139] or [100].

7.2. MATHEMATICAL FOUNDATION 195

Remark 7.2.1 Lemma 7.2.2 is crucial in the definition of domain decom-
position algorithms and it requires a few elements of explanation:

• If R were invertible, constant c−1
T in estimate (7.10) would be a conti-

nuity constant of R−1.

• In order to apply this lemma to the ASM method, we have defined
R as a sum of vectors local to subdomains, see (7.5). Then, esti-
mate (7.10) is often known as the ”stable decomposition property”, see
[179] or [174]. In the sequel we use this name even when the operator
R involves also projections.

Note also that the bilinear operators from Lemma 7.2.2 can also be related
to an optimization problem.

Lemma 7.2.3 (Related optimization problem) For all u ∈ H, we
have:

a((RB−1R∗A)−1u, u) = min
uD ∣R(uD)=u

b(uD, uD) , .

Proof By definition, this is equivalent to prove:

((RB−1R∗)−1u, u) = min
uD ∣R(uD)=u

(BuD, uD)D .

We solve this constrained quadratic minimization problem using a La-
grangian:

L ∶ HD ×H → R
(uD, λ) ↦ 1

2(BuD, uD)D − (λ,R(uD) − u) .

By differentiating the Lagrangian L, we get the following optimality system:

BuD = R∗(λ) and R(uD) = u ,

so that λ = (RB−1R∗)−1u and uD = B−1R∗(RB−1R∗)−1u. This leads to
(BuD, uD)D = ((RB−1R∗)−1u, u).

7.2.2 Symmetric Generalized Eigenvalue problem

Important remark: In order to avoid further confusions, we warn the
reader that in this section, the notation A or B do not refer to the matrices
of a linear system to be solved but to abstracts linear operators.

Let V be a Hilbert space of dimension n with the scalar product denoted
by (⋅, ⋅). Let A and B be symmetric positive linear operators from V on V .

196 CHAPTER 7. GENEO COARSE SPACE

We first assume that operator B is also definite. We introduce the following
generalized eigenvalue problem

Find (yk, µk) ∈ V ×R such that
Ayk = µk B yk .

(7.13)

Since operator B is symmetric positive definite, the eigenvalues of (7.13)
can be chosen so that they form a both A-orthogonal and B-orthonormal
basis of V :

(Byk, yl) = δkl, (Ayk, yl) = 0 for k ≠ l
where δkl is the classical Kroenecker symbol. We have the following result
verified by the solutions of this problem

Lemma 7.2.4 Let τ > 0 and define the space related to the eigenpairs of
the problem (7.13)

Yτ ∶= Span{yk∣ µk <
1

τ
} . (7.14)

Let ξτ denote the projection on Yτ parallel to Span{yk∣ µk ≥ 1
τ }.

Then, for all y ∈ V the following inequality holds

(y − ξτ(y),B(y − ξτ(y)) ≤ τ (Ay,y) . (7.15)

Proof Let y ∈ V , we have

y =
n

∑
k=1

(By,yk)yk = ∑
µk<

1
τ

(By,yk)yk

´¹¹¹¸¹¹¶
∈Yτ

+ ∑
µk≥

1
τ

(By,yk)yk

´¹¹¹¸¹¹¶
∈Span{yk ∣ µk≥

1
τ
}

.

Thus, we have:
y − ξτ(y) = ∑

µk≥
1
τ

(By,yk)yk ,

so that using the B-orthonormality of the eigenvector basis,

(B(y − ξτ(y)), y − ξτ(y)) = ∑
µk≥

1
τ

(By,yk)2 ≤ τ ∑
µk≥

1
τ

(By,yk)2µk . (7.16)

On the other hand, using the A-orthogonality of the eigenvector basis, we
have:

(Ay,y) = (
n

∑
k=1

(By,yk)Ayk,
n

∑
l=1

(By,yl)yl,)

=
n

∑
k=1

(By,yk) (Ay,yk)

=
n

∑
k=1

(By,yk)2µk ≥ ∑
µk≥

1
τ

(By,yk)2µk .

(7.17)

7.2. MATHEMATICAL FOUNDATION 197

Combining (7.16) and (7.17) ends the proof.

We need to consider the case where both operators A and B may be undefi-
nite. Let P be the orthogonal projection on range(A). Since A is symmetric
positive, P is actually a projection parallel to ker(A). We introduce the fol-
lowing generalized eigenvalue problem

Find (xk, λk) ∈ range(A) ×R such that
PBP xk = λk Axk .

(7.18)

Note that operator PBP is symmetric positive from range(A) into itself
and that matrix A seen as a linear operator from range(A) into itself is
symmetric positive definite. Thus the eigenvalues of (7.18) can be chosen so
that they form a both A and PBP orthogonal basis of range(A). We have
the following result verified by the solutions of this problem

Lemma 7.2.5 Let τ > 0 and define the space related to the eigenpairs of
the problem (7.18)

Zτ ∶= ker(A)⊕Span{xk∣ λk > τ }. (7.19)

Let πτ denote the projection on Zτ parallel to Span{xk∣ λk ≤ τ}.
Then, for all x ∈ V the following inequality holds

(x − πτ(x),B(x − πτ(x)) ≤ τ (Ax,x) . (7.20)

Proof Let C be the symmetric linear operator defined as follows:

C ∶ range(A) → range(A)
xz→ PBPx

Let m ∶= dim range(A) = n − dim ker(A). By normalizing the family of
eigenvectors (xk)1≤k≤m from (7.18) so that they form an A-orthonormal
basis of range(A), we get

Px =
m

∑
k=1

(APx,xk)xk.

Note that the eigenvectors are C-orthogonal as well

(Cxk,xl) = (λkAxk,xl) = λkδkl,

where δkl is the classical Kronecker delta function. For any x ∈ V , we have
the following decomposition into components of ker(A) and range(A):

x = (x − Px)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ker(A)

+
m

∑
k=1

(APx,xk)xk

´¹¹¹¸¹¹¶
∈ range(A)

.

198 CHAPTER 7. GENEO COARSE SPACE

In this spirit, the orthogonal projection πτ(x) of x on Zτ is:

πτ(x) ∶= (x − Px)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ker(A)

+ ∑
λk>τ

(APx,xk)xk

´¹¹¸¹¹¶
∈Span{xk ∣ λk>τ }

.

Note that πτ is a projection parallel to Span{xk∣λk ≤ τ}. By estimating now
the first term of (7.20) we see that

x − πτ(x) = ∑
λk≤τ

(APx,xk)xk .

By plugging this formula into (B(x − πτ(x)),x − πτ(x)) and by using the
fact that the eigenvectors xk and xl belong to range(A) (xk = Pxk) and
their C-orthogonality, we get

(B(x − πτ(x)),x − πτ(x)) =
⎛
⎝ ∑
k∣λk≤τ

(APx,xk)Bxk, ∑
l∣λl≤τ

(APx,xl)xl
⎞
⎠

= ∑
l∣λl≤τ

∑
k∣λk≤τ

(APx,xk) (APx,xl) (Bxk,xl)

= ∑
l∣λl≤τ

∑
k∣λk≤τ

(APx,xk) (APx,xl) (BPxk, Pxl)

= ∑
l∣λl≤τ

∑
k∣λk≤τ

(APx,xk) (APx,xl) (Cxk,xl)

= ∑
λk≤τ

(APx,xk)2λk.

(7.21)
We can easily find upper bounds of this expression

∑
λk≤τ

(APx,xk)2λk ≤ τ ∑
λk≤τ

(APx,xk)2 ≤ τ
m

∑
k=1

(APx,xk)2

= τ (APx,
m

∑
k=1

(APx,xk)xk) = τ(APx, Px) = τ(Ax,x).

(7.22)
From (7.21) and (7.22), the conclusion follows.

We have defined two generalised eigenvalue problems with no apparent con-
nection (7.13) and (7.18). They allow the definition of two different sets
(7.14) and (7.19). In the following we would like to analyze the relationship
between these two sets.

Lemma 7.2.6 (Relationship between Yτ and Zτ) We suppose that B
is a positive operator. We can distinguish between these cases

• If A is positive definite then Yτ = Zτ .

• If A is not positive definite then Yτ = Zτ if and only if PBP = PB.

7.2. MATHEMATICAL FOUNDATION 199

Proof Consider first the case when A is positive definite. In this case the
projection on the range of A is the identity: P = I and ker(A) = ∅. Thus
problem (7.18) reduces to

Bxk = λkAxk⇔ A−1Bxk = λkxk
while (7.13) will be equivalent to

A−1Byk =
1

µk
yk

We can thus conclude that

Yτ = Span{yk∣ µk <
1

τ
} = Span{xk∣ λk > τ } = Zτ .

If A is not definite but B is, we can now left-multiply (7.13) by B−1/2 which
results into

B−1/2AB−1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ā

B1/2yk
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

ȳk

= µkB1/2yk
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

ȳk

⇔ Āȳk = µkȳk. (7.23)

which is a standard eigenvalue problem. First note that

range(Ā) = B−1/2range(A), ker(Ā) = B1/2ker(A).

Let us analyze the problem (7.23). If µk = 0 then ȳk ∈ ker(Ā). Otherwise

µk ≠ 0⇒ ȳk =
1

µk
Āȳk ∈ range(Ā) ⇔ P̄ ȳk =

1

µk
Āȳk. (7.24)

with P̄ being the projection onto the range(Ā) parallel to ker(Ā).
Consider now the similar problem

P̄ x̄k = λkĀx̄k ⇔
P̄ x̄k = λkB

−1/2AB−1/2x̄k
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

xk

⇔

B1/2P̄B−1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

Bxk = λkAxk ⇔

PBxk = λkAxk.

(7.25)

We see that

B1/2Yτ = Span{B1/2yk∣ µk <
1

τ
} = Span{ȳk∣ µk <

1

τ
}

= ker(Ā) ⊕ Span{x̄k ∶ λk > τ}

= B1/2ker(A) +B1/2Span{xk ∶ λk > τ} ⇒

Yτ = ker(A) + Span{xk ∶ λk > τ}

with xk being the solution of the generalised eigenvalue problem (7.25). This
leads to the conclusion that Yτ = Zτ if and only if PBP = PB.

200 CHAPTER 7. GENEO COARSE SPACE

Remark 7.2.2 (Counterexample) The problems (7.18) and (7.25) are
not equivalent in general. Indeed,

PBxk = PB (xker(A)

k + x
range(A)

k) = PBPxk + PBx
ker(A)

k

and the quantity PBx
ker(A)

k is not necessarily null. Consider now the fol-
lowing example

A = (1 0
0 0

) , B = (2 1
1 1

) ⇒ P = (1 0
0 0

) .

The solution of the eigenproblem (7.13) is

(1 0
0 0

)y = µ(2 1
1 1

)y ⇔ (y1

0
) = µ(2y1 + y2

y1 + y2
)

⇔ (y, µ) ∈ {[(0
1

) ,0] , [(1
−1

) ,1]}

The solution of the eigenproblem is now (7.18)

(2 0
0 0

)x = λ(1 0
0 0

)x ⇔ (2x1

0
) = λ(x1

0
)

⇔ (x, λ) ∈ {[(0
1

) ,0] , [(1
0

) ,2]}

Consider now τ = 1.5. Then we have

Yτ = Span{(0
1

)} , Zτ = Span{(0
1

) ,(1
0

)} = R2.

therefore Yτ ≠ Zτ .

7.2.3 Auxiliary lemma

In the sequel, we make often use of the following lemma:

Lemma 7.2.7 Let M, n, (ni)1≤i≤M be positive integers, Qi ∈ Rn×ni, 1 ≤ i ≤
M be rectangular matrices and A ∈ Rn×n be a symmetric positive definite
matrix. Let

k̃0 ∶= max
1≤j≤M

#{i ∣QTi AQj ≠ 0}.

Then for all Ui ∈ Rni, 1 ≤ i ≤M , we have the following estimate

(
M

∑
i=1

QiUi)
T

A (
M

∑
i=1

QiUi) ≤ k̃0

M

∑
i=1

UT
i (QTi AQi)Ui (7.26)

7.2. MATHEMATICAL FOUNDATION 201

Proof By Cauchy-Schwarz inequality, we have:

(
M

∑
i=1

QiUi)
T

A (
M

∑
i=1

QiUi) = ∑
i,j∣QTi AQj≠0

(UT
i Q

T
i)A (QjUj)

≤ ∑
i,j∣QTi AQj≠0

(UT
i Q

T
i AQiUi)

1/2 (UT
j Q

T
j AQjUj)

1/2
.

(7.27)
Let us introduce the connectivity matrix C ∈ RM ×RM defined as follows:

Cij = { 1 if QTi AQj ≠ 0, 1 ≤ i, j ≤M
0 otherwise.

(7.28)

and v ∈ RM , v = (vi)1≤i≤M the vector of norms defined as

v ∶= ((UT
1 Q

T
1 AQ1U1)1/2, . . . , (UT

MQ
T
MAQMUM)1/2)

T
. (7.29)

Note that we have

∥v∥2
2 =

M

∑
i=1

v2
i =

M

∑
i=1

UT
i (QTi AQi)Ui (7.30)

and matrix C is symmetric as a consequence of the symmetry of A. With
notations (7.28) and (7.29), estimate (7.27) becomes

(
M

∑
i=1

QiUi)
T

A (
M

∑
i=1

QiUi) ≤ vTCv . (7.31)

Note that we also have by definition of an operator norm:

vTCv ≤ ∥C∥2 ⋅ ∥v∥2
2 . (7.32)

Since matrix C is symmetric, its 2-norm is given by the largest eigevalue in
modulus, which is less than the infinity norm of C. It can be easily checked
that ∥C∥∞ = k̃0 and by consequence we will have ∥C∥2 ≤ k̃0. Finally, from
estimates (7.30), (7.31) and (7.32), we have

(
M

∑
i=1

QiUi)
T

A (
M

∑
i=1

QiUi) ≤ k̃0

M

∑
i=1

v2
i = k̃0

M

∑
i=1

UT
i (QTi AQi)Ui

which ends the proof.

202 CHAPTER 7. GENEO COARSE SPACE

7.3 Finite element setting

We recall here the finite element setting that is used in order to build the
coarse space. Consider first the variational formulation of a problem for a
given open domain Ω ⊂ IRd (d = 2 or 3)

aΩ(u, v) = l(v), ∀v ∈ V (7.33)

where l(v) denotes a linear form over a Hilbert space V . The problem we
consider is given through a symmetric positive definite bilinear form that is
defined in terms of an integral over any open set ω ⊂ Rd for some integer d.
Typical examples are the Darcy equation (K is a diffusion tensor)

aω(u, v) ∶= ∫
ω

K∇u ⋅ ∇v dx , (7.34)

or the elasticity system (C is the fourth-order stiffness tensor and ε(u) is
the strain tensor of a displacement field u):

aω(u, v) ∶= ∫
ω
C ε(u) ∶ ε(v)dx .

We consider a discretization of the variational problem (7.33) by the finite
element (FE) method on a mesh Th of Ω: Ω = ⋃c∈Th c. The approximation
space is then denoted by Vh, {φk}k∈N denotes its basis and N is the related
index set. Let us write the discrete FE problem that we want to solve:

Find uh ∈ Vh such that
aΩ(uh, vh) = l(vh), for all vh ∈ Vh.

(7.35)

which gives the matrix form

AU = b, Aij = aΩ(φj , φi), bi = l(φi), ∀i, j ∈ N .
so that

uh = ∑
k∈N

uk φk, U = (uk)k∈N .

Domain Ω is decomposed into N subdomains (Ωi)1≤i≤N so that all sub-
domains are a union of cells of the mesh Th. This decomposition induces
a natural decomposition of the set of indices N into N subsets of indices
(Nj)1≤j≤N as was done in eq. (1.28):

Nj ∶= {k ∈ N ∶ meas((φk) ∩Ωj) ≠ 0} , 1 ≤ j ≤ N . (7.36)

Let Ãj be the #Nj ×#Nj matrix defined by

VT
j Ã

jUj ∶= aΩj

⎛
⎝ ∑k∈Nj

Ujkφk, ∑
k∈Nj

Vjkφk
⎞
⎠
, Uj , Vj ∈ RNj . (7.37)

When the bilinear form a results from the variational solve of a Laplace
problem, the previous matrix corresponds to the discretisation of local Neu-
mann boundary value problems. For this reason we will call it “Neumann”
matrix even in a more general setting.

7.4. GENEO COARSE SPACE FOR ADDITIVE SCHWARZ 203

⌦1

⌦2

Figure 7.1: Initial geometric decomposition of the domain

7.4 GenEO coarse space for Additive Schwarz

In order to apply the Fictitious Space Lemma to ASM, we use the framework
defined in § 7.1. Note that most of the assumptions of this lemma are
verified without the precise definition of a coarse space. That is why it will
be specified later on in Definition 7.4.2 only when needed.
Let’s start with the surjectivity and continuity of RASM,2 which do not
depend on the choice of the coarse space.

Lemma 7.4.1 (Surjectivity of RASM,2) The operator RASM,2 defined by
(7.5) is surjective.

Proof From the partition of unity as defined in paragraph 1.3 equa-
tion (1.25), we have for all U ∈H:

U = RASM,2(U), with U = (0, (DiRiU)1≤i≤N),

which proves the surjectivity of RASM,2.

Lemma 7.4.2 (Continuity of RASM,2) Let

k0 ∶= max
1≤i≤N

#{j ∣ RjARTi ≠ 0} (7.38)

be the maximum multiplicity of the interaction between subdomains plus one.
Then for all U ∈HD, we have

a(RASM,2(U),RASM,2(U)) ≤ max(2 , k0) b(U ,U) ,

which proves the continuity of operator RASM,2 (i.e. hypothesis (7.9) from
Lemma 7.2.2), with

cR = max(2 , k0)
as a continuity constant.

204 CHAPTER 7. GENEO COARSE SPACE

Proof Let U ∶= (Ui)0≤i≤N ∈HD. Then we have by definition

a(RASM,2(U),RASM,2(U)) = (
N

∑
i=0

RTi Ui)
T

A(
N

∑
i=0

RTi Ui) (7.39)

and

b(U ,U) =
N

∑
i=0

(RTi Ui)
T
A (RTi Ui) . (7.40)

Applying Lemma 7.2.7, with M = N +1, Qi = RTi (0 ≤ i ≤ N) would not yield
a sharp estimate. Indeed, we note that R0AR

T
i ≠ 0, 0 ≤ i ≤ N which means

the constant k̃0 in Lemma 7.2.7 would be equal to N + 1. Thus, we proceed
in two steps. Since A is symmetric positive, we have:

(
N

∑
i=0

RTi Ui)
T

A(
N

∑
i=0

RTi Ui) ≤ 2 ((RT0 U0)TA(RT0 U0)

+(
N

∑
i=1

RTi Ui)
T

A(
N

∑
i=1

RTi Ui)
⎞
⎠

(7.41)

We use Lemma 7.2.7 to estimate the last term and we have:

(
N

∑
i=0

RTi Ui)
T

A(
N

∑
i=0

RTi Ui) ≤ 2 ((RT0 U0)TA(RT0 U0)

+k0

N

∑
i=1

(RTi Ui)
T
A (RTi Ui))

≤ max(2 , k0)
N

∑
i=0

(RTi Ui)
T
A (RTi Ui) .

(7.42)

7.4.1 Some estimates for a stable decomposition with RASM,2

We now focus on the stable decomposition, estimate (7.10), which requires
further analysis and is dependent on the choice of the coarse space given
here by its column-matrix form Z0 = RT0 . Nevertheless, we note that some
intermediate results, valid for arbitrary coarse space, simplify the require-
ment of (7.10). For example, the following lemma which is valid whatever
the choice of Z0 = RT0 .

Lemma 7.4.3 Let U ∈ H and U ∶= (Ui)0≤i≤N ∈ HD such that U =
RASM,2(U).
Then, we have:

b(U ,U) ≤ 2a(U,U) + (2k0 + 1)
N

∑
i=1

a(RTi Ui,R
T
i Ui) . (7.43)

7.4. GENEO COARSE SPACE FOR ADDITIVE SCHWARZ 205

Proof By definition of RASM,2 (see eq. (7.5)) and Cauchy-Schwarz inequal-
ity, we have:

b(U ,U) = a(RT0 U0,R
T
0 U0) +

N

∑
i=1

a(RTi Ui,R
T
i Ui)

= a(U −
N

∑
i=1

RTi Ui, U −
N

∑
i=1

RTi Ui) +
N

∑
i=1

a(RTi Ui,R
T
i Ui)

≤ 2 [a(U,U) + a(
N

∑
i=1

RTi Ui,
N

∑
i=1

RTi Ui)] +
N

∑
i=1

a(RTi Ui,R
T
i Ui)

≤ 2

⎡⎢⎢⎢⎢⎣
a(U,U) + ∑

1≤i,j≤N/RjARTi ≠0

a(RTi Ui,R
T
j Uj)

⎤⎥⎥⎥⎥⎦
+
N

∑
i=1

a(RTi Ui,R
T
i Ui)

Applying Lemma 7.2.7, the middle term can be bounded by

k0

N

∑
i=1

a(RTi Ui,R
T
i Ui) .

and the conclusion follows.

Note that the result (7.43) is insufficient to yield a spectral estimate of the
ASM preconditioner. We still have to bound from above the subdomain en-
ergy terms a(RTi Ui, R

T
i Ui), 1 ≤ i ≤ N , by the global energy term a(U, U).

In order to do this, we first introduce an estimate to a(U, U) from below
in terms of a sum of some local energy terms, see (7.44) and then infer from
it a construction of the coarse space in Definition 7.4.2.

Lemma 7.4.4 Let k1 be the maximal multiplicity of subdomains intersec-
tion, i.e. the largest integer m such that there exists m different subdomains
whose intersection has a non zero measure.
Then, for all U ∈ RN , we have

N

∑
j=1

(RjU)T ÃjRjU ≤ k1 UTAU = k1 a(U,U) (7.44)

where matrices Ãj are defined by eq. (7.37).

Proof This property makes use of the finite element setting of § 7.3. Let
uh ∶= ∑k∈N Ukφk, then by definition

aΩ(uh, uh) = UTAU and aΩj(uh, uh) = (RjU)T ÃjRjU .

Since at most k1 of the subdomains have a non zero measure intersection,
the sum ∑Nj=1 aΩj(uh, uh) cannot exceed k1 times aΩ(uh, uh). Let us be more
explicit in the case of a Darcy equation (7.34). Inequality (7.44) reads:

N

∑
j=1
∫

Ωj
K ∣∇uh∣2 dx ≤ k1∫

Ω
K ∣∇uh∣2 dx .

206 CHAPTER 7. GENEO COARSE SPACE

7.4.2 Definition of the GenEO coarse space

All the previous results are valid independently of the choice of the
(Uj)1≤j≤N in the decomposition of U and of the coarse space. They can’t
give access to an estimate of the constant cT in the stable decomposition
estimate required by condition (7.10) of the Fictitious Space Lemma 7.2.2.
But, they are important steps since they enable a local construction of a
global coarse space so that the constant cT can be chosen, a priori less than
1/2, see Lemma 7.4.3. Actually, we see from (7.43) and (7.44) that it is
sufficient, for some given parameter τ > 0, to define (Uj)1≤j≤N such that

N

∑
j=1

a(RTj Uj ,R
T
j Uj) ≤ τ

N

∑
j=1

(RjU)T ÃjRjU , (7.45)

which can be satisfied by demanding that for all subdomains j we have

a(RTj Uj ,R
T
j Uj) ≤ τ (RjU)T ÃjRjU . (7.46)

This estimate will have as a consequence the stability of the decomposition
and a short computation shows that we can take cT ∶= (2 + (2k0 + 1)k0 τ)−1

in (7.10). The definition of Uj which satisfy (7.46) for a given threshold τ
will be a consequence of the definition of the coarse space.

We now detail the construction of the GenEO coarse space.
To start with, we apply the abstract Lemma 7.2.5 in each subdomain to the
following generalized eigenvalue problem:

Definition 7.4.1 (Generalized eigenvalue problem) For all subdo-
mains 1 ≤ j ≤ N , let

B̃j ∶=Dj(RjARTj)Dj .

Let P̃j be the projection on range(Ãj) parallel to ker(Ãj). Consider the
generalized eigenvalue problem:

Find (Ũjk, λjk) ∈ range(Ãj) ×R

P̃jB̃jP̃j Ũjk = λjk ÃjŨjk .

Define also
Z̃jτ ∶= ker(Ãj)⊕Span{Ũjk∣ λjk > τ }

and the local projection π̃j on Z̃jτ parallel to Span{Ũjk∣ λjk ≤ τ }.

With these notations, Lemma 7.2.5 translates into:

7.4. GENEO COARSE SPACE FOR ADDITIVE SCHWARZ 207

Lemma 7.4.5 (Intermediate Lemma) For all subdomain 1 ≤ j ≤ N and
Ũj ∈ RNj , we have:

(RTj Dj(Id − π̃j)Ũj)
T
A (RTj Dj(Id − π̃j)Ũj) ≤ τ ŨT

j Ã
jŨj . (7.47)

We see now that estimate (7.46) can be obtained directly from (7.47) pro-
vided that Uj are such that the left-hand sides of (7.46) and (7.47) are the
same, that is

Uj ∶=Dj(Id − π̃j)RjU. (7.48)

It remains now to define the coarse space component U0 and the coarse
space interpolation operator, such that ∑Nj=0R

T
j Uj = U. From the previous

results we can infer that this decomposition is stable.

Definition 7.4.2 (GenEO Coarse space) The GenEO coarse space is
defined as a sum of local contributions weighted with the partition of unity:

V0 ∶=
N

⊕
j=1

RTj DjZ̃jτ . (7.49)

Let Z0 ∈ R#N×dim(V0) be a column matrix so that V0 is spanned by its
columns. We denote its transpose R0 ∶= ZT0 .

Note that for all U0 ∈ V0, we have the following equality:

U0 = RT0 ((R0R
T
0)−1)R0 U0 .

Theorem 7.4.1 (GenEO stable decomposition) Let U ∈ RN , for all
subdomain 1 ≤ j ≤ N , we define Uj like in (7.48) and U0 by:

U0 ∶= (R0R
T
0)−1R0

⎛
⎝
N

∑
j=1

RTj Dj π̃jRjU
⎞
⎠

so that

RT0 U0 ∶=
N

∑
j=1

RTj Dj π̃jRjU.

Let cT ∶= (2 + (2k0 + 1)k0 τ)−1 and U denote (Ui)0≤i≤N ∈HD.
Then, U is a cT -stable decomposition of U since we have:

RASM,2(U) =
N

∑
j=0

RTj Uj = U and b(U ,U) ≤ 1

cT
UTAU = a(U,U) .

208 CHAPTER 7. GENEO COARSE SPACE

Proof We first check that R(U) = U . By definition, we have:

U =
N

∑
j=1

RTj DjRjU

=
N

∑
j=1

RTj Dj π̃jRjU

´¹¹¹¸¹¹¹¶
RT0 U0

+
N

∑
j=1

RTj Dj(Id − π̃j)RjU
´¹¹¸¹¹¶

Uj

=
N

∑
j=0

RTj Uj .

We now prove the second part of the theorem, the stability of the decom-
position. By Lemma 7.4.3, we have

b(U ,U) ≤ 2a(U,U) + (2k0 + 1)
N

∑
i=1

a(RTi Ui,R
T
i Ui) . (7.50)

Then, by definition of Ui, 1 ≤ i ≤ N in equation (7.48):

a(RTi Ui,R
T
i Ui) = (RTi Di(Id − π̃i)RiU)T A (RTi Di(Id − π̃i)RiU) (7.51)

and by Lemma 7.4.5 we have thus:

a(RTi Ui,R
T
i Ui) ≤ τ (RiU)T Ãi (RiU) .

Summing over all subdomains and using Lemma 7.4.4, we have:

N

∑
i=1

a(RTi Ui,R
T
i Ui) ≤ k1 τ UTAU .

Finally, using (7.50) and (7.51), we have:

b(U ,U) ≤ (2 + (2k0 + 1)k1 τ)UTAU . (7.52)

Combining Lemma 7.4.2 and equation (7.52), we have thus proved

Theorem 7.4.2 The eigenvalues of the two level Schwarz preconditioned
system satisfy the following estimate

1

2 + (2k0 + 1)k1 τ
≤ λ(M−1

ASM2A) ≤ max(2 , k0) .

Due to the definition of the coarse space, we see that the condition number
of the preconditioned problem will not depend on the number of the subdo-
mains but only on the parameters k0, k1 and τ . Parameter τ can be chosen
arbitrarily small at the expense of a large coarse space.

7.5. HYBRID SCHWARZ WITH GENEO 209

7.5 Hybrid Schwarz with GenEO

Another version of the Schwarz preconditionner, which we will call Hybrid
Schwarz method (HSM) can be also formalized in the framework of the Fic-
titious Space Lemma. The coarse space is as before based on the same gener-
alized eigensolves. The difference lies in the way the coarse space correction
is applied, see [124] and [173]. Let P0 denote the a-orthogonal projection on
the GenEO coarse space V0 defined above, Definition 7.4.2. Let us denote
by M−1

ASM the one-level Schwarz method

M−1
ASM ∶=

N

∑
i=1

RTi (RiARTi)−1Ri .

Following [124], the hybrid Schwarz preconditioner is defined as follows:

M−1
HSM ∶= RT0 (R0AR

T
0)−1R0 + (Id − P0)M−1

ASM(Id − P T0) . (7.53)

We shall see at the end how to implement efficiently this preconditioner in
a preconditioned conjugate gradient method (PCG).

We first study the spectral properties of this preconditioner. In order to
apply the Fictitious Space Lemma 7.2.2, it suffices in the previous set up to
modify the linear operator R (7.5) and replace it by the following definition.

Definition 7.5.1 For U = (Ui)0≤i≤N , RHSM ∶HD Ð→H is defined by

RHSM(U) ∶= RT0 U0 +
N

∑
i=1

(Id − P0)RTi Ui . (7.54)

We check the assumptions of the Fictitious Space Lemma when RHSM re-
places RASM,2 in Definition 7.1.1. This will give us the condition number
estimate (7.57).

Lemma 7.5.1 (Surjectivity of RHSM) The operator RHSM is surjec-
tive.

Proof For all U ∈H, we have:

U = P0 U + (Id − P0)U = P0 U +
N

∑
i=1

(Id − P0)RTi DiRiU .

Since P0 U ∈ V0, there exists U0 ∈ R#N0 such that P0 U = RT0 U0. Thus, we
have

U = RT0 U0 +
N

∑
i=1

(Id − P0)RTi (DiRiU) ,

210 CHAPTER 7. GENEO COARSE SPACE

or, in other words

RHSM(U0, (DiRiU)1≤i≤N) = U .

which proves the surjectivity.

Lemma 7.5.2 (Continuity of RHSM) Let k0 be defined as in (7.38).
Then, for all U = (Ui)0≤i≤N ∈HD, the following estimate holds

a(RHSM(U),RHSM(U)) ≤ k0 b(U ,U). (7.55)

Proof Since P0 and Id − P0 are a-orthogonal projections, we have also
making use of Lemma 7.2.7:

a(RHSM(U),RHSM(U)) = a(RT0 U0,R
T
0 U0)

+a((Id − P0)
N

∑
i=1

RTi Ui, (Id − P0)
N

∑
i=1

RTi Ui)

≤ a(RT0 U0, R
T
0 U0) + a(

N

∑
i=1

RTi Ui,
N

∑
i=1

RTi Ui)

≤ a(RT0 U0, R
T
0 U0) + k0

N

∑
i=1

a(RTi Ui,R
T
i Ui)

≤ k0

N

∑
i=0

a(RTi Ui,R
T
i Ui) = k0 b(U ,U) .

Lemma 7.5.3 (Stable decomposition with RHSM) Let U ∈ H. For
1 ≤ j ≤ N , we define:

Uj ∶=Dj (Id − π̃j)Rj U

and U0 ∈ RN0 such that:
RT0 U0 = P0 U .

We define U ∶= (Ui)1≤i≤N ∈HD.
Then, we have

RHSM(U) = U

and the stable decomposition property is verified

b(U ,U) ≤ (1 + k1 τ)a(U,U). (7.56)

Proof We first check that we have indeed a decomposition, i.e. that the
equality RHSM(U) = U holds. Note that for all 1 ≤ j ≤ N we have

RTj Dj π̃j Rj U ∈ V0 ⇒ (Id − P0)RTj Dj π̃j Rj U = 0 .

7.5. HYBRID SCHWARZ WITH GENEO 211

We have:

U = P0U + (Id − P0)U = P0U + (Id − P0)
N

∑
j=1

RTj Dj Rj U

= P0 U + (Id − P0)
N

∑
j=1

RTj Dj Rj U

= RT0 U0 + (Id − P0)
N

∑
j=1

RTj Dj (Id − π̃j)Rj U = RHSM(U) .

The last thing to do is to check the stability of this decomposition. Using
Lemma 7.4.5, then Lemma 7.4.4 and the fact that P0 is a a-orthogonal
projection, we have

b(U ,U) = a(RT0 U0,R
T
0 U0)

+
N

∑
j=1

a(RTj Dj (Id − π̃j)Rj U
´¹¹¸¹¹¶

Uj

, RTj Dj (Id − π̃j)Rj U
´¹¹¸¹¹¶

Uj

)

≤ a(P0U, P0U) + τ
N

∑
j=1

(RjU)T Ãj (RjU)

≤ a(U,U) + k1 τa(U,U) ≤ (1 + k1 τ)a(U,U) .

Previous lemmas lead to the condition number estimate of the algorithm:

Theorem 7.5.1 (Hybrid Schwarz algorithm) Let τ be a user-defined
parameter to build the GenEO coarse space as in Definition 7.4.1.
The eigenvalues of the hybrid Schwarz preconditioned system satisfy the fol-
lowing estimate

1

1 + k1 τ
≤ λ(M−1

HSM A) ≤ k0. (7.57)

Note that a hybrid preconditionner will lead to a better condition num-
ber than for the additive one (Theorem 7.4.2) and consequently to a faster
convergence.

7.5.1 Efficient implementation of the hybrid Schwarz
method

As it is written in (7.53), the application of the hybrid preconditioner
involves several applications of the projection P0. We see in this paragraph
that a clever choice of the initial guess in the PCG algorithm reduces the
cost of the algorithm, see [124].

Note first that the matrix form of P0 is:

P0 = RT0 (R0AR
T
0)−1R0A. (7.58)

212 CHAPTER 7. GENEO COARSE SPACE

Indeed, this formula clearly defines a projection since

(RT0 (R0AR
T
0)−1R0A)2 = RT0 (R0AR

T
0)−1R0AR

T
0 (R0AR

T
0)−1R0A

= RT0 (R0AR
T
0)−1R0A.

This projection is A-orthogonal since for all vectors U , V , we have:

(RT0 (R0AR
T
0)−1R0AU , V)A = (RT0 (R0AR

T
0)−1R0AU , AV)

= (U , RT0 (R0AR
T
0)−1R0AV)A .

Finally, the range of RT0 (R0AR
T
0)−1R0A is V0 since for all U ∈ V0, there

exist W such that U = RT0W and we have:

RT0 (R0AR
T
0)−1R0AU = RT0 (R0AR

T
0)−1R0AR

T
0W = RT0W = U .

From (7.58), we can rewrite definition (7.53) of M−1
HSM as:

M−1
HSM ∶= P0A

−1 + (Id − P0)M−1
ASM(Id − P T0) .

Note also that :

P T0 A = ART0 (R0AR
T
0)−1R0A = AP0 .

These relations yield the following expression for the preconditioned operator

M−1
HSMA = P0 + (Id − P0)M−1

ASMA(Id − P0) . (7.59)

When solving the linear system Ax = b with the preconditioned conjugate
gradient (PCG) preconditioned by M−1

HSM (7.53) the method seeks an ap-
proximation to the solution in the Krylov space

Kn(M−1
HSMA, r̃0) ∶= {r̃0,M−1

HSMA r̃0, . . . , (M−1
HSMA)n−1r̃0}

where

r̃0 ∶=M−1
HSM (b −Ax0)

is the initial preconditioned residual. If r̃0 is chosen so that

P0 r̃0 = 0 ,

we have a simplification in the expression of the Krylov subspace:

Kn(M−1
HSMA, r̃0) = {r̃0, (Id − P0)M−1

ASMAr̃0, . . . , ((Id − P0)M−1
ASM)n−1r̃0} .

7.6. FREEFEM++ IMPLEMENTATION 213

This can be easily proved using formula (7.59) and the fact that P 2
0 = P0:

M−1
HSMA r̃0 = (P0 + (Id − P0)M−1

ASMA(Id − P0)) r̃0
= (Id − P0)M−1

ASMA r̃0 ,

(M−1
HSMA)2 r̃0 = (P0 + (Id − P0)M−1

ASMA(Id − P0))(Id − P0)M−1
ASMA r̃0

= (Id − P0)M−1
ASMA(Id − P0)M−1

ASMA r̃0

= ((Id − P0)M−1
ASMA)2 r̃0,

⋮

It means that in the PCG method, it is sufficient to consider that the pre-
conditioner is

(Id − P0)M−1
ASM .

In order to have P0 r̃0 = 0, we can choose for example

x0 = RT0 (R0AR
T
0)−1R0 b .

By using (7.53) and (7.58) we see that:

P0M
−1
HSM = P0R

T
0 (R0AR

T
0)−1R0 = RT0 (R0AR

T
0)−1R0

which leads to

P0 r̃0 = P0M
−1
HSM(b −ART0 (R0AR

T
0)−1R0 b)

= RT0 (R0AR
T
0)−1R0 (b −ART0 (R0AR

T
0)−1R0 b)

= 0 .

To sum up, the PCG algorithm (see Algorithm 4 in § 2.3.1) for the Hybrid
Schwarz method takes the form given in Algorithm 8.

7.6 FreeFem++ Implementation

We illustrate the GenEO coarse space on a Darcy problem with two layers
of very high and different heterogeneities, see Figure 7.2:

− div(α∇u) = f, in Ω (7.60)

where α ∶ Ω↦ R is defined by:

α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1.e6 if .2 < y < .4
1.e5 if .6 < y < .8
1. else

214 CHAPTER 7. GENEO COARSE SPACE

Algorithm 8 PCG algorithm for the Hybrid Schwarz method

Compute x0 ∶= RT0 (R0AR
T
0)−1R0 b,

r0 ∶= b −Ax0,
z0 = (Id − P0)M−1

ASMr0

p0 = z0.
for i = 0,1, . . . do
ρi = (ri,zi)2

qi = Api
αi =

ρi
(pi,qi)2

xi+1 = xi + αipi
ri+1 = ri − αiqi
zi+1 = (Id − P0)M−1

ASMri+1

ρi+1 = (ri+1,zi+1)2

βi+1 =
ρi+1

ρi
pi+1 = zi+1 + βi+1pi
check convergence; continue if necessary

end for

The implementation of the Hybrid Schwarz (7.53) method is based on
three FreeFem++ scripts given here. The coarse space (7.49) is built in
GENEO.idp. We see that the main differences with respect to the standard
coarse grid is the definition of the local data under the form of weighted
matrices and the construction of the coarse space. The other parts are
identical to the standard coarse spaces, only the size of the coarse space is
bigger.

7.6. FREEFEM++ IMPLEMENTATION 215

for(int i=0;i<npart;++i)
3 {

mesh Thi = aTh[i];
fespace Vhi(Thi,P1);
Vhi[int] eV(abs(nev));

7 real[int] ev(abs(nev));
if (nev > 0){//GENEO coarse space
int k = ⤸

Ç EigenValue(aN[i],aAweighted[i],sym=true,sigma=0,maxit=50,tol=1.e−4,value=ev,vector=eV);
cout << ”Eigenvalues in the subdomain ”<< i <<endl;

11 k=min(k,nev); //sometimes the no of converged eigenvalues is bigger than nev.
cout << ev <<endl;
}
else// Nicolaides Coarse space

15 {
eV[0][] = 1.;

}

19 for(int j=0;j<abs(nev);++j){
real[int] zitemp = Dih[i]∗eV[j][];
int k = i∗abs(nev)+j;
Z[k][]=Rih[i]’∗zitemp;

23 }
}

Listing 7.1: ./THEORIECOARSEGRID/FreefemProgram/GENEO.idp

In PCG-CS.idp, we define the preconditioner M−1
HSM (7.53) and the precon-

ditioned Conjugate Gradient method.

216 CHAPTER 7. GENEO COARSE SPACE

func real[int] AS2(real[int] & r){
real[int] z = Q(r);

8 real[int] aux = AS(r);
z += aux;
return z;

}
12 func real[int] BNN(real[int] &u) // precond BNN

{
real[int] aux1 = Q(u);
real[int] aux2 = P(u);

16 real[int] aux3 = AS(aux2);//aux3 = AS(P(u))
aux2 = PT(aux3);// aux2 = PT(AS(P(u)))
aux2 += aux1;// aux2 = Q(u) + PT(AS(P(u)))

return aux2;
20 }

/∗# fin BNNPrecond #∗/
/∗# debutCGSolve #∗/
func real[int] myPCG(real[int] xi,real eps, int nitermax)

24 {
ofstream filei(”Convprec.m”); // Matlab convergence history file
ofstream fileignu(”Convprec.gnu”); // Gnuplot convergence history file

Vh r, un, p, zr, zrel, rn, w, er;
28 un[] = xi;

r[] = A(un[]);
r[] −= rhsglobal[];
r[] ∗= −1.0;

32 zr[] = BNN(r[]);
real resinit=sqrt(zr[]’∗zr[]);
p = zr;
for(int it=0;it<nitermax;++it)

36 {
//plot(un,value=1,wait=1,fill=1,dim=3,cmm=”Approximate solution at ⤸

Ç iteration ”+it);
real relres = sqrt(zr[]’∗zr[])/resinit;
cout << ”It: ”<< it << ” Relative residual = ” << relres << endl;

40 int j = it+1;
filei << ”relres(”+j+”)=” << relres << ”;” << endl;
fileignu << relres << endl;
if(relres < eps)

44 {
cout << ”CG has converged in ” + it + ” iterations ” << endl;
cout << ”The relative residual is ” + relres << endl;
break;

48 }
w[] = A(p[]);
real alpha = r[]’∗zr[];
real aux2 = alpha;

52 real aux3 = w[]’∗p[];
alpha /= aux3; // alpha = (rj,zj)/(Apj,pj);
un[] += alpha∗p[]; // xj+1 = xj + alpha∗p;
r[] −= alpha∗w[]; // rj+1 = rj − alpha∗Apj;

56 zr[] = BNN(r[]); // zj+1 = M−1∗rj+1;
real beta = r[]’∗zr[];
beta /= aux2; // beta = (rj+1,zj+1)/(rj,zj);
p[] ∗= beta;

60 p[] += zr[];
}

return un[];
}

7.6. FREEFEM++ IMPLEMENTATION 217

Listing 7.2: ./THEORIECOARSEGRID/FreefemProgram/PCG-CS.idp

The script of the ”main” program is given by AS2-PCG-GENEO.edp

/∗# debutPartition #∗/
include ”../../FreefemCommon/dataGENEO.edp”
include ”../../FreefemCommon/decomp.idp”

4 include ”../../FreefemCommon/createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);
plot(part,wait=1,fill=1,ps=”partition.eps”);
/∗# endPartition #∗/

8 /∗# debutGlobalData #∗/
Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
rhsglobal[] = vaglobal(0,Vh); // global rhs

uglob[] = Aglobal−1∗rhsglobal[];
12 /∗# finGlobalData #∗/

/∗# debutLocalData #∗/
for(int i = 0;i<npart;++i)
{

16 cout << ” Domain :” << i << ”/” << npart << endl;
matrix aT = Aglobal∗Rih[i]’;
aA[i] = Rih[i]∗aT;
set(aA[i],solver = UMFPACK); // direct solvers using UMFPACK

20 varf valocal(u,v) = int2d(aTh[i])(eta∗u∗v+ka∗(Grad(u)’∗Grad(v)))
+on(1,u=g);

fespace Vhi(aTh[i],P1);
aN[i]= valocal(Vhi,Vhi);

24 set(aN[i], solver = UMFPACK);
matrix atimesxi = aA[i] ∗ Dih[i];
aAweighted[i] = Dih[i] ∗ atimesxi;
set(aAweighted[i], solver = UMFPACK);

28 }
/∗# finLocalData #∗/
/∗# debutPCGSolve #∗/
include ”../../FreefemCommon/matvecAS.idp”

32 include ”GENEO.idp”
include ”PCG−CS.idp”
Vh un = 0, sol; // initial guess un and final solution
cout << ”Schwarz Dirichlet algorithm” << endl;

36 sol[] = myPCG(un[], tol, maxit); // PCG with initial guess un
plot(sol,cmm=” Final solution”, wait=1,dim=3,fill=1,value=1);
Vh er = sol−uglob;
cout << ” Final relative error: ” << er[].linfty/sol[].linfty << endl;

40 /∗# finPCGSolve #∗/

Listing 7.3: ./THEORIECOARSEGRID/FreefemProgram/AS2-PCG-GENEO.edp

In our numerical test, the domain is decomposed into 24 subdomains by
an automatic mesh partitioner, see Figure 7.2. In Figure 7.3, we plot the
convergence curve for two different coarse spaces. The GenEO coarse space

218 CHAPTER 7. GENEO COARSE SPACE
IsoValue
-52630.6
26316.8
78948.4
131580
184212
236843
289475
342106
394738
447369
500001
552633
605264
657896
710527
763159
815790
868422
921054
1.05263e+06

Figure 7.2: Diffusion coefficient (left) and subdomain partition (right)

with two degrees of freedom per subdomain yields a convergence in 18 itera-
tions whereas a coarse space built from subdomain-wise constant functions,
Nicolaides coarse space, yields a convergence in almost 120 iterations.

0 20 40 60 80 100 120
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

Re
sid

ua
l

Nicolaides
GenEO

Figure 7.3: Comparison between Nicolaides and GenEO coarse spaces

7.7. BALANCING NEUMANN-NEUMANN 219

7.7 Balancing Neumann-Neumann

In the same spirit as in the previous sections of this chapter, the purpose
is to reformulate the classical Neumann-Neumann algorithms in the
framework of the Fictitious Space Lemma. Note that GenEO versions of
the Neumann-Neumann and FETI algorithms were first introduced in [169]
and then analyzed in [170].

We first recall the Neumann-Neumann algorithm introduced in chapter 5.
The aim is to solve the substructured system (5.40)

SUΓ =GΓ ∈ R#NΓ (7.61)

where S is the Schur complement of the global matrix (5.39). This system
is defined on the interfaces degrees of freedom indexed by NΓ. The set NΓ

is decomposed into subdomain interfaces degrees of freedom:

NΓ =
N

⋃
i=1

NΓi .

For each subdomain 1 ≤ i ≤ N , let RΓi be the restriction operator from the
skeleton R#NΓ onto the subdomain interface R#NΓi and DΓi ∈ R#NΓi

×#NΓi

be invertible diagonal matrices so that we have the following partition of
unity on the skeleton:

N

∑
i=1

RTΓiDΓiRΓi = IR#NΓ . (7.62)

In this context, a Schwarz preconditioner for problem (7.61):

M−1
ASMS ∶=

N

∑
i=1

RTΓi(RΓiSR
T
Γi)

−1RΓi

has been considered in [92, 93]. The Neumann-Neumann (NN) precondi-
tioner works differently, see Definition 5.4.1. It is based on a decomposition
of the global Schur complement operator S into a sum of symmetric positive
(but usually not definite) operators. Let (Si)1≤i≤N be given by (5.41), recall
that we have:

S =
N

∑
i=1

Si .

In § 5.4, we have defined local operators for 1 ≤ i ≤ N :

Si ∶= RΓi SiR
T
Γi

where Si ∈ R#NΓi
×#NΓi are subdomain contributions. Thus, we have

S =
N

∑
i=1

RTΓiSiRΓi (7.63)

220 CHAPTER 7. GENEO COARSE SPACE

and equation (7.61) can be re-written as

N

∑
i=1

RTΓiSiRΓiUΓ =GΓ . (7.64)

When the operators Si are invertible, the Neumann-Neumann precondi-
tioner [12] is defined as:

M−1
NN ∶=

N

∑
i=1

RTΓiDΓiS
−1
i DΓiRΓi . (7.65)

7.7.1 Easy Neumann-Neumann

We start with the analysis of the one-level Neumann-Neumann (NN) method
assuming that the local matrices Si are invertible.

Definition 7.7.1 (NN components in the Fictitious Space Lemma)
In the framework of the Fictitious Space Lemma 7.2.2 we define

• The space of the skeleton

H ∶= R#NΓ

endowed with the standard Euclidean scalar product and the bilinear
form a ∶H ×H ↦ R

a(U ,V) ∶= (SU , V) , ∀U , V ∈H .

• The product space of the subdomain interfaces

HD ∶=
N

∏
i=1

RNΓi

endowed with the standard Euclidean scalar product and the bilinear
form b

b ∶HD ×HD Ð→ R

((Ui)1≤i≤N , (Vi)1≤i≤N) z→
N

∑
i=1

(SiUi,Vi) .

• The linear operator RNN as

RNN ∶HD Ð→H

(Ui)1≤i≤N ↦
N

∑
i=1

RTΓiDΓiUi
(7.66)

7.7. BALANCING NEUMANN-NEUMANN 221

With these notations, the preconditioner M−1
NN is given by RNNB−1R∗

NN .

Note that the operatpor RNN is surjective since from (7.62), we have for
all U ∈H:

U =
N

∑
i=1

RTΓiDΓiRΓiU = RNN((RΓiU)1≤i≤N) .

Contrarily to the Schwarz method, the stable decomposition is easily checked
and is satisfied with cT = 1. Indeed, let U ∈ H, we have the natural decom-
position U = ∑Ni=1R

T
Γi
DΓiRΓiU . In other words, let U ∶= (RΓiU)1≤i≤N , we

have U = RNN(U). By definition of the bilinear form b we have:

b(U ,U) =
N

∑
i=1

(SiRΓiU , RΓiU) = (
N

∑
i=1

RTΓiSiRΓiU , U) = (SU ,U) = a(U ,U) .

We now study the stability of RNN which is more intricate.

Lemma 7.7.1 (Continuity of the operator RNN) Let

k2 ∶= max
1≤i≤N

#{j ∣ RΓjSR
T
Γi ≠ 0} (7.67)

be the maximum multiplicity of the interaction between sub-interfaces via the
Schur complement operator. Let also

τmax ∶= max
1≤i≤N

max
Ui∈R#Ni/{0}

(SRTΓiDΓiUi, R
T
Γi
DΓiUi)

(SiUi, Ui)
. (7.68)

Then, for all U ∈HD we have:

a(RNN(U), RNN(U)) ≤ cR b(U , U) .

with cR ∶= k2 τmax.

Proof Let U = (Ui)1≤i≤N ∈HD, then

a(RNN(U),RNN(U)) =
⎛
⎝
S(

N

∑
i=1

RTΓiDΓiUi) ,
N

∑
j=1

RTΓjDΓjUj
⎞
⎠
.

It is sufficient to apply Lemma 7.2.7 where matrix A is S to get

a(RNN(U),RNN(U)) ≤ k2

N

∑
i=1

(SRTΓiDΓiUi, R
T
ΓiDΓiUi) (7.69)

We now estimate the continuity constant of the linear operator RNN . From
(7.69) and the definition of τmax, we have:

a(RNN(U), RNN(U)) ≤ k2

N

∑
i=1

(SRTΓiDΓiUi, R
T
ΓiDΓiUi)

≤ k2 τmax
N

∑
i=1

(SiUi, Ui) = k2 τmax b(U , U) .

222 CHAPTER 7. GENEO COARSE SPACE

⌦i

Figure 7.4: Interface skeleton and support of SRTΓi .

Note that k2 is typically larger than k0 defined in (7.38) as the number
of neighbors of a subdomain. This is due to the sparsity pattern of S as
illustrated in Figure 7.4 for a P1 finite element discretization. The entries
of SRTΓi are not zero on the interfaces drawn with a continuous line. On

the dashed interfaces, the entries of SRTΓi are zero. Note that k2 is typically
the number of neighbors of neighbors of a subdomain as seen it can be seen
from this equality

k2 = max
1≤i≤N

#{j ∣
N

∑
k=1

RΓjR
T
Γk
SkRΓk R

T
Γi ≠ 0} (7.70)

obtained using formula (7.63) in the definition of k2 (7.67).

By applying the Fictitious Space Lemma 7.2.2 we have just proved:

Theorem 7.7.1 (Spectral estimate for Easy Neumann-Neumann)
Let τmax be defined by (7.68) and k2 by (7.67). Then, the eigenvalues of
the Neumann-Neumann preconditioned (7.65) system satisfy the following
estimate

1 ≤ λ(M−1
NN S) ≤ k2 τmax .

This result is of little practical use since it assumes that the local Neumann
subproblems are well-posed which is not always the case. Moreover, we have
studied only the one level method.
We address the former issue in the next section and a GenEO coarse space
construction in § 7.7.3.

7.7. BALANCING NEUMANN-NEUMANN 223

7.7.2 Neumann-Neumann with ill-posed subproblems

In the case of a Poisson problem and for floating subdomains (subdomains
which do not touch the boundary of the global domain), constant functions
are in the kernel of the Neumann subproblems and thus the Schur com-
plement Si has a non trivial kernel. For elasticity problems, one has to
consider rigid body motions. Thus, we have to take into account the possi-
bility to have a non zero kernel for the local Schur complement Si, 1 ≤ i ≤ N
since for stationary problems, it will often be the case. For each subdomain
1 ≤ i ≤ N , the operator Si is symmetric and we have the orthogonal direct

sum (denoted by the symbol
⊥
⊕):

RNΓi = kerSi
⊥
⊕ rangeSi

and we denote by

Pi the orthogonal projection from RNΓi on kerSi and parallel to rangeSi .

Note that Si induces an isomorphism from rangeSi into itself whose inverse
will be denoted by S†

i ,

S†
i ∶ rangeSi → rangeSi .

In order to capture the part of the solution that will come from the local ker-
nels Si (1 ≤ i ≤ N), let Zi be a rectangular matrix of size #NΓi ×dim(kerSi)
whose columns are a basis of kerSi. We form a rectangular matrix Z0 of
size #NΓ ×∑Ni=1 dim(kerSi) by concatenation of the Zi’s:

Z0 ∶= (RTΓiDΓiZi)1≤i≤N .

Let W0 be the vector space spanned by the columns of Z0, we introduce the

projection P0 from R#NΓ on W0 and which is S orthogonal.

Note that if Z0 is full rank, the matrix form of the linear operator P0 is

P0 = Z0(ZT0 SZ0)−1ZT0 S . (7.71)

Definition 7.7.2 (Balancing NN and the Fictitious Space Lemma)
In the framework of the Fictitious Space Lemma 7.2.2 we define

• The Hilbert space
H ∶= RNΓ

with its standard Euclidean scalar product denoted (⋅, ⋅) is also endowed
with the bilinear form a defined as:

a(U,V) ∶= VT SU .

224 CHAPTER 7. GENEO COARSE SPACE

• The product space defined by

HD ∶=W0 ×
N

∏
i=1

rangeSi

with its standard Euclidean scalar product denoted (⋅, ⋅) is also endowed
with the bilinear form b defined as:

b ∶HD ×HD Ð→ R

((Ui)0≤i≤N , (Vi)0≤i≤N) z→ VT
0 SU0 +

N

∑
i=1

VT
i SiUi .

• The linear operator RBNN is defined as:

RBNN ∶HD Ð→H

(Ui)0≤i≤N z→U0 + (Id − P0)
N

∑
i=1

RTΓiDΓiUi .
(7.72)

Lemma 7.7.2 (Balancing Neumann-Neumann preconditioner)
Using the notations in Definition 7.7.2, the Balancing Neumann-Neumman
preconditioner is

RBNNB−1R∗
BNN = P0 S−1 + (Id − P0)

N

∑
i=1

RTΓiDΓiS
†
i (Id − Pi)DΓiRΓi(Id − P0)T .

(7.73)

Proof We first need to find R∗
BNN . By definition, we have:

R∗
BNN ∶H Ð→HD

Uz→R∗
BNN(U) ,

such that
∀V ∈HD , VTR∗

BNN(U) = RBNN(V)TU .

For all V ∶= (Vi)0≤i≤N ∈HD, the above equation is

VT
0R∗

BNN(U)0 +
N

∑
i=1

VT
i R∗

BNN(U)i = (V0 + (Id − P0)
N

∑
i=1

RTΓiDΓiVi)TU

= VT
0 U +

N

∑
i=1

VT
i DΓiRΓi(Id − P0)TU .

SinceHD is a product space, for arbitrary V0 ∈W0 and Vi ∈ R#NΓi (1 ≤ i ≤ N)
we can identify each term in the sum. Thus we have:

R∗
BNN(U)0 = P0U

7.7. BALANCING NEUMANN-NEUMANN 225

and since, for all 1 ≤ i ≤ N , Id − Pi is the orthogonal projection from RNΓi

on rangeSi, we have:

R∗
BNN(U)i = (Id − Pi)DΓiRΓi(Id − P0)TU .

We now identify operator B ∶ HD → HD related to the bilinear form b and
then B−1. Operator B is a block diagonal operator whose diagonal entries
are denoted (Bi)0≤i≤N . It is clear that for all subdomains 1 ≤ i ≤ N , Bi is
the restriction of Si from rangeSi into itself whose inverse is S†

i . As for B0,
actually we identify directly its inverse. For all U0, V0 ∈W0, we have:

(V0, U0)S = (V0, SU0) = (V0, B0U0)
= (V0, SS−1B0U0) = (V0, S−1B0U0)S = (V0, P0S−1B0U0)S .

We can infer that P0S−1B0 ∶ W0 → W0 is the identity operator so that
B−1

0 = P0S−1. Note that when formula (7.71) is valid, we have

P0S−1 = Z0(ZT0 SZ0)−1ZT0 .

This yields the final form of the preconditioner RBNNB−1R∗
BNN which is

called the Balancing Neumann-Neumann preconditioner, see [126], [118] and
[62]:

M−1
BNN ∶= P0 S−1 + (Id − P0)

N

∑
i=1

RTΓiDΓiS
†
i (Id − Pi)DΓiRΓi(Id − P0)T .

(7.74)

We now check the assumptions of the Fictitious Space Lemma 7.2.2.

Lemma 7.7.3 (Surjectivity of RBNN) The operator RBNN is surjec-
tive.

Proof From the partition of unity (7.62), we have for all U ∈H:

U = P0U + (Id − P0)U = P0U + (Id − P0) (Id − P0)U

= P0U + (Id − P0)
N

∑
i=1

RTΓiDΓiRΓi(Id − P0)U

= P0U + (Id − P0)
N

∑
i=1

RTΓiDΓi(Id − Pi)RΓi(Id − P0)U

+ (Id − P0)
N

∑
i=1

RTΓiDΓiPiRΓi(Id − P0)U

(7.75)

The last term is zero since PiRΓi(Id − P0)U ∈ kerSi and thus

N

∑
i=1

RTΓiDΓiPiRΓi(Id − P0)U ∈W0

226 CHAPTER 7. GENEO COARSE SPACE

and Id − P0 is a projection parallel to W0. Finally we have proved that for
a given U ∈H if we define U ∈HD by

U ∶= (P0U, ((Id − Pi)RΓi(Id − P0)U)1≤i≤N) (7.76)

we have RBNN(U) = U.

Lemma 7.7.4 (Stable decomposition) The stable decomposition prop-
erty (7.10) is verified with an optimal constant cT = 1.

Proof Let U ∈H, we use the decomposition defined in equation (7.76). By
using Si Pi ≡ 0 (Pi projects on kerSi), the symmetry of Si, equation (7.63)
and the S orthogonality of projection P0, we have:

b(U , U) = (SP0U, P0U)

+
N

∑
i=1

(Si(Id − Pi)RΓi(Id − P0)U, (Id − Pi)RΓi(Id − P0)U)

= (SP0U, P0U)

+
N

∑
i=1

(SiRΓi(Id − P0)U, (Id − Pi)RΓi(Id − P0)U)

= (SP0U, P0U) +
N

∑
i=1

(SiRΓi(Id − P0)U, RΓi(Id − P0)U)

= (SP0U, P0U) + (S(Id − P0)U, (Id − P0)U)
= (SU, U) = a(U,U) .

(7.77)

We now consider the stability of the linear operator RBNN .

Lemma 7.7.5 (Continuity of RBNN) Let k0 be defined as in (7.67). Let
τmax be defined by:

τmax ∶= max
1≤i≤N

max
Ui∈rangeSi/{0}

(SRTΓiDΓiUi, R
T
Γi
DΓiUi)

(SiUi, Ui)
. (7.78)

Then, the stability property (7.9) is verified with the constant cR =
max(1, k0τmax).

7.7. BALANCING NEUMANN-NEUMANN 227

Proof Let U ∈ HD, by the S orthogonality of the projection P0 and
Lemma 7.2.7 with A substituted by S, we have:

a(RBNN(U), RBNN(U)) = (SRBNN(U), RBNN(U))

= (S (P0U0 + (Id − P0)
N

∑
i=1

RTΓiDΓiUi), P0U0 + (Id − P0)
N

∑
i=1

RTΓiDΓiUi)

= (SP0U0, P0U0) + (S(Id − P0)
N

∑
i=1

RTΓiDΓiUi, (Id − P0)
N

∑
i=1

RTΓiDΓiUi)

≤ (SU0, U0) + (S
N

∑
i=1

RTΓiDΓiUi,
N

∑
i=1

RTΓiDΓiUi)

≤ (SU0, U0) + k2

N

∑
i=1

(SRTΓiDΓiUi, R
T
ΓiDΓiUi)

≤ max(1, k2τmax) ((SU0, U0) +
N

∑
i=1

(SiUi, Ui))

= max(1, k2τmax) b(U , U)
(7.79)

where τmax is defined by equation (7.78).
By applying the Fictitious Space Lemma 7.2.2 we have just proved:

Theorem 7.7.2 (Spectral estimate for BNN) Let τmax be defined by
(7.78) and k2 by (7.67). Then, the eigenvalues of the Neumann-Neumann
preconditioned (7.74) system satisfy the following estimate

1 ≤ λ(M−1
BNN S) ≤ max(1, k2 τmax) .

Constant τmax in (7.78) can be large and thus the Balancing Neumann
Neumann preconditioner (7.74) can be inefficient. For this reason, in the
next section, we define a coarse space which allow to guarantee any targeted
convergence rate.

7.7.3 GenEO BNN

We introduce an adaptive coarse space based on a generalized eigenvalue
problem on the interface of each subdomain 1 ≤ i ≤ N which allows to guar-
antee a targeted convergence rate. We introduce the following eigenvalue
problem:

Find (Uik, µik) ∈ R#NΓi ∖ {0} ×R such that

SiUik = µikDΓiRΓiSRTΓiDΓiUik .
(7.80)

Matrix DΓiRΓiSRTΓiDΓi is symmetric positive definite (DΓi is invertible) so
that we can apply Lemma (7.2.4) to it. Let τ > 0 be a user-defined threshold,
for each subdomain 1 ≤ i ≤ N , we introduce a subspace of Wi ⊂ RNΓi :

Wi ∶= Span{Uik ∣µik <
1

τ
} . (7.81)

228 CHAPTER 7. GENEO COARSE SPACE

Note that the zero eigenvalue (µik = 0) corresponds to the kernel of Si so
that we have: ker(Si) ⊂Wi. Now, let

ξi denote projection from RNΓi on Wi parallel to Span{Uik ∣µik ≥
1

τ
} .

From these definitions, it can easily be checked that:

Lemma 7.7.6 For all subdomain 1 ≤ i ≤ N and Ui ∈ R#NΓi , we have:

(RTΓiDΓi(Id − ξi)Ui)
T SRTΓiDΓi(Id − ξi)Ui) ≤ τ UT

i SiUi . (7.82)

Proof It is sufficient to apply Lemma (7.2.4) with V ∶= R#NΓi , operator
A ∶= Si and operator B ∶=DΓiRΓiSRTΓiDΓi .

Definition 7.7.3 (GenEO Coarse Space) Let Wi, 1 ≤ i ≤ N be the i-th
local component of the GenEO coarse space as defined in (7.81). Let Zi be
a rectangular matrix of size #NΓi × dimWi whose columns are a basis of
Wi. We form a rectangular matrix ZGenEO of size #NΓ ×∑Ni=1 dimWi by a
weighted concatenation of the Zi’s:

ZGenEO ∶= (RTΓiDΓiZi)1≤i≤N .

Let WGenEO be the vector space spanned by the columns of ZGenEO and

projection Pg from R#NΓ on WGenEO and which is S orthogonal. (7.83)

If the columns of ZGenEO are independent, the matrix form of Pg is:

Pg = ZGenEO(ZTGenEOSZGenEO)−1ZTGenEO S .

The proof is similar to that of formula (7.58) that was done in the context
of the hybrid Schwarz method in § 7.5. Note that ker(Sj) ⊂ Wj for all
1 ≤ j ≤ N , so that we have W0 ⊂WGenEO.

Definition 7.7.4 (BNN - GenEO) The Balancing Neumann-Neumann-
GenEO preconditioner is defined by

M−1
BNNG ∶= PgS−1 + (Id − Pg)

N

∑
i=1

RTΓiDΓiS
†
i (Id − Pi)DΓiRΓi(Id − Pg)T ,

(7.84)

In order to study this new preconditioner we use the same framework than
for the balancing Neumann-Neumann method except that the natural coarse

7.7. BALANCING NEUMANN-NEUMANN 229

space W0 is replaced by the GenEO coarse space WGenEO in the definition
of the product space HD:

HD ∶=WGenEO ×
N

∏
i=1

range (Si) ,

and accordingly operator RBNN is replaced by the linear operator RBNNG
defined as:

RBNNG ∶HD Ð→H

(Ui)0≤i≤N z→ U0 + (Id − Pg)
N

∑
i=1

RTΓiDΓiUi .
(7.85)

It can easily be checked from § 7.7.2 that the surjectivity of RBNNG and
the stable decomposition are unchanged since W0 ⊂WGenEO.

Lemma 7.7.7 (Surjectivity of RBNNG) Operator RBNNG is surjective.

Proof Similarly to (7.75), we have:

U = PgU + (Id − Pg)U = PgU + (Id − Pg) (Id − Pg)U

= PgU + (Id − Pg)
N

∑
i=1

RTΓiDΓiRΓi(Id − Pg)U

= PgU + (Id − Pg)
N

∑
i=1

RTΓiDΓi(Id − Pi)RΓi(Id − Pg)U

+ (Id − Pg)
N

∑
i=1

RTΓiDΓiPiRΓi(Id − Pg)U

(7.86)

The last term of this equation is zero since for all subdomains i, PiRΓi(Id −
Pg)U ∈ kerSi and thus

N

∑
i=1

RTΓiDΓiPiRΓi(Id − Pg)U ∈W0 ⊂WGenEO

and Id −Pg is a projection parallel to WGenEO. Finally we have proved that
for all U ∈H if we define U ∈HD by

U ∶= (PgU, ((Id − Pi)RΓi(Id − Pg)U)1≤i≤N) (7.87)

we have RBNNG(U) = U.
As for the stable decomposition estimate with a stability constant cT = 1,
since projection Pg is S-orthogonal as P0 is, it suffices to replace P0 by Pg
in equation (7.77). The change in coarse space will improve the stability of
the linear operator RBNNG.

Lemma 7.7.8 (Continuity of RBNN) Let k0 be defined as in (7.67).
Then the stability property (7.9) is verified with the constant cR =
max(1, k0τ).

230 CHAPTER 7. GENEO COARSE SPACE

Proof Let U ∈ HD, since Pg is an S-orthogonal projection on WGenEO, we
have:

(SRBNNG(U), RBNNG(U))

= (S (U0 + (Id − Pg)
N

∑
i=1

RTΓiDΓiUi), U0 + (Id − Pg)
N

∑
i=1

RTΓiDΓiUi)

= (SU0, U0) + (S(Id − Pg)
N

∑
i=1

RTΓiDΓiUi, (Id − Pg)
N

∑
i=1

RTΓiDΓiUi) .

(7.88)
Since Pg is the S-orthogonal projection on WGenEO and that

N

∑
i=1

RTΓiDΓiξiUi ∈WGenEO

we have

(S(Id − Pg)
N

∑
i=1

RTΓiDΓiUi, (Id − Pg)
N

∑
i=1

RTΓiDΓiUi)

= (S(Id − Pg)
N

∑
i=1

RTΓiDΓi(Id − ξi)Ui, (Id − Pg)
N

∑
i=1

RTΓiDΓi(Id − ξi)Ui) .

Thus using equality (7.88), Lemma 7.7.1 and then Lemma 7.7.6 we have:

(SRBNNG(U), RBNNG(U))
= (SU0, U0)

+(S(Id − Pg)
N

∑
i=1

RTΓiDΓi(Id − ξi)Ui, (Id − Pg)
N

∑
i=1

RTΓiDΓi(Id − ξi)Ui)

≤ (SU0, U0) + k2

N

∑
i=1

(SiRTΓiDΓi(Id − ξi)Ui, R
T
ΓiDΓi(Id − ξi)Ui)

≤ max(1, k2τ) ((SU0, U0) +
N

∑
i=1

(SiUi, Ui))

≤ max(1, k2τ) b(U, U) .
(7.89)

where τ is the user defined threshold.
To sum up, by applying the Fictitious Space Lemma 7.2.2 we have:

Theorem 7.7.3 (Spectral estimate for BNNG) Let τ be a user de-
fined threshold to build the GenEO coarse space WGenEO (Definition 7.7.3),
Pg defined by equation (7.83) and k2 be defined by (7.67). Then, the eigen-
values of the Neumann-Neumann preconditioned (7.74) system satisfy the
following estimate

1 ≤ λ(M−1
BNNG S) ≤ max(1, k2 τ) .

7.7. BALANCING NEUMANN-NEUMANN 231

7.7.4 Efficient implementation of the BNNG method

As for the Hybrid Schwarz method § 7.5.1, when M−1
BNNG is used as a pre-

conditioner in the PCG method to solve the linear system (7.61)

SUΓ =GΓ ,

an efficient implementation can be done if the initial guess is such that the
initial residual is S-orthogonal to WGenEO. It can be achieved simply by
taking as initial guess:

UΓ0 ∶= ZGenEO(ZTGenEOSZGenEO)−1ZTGenEOGΓ .

In this case the application of the preconditioner M−1
BNNG in the PCG algo-

rithm can be replaced by the application of:

(Id − Pg)
N

∑
i=1

RTΓiDΓiS
†
i (Id − Pi)DΓiRΓi .

232 CHAPTER 7. GENEO COARSE SPACE

Chapter 8

Parallel implementation of
Schwarz methods

As depicted in previous chapters, domain decomposition methods can be
used to design extremely robust parallel preconditioners. The purpose of this
chapter is to give an introduction to their use on parallel computers through
their implementation in the free finite element package FreeFem++ [102].
We start with a self-contained script of a three dimensional elasticity prob-
lem, § 8.1. The solver can be either one of the domain decomposition meth-
ods introduced in the book, a direct solver or an algebraic multigrid method.
The last two solvers are available via the PETSc [8, 7] interface. In the next
section § 8.3, we explain the algebraic formalism used for domain decompo-
sition methods that bypasses a global numbering of the unknowns. In the
last section § 8.2, we show strong and weak scalability results for various
problems on both small and large numbers of cores.

8.1 A parallel FreeFem++ script

The first subsection § 8.1.1 is devoted to the formulation of the elasticity
problem and its geometry. Such an equation typically arises in compu-
tational solid mechanics, for modeling small deformations of compressible
bodies. The solver of the corresponding linear system will be chosen in
§ 8.1.2. In § 8.1.3 , we explain how to visualize the solution. The complete
script elasticity-3d.edp is given at the end of this section in § 8.1.4.

8.1.1 Three dimensional elasticity problem

The mechanical properties of a solid can be characterized by its Young
modulus E and Poisson ratio ν or alternatively by its Lamé coefficients λ

233

234 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

and µ. These coefficients relate to each other by the following formulas:

λ = Eν

(1 + ν)(1 − 2ν) and µ = E

2(1 + ν) . (8.1)

The reference geometry of the solid is the open Ω ⊂ R3. The solid is subjected
to a volume force f and on part of its boundary (Γ3) to a normal stress g.
It is clamped on the other part of its boundary (Γ1). Let u ∶ Ω → R3

denote the displacement of the solid. In Cartesian coordinates (x1, x2, x3),
the linearized strain tensor ε(u) is given by:

εij(u) ∶= 1

2
(∂ui
∂xj

+ ∂uj
∂xi

) , for 1 ≤ i, j ≤ 3 .

The inner product of two strain-tensors is defined by:

ε(u) ∶ ε(v) ∶=
3

∑
i=1

3

∑
j=1

εij(u)εij(v) .

The divergence of the displacement is defined by

∇ ⋅ u ∶=
3

∑
i=1

∂ui
∂xi

.

The finite element approximation of the system of linear elasticity is defined
by a variational formulation:
Find a displacement u ∶ Ω→ R3 in P2 so that for any test function v ∶ Ω→ R3

in P2, we have:

a(u,v) ∶= ∫
Ω
λ∇ ⋅ u ∇ ⋅ v + µε(u) ∶ ε(v) − ∫

Ω
f ⋅ v = 0 , (8.2)

where

• where λ and ν are defined by formula (8.1) Young’s modulus E
and Poisson’s ratio ν vary between two sets of values, (E1, ν1) =
(2 ⋅ 1011,0.25), and (E2, ν2) = (107,0.45).

• f are the body forces, in this case only the gravity.

In the FreeFem++ script, equation (8.2) corresponds to three parametrized
macros: epsilon, div and Varf.

real Sqrt = sqrt(2.);
macro epsilon(u)[dx(u), dy(u#B), dz(u#C), (dz(u#B) + dy(u#C)) / Sqrt, (dz(u) ⤸

Ç + dx(u#C)) / Sqrt, (dy(u) + dx(u#B)) / Sqrt]// EOM
macro div(u)(dx(u) + dy(u#B) + dz(u#C))// EOM

17

macro Varf(varfName, meshName, PhName)
coefficients(meshName, PhName)
varf varfName(def(u), def(v)) = intN(meshName)(lambda ∗ div(u) ∗ div(v) + 2. ⤸

Ç ∗ mu ∗ (epsilon(u)’ ∗ epsilon(v))) + intN(meshName)(f ∗ vB) + on(1, ⤸
Ç BC(u, 0));

21 // EOM

8.1. A PARALLEL FREEFEM++ SCRIPT 235

Listing 8.1: ./PARALLEL/FreefemProgram/elasticity-3d.edp

A first geometry is defined via a three dimensional mesh of a (simplified)
bridge that is built in two steps:

• the mesh of a two dimensional bridge is built ThGlobal2d.

• a third dimension is added to the previous 2D mesh using the
buildlayers function.

Note that the three dimensional mesh is not actually built but a macro is
defined.

real depth = 0.25;
32 int discrZ = getARGV(”−discrZ”, 1);

real L = 2.5;
real H = 0.71;
real Hsupp = 0.61;

36 real r = 0.05;
real l = 0.35;
real h = 0.02;
real width = 2.5∗L/4.;

40 real alpha = asin(h/(2.∗r))/2;
/∗# twoDsequentialMesh #∗/
border a0a(t=0, 1){x=0; y=−t∗Hsupp; label=2;};
border a0(t=0, (L − width)/2.){x=t; y=−Hsupp; label=1;};

44 border a0b(t=0, 1){x=(L − width)/2.; y=−(1−t)∗Hsupp; label=2;};
border aa(t=0, 0.5ˆ(1/0.75)){x=L/2. − width/2.∗cos(pi∗tˆ0.75); ⤸

Ç y=sin(pi∗tˆ0.75)/4.; label=2;};
border ab(t=0, 0.5ˆ(1/0.75)){x=L/2. + width/2.∗cos(pi∗tˆ0.75); ⤸

Ç y=sin(pi∗tˆ0.75)/4.; label=2;};
border a2a(t=0, 1){x=(L + width)/2.; y=−t∗Hsupp; label=2;};

48 border a2(t=(L + width)/2., L){x=t; y=−Hsupp; label=1;};
border a2b(t=0, 1){x=L; y=−(1−t)∗Hsupp; label=2;};
border e(t=0, 1){x=L; y=t∗H; label=2;};
border c(t=0, 1){x=(1−t)∗L; y=H; label=3;};

52 border d(t=0, 1){x=0; y=(1−t)∗H; label=2;};
mesh ThGlobal2d = buildmesh(a0(global ∗ (L − width)/(2.∗L)) + ⤸

Ç a0a(global∗Hsupp/L) + a0b(global∗Hsupp/L) + a2(global ∗ (L − ⤸
Ç width)/(2∗L)) + a2a(global∗Hsupp/L) + a2b(global∗Hsupp/L) + aa(global ⤸
Ç ∗ width/(2∗L)) + ab(−global ∗ width/(2∗L)) + e(global∗H/L) + c(global) ⤸
Ç + d(global∗H/L));

ThGlobal2d = adaptmesh(ThGlobal2d, 1/200., IsMetric=1, nbvx=100000);
/∗# twoDsequentialMeshEnd #∗/

56 macro minimalMesh()Cube(CC, BB, LL)// EOM
macro generateTh(name)name = buildlayers(ThGlobal2d, discrZ, zbound=[0, ⤸

Ç depth])// EOM
int[int, int] LL = [[1,3], [2,2], [2,2]];
real[int, int] BB = [[0,10], [0,1], [0,1]];

60 int[int] CC = [1, 1, 1];

236 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

Listing 8.2: ./PARALLEL/FreefemProgram/elasticity-3d.edp
This geometry is partitioned and distributed among the MPI processes.

Figure 8.1: Partitioning into eight subdomains

From now on, all the tasks can be computed concurrently, meaning that
each MPI process is in charge of only one subdomain and variables are local
to each process. Then a parallel mesh refinement is made by cutting each
tetrahedra into 8 tetrahedra. This corresponds to a mesh refinement factor
s equals to 2. Note also that at this point, the displacement field u is
approximated by P2 continuous piecewise quadratic functions.

func Pk = [P2, P2, P2];

75 build(generateTh, Th, ThBorder, ThOverlap, D, numberIntersection, ⤸
Ç arrayIntersection, restrictionIntersection, Wh, Pk, mpiCommWorld, s)

ThGlobal2d = square(1, 1);

Listing 8.3: ./PARALLEL/FreefemProgram/elasticity-3d.edp
The Young and Poisson modulus are heterogeneous and the exterior forces
are constant.

Remark 8.1.1 In our numerical experiments, Poisson’s ratio being rela-
tively far from the incompressible limit of 0.5, it is not necessary to switch
to a mixed finite element formulation since there is no locking effect.

8.1. A PARALLEL FREEFEM++ SCRIPT 237

real f = −900000.;
func real stripes(real a, real b, real paramA, real paramB) {

103 int da = int(a ∗ 10);
return (da == (int(da / 2) ∗ 2) ? paramB : paramA);

}

107 macro coefficients(meshName, PhName)
fespace PhName(meshName, P0);
PhName Young = stripes(y, x, 2e11, 1e7);
PhName poisson = stripes(y, x, 0.25, 0.45);

111 PhName tmp = 1. + poisson;
PhName mu = Young / (2. ∗ tmp);
PhName lambda = Young ∗ poisson / (tmp ∗ (1. − 2. ∗ poisson));// EOM

Listing 8.4: ./PARALLEL/FreefemProgram/elasticity-3d.edp

8.1.2 Native DDM solvers and PETSc Interface

At this point, the physics, the geometry and the discretization of the three
dimensional elasticity problem have been given in the script. In order to
find the finite element approximation of the displacement field, we have
to solve the corresponding global algebraic system which is actually never
assembled. Its distributed storage among the processes depends on whether
we use native FreeFem++ solvers or other solvers via the PETSc interface.
The native FreeFem++ solvers are:

• a parallel GMRES solver which is the default parallel solver in
FreeFem++,

• a one-level Schwarz method, either ASM or RAS,

• the two-level Schwarz method with a GenEO coarse space, § 7.

They are implemented inside HPDDM, a C++ framework for high-
performance domain decomposition methods, available at the following
URL: https://github.com/hpddm/hpddm. Its interface with FreeFem++
also include substructuring methods, like the FETI and BDD methods, as
described § 5. The solvers interfaced with PETSc are:

• the PETSc parallel GMRES solver,

• the multi frontal parallel solver MUMPS [5],

• GAMG: an algebraic multigrid solver [2].

https://github.com/hpddm/hpddm

238 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

if(mpirank == 0) {
82 cout << ”What kind of solver would you like to use ?” << endl;

cout << ” [1] PETSc GMRES” << endl;
cout << ” [2] GAMG” << endl;
cout << ” [3] MUMPS” << endl;

86 cout << ” [10] ASM” << endl;
cout << ” [11] RAS” << endl;
cout << ” [12] Schwarz GenEO” << endl;
cout << ” [13] GMRES” << endl;

90 cout << ”Please type in a number: ”;
cin >> solver;
if(solver != 1 && solver != 2 && solver != 3 && solver != 4 && solver ⤸

Ç != 10 && solver != 11 && solver != 12) {
cout << ”Wrong choice, using GMRES instead !” << endl;

94 solver = 10;
}

}
broadcast(processor(0), solver);

Listing 8.5: ./PARALLEL/FreefemProgram/elasticity-3d.edp

FreeFem++ interface If the native FreeFem++ solvers are used, the
local stiffness matrices are assembled concurrently:

assemble(A, rhs, Wh, Th, ThBorder, Varf)

Listing 8.6: ./PARALLEL/FreefemProgram/elasticity-3d.edp
The local operator is attached to a distributed structure dschwarz which
is a FreeFem++ type. If necessary, the GenEO coarse space is built
:

matrix N;
162 if(mpisize > 1 && solver == 12) {

int[int] parm(1);
parm(0) = getARGV(”−nu”, 20);
EVproblem(vPbNoPen, Th, Ph)

166 matrix noPen = vPbNoPen(Wh, Wh, solver = CG);
attachCoarseOperator(mpiCommWorld, Aglob, A = noPen, /∗threshold = 2. ⤸

Ç ∗ h[].max / diam,∗/ parameters = parm);
}

Listing 8.7: ./PARALLEL/FreefemProgram/elasticity-3d.edp
The distributed linear system is solved by a call that includes addi-
tional command line arguments that are automatically passed to the
solvers.

DDM(Aglob, u[], rhs, dim = getARGV(”−gmres restart”, 60), iter = ⤸
Ç getARGV(”−iter”, 100), eps = getARGV(”−eps”, 1e−8), solver = ⤸
Ç solver − 9);

8.1. A PARALLEL FREEFEM++ SCRIPT 239

Listing 8.8: ./PARALLEL/FreefemProgram/elasticity-3d.edp

PETSc interface If the PETSc interface is used, the local stiffness matrix
K ∶= Aii ∶= RiARTi and the local load vector rhs are built concurrently from
the variational forms for all subdomains 1 ≤ i ≤ N .

Varf(vPb, Th, Ph)
matrix A = vPb(Wh, Wh);
rhs = vPb(0, Wh);

124 dmatrix Mat(A, arrayIntersection, restrictionIntersection, D, bs = 3);

Listing 8.9: ./PARALLEL/FreefemProgram/elasticity-3d.edp
dmatrix is a FreeFem++ type.
If an algebraic multigrid method is used via the PETSc interface, the near
null space must be provided in order to enhance the convergence, see e.g.
[103]. For an elasticity problem, it is made of the rigid body motions which
are three translations and three rotations, here along the axis.

Wh[int] def(Rb)(6);
[Rb[0], RbB[0], RbC[0]] = [1, 0, 0];

131 [Rb[1], RbB[1], RbC[1]] = [0, 1, 0];
[Rb[2], RbB[2], RbC[2]] = [0, 0, 1];
[Rb[3], RbB[3], RbC[3]] = [y, −x, 0];
[Rb[4], RbB[4], RbC[4]] = [−z, 0, x];

135 [Rb[5], RbB[5], RbC[5]] = [0, z, −y];

Listing 8.10: ./PARALLEL/FreefemProgram/elasticity-3d.edp
Eventually, the solver may be called by passing command line parameters
to PETSc:

set(Mat, sparams = ”−pc type gamg −ksp type gmres −pc gamg threshold ⤸
Ç 0.05 −ksp monitor”, nearnullspace = Rb);

}
else if(solver == 3)

141 set(Mat, sparams = ”−pc type lu −pc factor mat solver package mumps ⤸
Ç −mat mumps icntl 7 2 −ksp monitor”);

mpiBarrier(mpiCommWorld);
timing = mpiWtime();

u[] = Mat−1 ∗ rhs;

Listing 8.11: ./PARALLEL/FreefemProgram/elasticity-3d.edp

8.1.3 Validation of the computation

The true residual is computed by first performing a parallel matrix vec-
tor product either via matrix Mat that is interfaced with the PETSc inter-
face

240 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

res = Mat ∗ u[];

Listing 8.12: ./PARALLEL/FreefemProgram/elasticity-3d.edp
or via the matrix Aglob in the “native” FreeFem++ Schwarz for-
mat.

res = Aglob ∗ u[];

Listing 8.13: ./PARALLEL/FreefemProgram/elasticity-3d.edp
Once the linear system is solved and the residual is computed, the sequel
of the program does not depend on whether a FreeFem++ or a PETSc
interface was used. The residual is subtracted from the distributed right-
hand side rhs and distributed scalar product are performed based on
Lemma 8.3.1

res −= rhs;
real rhsnorm = dscalprod(D, rhs, rhs);
real dist = dscalprod(D, res, res);

182 if(mpirank == 0)
cout << ” −−− normalized Lˆ2 norm of the true residual: ” << sqrt(dist / ⤸

Ç rhsnorm) << endl;

Listing 8.14: ./PARALLEL/FreefemProgram/elasticity-3d.edp
The three dimensional solution can be visualized by the plot com-
mand.

plotMPI(Th, u[], ”Global solution”, Pk, def, 3, 1);
meshN ThMoved = movemesh3(Th, transfo = [x + u, y + uB, z + uC]);
plotMPI(ThMoved, u[], ”Moved mesh”, Pk, def, 3, 1);

Listing 8.15: ./PARALLEL/FreefemProgram/elasticity-3d.edp

Timings for the solvers are given in Section 8.2.

8.1.4 Parallel Script

For sake of completeness, the full script is given here, split into five
pieces.

8.1. A PARALLEL FREEFEM++ SCRIPT 241

macro K()real// EOM
macro def()def3// EOM

4 macro init()init3// EOM
macro BC()BC3// EOM
macro meshN()mesh3// EOM
macro intN()int3d// EOM

8 macro measureN()volume// EOM
macro bbN()bb3// EOM
include ”../../../../Pierre/src/argv.idp”
include ”../../../../Pierre/src/macro 3d.idp”

12

/∗# problemPhysics #∗/
real Sqrt = sqrt(2.);
macro epsilon(u)[dx(u), dy(u#B), dz(u#C), (dz(u#B) + dy(u#C)) / Sqrt, (dz(u) ⤸

Ç + dx(u#C)) / Sqrt, (dy(u) + dx(u#B)) / Sqrt]// EOM
16 macro div(u)(dx(u) + dy(u#B) + dz(u#C))// EOM

macro Varf(varfName, meshName, PhName)
coefficients(meshName, PhName)

20 varf varfName(def(u), def(v)) = intN(meshName)(lambda ∗ div(u) ∗ div(v) + 2. ⤸
Ç ∗ mu ∗ (epsilon(u)’ ∗ epsilon(v))) + intN(meshName)(f ∗ vB) + on(1, ⤸
Ç BC(u, 0));

// EOM
/∗# problemPhysicsEnd #∗/
/∗# vfGENEO #∗/

24 macro EVproblem(varfName, meshName, PhName)
coefficients(meshName, PhName)
varf varfName(def(u), def(v)) = intN(meshName)(lambda ∗ div(u) ∗ div(v) + 2. ⤸

Ç ∗ mu ∗ (epsilon(u)’ ∗ epsilon(v))) + on(1, BC(u, 0));
// EOM

28 /∗# vfGENEOEnd #∗/

/∗# sequentialMesh #∗/
real depth = 0.25;

32 int discrZ = getARGV(”−discrZ”, 1);
real L = 2.5;
real H = 0.71;
real Hsupp = 0.61;

36 real r = 0.05;
real l = 0.35;
real h = 0.02;
real width = 2.5∗L/4.;

40 real alpha = asin(h/(2.∗r))/2;

Listing 8.16: ./PARALLEL/FreefemProgram/elasticity-3d.edp

242 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

border a0a(t=0, 1){x=0; y=−t∗Hsupp; label=2;};
border a0(t=0, (L − width)/2.){x=t; y=−Hsupp; label=1;};

44 border a0b(t=0, 1){x=(L − width)/2.; y=−(1−t)∗Hsupp; label=2;};
border aa(t=0, 0.5ˆ(1/0.75)){x=L/2. − width/2.∗cos(pi∗tˆ0.75); ⤸

Ç y=sin(pi∗tˆ0.75)/4.; label=2;};
border ab(t=0, 0.5ˆ(1/0.75)){x=L/2. + width/2.∗cos(pi∗tˆ0.75); ⤸

Ç y=sin(pi∗tˆ0.75)/4.; label=2;};
border a2a(t=0, 1){x=(L + width)/2.; y=−t∗Hsupp; label=2;};

48 border a2(t=(L + width)/2., L){x=t; y=−Hsupp; label=1;};
border a2b(t=0, 1){x=L; y=−(1−t)∗Hsupp; label=2;};
border e(t=0, 1){x=L; y=t∗H; label=2;};
border c(t=0, 1){x=(1−t)∗L; y=H; label=3;};

52 border d(t=0, 1){x=0; y=(1−t)∗H; label=2;};
mesh ThGlobal2d = buildmesh(a0(global ∗ (L − width)/(2.∗L)) + ⤸

Ç a0a(global∗Hsupp/L) + a0b(global∗Hsupp/L) + a2(global ∗ (L − ⤸
Ç width)/(2∗L)) + a2a(global∗Hsupp/L) + a2b(global∗Hsupp/L) + aa(global ⤸
Ç ∗ width/(2∗L)) + ab(−global ∗ width/(2∗L)) + e(global∗H/L) + c(global) ⤸
Ç + d(global∗H/L));

ThGlobal2d = adaptmesh(ThGlobal2d, 1/200., IsMetric=1, nbvx=100000);
/∗# twoDsequentialMeshEnd #∗/

56 macro minimalMesh()Cube(CC, BB, LL)// EOM
macro generateTh(name)name = buildlayers(ThGlobal2d, discrZ, zbound=[0, ⤸

Ç depth])// EOM
int[int, int] LL = [[1,3], [2,2], [2,2]];
real[int, int] BB = [[0,10], [0,1], [0,1]];

60 int[int] CC = [1, 1, 1];
/∗# sequentialMeshEnd #∗/

include ”Schwarz/additional macro.idp”
64

int overlap = getARGV(”−overlap”, 1);

if(mpirank == 0) {
68 cout << ” −−− ” << mpirank << ”/” << mpisize;

cout << ” − input parameters: global size = ” << global << ” − refinement ⤸
Ç factor = ” << s << ” − precision = ” << getARGV(”−eps”, 1e−8) << ⤸
Ç ” − overlap = ” << overlap << ” − with partitioner? = ” << ⤸
Ç partitioner << endl;

}

72 /∗# parallelMesh #∗/
func Pk = [P2, P2, P2];

build(generateTh, Th, ThBorder, ThOverlap, D, numberIntersection, ⤸
Ç arrayIntersection, restrictionIntersection, Wh, Pk, mpiCommWorld, s)

76 ThGlobal2d = square(1, 1);

Listing 8.17: ./PARALLEL/FreefemProgram/elasticity-3d.edp

8.1. A PARALLEL FREEFEM++ SCRIPT 243

Wh def(u);
80 /∗# chooseSolver #∗/

if(mpirank == 0) {
cout << ”What kind of solver would you like to use ?” << endl;
cout << ” [1] PETSc GMRES” << endl;

84 cout << ” [2] GAMG” << endl;
cout << ” [3] MUMPS” << endl;
cout << ” [10] ASM” << endl;
cout << ” [11] RAS” << endl;

88 cout << ” [12] Schwarz GenEO” << endl;
cout << ” [13] GMRES” << endl;
cout << ”Please type in a number: ”;
cin >> solver;

92 if(solver != 1 && solver != 2 && solver != 3 && solver != 4 && solver ⤸
Ç != 10 && solver != 11 && solver != 12) {

cout << ”Wrong choice, using GMRES instead !” << endl;
solver = 10;

}
96 }

broadcast(processor(0), solver);
/∗# chooseSolverEnd #∗/

100 /∗# physicalParameters #∗/
real f = −900000.;
func real stripes(real a, real b, real paramA, real paramB) {

int da = int(a ∗ 10);
104 return (da == (int(da / 2) ∗ 2) ? paramB : paramA);

}

macro coefficients(meshName, PhName)
108 fespace PhName(meshName, P0);

PhName Young = stripes(y, x, 2e11, 1e7);
PhName poisson = stripes(y, x, 0.25, 0.45);
PhName tmp = 1. + poisson;

112 PhName mu = Young / (2. ∗ tmp);
PhName lambda = Young ∗ poisson / (tmp ∗ (1. − 2. ∗ poisson));// EOM

Listing 8.18: ./PARALLEL/FreefemProgram/elasticity-3d.edp

244 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

116 real[int] res(Wh.ndof);
real[int] rhs(Wh.ndof);

if(solver == 1 || solver == 2 || solver == 3) {
120 /∗# StiffnessRhsMatrix #∗/

Varf(vPb, Th, Ph)
matrix A = vPb(Wh, Wh);
rhs = vPb(0, Wh);

124 dmatrix Mat(A, arrayIntersection, restrictionIntersection, D, bs = 3);
/∗# StiffnessRhsMatrixEnd #∗/

// sparams will override command line arguments !
if(solver == 2) {

128 /∗# rigidBodyMotion #∗/
Wh[int] def(Rb)(6);
[Rb[0], RbB[0], RbC[0]] = [1, 0, 0];
[Rb[1], RbB[1], RbC[1]] = [0, 1, 0];

132 [Rb[2], RbB[2], RbC[2]] = [0, 0, 1];
[Rb[3], RbB[3], RbC[3]] = [y, −x, 0];
[Rb[4], RbB[4], RbC[4]] = [−z, 0, x];
[Rb[5], RbB[5], RbC[5]] = [0, z, −y];

136 /∗# rigidBodyMotionEnd #∗/
/∗# SolverPETSc #∗/

set(Mat, sparams = ”−pc type gamg −ksp type gmres −pc gamg threshold ⤸
Ç 0.05 −ksp monitor”, nearnullspace = Rb);

}
140 else if(solver == 3)

set(Mat, sparams = ”−pc type lu −pc factor mat solver package mumps ⤸
Ç −mat mumps icntl 7 2 −ksp monitor”);

mpiBarrier(mpiCommWorld);
timing = mpiWtime();

144 u[] = Mat−1 ∗ rhs;
/∗# SolverPETScEnd #∗/

timing = mpiWtime() − timing;
/∗# matrixVectorPETSc #∗/

148 res = Mat ∗ u[];
/∗# matrixVectorPETScEnd #∗/
}
else {

152 /∗# localMatrix #∗/
assemble(A, rhs, Wh, Th, ThBorder, Varf)

Listing 8.19: ./PARALLEL/FreefemProgram/elasticity-3d.edp

8.1. A PARALLEL FREEFEM++ SCRIPT 245

156 dschwarz Aglob(A, arrayIntersection, restrictionIntersection, scaling = D);

mpiBarrier(mpiCommWorld);
timing = mpiWtime();

160 /∗# coarseSpace #∗/
matrix N;
if(mpisize > 1 && solver == 12) {

int[int] parm(1);
164 parm(0) = getARGV(”−nu”, 20);

EVproblem(vPbNoPen, Th, Ph)
matrix noPen = vPbNoPen(Wh, Wh, solver = CG);
attachCoarseOperator(mpiCommWorld, Aglob, A = noPen, /∗threshold = 2. ⤸

Ç ∗ h[].max / diam,∗/ parameters = parm);
168 }

/∗# coarseSpaceEnd #∗/
/∗# SolverDDM #∗/
DDM(Aglob, u[], rhs, dim = getARGV(”−gmres restart”, 60), iter = ⤸

Ç getARGV(”−iter”, 100), eps = getARGV(”−eps”, 1e−8), solver = ⤸
Ç solver − 9);

172 /∗# SolverDDMEnd #∗/
timing = mpiWtime() − timing;
/∗# matrixVectorFFpp #∗/
res = Aglob ∗ u[];

176 /∗# matrixVectorFFppEnd #∗/
}
/∗# trueResidual #∗/
res −= rhs;

180 real rhsnorm = dscalprod(D, rhs, rhs);
real dist = dscalprod(D, res, res);
if(mpirank == 0)

cout << ” −−− normalized Lˆ2 norm of the true residual: ” << sqrt(dist / ⤸
Ç rhsnorm) << endl;

184 /∗# trueResidualEnd #∗/

mpiBarrier(mpiCommWorld);
if(mpirank == 0)

188 cout << ” −−− time to solution: ” << timing << endl;
/∗# Visualization #∗/
plotMPI(Th, u[], ”Global solution”, Pk, def, 3, 1);
meshN ThMoved = movemesh3(Th, transfo = [x + u, y + uB, z + uC]);

192 plotMPI(ThMoved, u[], ”Moved mesh”, Pk, def, 3, 1);
/∗# VisualizationEnd #∗/

Listing 8.20: ./PARALLEL/FreefemProgram/elasticity-3d.edp

246 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

Table 8.1: 263,000 unknowns with 8 cores (timings are in seconds)

Solver Time to solution Number of iterations

GAMG—τ = 0.01 211.5 383
GAMG—τ = 0.025 131.7 195
GAMG—τ = 0.05 138.8 172
GAMG—τ = 0.1 not available > 400 (in 333.3)
GAMG—τ = 0.2 not available > 400 (in 1395.8)
GenEO—ν = 20 135.2 192
GenEO—ν = 25 112.1 107
GenEO—ν = 30 103.5 69
GenEO—ν = 35 96.1 38
GenEO—ν = 40 103.4 34

MUMPS 68.1 3

8.2 Numerical experiments

In § 8.2.1, we present results obtained on few cores with the above script
from § 8.1. Section 8.2.2 shows the scalability of the method with a large
number of cores solving both the system of linear elasticity and a problem
of scalar diffusion.

8.2.1 Small scale computations

Results and timings for solving this problem with 263,000 unknowns on
8 cores running at 1.6 GHz are given in Table 8.1. The parameter τ is
the relative threshold used for dropping edges in the aggregation graphs of
the multigrid preconditioner, while the parameter ν is the number of local
deflation vectors computed per subdomain in the GenEO coarse space. The
multigrid implementation is based on GAMG [2], which is bundled into
PETSc [8, 7]. The results for exactly the same problem as before on 64
cores are given in Table 8.2.

For the GenEO method, the computational times vary slightly when the
parameter ν varies around its optimal value. The iteration count decreases
when the parameter ν increases. On the other hand, when ν is increased the
cost of the factorization of the coarse operator increases. For the multigrid
method, the computational times vary rapidly with the parameter τ .

8.2. NUMERICAL EXPERIMENTS 247

Solver Time to solution Number of iterations

GAMG—τ = 0.01 30.6 310
GAMG—τ = 0.025 26.6 232
GAMG—τ = 0.05 25.7 179
GAMG—τ = 0.1 not available > 400 (in 62.5 sec.)
GAMG—τ = 0.2 not available > 400 (in 263.7 sec.)
GenEO—ν = 20 25.3 200
GenEO—ν = 25 15.1 32
GenEO—ν = 30 15.5 26

MUMPS not available fail to setup

Table 8.2: 263,000 unknowns with 64 cores (timings are in seconds)

8.2.2 Large Scale Computations

Results were obtained on Curie, a Tier-0 system for PRACE1, with a
peak performance of 1.7 PFLOP/s. They have been first published in the
article [110] nominated for the best paper award at SC132 and were also
disseminated in PRACE Annual Report 2013 [143, pp. 22–23] as a “success
story”. Curie is composed of 5 040 nodes made of two eight-core Intel Sandy
Bridge processors clocked at 2.7 GHz. Its interconnect is an InfiniBand
QDR full fat tree and the MPI implementation was BullxMPI version
1.1.16.5. Intel compilers and MKL in their version 13.1.0.146 were used for
all binaries and shared libraries, and as the linear algebra backend for both
dense and sparse computations in the framework. Finite element matrices
are obtained with FreeFem++. The speedup and efficiency are displayed
in terms of number of MPI processes. In these experiments, each MPI
process is assigned a single subdomain and two OpenMP threads. Since
the preconditioner is not symmetric, we use GMRES. The computation is
stopped when the relative residual is less than 10−6.

Strong scaling experiments

We modified the script of section 8.1 to handle the two dimensional elasticity
case in addition to the three dimensional case. In 2D, piecewise cubic basis
functions are used and the system of equations has approximately 33 nonzero
entries per row. It is of constant size equal close to two billions unknowns. In
3D, piecewise quadratic basis functions are used and the system of equations
has approximately 83 nonzero entries per row. The system is of constant
size equal close to 300 million unknowns. These are so-called strong scaling

1Partnership for Advanced Computing in Europe. url: http://www.prace-ri.eu/.
2Among five other papers out of 90 accepted papers out of 457 submissions.

http://www.prace-ri.eu/

248 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

experiments. Geometries are partitioned with METIS. After the partitioning
step, each local mesh is refined concurrently by splitting each triangle or
tetrahedron into multiple smaller elements. This means that the simulation
starts with a relatively poor global mesh (26 million triangles in 2D, 10
million tetrahedra in 3D), which is then refined in parallel (thrice in 2D,
twice in 3D). A nice speedup is obtained from 1 024 × 2 = 2 048 to 8192 × 2
= 16 384 threads as shown 8.2.

1 024
2 048

4 096
8 192

40

100

200

500

of processes

Ru
nt
im

e
(s
ec
on

ds
)

Linear speedup
3D 2D

Figure 8.2: Timings of various simulations

In 3D, we achieve superlinear speedups when going from one thousand to
four thousand cores as shown on Figure 8.2. From four thousand to eight
thousand cores, the speedup is sublinear. At peak performance, on 16 384

threads, the speedup relative to 2 048 threads equals
530.56

51.76
which is ap-

proximately a tenfold decrease in runtime. In 2D, the speedup is linear at
the beginning and then sublinear. At peak performance, on 16 384 threads,

the speedup relative to 2 048 threads equals
213.20

34.54
which is approximately

a sixfold decrease in runtime.
According to Table 8.4, the costly operations in the construction of the two-
level preconditioner are the solution of each local eigenvalue problem (col-
umn Deflation) and the factorization of each local matrix {Ai}Ni=1 (column
Factorization). In 3D, the complexity of the factorization phase typically
grows superlinearly with respect to the number of unknowns. In both 2D
and 3D, the solution of the eigenproblem is the limiting factor for achiev-
ing better speedups. This can be explained by the fact that the Lanczos
method, on which ARPACK is based, tends to perform better for larger

ratios {ni
γi

}
1≤i≤N

, but these values decrease as subdomains get smaller. The

8.2. NUMERICAL EXPERIMENTS 249

local number of deflation vectors is uniform across subdomains and ranges
from fifteen to twenty. For fewer but larger subdomains, the time to compute
the solution, column Solution, i.e. the time for the GMRES to converge, is
almost equal to the one spent in local forward eliminations and back substi-
tutions and communication times are negligible. When the decompositions
become bigger, subdomains are smaller, hence each local solution is com-
puted faster and global communications have to be taken into account.
To infer a more precise idea of the communication-to-computation ratio,
Figure 8.3 is quite useful. It shows for each computation the relative cost
of each phase in percentage. The first two steps for computing the local
factorizations and deflation vectors are purely concurrent and do not involve
any communication. Thus, it is straightforward to get a lower bound of the
aforementioned ratio. The time spent for assembling the coarse operator and
for the Krylov method to converge is comprised of both communications and
computations.

1 024
2 048

4 096
8 192

0%

20%

40%

60%

80%

100%

of processes

Ra
tio

1 024
2 048

4 096
8 192

0%

20%

40%

60%

80%

100%

of processes

Factorization
Deflation

Coarse operator
Krylov method

Figure 8.3: Comparison of the time spent in various steps for building and
using the preconditioner in 2D (left) and 3D (right).

250 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

1 024 177.9 s 264.0 s 77.4 s 28 530.6 s

293.98 · 1062 048 62.7 s 97.3 s 20.4 s 23 186.0 s
4 096 19.6 s 35.7 s 9.7 s 20 73.1 s
8 192 6.3 s 22.1 s 6.0 s 27 51.8 s

2D

1 024 37.0 s 131.8 s 34.3 s 28 213.2 s

2.14 · 1092 048 17.5 s 53.8 s 17.5 s 28 95.1 s
4 096 6.9 s 27.1 s 8.6 s 23 47.7 s
8 192 2.0 s 20.8 s 4.8 s 23 34.5 s

Figure 8.4: Breakdown of the timings used for figure 8.3.

To assess the need for such a sophisticated preconditioner, the convergence
histogram of a simple one-level method versus this two-level method is dis-
played in Figure 8.5. One can easily understand that, while the cost of
building the preconditioner cannot be neglected, it is necessary to ensure
the convergence of the Krylov method: after more than 10 minutes, the
one-level preconditioner barely decreases the relative error to 2×10−5, while
it takes 214 seconds for the two-level method to converge to the desired
tolerance, cf. Table 8.4 row #5. That is at least a threefold speedup. For
larger decompositions, the need for two-level methods is even more obvious.

8.2. NUMERICAL EXPERIMENTS 251

0 100 200 300 400

10−6

10−5

10−4

10−3

10−2

of iterations

Re
la
tiv

e
re
si
du

al
er
ro
r

M−1
RAS eq. (1.15)

P−1
A-DEF1 eq. (1.19a)

Figure 8.5:
Convergence of the restarted GMRES(40) for a 2D problem
of linear elasticity using 1 024 subdomains. Timings for the
setup and solution phases using P−1

A-DEF1 are available in 8.4,
using M−1

RAS, the convergence is not reached after 10 minutes.

Weak scaling experiments

Moving on to the weak scaling properties, see Definition 3.1.2, the problem
now being solved is a scalar equation of diffusivity

−∇ ⋅ (κ∇u) = 1 in Ω
u = 0 on [0; 1] × {0} . (8.3)

with highly heterogeneous coefficients. Parameter κ varies from 1 to 3 ⋅ 106

as displayed in Figure 8.6. The partitioned domain is Ω = [0; 1]d (d = 2 or
3) with piecewise quartic basis functions in 2D yielding linear systems with
approximately 23 nonzero entries per row, and piecewise quadratic basis
functions in 3D yielding linear systems with approximately 27 nonzero
entries per row. After using Green’s formula, its variational formulation is,
for all test functions v ∈H1

0(Ω):

252 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

κ(x, y)

3 · 106

2 ·106

106

1

Figure 8.6: Diffusivity κ used for the two-dimensional
weak scaling experiments with channels and
inclusions.

a(u, v) ∶= ∫
Ω
κ∇u ⋅ ∇v − ∫

Ω
f ⋅ v = 0 .

where f is a source term. Such an equation typically arises for modeling
flows in porous media, or in computational fluid dynamics. The only work
needed is changing the mesh used for computations, as well as the varia-
tional formulation of the problem in FreeFem++ DSL. On average, there is
a constant number of degrees of freedom per subdomain equal to roughly
280 thousands in 3D, and nearly 2.7 millions in 2D. As for the strong scaling
experiment, after building and partitioning a global coarse mesh with few
millions of elements, each local mesh is refined independently to ensure a
constant size per subdomain as the decomposition gets bigger. The efficiency
remains almost 90% thanks to only a slight change in the factorization time
for the local problems and in the construction of the deflation vectors. In
3D, the initial problem of 74 million unknowns is solved in 200 seconds on
512 threads. When using 16 384 threads, the size of the problem is approx-
imately 2.3 billion unknowns. It is solved in 215 seconds for an efficiency of
approximately 90%. In 2D, the initial problem of 695 million unknowns is
solved in 175 seconds on 512 threads. When using 16 384 threads, the prob-
lem size is approximately 22.3 billions unknowns. It is solved in 187 seconds
for an efficiency of approximately 96%. For this kind of scales, the most
penalizing step in the algorithm is the construction of the coarse operator,
especially in 3D. A non negligible increase in the time spent to assemble the
Galerkin matrix E is responsible for the slight loss of efficiency.

8.3. FREEFEM++ ALGEBRAIC FORMULATION 253

8.3 FreeFem++ Algebraic Formulation

We present here the way we compute a global matrix vector product or
the action of a global one-level preconditioner, using only their local com-
ponents plus point-to-point (between a pair of processes) communications.
The special feature of this implementation is that no global numbering of
the unknowns is needed. This is the way domain decomposition methods
have been implemented in FreeFem++.
Recall that the set of indices N is decomposed into N sets (Ni)1≤i≤N . A
MPI-process is attached to each subset. Let n ∶= #N be the number of de-
grees of freedom of the global finite element space. A global vector U ∈ Rn
is stored in a distributed way. Each process i , 1 ≤ i ≤ N , stores the local
vector Ui ∶= RiU ∈ R#Ni where Ri is the restriction operator introduced
in chapter 1 Definition 1.3.1. A total storage of ∑Ni=1 #Ni scalars must be
allocated, which is larger than the size n of the original system. The extra
cost in memory is not a problem since it is distributed among the N MPI
processes. The unknowns in the intersection of two subsets of degrees of
freedom are duplicated. It is important to ensure that the result (vi)1≤i≤N

of all linear algebra operators applied to this representation will preserve its
coherence, that is the duplicated degrees of freedom share the same values
across the subdomains Ni, 1 ≤ i ≤ N :

Definition 8.3.1 A sequence of local vectors (Vi)1≤i≤N ∈ ΠN
i=1R#Ni is co-

herent if there exists a vector V ∈ Rn such that for all 1 ≤ i ≤ N , we have:

Vi = RiV .

Another equivalent definition could have been that for all 1 ≤ i, j ≤ N , we
have:

RTj RjR
T
i Ui = RTi RiRTj Uj .

We have to define basic linear algebra operations based on this distributed
storage and to ensure that all linear algebra operations are performed so
that the coherence is enforced, up to round-off errors.
We start with the scalar product of two distributed vectors:

Lemma 8.3.1 Let U,V ∈ Rn. We have the following formula for their
scalar product (U,V):

(U,V) =
N

∑
i=1

(RiU,DiRiV) .

Proof Using the partition of unity (1.25)

Id =
N

∑
i=1

RTi DiRi ,

254 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

we have:

(U,V) = (U,
N

∑
i=1

RTi DiRiV) =
N

∑
i=1

(RiU,DiRiV)

=
N

∑
i=1

(Ui,DiVi) .

Local scalar products are performed concurrently. Thus, the implemen-
tation is parallel except for the sum which corresponds to a MPI Reduce

call across the N MPI processes. Note also that the implementation relies
on the knowledge of a partition of unity so that the FreeFem++ syntax is
dscalprod(D,u,v).

A axpy procedure y ← αx + y for x, y ∈ Rn and α ∈ R is easily implemented
concurrently for distributed vectors in the form:

yi ← αxi + yi ,∀1 ≤ i ≤ N .

The matrix-vector product is more intricate. Let A ∈ Rn×n be a matrix and
let U,V ∈ Rn be two global vectors. We want to compute V ∶= AU based
on a distributed storage of U in the form (Ui)1≤i≤N . Using the partition of
unity identity (1.25), we have for all 1 ≤ i ≤ N :

Vi ∶= RiAU =
N

∑
j=1

RiAR
T
j DjRjU =

N

∑
j=1

RiAR
T
j DjUj .

If matrix A arises from a finite element discretization of a partial differential
equation as it is the case here when using FreeFem++, it is possible to
simplify the matrix-vector product. The sparsity pattern of matrix A follows
the one of the graph of the underlying mesh. Let k, l be two degrees of
freedom associated to the basis functions φk and φl. If their supports have
a zero measure intersection, then:

Akl = 0 .

We can take advantage of this sparsity pattern in the following way. A degree
of freedom k ∈ Nj is interior to Nj if for all i ≠ j and all l ∈ Ni ∖Nj , Akl = 0.
Otherwise, it is said to be a boundary degree of freedom. If the overlap is
sufficient, it is possible to choose diagonal matrix Dj with zero entries for
the boundary degrees of freedom. Then all non zero rows of matrix ARTj Dj

have indices in Nj that is:

RiAR
T
j Dj = RiRTj RjARTj Dj .

8.3. FREEFEM++ ALGEBRAIC FORMULATION 255

Moreover, for non neighboring subdomains indexed i and j, the interaction
matrix RiAR

T
j is zero. Denoting Oi the neighbors of a subdomain i

Oi ∶= {j ∈ J1;NK ∶ j ≠ i and RiAR
T
j ≠ 0} ,

we have:

Vi ∶= RiAU =
N

∑
j=1

RiAR
T
j DjRjU = (RiARTi

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
Aii

)DiUi+ ∑
j∈Oi

RiR
T
j (RjARTj

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Ajj

)DjUj .

Matrix Ajj ∶= RjARTj is local to domain j. The matrix operation RiR
T
j

corresponds to copy data on the overlap from subdomain j to subdomain i.
Therefore, the matrix vector product is computed in three steps:

• concurrent computing of (RjARTj)DjUj for all 1 ≤ j ≤ N ;

• neighbor to neighbor MPI-communications;

• concurrent sum of neighbor contributions.

More details can be found in the PhD manuscript of P. Jolivet written in
English [111].

Since we have basic linear algebra subroutines, we have all the necessary
ingredients for solving concurrently the linear system Ax = b by a Krylov
method such as CG (conjugate gradient) or GMRES. We now turn our at-
tention to domain decomposition methods. The ASM preconditioner reads:

M−1
ASM ∶=

N

∑
j=1

RTj A
−1
jjRj .

Let R be a distributed residual so that each MPI process stores Rj ∶= Rj R,
1 ≤ j ≤ N . We want to compute for each subdomain 1 ≤ i ≤ N the restriction
of the application of the ASM preconditioner to R:

RiM
−1
ASM R = Ri

N

∑
j=1

RTj A
−1
jj Rj R = A−1

ii Ri + ∑
j∈Oi

(RiRTj)A−1
jj Rj .

This task is performed by first solving concurrently on all subdomains a
linear system:

Ajj Zj = Rj ∀1 ≤ j ≤ n . (8.4)

Then data transfers between neighboring subdomains implement the
RiR

T
j Zj formula. The contribution from neighboring subdomains are

256 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

summed locally. This pattern is very similar to that of the matrix vec-
tor product.
The RAS preconditioner reads:

M−1
RAS ∶=

N

∑
j=1

RTj DjA
−1
jjRj .

Its application to a distributed residual r consists in computing:

RiM
−1
RAS R = Ri

N

∑
j=1

RTj Dj A
−1
jj Rj R =DiA

−1
ii Ri + ∑

j∈Oi

(RiRTj)Dj A
−1
jj Rj .

The only difference in the implementation of RAS compared to ASM lies in
the concurrent multiplication of the local solution to (8.4) by the partition
of unity matrix Dj before data transfer between neighboring subdomains.

8.3. FREEFEM++ ALGEBRAIC FORMULATION 257

256 512 1 024
2 048

4 096
8 192

0%

20%

40%

60%

80%

100%

of processes

Effi
ci
en
cy

re
la
tiv

e
to

25
6
pr
oc
es
se
s

3D
2D

695

22 311

#
of

d.
o.
f.—

in
m
ill
io
ns

74

2 305

(a) Timings of various simulations

256 512 1 024
2 048

4 096
8 192

0

50

100

150

200

of processes

Ti
m
e
(s
ec
on

ds
)

2.1M d.o.f.
sbdmn in 2D

256 512 1 024
2 048

4 096
8 192

0

100

200

of processes

280k d.o.f.
sbdmn in 3D

Factorization
Deflation

Coarse operator
Krylov method

(b) Comparison of the time spent in various steps for building and using the preconditioner

258 CHAPTER 8. IMPLEMENTATION OF SCHWARZ METHODS

N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

256 64.2 s 117.7 s 15.8 s 13 200.6 s 74.6 · 106
512 64.0 s 112.2 s 19.9 s 18 199.4 s 144.7 · 106
1 024 63.2 s 118.6 s 16.2 s 14 202.4 s 288.8 · 106
2 048 59.4 s 117.6 s 21.3 s 17 205.3 s 578.0 · 106
4 096 58.1 s 110.7 s 27.9 s 20 207.5 s 1.2 · 109
8 192 55.0 s 116.6 s 23.6 s 17 215.2 s 2.3 · 109

2D

256 29.4 s 111.3 s 25.7 s 29 175.8 s 696.0 · 106
512 29.6 s 111.5 s 28.0 s 28 179.1 s 1.4 · 109
1 024 29.4 s 112.2 s 33.6 s 28 185.2 s 2.8 · 109
2 048 29.2 s 112.2 s 33.7 s 28 185.2 s 5.6 · 109
4 096 29.8 s 113.7 s 31.0 s 26 185.4 s 11.2 · 109
8 192 29.8 s 113.8 s 30.7 s 25 187.6 s 22.3 · 109

(c) Breakdown of the timings used for the figure on top

Figure 8.7: Weak scaling experiments.

Bibliography

[1] Yves Achdou, Patrick Le Tallec, Frédéric Nataf, and Marina
Vidrascu. A domain decomposition preconditioner for an advection-
diffusion problem. Comput. methods appl. mech. engrg., 184:145–170,
2000 (cited on page 107).

[2] M. Adams, H. Bayraktar, T. Keaveny, and P. Papadopoulos. Ul-
trascalable implicit finite element analyses in solid mechanics with
over a half a billion degrees of freedom. In Proceedings of the 2004
acm/ieee conference on supercomputing. In SC04. IEEE Computer
Society, 2004, 34:1–34:15 (cited on pages 237, 246).

[3] Hubert Alcin, Bruno Koobus, Olivier Allain, and Alain Dervieux.
Efficiency and scalability of a two-level Schwarz algorithm for incom-
pressible and compressible flows. Internat. j. numer. methods fluids,
72(1):69–89, 2013. issn: 0271-2091. doi: 10.1002/fld.3733. url:
http://dx.doi.org/10.1002/fld.3733 (cited on page 88).

[4] Ana Alonso-Rodriguez and Luca Gerardo-Giorda. New nonoverlap-
ping domain decomposition methods for the harmonic Maxwell sys-
tem. Siam j. sci. comput., 28(1):102–122, 2006 (cited on page 184).

[5] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko
Koster. A fully asynchronous multifrontal solver using distributed dy-
namic scheduling. Siam j. matrix analysis and applications, 23(1):15–
41, 2001 (cited on page 237).

[6] Xavier Antoine, Yassine Boubendir, and Christophe Geuzaine. A
quasi-optimal non-overlapping domain decomposition algorithm for
the Helmholtz equation. Journal of computational physic, 231(2):262–
280, 2012 (cited on page 184).

[7] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc Web page. http://www.
mcs.anl.gov/petsc. 2014. url: http://www.mcs.anl.gov/petsc
(cited on pages 233, 246).

259

http://dx.doi.org/10.1002/fld.3733
http://dx.doi.org/10.1002/fld.3733
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

260 BIBLIOGRAPHY

[8] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry
F. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In Modern software tools in scientific
computing. E. Arge, A. M. Bruaset, and H. P. Langtangen, editors.
Birkhäuser Press, 1997, pages 163–202 (cited on pages 233, 246).

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates
for the solution of linear systems: building blocks for iterative meth-
ods, 2nd edition. SIAM, Philadelphia, PA, 1994 (cited on pages 51,
63).

[10] H. Barucq, J. Diaz, and M. Tlemcani. New absorbing layers condi-
tions for short water waves. J. comput. phys., 229(1):58–72, 2010.
issn: 0021-9991. doi: 10.1016/j.jcp.2009.08.033. url: http:
//dx.doi.org/10.1016/j.jcp.2009.08.033 (cited on page 134).

[11] G. K. Batchelor. An introduction to fluid dynamics. Of Cambridge
Mathematical Library. Cambridge University Press, Cambridge, pa-
perback edition, 1999, pages xviii+615. isbn: 0-521-66396-2 (cited on
page 134).

[12] Jean-François Bourgat, Roland Glowinski, Patrick Le Tallec, and Ma-
rina Vidrascu. Variational formulation and algorithm for trace oper-
ator in domain decomposition calculations. In Domain decomposition
methods. Tony Chan, Roland Glowinski, Jacques Périaux, and Olof
Widlund, editors. SIAM, Philadelphia, PA, 1989, pages 3–16 (cited
on pages 114, 220).

[13] Häım Brézis. Analyse fonctionnelle : théorie et applications. Dunod,
Paris, 1983 (cited on page 116).

[14] X. C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P.
Young. Parallel Newton-Krylov-Schwarz algorithms for the transonic
full potential equation. Sisc, 19:245–265, 1998 (cited on page ii).

[15] Xiao Chuan Cai and David Keyes. Nonlinearly preconditioned inex-
act newton algorithms. Sisc, 2003 (cited on page ii).

[16] Xiao-Chuan Cai, Mario A. Casarin, Frank W. Elliott Jr., and Olof
B. Widlund. Overlapping Schwarz algorithms for solving Helmholtz’s
equation. In, Domain decomposition methods, 10 (boulder, co, 1997),
pages 391–399. Amer. Math. Soc., Providence, RI, 1998 (cited on
page 173).

[17] Xiao-Chuan Cai, Charbel Farhat, and Marcus Sarkis. A minimum
overlap restricted additive Schwarz preconditioner and applications
to 3D flow simulations. Contemporary mathematics, 218:479–485,
1998 (cited on page 6).

http://dx.doi.org/10.1016/j.jcp.2009.08.033
http://dx.doi.org/10.1016/j.jcp.2009.08.033
http://dx.doi.org/10.1016/j.jcp.2009.08.033

BIBLIOGRAPHY 261

[18] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive Schwarz
preconditioner for general sparse linear systems. Siam journal on sci-
entific computing, 21:239–247, 1999 (cited on page 6).

[19] Xiao-Chuan Cai and Olof B. Widlund. Domain decomposition algo-
rithms for indefinite elliptic problems. Siam j. sci. statist. comput.,
13(1):243–258, 1992 (cited on page 173).

[20] Tony F. Chan and Tarek P. Mathew. Domain decomposition algo-
rithms. In, Acta numerica 1994, pages 61–143. Cambridge University
Press, 1994 (cited on page i).

[21] Andrew Chapman and Yousef Saad. Deflated and augmented Krylov
subspace techniques. Numer. linear algebra appl., 4(1):43–66, 1997.
issn: 1070-5325. doi: 10.1002/(SICI)1099-1506(199701/02)4:
1<43::AID-NLA99>3.3.CO;2-Q. url: http://dx.doi.org/10.
1002/(SICI)1099-1506(199701/02)4:1%3C43::AID-NLA99%3E3.

3.CO;2-Q (cited on page 77).

[22] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuf-
fel, S. McCormick, J. Ruge, and P. S. Vassilevski. Spectral AMGe
(ρAMGe). Siam j. sci. comput., 25(1):1–26, 2003. issn: 1064-8275.
doi: 10.1137/S106482750139892X. url: http://dx.doi.org/10.
1137/S106482750139892X (cited on page 104).

[23] P.L. Chebyshev. Théorie des mécanismes connus sous le nom de par-
allélogrammes. Imprimerie de l’Académie impériale des sciences, 1853
(cited on page 53).

[24] C. Chevalier and F. Pellegrini. PT-SCOTCH: a tool for efficient par-
allel graph ordering. Parallel computing, 6-8(34):318–331, 2008 (cited
on pages 14, 26, 85, 90).

[25] Philippe Chevalier. Méthodes numériques pour les tubes hy-
perfréquences. résolution par décomposition de domaine. PhD thesis.
Université Paris VI, 1998 (cited on page 184).

[26] Philippe Chevalier and Frédéric Nataf. Symmetrized method with
optimized second-order conditions for the Helmholtz equation. In,
Domain decomposition methods, 10 (boulder, co, 1997), pages 400–
407. Amer. Math. Soc., Providence, RI, 1998 (cited on page 184).

[27] W. C. Chew and W. H. Weedon. A 3d perfectly matched medium
from modified maxwell’s equations with stretched coordinates. Ieee
trans. microwave opt. technol. lett., 7:599–604, 1994 (cited on
pages 164, 184).

[28] Philippe G. Ciarlet. The finite element method for elliptic problems.
North-Holland, Amsterdam, 1978 (cited on page 116).

http://dx.doi.org/10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-1506(199701/02)4:1%3C43::AID-NLA99%3E3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-1506(199701/02)4:1%3C43::AID-NLA99%3E3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-1506(199701/02)4:1%3C43::AID-NLA99%3E3.3.CO;2-Q
http://dx.doi.org/10.1137/S106482750139892X
http://dx.doi.org/10.1137/S106482750139892X
http://dx.doi.org/10.1137/S106482750139892X

262 BIBLIOGRAPHY

[29] Thomas Cluzeau, Victorita Dolean, Frédéric Nataf, and Alban
Quadrat. Preconditionning techniques for systems of partial differen-
tial equations based on algebraic methods. Technical report (7953).
http://hal.inria.fr/hal-00694468. INRIA, 2012 (cited on pages 134,
139).

[30] Thomas Cluzeau, Victorita Dolean, Frédéric Nataf, and Alban
Quadrat. Symbolic techniques for domain decomposition methods.
In, Domain decomposition methods in science and engineering XX.
Springer LNCSE, http://hal.archives-ouvertes.fr/hal-00664092, 2013
(cited on pages 134, 139).

[31] Francis Collino, G. Delbue, Patrick Joly, and A. Piacentini. A new
interface condition in the non-overlapping domain decomposition.
Comput. methods appl. mech. engrg., 148:195–207, 1997 (cited on
page 184).

[32] Francis Collino, G. Delbue, Patrick Joly, and A. Piacentini. A new
interface condition in the non-overlapping domain decomposition for
the Maxwell equations Helmholtz equation and related optimal con-
trol. Comput. methods appl. mech. engrg, 148:195–207, 1997 (cited
on page 184).

[33] Francis Collino, Souad Ghanemi, and Patrick Joly. Domain decompo-
sition method for harmonic wave propagation: a general presentation.
Comput. methods appl. mech. engrg., 184(2-4):171–211, 2000. Vistas
in domain decomposition and parallel processing in computational
mechanics. issn: 0045-7825. doi: 10.1016/S0045-7825(99)00228-
5. url: http://dx.doi.org/10.1016/S0045-7825(99)00228-5
(cited on pages 145, 146).

[34] Lea Conen, Victorita Dolean, Rolf Krause, and Frédéric Nataf. A
coarse space for heterogeneous Helmholtz problems based on the
Dirichlet-to-Neumann operator. J. comput. appl. math., 271:83–99,
2014. issn: 0377-0427. doi: 10.1016/j.cam.2014.03.031. url:
http://dx.doi.org/10.1016/j.cam.2014.03.031 (cited on
pages 88, 188).

[35] Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler. Balanc-
ing domain decomposition for mixed finite elements. Math. comp.,
64(211):989–1015, 1995 (cited on pages 116, 120).

[36] Amik St-Cyr, Martin J. Gander, and S. J. Thomas. Optimized multi-
plicative, additive, and restricted additive Schwarz preconditioning.
Siam j. sci. comput., 29(6):2402–2425 (electronic), 2007. issn: 1064-
8275. doi: 10.1137/060652610. url: http://dx.doi.org/10.

1137/060652610 (cited on pages 160, 162).

http://dx.doi.org/10.1016/S0045-7825(99)00228-5
http://dx.doi.org/10.1016/S0045-7825(99)00228-5
http://dx.doi.org/10.1016/S0045-7825(99)00228-5
http://dx.doi.org/10.1016/j.cam.2014.03.031
http://dx.doi.org/10.1016/j.cam.2014.03.031
http://dx.doi.org/10.1137/060652610
http://dx.doi.org/10.1137/060652610
http://dx.doi.org/10.1137/060652610

BIBLIOGRAPHY 263

[37] T. A. Davis and I. S. Duff. A combined unifrontal-multifrontal
method for unsymmetric sparse matrices. Acm transactions on math-
ematical software, 25(1):1–19, 1999 (cited on page 24).

[38] Yann-Hervé De Roeck and Patrick Le Tallec. Analysis and test of a
local domain decomposition preconditioner. In Fourth international
symposium on domain decomposition methods for partial differen-
tial equations. Roland Glowinski, Yuri Kuznetsov, Gérard Meurant,
Jacques Périaux, and Olof Widlund, editors. SIAM, Philadelphia,
PA, 1991, pages 112–128 (cited on page 107).

[39] Eric de Sturler. Lecture notes on iterative methods. http :

/ / www . math . vt . edu / people / sturler / LectureNotes /

IterativeMethods.html. 2014 (cited on page 43).

[40] Q. Deng. An analysis for a nonoverlapping domain decomposition
iterative procedure. Siam j. sci. comput., 18:1517–1525, 1997 (cited
on page 184).

[41] Bruno Després. Décomposition de domaine et problème de
Helmholtz. C.r. acad. sci. paris, 1(6):313–316, 1990 (cited on
page 169).

[42] Bruno Després. Domain decomposition method and the helmholtz
problem. In Mathematical and numerical aspects of wave propaga-
tion phenomena (strasbourg, 1991). SIAM, Philadelphia, PA, 1991,
pages 44–52 (cited on pages 152, 175).

[43] Bruno Després. Domain decomposition method and the Helmholtz
problem.II. In Second international conference on mathematical and
numerical aspects of wave propagation (newark, de, 1993). SIAM,
Philadelphia, PA, 1993, pages 197–206 (cited on pages 141, 145, 148,
173).

[44] Bruno Després. Méthodes de décomposition de domaine pour les
problèmes de propagation d’ondes en régimes harmoniques. PhD the-
sis. Paris IX, 1991 (cited on page 153).

[45] Bruno Després, Patrick Joly, and Jean E. Roberts. A domain decom-
position method for the harmonic Maxwell equations. In Iterative
methods in linear algebra (brussels, 1991). North-Holland, Amster-
dam, 1992, pages 475–484 (cited on pages 145, 148, 153, 169).

[46] Clark R. Dohrmann and Olof B. Widlund. An overlapping Schwarz
algorithm for almost incompressible elasticity. Siam j. numer. anal.,
47(4):2897–2923, 2009 (cited on page 85).

[47] Clark R. Dohrmann and Olof B. Widlund. Hybrid domain decom-
position algorithms for compressible and almost incompressible elas-
ticity. Internat. j. numer. methods engrg., 82(2):157–183, 2010 (cited
on page 85).

http://www.math.vt.edu/people/sturler/LectureNotes/IterativeMethods.html
http://www.math.vt.edu/people/sturler/LectureNotes/IterativeMethods.html
http://www.math.vt.edu/people/sturler/LectureNotes/IterativeMethods.html

264 BIBLIOGRAPHY

[48] Victorita Dolean, Martin J. Gander, Stephane Lanteri, Jin-Fa
Lee, and Zhen Peng. Effective transmission conditions for do-
main decomposition methods applied to the time-harmonic curl-curl
maxwell’s equations. Journal of computational physics, 2014 (cited
on page 185).

[49] Victorita Dolean, Martin J. Gander, Stéphane Lanteri, Jin-Fa Lee,
and Zhen Peng. Optimized Schwarz methods for curl-curl time-
harmonic Maxwell’s equations. In Proceedings of the 21st interna-
tional domain decomposition conference. Jocelyne Erhel, Martin J.
Gander, Laurence Halpern, Taoufik Sassi, and Olof Widlund, edi-
tors. Springer LNCSE, 2013 (cited on page 185).

[50] Victorita Dolean, Luca Gerardo Giorda, and Martin J. Gander. Opti-
mized Schwarz methods for Maxwell equations. Siam j. scient. comp.,
31(3):2193–2213, 2009 (cited on page 184).

[51] Victorita Dolean, Stephane Lanteri, and Frédéric Nataf. Construc-
tion of interface conditions for solving compressible Euler equations
by non-overlapping domain decomposition methods. Int. j. numer.
meth. fluids, 40:1485–1492, 2002 (cited on page 184).

[52] Victorita Dolean, Stephane Lanteri, and Frédéric Nataf. Convergence
analysis of a Schwarz type domain decomposition method for the
solution of the Euler equations. Appl. num. math., 49:153–186, 2004
(cited on page 184).

[53] Victorita Dolean, Stephane Lanteri, and Frédéric Nataf. Optimized
interface conditions for domain decomposition methods in fluid dy-
namics. Int. j. numer. meth. fluids, 40:1539–1550, 2002 (cited on
page 184).

[54] Victorita Dolean, Stephane Lanteri, and Ronan Perrussel. A do-
main decomposition method for solving the three-dimensional time-
harmonic Maxwell equations discretized by discontinuous Galerkin
methods. J. comput. phys., 227(3):2044–2072, 2008 (cited on
page 184).

[55] Victorita Dolean, Stephane Lanteri, and Ronan Perrussel. Optimized
Schwarz algorithms for solving time-harmonic Maxwell’s equations
discretized by a discontinuous Galerkin method. Ieee. trans. magn.,
44(6):954–957, 2008 (cited on page 184).

[56] Victorita Dolean and Frédéric Nataf. A new domain decomposition
method for the compressible Euler equations. M2an math. model.
numer. anal., 40(4):689–703, 2006. issn: 0764-583X. doi: 10.1051/
m2an:2006026. url: http://dx.doi.org/10.1051/m2an:2006026
(cited on pages 134, 139).

http://dx.doi.org/10.1051/m2an:2006026
http://dx.doi.org/10.1051/m2an:2006026
http://dx.doi.org/10.1051/m2an:2006026

BIBLIOGRAPHY 265

[57] Victorita Dolean and Frédéric Nataf. A new domain decomposition
method for the compressible Euler equations using Smith factoriza-
tion. In, Domain decomposition methods in science and engineering
XVII. Volume 60, in Lect. Notes Comput. Sci. Eng. Pages 331–338.
Springer, Berlin, 2008. doi: 10.1007/978-3-540-75199-1_40. url:
http://dx.doi.org/10.1007/978-3-540-75199-1_40 (cited on
page 134).

[58] Victorita Dolean, Frédéric Nataf, and Gerd Rapin. Deriving a new
domain decomposition method for the Stokes equations using the
Smith factorization. Math. comp., 78(266):789–814, 2009. issn: 0025-
5718. doi: 10.1090/S0025-5718-08-02172-8. url: http://dx.
doi.org/10.1090/S0025-5718-08-02172-8 (cited on pages 134,
138–140).

[59] Victorita Dolean, Frédéric Nataf, and Gerd Rapin. How to use the
Smith factorization for domain decomposition methods applied to
the Stokes equations. In, Domain decomposition methods in science
and engineering XVII. Volume 60, in Lect. Notes Comput. Sci. Eng.
Pages 477–484. Springer, Berlin, 2008. doi: 10.1007/978-3-540-
75199-1_60. url: http://dx.doi.org/10.1007/978-3-540-
75199-1_60 (cited on page 134).

[60] Victorita Dolean, Frédéric Nataf, Robert Scheichl, and Nicole
Spillane. Analysis of a two-level Schwarz method with coarse spaces
based on local Dirichlet-to-Neumann maps. Comput. methods appl.
math., 12(4):391–414, 2012. issn: 1609-4840. doi: 10.2478/cmam-
2012-0027. url: http://dx.doi.org/10.2478/cmam-2012-0027
(cited on pages 97, 104, 189, 190).

[61] Maksymilian Dryja, Marcus V. Sarkis, and Olof B. Widlund. Multi-
level Schwarz methods for elliptic problems with discontinuous coeffi-
cients in three dimensions. Numer. math., 72(3):313–348, 1996 (cited
on page 85).

[62] Maksymilian Dryja and Olof B. Widlund. Schwarz methods of
Neumann-Neumann type for three-dimensional elliptic finite element
problems. Comm. pure appl. math., 48(2):121–155, 1995 (cited on
page 225).

[63] Maksymilian Dryja and Olof B. Widlund. Some domain decomposi-
tion algorithms for elliptic problems. In Iterative methods for large
linear systems. Linda Hayes and David Kincaid, editors. Proceeding
of the Conference on Iterative Methods for Large Linear Systems
held in Austin, Texas, October 19 - 21, 1988, to celebrate the sixty-
fifth birthday of David M. Young, Jr. Academic Press, San Diego,
California, 1989, pages 273–291 (cited on page 6).

http://dx.doi.org/10.1007/978-3-540-75199-1_40
http://dx.doi.org/10.1007/978-3-540-75199-1_40
http://dx.doi.org/10.1090/S0025-5718-08-02172-8
http://dx.doi.org/10.1090/S0025-5718-08-02172-8
http://dx.doi.org/10.1090/S0025-5718-08-02172-8
http://dx.doi.org/10.1007/978-3-540-75199-1_60
http://dx.doi.org/10.1007/978-3-540-75199-1_60
http://dx.doi.org/10.1007/978-3-540-75199-1_60
http://dx.doi.org/10.1007/978-3-540-75199-1_60
http://dx.doi.org/10.2478/cmam-2012-0027
http://dx.doi.org/10.2478/cmam-2012-0027
http://dx.doi.org/10.2478/cmam-2012-0027

266 BIBLIOGRAPHY

[64] Olivier Dubois. Optimized schwarz methods for the advection-
diffusion equation and for problems with discontinuous coefficients.
PhD thesis. McGill University, 2007 (cited on page 184).

[65] Olivier Dubois, Martin J. Gander, Sébastien Loisel, Amik St-Cyr,
and Daniel B. Szyld. The optimized Schwarz method with a coarse
grid correction. Siam j. sci. comput., 34(1):A421–A458, 2012. issn:
1064-8275. doi: 10.1137/090774434. url: http://dx.doi.org/10.
1137/090774434 (cited on page 184).

[66] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse
symmetric linear equations. Acm trans. math. software, 9(3):302–325,
1983. issn: 0098-3500. doi: 10.1145/356044.356047. url: http:
//dx.doi.org/10.1145/356044.356047 (cited on page 108).

[67] Yalchin Efendiev, Juan Galvis, Raytcho Lazarov, and Joerg Willems.
Robust domain decomposition preconditioners for abstract sym-
metric positive definite bilinear forms. Esaim math. model. numer.
anal., 46(5):1175–1199, 2012. issn: 0764-583X. doi: 10.1051/m2an/
2011073. url: http://dx.doi.org/10.1051/m2an/2011073 (cited
on pages 104, 189, 190).

[68] Mohamed El Bouajaji, Victorita Dolean, Martin J. Gander, and
Stephane Lanteri. Comparison of a one and two parameter family
of transmission conditions for Maxwell’s equations with damping. In
Domain decomposition methods in science and engineering xx. ac-
cepted for publication. Springer LNCSE, 2012 (cited on page 184).

[69] Mohamed El Bouajaji, Victorita Dolean, Martin J. Gander, and
Stephane Lanteri. Optimized Schwarz methods for the time-harmonic
Maxwell equations with dampimg. Siam j. scient. comp., 34(4):2048–
2071, 2012 (cited on page 184).

[70] Mohamed El Bouajaji, Victorita Dolean, Martin J. Gander, Stephane
Lanteri, and Ronan Perrussel. Domain decomposition methods for
electromagnetic wave propagation problems in heterogeneous media
and complex domains. In Domain decomposition methods in science
and engineering xix. Volume 78(1). Springer LNCSE, 2011, pages 5–
16 (cited on page 184).

[71] Bjorn Engquist and Andrew Majda. Absorbing boundary conditions
for the numerical simulation of waves. Math. comp., 31(139):629–651,
1977 (cited on pages 164, 167, 175).

[72] Jocelyne Erhel and Frédéric Guyomarc’h. An augmented conjugate
gradient method for solving consecutive symmetric positive definite
linear systems. Siam j. matrix anal. appl., 21(4):1279–1299, 2000
(cited on page 77).

http://dx.doi.org/10.1137/090774434
http://dx.doi.org/10.1137/090774434
http://dx.doi.org/10.1137/090774434
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1051/m2an/2011073
http://dx.doi.org/10.1051/m2an/2011073
http://dx.doi.org/10.1051/m2an/2011073

BIBLIOGRAPHY 267

[73] Charbel Farhat, Philip Avery, Radek Tezaur, and Jing Li. FETI-
DPH: a dual-primal domain decomposition method for acoustic scat-
tering. J. comput. acoust., 13(3):499–524, 2005. issn: 0218-396X. doi:
10.1142/S0218396X05002761. url: http://dx.doi.org/10.1142/
S0218396X05002761 (cited on page 88).

[74] Charbel Farhat, A. Macedo, and M. Lesoinne. A two-level domain
decomposition method for the iterative solution of high-frequency ex-
terior Helmholtz problems. Numer. math., 85(2):283–303, 2000 (cited
on page 88).

[75] Charbel Farhat and Francois–Xavier Roux. A method of Finite Ele-
ment Tearing and Interconnecting and its parallel solution algorithm.
Int. j. numer. meth. engrg., 32:1205–1227, 1991 (cited on pages 116,
120, 142).

[76] Charbel Farhat and François-Xavier Roux. An unconventional do-
main decomposition method for an efficient parallel solution of large-
scale finite element systems. Siam j. sc. stat. comput., 13:379–396,
1992 (cited on page 107).

[77] Eric Flauraud. Méthode de décomposition de domaine pour des mi-
lieux poreux faillés. in preparation. PhD thesis. Paris VI, 2001 (cited
on page 184).

[78] Juan Galvis and Yalchin Efendiev. Domain decomposition precondi-
tioners for multiscale flows in high contrast media: reduced dimension
coarse spaces. Multiscale model. simul., 8(5):1621–1644, 2010. issn:
1540-3459. doi: 10.1137/100790112. url: http://dx.doi.org/10.
1137/100790112 (cited on pages 104, 189, 190).

[79] Juan Galvis and Yalchin Efendiev. Domain decomposition precon-
ditioners for multiscale flows in high-contrast media. Multiscale
model. simul., 8(4):1461–1483, 2010. issn: 1540-3459. doi: 10.1137/
090751190. url: http://dx.doi.org/10.1137/090751190 (cited
on pages 104, 189).

[80] Martin J. Gander. On the influence of geometry on optimized Schwarz
methods. Se⃗ma j., 53(1):71–78, 2011. issn: 1575-9822 (cited on
page 184).

[81] Martin J. Gander. Optimized Schwarz methods. Siam j. numer.
anal., 44(2):699–731, 2006 (cited on pages 169, 184).

[82] Martin J. Gander. Optimized Schwarz methods for Helmholtz prob-
lems. In Thirteenth international conference on domain decomposi-
tion, 2001, pages 245–252 (cited on page 178).

[83] Martin J. Gander. Schwarz methods over the course of time. Elec-
tronic transactions on numerical analysis, 31:228–255, 2008 (cited on
page 1).

http://dx.doi.org/10.1142/S0218396X05002761
http://dx.doi.org/10.1142/S0218396X05002761
http://dx.doi.org/10.1142/S0218396X05002761
http://dx.doi.org/10.1137/100790112
http://dx.doi.org/10.1137/100790112
http://dx.doi.org/10.1137/100790112
http://dx.doi.org/10.1137/090751190
http://dx.doi.org/10.1137/090751190
http://dx.doi.org/10.1137/090751190

268 BIBLIOGRAPHY

[84] Martin J. Gander, Laurence Halpern, and Frédéric Magoulès. An
optimized schwarz method with two-sided robin transmission con-
ditions for the helmholtz equation. Int. j. for num. meth. in fluids,
55(2):163–175, 2007 (cited on page 184).

[85] Martin J. Gander and Felix Kwok. Best Robin parameters for
optimized Schwarz methods at cross points. Siam j. sci. com-
put., 34(4):A1849–A1879, 2012. issn: 1064-8275. doi: 10 . 1137 /

110837218. url: http://dx.doi.org/10.1137/110837218 (cited
on page 184).

[86] Martin J. Gander, Frédéric Magoulès, and Frédéric Nataf. Optimized
Schwarz methods without overlap for the Helmholtz equation. Siam
j. sci. comput., 24(1):38–60, 2002 (cited on pages 160, 172, 173, 176,
184).

[87] Martin J. Gander and Frédéric Nataf. AILU: a preconditioner based
on the analytic factorization of the elliptic operator. Numer. linear
algebra appl., 7(7-8):505–526, 2000. Preconditioning techniques for
large sparse matrix problems in industrial applications (Minneapolis,
MN, 1999). issn: 1070-5325. doi: 10.1002/1099- 1506(200010/

12)7:7/8<505::AID- NLA210> 3.0.CO;2- Z. url: http://dx.

doi.org/10.1002/1099-1506(200010/12)7:7/8%3C505::AID-

NLA210%3E3.0.CO;2-Z (cited on page 184).

[88] Martin J. Gander and Yingxiang Xu. Optimized Schwarz Methods for
Circular Domain Decompositions with Overlap. Siam j. numer. anal.,
52(4):1981–2004, 2014. issn: 0036-1429. doi: 10.1137/130946125.
url: http://dx.doi.org/10.1137/130946125 (cited on page 184).

[89] Felix R. Gantmacher. Theorie des matrices. Dunod, 1966 (cited on
page 135).

[90] Luca Gerardo-Giorda, Patrick Le Tallec, and Frédéric Nataf. A
Robin-Robin preconditioner for advection-diffusion equations with
discontinuous coefficients. Comput. methods appl. mech. engrg.,
193:745–764, 2004 (cited on page 107).

[91] Luca Gerardo Giorda and Frédéric Nataf. Optimized Schwarz meth-
ods for unsymmetric layered problems with strongly discontinuous
and anisotropic coefficients. Technical report (561). submitted. Ecole
Polytechnique, France: CMAP, CNRS UMR 7641, 2004. url: http:
//www.cmap.polytechnique.fr/preprint/repository/561.pdf

(cited on page 184).

[92] L. Giraud and A. Haidar. Parallel algebraic hybrid solvers for large
3D convection-diffusion problems. Numer. algorithms, 51(2):151–177,
2009. issn: 1017-1398. doi: 10.1007/s11075- 008- 9248- x. url:

http://dx.doi.org/10.1137/110837218
http://dx.doi.org/10.1137/110837218
http://dx.doi.org/10.1137/110837218
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8<505::AID-NLA210>3.0.CO;2-Z
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8<505::AID-NLA210>3.0.CO;2-Z
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8%3C505::AID-NLA210%3E3.0.CO;2-Z
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8%3C505::AID-NLA210%3E3.0.CO;2-Z
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8%3C505::AID-NLA210%3E3.0.CO;2-Z
http://dx.doi.org/10.1137/130946125
http://dx.doi.org/10.1137/130946125
http://www.cmap.polytechnique.fr/preprint/repository/561.pdf
http://www.cmap.polytechnique.fr/preprint/repository/561.pdf
http://dx.doi.org/10.1007/s11075-008-9248-x

BIBLIOGRAPHY 269

http://dx.doi.org/10.1007/s11075- 008- 9248- x (cited on
page 219).

[93] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability study of
hybrid preconditioners in three dimensions. Parallel comput., 34(6-
8):363–379, 2008. issn: 0167-8191. doi: 10.1016/j.parco.2008.01.
006. url: http://dx.doi.org/10.1016/j.parco.2008.01.006
(cited on page 219).

[94] Dan Givoli. Numerical methods for problems in infinite domains. El-
sevier, 1992 (cited on page 164).

[95] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns
Hopkins Univ. Press, 1989. Second Edition. (cited on page 61).

[96] Pierre Gosselet and Christian Rey. Non-overlapping domain de-
composition methods in structural mechanics. Arch. comput. meth-
ods engrg., 13(4):515–572, 2006. issn: 1134-3060. doi: 10 . 1007 /

BF02905857. url: http://dx.doi.org/10.1007/BF02905857 (cited
on page 134).

[97] Ivan Graham, P. O. Lechner, and Robert Scheichl. Domain decom-
position for multiscale PDEs. Numer. math., 106(4):589–626, 2007
(cited on page 189).

[98] Anne Greenbaum. Iterative methods for solving linear systems. Vol-
ume 17 of Frontiers in Applied Mathematics. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 1997,
pages xiv+220. isbn: 0-89871-396-X (cited on pages 45, 63).

[99] Anne Greenbaum, Vlastimil Pták, and Zdenv e˘ k Strakoš. Any
nonincreasing convergence curve is possible for gmres. Siam jour-
nal on matrix analysis and applications, 17(3):465–469, 1996 (cited
on page 62).

[100] M. Griebel and P. Oswald. On the abstract theory of additive
and multiplicative Schwarz algorithms. Numer. math., 70(2):163–180,
1995. issn: 0029-599X. doi: 10.1007/s002110050115. url: http:
//dx.doi.org/10.1007/s002110050115 (cited on pages 193, 194).

[101] Thomas Hagstrom, R. P. Tewarson, and Aron Jazcilevich. Numeri-
cal experiments on a domain decomposition algorithm for nonlinear
elliptic boundary value problems. Appl. math. lett., 1(3), 1988 (cited
on page 166).

[102] F. Hecht. New development in freefem++. J. numer. math., 20(3-
4):251–265, 2012. issn: 1570-2820 (cited on pages ii, 20, 233).

[103] Van Emden Henson and Ulrike Meier Yang. Boomeramg: a paral-
lel algebraic multigrid solver and preconditioner. Applied numerical
mathematics, 41(1):155–177, 2002 (cited on page 239).

http://dx.doi.org/10.1007/s11075-008-9248-x
http://dx.doi.org/10.1016/j.parco.2008.01.006
http://dx.doi.org/10.1016/j.parco.2008.01.006
http://dx.doi.org/10.1016/j.parco.2008.01.006
http://dx.doi.org/10.1007/BF02905857
http://dx.doi.org/10.1007/BF02905857
http://dx.doi.org/10.1007/BF02905857
http://dx.doi.org/10.1007/s002110050115
http://dx.doi.org/10.1007/s002110050115
http://dx.doi.org/10.1007/s002110050115

270 BIBLIOGRAPHY

[104] R.L. Higdon. Absorbing boundary conditions for difference approx-
imations to the multi-dimensional wave equations. Mathematics of
computation, 47(176):437–459, 1986 (cited on page 177).

[105] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
University Press, Cambridge, second edition, 2013, pages xviii+643.
isbn: 978-0-521-54823-6 (cited on page 61).

[106] Caroline Japhet. Optimized Krylov-Ventcell method. Application to
convection-diffusion problems. In Proceedings of the 9th international
conference on domain decomposition methods. Petter E. Bjørstad,
Magne S. Espedal, and David E. Keyes, editors. ddm.org, 1998,
pages 382–389 (cited on page 176).

[107] Caroline Japhet and Frédéric Nataf. The best interface conditions
for domain decomposition methods: absorbing boundary conditions.
to appear in ’Artificial Boundary Conditions, with Applications to
Computational Fluid Dynamics Problems’ edited by L. Tourrette,
Nova Science. 2000 (cited on pages 170, 179, 184).

[108] Caroline Japhet, Frédéric Nataf, and Francois Rogier. The optimized
order 2 method. application to convection-diffusion problems. Fu-
ture generation computer systems future, 18(1):17–30, 2001 (cited on
pages 170, 176, 184).

[109] Caroline Japhet, Frédéric Nataf, and Francois-Xavier Roux. The Op-
timized Order 2 Method with a coarse grid preconditioner. applica-
tion to convection-diffusion problems. In Ninth international confer-
ence on domain decompositon methods in science and engineering.
P. Bjorstad, M. Espedal, and D. Keyes, editors. John Wiley & Sons,
1998, pages 382–389 (cited on page 184).

[110] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme. Scalable do-
main decomposition preconditioners for heterogeneous elliptic prob-
lems. In Proceedings of the 2013 acm/ieee conference on supercom-
puting. In SC13. Best paper finalist. ACM, 2013, 80:1–80:11 (cited
on page 247).

[111] Pierre Jolivet. Méthodes de décomposition de domaine. applica-
tion au calcul haute performance. PhD thesis. Université de Greno-
ble, https://www.ljll.math.upmc.fr/ jolivet/thesis.pdf, 2014 (cited on
page 255).

[112] Pierre Jolivet, Victorita Dolean, Frédéric Hecht, Frédéric Nataf,
Christophe Prud’homme, and Nicole Spillane. High performance do-
main decomposition methods on massively parallel architectures with
freefem++. J. numer. math., 20(3-4):287–302, 2012. issn: 1570-2820
(cited on page 85).

BIBLIOGRAPHY 271

[113] J.P.Berenger. A perfectly matched layer for the absorption of elec-
tromagnetic waves. J. of comp.phys., 114:185–200, 1994 (cited on
pages 164, 184).

[114] G. Karypis and V. Kumar. METIS: A software package for
partitioning unstructured graphs, partitioning meshes, and com-
puting fill-reducing orderings of sparse matrices. Technical re-
port. http://glaros.dtc.umn.edu/gkhome/views/metis. Department
of Computer Science, University of Minnesota, 1998 (cited on
pages 85, 90).

[115] George Karypis and Vipin Kumar. Metis, unstructured graph parti-
tioning and sparse matrix ordering system. version 2.0. Technical re-
port. Minneapolis, MN 55455: University of Minnesota, Department
of Computer Science, August 1995 (cited on pages 14, 26).

[116] Jung-Han Kimn and Marcus Sarkis. Restricted overlapping balanc-
ing domain decomposition methods and restricted coarse problems
for the Helmholtz problem. Comput. methods appl. mech. engrg.,
196(8):1507–1514, 2007. issn: 0045-7825. doi: 10.1016/j.cma.2006.
03.016. url: http://dx.doi.org/10.1016/j.cma.2006.03.016
(cited on page 88).

[117] Axel Klawonn and Olof B. Widlund. FETI and Neumann–Neumann
iterative substructuring methods: connections and new results.
Comm. pure appl. math., 54:57–90, 2001 (cited on pages 116, 120).

[118] Patrick Le Tallec. Domain decomposition methods in computational
mechanics. In J. Tinsley Oden, editor, Computational mechanics ad-
vances. Volume 1 (2), pages 121–220. North-Holland, 1994 (cited on
pages 107, 225).

[119] Seung-Cheol Lee, Marinos Vouvakis, and Jin-Fa Lee. A non-
overlapping domain decomposition method with non-matching grids
for modeling large finite antenna arrays. J. comput. phys., 203(1):1–
21, 2005 (cited on page 184).

[120] Pierre-Louis Lions. On the Schwarz alternating method. II. In Do-
main decomposition methods. Tony Chan, Roland Glowinski, Jacques
Périaux, and Olof Widlund, editors. SIAM, Philadelphia, PA, 1989,
pages 47–70 (cited on page 2).

[121] Pierre-Louis Lions. On the Schwarz alternating method. III: a variant
for nonoverlapping subdomains. In First international symposium on
domain decomposition methods for partial differential equations. Tony
F. Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund,
editors. SIAM, Philadelphia, PA, 1990 (cited on page 2).

http://dx.doi.org/10.1016/j.cma.2006.03.016
http://dx.doi.org/10.1016/j.cma.2006.03.016
http://dx.doi.org/10.1016/j.cma.2006.03.016

272 BIBLIOGRAPHY

[122] Pierre-Louis Lions. On the Schwarz alternating method. III: a variant
for nonoverlapping subdomains. In Third international symposium on
domain decomposition methods for partial differential equations , held
in houston, texas, march 20-22, 1989. Tony F. Chan, Roland Glowin-
ski, Jacques Périaux, and Olof Widlund, editors. SIAM, Philadelphia,
PA, 1990 (cited on pages 141, 142, 145, 165, 169).

[123] Gert Lube, Lars Mueller, and Frank-Christian Otto. A non-
overlapping domain decomposition method for the advection-
diffusion problem. Computing, 64:49–68, 2000 (cited on page 184).

[124] Jan Mandel. Balancing domain decomposition. Comm. on applied
numerical methods, 9:233–241, 1992 (cited on pages 107, 142, 209,
211).

[125] Jan Mandel and Marian Brezina. Balancing domain decomposi-
tion for problems with large jumps in coefficients. Math.comp.,
65(216):1387–1401, 1996 (cited on page 85).

[126] Jan Mandel and Marian Brezina. Balancing domain decomposition
for problems with large jumps in coefficients. Math. comp., 65:1387–
1401, 1996 (cited on page 225).

[127] Jan Mandel and Marian Brezina. Balancing domain decomposition:
theory and computations in two and three dimensions. Technical re-
port (UCD/CCM 2). Center for Computational Mathematics, Uni-
versity of Colorado at Denver, 1993 (cited on page 107).

[128] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur. An algebraic
theory for primal and dual substructuring methods by constraints.
Appl. numer. math., 54:167–193, 2005 (cited on page 107).

[129] Jan Mandel and Bedřich Soused́ık. Coarse spaces over the ages. In,
Domain decomposition methods in science and engineering XIX. Vol-
ume 78, in Lect. Notes Comput. Sci. Eng. Pages 213–220. Springer,
Heidelberg, 2011. doi: 10.1007/978- 3- 642- 11304- 8_23. url:
http://dx.doi.org/10.1007/978-3-642-11304-8_23 (cited on
page 77).

[130] A. M. Matsokin and S. V. Nepomnyaschikh. A Schwarz alternating
method in a subspace. Soviet mathematics, 29(10):78–84, 1985 (cited
on page 6).

[131] Gérard Meurant. The Lanczos and conjugate gradient algorithms.
Volume 19 of Software, Environments, and Tools. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006,
pages xvi+365. isbn: 978-0-898716-16-0; 0-89871-616-0. doi: 10 .

1137/1.9780898718140. url: http://dx.doi.org/10.1137/1.
9780898718140. From theory to finite precision computations (cited
on page 63).

http://dx.doi.org/10.1007/978-3-642-11304-8_23
http://dx.doi.org/10.1007/978-3-642-11304-8_23
http://dx.doi.org/10.1137/1.9780898718140
http://dx.doi.org/10.1137/1.9780898718140
http://dx.doi.org/10.1137/1.9780898718140
http://dx.doi.org/10.1137/1.9780898718140

BIBLIOGRAPHY 273

[132] Frédéric Nataf. A new approach to perfectly matched layers for the
linearized Euler system. J. comput. phys., 214(2):757–772, 2006. issn:
0021-9991. doi: 10.1016/j.jcp.2005.10.014. url: http://dx.
doi.org/10.1016/j.jcp.2005.10.014 (cited on page 134).

[133] Frédéric Nataf. Absorbing boundary conditions in block Gauss-Seidel
methods for convection problems. Math. models methods appl. sci.,
6(4):481–502, 1996 (cited on pages 171, 184).

[134] Frédéric Nataf and Francis Nier. Convergence rate of some do-
main decomposition methods for overlapping and nonoverlapping
subdomains. Numerische mathematik, 75(3):357–77, 1997 (cited on
page 184).

[135] Frédéric Nataf and Francois Rogier. Factorization of the convection-
diffusion operator and the Schwarz algorithm. M3AS, 5(1):67–93,
1995 (cited on page 148).

[136] Frédéric Nataf, Francois Rogier, and Eric de Sturler. Optimal inter-
face conditions for domain decomposition methods. Technical report
(301). CMAP (Ecole Polytechnique), 1994 (cited on page 166).

[137] Frédéric Nataf, Hua Xiang, and Victorita Dolean. A two level domain
decomposition preconditioner based on local Dirichlet-to-Neumann
maps. C. r. mathématique, 348(21-22):1163–1167, 2010 (cited on
pages 85, 104).

[138] Frédéric Nataf, Hua Xiang, Victorita Dolean, and Nicole Spillane. A
coarse space construction based on local Dirichlet to Neumann maps.
Siam j. sci comput., 33(4):1623–1642, 2011 (cited on pages 85, 104,
189, 190).

[139] Sergey V. Nepomnyaschikh. Decomposition and fictious domains
for elliptic boundary value problems. In Fifth international sympo-
sium on domain decomposition methods for partial differential equa-
tions. David E. Keyes, Tony F. Chan, Gérard A. Meurant, Jeffrey
S. Scroggs, and Robert G. Voigt, editors. SIAM, Philadelphia, PA,
1992, pages 62–72 (cited on pages 193, 194).

[140] Sergey V. Nepomnyaschikh. Mesh theorems of traces, normalizations
of function traces and their inversions. Sov. j. numer. anal. math.
modeling, 6:1–25, 1991 (cited on pages 193, 194).

[141] Roy A. Nicolaides. Deflation of conjugate gradients with applications
to boundary value problems. Siam j. numer. anal., 24(2):355–365,
1987. issn: 0036-1429. doi: 10.1137/0724027. url: http://dx.
doi.org/10.1137/0724027 (cited on pages 75, 80, 104).

[142] Francis Nier. Remarques sur les algorithmes de décomposition de do-
maines. In, Seminaire: équations aux dérivées partielles, 1998–1999,
Exp. No. IX, 26. École Polytech., 1999 (cited on page 166).

http://dx.doi.org/10.1016/j.jcp.2005.10.014
http://dx.doi.org/10.1016/j.jcp.2005.10.014
http://dx.doi.org/10.1016/j.jcp.2005.10.014
http://dx.doi.org/10.1137/0724027
http://dx.doi.org/10.1137/0724027
http://dx.doi.org/10.1137/0724027

274 BIBLIOGRAPHY

[143] M. Oorsprong, F. Berberich, V. Teodor, T. Downes, S. Erotokritou,
S. Requena, E. Hogan, M. Peters, S. Wong, A. Gerber, E. Emeriau,
R. Guichard, G. Yepes, K. Ruud, et al., editors. Prace annual report
2013. Insight Publishers, 2014 (cited on page 247).

[144] Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson,
and Spandan Maiti. Recycling Krylov subspaces for sequences of lin-
ear systems. Siam j. sci. comput., 28(5):1651–1674 (electronic), 2006.
issn: 1064-8275. doi: 10.1137/040607277. url: http://dx.doi.
org/10.1137/040607277 (cited on page 77).

[145] Luca F. Pavarino and Olof B. Widlund. Balancing Neumann-
Neumann methods for incompressible Stokes equations. Comm. pure
appl. math., 55(3):302–335, 2002 (cited on page 107).

[146] Astrid Pechstein and Clemens Pechstein. A feti method for a
tdnns discretization of plane elasticity. Technical report (2013-
05). http://www.numa.uni-linz.ac.at/publications/List/2013/2013-
05.pdf: Johannes Kepler University Linz, 2013 (cited on page 140).

[147] Astrid Pechstein and Joachim Schöberl. Anisotropic mixed finite el-
ements for elasticity. Internat. j. numer. methods engrg., 90(2):196–
217, 2012. issn: 0029-5981. doi: 10.1002/nme.3319. url: http:

//dx.doi.org/10.1002/nme.3319 (cited on page 140).

[148] Clemens Pechstein. Finite and boundary element tearing and in-
terconnecting solvers for multiscale problems. Springer-Verlag, 2013
(cited on page 125).

[149] Clemens Pechstein and Robert Scheichl. Analysis of FETI methods
for multiscale PDEs. Numer. math., 111(2):293–333, 2008 (cited on
page 85).

[150] Clemens Pechstein and Robert Scheichl. Scaling up through do-
main decomposition. Appl. anal., 88(10-11):1589–1608, 2009 (cited
on pages 85, 189).

[151] Clemens Pechstein and Robert Scheichl. Weighted Poincaré inequal-
ities. Technical report (NuMa-Report 2010-10). Institute of Compu-
tational Mathematics, Johannes Kepler University Linz, 2010 (cited
on page 103).

[152] Zhen Peng and Jin-Fa Lee. Non-conformal domain decomposition
method with second-order transmission conditions for time-harmonic
electromagnetics. J. comput. phys., 229(16):5615–5629, 2010 (cited on
page 184).

[153] Zhen Peng, Vineet Rawat, and Jin-Fa Lee. One way domain decompo-
sition method with second order transmission conditions for solving
electromagnetic wave problems. J. comput. phys., 229(4):1181–1197,
2010 (cited on page 184).

http://dx.doi.org/10.1137/040607277
http://dx.doi.org/10.1137/040607277
http://dx.doi.org/10.1137/040607277
http://dx.doi.org/10.1002/nme.3319
http://dx.doi.org/10.1002/nme.3319
http://dx.doi.org/10.1002/nme.3319

BIBLIOGRAPHY 275

[154] Jack Poulson, Björn Engquist, Siwei Li, and Lexing Ying. A paral-
lel sweeping preconditioner for heterogeneous 3D Helmholtz equa-
tions. Siam j. sci. comput., 35(3):C194–C212, 2013. issn: 1064-8275.
doi: 10.1137/120871985. url: http://dx.doi.org/10.1137/

120871985 (cited on page 184).

[155] Alfio Quarteroni and Alberto Valli. Domain decomposition methods
for partial differential equations. Oxford Science Publications, 1999
(cited on page i).

[156] Vineet Rawat and Jin-Fa Lee. Nonoverlapping domain decomposi-
tion with second order transmission condition for the time-harmonic
Maxwell’s equations. Siam j. sci. comput., 32(6):3584–3603, 2010.
issn: 1064-8275 (cited on page 184).

[157] François-Xavier Roux, Frédéric Magoulès, Laurent Series, and Yas-
sine Boubendir. Approximation of optimal interface boundary condi-
tons for two-Lagrange multiplier FETI method. In, Domain decompo-
sition methods in science and engineering. Volume 40, in Lect. Notes
Comput. Sci. Eng. Pages 283–290. Springer, Berlin, 2005 (cited on
page 160).

[158] Yousef Saad. Analysis of augmented Krylov subspace methods. Siam
j. matrix anal. appl., 18(2):435–449, 1997. issn: 0895-4798. doi: 10.
1137/S0895479895294289. url: http://dx.doi.org/10.1137/
S0895479895294289 (cited on page 77).

[159] Youssef Saad. Iterative methods for sparse linear systems. PWS Pub-
lishing Company, 1996 (cited on pages 45, 56, 60, 63, 77).

[160] Youssef Saad and Martin H. Schultz. GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems. Siam j.
sci. stat. comp., 7:856–869, 1986 (cited on page 56).

[161] Achim Schädle, Lin Zschiedrich, Sven Burger, Roland Klose, and
Frank Schmidt. Domain decomposition method for Maxwell’s equa-
tions: scattering off periodic structures. J. comput. phys., 226(1):477–
493, 2007. issn: 0021-9991. doi: 10.1016/j.jcp.2007.04.017. url:
http://dx.doi.org/10.1016/j.jcp.2007.04.017 (cited on
page 184).

[162] Robert Scheichl and Eero Vainikko. Additive Schwarz with
aggregation-based coarsening for elliptic problems with highly vari-
able coefficients. Computing, 80(4):319–343, 2007 (cited on page 189).

[163] Robert Scheichl, Panayot S. Vassilevski, and Ludmil Zikatanov. Weak
approximation properties of elliptic projections with functional con-
straints. Multiscale model. simul., 9(4):1677–1699, 2011. issn: 1540-
3459. doi: 10.1137/110821639. url: http://dx.doi.org/10.

1137/110821639 (cited on pages 104, 189).

http://dx.doi.org/10.1137/120871985
http://dx.doi.org/10.1137/120871985
http://dx.doi.org/10.1137/120871985
http://dx.doi.org/10.1137/S0895479895294289
http://dx.doi.org/10.1137/S0895479895294289
http://dx.doi.org/10.1137/S0895479895294289
http://dx.doi.org/10.1137/S0895479895294289
http://dx.doi.org/10.1016/j.jcp.2007.04.017
http://dx.doi.org/10.1016/j.jcp.2007.04.017
http://dx.doi.org/10.1137/110821639
http://dx.doi.org/10.1137/110821639
http://dx.doi.org/10.1137/110821639

276 BIBLIOGRAPHY

[164] H. A. Schwarz. Über einen Grenzübergang durch alternierendes
Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in
Zürich, 15:272–286, 1870 (cited on pages ii, 1).

[165] Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain
decomposition: parallel multilevel methods for elliptic partial differ-
ential equations. Cambridge University Press, 1996 (cited on pages i,
120, 121).

[166] Henry J Stephen Smith. On systems of linear indeterminate equations
and congruences. Philosophical transactions of the royal society of
london, 151:293–326, 1861 (cited on page 135).

[167] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein, and Robert Scheichl. A robust two-level domain
decomposition preconditioner for systems of PDEs. C. r. math. acad.
sci. paris, 349(23-24):1255–1259, 2011. issn: 1631-073X. doi: 10.

1016/j.crma.2011.10.021. url: http://dx.doi.org/10.1016/j.
crma.2011.10.021 (cited on page 190).

[168] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein, and Robert Scheichl. Abstract robust coarse
spaces for systems of PDEs via generalized eigenproblems in the
overlaps. Numer. math., 126(4):741–770, 2014. issn: 0029-599X. doi:
10.1007/s00211-013-0576-y. url: http://dx.doi.org/10.1007/
s00211-013-0576-y (cited on page 190).

[169] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, and
Daniel Rixen. Solving generalized eigenvalue problems on the inter-
faces to build a robust two-level FETI method. C. r. math. acad.
sci. paris, 351(5-6):197–201, 2013. issn: 1631-073X. doi: 10.1016/
j.crma.2013.03.010. url: http://dx.doi.org/10.1016/j.crma.
2013.03.010 (cited on page 219).

[170] Nicole Spillane and Daniel Rixen. Automatic spectral coarse spaces
for robust finite element tearing and interconnecting and balanced
domain decomposition algorithms. Internat. j. numer. methods en-
grg., 95(11):953–990, 2013. issn: 0029-5981. doi: 10.1002/nme.4534.
url: http://dx.doi.org/10.1002/nme.4534 (cited on page 219).

[171] Patrick Le Tallec, Jan Mandel, and Marina Vidrascu. A Neumann-
Neumann Domain Decomposition Algorithm for Solving Plate and
Shell Problems. Siam j. numer. anal., 35:836–867, 1998 (cited on
page 107).

[172] Patrick Le Tallec and A. Patra. Methods for adaptive hp approxi-
mations of Stokes problem with discontinuous pressure fields. Comp.
meth. appl. mech. eng., 145:361–379, 1997 (cited on page 107).

http://dx.doi.org/10.1016/j.crma.2011.10.021
http://dx.doi.org/10.1016/j.crma.2011.10.021
http://dx.doi.org/10.1016/j.crma.2011.10.021
http://dx.doi.org/10.1016/j.crma.2011.10.021
http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1016/j.crma.2013.03.010
http://dx.doi.org/10.1016/j.crma.2013.03.010
http://dx.doi.org/10.1016/j.crma.2013.03.010
http://dx.doi.org/10.1016/j.crma.2013.03.010
http://dx.doi.org/10.1002/nme.4534
http://dx.doi.org/10.1002/nme.4534

BIBLIOGRAPHY 277

[173] J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga. Comparison
of two-level preconditioners derived from deflation, domain decom-
position and multigrid methods. Journal of scientific computing,
39(3):340–370, 2009 (cited on pages 77, 209).

[174] Andrea Toselli and Olof Widlund. Domain decomposition methods -
algorithms and theory. Volume 34 of Springer Series in Computa-
tional Mathematics. Springer, 2005 (cited on pages i, 6, 77, 92, 94,
95, 99, 104, 125, 195).

[175] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems.
Siam j. sci. statist. comput., 13(2):631–644, 1992. issn: 0196-5204.
doi: 10.1137/0913035. url: http://dx.doi.org/10.1137/

0913035 (cited on pages 56, 62).

[176] Joerg Willems. Robust multilevel methods for general symmetric pos-
itive definite operators. Siam j. numer. anal., 52(1):103–124, 2014.
issn: 0036-1429. doi: 10.1137/120865872. url: http://dx.doi.
org/10.1137/120865872 (cited on page 190).

[177] Françoise Willien, Isabelle Faille, Frédéric Nataf, and Frédéric Schnei-
der. Domain decomposition methods for fluid flow in porous medium.
In 6th european conference on the mathematics of oil recovery, 1998
(cited on pages 179, 184).

[178] J.T. Wloka, B. Rowley, and B. Lawruk. Boundary Value Problems
for Elliptic Systems. Cambridge University Press, Cambridge, 1995
(cited on page 135).

[179] Jinchao Xu. Theory of multilevel methods. PhD thesis. Cornell Uni-
versity, 1989 (cited on page 195).

http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/120865872
http://dx.doi.org/10.1137/120865872
http://dx.doi.org/10.1137/120865872

278 BIBLIOGRAPHY

	Schwarz methods
	Three continuous Schwarz Algorithms
	Connection with the Block Jacobi algorithm
	discrete partition of unity
	Two subdomain case in one dimension
	1d Algebraic setting
	1d Finite element decomposition

	Multi dimensional problems and many subdomains
	Multi-D algebraic setting
	Multi-D finite element decomposition

	Iterative Schwarz methods: RAS, ASM
	Convergence analysis
	1d case: a geometrical analysis
	2d case: Fourier analysis for two subdomains

	Schwarz methods using FreeFem++
	A very short introduction to FreeFem++
	Setting the domain decomposition problem
	Schwarz algorithms as solvers
	Systems of PDEs: the example of linear elasticity

	Krylov methods
	Fixed point iterations
	Krylov spaces
	Gradient methods

	The Conjugate Gradient method
	The Preconditioned Conjugate Gradient Method

	Krylov methods for non-symmetric problems
	The GMRES method
	Convergence of the GMRES algorithm

	Krylov methods for ill-posed problems
	Schwarz preconditioners using FreeFem++

	Coarse Spaces
	Need for a two-level method
	Nicolaides coarse space
	Nicolaides coarse space using FreeFem++

	Introduction of a spectral coarse space
	Spectral coarse spaces for other problems

	Theory of two-level ASM
	Variational setting
	Additive Schwarz setting
	Abstract theory for the two-level ASM
	Definition and properties of coarse spaces
	Nicolaides coarse space
	Spectral coarse space

	Convergence theory for ASM with Nicolaides and spectral coarse spaces
	Functional analysis results
	Theory of spectral coarse spaces for scalar heterogeneous problems

	Neumann-Neumann and FETI Algorithms
	Direct and Hybrid Substructured solvers
	Two-subdomains at the continuous level
	Iterative Neumann-Neumann and FETI algorithms
	Substructured reformulations
	FETI as an optimization problem

	Two subdomains case at the algebraic level
	Link with approximate factorization

	Many subdomains case
	Remarks on FETI

	Neumann-Neumann in FreeFem++
	FreeFem++ scripts

	Non-standard Neumann-Neumann type methods
	Smith normal form of linear systems of PDEs
	An optimal algorithm for the bi-harmonic operator
	Some optimal algorithms

	Optimized Schwarz methods (OSM)
	P.L. Lions' Algorithm
	Computation of the convergence factor
	General convergence proof

	Helmholtz problems
	Convergence issues for Helmholtz
	Després' Algorithm for the Helmholtz equation

	Implementation issues
	Two-domain non-overlapping decomposition
	Overlapping domain decomposition

	Optimal interface conditions
	Optimal interface conditions and ABC
	Optimal Algebraic Interface Conditions

	Optimized interface conditions
	Optimized interface conditions for -
	Optimized IC for Helmholtz
	Optimized Robin interface conditions
	Optimized Second order interface conditions
	Numerical results

	Optimized IC for other equations

	FreeFem++ implementation of ORAS

	GenEO Coarse Space
	Reformulation of the Additive Schwarz Method
	Mathematical Foundation
	Fictitious Space Lemma
	Symmetric Generalized Eigenvalue problem
	Auxiliary lemma

	Finite element setting
	GenEO coarse space for Additive Schwarz
	Some estimates for a stable decomposition with RASM,2
	Definition of the GenEO coarse space

	Hybrid Schwarz with GenEO
	Efficient implementation

	FreeFem++ Implementation
	Balancing Neumann-Neumann
	Easy Neumann-Neumann
	Neumann-Neumann with ill-posed subproblems
	GenEO BNN
	Efficient implementation of the BNNG method

	Implementation of Schwarz methods
	A parallel FreeFem++ script
	Three dimensional elasticity problem
	Native DDM solvers and PETSc Interface
	FreeFem++ interface
	PETSc interface

	Validation of the computation
	Parallel Script

	Numerical experiments
	Small scale computations
	Large Scale Computations
	Strong scaling experiments
	Weak scaling experiments

	FreeFem++ Algebraic Formulation

