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Summary: We present a deep self-supervised method for anomaly detection on time series. We apply this methodology to 
detect anomalies from cellular time series. In particular, this study focuses on cell dry mass, obtained in the context of lens-
free microscopy.  

The method we propose is an innovative two-step pipeline using self-supervised learning. As a first step, a representation 
of the time series is learned thanks to a 1D-convolutional neural network without any labels. Then, the learned representation 
is used to feed a threshold anomaly detector. This new self-supervised learning method is tested on an unlabelled dataset of 
9100 time series of dry mass and succeeded in detecting abnormal time series with a precision of 96.6%. 
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1. Introduction 

Lens-free microscopy is a recently developed 
imaging technique [1] overcoming some limitations of 
classical microscopy. Typically, it allows the rendering 
of thousands of cells in a single frame with a much less 
cumbersome device. [2] proposes to analyse sequences 
of images, from which a dataset of time series of cells’ 
dry mass is built. 

 
The dry mass of a cell, measured in picograms (pg), 

is related to its metabolic and structural functions. 
Amongst the thousands of cells in a Petri dish, it may 
happen that some cells deviate from their typical 
behaviour, thus influencing their dry mass. It has been 
shown that cells deviating from healthy trajectories can 
further drive tissues toward diseases [3]. Detecting 
abnormal cells automatically is thus crucial.  
 

We propose an innovative method for 
automatically detecting abnormal cells using their dry 
mass. Using methods that do not need any manually 
labelled data is of particular interest especially in the 
case of time series processing. Indeed, while expert 
have a good understanding of what a normal cell 
behaviour is, there is no a priori knowledge of what an 
abnormal cell behaviour is. Working without labels is 
therefore interesting especially when the datasets are 
complex or not yet fully understood. 

 
The proposed approach is in two steps: first, a 

representation of the time series is trained using self-
supervised learning. In a second step, an anomaly 
detection block is used over the learned representation 
to determine if a cell is abnormal. This self-supervised 
method benefits from the representation power of 
deep learning without the usual labelling constraint.  

2. Related works 
 
2.1. Anomaly detection 
 
    Anomaly detection is a broad field of research 
focusing on the detection of abnormal patterns within 
a given set of data. We focus on anomaly detection on 
time series as presented in [4]. In particular, 
prediction-based anomaly detection techniques, which 
tries to predict the future of, time series. An outlier 
score [4] is computed between the prediction and the 
true value of the time series to determine if it is 
abnormal. 
     
    Multiple predictors can be used such as support 
vector regression [5], multilayer perceptrons (MLP)  
[6] or mixture transition distribution [7]. While [8] 
proposes a vector ARIMA to identify outlier points, 
other methods focus on discovering multiple outliers 
such as Gibbs sampling and block interpolation [9] or 
re-weighted maximum likelihood [10]. 
 
2.2. 1D-convolutional neural networks 
 
    Convolutional neural networks (CNNs) are mainly 
known for their success in computer vision with 
AlexNet [11], VGG16 [12] or ResNet [13], since the 
emergence of huge labelled datasets such as 
CIFAR100 [14] or ImageNet [15]. 
     
    Because of the state of the art performances for 
computer vision achieved by 2D-CNNs, the signal 
processing community started to renew interest in 1D-
CNNs, in the past few years for a wide variety of 
applications. They range from healthcare with ECG 
classification [16], [17] to fault detection [18]–[23] 
including audio and speech recognition [24] and other 
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fields such as time series forecasting [25], or anomaly 
detection [26]. 1D-CNNs were introduced in the 
literature for the first time as Time Delay Neural 
Network (TDNN) in [27], [28]. 
 
2.3. Self-supervised learning 
 
    Self-supervised learning [29], [30] is a new training 
paradigm where supervised methods are used on an 
unlabelled dataset. The core idea is to automatically 
obtain a labelled dataset from the initially unlabelled 
dataset. A pretext task is associated to the self-
labelled dataset and allows a supervised training of the 
neural network. [31] illustrates pretext tasks in 
computer vision: an input image is rotated 
[0, 90, 180, 270]°  and the neural network has to 
predict the rotation applied to the image. The network 
can only succeed if it has learned relevant visual 
features from within the images. 
 
    While a great deal of research exploiting pretext 
tasks can be found in the field of computer vision [32]–
[36] very little of this work is related to time series 
processing, with the exception of some papers deeply 
linked to the temporality of the data. In [37], [38], a set 
of video images are given in a random order to the 
network that must order the frames. Finally, another 
time-related pretext task is presented in [39] where 
videos with modified playback speeds in range 
[−5, +5]  are given as inputs and the network must 
predict the playback speed. 
 
3. Dataset 
 

The acquisitions used in this study contain dry mass 
time series extracted from lens-free images of HeLa 
cells thanks to an upstream algorithm presented in [40]. 
A cell dry mass is a measure of how much the cell 
would weight if it had been deprived of its water. It is 
directly linked to the proteins content of the cell and is 
an indicator of its health. 

 
Fig. 1. shows a normal cell behaviour on both the 

original images (Fig. 1a-1d) and the extracted dry 
mass time series in  blue Fig. 1e. A typical track of dry 
mass contains a growing phase (Fig. 1a to 1c) where 
the dry mass increases regularly and a division phase 
(Fig. 1c to 1d) during which the mother cell is divided 
in two daughter cells of approximately equal sizes. The 
division appears as an abrupt decrease on the dry mass 
time series (between points c and d Fig. 1e). 

 
The dataset is split into train, validation and test 

sets in a 80/10/10% distribution [41]. Each of those 
sub-dataset is augmented with window slicing [42]. 
Every full-length acquisitions is sliced into smaller 
ones. Every possible smaller time series are extracted 
from the full-length one i.e. there is a one-sample shift 
between two consecutive time series in the sub 
datasets. 
 

4. Methods 
 

4.1. Representation learning neural network 
 
The neural network used to learn a representation 

of the time series is trained in a self-supervised 
framework. Self-supervision allows the model to learn 
a deep representation of the signal without any labels. 
It uses a pretext task, to learn this representation. In our 
application and in agreement with the experts, we 
chose the pretext task to be time series prediction as 
presented Fig. 2. In this study, the input vector length 
is set to 120 time steps and the label vector to 60 time 
steps. 

 
 

 
Fig. 2. Time series are split in an input vector of size i 

and label vector of size l. 
 

A 1D-convolutional neural network architecture is 
used to capture the representation of the signal. The 
hyperparameter optimisation for the 1D-CNN 
representation learning neural network is presented 
section 4.2. 

 
The neural network is trained using a Root Mean 

Squared Error (RMSE) loss eq. (1) between the true 
future of the time series and the predicted one with 𝑦௡ 
the ground truth value at time step n  and 𝑦௡ෞ  the 
prediction value at time step 𝑛. Fig. 3. describes the 
full anomaly detection pipeline, including the 
representation learning neural network. 

 

𝑅𝑀𝑆𝐸 =  ට
ଵ

ே
∑ (𝑦௡ − 𝑦௡ෞ)ଶே

௡ୀଵ      (1)   

 
Neural networks in this study are trained on a single 

NVIDIA Titan X with a batch size of 32, a learning 
rate of 0.001 and with ADAM optimizer. 
 
4.2. Anomaly detection 

 
The proposed method relies on a second anomaly 

detection block. Experimental results have shown that 
the use of a threshold detector over the prediction 
RMSE allow the model to detect abnormal cells. The 
threshold τ is computed following eq. (2) such that the 
metric values outside the 95% confidence interval of 
the metrics are flagged abnormal. 

 
𝜏 = 𝜇௧௘௦௧ ± 2 ⋅ 𝜎௧௘௦௧      (2) 

 
where μ୲ୣୱ୲  and σ୲ୣୱ୲  are respectively the mean and 
standard deviation of RMSEs over the test set. We 
assume the metric distribution over a dataset to be 
Gaussian. 
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4.3. Evaluation 
 
     The proposed method is designed to analyse 
unlabelled datasets. Therefore, it is not possible to 
fully annotate the dataset nor to compute classical 
precision/recall curves. We propose an evaluation 
method based on the annotation on solely positives 
detections, i.e. time series raised as anomalies. The 
precision is computed following equation (3). While 
the whole dataset cannot be annotated to compute the 
recall, we propose an evaluation of the recall 𝑅෠ 
equation (4) by labelling a random 5% sample of the 
detected-normal cells (Negatives) to estimate the False 
Negative count. 
 

𝑃 =  
்௉

்௉ ା ி௉
     (3)          𝑅෠ =

்௉

்௉ ା ிே෢
     (4) 

 
5. Results 
 
5.1. Representation learning neural Network  
 

 The definition of the best architecture 
hyperparameter is achieved through an empirical 
study. Multiples neural networks are trained on the 
pretext prediction task. All the convolutional layers 
contain 64 filters and a pooling layer is always added 
every 3 convolutional layers. The features extracted 
from the convolutional layers are then fed in a dense 
layer of 128 neurons. Table 1 shows the validation 
RMSE obtained for multiple architectures trained for 
this study. 
 

Table 1. Architecture hyperparameters and their best 
MSE on the validation set. All the convolutional layers 

contain 64 filters and a pooling layer is always added every 
3 convolutional layers. 

# conv layer kernel size nb param RMSE (pg) 
3 3 155 708 87.726 
3 8 196 988 94.053 
3 16 263 036 92.035 
3 32 395 132 85.677 
3 64 659 324 84.608 
3 120 1 121 660 83.089 
5 3 82 108 97.824 
5 16 295 932 93.178 
5 64,32,16,8,4 282 620 93.706 
9 3 303 548 80.941 
9 5 295 484 77.724 
9 8 393 980 85.643 

12 3 266 876 81.877 
12 5 357 116 86.096 
12 6 402 236 88.993 

 
The best 1D-convolutional neural network for the 

pretext task of prediction in the context of a cellular 
dry mass dataset is composed of 9 convolutional layers 
that contains 64 kernels of size 5. The RMSE on the 
test subset is computed to 76.62 pg. 

 

Fig. 1e shows in blue the input given to the neural 
network, in dashed blue the ground truth to be 
predicted and in orange the network prediction. It 
shows on a specific example that the network is able to 
predict both a cell growing phase and a cell division. 
 
5.2. Anomaly detection 
 

The anomaly threshold on RMSE on the test set is 
computed to τ =  230.87  pg thus raising 208 
abnormal tracks. From a fully applicative point of 
view, the anomalies raised allowed domains experts to 
identify four possible causes of anomalies: 
True positives TP: 

1. Cellular Anomaly (CA): The cell grows in an 
unexpected way and should be analysed. 

2. Measurement Anomaly (MA):  the upstream 
dataset generation software was not able to track the 
cell properly. 

3. Measurement Anomaly because of a cellular 
anomaly (CMA): because of a CA, an MA occurred. 
False Positives FP:  

4. Prediction Anomaly (PA): the neural network 
was not able to predict the cell future correctly whereas 
the cell is normal 

 
The category distribution of those abnormal cells is 

detailed in Table 2. Then, 31 false negatives were 
counted during the annotation of 447 samples (5%) of 
the cells predicted as normal. Anomaly detection has 
been achieved with a precision 𝑃 = 96.6%  and an 
estimated recall 𝑅෠ = 24.5% . 

 
Table 2. Expert classification of the anomalies raised. 

 
Anomaly CA CMA MA PA 

Ratio 
40% 31% 26% 3% 

97% 3% 

 
6. Conclusions 
 

We propose an innovative two-step method for 
automatically detecting abnormal cells using their dry 
mass time series. This method focuses on unlabelled 
datasets thanks to the use of self-supervised learning. 
First, a representation of the time series is learned 
using a self-supervised 1D-convolutional neural 
network trained on a pretext prediction task. In a 
second step, the predicted dry mass value is compared 
to the ground truth. An anomaly is raised if the RMSE 
is above a given threshold. A precision of 96.6% and 
an estimated recall of 24.4% are achieved. 
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(a) Considered cell 𝛼 is in pale 
white in the centre of the image  

(b) Growing phase of the cell, 
its mass increases regularly 

(c) Cell become spherical 
before division 

(d) Division of the mother cell 
in two daughter cells in pale 
white 𝛼ଵ and pale yellow 𝛼ଶ 

 
(e) Dry mass of cell number 143. The plain blue line is the input feed into the network, the dashed blue line is the ground truth to be 
predicted and the plain orange line is the network prediction. Red triangles a, b, c and d are respectively the timestamps of figures 1a, 1b, 
1c and 1d 

Fig. 1. Tracking of cell number 143 in pale white tagged α which has a normal behaviour. Cell grows (1a-1b) and becomes 
spherical (1c) before division into two daughter cells (1d). One of them is given the same id (143) while the other is given the 
next available id 

 
 

 
 

Fig. 3. Full anomaly detection pipeline. A 1D-CNN neural network is trained to predict the future of the time series. The 
RMSE between ground truth and prediction is compared to a threshold to define is a cell is abnormal

. 
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