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Pipeline Datapaths from High-Level HDL Code

Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet and Mathieu Jan
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract—Safety-critical systems rely on worst-case timing
analysis under architecture considerations to ensure that their
timing bounds could be guaranteed. Usually, such architecture
models are constructed by hand, from processor manuals. How-
ever, with open hardware initiatives and high-level Hardware
Description Languages (HDL), automation would and should be
possible. In this paper, we present an approach for constructing
pipeline datapath models from processor designs described in
high-level HDLs. We propose a methodology based on the
Chisel/FIRRTL Hardware Compiler Framework and we report
preliminary results on several open-source RISC-V processors.

Index Terms—processor design, WCET analysis, pipeline dat-
apath, HDL languages.

I. INTRODUCTION

Design and implementation of safety-critical systems is
regulated by comprehensive standards as a means to prevent
hazardous events. For example, missing a timing deadline is an
unacceptable event and a solution is to characterize the timing
behavior of these systems with adequate timing bounds. Worst-
case timing analyses are able to compute safe (and precise)
timing bounds and to provide the necessary guarantees.

State of the art static timing analyzers such as aiT [6],
Otawa [4], Heptane [7] or Chronos [10] consider architecture
models (of caches or pipelines) and use static analysis to char-
acterize their timing. These architecture models are usually
developed by hand and sometimes validated against hardware
simulators for conformance (e.g. for aiT [15]). A closer code
inspection of their pipeline models expose their common at-
tributes. First, the pipeline stages are represented with a single
variable, reducing a pipeline stage to an identification attribute.
Second, these models focus on instruction progression and
not its actual computation (i.e. the correctness of program
execution is assumed in the context of static timing analysis).
Third, these models execute basic blocks (i.e. straight-line
code) and hence, pipeline optimizations like forwarding are not
explicitly encoded in the hardware pipeline model but handled
at the code-level through arbitrary timing penalties.

Thanks to open hardware initiatives, many processor de-
signs become available1, supported by high-level HDLs, like
Chisel [3], and associated extensible compilation chains, like
FIRRTL [8]. These compilation chains come with configurable
optimizations and a pass infrastructure, which facilitate the
analysis of hardware designs (more difficult to address from
Verilog/VHDL). In this paper, we thus propose an analysis
of Chisel/FIRRTL-based processor designs, in order to deter-
mine pipeline models for static timing analysis. Our analysis

1A non-exhaustive list is provided later in the paper

addresses (1) how to determine the pipeline depth (i.e. the
number of stages) and (2) how to connect these stages, to
form a datapath, that can later easily be abstracted to match the
ones of WCET analyzers. This analysis focuses on the pipeline
registers to capture a cycle-accurate behavior, as required by
a WCET analysis, while improving on the pipeline models of
WCET analyzers. More precisely, our analysis could expose
the register forwarding, creating a separation of concerns
between architecture and program models and making this
model suited for a wider range of timing properties (e.g. timing
anomalies, security-related etc.). We apply our analysis on
several processors and report preliminary results.

Related Work. Our work addresses code-level analysis
(of hardware designs) to extract pipeline models for timing
analysis, The works in [13], [14] address a similar goal,
that of analyzing processor (Verilog/VHDL) design code [13]
and derive architecture models for the WCET analysis [14].
Our approach considers designs developed with more expres-
sive languages (Chisel/FIRRTL). In contrast to our approach,
which engineers a solution and then aims to validate it, the
work in [13] uses the abstract interpretation framework to con-
struct sound processor abstract models. This particular work is
applied in [14] to determine architecture models using a semi-
automatic procedure, while our analysis is fully automated
in constructing the pipeline model. Abstract pipeline models
(including forwarding) are addressed in [5], from processor
graphs (i.e. structures combining combinational and sequential
logics and which could be generated from Verilog/VHDL
code). The actual construction also relies on register place-
ment, as our approach, but requires as input the pipeline
depth. Besides, the goal of [5] is to formally verify the
functional correctness of the pipeline optimizations, which is
complementary to ours, that of preserving the timing behavior.

A related problem, addressed for example in [9], [11],
is to synthesize pipelines from sequential representations. In
comparison, our approach has an opposite goal, that of going
from full-fledged pipeline implementations to simpler, abstract
models. Also, bounding the pipeline depth is on of our goals
whereas, for automated pipeline design, it is known. Moreover,
our approach works on richer input representations (i.e. code).
Finally, in [9], [11], the correctness of automated pipeline
design is systematically ensured during its construction, while
we verify the result against the original design as we rely on
heuristics to produce a solution.
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Fig. 1: Classical 5-stage pipeline with forwarding.

II. ILLUSTRATING EXAMPLE

Fig. 1 shows the stages of a standard in-order 5-stage
pipeline, i.e. from instruction Fetch (IF) to register Write-
Back (WB). The pipeline control, represented with dotted
lines, captures how instructions advance (i.e the next PC
value) through the pipeline. The stalling logic is however not
explicitly represented due to space constraints. The datapath,
presented with solid lines, considers the usual left-to-right
advancement through the pipeline stages, with an optimization,
in the form of register forwarding, represented with blue lines.
There is thus 3 forwarding paths 1 - 3 , from the pipeline
stages Execute (EX), Memory (MEM) and Write-Back (WB)
to EX respectively. The remainder of this paper illustrates
our contribution over the Sodor RISC-V processor [2], whose
pipeline strictly adheres to this representation shown in Fig. 1.

Listing 1 now presents a (simplified) snapshot of Sodor’s
pipeline2, that is written in the Chisel high-level HDL [3].
Chisel hardware construction primitives (e.g. for wires, mul-
tiplexers, registers etc.) are embedded in the Scala program-
ming language, which facilitates design reuse and automated
generation of digital logic designs. A Chisel-based hardware
design is a set of modules, each module defines input/output
(wire) ports to connect its sequential and combinatorial logics
to other modules. Chisel lies at the top of a hardware compiler
framework, compiling into an intermediate language named
FIRRTL and further, into Verilog code. The FIRRTL language
mainly exposes hardware primitives while stripping out the
Scala features and maintaining module, scoping and naming
traceability. This language, the Abstract Syntax Tree (AST)
and its visitors are described in [8].

Listing 1: Snapshot of the Chisel code of the Sodor pipeline.
1 val if_pc = RegInit (size)
2 val dec_pc = RegInit (size)
3 val exe_pc = RegInit (size)
4 val exe_rs2_data = Reg (size)
5 val dec_rs2_data = Wire (size)
6 ...
7 dec_pc := if_pc
8 /* C1-C3: enable and selection signals */
9 dec_rs2_data := MuxCase (rf_rs2_data,

10 Array (C1 → exe_alu_out, /* 1 */
11 C2 → mem_wbdata, /* 2 */
12 C3 → wb_wbdata /* 3 */)
13 ...
14 when (C4) /* C4: no stalling condition */ {
15 exe_pc := dec_pc
16 exe_rs2_data := dec_rs2_data }

2Names of registers have been simplified, i.e. _reg_ have been removed.

First, notice the register if_pc implementing the PC
shown in 1 (the RegInit object line 1 and updating another
register at line 7). The forwarding to the EX stage is addressed
through the Chisel wire dec_rs2_data, declared at line 5
(i.e. the Wire object). It is then updated between lines 10 to
12 through a cascade of multiplexers, conveniently represented
by a mix of Chisel and Scala features, as MuxCase and
Array objects respectively. Signals for wire enable/selection
or stalling C1-C4 are inputs to these multiplexers (not defined
to simplify), as well as the important guarded updates using a
when block (lines 14 to 16).

III. PIPELINE DATAPATH ANALYSIS

In order to construct abstract pipeline datapaths, we need
to address two objectives: to determine the pipeline depth
(i.e. number the pipeline stages) and to present how these
stages are connected. We focus on the registers within the
processor design in order to determine precedence relations
between these registers. First, we introduce some notations
and definitions, following a standard set-theoretic approach.

Notations. We consider Pr =
⋃n

i=1 Mi, a processor design,
defined by a set of n modules and P =

⋃m
j=1 Mj , the pipeline

of Pr, with P ⊆ Pr. We assume that P is given and the
(FIRRTL) AST of P is denoted by ASTP . Each module
M ∈ P is defined by a set I/Os of input/output ports, a
set Regs of registers (or storage elements), a set Combs of
wires representing the combinatorial logic of M , a set Ctxs
of contexts where the elements of I/Os ∪ Regs ∪ Combs
are updated and finally a set Exts of the sequential and
combinatorial logics external to M (but referenced within M).
Ctxs captures all the scopes of M . An element ctx ∈ Ctxs
is defined as a mapping between the context condition and
the respective register updates. For brevity, we assume that a
pipeline P relies on a single module M , but our formalization
addresses the more general case where it is made of a set of
modules.

Example 1: Listing 1 presents a Chisel module with
wires dec_rs2_data, exe_alu_out and mem_wbdata
∈ Combs (the definition of the last two is omitted due to
space constraints), and registers if_pc, dec_pc, exe_pc,
exe_rs2_data ∈ Regs. Finally, {C4 7→ [exe_pc,
exe_rs2_data]} ∈ Ctxs.

Next, we define an intermediate representation of the pro-
cessor pipeline P based on the set of registers Regs and
relations between them (i.e. to express the timing of P)
as well as the set of contexts Ctxs (i.e. to cater for how
the processor/pipeline is coded). Intuitively, this intermediate
representation is a non-strongly connected graph with registers
as nodes and their dependencies as edges.

The sets Regs, Combs, I/Os and Ctxs of P are obtained
from ASTP using the standard visitor from [8]. The initial
partition of the processor design Pr into the pipeline design P
is also sufficient to determine the set Exts. Next, we determine
dependencies between registers through a visitor combinator
which we name register-context analysis. It characterizes each
register by an input-output relation w.r.t. the other elements
of the processor. Given a register r in a module, a visitor



combinator iteratively collects the ASTP nodes which affect
the inputs of r. This iterative process corresponds to a stan-
dard dataflow analysis which terminates in several situations,
defined next.

Definition 1: For a register r ∈ Regs within P , the input
frontier of r is

⋃n
i=1 ci, where ci ∈ Regs or ci ∈ I/Os or

ci ∈ Exts.
Such an input frontier contains three kinds of design el-

ements: other registers (i.e. that precede r in the abstract
pipeline datapath), the ports of the module3, and finally, other
design elements out of the considered pipeline P .

Example 2: The input frontier of the (forwarding destina-
tion) register exe_rs2_data, in Listing 1 (i.e. between
the stages ID and EX, in Fig. 1), contains itself (case
1 , combinatorial input exe_alu_out partially shown due

to space constraint) as well as the other two cases, e.g.
mem_wbdata (case 2 ) and wb_wbdata (case 3 ), through
the dec_rs2_data wire.

Currently, a register frontier contains only once each register
fulfilling Definition 1. However, a Chisel when-.elsewhen
construct could include updates of a same register, in the
different condition paths. This enables a context-dependent
analysis, but which is left as future work.

Definition 2: For a register r ∈ Regs, the register context
of r, denoted by Cr, is defined by the pair ⟨inr, outr⟩ with
inr and outr being the input frontier of r and the output wire
of r respectively, with outr ∈ Combs.

Definition 3: For two register contexts Cr1 and Cr2 of r1 and
r2 respectively, a predicate prec(r1, r2) is true if r1 ∈ inr2,
i.e. in the register frontier of r2, and false otherwise.

We denote by Pred the set of (r1, r2) with r1, r2 ∈ Regs,
for which prec(r1, r2) evaluates to true. Pred is the set of
edges of the intermediate representation which is further used
to determine the abstract pipeline datapath.

Definition 4: The intermediate representation of a pipeline
design P , denoted by IRP is a non-strongly connected graph
G = (V,E) with the set of nodes V = Regs and the set of
edges E = Pred.

Definition 5: The operator ctx reg : Regs → 2Regs is
defined as ctx reg(r) = R where for each ri ∈ R, ∃ctx ∈
Ctxs with ctx = cond 7→ Upds and r, ri ∈ Upds. ctx reg

places registers from different connected components of IRP .
Algorithm overview. The abstract pipeline datapath of P

is constructed by unfolding IRP and assigning nodes (i.e.
registers) to pipeline stages using an operator to stage :
Regs → N+. The procedure assumes, as a starting point, the
program counter PC ∈ Regs (see Fig. 1), located in the fetch
stage of the pipeline (i.e. to stage(PC) = 1). We leave as
future work the identification and thus the placement of this
register. Our algorithm distinguishes two cases from a IRP
graph, a case 1 driven by register dependencies and a case 2
driven by register context dependencies.

Case 1 places a register r, checking if all its sources
are already placed. If so, the stage assigned to r is strictly

3Which are useful to address multi-module pipeline designs not presented
here due to space constraint.

following the minimal stage assigned among its source reg-
isters. Otherwise r should be placed by case 2 . Formally,
case 1 has to stage(r) = i if ∃(r1, r) ∈ Pred and
to stage(r1) = i − 1, and ∀(r2, r) ∈ Pred, r2 ̸= r1
to stage(r2) > to stage(r1) (to account for registers al-
ready placed in later stages than r1 and having backward
edges to r). This case is applied first to the components
connected to PC. Case 2 places a register r wrt. the already
placed registers from the same context. Formally, case 2 has
to stage(r) = i if ctx reg(r) = R such that ∃r1 ∈ R with
to stage(r1) = i.

The solution produced by our algorithm is a subgraph of
IRP with nodes, i.e. registers, for which pipeline stages have
been assigned. Some registers may not have been assigned to
a pipeline stage due to the heuristic nature of our algorithm,
coming from the combination of cases 1 and 2 .

To validate the results of our algorithm, we rely on a
correctness criterion by defining a subsumption relation S :
PIRP ⊂ QPr relating the original processor design QPr and
the solution PIRP of our algorithm. Precisely, QPr is the set of
prec predicates, derived and evaluated with respect to a set of
processor design executions and PIRP is the logical encoding
(i.e. also as a set of prec predicates) of the transitions in the
subgraph solution of our algorithm.

IV. PRELIMINARY RESULTS

The results of our pipeline datapath construction are pre-
sented in Table I for 3 Chisel-based in-order RISC-V proces-
sors: RISC-V mini [1], Sodor [2] and KyogenRV [12]. RISC-V
mini [1] features a simple 3-stage pipeline designed to serve
as an initial testcase when designing last versions of Chisel
itself. Sodor is a family of processors coming with different
pipeline depths and with and without forwarding mechanism
(noted FW and WFW respectively in Table I). We consider
its 5-stage version. Finally, KyogenRV [12] is also a 5-stage
pipeline processor targeting Intel FPGAs and developed for
academic purposes. The first column of Table I reports the
code size of each pipeline (P), the next three columns present
statistics related to the numbers of registers (#Regs), of
contexts (#Cxts), the largest input frontier within pipelines
(#Frt). The last two columns detail the number of registers
successfully placed by the 2 cases of our algorithm.

TABLE I: Experimental results on RISC-V processor designs.

LOC #Regs #Cxts #Frt Case 1 Case 2
RISC-V Mini 241 15 3 8 5 10
Sodor (WFW) 594 48 14 37 36 12
Sodor (FW) 646 48 14 88 34 14
KyogenRV 4567 93 59 35 47 36

The depth of each pipeline has been correctly computed.
Note that our analysis initially identified the KyogenRV pro-
cessor as a 7-stage pipeline. This inaccurate result was due
to the use of the Chisel RegNext hardware construction
primitives within this processor. The semantics of RegNext
is to produce a one-cycle delayed version of associated signal.
At the FIRRTL level, it is translated into an additional register
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Fig. 2: RISC-V Sodor 5-stages pipeline datapath model.

for each delay and thus an additional pipeline stage. However,
these registers can be easily identified based on their names,
allowing us to discard them when computing abstract pipeline
datapaths. It can also be noticed that all the registers of
Sodor (both FW and WFW) and RISC-V Mini have been
successfully placed, while it is not the case for KyogenRV. The
10 remaining registers that were not placed within its pipeline
are in fact not related to the datapath but instead to the control
path and the register file. Finally, it can be noticed an expected
difference in the size of the largest input frontier (#Frt) for
Sodor between the versions with and without forwarding.

We illustrate the construction of the pipeline datapath model
for the RISC-V Sodor 5-stage processor. The model is made
of 48 registers and we present, in Fig. 2, some that we
consider relevant. Our analysis generates the IRP graph
and proceeds to register placement. We specify that if_pc
(the PC register) is located in the first pipeline stage. Our
algorithm places the registers dec_pc, ex_pc and mem_pc
into respectively consecutive stages as they are part of the
same connected component of IRP (case 1 , shown in yellow
in Fig. 2). Then, our algorithm places the register dec_inst
as it is updated in the same context as dec_pc (case 2 ). Case
1 indeed does not apply as the register frontier of dec_inst
contains a reference to an external design element, the module
IM (instruction memory). The next registers to be placed
are ex_alu_op1, ex_alu_op2 and ex_rs2_data. Their
respective input frontiers contain registers not currently placed
(i.e. mem_alu_out and wb_wbdata), due to the backward
edges in blue coming from the data forwarding semantics.
However, the context of register ex_pc contains these non
placed registers enabling the use of the case 2 of our algo-
rithm. Finally, our algorithm places the remaining registers
(i.e. mem_alu_out, mem_rs2_data, and wb_wbdata)
based on the register dependencies (case 1 ).

V. FUTURE WORK

We are currently working on expanding this analysis to
address more complex, multi-module pipeline designs, but
also out-of-order pipelines. We also plan to generate abstract
(formal) pipeline models in order to plug them into WCET
analyzers or detect timing anomalies.
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