Polarization spectroscopy of high-order harmonic generation in gallium arsenide
Résumé
An interesting property of high harmonic generation in solids is its laser polarization dependent nature which in turn provides information about the crystal and band structure of the generation medium. Here we report on the linear polarization dependence of high-order harmonic generation from a gallium arsenide crystal. Interestingly, we observe a significant evolution of the anisotropic response of above bandgap harmonics as a function of the laser intensity. We attribute this change to fundamental microscopic effects of the emission process comprising a competition between intraband and interband dynamics. This intensity dependence of the anisotropic nature of the generation process offers the possibility to drive and control the electron current along preferred directions of the crystal, and could serve as a switching technique in an integrated all-solid-state petahertz optoelectronic device.