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i

The purpose of this text is to offer an overview of the most popular do-
main decomposition methods for partial differential equations (PDE). The
presentation is kept as much as possible at an elementary level with a spe-
cial focus on the definitions of these methods in terms both of PDEs and
of the sparse matrices arising from their discretizations. We also provide
implementations written in an open source finite element software. In ad-
dition, we consider a number of methods that have not been presented in
other books. We think that this book will give a new perspective and that
it will complement those of Smith, Bjørstad and Gropp [25], Quarteroni and
Valli [23], Mathew [20] and Toselli and Widlund[26] as well as the review
article [7].

The book is addressed to computational scientists, mathematicians, physi-
cists and, in general, to people involved in numerical simulation of par-
tial differential equations. It can also be used as textbook for advanced
undergraduate/First-Year Graduate students. The mathematical tools needed
are basic linear algebra, notions of programming, variational formulation of
PDEs and basic knowledge in finite element discretization.

The value of domain decomposition methods is part of a general need
for parallel algorithms for professional and consumer use. We will focus on
scientific computing and more specifically on the solution of the algebraic
systems arising from the approximation of a partial differential equation.

Domain decomposition methods are a family of methods to solve prob-
lems of linear algebra on parallel machines in the context of simulation. In
scientific computing, the first step is to model mathematically a physical
phenomenon. This often leads to systems of partial differential equations
such as the Navier-Stokes equations in fluid mechanics, elasticity system
in solid mechanics, Schrödinger equations in quantum mechanics, Black and
Scholes equation in finance, Lighthill-Witham equations for traffic, . . . Func-
tional analysis is used to study the well-posedness of the PDEs which is a
necessary condition for their possible numerical approximation. Numerical
analysis enables to design stable and consistant discretization schemes. This
leads to discrete equations F (u) = b ∈ Rn where n is the number of degrees
of freedom of the discretization. If F is linear, calculate u is a problem
of linear algebra. If F is nonlinear, a method for solving is the classical
Newton’s method, which also leads to solving a series of linear systems.

In the past, improving performance of a program, either in speed or in
the amount of data processed, was only a matter of waiting for the next
generation processors. Every eighteen months, computer performance dou-
bled. As a consequence, linear solver research would take second place to the
search for new discretization schemes. But since approximately year 2005
the clock speed stagnates at 2-3 GHz. The increase in performance is almost
entirely due to the increase in the number of cores per processor. All ma-
jor processor vendors are producing multicore chips and now every machine
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is a parallel machine. Waiting for the next generation machine does not
guarantee anymore a better performance of a software. To keep doubling
performance parallelism must double. It implies a huge effort in algorithmic
development. Scientific computing is only one illustration of this general
need in computer science. Visualization, data storage, mesh generation,
operating systems, . . . must be designed with parallelism in mind.

We focus here on parallel linear iterative solvers. Contrary to direct
methods, the appealing feature of domain decomposition methods is that
they are naturally parallel. We introduce the reader to the main classes of
domain decomposition algorithms: Schwarz, Neumann-Neumann/FETI and
Optimized Schwarz. For each method we start by the continuous formula-
tion in terms of PDEs for two subdomains. We then give the definition in
terms of stiffness matrices and their implementation in a free finite element
package in the many subdomain case. This presentation reflects the dual na-
ture of domain decomposition methods. They are solvers of linear systems
keeping in mind that the matrices arise from the discretization of partial
differential operators. As for domain decomposition methods that directly
address non linearities, we refer the reader to e.g. [3] or [4] and references
therein. As for iterative solvers non related to domain decomposition we
refer the reader to [2] or [22] e.g. .

In Chapter 1 we start by introducing different versions of Schwarz algo-
rithms at continuous level, having as a starting point H. Schwarz method
(see [24]): Jacobi Schwarz Method (JSM), Additive Schwarz Method (ASM)
and Restricted Additive Schwarz (RAS) which the default parallel solver in
PETSc. The first natural feature of these algorithms are that they are equiv-
alent to a Block-Jacobi method when the overlap is minimal. We move on
to the algebraic versions of the Schwarz methods. In order to do this, sev-
eral concepts are necessary: restriction and prolongation operators as well
as partitions of unity which make possible the global definition. These con-
cepts are explained in detail in the case of different type of discretizations
(finite difference or finite element) and spatial dimensions. The conver-
gence of the Schwarz method in the two-subdomain case is illustrated for
one-dimensional problems and then for two-dimensional problems by using
Fourier analysis.A short paragraph introduces P.L. Lions algorithm that will
be considered into details in Chapter 2. The last part of the chapter is dedi-
cated to the numerical implementation by using FreeFem++ [14] for general
decompositions into subdomains.

In Chapter 2 we present Optimized Schwarz methods applied to the
Helmholtz equation which models acoustic wave propagation in the fre-
quency domain. We begin with the two subdomain case. We show the
need for the use of interface conditions different from Dirichlet or Neumann
boundary conditions. The Lions and Desprès algorithms which are based
on Robin interface conditions are analyzed together with their implementa-
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tions. We also show that by taking even more general interface conditions,
much better convergence can be achieved at no extra cost compared to the
use of Robin interface conditions. We consider the many subdomain case
as well. These algorithms are the method of choice for wave propagation
phenomena in the frequency regime. Such situations occur in acoustics,
electromagnetics and elastodynamics.

In Chapter 3 we present the main ideas which justify the use of Krylov
methods instead of stationary iterations. Since Schwarz methods introduced
in Chapters 1 and 2 represent fixed point iterations applied to precondi-
tioned global problems, and consequently not providing the fastest conver-
gence possible, it is natural to apply Krylov methods instead. This provides
the justification of using Schwarz methods as preconditioners rather than
solvers. Numerical implementations and results using FreeFem++ are clos-
ing the chapter. Although some part of the presentation of some Krylov
methods is not standard, readers already familiar with Krylov methods may
as well skip it.

Chapter 4 is devoted to the introduction of two-level methods. In the
presence of many subdomains, the performance of Schwarz algorithms, i.e.
the iteration number and execution time will grow linearly with the number
of subdomains in one direction. From a parallel computing point of view this
translates into a lack of scalability. The latter can be achieved by adding a
second level or a coarse space. This is strongly related to multigrid methods
and to deflation methods from numerical linear algebra. The simplest coarse
space which belongs to Nicolaides is introduced and then implemented in
FreeFem++.

In Chapter 5, we show that Nicolaides coarse space (see above) is a
particular case of a more general class of spectral coarse spaces which are
generated by vectors issued from solving some local generalized eigenvalue
problems. Then, a theory of these two-level algorithms is presented. First, a
general variational setting is introduced as well as elements from the abstract
theory of the two-level additive Schwarz methods (e.g. the concept of stable
decomposition). The analysis of spectral and classical coarse spaces goes
through some properties and functional analysis results. These results are
valid for scalar elliptic PDEs. This chapter is more technical than the others
and is not necessary to the sequel of the book.

Chapter 6 is devoted to the Neumann-Neumann and FETI algorithms.
We start with the two subdomain case for the Poisson problem. Then, we
consider the formulation in terms of stiffness matrices and stress the duality
of these methods. We also establish a connection with block factorization
of the stiffness matrix of the original problem. We then show that in the
many subdomains case Neumann-Neumann and FETI are no longer strictly
equivalent. For sake of simplicity, we give a FreeFem++ implementation of
only the Neumann-Neumann algorithm. The reader is then ready to delve
into the abundant litterature devoted to the use of these methods for solving
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complex mechanical problems.
In Chapter 7, we return to two level methods. This time, a quite recent

adaptive abstract coarse space, as well as most classical two-level methods
are presented in a different light, under a common framework. Moreover,
their convergence properties are proven in an abstract setting, provided
that the assumptions of the Fictitious Space Lemma are satisfied. The
new coarse space construction is based on solving GENeralized Eigenvalue
problems in the Overlap (GenEO). The construction is provable in the sense
that the condition number is given in terms of an explicit formula where the
constants that appear are the maximal number of neighbors of a subdomain
and a threshold prescribed by the user. The latter can be applied to a
broader class of elliptic equations, which include systems of PDEs such as
linear elasticity even with highly heterogeneous coefficients. From § 7.1 to
§ 7.6 , we give all the materials necessary to build and analyze two-level
methods for Additive Schwarz methods. In section 7.7, we build a coarse
space for one level Optimized Schwarz methods of Chapter 2. It is based
on introducing SORAS algorithm and two related generalized eigenvalue
problems. The resulting algorithm is named SORAS-GenEO-2. Section 7.8
is devoted to endow one level Neumann-Neumann algorithm of Chapter 6
with a GenEO type coarse space.

In Chapter 8 we introduce the parallel computational framework used
in the parallel version of the free finite element package FreeFem++ which
is currently linked with HPDDM, a C++ framework for high-performance
domain decomposition methods, available at the following URL: https:

//github.com/hpddm/hpddm. For sake of simplicity we restrict ourselves to
the two-level Schwarz methods. Numerical simulations of very large scale
problems on high performance computers show the weak and strong scala-
bilities of the Schwarz methods for 2D and 3D Darcy and elasticity problems
with highly heterogeneous coefficients with billions of degrees of freedom. A
self contained FreeFem++ parallel script is given.

We give in Figure 1, the dependency graph of the various chapters. For
instance in order to read Chapter 4 it is necessary to be familiar with both
Chapters 3 and 1. From this graph, the reader is able to choose his way in
reading the book. We suggest some possible partial readings. A reader inter-
ested in having a quick and partial view and already familiar with Krylov
methods, may very well read only Chapter 1 followed by Chapter 4. For
new comers to Krylov methods, reading of Chapter 3 must be intercalated
between Chapter 1 and Chapter 4.
For a quick view on all Schwarz methods without entering into the technical
details of coarse spaces, one could consider beginning by Chapter 1 followed
by Chapter 2 and then by Chapter 3 on the use of Schwarz methods as
preconditioners, to finish with Chapter 4 on classical coarse spaces.
For the more advanced reader, Chapters 5 and 7 provide the technical frame-

https://github.com/hpddm/hpddm
https://github.com/hpddm/hpddm
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Figure 1: Dependency graph of chapters

work for the analysis and construction of more sophisticated coarse spaces.
And last, but not least Chapter 8 gives the keys of parallel implementation
and illustrates with large scale numerical results the previously introduced
methods.
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Chapter 1

Schwarz methods

1.1 Three continuous Schwarz Algorithms

Hermann Schwarz was a German analyst of the 19th century. He was in-
terested in proving the existence and uniqueness of the Poisson problem.
At his time, there were no Sobolev spaces nor Lax-Milgram theorem. The
only available tool was the Fourier transform, limited by its very nature to
simple geometries. In order to consider more general situations, H. Schwarz
devised an iterative algorithm for solving Poisson problem set on a union
of simple geometries, see [24]. For a historical presentation of these kind of
methods see [13].

Let the domain Ω be the union of a disk and a rectangle, see figure 1.1.
Consider the Poisson problem which consists in finding u ∶ Ω→ R such that:

−∆(u) = f in Ω
u = 0 on ∂Ω.

(1.1)

Definition 1.1.1 (Original Schwarz algorithm) The Schwarz algorithm
is an iterative method based on solving alternatively sub-problems in domains

Ω1 Ω2

Figure 1.1: A complex domain made from the union of two simple geometries

1



2 CHAPTER 1. SCHWARZ METHODS

Ω1 and Ω2. It updates (un1 , un2)→ (un+1
1 , un+1

2 ) by:

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on ∂Ω1 ∩Ω2.

then,

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩Ω1.
(1.2)

H. Schwarz proved the convergence of the algorithm and thus the well-
posedness of the Poisson problem in complex geometries.

With the advent of digital computers, this method also acquired a prac-
tical interest as an iterative linear solver. Subsequently, parallel computers
became available and a small modification of the algorithm [18] makes it
suited to these architectures. Its convergence can be proved using the max-
imum principle [17].

Definition 1.1.2 (Parallel Schwarz algorithm) Iterative method which
solves concurrently in all subdomains, i = 1,2:

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un3−i on ∂Ωi ∩Ω3−i.

(1.3)

It is easy to see that if the algorithm converges, the solutions u∞i , i = 1,2
in the intersection of the subdomains take the same values. Indeed, in the
overlap Ω12 ∶= Ω1 ∩Ω2, let e∞ ∶= u∞1 −u∞2 . By the last line of (1.3), we know
that e∞ = 0 on ∂Ω12. By linearity of the Poisson equation, we also have that
e∞ is harmonic. Thus, e∞ solves the homogeneous well-posed boundary
value problem (BVP):

−∆(e∞) = 0 in Ω12

e∞ = 0 on ∂Ω12

and thus e∞ = 0 .
Algorithms (1.2) and (1.3) act on the local functions (ui)i=1,2. In order

to write algorithms that act on global functions we need extension operators
and partitions of unity.

Definition 1.1.3 (Extension operators and partition of unity) Let the
extension operator Ei such that Ei(wi) ∶ Ω → R is the extension of a func-
tion wi ∶ Ωi ↦ R, by zero outside Ωi. We also define the partition of unity
functions χi ∶ Ωi → R, χi ≥ 0 and χi(x) = 0 for x ∈ ∂Ωi ∖ ∂Ω and such that:

w =
2

∑
i=1

Ei(χiw∣Ωi
) (1.4)

for any function w ∶ Ω↦ R.
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There are two ways to write related algorithms that act on global functions.
They are given in Definitions 1.1.4 and 1.1.5.

Definition 1.1.4 (First global Schwarz iteration) Let un be an approx-
imation to the solution to the Poisson problem (1.1), un+1 is computed by
solving first local sub-problems:

−∆(wn+1
i ) = f in Ωi, wn+1

i = un on ∂Ωi ∩Ω3−i
wn+1
i = 0 on ∂Ωi ∩ ∂Ω .

(1.5)

and then gluing them together using the partition of unity functions:

un+1 ∶=
2

∑
i=1

Ei(χiwn+1
i ) . (1.6)

We can prove the following property:

Lemma 1.1.1 Algorithm (1.5)-(1.6) which iterates on un and algorithm
(1.3) which iterates on (un1 , un2) are equivalent.

Proof Starting from initial guesses which satisfy u0 =
2

∑
i=1

Ei(χi u0
i ), we

prove by induction that

un =
2

∑
i=1

Ei(χi uni ) . (1.7)

holds for all n ≥ 0. Assume the property holds at step n of the algorithm.
Then, using the fact that χ1 = 1 and χ2 = 0 on ∂Ω1∩Ω̄2 we have by definition
that wn+1

1 is a solution to BVP (1.3) (with i = 1):

−∆(wn+1
1 ) = f in Ω1,
wn+1

1 = 0 on ∂Ω1 ∩ ∂Ω,

wn+1
1 = un =

2

∑
i=1

Ei(χi uni ) = un2 on ∂Ω1 ∩Ω2.

(1.8)

and thus wn+1
1 = un+1

1 . The proof is the same for wn+1
2 = un+1

2 . Finally, we
have using (1.6):

un+1 =
2

∑
i=1

Ei(χiwni ) =
2

∑
i=1

Ei(χi uni ) .

This result can be seen as a continuous version of the algebraic formulation
established in [12].

We introduce in Algorithm 1 another formulation to algorithm (1.5)-(1.6)
in terms of the continuous residual rn ∶= f + ∆un. This way, we get closer
to the algebraic definition of domain decomposition methods. Algorithm 1
is named RAS which stands for Restricted Additive Schwarz.
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Lemma 1.1.2 (Equivalence between Schwarz’ algorithm and RAS)
The algorithm defined by (1.12), (1.13) and (1.14) is called the continuous
RAS algorithm. It is equivalent to the Schwarz’ algorithm (1.3).

Proof Here, we have to prove the equality

un = E1(χ1u
n
1) +E2(χ2u

n
2) ,

where un1,2 is given by (1.3) and un is given by (1.12)-(1.13)-(1.14). We
assume that the property holds for the initial guesses:

u0 = E1(χ1u
0
1) +E2(χ2u

0
2)

and proceed by induction assuming the property holds at step n of the
algorithm, i.e. un = E1(χ1u

n
1) +E2(χ2u

n
2). From (1.14) we have

un+1 = E1(χ1(un + vn1 )) +E2(χ2(un + vn2 )) . (1.9)

We prove now that un∣Ω1
+ vn1 = un+1

1 by proving that un∣Ω1
+ vn1 satisfies (1.3)

as un+1
1 does. We first note that, using (1.13)-(1.12) we have:

−∆(un + vn1 ) = −∆(un) + rn = −∆(un) + f +∆(un) = f in Ω1,

un + vn1 = un on ∂Ω1 ∩Ω2,
(1.10)

It remains to prove that

un = un2 on ∂Ω1 ∩Ω2 .

By the induction hypothesis we have un = E1(χ1u
n
1) +E2(χ2u

n
2). On ∂Ω1 ∩

Ω2, we have χ1 ≡ 0 and thus χ2 ≡ 1. So that on ∂Ω1 ∩Ω2 we have :

un = χ1u
n
1 + χ2u

n
2 = un2 . (1.11)

Finally from (1.10) and (1.11) we can conclude that un∣Ω1
+ vn1 satisfies prob-

lem (1.3) and is thus equal to un+1
1 . The same holds for domain Ω2, un∣Ω2

+vn2 =
un+1

2 . Then equation (1.9) reads

un+1 = E1(χ1u
n+1
1 ) +E2(χ2u

n+1
2 )

which ends the proof of the equivalence between Schwarz’ algorithm and the
continuous RAS algorithm (1.12)–(1.14).

Another global variant of the parallel Schwarz algorithm (1.3) consists
in replacing formula (1.6) by a simpler formula not based on the partition
of unity.
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Algorithm 1 RAS algorithm at the continuous level

1. Compute the residual rn ∶ Ω→ R:

rn ∶= f +∆(un) (1.12)

2. For i = 1,2 solve for a local correction vni :

−∆(vni ) = rn in Ωi , vni = 0 on ∂Ωi (1.13)

3. Compute an average of the local corrections and update un:

un+1 = un +E1(χ1v
n
1 ) +E2(χ2v

n
2 ) . (1.14)

where (χi)i=1,2 and (Ei)i=1,2 define a partition of unity as in defined
in section 1.1 equation (1.4).

Definition 1.1.5 (Second global Schwarz iteration) Let un be an ap-
proximation to the solution to the Poisson problem (1.1), un+1 is computed
by solving first local sub-problems (1.5) and then gluing them together with-
out the use of the partition of unity functions:

un+1 ∶=
2

∑
i=1

Ei(wn+1
i ) . (1.15)

It is easy to check that this algorithm is equivalent to Algorithm 2 which is
called ASM (Additive Schwarz method).

Algorithm 2 ASM algorithm at the continuous level

1. Compute the residual rn ∶ Ω→ R:

rn ∶= f +∆(un) (1.16)

2. For i = 1,2 solve for a local correction vni :

−∆(vni ) = rn in Ωi , vni = 0 on ∂Ωi (1.17)

3. Update un:
un+1 = un +E1(vn1 ) +E2(vn2 ) . (1.18)

To sum up, starting from the original Schwarz algorithm (1.2) that is
sequential, we have thus three continuous algorithms that are essentially
parallel:
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• Algorithm (1.3) Jacobi Schwarz Method (JSM)

• Algorithm (1.12)-(1.13)-(1.14) Restricted Additive Schwarz (RAS)

• Algorithm (1.16)-(1.17)-(1.18) Additive Schwarz Method (ASM)

The discrete version of the first algorithm is seldom implemented since
it involves duplication of unknowns. The discrete version of the second
algorithm is the restricted additive Schwarz method (RAS, see[5, 6]) which
is the default parallel solver in the package PETSC [1]. The discrete version
of the third algorithm is the additive Schwarz method (ASM) for which many
theoretical results have been derived, see [26] and references therein. The
latter term was introduced first by Dryja and Widlund in [11] for a variant
of the algorithm firstly introduced at continuous level in [21].

1.2 Connection with the Block Jacobi algorithm

In the previous section we have noticed that the three methods illustrate
different points of view of the Schwarz iteration, the continuous aspect em-
phasized the interest of the overlap (see § 1.5), which is hidden in the discrete
formulation. When going to the discrete level, we will see that Schwarz al-
gorithm is, from a linear algebra point of view, a variation of a block-Jacobi
algorithm.

We first recall the definition of a block Jacobi algorithm and then es-
tablish a connection with the Schwarz algorithms. Let us consider a linear
system:

AU = F (1.19)

with a matrix A of size m ×m, a right-hand side F ∈ Rm and a solution
U ∈ Rm where m is an integer. The set of indices {1, . . . ,m} is partitioned
into two sets

N1 ∶= {1, . . . ,ms} and N2 ∶= {ms + 1, . . . ,m} .

Let U1 ∶= (Uk)k∈N1 ∶= U∣N1
, U2 ∶= (Uk)k∈N2 ∶= U∣N2

and similarly F1 ∶= F∣N1
,

F2 ∶= F∣N2
.

The linear system has the following block form:

( A11 A12

A21 A22
)( U1

U2
) = ( F1

F2
)

where Aij ∶= A∣Ni×Nj
, 1 ≤ i, j ≤ 2.

Definition 1.2.1 (Jacobi algorithm) Let D be the diagonal of A, the Ja-
cobi algorithm reads:

DUn+1 =DUn + (F −AUn) ,
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or equivalently,

Un+1 = Un +D−1(F −AUn) = Un +D−1rn ,

where rn = F −AUn is the residual of the equation.

We now define a block Jacobi algorithm.

Definition 1.2.2 (Block-Jacobi algorithm) The block-Jacobi algorithm
reads:

( A11 0
0 A22

)( Un+1
1

Un+1
2

) = ( A11 0
0 A22

)( Un
1

Un
2

) + ( F1

F2
) −A( Un

1

Un
2

)

(1.20)
or equivalently

⎛
⎝
A11 0

0 A22

⎞
⎠
⎛
⎝

Un+1
1

Un+1
2

⎞
⎠
=
⎛
⎝
F1 −A12 Un

2

F2 −A21 Un
1

⎞
⎠
. (1.21)

In order to have a more compact form of the previous algorithm, we in-
troduce R1 the restriction operator from N into N1 and similarly R2 the
restriction operator from N into N2. The transpose operator RTi are exten-
sions operators from Ni into N . Note that Aii = RiARTi .

Lemma 1.2.1 (Compact form of a block-Jacobi algorithm) The al-
gorithm (1.21) can be re-written as

Un+1 = Un + (RT1 (R1AR
T
1 )−1R1 +RT2 (R2AR

T
2 )−1R2) rn . (1.22)

Proof Let Un = (Un
1
T ,Un

2
T )T , algorithm (1.21) becomes

⎛
⎝
A11 0

0 A22

⎞
⎠

Un+1 = F −
⎛
⎝

0 A12

A21 0

⎞
⎠

Un . (1.23)

On the other hand, equation (1.20) can be rewritten equivalently

( Un+1
1

Un+1
2

) = ( Un
1

Un
2

)+( A11 0
0 A22

)
−1

( rn1
rn2

)⇔Un+1 = Un+( A−1
11 0
0 A−1

22
) rn

(1.24)
where rni ∶= rn∣Ni

, i = 1,2 . By taking into account that

( A−1
11 0
0 0

) = RT1 A−1
11R1 = RT1 (R1AR

T
1 )−1R1

and

( 0 0
0 A−1

22
) = RT2 A−1

22R2 = RT2 (R2AR
T
2 )−1R2 ,
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Ω1 Ω2
xms xms+1

χ1 χ2

Figure 1.2: Domain decomposition with minimal overlap and partition of
unity

the conclusion follows easily.

In order to establish a connection with the Schwarz algorithms, consider
the following BVP on Ω ∶= (0,1): Find u such that

−∆u = f, in Ω
u(0) = u(1) = 0 .

We discretize it by a three point finite difference scheme on the grid xj ∶= j h,
1 ≤ j ≤ m where h ∶= 1/(m + 1). Let uj ≃ u(xj), fj ∶= f(xj), 1 ≤ j ≤ m
and U = (uj)1≤j≤m, F = (fj)1≤j≤m satisfy equation (1.19) where A is the
tridiagonal matrix Aj j ∶= 2/h2 and Aj j+1 = Aj+1 j ∶= −1/h2.

Let domains Ω1 ∶= (0, (ms + 1)h) and Ω2 ∶= (ms h,1) define an overlap-
ping decomposition with a minimal overlap of width h. The discretization
of (1.5) for domain Ω1 reads

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
un+1

1,j−1 − 2un+1
1,j + un+1

1,j+1

h2
= fj , 1 ≤ j ≤ms

un+1
1,0 = 0

un+1
1,ms+1 = un2,ms+1

.

Solving for Un+1
1 = (un+1

1,j )1≤j≤ms corresponds to solving a Dirichlet boundary
value problem in subdomain Ω1 with Dirichlet data taken from the other
subdomain at the previous step. With the notations introduced previously,
Un+1

1 satisfies
A11U

n+1
1 +A12U

n
2 = F1 .

Similarly, we have
A22U

n+1
2 +A21U

n
1 = F2 .

These two equations are equivalent to (1.21) and represent the discretization
of the JSM method (1.3).

The discrete counterpart of the extension operator E1 (resp. E2) is de-
fined by E1(U1) = (UT

1 ,0)T (resp. E2(U2) = (0,UT
2 )T ). The discretization

of the ASM (1.15) is then given by equation (1.23). Thus when the overlap
is minimal, the ASM method reduces to the block Jacobi algorithm.
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Let χi, i = 1,2 be the piecewise linear functions that define a partition
of unity on the domain decomposition, see Figure 1.2. In this very simple
configuration,

χ1(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if 0 ≤ x ≤ xms
xms+1 − x

h
if xms ≤ x ≤ xms+1

and

χ2(x) =
⎧⎪⎪⎨⎪⎪⎩

x − xms

h
if xms ≤ x ≤ xms+1

1 if xms+1 ≤ x ≤ 1
.

Functions χi, i = 1,2 define a partition of unity in the sense of (1.4). Since
the overlap is minimal, the discretization of (1.6) is equivalent to that of
(1.15). Thus RAS reduces, in this case, to ASM.

Remark 1.2.1 In conclusion when the overlap is minimal the discrete coun-
terparts of the three Schwarz methods of section 1.1 are equivalent to the
same block Jacobi algorithm. Notice here a counter-intuitive feature: a non
overlapping decomposition of the set of indices N corresponds to a geometric
decomposition of the domain Ω with minimal overlap.

1.3 Algebraic algorithms: discrete partition of unity

Our goal is to introduce in the general case the algebraic counterparts of
algorithms RAS and ASM defined in § 1.1. The simplest way to do so is to
write the iterative method in terms of residuals as is done in equation (1.22).
In order to do this, we need to settle some elements necessary in this writing.
One of them is the proper definition of the partition of unity.

At the continuous level (partial differential equations), the main ingre-
dients of the partition of unity are

• An open domain Ω and an overlapping decomposition into N open
subsets Ω = ∪Ni=1Ωi.

• A function u ∶ Ω→ R.

• The extension operator Ei of a function Ωi → R to a function Ω → R
equals to zero in Ω/Ωi.

• The partition of unity functions χi, 1 ≤ i ≤ N introduced in for-
mula (1.4) which verify for all functions u ∶ Ω→ R:

u =
2

∑
i=1

Ei(χi u∣Ωi
).

We can give a similar definition at the discrete level.
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Definition 1.3.1 (Algebraic partition of unity) At the discrete level,
the main ingredients of the partition of unity are

• A set indices of degrees of freedom N and a decomposition into N
subsets N = ∪Ni=1Ni.

• A vector U ∈ R#N .

• The restriction of a vector U ∈ R#N to a subdomain Ωi, 1 ≤ i ≤ N
can be expressed as RiU where Ri is a rectangular #Ni×#N Boolean
matrix. The extension operator will be the transpose matrix RTi .

• The partition of unity “functions” at discrete level correspond to diag-
onal matrices of size #Ni × #Ni with non negative entries such that
for all vectors U ∈ R#N

U =
N

∑
i=1

RTi DiRiU ,

or in other words

Id =
N

∑
i=1

RTi DiRi (1.25)

where Id ∈ R#N×#N is the identity matrix.

As pointed out in Remark 1.2.1 an overlapping decomposition of a domain
Ω might correspond to a partition of the set of indices.

In the following we will give some simple examples where all the ingre-
dients of the Definition 1.3.1 are detailed and we will check that (1.25) is
verified in those cases.

1.3.1 Two subdomain case in one dimension

1d Algebraic setting

We start from the 1d example of § 1.2 with n = 5, ns = 3 so that the set of
indices N ∶= {1, . . . ,5} is partitioned into two sets, see Figure 1.3

N1 ∶= {1,2,3} and N2 ∶= {4,5} .

Then, matrix R1 is of size 3 × 5 and matrix R2 is of size 2 × 5:

R1 =
⎛
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎞
⎟
⎠

and R2 = (0 0 0 1 0
0 0 0 0 1

) ,
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N1 N2

1 2 3 4 5

Figure 1.3: Algebraic partition of the set of indices

and

RT1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and RT2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0
0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

We also have

D1 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

and D2 = (1 0
0 1

) .

It is clear that relation (1.25) holds.

N δ=1
1

N δ=1
2

1 2 3 4 5

Figure 1.4: Algebraic decomposition of the set of indices into overlapping
subsets

Consider now the case where each subset is extended with a neighboring
point, see Figure 1.4:

N δ=1
1 ∶= {1,2,3,4} and N δ=1

2 ∶= {3,4,5} .
Then, matrices R1 and R2 are:

R1 =
⎛
⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟
⎠

and R2 =
⎛
⎜
⎝

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎠
.

The simplest choices for the partition of unity matrices are

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠
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or

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1/2

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜
⎝

1/2 0 0
0 1/2 0
0 0 1

⎞
⎟
⎠
.

Again, it is clear that relation (1.25) holds.

Ω1 Ω2

1 2 3 4 5

Figure 1.5: Finite element partition of the mesh

1d Finite element decomposition

We still consider the 1d example with a decomposition into two subdomains
but now in a finite element spirit. A partition of the 1D mesh of Figure 1.5
corresponds to an overlapping decomposition of the set of indices:

N1 ∶= {1,2,3} and N2 ∶= {3,4,5} .

Then, matrices R1 and R2 are:

R1 =
⎛
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎞
⎟
⎠

and R2 =
⎛
⎜
⎝

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎠
.

In order to satisfy relation (1.25), the simplest choice for the partition of
unity matrices is

D1 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1/2

⎞
⎟
⎠

and D2 =
⎛
⎜
⎝

1/2 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Consider now the situation where we add a mesh to each subdomain, see
Figure 1.6. Accordingly, the set of indices is decomposed as:

N δ=1
1 ∶= {1,2,3,4} and N δ=1

2 ∶= {2,3,4,5} .

Then, matrices R1 and R2 are:

R1 =
⎛
⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟
⎠

and R2 =
⎛
⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟
⎠
.
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Ωδ=1
1 Ωδ=1

2

1 2 3 4 5

Figure 1.6: Finite element decomposition of the mesh into overlapping sub-
domains

In order to satisfy relation (1.25), the simplest choice for the partition of
unity matrices is

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 1/2 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

Another possible choice that will satisfy relation (1.25) as well is

D1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

⎞
⎟⎟⎟
⎠

and D2 =
⎛
⎜⎜⎜
⎝

1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

1.3.2 Multi dimensional problems and many subdomains

In the general case, the set of indices N can be partitioned by an automatic
graph partitioner such as METIS[15] or SCOTCH [8]. From the input matrix
A, a connectivity graph is created. Two indices i, j ∈ N are connected if the
matrix coefficient Aij ≠ 0. Usually, even if matrix A is not symmetric,
the connectivity graph is symmetrized. Then algorithms that find a good
partitioning of the vertices even for highly unstructured graphs are used.
This distribution must be done so that the number of elements assigned to
each processor is roughly the same, and the number of adjacent elements
assigned to different processors is minimized (graph cuts). The goal of the
first condition is to balance the computations among the processors. The
goal of the second condition is to minimize the communication resulting
from the placement of adjacent elements to different processors.

Multi-D algebraic setting

Let us consider a partition into N subsets (see Figure 1.7):

N ∶=
N

⋃
i=1

Ni, Ni ∩Nj = ∅ for i ≠ j . (1.26)
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Let Ri be the restriction matrix from set N to the subset Ni and Di the
identity matrix of size #Ni × #Ni, 1 ≤ i ≤ N . Then, relation (1.25) is
satisfied.

N δ=1
2

N δ=1
1

N δ=1
3N2

N1

N3

Figure 1.7: Partition and overlapping decomposition of the set of indices

Consider now the case where each subset Ni is extended with its direct
neighbors to formN δ=1

i , see Figure 1.7. Let Ri be the restriction matrix from
setN to the subsetN δ=1

i and Di be a diagonal matrix of size #N δ=1
i ×#N δ=1

i ,
1 ≤ i ≤ N . For the choice of the coefficients of Di there are two main options.
The simplest one is to define it as a Boolean matrix:

(Di)jj ∶= { 1 if j ∈ Ni,
0 if j ∈ N δ=1

i /Ni.

Then, relation (1.25) is satisfied. Another option is to introduce for all j ∈ N
the set of subsets having j as an element:

Mj ∶= {1 ≤ i ≤ N ∣ j ∈ N δ=1
i } .

Then, define

(Di)jj ∶= 1/#Mj , for j ∈ N δ=1
i .

Then, relation (1.25) is satisfied.

Multi-D finite element decomposition

Partitioning a set of indices is well adapted to an algebraic framework. In
a finite element setting, the computational domain is the union of elements
of the finite element mesh Th. A geometric partition of the computational
domain is natural. Here again, graph partitioning can be used by first
modeling the finite element mesh by a graph, and then partitioning the
elements into N parts (Ti,h)1≤i≤N , see Figure 1.8. By adding to each part
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Figure 1.8: Left: Finite element partition; Right: one layer extension of the
right subdomain

layers of elements, it is possible to create overlapping subdomains resolved
by the finite element meshes:

Ωi = ⋃
τ∈Ti,h

τ for 1 ≤ i ≤ N . (1.27)

Let {φk}k∈N be a basis of the finite element space. We define

Ni ∶= {k ∈ N ∶ supp (φk) ∩Ωi ≠ ∅}1 ≤ i ≤ N. (1.28)

For each degree of freedom k ∈ N , let

µk ∶= #{j ∶ 1 ≤ j ≤ N and supp (φk) ∩Ωj ≠ ∅} .

Let Ri be the restriction matrix from set N to the subset Ni and Di be a
diagonal matrix of size #Ni ×#Ni, 1 ≤ i ≤ N such that

(Di)kk ∶= 1/µk, k ∈ Ni.

Then, relation (1.25) is satisfied.

1.4 Iterative Schwarz methods: RAS, ASM

In a similar way to what was done for the block Jacobi algorithm in equa-
tion (1.22), we can define RAS (the counterpart of Algorithm (1.12)–(1.14))
and ASM algorithms (the counterpart of Algorithm (1.16)-(1.18)).

Definition 1.4.1 (RAS algorithm) The iterative RAS algorithm is the
preconditioned fixed point iteration defined by

Un+1 = Un +M−1
RASrn, rn ∶= F −AUn



16 CHAPTER 1. SCHWARZ METHODS

where the matrix

M−1
RAS ∶=

N

∑
i=1

RTi Di (RiARTi )
−1
Ri (1.29)

is called the RAS preconditioner.

Definition 1.4.2 (ASM algorithm) The iterative ASM algorithm is the
preconditioned fixed point iteration defined by

Un+1 = Un +M−1
ASMrn, rn ∶= F −AUn

where the matrix

M−1
ASM ∶=

N

∑
i=1

RTi (RiARTi )
−1
Ri (1.30)

is called the ASM preconditioner.

1.5 Convergence analysis

In order to have an idea about the convergence of these methods, we perform
a simple yet revealing analysis. We consider in § 1.5.1. a one dimensional
domain decomposed into two subdomains. This shows that the size of the
overlap between the subdomains is key to the convergence of the method. In
§ 1.5.2 an analysis in the multi dimensional case is carried out by a Fourier
analysis. It reveals that the high frequency component of the error is very
quickly damped thanks to the overlap whereas the low frequency part will
demand a special treatment, see chapter 4 on coarse spaces and two-level
methods.

1.5.1 1d case: a geometrical analysis

In the 1D case, the original sequential Schwarz method (1.2) can be ana-
lyzed easily. Let L > 0 and the domain Ω = (0, L) be decomposed into two
subodmains Ω1 ∶= (0, L1) and Ω2 ∶= (l2, L) with l2 ≤ L1. By linearity of the
equation and of the algorithm the error eni ∶= uni − u∣Ωi

, i = 1,2 satisfies

−d
2en+1

1

dx2
= 0 in (0, L1)

en+1
1 (0) = 0

en+1
1 (L1) = en2(L1)

then,
−d

2en+1
2

dx2
= 0 in (l2, L)

en+1
2 (l2) = en+1

1 (l2)
en+1

2 (L) = 0 .
(1.31)

Thus the errors are affine functions in each subdomain:

en+1
1 (x) = en2(L1)

x

L1
and en+1

2 (x) = en+1
1 (l2)

L − x
L − l2

.
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Figure 1.9: Convergence of the Schwarz method

Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L −L1

L − l2
= en2(L1)

l2
L1

L −L1

L − l2
.

Let δ ∶= L1 − l2 denote the size of the overlap, we have

en+1
2 (L1) =

l2
l2 + δ

L − l2 − δ
L − l2

en2(L1) =
1 − δ/(L − l2)

1 + δ/l2
en2(L1) .

We see that the following quantity is the convergence factor of the algorithm

ρ1 =
1 − δ/(L − l2)

1 + δ/l2

It is clear that δ > 0 is a sufficient and necessary condition to have con-
vergence. The convergence becomes faster as the ratio of the size of the
overlap over the size of a subdomain is bigger. A geometric illustration of
the history of the convergence can be found in figure 1.9.

1.5.2 2d case: Fourier analysis for two subdomains

For sake of simplicity we consider the plane R2 decomposed into two half-
planes Ω1 = (−∞, δ) × R and Ω2 = (0,∞) × R with an overlap of size δ > 0.
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We choose as an example a symmetric positive definite problem (η > 0)

(η −∆)(u) = f in R2,

u is bounded at infinity ,

The Jacobi-Schwarz method for this problem is the following iteration

(η −∆)(un+1
1 ) = f(x, y), (x, y) ∈ Ω1

un+1
1 (δ, y) = un2(δ, y), y ∈ R

(1.32)

and
(η −∆)(un+1

2 ) = f(x, y), (x, y) ∈ Ω2

un+1
2 (0, y) = un1(0, y), y ∈ R

(1.33)

with the local solutions un+1
j , j = 1,2 bounded at infinity.

In order to compute the convergence factor, we introduce the errors

eni ∶= uni − u∣Ωi , i = 1,2.

By linearity, the errors satisfy the above algorithm with f = 0:

(η −∆)(en+1
1 ) = 0, (x, y) ∈ Ω1

en+1
1 (δ, y) = en2(δ, y), y ∈ R

(1.34)

and
(η −∆)(en+1

2 ) = 0, (x, y) ∈ Ω2

en+1
2 (0, y) = en1(0, y), y ∈ R

(1.35)

with en+1
j bounded at infinity.

By taking the partial Fourier transform of the first line of (1.34) in the
y direction we get:

(η − ∂2

∂x2
+ k2)(ên+1

1 (x, k)) = 0 in Ω1.

For a given Fourier variable k, this is an ODE whose solution is sought in
the form

ên+1
1 (x, k) =∑

j

γj(k) exp(λj(k)x).

A simple computation gives

λ1(k) = λ+(k), λ2(k) = λ−(k), with λ±(k) = ±
√
η + k2.

Therefore we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x) + γn+1
− (k) exp(λ−(k)x).
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Since the solution must be bounded at x = −∞, this implies that γn+1
− (k) ≡ 0.

Thus we have
ên+1

1 (x, k) = γn+1
+ (k) exp(λ+(k)x)

or equivalently, by changing the value of the coefficient γ+,

ên+1
1 (x, k) = γn+1

1 (k) exp(λ+(k)(x − δ))

and similarly, in domain Ω2 we have:

ên+1
2 (x, k) = γn+1

2 (k) exp(λ−(k)x)

with γn+1
1,2 to be determined. From the interface conditions we get

γn+1
1 (k) = γn2 (k) exp(λ−(k)δ)

and
γn+1

2 (k) = γn1 (k) exp(−λ+(k)δ).
Combining these two and denoting λ(k) = λ+(k) = −λ−(k), we get for i = 1,2,

γn+1
i (k) = ρ(k;α, δ)2 γn−1

i (k)

with ρ the convergence factor given by:

ρ(k;α, δ) = exp(−λ(k)δ), λ(k) =
√
η + k2. (1.36)

A graphical representation can be found in Figure 1.10 for some values of
the overlap. This formula deserves a few remarks.

Remark 1.5.1 We have the following properties:

• For all k ∈ R, ρ(k) < exp(−√η δ) < 1 so that γni (k)→ 0 uniformly as n
goes to infinity.

• ρ→ 0 as k tends to infinity, high frequency modes of the error converge
very fast.

• When there is no overlap (δ = 0), ρ = 1 and there is stagnation of the
method.

1.6 More sophisticated Schwarz methods: P.L. Li-
ons’ Algorithm

During the last decades, more sophisticated Schwarz methods were designed,
namely the optimized Schwarz methods. These methods are based on a
classical domain decomposition, but they use more effective transmission
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Figure 1.10: Convergence rate of the Schwarz method for η = .1, δ = 0.5 (red
curve) or δ = 1 (blue curve).
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Figure 1.11: Outward normals for overlapping and non overlapping subdo-
mains for P.L. Lions’ algorithm.
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conditions than the classical Dirichlet conditions at the interfaces between
subdomains. The first more effective transmission conditions were first in-
troduced by P.L. Lions’ [19]. For elliptic problems, we have seen that
Schwarz algorithms work only for overlapping domain decompositions and
their performance in terms of iterations counts depends on the width of
the overlap. The algorithm introduced by P.L. Lions [19] can be applied to
both overlapping and non overlapping subdomains. It is based on improving
Schwarz methods by replacing the Dirichlet interface conditions by Robin
interface conditions.

Let α be a positive number, the modified algorithm reads

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

( ∂

∂n1
+ α) (un+1

1 ) = ( ∂

∂n1
+ α) (un2) on ∂Ω1 ∩Ω2 ,

(1.37)

and

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

( ∂

∂n2
+ α) (un+1

2 ) = ( ∂

∂n2
+ α) (un1) on ∂Ω2 ∩Ω1

(1.38)

where n1 and n2 are the outward normals on the boundary of the subdo-
mains, see Figure 1.11.

This algorithm was extended to Helmholtz problem by Després [10]. It
is also possible to consider other interface conditions than Robin conditions
and optimize their choice with respect to the convergence factor. All these
ideas will be presented in detail in Chapter 2.

1.7 Schwarz methods using FreeFem++

The aim of this part is to illustrate numerically the previously defined
Schwarz methods applied to second order elliptic boundary value problems
(e.g Laplace equation and elasticity). In order to do this we will use the
free finite element software FreeFem++ [14] developed at the Laboratoire
Jacques-Louis Lions at Université Pierre et Marie Curie (Paris 6).

1.7.1 A very short introduction to FreeFem++

FreeFem++ allows a very simple and natural way to solve a great variety
of variational problems by finite element type methods including Discon-
tinuous Galerkin (DG) discretizations. It is also possible to have access to
the underlying linear algebra such as the stiffness or mass matrices. In this
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section we will provide only a minimal number of elements of this software,
necessary for the understanding of the programs in the next section, see also
http://www.cmap.polytechnique.fr/spip.php?article239. A very de-
tailed documentation of FreeFem++ is available on the official website
http://www.freefem.org/ff++, at the following address
http://www.freefem.org/ff++/ftp/freefem++doc.pdf . The standard
implementation includes tons of very useful examples that make a tuto-
rial by themselves. It is also possible to use the integrated environment
FreeFem++-cs [16] which provides an intuitive graphical interface to FreeFem++
users.

To start with, suppose we want to solve a very simple homogeneous
Dirichlet boundary value problem for a Laplacian defined on a unit square
Ω =]0,1[2:

{ −∆u = f in Ω
u = 0 on ∂Ω

(1.39)

The variational formulation of this problem reads:

Find u ∈H1
0(Ω) ∶= {w ∈H1(Ω) ∶ w = 0 on ∂Ω} such that

∫
Ω
∇u.∇vdx − ∫

Ω
f v dx = 0,∀v ∈H1

0(Ω) .

A feature of FreeFem++ is to penalize Dirichlet boundary conditions. The
above variational formulation is first replaced by

Find u ∈H1(Ω) such that

∫
Ω
∇u.∇vdx − ∫

Ω
fv dx = 0,∀v ∈H1(Ω) .

Then the finite element approximation leads to a system of the type

M

∑
j=1

Aijuj − Fj = 0, i = 1, ...,M, Aij = ∫
Ω
∇φi.∇φjdx,Fi = ∫

Ω
φi dx

where (φi)1≤i≤M are the finite element functions. Note that the discretized
system corresponds to a Neumann problem. Dirichlet conditions of the type
u = g are then implemented by penalty, namely by setting

Aii = 1030, Fi = 1030 ⋅ gi

if i is a boundary degree of freedom. The penalty number 1030 is called
TGV1 and it is possible to change this value. The keyword on imposes the
Dirichlet boundary condition through this penalty term.

1Très Grande Valeur (Terrifically Great Value) = Very big value in French

http://www.cmap.polytechnique.fr/spip.php?article239
http://www.freefem.org/ff++
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Ω

Γ3

Γ2

Γ1

Γ4

Figure 1.12: Numbering of square borders in FreeFem++

The following FreeFem++ script is solving this problem in a few lines.
The text after // symbols are comments ignored by the FreeFem++ lan-
guage. Each new variable must be declared with its type (here int designs
integers).

3 // Number of mesh points in x and y directions
int Nbnoeuds=10;

Listing 1.1: ./FreefemCommon/survival.edp

The function square returns a structured mesh of the square: the first two
arguments are the number of mesh points according to x and y directions
and the third one is a parametrization of Ω for x and y varying between 0
and 1 (here it is the identity). The sides of the square are labeled from 1 to
4 in trigonometrical sense (see Figure 1.12).

//Mesh definition
mesh Th=square(Nbnoeuds,Nbnoeuds,[x,y]);

Listing 1.2: ./FreefemCommon/survival.edp

We define the function representing the right-hand side using the keyword
func

// Functions of x and y
14 func f=x∗y;

func g=1.;

Listing 1.3: ./FreefemCommon/survival.edp
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and the P1 finite element space Vh over the mesh Th using the keyword
fespace

// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh

22 Vh uh,vh;

Listing 1.4: ./FreefemCommon/survival.edp

The functions uh and vh belong to the P1 finite element space Vh which is
an approximation to H1(Ω). Note here that if one wants to use P2 instead
P1 finite elements, it is enough to replace P1 by P2 in the definition of Vh.

26 // variational problem definition
problem heat(uh,vh,solver=LU)=

int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
−int2d(Th)(f∗vh)

30 +on(1,2,3,4,uh=0);

Listing 1.5: ./FreefemCommon/survival.edp

The keyword problem allows the definition of a variational problem, here
called heat which can be expressed mathematically as:
Find uh ∈ Vh such that

∫
Ω
∇uh.∇vhdx − ∫

Ω
fvhdx = 0,∀vh ∈ Vh .

Afterwards, for the Dirichlet boundary condition the penalization is
imposed using TGV which is usually is equal to 1030.

Note that keyword problem defines problem (1.39) without solving it. The
parameter solver sets the method that will be used to solve the resulting
linear system, here a Gauss factorization. In order to effectively solve the
finite element problem, we need the command

34 //Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);

Listing 1.6: ./FreefemCommon/survival.edp
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The FreeFem++ script can be saved with your favorite text editor (e.g.
under the name heat.edp). In order to execute the script FreeFem++, it
is enough to write the shell command FreeFem++ heat.edp. The result
will be displayed in a graphic window.

One can easily modify the script in order to solve the same kind of problems
but with mixed Neumann and Fourier boundary conditions such as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∆u + u = f in Ω
∂u

∂n
= 0 on Γ1

u = 0 on Γ2
∂u
∂n + αu = g on Γ3 ∪ Γ4.

(1.40)

where f and g are arbitrary functions and α a positive real.
The new variational formulation consists in determining uh ∈ Vh such that

∫
Ω
∇uh.∇vhdx + ∫

Γ3∪Γ4

αuhvh − ∫
Γ3∪Γ4

gvh − ∫
Ω
fvhdx = 0,

for all vh ∈ Vh. Here again the Dirichlet boundary condition will be
penalized. The FreeFem++ definition of the problem reads:

// Changing boundary conditions to Neumann or Robin
42 real alpha =1.;

problem heatRobin(uh,vh)=
int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
+int1d(Th,3,4)(alpha∗uh∗vh)

46 −int1d(Th,3,4)(g∗vh)
−int2d(Th)(f∗vh)
+on(2,uh=0);

Listing 1.7: ./FreefemCommon/survival.edp

In the variational formulation of (1.40) the extra boundary integral
on Γ3 ∪ Γ4 is defined by the keyword int1d(Th,3,4)(function to

integrate).

The keyword varf allows the definition of a variational formulation

// Using linear algebra package
varf varheatRobin(uh,vh)=

54 int2d(Th)(dx(uh)∗dx(vh)+dy(uh)∗dy(vh))
+int1d(Th,3,4)(alpha∗uh∗vh)
−int1d(Th,3,4)(g∗vh)
−int2d(Th)(f∗vh)

58 +on(2,uh=0);
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Listing 1.8: ./FreefemCommon/survival.edp

If one wants to use some linear algebra package to solve the linear system
resulting from the finite element discretisation, the program below shows
how one can retrieve first the stiffness matrix and the vector associated to
the right-hand side of the variational formulation. As a general rule, this
procedure can be very useful if one wants to use other solvers such as domain
decomposition methods. Here, the linear system is solved by UMFPACK [9].

62 // Retrieving the stiffness matrix
matrix Aglobal; // sparse matrix
Aglobal = varheatRobin(Vh,Vh,solver=UMFPACK); // stiffness matrix

// UMFPACK direct solver
66 // Retrieving the right hand side

Vh rhsglobal;
rhsglobal[] = varheatRobin(0,Vh); //right hand side vector of d.o.f’s
// Solving the problem by a sparse LU solver

70 uh[] = Aglobal−1∗rhsglobal[];

Listing 1.9: ./FreefemCommon/survival.edp
Here rhsglobal is a finite element function and the associated vector of
degrees of freedom is denoted by rhsglobal[].

1.7.2 Setting the domain decomposition problem

According to the description of the Schwarz algorithms in the previous
chapters, we need a certain number of data structures which will be built in
the sequel. The file data.edp contains the declaration of these structures
as well as the definition of the global problem to be solved.
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1 load ”metis” // mesh partitioner
load ”medit” // OpenGL−based scientific visualization software
int nn=2,mm=2; // number of the domains in each direction
int npart= nn∗mm; // total number of domains

5 int nloc = 20; // local no of dof per domain in one direction
bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 1; // size of the geometric overlap between subdomains, algebraic ⤸

Ç overlap is 2 sizeovr+1
real allong = real(nn)/real(mm); // aspect ratio of the global domain

9 // Mesh of a rectangular domain
mesh Th=square(nn∗nloc,mm∗nloc,[x∗allong,y]);// radial mesh ⤸

Ç [(1.+x∗allong)∗cos(pi∗y),(1.+x∗allong)∗sin(pi∗y)]);//
fespace Vh(Th,P1);
fespace Ph(Th,P0);

13 Ph part; // piecewise constant function
int[int] lpart(Ph.ndof); // giving the decomposition
// Domain decomposition data structures
mesh[int] aTh(npart); // sequence of subdomain meshes

17 matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
int[int] Ndeg(npart); // number of dof for each mesh
real[int] AreaThi(npart); // area of each subdomain

21 matrix[int] aA(npart),aN(npart); // local matrices
Vh[int] Z(npart); // coarse space, see Chapter 4
// Definition of the problem to solve
// Delta (u) = f, u = 1 on the global boundary

25 //int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1 ];
//Th=change(Th,refe=chlab); // all label borders are set to one
macro Grad(u) [dx(u),dy(u)] // EOM
func f = 1; // right hand side

29 func g = 0 ; // Dirichlet data
func kappa = 1.; // viscosity
func eta = 0;
Vh rhsglobal,uglob; // rhs and solution of the global problem

33 varf vaglobal(u,v) = int2d(Th)(eta∗u∗v+kappa∗Grad(u)’∗Grad(v))
+on(1,u=g) + int2d(Th)(f∗v);

matrix Aglobal;
// Iterative solver parameters

37 real tol=1e−6; // tolerance for the iterative method
int maxit=300; // maximum number of iterations

Listing 1.10: ./FreefemCommon/data.edp

Afterwards we have to define a piecewise constant function part which
takes integer values. The isovalues of this function implicitly defines a non
overlapping partition of the domain. We have a coloring of the subdomains.

Suppose we want a decomposition of a rectangle Ω into nn×mm domains
with approximately nloc points in one direction, or a more general
partitioning method, using for example METIS [15] or SCOTCH [8]. In
order to perform one of these decompositions, we make use of one of the
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IsoValue
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0.0789474
0.236842
0.394737
0.552632
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2.76316
3.15789

uniform decomposition
IsoValue
-0.157895
0.0789474
0.236842
0.394737
0.552632
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1.18421
1.34211
1.5
1.65789
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2.28947
2.44737
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2.76316
3.15789

Metis decomposition

Figure 1.13: Uniform and Metis decomposition

routines decompunif or decompMetis defined in the script decomp.idp

which will return a vector defined on the mesh, that can be recasted into
the piecewise function part that we are looking for.

if (withmetis)
2 {

metisdual(lpart,Th,npart); // FreeFem++ interface to Metis
for(int i=0;i<lpart.n;++i)

part[][i]=lpart[i];
6 }

else
{
Ph xx=x,yy=y;

10 part= int(xx/allong∗nn)∗mm + int(yy∗mm);
}

if (verbosity > 1)
plot(part,wait=1,fill=1,value=1);

Listing 1.11: ./FreefemCommon/decomp.idp

The isovalues of these two part functions correspond to respectively uniform
or Metis non-overlapping decompositions as shown in Figure 1.13.

Using the function part defined as above as an argument into the routine
SubdomainsPartitionUnity, we’ll get as a result, for each subdomain
labeled i the overlapping meshes aTh[i]:
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func bool SubdomainsPartitionUnity(mesh & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & AreaThi)

{
6 int npart=partdof.max+1;

mesh Thi=Th; // freefem’s trick, formal definition
fespace Vhi(Thi,P1); // freefem’s trick, formal definition
Vhi[int] pun(npart); // local fem functions

10 Vh sun=0, unssd=0;

for(int ii=0;ii<npart;++ii)
{

14

int[int] arrayIntersection;
int[int][int] restrictionIntersection(0);
real[int] D;

18

int numberIntersection = 0;

22 mesh overlapName=Th;
fespace VhGlobal(overlapName, P1);

fespace PhGlobal(overlapName, P0);
PhGlobal part;

26 part[]=partdof;

PhGlobal supp = abs(part − ii) < 0.1;
Thi= trunc(overlapName, abs(part − ii) < 0.1, label = 10);

30 VhGlobal suppSmooth;
AddLayers(overlapName, supp[], sizeoverlaps ∗ 2, suppSmooth[]);
{ mesh neighbors = trunc(overlapName, suppSmooth > 0.001 && ⤸

Ç (suppSmooth < 0.999));
fespace Oh(neighbors, P0);

34 Oh partOverlap = part;

Unique(partOverlap[], arrayIntersection);

38 }
fespace Vhl(Thi, P1);
Vhl[int] partitionIntersection(arrayIntersection.n);

42 overlapName = trunc(overlapName, suppSmooth > 0.001);
supp = supp;
suppSmooth = suppSmooth;
Thi = trunc(overlapName, suppSmooth> 0.501, label = 10);

46

/∗
real oooo = 0.5001−0.5/sizeoverlaps;

50 mesh borderName = trunc(overlapName, (suppSmooth ⤸
Ç >(sizeoverlaps−0.999 )/(2∗sizeoverlaps)) && (suppSmooth < ⤸
Ç 0.501), label = 20);

∗/

54 Vhl khi = max(suppSmooth∗2 − 1.0, 0.) ;
if(usedARGV(”−steep”) != −1)

khi = khi > 0.001 ? 1.0 : 0.0;
Vhl sum = khi;

58 VhGlobal phi = 0;
real eps=int2d(overlapName)(1.);

for(int i = 0; i < arrayIntersection.n; ++i) {
PhGlobal suppPartition = abs(arrayIntersection[i] − part) < 0.1;

62 AddLayers(overlapName, suppPartition[], sizeoverlaps, phi[]);
if(usedARGV(”−steep”) != −1)

phi = phi > 0.001 ? 1.0 : 0.0;
real intersection=int2d(overlapName)(phi)/eps;

66 if( intersection>1e−6)
{
partitionIntersection[numberIntersection] = phi;
sum[] += partitionIntersection[numberIntersection][];

70 arrayIntersection[numberIntersection++] = arrayIntersection[i];
}

74 }

khi[] = khi[] ./= sum[];

78 /∗
overlapName = trunc(Thi, khi < 0.99);
if(numberIntersection != arrayIntersection.n)

arrayIntersection.resize(numberIntersection);
82 ∗/

Vhi func2vec = khi;

86

//restrictionIntersection.resize(numberIntersection);

aTh[ii]=Thi;
90 Dih[ii]=func2vec[];

Rih[ii]=interpolate(Vhi,Vh);
/∗

94 load ”thresholdings”
Rih[ii].thresholding(1e−10);
∗/
Ndeg[ii] = Vhi.ndof;

98 AreaThi[ii] = int2d(Thi)(1.);

//pun[i] = (abs(pun[i] − 0.5) < 1.e−2 ? (i == 0 ? 0 : 1) : (pun[i] > 0.5 ? 1. ⤸
Ç : 0.));

102 }
return true;

}
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Listing 1.12: ./FreefemCommon/createPartition.idp

Note that in the CreatePartition.idp script, the function AddLayers is
called:

Listing 1.13: ./FreefemCommon/createPartition.idp
These last two functions are tricky. The reader does not need to understand
their behavior in order to use them. They are given here for sake of
completeness. The restriction/interpolation operators Rih[i] from the
local finite element space Vh[i] to the global one Vh and the diagonal local
matrices Dih[i] are thus created.

Afterwards one needs to build the overlapping decomposition and the
associated algebraic partition of unity, see equation (1.25). Program
testdecomp.edp (see below) shows such an example by checking that the
partition of unity is correct.

load ”medit”

3 verbosity=2;
include ”dataGENEO.edp”
include ”decomp.idp”
include ”createPartitionVec.idp”

7 SubdomainsPartitionUnityVec(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);
// check the partition of unity
Uh sum=0,fctone=1;
// for(int i=0; i < npart;i++)

11 // {
// Uh localone;
// real[int] bi = Rih[i]∗fctone[]; // restriction to the local domain
// real[int] di = Dih[i]∗bi;

15 // localone[] = Rih[i]’∗di;
// sum[] +=localone[] ;
// plot(localone,fill=1,value=1, dim=3,wait=1);
// }

19 // plot(sum,fill=1,value=1, dim=3,wait=1);

Listing 1.14: ./FreefemCommon/testdecomp.edp

Suppose we want to do now the same thing in a three-dimensional
case.
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1 load ”msh3”
func mesh3 Cube(int[int] & NN,real[int,int] &BB ,int[int,int] & L)
// basic functions to build regular mesh of a cube
// int[int] NN=[nx,ny,nz]; the number of seg in the 3 direction

5 // real [int,int] BB=[[xmin,xmax],[ymin,ymax],[zmin,zmax]]; bounding bax
// int [int,int] L=[[1,2],[3,4],[5,6]]; label of the 6 faces left,right, front, back, down, up
{

// first build the 6 faces of the cube.
9 real x0=BB(0,0),x1=BB(0,1);

real y0=BB(1,0),y1=BB(1,1);
real z0=BB(2,0),z1=BB(2,1);
int nx=NN[0],ny=NN[1],nz=NN[2];

13 mesh Thx = square(nx,ny,[x0+(x1−x0)∗x,y0+(y1−y0)∗y]);

int[int] rup=[0,L(2,1)], rdown=[0,L(2,0)],
rmid=[1,L(1,0), 2,L(0,1), 3, L(1,1), 4, L(0,0) ];

17 mesh3 Th=buildlayers(Thx,nz, zbound=[z0,z1],
labelmid=rmid, labelup = rup, labeldown = rdown);

return Th;
}

Listing 1.15: ./FreefemCommon/cube.idp

We would like to build a cube or a parallelepiped defined by calling the
function Cube defined in the script cube.idp and then to split it into
several domains. Again we need a certain number of data structures which
will be declared in the file data3d.edp
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load ”metis”
load ”medit”
int nn=2,mm=2,ll=2; // number of the domains in each direction

4 int npart= nn∗mm∗ll; // total number of domains
int nloc = 11; // local no of dof per domain in one direction
bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 2; // size of the overlap

8 real allongx, allongz;
allongx = real(nn)/real(mm);
allongz = real(ll)/real(mm);
// Build the mesh

12 include ”cube.idp”
int[int] NN=[nn∗nloc,mm∗nloc,ll∗nloc];
real [int,int] BB=[[0,allongx],[0,1],[0,allongz]]; // bounding box
int [int,int] L=[[1,1],[1,1],[1,1]]; // the label of the 6 faces

16 mesh3 Th=Cube(NN,BB,L); // left,right,front, back, down, right
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part; // piecewise constant function

20 int[int] lpart(Ph.ndof); // giving the decomposition
// domain decomposition data structures
mesh3[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators

24 matrix[int] Dih(npart); // partition of unity operators
int[int] Ndeg(npart); // number of dof for each mesh
real[int] VolumeThi(npart); // volume of each subdomain
matrix[int] aA(npart); // local Dirichlet matrices

28 Vh[int] Z(npart); // coarse space
// Definition of the problem to solve
// Delta (u) = f, u = 1 on the global boundary
Vh intern;

32 intern = (x>0) && (x<allongx) && (y>0) && (y<1) && (z>0) && (z<allongz);
Vh bord = 1−intern;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
func f = 1; // right hand side

36 func g = 1; // Dirichlet data
Vh rhsglobal,uglob; // rhs and solution of the global problem
varf vaglobal(u,v) = int3d(Th)(Grad(u)’∗Grad(v))

+on(1,u=g) + int3d(Th)(f∗v);
40 matrix Aglobal;

// Iterative solver
real tol=1e−10; // tolerance for the iterative method
int maxit=200; // maximum number of iterations

Listing 1.16: ./FreefemCommon/data3d.edp

Then we have to define a piecewise constant function part which takes inte-
ger values. The isovalues of this function implicitly defines a non overlapping
partition of the domain. Suppose we want a decomposition of a rectangle Ω
into nn×mm ×ll domains with approximately nloc points in one direction,
or a more general partitioning method. We will make then use of one of
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Figure 1.14: Uniform and Metis decomposition

the decomposition routines which will return a vector defined on the mesh,
that can be recasted into the piecewise function part that we are looking for.

1 if (withmetis)
{

metisdual(lpart,Th,npart);
for(int i=0;i<lpart.n;++i)

5 part[][i]=lpart[i];
}

else
{

9 Ph xx=x,yy=y, zz=z;
part= int(xx/allongx∗nn)∗mm∗ll + int(zz/allongz∗ll)∗mm+int(y∗mm);
}

Listing 1.17: ./FreefemCommon/decomp3d.idp

The isovalues of function part correspond to non-overlapping decomposi-
tions as shown in Figure 1.14.

Using the function part defined as above, function
SubdomainsPartitionUnity3 builds for each subdomain labeled i

the overlapping meshes aTh[i]



34 CHAPTER 1. SCHWARZ METHODS

31 func bool SubdomainsPartitionUnity3(mesh3 & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh3[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & VolumeThi)

{
int npart=partdof.max+1;
mesh3 Thi=Th; // freefem’s trick, formal definition

35 fespace Vhi(Thi,P1); // freefem’s trick, formal definition
Vhi[int] pun(npart); // local fem functions
Vh sun=0, unssd=0;
Ph part;

39 part[]=partdof;
for(int i=0;i<npart;++i)
{

// boolean function 1 in the subdomain 0 elswhere
43 Ph suppi= abs(part−i)<0.1;

AddLayers3(Th,suppi[],sizeoverlaps,unssd[]); // overlapping partitions by ⤸
Ç adding layers

Thi=aTh[i]=trunc(Th,suppi>0,label=10,split=1); // overlapping mesh, ⤸
Ç interfaces have label 10

Rih[i]=interpolate(Vhi,Vh,inside=1); // Restriction operator : Vh −> Vhi
47 pun[i][]=Rih[i]∗unssd[];

sun[] += Rih[i]’∗pun[i][];
Ndeg[i] = Vhi.ndof;
VolumeThi[i] = int3d(Thi)(1.);

51 }
for(int i=0;i<npart;++i)
{

Thi=aTh[i];
55 pun[i]= pun[i]/sun;

Dih[i]=pun[i][];//diagonal matrix built from a vector
}

return true;
59 }

Listing 1.18: ./FreefemCommon/createPartition3d.idp

by making use of the function AddLayers3 in the CreatePartition3d.idp.



1.7. SCHWARZ METHODS USING FREEFEM++ 35

func bool AddLayers3(mesh3 & Th,real[int] &ssd,int n,real[int] &unssd)
{

// build a continuous function uussd (P1) and modifies ssd :
5 // IN: ssd in the caracteristics function on the input subdomain.

// OUT: ssd is a boolean function, unssd is a smooth function
// ssd = 1 if unssd >0; add n layer of element and unssd = 0 ouside of this layer
Ph s;

9 assert(ssd.n==Ph.ndof);
assert(unssd.n==Vh.ndof);
unssd=0;
s[]= ssd;

13 Vh u;
varf vM(uu,v)=int3d(Th,qforder=1)(uu∗v/volume);
matrix M=vM(Ph,Vh);
for(int i=0;i<n;++i)

17 {
u[]= M∗s[];
u = u>.1;
unssd+= u[];

21 s[]= M’∗u[];
s = s >0.1;

}
unssd /= (n);

25 u[]=unssd;
ssd=s[];
return true;

}

Listing 1.19: ./FreefemCommon/createPartition3d.idp

As in the 2D case, these last two functions are tricky. The reader does not
need to understand their behavior in order to use them. They are given
here for sake of completeness.

The restriction/interpolation operators Rih[i] from the local finite element
space Vh[i] to the global one Vh and the diagonal local matrices Dih[i] are
thus created. Afterwards one needs to build the overlapping decomposition
and the associated algebraic partition of unity, see equation (1.25). Program
testdecomp3d.edp shows such an example by checking that the partition
of unity is correct.
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include ”data3d.edp”
include ”decomp3d.idp”

3 include ”createPartition3d.idp”
medit(”part”, Th, part, order = 1);
SubdomainsPartitionUnity3(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,VolumeThi);
// check the partition of unity

7 Vh sum=0,fctone=1;
for(int i=0; i < npart;i++)
{

Vh localone;
11 real[int] bi = Rih[i]∗fctone[]; // restriction to the local domain

real[int] di = Dih[i]∗bi;
localone[] = Rih[i]’∗di;
sum[] +=localone[] ;

15 medit(”loc”,Th, localone, order = 1);
medit(”subdomains”,aTh[i]);

}
medit(”sum”,Th, sum, order = 1);

Listing 1.20: ./FreefemCommon/testdecomp3d.edp

1.7.3 Schwarz algorithms as solvers

We are now in a position to code Schwarz solvers. In program
schwarz-solver.edp (see below) the RAS method (see eq. (1.29)) is im-
plemented as a solver. First we need to split the domains into subdo-
mains

verbosity=1;
3 include ”../../FreefemCommon/dataGENEO.edp”

include ”../../FreefemCommon/decomp.idp”
include ”../../FreefemCommon/createPartition.idp”
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);

Listing 1.21: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

Then we need to define the global data from the variational formula-
tion.

9 Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
rhsglobal[] = vaglobal(0,Vh); // global rhs

uglob[] = Aglobal−1∗rhsglobal[];
plot(uglob,value=1,fill=1,wait=1,cmm=”Solution by a direct method”,dim=3);

Listing 1.22: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

Afterwords we build the local problem matrices
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for(int i = 0;i<npart;++i)
{

17 cout << ” Domain :” << i << ”/” << npart << endl;
matrix aT = Aglobal∗Rih[i]’;
aA[i] = Rih[i]∗aT;
set(aA[i],solver = UMFPACK);// direct solvers

21 }

Listing 1.23: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

and finally the Schwarz iteration

ofstream filei(”Conv.m”);
25 Vh un = 0; // initial guess

Vh rn = rhsglobal;
for(int iter = 0;iter<maxit;++iter)
{

29 real err = 0, res;
Vh er = 0;
for(int i = 0;i<npart;++i)
{

33 real[int] bi = Rih[i]∗rn[]; // restriction to the local domain

real[int] ui = aA[i] −1∗ bi; // local solve
bi = Dih[i]∗ui;
// bi = ui; // uncomment this line to test the ASM method as a solver

37 er[] += Rih[i]’∗bi;
}

un[] += er[]; // build new iterate
rn[] = Aglobal∗un[]; // computes global residual

41 rn[] = rn[] − rhsglobal[];
rn[] ∗= −1;
err = sqrt(er[]’∗er[]);
res = sqrt(rn[]’∗rn[]);

45 cout << ”Iteration: ” << iter << ” Correction = ” << err << ” Residual = ” ⤸
Ç << res << endl;

plot(un,wait=1,value=1,fill=1,dim=3,cmm=”Approximate solution at step ” + ⤸
Ç iter);

int j = iter+1;
// Store the error and the residual in Matlab/Scilab/Octave form

49 filei << ”Convhist(”+j+”,:)=[” << err << ” ” << res <<”];” << endl;
if(err < tol) break;

}
plot(un,wait=1,value=1,fill=1,dim=3,cmm=”Final solution”);

Listing 1.24: ./SCHWARZ/FreefemProgram/schwarz-solver.edp

The convergence history of the algorithm is stored in a Matlab file (also
compatible with Scilab or Octave) Conv.m, under the form of a two-column
matrix containing the error evolution as well as the residual one.
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Figure 1.15: Solution and RAS convergence as a solver for different overlaps

The result of tracing the evolution of the error is shown in Figure 1.15 where
one can see the convergence history of the RAS solver for different values of
the overlapping parameter.

Remark 1.7.1 Previous tests have shown a very easy use of the RAS iter-
ative algorithm and some straightforward conclusions from this.

• The convergence of RAS, not very fast even in a simple configuration
of 4 subdomains, improves when the overlap is getting bigger.

• Note that it is very easy to test the ASM method, see eq. (1.30), when
used as a solver. It is sufficient to uncomment the line bi = ui;.

• Running the program shows that the ASM does not converge. For this
reason, the ASM method is always used a preconditioner for a Krylov
method such as CG, GMRES or BiCGSTAB, see chapter 3.

• In the the three-dimensional case the only part that changes is the
decomposition into subdomains. The other parts of the algorithm are
identical.

include ”../../FreefemCommon/data3d.edp”
include ”../../FreefemCommon/decomp3d.idp”

4 include ”../../FreefemCommon/createPartition3d.idp”
SubdomainsPartitionUnity3(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,VolumeThi);

Listing 1.25: ./SCHWARZ/FreefemProgram/schwarz-solver3d.edp

1.7.4 Systems of PDEs: the example of linear elasticity

Suppose we want to solve now another kind of problem, such a linear elas-
ticity. A few changes will be necessary.
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load ”metis”
2 load ”medit”

int nn=3,mm=3; // number of the domains in each direction
int npart= nn∗mm; // total number of domains
int nloc = 20; // local no of dof per domain in one direction

6 bool withmetis = 1; // =1 (Metis decomp) =0 (uniform decomp)
int sizeovr = 2; // size of the overlap
real allong = real(nn)/real(mm); // aspect ratio of the global domain
func E = 2∗10ˆ11; // Young modulus ans Poisson ratio

10 func sigma = 0.3;
func lambda = E∗sigma/((1+sigma)∗(1−2∗sigma)); // Lame coefficients
func mu = E/(2∗(1+sigma));
real sqrt2=sqrt(2.);

14 func eta = 1.0e−6;
// Mesh of a rectangular domain
mesh Th=square(nn∗nloc,mm∗nloc,[x∗allong,y]);
fespace Vh(Th,[P1,P1]); // vector fem space

18 fespace Uh(Th,P1); // scalar fem space
fespace Ph(Th,P0);
Ph part; // piecewise constant function
int[int] lpart(Ph.ndof); // giving the decomposition

22 // Domain decomposition data structures
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators

26 int[int] Ndeg(npart); // number of dof for each mesh
real[int] AreaThi(npart); // area of each subdomain
matrix[int] aA(npart); // local Dirichlet matrices
// Definition of the problem to solve

30 int[int] chlab=[1,11 ,2,2 ,3,33 ,4,1 ]; //Dirichlet conditions for label = 1
Th=change(Th,refe=chlab);
macro Grad(u) [dx(u),dy(u)] // EOM
macro epsilon(u,v) [dx(u),dy(v),(dy(u)+dx(v))/sqrt2] // EOM

34 macro div(u,v) ( dx(u)+dy(v) ) // EOM
func uboundary = (0.25 − (y−0.5)ˆ2);
varf vaBC([u,v],[uu,vv]) = on(1, u = uboundary, v=0) + on(11, u = 0, v=0) + ⤸

Ç on(33, u=0,v=0);
// global problem

38 Vh [rhsglobal,rrhsglobal], [uglob,uuglob];
macro Elasticity(u,v,uu,vv) eta∗(u∗uu+v∗vv) + ⤸

Ç lambda∗(div(u,v)∗div(uu,vv))+2.∗mu∗( epsilon(u,v)’∗epsilon(uu,vv) ) // ⤸
Ç EOM

varf vaglobal([u,v],[uu,vv]) = int2d(Th)(Elasticity(u,v,uu,vv)) + vaBC; // ⤸
Ç on(1,u=uboundary,v=0)

matrix Aglobal;
42 // Iterative solver parameters

real tol=1e−6; // tolerance for the iterative method
int maxit=200; // maximum number of iterations

Listing 1.26: ./FreefemCommon/dataElast.edp
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contains now the declarations and data. The definition of the partition is
done like before using decomp.idp. The SubdomainsPartitionUnityVec is
the vector adaptation of SubdomainsPartitionUnity and will provide the
same type of result

func bool SubdomainsPartitionUnityVec(mesh & Th, real[int] & partdof, int ⤸
Ç sizeoverlaps, mesh[int] & aTh, matrix[int] & Rih, matrix[int] & Dih, int[int] ⤸
Ç & Ndeg, real[int] & AreaThi)

{
int npart=partdof.max+1;

34 mesh Thi=Th; // freefem’s trick, formal definition
fespace Vhi(Thi,[P1,P1]); // freefem’s trick, formal definition
Vhi[int] [pun,ppun](npart); // local fem functions
Vh [unssd,uunssd], [sun,ssun]=[0,0];

38 Uh Ussd = 0;
Ph part;
int[int] U2Vc=[0,1]; // no component change
part[]=partdof;

42 for(int i=0;i<npart;++i)
{

Ph suppi= abs(part−i)<0.1; // boolean 1 in the subdomain 0 elswhere
AddLayers(Th,suppi[],sizeoverlaps,Ussd[]); // ovr partitions by adding layers

46 [unssd,uunssd] =[Ussd,Ussd];
Thi=aTh[i]=trunc(Th,suppi>0,label=10,split=1); // ovr mesh interfaces label ⤸

Ç 10
Rih[i]=interpolate(Vhi,Vh,inside=1,U2Vc=U2Vc); // Restriction operator : ⤸

Ç Vh −> Vhi
pun[i][]=Rih[i]∗unssd[];

50 sun[] += Rih[i]’∗pun[i][];
Ndeg[i] = Vhi.ndof;
AreaThi[i] = int2d(Thi)(1.);

}
54 for(int i=0;i<npart;++i)

{
Thi=aTh[i];
[pun[i],ppun[i]] = [pun[i]/sun, ppun[i]/sun];

58 Dih[i]=pun[i][]; //diagonal matrix built from a vector
}

return true;
}

Listing 1.27: ./FreefemCommon/createPartitionVec.idp

Note that in the CreatePartitionVec.idp script, the function AddLayers

is called:
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func bool AddLayers(mesh & Th,real[int] &ssd,int n,real[int] &unssd)
3 {

// build a continuous function uussd (P1) and modifies ssd :
// IN: ssd in the caracteristics function on the input subdomain.
// OUT: ssd is a boolean function, unssd is a smooth function

7 // ssd = 1 if unssd >0; add n layer of element and unssd = 0 ouside of this layer
Ph s;
Uh u;
assert(ssd.n==Ph.ndof);

11 assert(unssd.n==Uh.ndof);
unssd=0;
s[]= ssd;
varf vM(uu,v)=int2d(Th,qforder=1)(uu∗v/area);

15 matrix M=vM(Ph,Uh);
for(int i=0;i<n;++i)
{

u[]= M∗s[];
19 u = u>.1;

unssd+= u[];
s[]= M’∗u[];
s = s >0.1;

23 }
unssd /= (n);
u[]=unssd;
ssd=s[];

27 return true;
}

Listing 1.28: ./FreefemCommon/createPartitionVec.idp

The restriction/interpolation operators Rih[i] from the local finite element
space Vh[i] to the global one Vh and the diagonal local matrices Dih[i]

are thus created.

We are now in a position to code Schwarz solvers. In program
schwarz-solver-elast.edp (see below) the RAS method (see eq. (1.29))
is implemented as a solver following the same guidelines as in the case of the
Laplace equation. First we need to split the domains into subdomains

include ”../../FreefemCommon/dataElast.edp”
include ”../../FreefemCommon/decomp.idp”

4 include ”../../FreefemCommon/createPartitionVec.idp”
SubdomainsPartitionUnityVec(Th,part[],sizeovr,aTh,Rih,Dih,Ndeg,AreaThi);

Listing 1.29: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp

Then we need to define the global data from the variational formula-
tion.
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Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // global matrix
9 rhsglobal[] = vaglobal(0,Vh); // global rhs

uglob[] = Aglobal−1∗rhsglobal[];
real coeff2 = 1;
mesh Thmv=movemesh(Th,[x+coeff2∗uglob,y+coeff2∗uuglob]);

13 medit(”Thmv”, Thmv);
medit(”uex”, Th, uglob, Th, uuglob, order=1);

Listing 1.30: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp
Afterwords, the local problem matrices are built in the same way as before
and finally the Schwarz iteration

27 ofstream filei(”Conv.m”);
Vh [un,uun] = [0,0]; // initial guess
Vh [rn,rrn] = [rhsglobal,rrhsglobal];
for(int iter = 0;iter<maxit;++iter)

31 {
real err = 0, res;
Vh [er,eer] = [0,0];
for(int i = 0;i<npart;++i)

35 {
real[int] bi = Rih[i]∗rn[]; // restriction to the local domain

real[int] ui = aA[i] −1∗ bi; // local solve
bi = Dih[i]∗ui;

39 // bi = ui; // uncomment this line to test the ASM method as a solver
er[] += Rih[i]’∗bi;

}
un[] += er[]; // build new iterate

43 rn[] = Aglobal∗un[]; // computes global residual
rn[] = rn[] − rhsglobal[];
rn[] ∗= −1;
err = sqrt(er[]’∗er[]);

47 res = sqrt(rn[]’∗rn[]);
cout << ”Iteration: ” << iter << ” Correction = ” << err << ” Residual = ” ⤸

Ç << res << endl;
int j = iter+1;
// Store the error and the residual in Matlab/Scilab/Octave form

51 filei << ”Convhist(”+j+”,:)=[” << err << ” ” << res <<”];” << endl;
if(res < tol) break;

}
mesh Thm=movemesh(Th,[x+coeff2∗un,y+coeff2∗uun]);

55 medit(”Thm”, Thm);
medit(”uh”, Th, un, Th, uun, order=1);

Listing 1.31: ./SCHWARZ/FreefemProgram/schwarz-solver-elast.edp
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