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Goal of the presentation

● Why numerical optimization may be useful to the 
scientist making models ?

● Provide some concepts on numerical optimization 
from various backgrounds.

● Cite a few well-known algorithms, but no claim to 
be exhaustive.

● Optimization beyond the algorithm run.



  

Talk outline

● Why numerical optimization may be useful to 
scientists making models ?

● Formulations and problems classification

● Optimization engines

● A few references

● Levenberg-Marquardt algorithm

● CMA-ES

● Concluding remarks
● (other algorithms)



  

Why numerical optimization may be 
useful to scientists making models ?

Ideally, scientists know the physical meaning of the parameters that are in the 
models and know how to tune them based on specific experiments

1 parameter directly read with 1 experiment, separation of parameter effects
Example in mechanics, 2 elastic constants to set = slopes of stress-strain curves

simulatorenvironment, e

n parameters (to tune), x

output, s(x,e)

Context of model parameter identification
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Why numerical optimization may be useful to models ?
Context of model parameter identification

e
 

s

s = Ee + Kep , x = (E,K,p)

se,i

ei

But the effects of parameters are often difficult to separate

Example : behavior with added contributions  
(linear and non linear stresses)

→ formulate an optimization problem : minimize a distance, f, between 
experiments and simulations by changing x

min
x∈S

f ( x)

f (x) =
1
2
∑
i=1

m

(se ,i
−s(x , ei

))
2
=

1
2
∥se

−s( x)∥
2

Classically, 



  

Why numerical optimization may be useful to models ?
Context of model parameter identification

To try to solve  min
x∈S

f (x )  a computer will be helpful

1) because S will typically be a large 
space, e.g., Rn with n ≥ 2

Expl : Identification of 4 elastic constants with 1  
experiment (Silva et al., Identification of material 
properties using FEMU : application to the open hole 
tensile test, Appl. Mech & Matls, 2007)

f(x)

x
x*

global
xl

local

2) because understanding where f is 
smallest may be complex, i.e., beyond 
intuition, because of multimodality.

Expl : Identification of a material non linear law, cf. 
red and blue solutions on previous slide  
(+ Le Riche and Guyon, Least Squares Parameter 
Estimation and the Levenberg-Marquardt Algorithm : 
Deterministic Analysis, Sensitivities and Numerical 
Experiments, TR, 1999)



  

Why numerical optimization may be useful to models ?
Context of DoE or optimal placement

Find the location of points (experiments, 
sensors, actuators, … ) that offers best 
covering while satisfying some constraints 
(e.g., bounds on parameters, sensors 
outside protected regions, … )

min
x∈S

f ( x)

g(x )≤0

S ≡ Dm
⊂ ℝ

m×d

x = (x1
1 ,…, xd

1 , x1
2 ,… , xd

m
)

f (x ) =−min
i≠ j

 dist ( xi , x j )

g (x) = max
i=1, m

c (x i
)

c ≤ 0

c > 0

x1

D

xm

where

This family of problems is typically high dimensional and multi-modal, not well-suited 
to human intuition

x1
1

x1
2 x1

3 x1
m

min
i≠1

 dist ( x1 , xi )
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Formulations

x , n  optimization variables
S , search space , x∈S
f , objective or cost function to minimize,  f : S→ℝ
g , inequality constraint,  g(x )≤0
h , equality constraint,  h(x )=0

min
x∈S

f (x)

such that  g (x)≤0
h(x )=0

g(x)>0g(x)≤0

h(x)=0

x* (continuous)

x* (discrete)

!!! the choice of x affects the 
mathematical properties of f, g, h 
and orients the selection of opt. 
algorithm

Expl : Displacements (f) are non linear functions of thicknesses (x = thickness) 
but linear functions of x = 1/thickness  (for statistically determinate structures)



Optimization algorithms

An optimizer is an algorithm that iteratively proposes new x's 
based on past trials in order to approximate the solution to the 
optimization problem

Optimizer Simulator

x

f/g/h(s(x)) 
+ compl. info. (dfdx(s(x)) ...)

The cost of the optimization is the number of calls to the simulator s 
(usually = number of calls to f) 

OS
x(1)

f(x(1))
g(x(1))
h(x(1))

OS
x(2) x(t+1)

f(x(t))
g(x(t))
h(x(t))



  

Problems classification

unconstrained (no g and h)

constrained min
x∈S

f (x )+ p×max2(0 , g(x ))
Lagrangians, penalizations, e.g.,

compose the following switches to find the pb. category  and the algo

mono-objective,  min
x∈S

f (x)

multi-objective,  min
x∈S

f 1(x) & …f m(x)

MO pbs typically have set 
of (Pareto) solutions, cf. 
Dimo's talk

integer programming
S⊂ℕn

mixed programming
S ⊂{ℝn1∪ℕn2 }

continuous variables
S ⊂ ℝn  

no gradients X(
uni-modal

of which convex,
of which linear

→ local optimization

multi-modal
→ global optimization

costly simulations → metamodels

non costly simulations costly = 
sim. budget < 1000. cf. Victor's talk

number of variables n,
cost of optimizer,
...
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Optimization engines

min
x∈S

f (x)

and the function's landscape is known through (costly) point measures

x

f

unknown

Optimization engine = basic principle to minimise the function



  

Optimization engines
Local model of the function

true function

local model of the function 

xt

x*

step
according to

(quadratic on this 
example, corresponding 
to Newton method, 
H(xt+1-xt) = -grad(f)
a bit naive : cf. trust 
region methods, BFGS)

xt+1

● For local optimization. 
● Efficient (low number of calls to f) because focuses on neighborhood of 
current iterate, suitable for n large (>1000).
● At the risk of missing global optimum if f multi-modal. 



  

Optimization engines
Global model of the function

x

f

xt+1

true function

global model of the function

(here = function value of closest 
known xi, cf. DIRECT algo.)

The next iterates xt+1 are compromises between intensification (search in low 
areas) and exploration (search in unknown areas).

For global optimization. 
Efficiency depends on the agreement between the model and the true 
function but searching the whole S is subject to the « curse of 
dimensionality ».



  

Optimization engines
local sampling

(both graphs from wikipedia, cma-es – left – and pattern search – right –)

sampling in probability
e.g., from a multi-normal density, cf. 
CMA-ES algorithm

sampling with a geometrical pattern
e.g., from a pattern search algorithm

● Sampling from a current point with the notion of step.
● Sampling → methods do not require f continuity or regularity.
● Sampling in probability → S can be continuous, or discrete or mixed.
● May converge locally.
● Efficient and more suitable to large n (>10) than global sampling methods.



  

Optimization engines
global sampling

f(x) and selected points pX (x) =∏i=1

n
pi(xi)

(from Grosset et 
al., A double 
distribution 
statistical algorithm 
for composite 
laminate 
optimization, SMO, 
2006)

The next x iterates can be sampled anywhere in S from a density learned 
on observed points. Expl. Estimation of Distribution Algorithms 
(illustration below), Branch and Bound, … .

● Sampling → methods do not require f continuity or regularity.
● Sampling in probability → S can be continuous, or discrete or mixed.
● May converge globally.
● Typically costly.
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Optimization engines
the quest for the best optimizer

4 « optimization engines » and hundreds of algorithms that vary in 
their implementation and composition of these principles.

What is the best optimizer ?

If you have no a priori on the functions you want to optimize, there 
is no best optimizer (No Free Lunch Theorem in optimization, D. 
Wolpert, 1997).

But there are always a priori's on the considered f's (no « needle in 
the haystack », class of problems such as identification of a given 
physical model, … ).

→ The best algorithm depends on the considered f's and the 
allocated computational budget.



  

A few references (1)

No claim to be exhaustive, fair, well-informed, …
just a few references to be practical.

S⊂ℝn   ,  continuous optimization

Constrained linear programming
→ Simplex algorithm, Dantzig, 1947. 
Try to achieve such formulation because n and the number of constraints 
can be very large (thousands) and the resolution almost immediate. 

Unconstrained, uni-modal, smooth function
→ BFGS algorithm, (Broyden-Fletcher-Goldfarb-Shanno, 1970)
A quasi-Newton method requiring the calculation of gradient of f.
→ Levenberg-Marquardt (Levenberg 1944, Marquardt 63)
A quasi-Newton method specialized for non-linear least-squares (model 
identification!). Gradient of f to calculate.

Unconstrained, moderately multi-modal function without derivative
→ NEWUOA algorithm (Powell, 2004)
A trust-region algo. with quadratic approximation, no function derivative, 
sparse sampling (~2n+1 interpolation points), n up to 160 variables.

min
x∈ℝn

cT x   such that  Ax−b≤0



  

A few references (2)

S⊂ℝn   ,  continuous optimization

(– Continued –  unconstrained, moderately multi-modal function without 
derivative)
→ Nelder-Mead algorithm (1965), robust and simple, may stop on non-
stationary points, up to n~30. Cf. A constrained, globalized and bounded 
Nelder-Mead algorithm for eng. optim., Luersen et al., SMO 2003.

Unconstrained, multi-modal function without derivative
→ CMA-ES algorithm (Hansen et al., from 1996 on)
may be the BIPOP-CMA-ES variant for restarts. up to n~100-1000.

Unconstrained, multi-modal function without derivative and expensive 
functions
→ CMA-ES with surrogate for moderately expensive functions (may be the 
saACM-ES variant by Loshchilov et al., 2013)
→ EGO (Jones, 1998) for very expensive functions (budget < 1000).

Constrained non linear continuous optimization
→ Sequential Quadratic Programming
a trust region iterative method with a series of Quadratic Problems solved. 
Up to n~100-1000.



  

A few references (3)

S⊂ℕn   ,  integer programming

linear integer programming

→cutting plane or branch and bound methods
solutions in polynomial time, very large number of variables and constraints 
possible. As in continuous linear programming, work on the formulation to 
obtain such a problem, if possible.
Cf. Introduction to operations research, Hillier & Lieberman, 1990.

non linear integer programming

→ Univariate Marginal Density Algorithm, UMDA, Baluja 1994 as PBIL, 
Mühlenbein 1996. For its simplicity.
→ MIMIC ( Mutual Information Maximizing Input Clustering ) algorithm : De 
Bonnet, Isbell and Viola, 1997. Accounts for variables couplings.
→ other problem specific metaheuristics in particular for combinatorial 
problems, e.g., Evolutionary Algorithms, (cf. Introduction to evolutionary 
computing, Eiben and Smith, 2003). 
EAs = Possible line of approach for mixed problems,                    

All these algorithms are expensive (1000-106 calls to f).

min
x∈ℤn

cT x   such that  Ax−b≤0

S ⊂{ℝn1∪ℕn2 }



  

A few references (4)

Constrained mixed non linear optimization  ,  S⊂ℝn1
∪ℕ

n2

box constraints
are simple to handle inside the algorithms, either by satisfying the Karush, 
Kuhn and Tucker optimality conditions, or by re-sampling –> look for versions 
of the above algorithms with box constraints, e.g., BFGS-B.

non linear equality constraints 
can be turned into two inequality constraints

non linear inequality constraints
can be merged into the objective function by a penalty technique, a 
recommanded form being the augmented Lagrangian (Rockaffelar, 1973)

xmin
≤ x ≤ xmax

h(x )=0 ⇔ h( x)≤0  and −h(x)≤0

Laug (x ,λ) = { f (x)−λ2/4r     if   g(x)≤− λ
2r

f (x)+λ g(x)+r [g(x) ]2     else

(index  λ and g with i and sum if many constraints ) 

λ= Lag. multipliers,  minx∈S Laug(x ,λ t
) → x (λ t

)  ,  λt+1
← λ

t
+2r g (x (λ t

))
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Non-Linear Least Squares 
and the Levenberg-Marquardt algorithm

Refs. : 
Le Riche and Guyon, Least Squares Parameter Estimation and the Levenberg-Marquardt Algorithm : 
Deterministic Analysis, Sensitivities and Numerical Experiments, TR, 1999.
Besson et al., Object Oriented Programming applied to the Finite Element Method - Part II : 
Application to Material Behavior, Europ. J. of Finite Elements, 1998.

min
x∈S⊂ℝn

f (x)  where  f (x ) =
1
2
∑
i=1

m

(se ,i
−s(x , ei

))
2
=

1
2
∥se

−s(x)∥
2

Motivation : if se ,i
= si(x

*
)+ϵi   where  ϵi∼N (0,σi

2
)  ,  

max  likelihood measures ⇔min
x∈S

f (x )

Principle : iteratively solve,

min
x∈S⊂ℝn

1
2
∥s(xk

)+∇ s(xk
)(x−xk

)−se
∥

2

such that  
1
2
∥x−xk

∥
2
≤

1
2
δk

2

a local quadratic approximation with trust region



  

Non-Linear Least Squares 
and the Levenberg-Marquardt algorithm

Optimality conditions (gradient of Lagrangian cancels out)  yield :

LM is specialized for least squares.

LM is based on a local model of the function.

Requires the gradient of the simulator, s, w.r.t. x.

n up to [100-1000] , but if the gradient is estimated  by finite 
differences (n+1 calls to s each time) it becomes costly.

0. Initialize :  ν>1  , x0  , λ0>0  , Δmin
>0

1. (∇ s(xk )T ∇s( xk )+λk I )(xk+1−xk) =−∇s( xk )T (s(xk)−se )

⇒ xk+1

2. If f (xk+1
) < f (xk

)  ,  λk←λk / ν   ,  k←k+1  ,  goto 1

else if  ∥xk+1
−xk∥>Δmin   ,  λk←λk×ν  ,  goto 1

else stop

cf.  ``optim. engines''



  

Non-Linear Least Squares 
and the Levenberg-Marquardt algorithm

∇
2f (x) = ∇ s(x)T ∇s(x )+∑

i=1

m

∇
2si(x)( si(x )−si

e ) →
s→se

∇s(x )T ∇ s(x)

i.e., LM algorithm is a quasi-Newton method near the solution 
when λ

k
 → 0. 

In case of non identifiability, LM performs a smallest dist. to x0 
regularization (rigorous when s linear in x),

∇ f (x ) = ∇ s(x )T (s(x )−se )

when progress is rare, λ
k
 → large and LM becomes a 

steepest descent search, with guaranteed progress at the 
price of small steps.  

min
x∈S

1
2
∥x−x0

∥
2

such that  f (x ) = min
y∈S

f ( y)



  

Levenberg-Marquardt post-processing
local sensitivity analysis 

s(x+Δ x ) = s(x)+∇s(x )Δ x+O(Δ x2)

∥s(x+Δ x )−s(x)∥2
= Δ xT

∇s(x )T ∇ s(x)⏟
n×n
(κi

2 , v i)

Δ x+O(Δ x3
)

∥s(x+α vi)−s(x)∥2

∥α v i∥
2 = κi

2
+ O(α)  ,  0<α≪1

⇒ κi
2  sensitivities to parameters

Sensitivity to experiments se

≈ cond2 (∇ s(x)T ∇s(x ))=
max iκi

2

miniκi
2

singular values / vectors



  

Levenberg-Marquardt algorithm
Expl. Identification of material model 

x=(E , K ,n ,Ri )
e={ϵ1,…,ϵm}

s(x )={s(x ,ϵ1),…, s(x ,ϵm)}

simulator

2 experiments

relaxation fatigue

Identify 4 non-linear 
material parameters



  

Levenberg-Marquardt algorithm
Expl. Identification of material model 

It is easier to identify the model 
with the relaxation experiment.

This is seen through the 
condition number (~104 for the 
relaxation against ~108 for the 
fatigue)

The eigenvector associated to 
the smallest eigenvalue of the 
fatigue experiment, v4, 
corresponds to the asymptote

s(x*) = const

v4T .∇ s(x*
) ≈ 0



  

From Levenberg-Marquardt to evolution strategies 

s  non-linear , n > m ⇒ local optima

other, non smooth, distances  ,  f p = (∑
i=1

n

∣x i∣
p)

1/ p

for example f 1  for sparsity

constraints handling through penalties

⇒   a more general optimization algorithm discussed next
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Stochastic optimizer : CMA-ES

(N. Hansen et al., from 1996 on, then co-work with A. 
Auger, M. Schoenauer, M. Sebag, D. Brockoff, I. 
Loshchilov)

CMA-ES = Covariance Matrix Adaptation Evolution 
Strategy = optimization through multi-normal law sampling 
and updating.

Optimization engine = local sampling in probability.

A state of the art method for stochastic optimization. 



  

Simplified flow chart of ES-(1+1)

Initializations : x, f(x), m, C, t
max

.

While t < t
max

 do,

Sample N(m,C) --> x'
Calculate f(x') , t = t+1
If f(x')<f(x), x = x' , f(x) = f(x') Endif
Update m  (e.g., m=x) and C

End While

N(m,C)

Normal law



  

Numerical sampling of a multi-normal law

C = U D2U T

In R,  

and then notice Y = m+U DΕ , Ε ∼ N (0, I )

( prove that E Y =μ  and Cov (Y ) = C  , 
   + a Gaussian vector is fully determined by its 2 first moments )

Ceig <- eigen(C)
y <- mu + Ceig$vectors %*% diag(sqrt(Ceig$values)) 

 %*% matrix(rnorm(n))

To sample Y ∼ N (m , C ) , perform the eigen analysis



  

Above, ES(1+1) with isotropic step  :  C = σ2 I  ,  σ is the step size. 
With an optimal step size (                ) for the sphere function, performance 
only degrades in O(n)  !

≈∥x∥/n

Adapting the step size (C) is important

(A. Auger et N. 
Hansen, 2008)



  

Simplified CMA-ES flow chart

Initializations : m, C, t
max

, µ  , λ

While t < t
max

 do,

Sample N(m,C) --> x1,...,xλ

Calculate f(x1),...,f(xλ) , t = t+λ
Rank : f(x1:λ),...,f(xλ:λ)
Update m and C  with the µ best, x1:λ ,...,xµ:λ

End While

CMA-ES is an evolution strategy ES-(µ,λ) :

m and C are updated with 
● the best steps,
● a time cumulation of these steps.



  

Simplified CMA-ES :  C  adaptation 
with the last good steps

x i
= m yi

yi∝N 0,C 
i = 1, ... ,

(A. Auger et N. Hansen, 2008)

m∈S , C= I , ccov≈2/n2
Initialization : 

yw =
1
∑i=1



yi : mm yw

sampling

C1−ccovCccov yw yw
T

selection

 C  rank 1 update

update m



  

Simplified CMA-ES : 
time cumulation of good steps

yw t 
yw t

When successive steps are anti-correlated, the step size should decrease,
which is impossible so far since    y

w
 y

w
T  = (-y

w
) (-y

w
)T  .

Cumulation (time exponential damping) :

C  1−ccovCccov pc pc
T

cc ≈ 3 /n , ccov ≈ 2/n2

pc  1−cc pc 1−1−cc
2  yw

damping normalization

rank 1



  

Further comments on CMA-ES

(check the BBOB web site for latest versions)

Invariance properties

● CMA-ES invariant w.r.t. monotonic transformation of f, e.g., f ← 
log(f), because comparison based.
● CMA-ES invariant w.r.t. change in coordinate system (rotation + 
translation) because of update formula.

Additional features of state of the art CMA-ES ( / previous slides) :

● steps are weighted,

● Rank 1 and µ updates of C carried out simultaneously,

● Global scaling of the covariance matrix, C → σ2 C  .

● Restarts with a small and a large population size (BIPOP version).

yw =∑i=1



w i y i :



  

Concluding remarks
Optimization added value beyond the algorithm run

Optimization starts with a precise  description of what 
to do with a simulator (mathematical formulation) in a 
decision making process.

Problem solving will often show simulator / 
formulation flaws : repeat the optimization.

Use the added value of the optimization effort : 
metamodels are constructed,  (local or global) 
sensitivities become available.
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