A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Numerical Analysis Year : 2009

A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation

(1, 2) , (1, 2) , (1, 2)
1
2

Abstract

An efficient and fully computable a posteriori error bound is derived for the discrete duality finite volume discretization of the Laplace equation on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.
Fichier principal
Vignette du fichier
aposteriori_ddfv_version2.pdf (310.94 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-00320486 , version 1 (11-09-2008)
cea-00320486 , version 2 (04-06-2009)

Identifiers

Cite

Pascal Omnes, Yohan Penel, Yann Rosenbaum. A posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. SIAM Journal on Numerical Analysis, 2009, 47 (4), pp.2782--2807. ⟨10.1137/080735047⟩. ⟨cea-00320486v2⟩
181 View
499 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More