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Introduction to kriging

Rodolphe Le Riche1

1 CNRS and Ecole des Mines de St-Etienne, FR

Class given as part of the “Modeling and Numerical Methods for 
Uncertainty Quantification” French-German summer school, 

Porquerolles, Sept. 2014 



  

Course outline

1. Introduction to kriging  (R. Le Riche)

  1.1. Gaussian Processes
  1.2. Covariance functions
  1.3. Conditional Gaussian Processes (kriging)

1.3.1. No trend (simple kriging)
1.3.2. With trend (universal kriging)

  1.4. Issues, links with other methods



  

Kriging : introduction

What can be said about 
possible measures at any 
x using probabilities ? 
(Krige, 1951; Matheron, 
1963)

Here, kriging for 
regression.

Kriging = a family of 
metamodels (surrogate) 
with embedded 
uncertainty model.
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Context : scalar measurements ( y1,…, yn)

 at n positions (x1 ,…, xn) in a d -dimensional space X⊂ℝd



  

Random processes

Random variable, Y

random event 
( e.g., throw dice )

get an instance y 
Expl : 
if dice ≤ 3 , y =1
3 < dice ≤ 5 , y = 2
dice = 6  , y = 3 

Random process, Y(x)

ω∈Ω

random event 
ω∈Ω

( e.g., wheather )

get a function 

y (x ):
x ∈ X ⊂ ℝd

→ ℝ

A set of RVs indexed by x



  

Random processes

Repeat the random event

x

y

Ex : three events instances, three y(x)'s.
They are different, yet bear strong similarities.



  

Gaussian processes

Each Y(x) follows a Gaussian law

Y (x) ∼ N (μ(x) , C (x , x) )

∀X = (x
1

…
xn) ∈ X n

⊂ℝ
d×n , Y = (Y (x

1
)…

Y (xn)) = (
Y 1…
Y n
) ∼ N (μ , C )

C ij =C (xi , x j
)

and, 

p( y ) = 1

(2π)n/2 det1/2
(C )

exp(−1
2
( y−μ)T C−1( y−μ))

with probability density function (multi-Normal law), 

Note : C is called Gram matrix in the SVM class (J.-M. Bourinet)



  

Gaussian processes  (illustration)
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(linear couplings)

Other possible 
illustration : contour 

lines of p(y) as 
ellipses with principal 

axes as eigen-
vectors/values of C-1 



  

Special case : no spatial covariance

Y = (Y (x
1
)…

Y (xn)) = (
Y 1…
Y n
) ∼ N (μ , [

σ1
2 0 0

0 ⋱ 0
0 0 σn

2])

Y (x) ∼ N (μ(x ) , σ (x)2)

Y (x ) = μ(x ) + Ε(x )  where Ε(x) ∼ N (0 , σ(x )2 )

i.e., GP generalize a trend with white noise
  “          “          regression

At n observation points,

Example : 

μ(x) = x2 , σ(x ) = 1



  

Numerical sampling of a GP

C = U D2U T

To plot GP trajectories (in 1 and 2Ds), perform the eigen analysis

In R,  

and then notice Y =μ+U DΕ , Ε ∼ N (0, I )

( prove that E Y =μ  and Cov (Y ) = C  , 
   + a Gaussian vector is fully determined by its 2 first moments )

Ceig <- eigen(C)
y <- mu + Ceig$vectors %*% diag(sqrt(Ceig$values)) 

 %*% matrix(rnorm(n))

( Cf. previous illustrations, functions plotted with large n's)

More efficient implementation : cf. Carsten Proppe class, sl. “Discretization 
of random processes”



  

Definition of covariance functions

How do we build C and µ and account for the data points ( xi , y
i
 ) ?

→ Start with C .

Cov (Y (x ), Y (x ' )) = C (x , x ')

The covariance function, a.k.a. kernel, 

is only a function of x and x' , 

The kernel defines the covariance matrix through

C ij =C ( xi , x j)

C : X × X →ℝ



  

Valid covariance functions

All functions C : ℝd×ℝd→ℝ  are not  valid kernels.
Kernels must yield positive semidefinite covariance matrices, C :

∀u∈ℝn , uT C u⩾ 0

Functional view (cf. Mercer's theorem) : let φ
i
 be square integrable 

eigenfunctions of x and λ
i 
≥ 0 the associated eigenvalues, 

C (x , x ' ) =∑
i=1

N

λiφi (x)φi(x ') , N=∞  but finite for degenerate kernels

Interpretation : kernels actually work in an N - (possibly infinite)
 dimensional feature space where a point is (φ1(x ) ,… , φN ( x))

T

( but C(x,x') < 0 may happen )



  

Stationary covariance functions

The covariance function depends only on τ = x-x' , but not on the 
position in space

Cov (Y (x ), Y (x ' )) =C (x , x ') = C (x−x ' ) = C (τ )
C (0) = σ2 , C (τ) = σ2 R (τ)   ( R  the correlation)

Example :  the squared exponential covariance function (Gaussian)

Cov (Y (x ), Y (x ' )) =C (x−x ') = σ2 exp(−∑i=1

d ∣x i−xi '∣
2

2θi
2 )

= σ
2∏

i=1

d

exp(−∣τi∣
2

2θi
2 )

Note : θi  is a length scale ≡ bandwidth (SVM class) ≡ 1/ γ



  

Gaussian kernel, illustration

y

x∥x−x '∥

C (x , x ' )

Cov (Y (x ), Y (x ' )) =C (x−x ') = σ2 exp(−∑i=1

d ∣x i−xi '∣
2

2θi
2 )

The regularity and frequency content of the trajectories is controlled by the 
covariance functions. The θ

i
's act as length scales.



  

Regularity of covariance functions

For stationary processes, 
the trajectories y(x) are p times differentiable (in the mean square 
sense) if C(τ) is 2p times differentiable at τ=0. 

→The properties of C(τ) at τ=0 define the regularity of the process. 

Expl : trajectories with Gaussian kernels are infinitely differentiable 
(very  – unrealistically ? – smooth) 



  

Recycling covariance functions

The product of kernels is a kernel, 

(expl, d>1 kernels like the Gaussian kernel)

The sum of kernels is a kernel, 

Let W(x) = a(x) Y(x) , where a(x) is a deterministic function. Then,

C (x , x ' ) =∏
i=1

N

C i(x , x ' )

C (x , x ' ) =∑
i=1

N

C i (x , x ')

Cov (W (x),W (x ')) = a(x)C (x , x ' )a(x ')



  

Examples of stationary kernels

General form  ,   C (x , x ' ) = σ2∏
i=1

d

R (∣xi−x ' i∣)

Gaussian  ,  R (τ) = exp(− τ
2

2θ2 )    (infinitely differentiable trajectories)

Matérn ν=5/2  ,  R (τ) = (1+ √5∣τ∣
θ
+

5 τ2

3θ2 )exp(−√5∣τ∣
θ )    (twice diff. tr.)

Matérn ν=3/2   ,  R (τ) = (1+ √3∣τ∣
θ )exp(−√3∣τ∣

θ )    (once diff. tr.)

Power-exponential  ,  R (τ) = exp(−∣τ∣θ
p

) , 0< p≤2

(tr. not diff. except for p=2 )

(the ones implemented in the DiceKriging R package)

Matérn ν=5/2 is the default choice.
They are functions of d+1 hyperparameters : 

σ and the θ
i
's to learn from data.



  

Tuning of hyperparameters

Our first use of the observations (X ,Y )

where  X = (x
1

…
xn)  and  Y = (Y (x

1)…
Y (xn

))

Three paths to selecting hyperparameters ( σ and the θ
i
's ) : 

                             maximum likelihood, cross-validation, Bayesian.

Current statistical model  :  Y (x ) ∼ N (μ(x ) , C (x , x))

                    equivalently ,  Y ( x) = μ( x)+Z (x)

  where  μ(x ) known (deterministic) and  Z (x ) ∼ N (0 , C (x , x ))

(discussed here)



  

Maximum of likelihood estimate (1/2)

L(σ ,θ)= p ( y∣σ ,θ) = 1

(2π)n/2 det1 /2
(C)

exp(−1
2
( y−μ)T C−1( y−μ))

  where  C ij = C (xi , x j ; σ ,θ)= σ2 R (x i , x j ; θ)

  and  μ i =μ(x
i)

Likelihood : the probability of observing the observations as a 
function of the hyperparameters

max
σ ,θ

L(σ ,θ) ⇔ min
σ ,θ
−log L(σ ,θ)⏞

mLL

Note : compare the likelihood L(σ ,θ) to the regularized loss function
of the SVM class,   L(σ ,θ)= reg_terms(σ ,θ) × exp(−loss_function(σ ,θ))



  

Maximum of likelihood estimate (2/2)

However, the calculations cannot be carried out analytically for θ.

So, numerically, minimize the “concentrated” likelihood, 

mLL(σ ,θ)=
n
2

log (2π)+n log (σ)+
1
2

log (det (R))+σ
−2

2
( y−μ )T R−1 ( y−μ )

∂mLL
∂σ

= 0 ⇒ σ̂
2
=

1
n
( y−μ )T R(θ)−1 ( y−μ )

min
θ∈[θ

min ,θmax
]

mLL(σ̂ (θ) ,θ)

   where  θmin
> 0

A nonlinear, multimodal optimization problem. In R / DiceKriging , solved 
by a mix of evolutionary – global – and BFGS – local – algorithms.



  

x

y (x )

μ(x)

μ(x)+1.95 σ̂

μ(x)−1.95 σ̂

Where do we stand ?

Further use the observations ( X , Y=y ). Make such a model 
interpolate them → last step to kriging.

Y (x ) normal with known average μ(x )
                   and we have learned the covariance C (x−x ' )



  

Conditioning of a Gaussian random vector

Let U  and V  be jointly Gaussian random vectors,

[UV ]∼ N([μU
μV ] , [CU CUV

CUV
T CV

])
then the conditional distribution of U  knowing V=v  is 

U |V=v ∼ N ( μU+CUV CV
−1
(v−μV )⏟

cond. mean

, CU−CUV CV
−1 CUV

T

⏟
cond. covar. )

✔ the conditional distribution is still Gaussian
✔ the conditional covariance does not depend on the 

observations v

and this is all we need ...



  

Simple kriging

Apply the conditioning result to the vector

[
Y (x *)
Y (x1

)…
Y ( xn

) ]= [Y ( x *)
Y ] ∼ N ([μ( x *)

μ ] , [ σ
2 C (x * , X )

C (x * , X )T C ])
which directly yields the simple kriging* formula

Y (x *)|Y= y ∼ N (mSK (x *) , vSK ( x *))

mSK (x *) = μ( x *)+C (x * , X )C−1( y−μ)

vSK ( x *) = σ2
−C (x * , X )C−1C (x * , X )T

* simple kriging : the trend ( µ(x*) , µ ) is assumed to be known

For prediction at 1 point,  C (x * , x *) = σ2 R (x *−x *) = σ2

For joined prediction at many points, same formula but 
x * → x * , σ2

→ C (x * , x *) , v SK (x *) → CSK (x * , x *) = C *SK

( identical to 
LS-SVR formula ? )



  

mSK (x)+1.95√vSK (x )

mSK (x)−1.95√vSK (x)

mSK (x)

x

1 sample,
ySK (x )

Simple kriging (illustration)

Matérn 5/2 kernel, constant trend –  µ(x) = -0.2 –  θ≈0.02 by MLE. 
Not a good statistical model for these data.



  

x

Simple kriging (other illustration)

Matérn 5/2 kernel, constant trend –  µ(x) = -0.2 –  θ=0.5 fixed a priori. 

Since Y KS ∼ N (mKS , CKS )  , kriging trajectories can be sampled



  

Interpolation properties

● The kriging mean and trajectories are interpolating the data 
points

● The kriging variance is null at data points

 

Proof for vSK  :    C (xi , X)T = C i  , i-th column of C

C−1 C = I ⇒ C−1C i = e i  , i -th basis vector  
vSK (x

i) = σ2−C iT C−1C i = σ2−C iT ei= σ2−C (xi , xi) = 0

Same idea with mSK (x
i
) = yi

Y (xi)|Y= y ∼ N ( yi , 0), thus the trajectories are interpolating



  

Other paths towards kriging

linear  ,  Ŷ (x) =∑
i=1

n

λi( x)Y i = λ(x )
T Y

unbiased  ,  EŶ (x ) = λ (x)T E Y = EY (x ) = μ(x )

best  ,  λ (x ) = arg min
λ∈ℝ

n

E (∥Ŷ (x)−Y (x )∥2 )

We just used a Bayesian approach (GP conditioning) to justify kriging.

Often, kriging is introduced as a best linear estimator :

This constrained optimization problem is solved in λ(x) and the 
kriging equations are recovered through

But the link with GP interpretation is typically not discussed

mK ( x) = E (Ŷ (x )∣Y= y )  and  v K (x ) = E ((Ŷ (x )−Y (x ))2)

E (Y (x )∣Y= y ) =
?

E (Ŷ (x)∣Y= y ) , E((Y (x )−μ(x ))2∣Y= y ) =
?

E ((Ŷ (x)−Y (x))2)

RKHS view : kriging as minimum norm interpolator in the 
Reproducing Kernel Hilbert Space generated by C(.,.) .   
Cf. Nicolas Durrande's PhD thesis.



  

Universal kriging (1/4)

Finally, let us learn the trend within the same framework.

The UK statistical model is,

 
Y (x ) = ∑

i=1

p

ai (x )βi + Z (x) = a (x)T β + Z (x)

where  Z (x) ∼ N (0,C (x , x ))   and  β ∼ N (b , B )

i.e., Gaussian prior on the trend weights

Consider the Gaussian vector,

 new points {Y (x *1)
…
Y (x *m

)}
observation points {Y (x

1)…
Y (xn

)}
= {Y *

Y } and note   [a(x
1)T…

a(xn
)

T ]= A

[a(x *1
)

T

…
a(x *n)T ]= A *



  

Universal kriging (2/4)

{Y *
Y } ∼ N (A * b

A b
, [ C *+A * B A *T C (X * , X )+A * B AT

C (X , X *)+A B A *T C+A B AT ])
and apply the Gaussian vector conditioning formula (see 
earlier slide). The kriging mean is the conditional average,

m(X *) = A * b+ (C (X * , X )+A * B AT ) (C+A B AT )
−1

( y−A b )

and the kriging covariance is the conditional covariance,

v (X *) = C *+A * B A *T−  

(C (X * , X )+A * B AT ) (C+A B AT )
−1
(C (X , X *)+A B A *T )

The universal kriging formula are obtained by taking the limit of 
m(X*) and v(X*) when the prior on the weights becomes non 
informative
λ∈ℝ  , B= λ B̄  , 

lim
λ→∞
b=0

m(X *) = mUK (X *)  ,  lim
λ→∞
b=0

v (X *) = vUK (X *)



  

Universal kriging (3/4)

Proof for m
UK

(.)

Two matrix inversion lemma are used :

(A−1+B−1)−1 = A−A (A+B)−1 A (1)
(Z+UWV T

)
−1
= Z−1

−Z−1 U (W−1
+V T Z−1 U )−1V T Z−1 (2)

(C+A B AT
)
−1
=
(2)

C−1
−C−1 A(B−1

+AT C−1 A)−1 AT C−1

=
(1)

C−1
−C−1 A [(AT C−1 A)−1

−(AT C−1 A)−1
((AT C−1 A)−1

+B)−1
(AT C−1 A)−1

]AT C−1

⇒ A * B AT (C+A B AT)−1 y = A * B((AT C−1 A)−1+B)−1(AT C−1 A)−1 AT C−1 y
→
λ→∞

A * β̂ (3)

C (X * , X )(C+A B AT)−1 y = C (X * , X )[C−1−C−1 A(B−1+AT C−1 A)−1 AT C−1] y
→
λ→∞

C (X * , X )C−1
( y−A β̂) (4)

(3) + (4) yield m
UK

(.) □



  

Universal kriging (4/4)

mUK (X *) = A(X *)β̂⏟
linear
part

+ C (X * , X )C−1 ( y−A β̂ )⏟
local

correcting
part

vUK (X *)= C *−C (X * , X )C−1C (X , X *)⏟
 = vSK

+ UT (AT C−1 A )
−1

U⏟
addit. part
due to β
estimation

where   β̂ = ( AT C−1 A )
−1

AT C−1 y

where   U = AT C−1C (X , X *)−A(X *)T

Note : Ordinary kriging = universal kriging with constant trend



  

mUK (x)+1.95√vUK (x)

mUK (x )−1.95√vUK (x )
mUK (x )

x

1 sample,
yUK (x )

Universal kriging (illustration)

Matérn 5/2 kernel, quadratic trend –  a(x)T = ( 1 , x , x2 ) –  θ≈0.02 by MLE. 



  

x x

Illustrative comparison of krigings

Comparison of kriging mean ± 1.95 std. dev. for simple, ordinary and 
universal kriging (SK, OK, UK, resp.)

Matérn 5/2 kernel, linear trend –  a(x)T = ( 1 , x ) –  for UK, MLE estimation

Note how SK and OK go back to average, how OK uncertainty slightly > that 
of SK , uncertainty of UK small because of small estimated σ

θ̂SK = 0.5  , v̂SK = 1.2  ; θ̂OK = 0.5  , v̂OK = 1.2 ; θ̂UK = 0.01  , v̂UK = 0.02



  

Kriging in more than 1D

Sample code from DiceKriging R package : 

library(DiceKriging)
library(lhs)

n <- 80
d <- 6

X <- optimumLHS(n, d)
X <- data.frame(X)
y <- apply(X, 1, hartman6)

mlog <- km(design = X,   
       response = -log(-y))

plot(mlog)



  

Rough sensitivity analysis from kriging

Estimated length scales (the θ's) can serve for rapid sensitivity 
analysis. The larger θ, the least function variation, the least 
sensitivity.   

Expl. in 4D.

True function : f ( x) = 2+x1
2−3 x3+ x1

3 x3
2+sin (3 x1 x4)

n <- 80
d <- 4
X <- optimumLHS(n, d)
X <- data.frame(X)
y <- apply(X, 1, truefunc)
model <- km(design = X, response = y, upper=c(5,5,5,5))

⇒

θ̂1=1.2
θ̂2=5
θ̂3=2.9
θ̂4=1.7

one checks that the function is the least 
sensitive to x

2
, the most to x

1  
.



  

Links with other methods (1/2)

Bayesian linear regression

Y (x ) =∑
i=1

N

W iφi (x ) + Ε = φ(x )
T W + Ε

   where   φ (x) = [φ1(x )…
φN (x )] , W ∼ N (0 ,Σw ) , Ε ∼ N (0,σn

2 )

The posterior distribution of the model follows the SK equations, 

(φ (x )T W ∣Y= y) ∼ N (mSK (x) , v SK (x ))

provided      C (x , x ') = φ( x)T Σw φ(x )

⇒ kriging is equivalent to Bayesian linear regression in the N
 (possibly infinite) dimensional feature space (φ1(x ),…,φN (x ))

( GPML, p.12 )

SVR
LS-SVR ~ m

K
, cf. previous comments, but regularization control (C 

SVR parameter) embedded in the likelihood.



  

Links with other methods (2/2)

Case of the Gaussian kernel

The feature space associated to the Gaussian kernel is  an 
infinite series of gaussians with varying centers

C (x , x ' ) = σ2 exp(−∥x−x '∥2

2θ2 )= lim
N→∞
∑
c=1

N
σ

2

N
φc(x )φc( x ')

              where φc(x ) = exp(−∥x−c∥2

θ2 )     (see GPML, p.84)

Bayesian linear regression (cont)



  

Kriging issues

C not invertible 

If there are linear dependencies between the covariances of 
subset of data points. This happens in particular if data points are 
close to each other according to the cov function ← frequent with 
the very smooth Gaussian kernel.
Solution : regularization, either by adding a small >0 quantities 
on the diagonal or by replacing C-1  by the pseudo-inverse C† .
( cf. Mohammadi et al., 2013)

Too many data points

It is not standard to invert a matrix beyond 1000 data points.
Solution : regional kriging, still a research issue.

Choosing the covariance function 

Max. likelihood is a multimodal optimization problem. More 
generally, how to choose the trend and covariance model ?
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Compatibility note

From now on, Bruno Sudret will write 

mK ( x) → μŶ (x)

v K (x) → σŶ
2 (x)
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