Deep anomaly detection using self-supervised learning: application to time series of cellular data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Deep anomaly detection using self-supervised learning: application to time series of cellular data

Résumé

We present a deep self-supervised method for anomaly detection on time series. We apply this methodology to detect anomalies from cellular times series, in particular cell dry mass, obtained in the context of lens-free microscopy.We propose an innovative, self-supervised, two-step method for anomaly detection on time series. As a first step, a representation of the time series is learned thanks to a 1D-convolutional neural network without any labels. Then, the learnedrepresentation is used to feed a threshold anomaly detector. This new self-supervised learning method is tested on an unlabeleddataset of 9100 time series of dry mass and succeeded in detecting abnormal time series with a precision of 96.6%.
Fichier principal
Vignette du fichier
ASPAI21.pdf (612.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-03605065 , version 1 (24-11-2021)
cea-03605065 , version 2 (10-03-2022)

Identifiants

  • HAL Id : cea-03605065 , version 2

Citer

Romain Bailly, Marielle Malfante, Cédric Allier, Lamya Ghenim, Jerome I. Mars. Deep anomaly detection using self-supervised learning: application to time series of cellular data. ASPAI 2021 - 3rd International Conference on Advances in Signal Processing and Artificial Intelligence, Nov 2021, Porto, Portugal. ⟨cea-03605065v2⟩
499 Consultations
614 Téléchargements

Partager

More