
HAL Id: cel-01081293
https://hal.science/cel-01081293v1

Submitted on 7 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust optimization : formulation, kriging and
evolutionary approaches

Rodolphe Le Riche

To cite this version:
Rodolphe Le Riche. Robust optimization : formulation, kriging and evolutionary approaches. Doc-
toral. France. 2014. �cel-01081293�

https://hal.science/cel-01081293v1
https://hal.archives-ouvertes.fr


1

Robust optimization : 
formulation, kriging and evolutionary approaches

Rodolphe Le Riche
CNRS and Ecole des Mines de Saint-Etienne

class given as part of the “Modeling and Numerical Methods for 
Uncertainty Quantification” French-German summer school, Porquerolles, 

Sept. 2014 



2

Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with 
uncertainties 

3. Kriging-based approaches (costly functions)

4. Evolutionary approaches (non costly functions)
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Why do we optimize ?

min
x∈S

f (x)

g(x)⩽0

Optimization as a mathematical formulation for decision

Optimization
algorithm
software
[seconds]

Simulation
software, s(x)
(FE, … )
[min, hours]

x

f(s(x)) , g(s(x))

Communication between programs by file, pipe, messages, ...

followed by a numerical, approximate, resolution, 

Post-process
of simulation

[0 , seconds] s(x)
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Motivations for robust optimization

What is the point – in practice – for deterministically solving an 
optimization problem when there are

● unstable optima

● aleatory model ( s ) parameters

● model uncertainties

● dynamically changing model conditions (complex systems)

??? 

x

f
x* ?
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Unstable deterministic optimum. Expl of an air duct.

robust designdeterministic design

ΔP = 0.604 →
mesh×2

2.356

ΔP =
MC on u

3.011±2.033

The optimization exploits meshing flaws.
The result is not stable w.r.t. mesh or boundary 
conditions changes. 

(zoom)

ΔP =
MC on u

1.198±0.069

Minimize pressure loss by changing the (parameterized) shape.

Cf. J. Janusevskis and R. Le Riche, Robust optimization of a 2D air conditioning duct using 
kriging, technical report hal-00566285, feb. 2011.



6

Unstable deterministic optimum.
Expl of a combustion engine.

a +/- 1mm dispersion in the manufacturing of a 
car cylinder head  can degrade its performance 

(g CO2/km) by -20% (worst case)
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Motivations for robust optimization

What is the point – in practice – for deterministically solving an optimization 
problem when there are

● unstable optima

● aleatory model ( s ) parameters

● model uncertainties

● dynamically changing model conditions (complex systems)

??? 

 → modify the problem statement, therefore also the 
optimization algorithms → robust optimization
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Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with 
uncertainties 

3. Kriging-based approaches (costly functions)

4. Evolutionary approaches (non costly functions)
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Formulations of optimization problems under 
uncertainties

H.G. Beyer, B. Sendhoff, Robust Optimization – A comprehensive survey, Comput. Methods Appl. Mech. 
Engrg, 196, pp. 3190-3218, 2007.

G. Pujol, R. Le Riche, O. Roustant and X. Bay, L'incertitude en conception: formalisation, estimation, 
Chapter 3 of the book Optimisation Multidisciplinaire en Mécaniques : réduction de modèles, robustesse, 
fiabilité, réalisations logicielles, Hermes, 2009 (in French  ;-(  )
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Formulation of optimization under uncertainty

The double (x,U) parameterization

We introduce U, a vector of uncertain (random) parameters that  
affect the simulator s.
x is a vector of deterministic optimization (controlled) variables. x 
in S, the search space.

(cf. Taguchi, 80's)

s(x)  →  s(x,U)    ,  therefore f(x) → f(s(x,U)) = f(x,U)  
and  g(x) → g(s(x,U)) = g(x)

U used to describe
 noise (as in identification with measurement noise)
 model error (epistemic uncertainty)
 uncertainties on the values of some parameters of s. 
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Formulation of optimization under uncertainty

The (x,U) parameterization is general

1. Noisy controlled variables
    Expl : manufacturing tolerance,

Three cases (which can be combined)

2. Noise exogenous to the optimization variables
    Expl : random load L+U, x is a dimension.

3. Noise as an error model for the simulation

Expl :  f (.) ≡ s(.) ≡ σ(R , L)  (radial stress)

x

L

R

σ

x

L+U

σ

R ≡ x+U , f (x ,U ) ≡ σ(x+U , L)

f (x ,U ) ≡ σ (x , L+U )

x

L

σ + U

Expl. :  f (x ,U ) ≡ σ( x , L)+U



12

Formulation of optimization under uncertainties

(1)  the noisy case

min
x∈S⊂ℝd

f (x ,U )

g(x ,U )⩽0

Let's not do anything about the uncertainties, i.e., try to solve

It does not look good : gradients are not defined, what is the result of the 
optimization ? 
But sometimes there is no other choice. Ex : y expensive with 
uncontrolled random numbers inside (like a Monte Carlo statistical 
estimation, numerical errors, measured input).
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Formulation of optimization under uncertainties 
(2) an ideal series formulation

Replace the noisy optimization criteria by statistical measures

G(x )  is the random event "all constraints are satisfied" , 

G(x) =∩
i
{gi( x ,U )⩽0}

min
x∈S

qα
c (x ) (conditional quantile)

such that  P (G(x) ) ⩾ 1−ε

where the conditional quantile is defined by 

P ( f (x ,U )⩽qα
c (x ) | G(x)) = α
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Formulation of optimization under uncertainties

(3) simplified formulations often seen in practice

For bad reasons (joint probabilities ignored) or good ones 
(simpler numerical methods – Gaussian pdf – , lack of data, 
organization issues), quantiles are often replaced by averages 
and variances, conditioning is neglected, constraints are handled 
independently :

such that  P (G(x)) ⩾ 1−ε     or    P (gi(x )⩽0 )⩾ 1−εi

where  ε   is the series system risk
and  εi   is the i th failure mode risk

min
x∈S

qα (x)   or  min
x∈S

E ( f (x ,U ))    and / or   min
x∈S

V ( f (x , U ))

 or  min
x∈S

E ( f (x ,U ))+r √V ( f (x ,U ))

where  P ( f (x ,U )⩽qα(x)) = α    and   r>0
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Formulation of optimization under uncertainties

Direct approaches  (1/4)

In practice, statistical performance measures are estimated

f̂ (x) = { ÊU ( f (x , U )) or ÊU ( f (x , U ))+r √V̂ U (f (x ,U )) or ÊU qα(x)}

Crude Monte Carlo expl : 

f̂ ( x) = ÊU (f (x ,U )) =
1

MC ∑i=1

MC

f (x ,ui
) , ui  i.i.d. ∼ U

f̂ ( x) = ÊU qα(x) = ⌊MC×α⌋-th lowest among f (x ,u1
),… , f (x ,uMC

)

ĝ (x) =…   (cf. reliability estimation classes)
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Formulation of optimization under uncertainties

Direct approaches  (2/4)

Optimization : loop on x

Estimation of the performance (average, 
std dev, percentile of f(x,U)  , prob. of 
g(x,U) ) : loop on u , Monte Carlo

Such a double loop is very costly : 

OP
times

MC
times

Total cost = OP × MC
( calls to s )

Direct (naive) approaches to optimization with uncertainties have 
a double loop : propagate uncertainties on U, optimize on x. 
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Formulation of optimization under uncertainties

Direct approaches  (3/4)

Most local (e.g., gradient based) optimizers will show poor 
convergence with noisy statistical estimators (e.g., crude Monte 
Carlo).

Ex : quasi-Newton method with finite differences 

little noise more noise

f̂ (x)=
1

100 ∑i=1

100

∥x+ui∥
2 ui ~ N (0, I 2) f̂ (x)=∥x+ui∥

2
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Formulation of optimization under uncertainties

Direct approaches  (4/4)

Avoid noisy statistical estimators with common random numbers

But, 
● does not solve the cost issue 
●  (less critically) the estimates  f̂ ( x1

) ,…, f̂ (xOP
) depend on the

 choice of u1 ,…, uMC

Sample {u1 , … , uMC} according to U

for i=1:OP
optimizer(past x , f̂ (x)) → new x
for j=1 :MC

f̂ (x ) ← f̂ (x)+ f (x ,ui
)

end
f̂ (x ) ← f̂ (x )/MC

end

Expl :  f̂ (x) =
1

MC ∑i=1

MC

f ( x ,ui
) has same regularity as f  for given ui 's

see Bruno 
Tuffin's class on 
sampling (quasi 

Monte Carlo)

once for 
all before 
the loops
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Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with 
uncertainties 

3. Kriging-based approaches (costly functions)

4. Evolutionary approaches (non costly functions)
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kriging-based approaches

Context

Unconstrained continuous optimization

min
x∈S⊂ℝd

f (x  with uncertainties)

[     Constraints, g(x) ≤ 0 , are not explicitely discussed in this talk. As a 
patch, you may assume that 

min
x∈S⊂ℝd

f (x)

g(x) ≤ 0
→ min

x∈S⊂ℝd

f (x)+ p×max2(0 , g(x))

Constraints satisfaction problem :  A. Chaudhuri, R. Le Riche and M. Meunier, Estimating 
feasibility using multiple surrogates and ROC curves, 54th AIAA SDM Conference, Boston, 
USA, 8-11 April 2013.      ]

Unconstrained continuous optimization of costly functions
~ 20 to 1000 calls possible, d = 1 to 20

min
x∈S⊂ℝd

f̂ (x )

min
x∈S⊂ℝd

EU f (x ,U )

general, 
no control on U

specific to E(f), 
control on U
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kriging-based approaches 

Kriging with noisy observations (1/5)

Y (x) = μ(x) + Z (x) + Ε(x)

              where  Z (x) ∼ N (0,C (x , x) )   and  Ε(x) ∼ N (0, τx
2 )

Z ( x) ⊥ Ε(x ' )

space x 

Y

f̂ ( x)
here
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kriging-based approaches 

Kriging with noisy observations (2/5)

Apply the conditioning result to the vector

[
Z (x *)+μ(x *)

Y (x1
)…

Y (xn
) ]= [Z ( x *)+μ(x *)

μ+Z+Ε ] ∼ N([μ(x *)
μ ] , [ σ

2 C (x * , X )

C (x * , X )T C+diag( τ2
)])

The only change w.r.t. the usual kriging formula is the addition of the 
observation variances on the covariance diagonal  

(Z (x *)+μ(x *))|Y= y ∼ N (mSK (x *) , vSK (x *))

mSK (x *) = μ( x *)+C (x * , X )(C+diag( τ2))−1( y−μ)

vSK ( x *) = σ
2
−C (x * , X)(C+diag (τ 2

))
−1 C ( x * , X )T

because  Cov (Y ( xi
),Y (x j

)) = E ((μi
+Z i

+Ε
i
−μ

i
)(μ

j
+Z j

+Ε
j
−μ

j
))= C ij+δij τi

2
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kriging-based approaches 

Kriging with noisy observations (3/5)

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

x

f(
x

)

space x 

Y

mSK (x) mSK (x)±sSK (x)

● kriging no longer interpolating
● the kriging mean filters the noise
● additive covariance diagonal terms called « nugget effect »
● often used as a regularization technique in non noisy situations 

● kriging = our approach to link x and U spaces in optimization
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kriging-based approaches 

Kriging with noisy observations (4/5)

Expl.:  mean estimate has variance 

τi
2
= V ( f̂ (xi

)) =
1

MC(MC−1)
∑
j=1

MC

( f (x ,u j
)− f̂ ( x))

2

(  Expl. with quantile estimate, cf. Le Riche et al., Gears design with 
shape uncertainties using Monte Carlo simulations and kriging, SDM, 
AIAA-2009-2257  )

In the context of robust optimization with MC estimators, the 
observation noise can be set as

τi
2 = variance of performance estimate, f̂ (.) ,  at xi
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kriging-based approaches 

Kriging with noisy observations (5/5)

The hyperparameters can be tuned through max likelihood, 2 cases

Unknown homogeneous noise

C τ ≡ C+τ2 I , C τ ≡ σ2 Rτ

and do the usual MLE estimation replacing R  by R τ

 (1 additional parameter in the concentrated likelihood, τ )
→ τ̂ , σ̂ , θ̂1 , … , θ̂n

Known (from context) heterogeneous noise

C τ ≡ C+diag (τ1
2 ,…, τn

2) , C τ ≡ σ2 Rτ

and do the usual MLE estimation (cf. ``intro. to kriging class'')
replacing R  by R τ → σ̂ , θ̂1 , … , θ̂n
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kriging-based approaches 

We have seen

● how to formulate a robust optimization problem
● how to model noisy observations with kriging

● but how to optimize when a kriging metamodel is built ?
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The simplest (naive) approach.

Kriging-based approaches

Kriging prediction minimization

For t=1,tmax do,

Learn Yt(x) (m
K
 and s

K
2 ) from f(x1), … , f(xt)

xt+1 = min
x
 m

K
(x)

Calculate f(xt+1)
t = t+1

End For

e.g., using CMA-ES* 
if multimodal

* Hansen et al., 2003

But it may fail if m
K
(xt+1) = f(xt+1) : 

the minimizer of m
K
 is at a data point 

which may not even be a local optimum.

D. Jones, A taxonomy of global optimization methods 
based on response surfaces, JOGO, 2001.

Notation : this slide + the ones coming about EGO are general to any optimization,
therefore f̂ → f



  

kriging-based approaches

Kriging and optimization

● We will deterministically fill the design space in an efficient 
order.

● Other global search principles

• Stochastic searches : (pseudo)-randomly sample the design space S, 
use probabilities to intensify search in known high performance regions 
and sometimes explore unknown regions.

• (pseudo-)Randomly restart local searches.
• (and mix the above principles)

 in an efficient manner. 

INTENSIFICATION

Search the volume 

Balance   EXPLORATION    with   



  

kriging-based approaches

A state-of-the-art global optimization algorithm
using metamodels : EGO

(D.R. Jones et al., JOGO, 1998)

EGO = Efficient Global Optimization = use a « kriging » 
metamodel to define the Expected Improvement (EI) 
criterion. Maximize EI to creates new x's to simulate.

EGO deterministically creates a series of design points that 
ultimately would fill S. 

Some opensource implementations : 

● DiceOptim in R (EMSE & Bern Univ.)
● Krisp in Scilab (Riga Techn. Univ & EMSE)
● STK: a Small (Matlab/GNU Octave) Toolbox for 

Kriging, (Supelec)



  

kriging-based approaches

(one point-) Expected improvement

x

f min

i(x)

A natural measure of progress : the improvement,

I (x) = [ f min−F (x) ]
+
∣ F (x)=f (x) , where [.]+ ≡ max (0, .)

● The expected improvement is known analytically. 
● It is a parameter free measure of the exploration-intensification 
compromise. 
● Its maximization defines the EGO deterministic global optimization 
algorithm. 

EI (x) = √v K (x)× ( u(x )Φ(u(x))+ϕ(u( x)) ) ,  where u(x) =
f min−mK ( x)

√vK (x )



  

kriging-based approaches

One EGO iteration

At each iteration, EGO adds to the t known points the one that 
maximizes EI,

xt+1 = arg maxx EI (x )

then, the kriging model is updated ...



  

kriging-based approaches

EGO : example



  

kriging-based approaches

EGO : 6D example
Hartman function, f(x*)=-3.32 , 10 points in initial DoE

(DiceOptim, D. Ginsbourger, 2009)
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Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with uncertainties 

3. Kriging-based approaches to robust optimization (costly functions)
Kriging noisy observations
Optimization and kriging
Robust optimization, no control on U
Robust optimization, control on U

4. Evolutionary approaches (non costly functions)
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or
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Solution 1 : Add nugget effect and replace y
min

 by the best observed 
mean (filters out noise in already sampled regions) :

Kriging-based robust optimization, no control on U

EI for noisy functions

EInoisy
(x)=E [max ( min

i=1, t
mK (x

i
)−(Z ( x)+μ( x)) , 0 )]

EI should not be used for noisy observations  because f̂ min ≡ ymin

is noisy ! (a low ymin  would mislead EGO for a long time

known analytically
replace f min  by 

min
i=1, t

mK (x
i
)

 in EI  formula
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Kriging-based robust optimization, no control on U

Expected Quantile Improvement

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

n = 4

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

E Q I  c r i t e r i o n

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

n = 5

Solution 2 : Add nugget effect and use the 
expected quantile improvement. 

EQI (x) = E [max ( qmin−Qt+1
(x) , 0 )]

qmin = min
i=1, t

mK (x
i
)+α sK (x

i
)

Q t+1(x) = M K
t+1(x)+α sK

t+1(x)

M K
t+1
(x) is a linear function of Y (x )

⇒EQI (x) is known analytically

V. Picheny, D. Ginsbourger, Y. Richet, Optimization of 
noisy computer experiments with tunable precision, 
Technometrics, 2011.

A conservative criterion (noise and spatial 
uncertainties are seen as risk rather than 
opportunities).
Better for assigning ressources to reduce 
noise on a given DoE  Xt obtained by 
Solution 1.
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Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with uncertainties 

3. Kriging-based approaches to robust optimization (costly functions)
Kriging noisy observations
Optimization and kriging
Robust optimization, no control on U
Robust optimization, control on U

4. Evolutionary approaches (non costly functions)
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Kriging based optimization with uncertainties, U controlled

(x,u) surrogate based approach

Assumptions : x and U controlled

Only one loop of f

(x,u) surrogate based 
approach

STAT [Y (x ,U )]

Y (x ,u)

f (x , u)(x , u)

Simulator

Optimizer

Direct approach

Multiplicative cost of two loops involving f

Monte Carlo
simulations

f x ,uu

Simulator

Y (x )

STAT [ f (x ,U )]+ εx

Optimizer of 
noisy functions

Y :  surrogate model
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Kriging based optimization with uncertainties, U controlled

A general Monte Carlo - kriging algorithm

Hereafter is an example of a typical surrogate-based (here kriging) 
algorithm for optimizing any statistical measure of f(x,u)  (here the average).

Create initial DOE (Xt,Ut) and evaluate f there ;
While stopping criterion is not met:

● Create kriging approximation Yt in the joint (x,u) space from f(Xt,Ut)

● Estimate the value of the statistical objective function from Monte Carlo 
simulations on the kriging average m

Y
t.

 
Expl :  

● Create kriging approximation Zt in x space from

● Maximize EI
Z

noisy(x) to obtain the next simulation point → xt+1   
ut+1 sampled from pdf of U

● Calculate simulator response at the next point, f(xt+1,ut+1). 
Update DOE and t

( xi , f̂ (xi))i=1,t

MC – kriging algorithm

only call to f !

f̂ (xi) =
1
s ∑k=1

s

mK
t (xi ,uk) ,  where uk  i.i.d. from pdf of U
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Objective : 

u

x
Principle : work in the joint (x,u) space.

Cf. J. Janusevskis and R. Le Riche, Simultaneous kriging-based estimation and optimization of 
mean response, Journal of Global Optimization, Springer, 2012

Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling
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Kriging based optimization with uncertainties, U controlled

Integrated kriging (1)

: objective

 objective

E[Z x ]

EU [ f x ,U ]

u

x

u approximation

integrate 

: kriging approximation to deterministic

:   integrated process 
  approximation to 
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Kriging based optimization with uncertainties, U controlled

Integrated kriging (2)

-probability measure on U

The integrated process over U is defined as

Because it is a linear transformation of a Gaussian process, it is Gaussian, 
and fully described by its mean and covariance

Analytical expressions of m
Z
 and cov

Z
 for Gaussian U's are given in 

J. Janusevskis and R. Le Riche, Simultaneous kriging-based estimation and optimization of 
mean response, Journal of Global Optimization, Springer, 2012
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (1)

Z is a process approximating the objective function 

Optimize with an Expected Improvement criterion,

Optimize with an Expected Improvement criterion,

I Z (x)=max (zmin−Z (x ),0) , but zmin not observed (in integrated space).
⇒  Define zmin = min

x1,
…, x t

E (Z (x))
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (2)

zmin

E[Z x ]

EU [ f x ,U ]

E[Z x ]STD [Z x]
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (3)

x ok. What about u ? (which we need to call the simulator)

EU
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : method

xnext gives a region of interest from an optimization of the expected f 
point of view. 

One simulation will be run to improve our knowledge of this region 
of interest → one choice of (x,u).

Choose (xt+1,ut+1) that provides the most information, i.e., which 
minimizes the variance of the integrated process at xnext
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : expl.

EU
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : algo

( 4 sub-optimizations, solved with CMA-ES )

Create initial DOE in (x,u) space;

While stopping criterion is not met:

● Create kriging approximation Y in the joint space 

● Using covariance information of Y to obtain approximation Z 
of the objective in the deterministic space

● Use EI of Z to choose

● Minimize       to obtain the next point                   for 
simulation

● Calculate simulator response at the next point 

x 

xnext 

VAR Z xnext


f x t1 , u t1

x ,u 

x t1 , ut1
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Kriging based optimization with uncertainties, U controlled

2D Expl, simultaneous optimization and sampling

 DOE and E [Y x ,u]

EU [ f x ,U ]

VARΩ [Z (x)(ω)]

test function

E[Z x ]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

1st iteration

 DOE and E [Y x , u]

− x t1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

2nd iteration

 DOE and E [Y x ,u]

− x t1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

3rd iteration

 DOE and E [Y x ,u]

VAR [Z xnext] x , u

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

5th iteration

 DOE and E [Y x , u]

− x t1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

17th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]
EI Z x 
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Kriging based optimization with uncertainties, U controlled

50th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]EI Z x 
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Kriging based optimization with uncertainties, U controlled

Comparison tests

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach : 
EGO based on MC simulations in f with fixed number of runs, s. 
Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach : 
the MC-kriging algorithm.
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Kriging based optimization with uncertainties, U controlled

Test functions

f (x)=−∑i=1

n
sin(x i)[sin(ix i

2/π)]2

f x ,u=f x f u

Test cases based on Michalewicz function 

nx=1 nu=1 μ=1.5 σ=0.2

nx=2 nu=2 μ=[1.5 , 2.1] σ=[0.2, 0.2]

nx=3 nu=3 μ=[1.5 , 2.1 , 2] σ=[0.2 , 0.2 , 0.3]

2D:

4D:

6D:
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Kriging based optimization with uncertainties, U controlled

Test results

6D Michalewicz test case, n
x=3

 =3 , n
U
 =3 .

Initial DOE: RLHS , m=(n
x
+n

U
)*5 = (3+3)*5 = 30;

10 runs for every method.

Simult. opt & sampl.

MC-kriging

EGO + MC on f , s=3 , 5 , 10
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Partial conclusion

 min
x
 f(x,U)

We have discussed spatial statistics to filter the noise → kriging 
based approaches.

 Limitation : number of dimensions , dim(x) + dim(U) < 20

Beyond this, if the function f is not too costly, use stochastic 
evolutionary optimizers, which can be relatively robust to noise if 
properly tuned.
 Useful for optimizing statistical estimators which are noisy.

 No control over the U's
 No spatial statistics (i.e. in S or S × U spaces), pointwise 

approaches only.
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Outline of the talk

1. Motivations for robust optimization

2. Formulations of optimization problems with 
uncertainties 

3. Kriging-based approaches (costly functions)
No control on U
With control on U

4. Evolutionary approaches (non costly functions)
    The general CMA-ES
    Improvements for noisy functions : 

Mirrored sampling and sequential selection
Adding confidence to an ES
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Noisy optimization

Evolutionary algorithms

Taking search decisions in probability is a way to handle the 
noise corrupting observed f values
 
→ use a stochastic optimizer,  an evolution strategy (ES).

Initializations : x, f(x), m, C, t
max

.

While t < t
max

 do,

Sample N(m,C) --> x'
Calculate f(x') , t = t+1
If f(x')<f(x), x = x' , f(x) = f(x') Endif
Update m  (e.g., m=x) and C

End while

A simple (1+1)-ES

%(Scilab code)
x = m + grand(1,'mn',0,C)

« elitism »
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Noisy optimization

Adapting the step size (C2) is important

(A. Auger et N. 
Hansen, 2008)

Above  isotropic ES(1+1)  :  C = σ2 I  ,  σ is the step size. 
With an optimal step size ( ≈ ║x║/ d )  on the sphere function, log linear 
speed that degrades only in O(d).
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Noisy optimization

The population based CMA-ES

(N. Hansen et al., since 1996, now with A. Auger)

CMA-ES = Covariance Matrix Adaptation Evolution 
Strategy = optimization through sampling and updating of 
a multi-normal distribution.

A fully populated covariance matrix is build : pairwise 
variables interactions learned. Can adapt the step in any 
direction.

The state-of-the-art evolutionary / genetic optimizer for 
continuous variables.
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Noisy optimization

flow-chart of CMA-ES

Initializations : m, C, t
max

, µ  , λ

While t < t
max

 do,

Sample N(m,C) --> x1,...,xλ

Calculate f(x1),...,f(xλ) , t = t+λ
Rank : f(x1:λ),...,f(xλ:λ)
Update m and C  with the µ bests,     

x1:λ ,...,xµ:λ

End while

CMA-ES is an evolution strategy ES-(µ,λ) :

m et C are updated with 
● the best steps (as opposed to points),
● a time cumulation of these best steps.
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Noisy optimization

CMA-ES : adapting C2 with good steps

x i
= m yi

yi∝N 0,C 
i = 1, ... ,

(A. Auger et N. Hansen, 2008)

m∈S , C= I , ccov≈2/n2
Initialization : 

yw =
1
μ∑i=1

μ

y i :λ m←m+ yw

sampling

C 1−ccovCccov yw yw
T

selection

rank 1 C  update

update m

ca
lc

u
la

te
   

f
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Noisy optimization

The state-of-the-art  CMA-ES 

(A. Auger and N. Hansen, A restart CMA evolution strategy with 
increasing population size, 2005)

Additional features  :

● Steps weighting,

● Time cumulation of the steps.

● Simultaneous rank 1 and μ  covariance adaptations.

● Use of a global scale factor, C → σ2 C  .

● Restarts with increasing population sizes (unless it is the 2010 

version with mirrored sampling and sequential selection, see later)

Has been used up to d ~ 1000 continuous variables.

yw =∑i=1



w i y i :
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Noisy optimization

● The general CMA-ES
● Improvements for noisy functions : 

Mirrored sampling and sequential selection
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Noisy optimization, improved optimizers

Resampling, noise and evolutionary algorithms

CMA-ES(µ,λ) can optimize many noisy functions because
1. it is not elitist
2. the choice of the next iteration average

averages out errors (spatial sampling as a proxy for U sampling)

mt+1
= mt

+
1
μ∑

i=1

μ

yi : λ

To improve convergence on noisy function, is it preferable

1. to resample 

2. or to increase the population size ?
(for an equivalent increase in 
computation)

→ it is better to increase the 
population size. [Beyer and 
Sendhoff 2007, Arnold and Beyer 
2006 ]

But one can still do better ...

̂̂f (x ) =
1
κ∑

i=1

κ

f̂ (i)( x)
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (1)

(1+1)-CMA-ES with restarts surprisingly good on some 
functions (including multimodal functions with local optima) 
← small population advantage.

But « elitism » of (1+1)-ES bad for noisy functions : a lucky 
sample attracts the optimizer in a non-optimal region of the 
search space.

Question : how to design a fast local non-elistist ES ?

D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. Mirrored Sampling and Sequential Selection 
for Evolution Strategies, PPSN XI, 2010

A. Auger, D. Brockhoff, N. Hansen, Analysing the impact of mirrored sampling and sequential selection in 
elitist Evolution Strategies, FOGA 2011
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (2)

Derandomization via mirrored sampling : 
one random vector generates two 
offsprings.
Often good and bad in opposite 
directions.

Sequential selection : stop evaluation of 
new offsprings as soon as a solution 
better than the parent is found.

Combine the two ideas : when an 
offspring is better than its parent, its 
symmetrical is worse (on convex level 
sets), and vice versa → evaluate in order 
m+y1 , m-y1 , m+y2 , m-y2 , … .
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (3)

Results :

(1,4)-ES with mirroring and sequential selection faster than 
(1+1)-ES on sphere function.
Theoretical result: Convergence Rate* ES (1+1)=0.202 , 

   Convergence Rate (1,4ms)=0.223  .

Implementation within CMA-ES, tested in BBOB'2010** (Black 
Box Optimization Benchmarking)
Best performance among all algorithms tested so far on some 
functions of noisy testbed

** http://coco.gforge.inria.fr/bbob2010-downloads

* convergence rate ≡ −lim
t→∞

ln (distance to optimum)

t
,

                                                               cf. slope line of (log (f ), time) earlier

[ Brockhoff et al., Mirrored sampling and sequential selection for evolution strategies, 2010. ]

small population, no elitism
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Concluding remarks (1)

Today's story was :
● Optimization → difficult in the presence of noise → formulation of 
optimization in the presence of uncertainties → noisy functions 
● → do spatial stats (kriging) [optimizer without U control → optimizer with 
U control] 
●→stochastic optimizers directly applied to noisy functions.

Each method has its application domain : 
● Stochastic optimizers robust to noise cannot be directly applied to an 
expensive (simulation based) objective function. An intermediate surrogate 
is needed.
● Vice versa, kriging based method involve large side calculations : they 
are interesting only for expensive f's.
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Concluding remarks (2)

Many (most) methods were not discussed : 
 
● Method of moments (Taylor expansions of the opt. criteria), 
● FORM/SORM (local constraints approximations about probable 
points) ,
● Chance constraints and convex programming (worst U cases) … .

A lot still to be done : 

● effect of the a priori uncertainty model (law of random parameters),
● optimize quantiles,
● statistically joined criteria,
● kriging like approaches (spatial stats) in high dimension,
● … 
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