N
N

N

HAL

open science

A case study on formal verification of the anaxagoros
hypervisor paging system with frama-C

Allan Blanchard, N. Kosmatov, M. Lemerre, Frédéric Loulergue

» To cite this version:

Allan Blanchard, N. Kosmatov, M. Lemerre, Frédéric Loulergue. A case study on formal verification of
the anaxagoros hypervisor paging system with frama-C. FMICS 2015 - Formal Methods for Industrial
Critical Systems, Jun 2015, Oslo, Norway. pp.15-30, 10.1007/978-3-319-19458-5_2 . cea-01834977

HAL Id: cea-01834977
https://cea.hal.science/cea-01834977
Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-01834977
https://hal.archives-ouvertes.fr

A Case Study on Formal Verification of the
Anaxagoros Hypervisor Paging System with
Frama-C*

Allan Blanchard'3, Nikolai Kosmatov!,
Matthieu Lemerre!, and Frédéric Loulergue??
L CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea. fr
2 Inria 72, PPS, Univ Paris Diderot, CNRS, Paris, France
3 Univ Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France

firstname.lastname@univ-orleans.fr

Abstract. Cloud hypervisors are critical software whose formal verifi-
cation can increase our confidence in the reliability and security of the
cloud. This work presents a case study on formal verification of the vir-
tual memory system of the cloud hypervisor Anaxagoros, a microkernel
designed for resource isolation and protection. The code under verifica-
tion is specified and proven in the FRAMA-C software verification frame-
work, mostly using automatic theorem proving. The remaining properties
are interactively proven with the Coq proof assistant. We describe in de-
tail selected aspects of the case study, including parallel execution and
counting references to pages, and discuss some lessons learned, benefits
and limitations of our approach.

Keywords: deductive verification, interactive proof, cloud hypervisor,
FraMA-C, specification, concurrency

1 Introduction

Recent years have seen a huge trend towards mobile and Internet applications.
Well known applications are moving to the cloud to become “software as a
service” offers. At the same time, more and more of our data is in the cloud. It
is thus necessary to have reliable, safe and secure cloud environments.

Certification of programs in critical systems is an old concern, while a recent
trend in this area is to formally verify the programs, the tools used to produce
them [1, 2] (and even the tools used to analyze them), and the operating system
kernel [3] used to execute them. This formal verification is mostly done using
interactive theorem provers, and sometimes automated provers.

Anaxagoros [4] is a secure microkernel that is also capable of virtualizing pre-
existing operating systems, for example Linux virtual machines, and can there-
fore be used as a hypervisor in a cloud environment. One distinctive feature of

* This work has been partially funded by the CEA project CyberSCADA and the EU
FPT7 project STANCE (grant 317753).

Anaxagoros is that it is capable of securely executing hard real-time tasks or
operating systems, for instance the PharOS real-time system [5], simultaneously
with non real-time tasks, on a single chip or on a multi-core processor. Our goal
is to formally verify the prototype C implementation of Anaxagoros, starting
with its most critical components. In this paper we focus on the virtual mem-
ory system of Anaxagoros and use the FRAMA-C toolset [6] for conducting the
verification.

FraMA-C is a platform for static analysis, deductive verification and testing
of critical software written in C. It offers a collection of plugins for source code
analysis. These plugins could be used in cooperation for a particular verification
task. They interact through a common specification language for C programs:
ACSL [6,7]. In this work, the specifications are written in ACSL, and the weak-
est precondition calculus plugin WP of FRAMA-C together with SMT solvers
are used to provide automatic proof for most properties. Some remaining proof
obligations (that were not proven automatically) are proven in the interactive
proof assistant CoqQ [8].

The contributions of this paper include a case study on formal verification
of a critical module of a Cloud hypervisor. Assuming a sequentially consistent
memory model, we performed the verification for both sequential and concurrent
execution for one of the key parts of the virtual memory module related to
setting new page mappings. We show how a simulation-based approach allows
us to take into account concurrent execution using the FRAMA-C plugin Wp
that does not natively support parallel programs. One advantage of its usage is
the possibility to perform the proof for most specified properties automatically
with a very reasonable effort. Only a few lemmas in this case study have to be
proven manually, and WP allows the user to conveniently complete their proofs
in the interactive proof assistant Coq, where the Coq statements to be proven
are automatically extracted based on the specified code.

Moreover, the verification in this case study can be considered completely
formal under the hypothesis that other functions do not interfere on the same
variables (memory page mappings) with the function that we verify. That is
realistic given that these mappings can be changed only by a couple of functions
that can be included into the case study. On the other hand, we argue that, even
seen as a partial formal verification, such a study of a critical module in isolation
can still be quite efficient to avoid security issues. Finally, we argue that, even
done under the assumption that the memory model is sequentially consistent,
the presented case study remains valid for weak memory models.

Outline. The paper is organized as follows. Section 2 presents the Anaxagoros
hypervisor and its virtual memory system. The verification of this system is de-
scribed in Section 3, where we detail particular issues of the case study including
simulation of parallel execution (Section 3.1), counting references to pages (Sec-
tion 3.2), automatic proof with FRAMA-C (Section 3.3) and interactive proof
with CoQ (Section 3.4). Section 4 provides a discussion of the approach, some
lessons learned and axes of improvement. Finally, Section 5 presents related
work, while Section 6 gives a conclusion and future work.

2 The Anaxagoros Virtual Memory System

Anaxagoros [4, 9] is a secure microkernel and hypervisor developed at CEA LIST,
that can virtualize preexisting operating systems, for example, Linux virtual
machines. It puts a strong emphasis on security, notably resource security, so
it is able to provide both quality-of-service guarantees and an exact accounting
(billing) of CPU time and memory provided to virtual machines, thus satisfying
requirements of cloud users.

A critical component to ensure security in Anaxagoros is its virtual memory
system [9]. The x86 processor (as many other high-end hardware architectures)
provides a mechanism for virtual memory translation, that translates an address
manipulated by a program into a real physical address. One of the goals of
this mechanism is to help to organize the program address space, for instance,
to allow a program to access big contiguous memory regions. The other goal
is to control the memory that a program can access. The physical memory is
split into equally sized regions, called pages or frames. Pages can be of several
types: data, pagetable, pagedirectory. Basically, page directories contain
mappings (i.e. references) to page tables, that in turn contain mappings to data
pages. The page size is 4kB on standard x86 configurations.

Anaxagoros does not decide what is written to pages; rather, it allows tasks to
perform any operations on pages, provided that this does not affect the security
of the kernel itself, and of the other tasks in the system. To do that, it has to
ensure only two simple properties. The first one ensures that a program can only
change a page that it “owns”. The second property states that pages are used
according to their types.

Indeed, the hardware does not prevent a page table or a page directory from
being also used as a data page. Thus, if no protection mechanism is present, a
malicious task can change the mappings and, after realizing a certain sequence
of modifications, it can finally access (and write to) any page, including those
that it does not own.

The virtual memory module should prevent such unauthorized modifications.
It relies on recording the type of each page and maintaining counters of mappings
to each page (i.e. the number of times the page is referred to as a data page,
page table, or page directory). The module ensures that pages can be used only
according to their type. In addition, to allow dynamic reuse of memory, the
module should make it possible to change the type of a page. To avoid possible
attacks, changing the page type requires some complex additional properties.
(Simplified) examples of properties include: page contents should be cleaned
before any type change; still referred pages cannot be cleaned; the cleaning should
be correctly resumed after an interruption; the counters of mappings (references)
should be correctly maintained; cleaned pages are never referred to; etc.

For instance, in Anaxagoros, the function that sets a mapping to a page
inside a page table (illustrated in Fig. 1 and described below) has to update
the counters of mappings taking into account the ones it sets and removes. The
counters are maintained by an array storing the state of every page, including
the number of times it is mapped. The goal is to ensure that for every page,

the real number of mappings to it is at most equal to the value of the counter.
Thus, checking if the counter is equal to zero allows us to ensure that the page is
no longer referred to before it is cleaned and its type is changed. This prevents
possible attacks.

The algorithm also has to take care of the memory management unit cache
called the translation lookaside buffer (TLB), which has to be flushed before
repurposing a page. Indeed, an entry left in this cache could allow a user program
to change a page after it has been cleaned by the kernel. As TLB flushes are
costly, the algorithm should avoid them whenever possible, i.e. when we can
ensure that there are no entries left in the TLB for a page. We have currently
excluded modeling of the TLB from the verification study.

This case study focuses on a simplified version of the virtual memory module
that includes most of its key aspects such as data pages and page tables used
with respect to the page type, setting new mappings to data pages, maintaining
correct counters of mappings and concurrent execution. Simplifications include
the replacement of bitfields used in page descriptors by a set of arrays of separate
variables, and the fact that we do not take into account the multiple levels of
hierarchy of pagetables in the considered properties. Another characteristic of
the simplified version is that it splits some functions into smaller ones, and
therefore allows to treat a more fine-grained concurrency than the original one.

3 Formal Verification

As any OS, Anaxagoros is inherently concurrent, so we have to deal with concur-
rency in this case study. Frama-C does not currently treat concurrency, and there
are no concurrency primitives available in the considered version of C. Dealing
with concurrency becomes even more difficult nowadays because of weak memory
models. In this section, we assume a sequentially consistent memory model.

Since no concurrency primitives are available, we consider two classes of func-
tions. The first one is the low-level functions that are atomic, so we verify them
as sequential code. We specified all low-level functions of the virtual memory
module in ACSL (15 functions, ~500 lines of annotated C code) and successfully
proved them in FRAMA-C, with the WP plugin and the SMT solvers Z3, CVC3
and CVC4. This proof is automatic and takes about 90 seconds. This part of
the case study was mostly standard and is not presented here in detail.

The second class is higher-order functions that are not atomic, so we decom-
pose them as sequences of atomic instructions for which we simulate concurrency.
We focus here on the most crucial function of the module that is in charge of
setting mappings between pages. The rest of this section presents how we simu-
late parallelism by modeling the execution context of each thread and creating
interleavings, introduces the main properties we want to verify, and describes
their proof.

1

© N oUW N

11
12
13
14
15
16
17

int set_entry(int fn, int idx, int new) {
// Step 1 -> read_map_new
int c_n = mappings[new];
// Step 2 -> test_map_new
if(c_n >= MAX) return 1;
// Step 3 -> CAS_map_new
if (!compare_and_swap (&mappings[new], c_n, c_n+l))
return 1;
// Step 4 -> EXCH_entry
page_t p = get_frame (fn);
int old = atomic_exchange (&p[idx], new);
// Step 5 —> test_map_old
if(!old) return 0;
// Step 6 —> FAS_map_old
fetch_and_sub (&mappings[old], 1);
return 0;

}

Fig. 1. Function set_entry writes page reference new into page fn at index idx

3.1 Simulating Parallel Execution

To take into account parallel execution of code by several threads and to be able
to verify it in FRAMA-C, we simulate parallel execution by sequential code. Let
us illustrate it for the C function set_entry given at Fig. 1. It sets a mapping
(i.e. a reference) to a data page of index new into the element of index idax of the
page table of index #n, that can be seen as writing new into the corresponding
page table element. It has to maintain a correct number of mappings to new in
the counter mappingsnew] to remain resistant to attacks. In addition, special care
must be taken in case of parallel execution by several threads.

At Step 1 (line 2-3 of Fig. 1), the current number of mappings to new is
stored in < n. It must be less than the maximal value to avoid an overflow,
otherwise the operation is aborted (Step 2, line 4-5). At Step 3 (lines 6-8), the
counter is incremented, but only after checking that its value is the same as
the one previously read, using an atomic compare_and_swap (CAS) operation (note
that it could have been modified several times, the only thing that matters
is that it must be the same). Step 4 (lines 9-11) retrieves a pointer to the
page table of index n (using get_rrame function), then atomically, again to avoid
concurrent access issues, writes new into its element at index idax and stores the
old value in o14. Step 5 (line 12-13) checks if the old value was a mapping, that is,
nonzero, and in that case Step 6 (line 14-15) atomically decrements the number
of mappings to o1d, since one mapping has now been replaced by a new one.
Notice that if new is equal to o014, the same counter is first incremented and then
decremented, as the mapping actually remains the same.

For the sake of verification with FRAMA-C, we simulate parallel execution of
set_entry as shown in Fig. 2. Every single step is simulated by a separate simu-
lating function (cf. comments in Fig. 1) that takes a thread number, performs
the step for this thread and sets the number of the next step to be executed.
Step 0 simply generates input values for the arguments being passed to set_entry
function. When the execution reaches the end of the function, we assume it goes

o e
N H O © XN U AW N

#define NOF 2048 //nb of frames 31 void EXCH_entry (uint th) { // Step 4
#define THD 1024 //max nb of threads 32 page_t p = get_frame (fn([th]);
#define MAX 256 //max nb of mappings 33 old[th] = p[idx[th]];

#define SIZE 1024 //size of a page 34 plidx[th]] = new[th];
uint mappings[NOF]; 35 //@ghost ref[th] = old[th];
uint new|[THD], idx[THD], fn[THD]; 36 pct[th] = 5;
uint old[THD], c_n[THD]; 37 }
uint pct[THD]; 38 void test_map_old(uint th){ // Step 5
//@ghost uint ref[THD]; 39 pctth] = (!old[th])? 0 : 6;
40 '}

page_t get_frame (uint fn); 41 void FAS_map_old(uint th) { // Step 6
void gen_args (uint th) { // Step 0 42 mappings[old[th]]--;

/* generate function args =/ 43 //@ghost ref[th] = 0;

pct[th] = 1; 44 pct[th] = 0;
} 45 '}
void read_map_new (uint th){ // Step 1 46 void interleave () {

c_n[th] = mappings[new[th]]; 47 while (true) {

pct[th] = 2; 48 int th = choose_a_thread();
} 49
void test_map_new (uint th){ // Step 2 50 switch (pct [th]) {

pct[th] = (c_n[th] < MAX)? 3 : O; 51 case 0 : gen_args (th); break;

} 52 case 1 : read_map_new(th); break;
void CAS_map_new (uint th){ // Step 3 53 case 2 test_map_new (th); break;
if (mappings[new[th]] == c_n[th]) { 54 case 3 CAS_map_new (th); break;
mappings[new[th]] = c_n[th]+1; 55 case 4 EXCH_entry (th); break;

//@ghost ref[th] = new[th]; 56 case 5 test_map_old(th); break;
pct[th] = 4; 57 case 6 FAS_map_old(th); break;
} 58 }
else pct[th] = 0; 59 }

} 60 }

Fig. 2. Simplified simulation of parallel execution for function set_entry of Fig. 1

to Step 0 and can start again with new arguments. Error cases are treated in
the same way. Parallelism is simulated by an infinite loop (lines 47-59) that, at
each iteration, randomly selects a thread and makes it execute one step.

Values of input and local variables of different threads are kept in arrays
(£n, idx, new, c_n, old) that associate to each thread number the value of the
corresponding variable for this thread. The array pct stores the current step
(program counter) of each thread. Atomic instructions such as compare_and_swap,
atomic_exchange and fetch_and_sub can be simulated by standard C instructions in
the corresponding simulating functions (since each simulating function is already
supposed to be an atomic step in our simulation approach).

3.2 Counters of Mappings and Global Invariant

One of the key properties ensured by Anaxagoros states that the actual number
of mappings to any valid page p is at most the value of the corresponding counter
mappings[p]. Along with the property that this counter is under a certain limit,
it ensures that the real number of mappings is also under this limit. Notice that
we do not count mappings to the page 0 since, in this model, the value 0 in a
page table stands for the absence of mapping.

Let Occ, denote the number of occurrences of the value v in an array a (that
can be also a page), and Occ” the number of occurrences of v in all page tables

in memory. We can formalize the global invariant in the following form:
Ve, validpage(e) = Occ® < mappings|e] < MAX MAPPINGS.

But, while this property is easily proven as maintained by the set_entry function
after each instruction in monoprocess mode (as this function is not preemptible),
it is not precise enough to be used in a multi-threaded context. Indeed, this
invariant cannot easily ensure that before we decrement a counter (cf. Step 6 in
Fig. 1) it is always greater than 0.

To keep track of values more precisely, we use an invariant in the following
form:

Ve, validpage(e) = 3k,0 < k A Occ® + k = mappings|e] < MAX_MAPPINGS,

where k can be defined as the gap between the real number of mappings to
(that is, occurrences of) e in page tables and the value indicated by its counter.
This gap comes from the mappings already counted but not yet effectively set
(between Steps 3 and 4 in Fig. 1), and from the valid mappings already removed
whose counter is not yet decremented (between Steps 4 and 6 in Fig. 1). In other
words, a thread executing set_entry creates a gap of 1 for the mappings to new
at Step 3, then Step 4 removes this gap and creates one for the mappings to o1d
(if 014 was a valid mapping, i.e. nonzero), and finally Step 6 removes the last
gap (if o1a was not a valid mapping, Step 5 exits the execution before this last
step). Therefore, any thread can only create a gap of at most 1 for at most one
mapping at the same time.

To model the gap in our simulation approach, we add a ghost array rer that
associates to each thread number the entry for which the thread creates a gap,
and 0 if the thread provokes no gap at the moment. This ghost array is updated
by ghost statements at lines 26, 35 and 43 in Fig. 2. This allows to ensure the
desired property for rer formalized by the ACSL predicate of Fig. 5.

The precise definition for k is Occt.;, and the final global invariant is

ref>
T : Ve,validpage(e) = Occ® + Occi. = mappings|e] < MAX_MAPPINGS.

To express and prove assertions invoking the number of occurrences of a value
e in memory pages, we define in ACSL two logic functions with related axioms
to count occurrences of e over a range of indices (from,to[in one page referred
by t (Fig. 3), and over a range of page tables (from, to[(Fig 4). The left bound
of the range is included, while the upper bound is excluded. The label 1. defines
the program point where the values are considered. For example, the value Occ®
at label » can be now expressed as occ_m{L} (e, 0,N0F-1), Where nor denotes the
number of frames.

The axioms of Fig. 3 define the following cases: the range [from, to(is empty
so there are no occurrences (axiom end_occ_a), or it is non-empty and there are
two cases, the rightmost element contains e, so the result is one plus the number
of occurrences over the reduced range [from, to-1[(axiom iter_occ_a_true), Or it
does not, and this is simply the number of occurrences on the reduced range

axiomatic OccArray({
logic integer occ_a{L} (integer e, uintx t,
integer from, integer to);

axiom end_occ_a{L}:
\forall integer e, uintx t, integer from, to;
from >= to ==> occ_a{lL} (e,t, from, to) == 0;
axiom iter_occ_a_true{L}:
\forall integer e, uintx t, integer from, to;
(from < to && t[to-1] == e) ==>
occ_a{L} (e,t,from,to) == occ_a{L} (e,t, from,to-1) + 1;
axiom iter_occ_a_false{L}:
\forall integer e, uintx t, integer from, to;
(from < to && t[to-1] != e) ==>
occ_a{L}(e,t,from,to) == occ_a{lL} (e,t, from,to-1);

Fig. 3. Simplified logic function occ_a counting occurrences in a subarray

axiomatic OccMemory {
logic integer occ_m{L} (integer e,integer from,integer to);

axiom end_occ_m{L}:
\forall integer e, integer from, to;
from >= to ==> occ_m{L} (e, from, to) == 0;
axiom iter_occ_m_true{L}:
\forall integer e, integer from, to;
from < to && pagetable[to-1] == true ==>
occ_m{L} (e, from,to) == occ_a{L} (e, frame(to-1),0,SIZE)
+ occ_m{L} (e, from, to-1);
axiom iter_occ_m_false{L}:
\forall integer e, integer from, to;
from < to && pagetable[to-1] != true ==>
occ_m{L} (e, from,to) == occ_m{L} (e, from,to-1);

Fig. 4. Simplified logic function occ_m counting occurrences over a range of pages

(axiom iter_occ_a_false). Similarly, the axioms of Fig. 4 define how to count
the number of occurrences of e in all page tables, hence we need an additional
condition: we count occurrences in a page only if it is a page table.

3.3 Proof with the Wp Plugin of Frama-C

WP [6] is a weakest precondition calculus plugin integrated to FRAMA-C. Given
a C program specified in ACSL, WP generates proof obligations in the WHY3
language that can be discharged with automatic or interactive provers.

To use WP, we first write ACSL annotations to define the contract of each
function as well as a few lemmas (detailed in Sec. 3.4) to help automatic provers.
For the code of Fig. 2, our main goal is to ensure that for every simulating func-
tion, if the global invariant Z holds before its execution, it is maintained after.
Thus, 7 is formalized as an ACSL predicate that appears both in the precondition
and the postcondition of the contract.

predicate pct_imply_ for_thread(integer th) =
(pct [th] <= 3 ==> ref[th] == 0) &&
(pct [th] == 4 ==> ref[th] == new[th]) &&
(pct [th] == 5 ==> ref[th] == old[th]) &&
(pct [th] == 6 ==> ref[th] == old[th] && old[th] != 0);

Fig. 5. Predicate defining the link between the program counter and the array ref

lemma occ_a_separable{L}:
\forall integer e, uintx t, integer from, cut, to;
from <= cut <= to ==>
occ_a{L} (e,t,from,to) ==
occ_a{L} (e, t, from, cut)+occ_a{L} (e, t,cut, to);

Fig. 6. Example of a lemma in ACSL for counting over two sub-ranges

Other clauses include some routine properties, for example, bounding local
variables to the range of authorized values, or defining the relationship between
ref and the thread’s program counter illustrated by the predicate in Fig. 5.

The verified prototype simulating parallel execution of the set_entry function
contains about 610 lines of code including 530 lines of ACSL annotations. 140
lines are needed for the axioms and lemmas related to occurrence counting. We
also define some predicates to express the bounds of the different simulated
local variables (about 50 lines). The remaining lines contain function contracts
and some assertions necessary to guide the proof. In the function contracts, 200
lines are just duplicates of the actual invariant (about 10 lines), and could be
auto-generated (cf. Section 4.2).

The specification of this function, the adaptation of the invariant for the
model of concurrency, and the addition of the relation between the program
counter and the ghost variable, together with the determination of the assertion
needed to guide the proof took about a month for a junior verification engineer.

From the function contracts, WP generates about 320 proof goals, including
190 for the interleaving loop. Except the lemmas, all generated goals are suc-
cessfully discharged by Z3 (v.4.3.1) or CVC4 (v.1.3) within about 65 sec. on
a QuadCore Intel Core i7-4800QM @2.7GHz. We have also investigated if the
constant values used for the size of a page (s1zz), the number of frames (ror)
or the maximal number of threads (rzp), have an impact on the time needed
to discharge the proof obligations. An experiment shows that this time does
not depend on these values. Indeed, the axiomatic definition of logical functions
prevents the provers from unrolling the recursion when properties involve the
number of occurrences of values in arrays.

3.4 Proof of Lemmas in Coq

To facilitate the proof of formulas using the logic functions of Fig. 3 and 4,
we state simple lemmas in ACSL that express useful properties of these logic

functions. For each function, we have three lemmas that express the same idea
at the corresponding level: for a single page and for all page tables. The proof
of these lemmas requires careful induction, paying attention to the right usage
of the induction hypothesis and axioms, so they cannot be automatically proven
by Z3 and CVC4. WP allows us to complete the proof of goals using CoQ. So
we first use WP to automatically extract the goals for the lemmas from ACSL
into the CoQ format, and then perform their proof interactively in CoQ.

A good example of a lemma about counting occurrences in a single array
is the property shown in Fig. 6. It states that we can split a range (from,to(
of page elements on which we want to count into two subranges [from, cut[and
[cut, to[, count separately on each of them, and then take the sum to obtain the
number of occurrences over the complete range. This is a very useful property
as it allows us to partition ranges in order to keep only smaller subranges that
changed between two points, saying that “all other elements did not change”.
The proof of this lemma consists in an induction on to compared to from and
a case analysis on cut, the most complex case being proven using the axioms
iter_occ_a_false and iter_occ_a_true.

Another interesting lemma says that if in a range of array elements, none
of them changed between two program points, then for any value, the number
of its occurrences over the range did not change. The proof is done by a simple
induction.

The last lemma says that if only one array element changed to a different
value between two labels, the number of occurrences decreases by 1 for the old
value, increases by 1 for the new value, and all other values have the same number
of occurrences. Its proof uses the two preceding lemmas. We use the first lemma
to separate the subrange that changed from those that did not. Then we use
the second lemma to prove that the number of occurrences did not change in
the unmodified subrange, and finally prove that at the modified location, the
number of occurrences respects the desired property.

For the level of all page tables (function occ_m), we define similar lemmas and
use similar proof ideas. The complete proofs totalize about 300 lines of CoQ
code and took about 4 days to be written by a junior verification engineer.

4 Discussion

4.1 Weak Memory Model Compliance

The approach we applied to simulate concurrent execution of the function set_entry
is based on the assumption that it respects an interleaving semantics. Actually,
none of modern multi-processors respect this assumption, implementing weak (or
relazed) memory models that authorize memory access reordering [10]. It can
lead to “strange” behavior, like shown in Fig. 7 where “|” stands for parallel
composition of threads.

Indeed, we cannot find an interleaving that exhibits the () behavior. How-
ever, it can happen on weak memory for two possible reasons. First, as in the

(SISO R

RO = Rl = [x] = [y] =0 Authorized behaviors :

RO =1 /\ Rl =1

// Thread 1: Thread 2: RO =0 /\Rl =1

[x] <~ 1 | [yl <1 RO =1 /\ Rl =0
RO <- [y] | Rl <~ [x] RO =0 /\ Rl = 0 (%)

Fig. 7. Example of a two-thread program and its possible weak memory behavior

first thread there is no dependency between the write of x (line 4) and the read of
v (line 5), these instructions could be reordered by the compiler or the processor
itself. A similar reordering can occur for the second thread. So the reads would
be performed before the writes, setting 0 to both ro and r1. The second reason is
that memory writes are added into a store buffer before accessing the real shared
memory. So each thread could register its write in its buffer and then read the
global shared memory before the write of the other thread hits it, thus reading
0 instead of 1.

For a weak memory model, what is called the “Fundamental Property” by
Saraswat et al. [11], is the fact that any program whose sequentially consistent
executions do not have any data race must only have executions that are se-
quentially consistent. Any reasonable memory model should have this property.
It allows to reason about programs in a weak memory model using sequential
consistency. Of course this property should have been proved for the weak mem-
ory model, and indeed it has been done for most weak memory models (e.g. [12]).

A data race is a pair of conflicting operations, i.e. two accesses to the same
memory address, one of them being a write, that are concurrent, i.e. without any
temporal dependencies between them. There are several ways to formalize what
it means for two events to be concurrent. One of them is to use a happens-before
relation, which is a transitive, irreflexive partial order: one event happens-before
another one if they belong to the same thread, and synchronizations introduce
pairs in this relation for events in different threads. Concurrent events are events
that are not related with a happens-before relation. Thus, if we want to analyze
concurrent programs by generating interleavings, we first need to justify that
these programs are race-free.

There are several methods to ensure data-race freedom. For example by auto-
matic static analysis [13], or by respecting a programming discipline that adds to
a program the guarantee that its execution will respect sequentially consistent
behavior by construction [14]. One way to enforce such a programming disci-
pline is to prove the correctness of the program with a program logic such as
concurrent separation logic [15].

Actually, for the function set_entry of Fig. 1 such justification is trivial as
every shared memory access is performed by an atomic routine that flushes write
caches, thus introduces a synchronization: we use compare_and_swap t0 increment
the mapping counter, atomic_exchange to swap the page entry, and fetch_and_sub to
decrement the mapping counter. Thus, this program does not contain data-races.

We can also justify an (almost) total ordering on the instructions. The func-
tion call with argument passing (simulated by Step 0) comes necessarily first.

Then, the next three steps (read, test and CAS) are ordered by their control or
data dependencies. In the x86 model, the fence between the CAS (Step 3) and
the atomic exchange (Step 4) is implicit, while in a model that does not place
this fence (e.g. Power or ARM) we would need to add it explicitly. The test on
o1a (Step 5) is in data-dependency with the atomic exchange (Step 4). Finally,
the counter decrementation at Step 6 is control-dependent on the test at Step 5.

The read page_t p = get_frame(fn) is the only instruction that could be re-
ordered everywhere between the function call (Step 0) and the atomic exchange
(Step 4). Since it actually only depends on a static array (used in the imple-
mentation of get_frame) and the parameter sn which are never assigned after
the function call, possible reorderings of this read do not change anything in
the execution , so we chose to place it near the atomic exchange (cf. Step 4 in
Fig. 2).

Consequently, in this case, this simulation-based approach is sound and re-
mains valid for weak memory models. We aimed to know what can be done
for concurrent programs with FRAMA-C provided that they are correctly and
fully synchronized. Currently, ensuring that the programming discipline is re-
spected is not done by a dedicated tool, a future work would be to automate
this verification.

4.2 Lessons Learned, Benefits and Limitations of the Approach

This case study confirms that an obvious benefit of deductive verification based
on automatic theorem provers, combined when necessary with interactive proof,
is its cost efficiency. Indeed, most specified properties are proven automatically
by modern SMT solvers. The possibility to easily complete unsuccessful proofs
afterwards in the interactive proof assistant Coq offered by the WP plugin ap-
pears to be very convenient and allows the verification engineer to focus on really
difficult properties, leaving routine proofs to automated tools. The time needed
to complete interactive proofs in this study appeared to be much less than the
overall effort of code specification.

Another lesson learned in this work is the ability of this approach to treat
concurrent code in FRAMA-C/WP that originally does not offer this possibility.
Moreover, the effort needed to model concurrent context remains reasonable
against the specification effort, at least for short functions.

One could argue that this verification study remains valid only if this func-
tion is the only one able to access and modify page tables and their properties.
Actually, another function, responsible for cleaning pages before changing their
type, can also modify them. Its algorithm is however very simple: “for any entry,
replace its value by null (we do not count references to the null page) and decre-
ment the counter for the old value”, so we can perform simulation for this part
as we did for the set_entry function. The proof can be performed in a similar
way.

This work also suggests a generic verification approach that can be summed
up as follows. Given a concurrent program that respects an interleaving semantic,
and a shared region of data that needs to respect a particular invariant, we

analyze in isolation the group of functions that might access it. We model every
local variable by an array associating to each thread the corresponding value,
while the position of each thread in its execution is modeled by an array of
program counters. Every single atomic action should be modeled by a separate
simulating function. The interleavings are modeled by a loop that randomly
executes a step of a thread. Finally, the global invariant is attached both to the
loop and the functions in their contracts.

Since writing the specified simulating program by hand is error-prone, the
next step is to make this approach automatic. The program transformation de-
scribed above is quite simple. Its automation would require to extend ACSL in
order to allow more precise specification of concurrent properties (e.g. when some
part of the invariant depends on the position of some thread in its execution,
cf. the argument leading to the definition of Z in Sec. 3.2) that could be then
translated into simulating function contracts and interleaving loop invariant in
the simulating program.

We expect this verification approach to have a limited scalability on com-
plete real-sized programs. Indeed, the interleaving loop is very short in our case.
Treating numerous functions can require to track a great number of local vari-
ables globally, that can make the automatic proof more difficult, typically for
the contract associated to the interleaving loop that would become much bigger.
Nevertheless, thanks to the automation perspective of the program transforma-
tion and the cost-efficiency of deductive verification, conducting in-depth verifi-
cation of critical algorithms by extracting the interesting part and analyzing it
in isolation can still be a practical approach to identify potential problems.

5 Related Work

Klein et al. [3] present formal verification for seL4, a microkernel allowing devices
running it to achieve the EALT level of the Common Criteria. Another formal
verification of a microkernel is described in [16]. Both projects take into ac-
count concurrency between the processor and the devices (represented by their
drivers), whereas our aim here is to treat the multi-processor concurrency of
a particular function. Their verification uses interactive, machine-assisted and
machine-checked proof with the theorem prover Isabelle/HOL.

Another recent work on verification of a virtual memory manager [17] relies
on the fact that virtual memory managers are constructed in layers, and uses
this to structure the proof by successive small refinements, making it easier to
achieve and to maintain. A framework is provided to lighten the work needed
for refinement and layers definition. The proof is also done interactively, with
the CoQ proof assistant.

[18] presents a verification of a model of virtualization. Both implementation
and verification are done in C0oQ. Being relatively far from a real implementa-
tion, it allows reasoning about isolation between guests on an axiomatic basis
modeling hypervisor behavior including caches and TLB. In contrast, our work
is interested in low-level details of the real implementation.

Unlike the aforementioned projects, we aim to maximize the amount of au-
tomatic proof in our work.

The formal verification of a simple hypervisor [19] uses VCC, an automatic
first-order logic based verifier for C. The underlying architecture is precisely
modeled and represented in VCC, where the mixed-language system software is
then proven correct. Unlike [3] and [16], this technique is based on automated
methods. The verification consists in verifying that the invariant of the system
is respected by an infinite loop of steps. While VCC is intrinsically concurrent,
FrAMA-C is not. Our goal is to investigate what has to be done to achieve
concurrent program proof with FRAMA-C/WP, in particular, in order to benefit
from the multiple analysis plugins available in the toolset.

In [20], Alkassar et al. report on verification of the translation lookaside
buffer (TLB) virtualization, a core component of modern hypervisors. As devices,
like memory management units (MMUSs), run in parallel with software, they
require concurrent program reasoning even for single-threaded software. Their
work gives a general methodology for verifying virtual device implementations,
and demonstrates the verification of TLB virtualization code in VCC.

As we mentioned previously, [14] presents a programming discipline to write
concurrent programs that allow only sequentially consistent behaviors. [21] points
out that this method is not sufficient to deal with programs that edit their own
page tables and proposes an extension to complete the programming discipline.
Instead of considering a precise model of the x86 memory management unit
(MMU) [20], it proposes an abstract MMU model that allows to verify that the
MMU of a thread will not access page tables of another one. As we explained in
Section 2, our analysis does not yet consider the MMUs nor the TLB, and could
be extended with a similar approach.

Formal verification nowadays remains very expensive. [22] estimates that the
verification of the seLLl4 microkernel took around 25 person-years, and required
highly qualified experts. selL.4 contains only about 10,000 lines of C code, and
verification cost is about $700 per line of code.

Our present work continues the previous efforts and presents a case study
on formal verification of a critical module of a hypervisor in FRaAMA-C. To
minimize the verification cost, we use automatic theorem proving as much as
possible, complete it by interactive proof when necessary and apply a sound
simulation-based approach compliant with weak memory models to deal with
parallelism.

The only previous work [23] on verification of Anaxagoros presented partial
formal verification, completed by test generation for unproven functions, did not
consider parallel execution and did not use interactive proof.

6 Conclusion and Future Work

One of the most critical modules in the Anaxagoros hypervisor is its virtual
memory mechanism. We present here the formal verification of a slightly simpli-
fied version of it for a sequentially consistent memory model. In this component,

the low-level functions are atomic and we verified them as sequential functions.
The ACSL specifications were automatically proven in FRAMA-C using its weak-
est precondition calculus plugin Wp, and the proof obligations discharged by
Z3, CVC3 and CVCA4.

Higher level functions are no longer atomic. To deal with concurrency we
simulated parallelism: the execution context of each thread and interleavings.
The verification of its key part, the function that sets mappings between pages,
has been performed using this technique. Again, the specifications were written
in ACSL and the proofs conducted by Z3 and CVC4. However, in order to write
the specifications, we introduced axiomatized functions. Basic results about these
functions were needed to allow the SMT solver to conclude, but these lemmas
themselves cannot be proven by automatic provers. We used the proof assistant
CoQ to prove them.

This case study illustrates formal verification of a critical module in isola-
tion, that can be still quite efficient to detect various functionality and security
issues such as the recent Heartbleed bug® in OpenSSL. The main benefits of our
approach include the possibility to conduct most proofs automatically, to reduce
interactive proof to a minimum, and to take into account parallel execution.

In order to prove the actual code of Anaxagoros, we should deal with bit
vectors. To avoid the need for a lot of interactive proofs, it would be interesting
to design a library of basic results for bit vectors that could be then used auto-
matically by automated provers. While the simulation approach was sufficient to
deal with this case study, we do not expect it to scale to the whole hypervisor.
Therefore, it would be interesting to be able to deal directly with parallelism in
FrAMA-C, in particular in the case of weak memory models.

Acknowledgment. The work of the first author was partially funded by a Ph.D.
grant of the French Ministry of Defence. The authors thank the FRAMA-C team
for providing the tools and support. Special thanks to Francois Bobot and Loic
Correnson, the main author of Wp, for many fruitful discussions, suggestions
and advice. Many thanks to the anonymous referees for their helpful comments.

References

1. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning
43(4) (2009) 363-446

2. Leroy, X.: Verified squared: does critical software deserve verified tools? In: POPL
2011, ACM

3. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1) (2014)

4. Lemerre, M., David, V., Vidal-Naquet, G.: A communication mechanism for re-
source isolation. In: ITES 2009

5. Lemerre, M., Ohayon, E., Chabrol, D.; Jan, M., Jacques, M.B.: Method and Tools
for Mixed-Criticality Real-Time Applications within PharOS. In: AMICS 2011

* http://blog.regehr.org/archives/1125

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A program analysis perspective. In: SEFM 2012

Baudin, P., Cuoq, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.. ACSL: ANSI/ISO C Specification Language. frama—-c.cea.fr/acsl.html.
The Coq Development Team: The Coq Proof Assistant. http://coq.inria.fr
Lemerre, M., David, V., Vidal-Naquet, G.: A dependable kernel design for resource
isolation and protection. In: IIDS 2010

Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29(12) (1996) 66-76

Saraswat, V.A., Jagadeesan, R., Michael, M.M., von Praun, C.: A theory of mem-
ory models. In: PPoPP, ACM (2007) 161-172

Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In:
POPL 2009

Dabrowski, F., Pichardie, D.: A Certified Data Race Analysis for a Java-like
Language. In: TPHOLSs 2009

Cohen, E., Schirmer, B.: From total store order to sequential consistency: A prac-
tical reduction theorem. In: ITP 2010

Brookes, S.D.: A semantics for concurrent separation logic. In: CONCUR, 2004
Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive verification of an OS
microkernel. In: VSTTE 2010

Vaynberg, A., Shao, Z.: Compositional verification of a baby virtual memory
manager. In: CPP 2012

Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally verified
implementation of an idealized model of virtualization. In: TYPES 2013
Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated verification of
a small hypervisor. In: VSTTE 2010

Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB virtualization
implemented in C. In: VSTTE 2012

Chen, G., Cohen, E., Kovalev, M.: Store buffer reduction with MMUs: Complete
paper-and-pencil proof. Technical report, Saarland University, Saarbriicken (2013)
Klein, G.: From a verified kernel towards verified systems. In: APLAS 2010
Kosmatov, N., Lemerre, M., Alec, C.: A case study on verification of a cloud
hypervisor by proof and structural testing. In: TAP 2014

