
HAL Id: cea-00292288
https://cea.hal.science/cea-00292288

Preprint submitted on 10 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the eve of the LHC: conceptual questions in
high-energy physics

Alexei Grinbaum

To cite this version:
Alexei Grinbaum. On the eve of the LHC: conceptual questions in high-energy physics. 2008. �cea-
00292288�

https://cea.hal.science/cea-00292288
https://hal.archives-ouvertes.fr


ar
X

iv
:0

80
6.

42
68

v1
  [

ph
ys

ic
s.

so
c-

ph
] 

 2
6 

Ju
n 

20
08

On the eve of the LHC:

conceptual questions

in high-energy physics

Alexei Grinbaum

CEA-Saclay/LARSIM, 91191 Gif-sur-Yvette, France

Email alexei.grinbaum@cea.fr

Abstract

The LHC is an opportunity to make a change. By thinking, and speaking

publicly, about fundamental concepts that underlie physical theory, the

physicist may both accrue public interest in his work and contribute to

the analysis of the foundations of modern physics.

We start by several remarks on the scientific and societal context of

today’s theoretical physics. Major classes of models for physics to be

explored at the LHC are then reviewed. This leads us to propose an

LHC timeline and a list of potential effects on theoretical physics and the

society.

We then explore three conceptual questions connected with the LHC

physics. These are placed in the context of debates both in high-energy

physics and in the philosophy of physics. Symmetry is the first issue: we

critically review the argument for its a priori and instrumental functions in

physical theory and study its connection with naturalness. If perceived as

a dynamical process in analogy with non-unitary measurement in quantum

mechanics, spontaneous symmetry breaking is found to emphasize the

role of randomness against physical law. Contrary to this cosmological

view, the strictly non-dynamical role of spontaneous symmetry breaking

within quantum field theory provides one of the strongest arguments in

favour of the instrumental approach to symmetry. Second, we study the

concept of effective field theory and its philosophical significance. Analogy

with S-matrix suggests that one should treat effective theory both as

a pragmatic and a provisional tool. Finally, we question the meaning

of fine tuning. Legitimate fine-tuning arguments are interpreted non-

ontologically. These are contrasted with unsound use of fine tuning, e.g.,

for comparing different models. Counterfactual reasoning referring to the

anthropic principle is shown to be problematic both conceptually and in

the light of quantum theory.
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1 What use for conceptual questions?

1.1 Look back and look forward

Several times in history new, unintuitive physics invalidated previously existing

commonplace views and revolutionized our understanding of the world. New

concepts appeared, which were consequently hailed as the centerpiece of a con-

ceptual foundation of physics. With regard to the launch in 2008 of the Large

Hadron Collider (LHC) at CERN, few share the obstinate ambition to start a

similarly radical physical revolution. This event may however become the tip-

ping point of a new conceptual revolution. Indeed, models have been developed

in significant depth beyond the theories of the Standard Model (SM), but we

still miss a decisive input that would pick as correct one of the new ideas that

underlie these models. Which will be the one to triumph? This question leads

to two further questions about the future of theoretical physics: first, we stand

in the need of a forward-looking analysis of concepts which may soon make

their way to the center of the debate; second, the whole field may benefit from

a systematic study of argumentation methods that have been used to promote

theories beyond the Standard Model.

The LHC will probe the scale of symmetry breaking of the electroweak (EW)

interaction. As of today, this is the last element of the Standard Model left

without unambiguous support from experiment. We do not know whether the

Higgs mechanism will turn out to be what the Standard Model takes it to be:

a relatively unambitious but efficient way to remove the problem of Goldstone

bosons and to give a quantitatively sound account of the electroweak symmetry

breaking. It may be revealed that the SM Higgs mechanism is but a veil of

new physics (NP) beyond the Standard Model: either supersymmetry or extra

strong force or perhaps theories with extra dimensions.

Theorists have developed a great number of models. They were followed by

phenomenologists and experimentalists, who have thought about experimental

scenarios for corroborating these models in the signature content of the LHC

data. The job has taken at least 25 years of hard work of a big community;

3



what has emerged at the end still sustains a lively discussion. On the eve of the

launch of the LHC, it is now time both for physicists and for the philosophers

of physics to look back at these 25 years, and to look forward at the future LHC

physics, wondering whether new models will put forward novel ideas capable of

entering the pantheon of fundamental physical knowledge.

1.2 Speak out but choose what you say

The launch of LHC will be an immediate scoop covered by mass media. However,

it may or may not have a long-term, lasting effect on physics and on society.

Whether it will have an effect on physics will depend on physical discoveries

that remain to be made and on the existing landscape of competing models,

to be discussed below. Whether it will have an effect on society, aside from

purely scientific causes, will be influenced by the behaviour of all interested

parties, foremostly communicating scientists and educators. Being the first

major accelerator built for fundamental physics since 1980s, the LHC provides

a unique opportunity for raising public awareness of the set of concepts and

ideas which underlie the scientific worldview. Above all, in societal terms, LHC

is an opportunity to renew the enthusiasm for understanding the world, after

decades of its gradual fading and of growing fatigue for all things complex, like

science or mathematics.

The LHC is an opportunity to make a change. Whether such a change will

occur in the public attitude toward physics depends on how physicists will speak

about the LHC and what they will say. The best way to oppose the decline of

public interest for high energy physics is to think critically about our current

choice of both rhetoric and content in outreach activities. A new, different choice

could boost a move from communication focused on the mathematical content or

projected results of advanced physical theories, to the language and rhetoric that

would emphasize the key conceptual ideas and fundamental principles which are

at stake. When a physicist tells the public a popular story about one or another

mathematical model, or about concerns of a closed community whose interests

are not shared by the larger group, the public is no less estranged that when it
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hears an oracle in a temple. The physicist casually tends to adopt the attitude

of lecturing: “You don’t understand this, I’ll explain you that...” What follows

is an attempt to give a glimpse of the theory that has a complex mathematical

formulation, and one often hears phrases like “This is not really true, but for now

I’ll take it to be so-and-so, because I can’t explain without the full mathematics

what is really going on.” There is nothing bad in lecturing on subjects such as

advanced physical theories. Popularization of science is a fascinating occupation.

The problem lies elsewhere: the physicist typically believes that a lecture will

suffice to illuminate and calm the audience and create a feeling of awe for his

work. He all too often ignores that it can also create estrangement, alienation,

and a feeling of futility.

The path to regained interest of the public lies through the creation of a

sense of inclusion and familiarity, so that the public could identify themselves

with the physics community and sympathize with it in its concerns. Popular

science is not enough a tool to achieve this. An alternative way of telling the

story is now pressing: instead of alienating the public with words which it does

not understand, start with a comprehensible notion like symmetry or chance,

and then lead the public gradually to the deeper analysis of the role and meaning

of this notion in science. One can only be successful in telling this story if one

has first thought deeply himself about the conceptual questions in physics and

has sorted out and structured his knowledge accordingly.

Most physicists are unready to venture into what they commonly call ‘phi-

losophy’: not the familiar solid ground of mainstream research, where a scien-

tifically valid ‘yes’ or ‘no’ can always be given, but a shaky and risky field of

not-just-science, i.e., of thinking about science. The working physicist rarely

makes an effort to comprehend and convey deep conceptual issues that come

before any mathematical development in the theory he’s working on. Members

of the theoretical physics community, including some of the most lucid, some-

times claim that they all work like one person, in unison, and there can be no

disagreement between them about well-known physics. This is true, or almost,

as far as the mathematical content of physical theory is concerned. It is not
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true with respect to the meaning of mathematical models or the significance of

the underlying concepts. That the claim about thinking in unison is made so

often indicates that the theoretical physics community does not fully appreci-

ate the importance and the role of what is dubbed ‘philosophy’ — of asking

questions about meaning. Such questions were outmoded at the time when

theoretical physics became a technology-oriented endeavour in close connection

with nuclear engineering. This is true no more; the time has changed. The LHC

physics is not technoscience developed for industrial application or competitive

economic benefit; rather it is an issue of fundamental curiosity. Hence it is no

more possible to wave the questions of meaning aside as non-practical. They

belong inherently with the curiosity that keeps the LHC physics going.

For example, let the physicist ask what it means to take symmetry for a

fundamental building block of our understanding of the world. How does renor-

malization group change our view of scales, of reality, and of how we theorize?

What new understanding of mathematical entities such as the infinity or the

perturbation series does it bring along? Ask these questions before students

and welcome controversy and absence, better impossibility, of the right answer.

Explain that taking sides with respect to such questions is not a cheap business

or pure rhetoric: one has to master a great deal of scientific theory before his

argument becomes sound and defendable in view of its harsh critique by op-

ponents. Show the path leading from a simple “I think” or “I believe” to the

complex physical knowledge that one must possess, and the full set of choices

to which this particular belief commits.

Do not say that physics has been separated from philosophy. The latter has

evolved with the former. Every particular field of knowledge, and physics is

no exception, presupposes the most general principles without which it would

not be knowledge. The philosophy of physics is a study of this foundational

and systematic core: fundamental notions formulated in a non-technical way

still underlie any development in physical theory. For Schlick [89] as well as

for Friedman [38], “all great scientists think every problem with which they are

concerned up to the end, and the end of every problem lies in philosophy.”
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Explain to the student that it is not possible nowadays to play with words

as if there were no price to pay for this game, in terms of consistency of what

is being said. Tell him that science underwrites much of what is sound in

philosophy. Start your first lecture with the words of ordinary language, like

symmetry or probability, and continue all the way down to the last lecture,

where complex mathematics, which is necessary to distinguish a serious theory

using these ordinary terms from a language game, will become familiar.

The job of theoretical physicist is not to write equations. It belongs with

reaching to the essence of things, as quantum gravity pioneer Matvei Bronstein

said at the beginning of 1930s. Theoretical physicist receives training in under-

standing what is essential, and so formulated, this training is highly attractive

for the young. Later in his career, theoretical physicist may change jobs and

become, for instance, a biologist or a financier. Nonetheless, he will be uniquely

qualified for this new life because he will have learned to seek the deepest level

of meaning of all things.

The LHC is an opportunity to explain to the society and to young students

what it is to be a particle physicist. Teach students about concepts and ideas

first; learning complex mathematics will follow. Speak to them not in the in-

comprehensible technical language, but make sure they will learn a method and

a way of thinking. To keep them interested, tell them a story about symmetry,

or the vacuum, or the infinity, or the role of the observer, or the meaning of

probabilistic reasoning.

1.3 Structure of this article

In Section 2 we describe the SM Higgs mechanism and its problems. Alternative

models beyond the SM are presented in Section 3. A timeline for their searches

at the LHC is proposed in Section 4 along with a hypothetical timeline for

impacts of these searches on the physics community.

Three conceptual problems, among others, will be influenced by the LHC

results: the role of symmetry (Section 5), the use of effective theories (Section 6),

and the value of probabilistic reasoning (Section 7). Symmetry is both an apriori
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justification of physical theories and a tool for their construction. It is the

cornerstone of a worldview dating back from the early 1920s, which has proved

very successful for the 20th-century physics. In 1970s the fundamental notion

of symmetry was complemented by another key concept, the effective theory

approach. Both of these may have attained their limit. Physics of the 21st

century may be driven by new ideas like, for instance, duality relations or the

holographic principle. Perturbation theory used for building our current models

may cease to play the central role. A radically minded observer would claim that

we may witness an overwhelming victory of models with strong forces, where

perturbative methods are inapplicable. Be it true or not, even a conservative

ought to acknowledge that the long-serving physics toolkit was extended to

include new instruments.

The third conceptual question concerns probabilistic reasoning. It stems

from a sheer observation that doing cutting-edge physics is a difficult task and it

often remains beyond the reach of experimental verification. From the problems

of the Standard Model we know that we shall eventually find new physics. It

is also clear that in order to correspond to the available experimental data,

simple proposals for this new physics, not overladen with extra structure, must

be fine-tuned. Models that may be tuned not as highly are complicated and less

beautiful. In the absence of conclusive experimental data, some are tempted

to use reasoning based on the degree of fine tuning as argument pro or contra

particular theories. This surprising inference, as well as the reference to the

anthropic principle, raises the question of value and meaning of probabilistic

reasoning in theoretical physics.

Further conceptual questions could be asked, i.e., about the meaning and

the role of anomalies or concerning the fine distinction between the concept of

theory and that of model. These are left beyond the scope of present work.
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2 Meaning of the Higgs mechanism

The observed weak interaction is not locally gauge invariant. Its unification with

electromagnetic interaction must take this fact into account. This is achieved by

proposing a mechanism within the unification model, which puts the two interac-

tions back on unequal grounds. By offering one such mechanism the Standard

Model describes the electroweak symmetry breaking quantitatively, but does

not explain it [83, p. 8]. This mechanism, theorized in 1964 independently by

several different groups and named after Peter Higgs, can be summarized as

follows: a massless spin-one particle has two polarization states; a massive one

has three. The physical degree of freedom of the would-be Goldstone boson

from EW symmetry breaking is absorbed by the massless gauge boson in order

to allow it to increase the number of its polarization states from two to three

and to become massive. Massive gauge bosons will then account for the absence

of gauge symmetry in the observed weak interaction.∗

This description was quickly recognized to be not very compelling [45, p. 12],

precisely due to its lack of explanatory power. Many physicists did not find

important the conceptual problems of the Higgs mechanism simply because

they took it for no more than a convenient, but temporary, solution of the

problem of electroweak symmetry breaking. For example, Jean Iliopoulos said

at the 1979 Einstein Symposium: “Several people believe, and I share this

view, that the Higgs scheme is a convenient parametrization of our ignorance

concerning the dynamics of spontaneous symmetry breaking, and elementary

scalar particles do not exist” [59]. On a similar note, in an article written at the

end of 1970, Wilson had clearly stated his doubt: “It is interesting to note that

there are no weakly coupled scalar particles in nature; scalar particles are the

only kind of free particles whose mass term does not break either an internal or a

gauge symmetry. . . .Mass or symmetry-breaking terms must be ‘protected’ from

∗Ten years after the original proposal, the Higgs mechanism was interpreted as a solution
to the problem of maintaining unitarity of the weak interaction at high energies [69, 68]. This
view originated in the S-matrix approach, where unitarity is a condition imposed on S matrix
(see Section 6.3). Thirty years later the same line of thought produced higgsless models of
electroweak interactions which restore unitarity through extra dimensions [27].
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large corrections at large momenta due to various interactions (electromagnetic,

weak, or strong). . . . This requirement means that weak interactions cannot be

mediated by scalar particles” [108].

Things have seemingly changed since. The discovery ofW and Z bosons and

further experiments providing EW data have confirmed the Standard Model

with a very good precision, including quantum corrections. The result was

a change in the majority of physicists’ view on the scalar Higgs boson. By

2004, for example, Wilson has been completely assured: “A claim that scalar

elementary particles were unlikely to occur in elementary particle physics at

currently measurable energies . . .makes no sense” [109]. We have today more

confidence in the Standard Model; and we have learned that changing it could

only come with a great cost in adjusting the theory’s parameters, thanks to the

exceedingly large number of experimental tests with which they have to conform.

Still, two paths remain open for that who wishes to express uneasiness about

the SM Higgs mechanism.

The first path has to do with the lack of comprehension of the spontaneous

symmetry breaking (SSB). As Morrison notes [74], the Standard Model rests on

crucial assumptions about the nature of the vacuum, and yet these assumptions

are, in a very significant sense, not subject to direct empirical confirmation. For

Morrison, application of the SSB mechanism in the SM is a question about the

reality status of the SU(2)L×U(1)Y symmetry, i.e., an issue of physical ontology.

For Healey [55], it is an issue of providing a sound mathematical foundation of

the SSB mechanism, which would resolve the problem of comprehending SSB

in a rigorous language. Discovery of the Higgs boson would allegedly provide

more assurance that these two challenges could be met.

The second path is due to a problem of different nature with the SM Higgs

mechanism: experimental rather than methodological. Certainly the Higgs

mechanism is the most economical solution for breaking the electroweak sym-

metry. Moreover, the global fit of the electroweak precision data is consistent

with the Standard Model, giving some indications for the presence of a light

Higgs. These indications, however, are troublesome in the details: different
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ways of calculating the Higgs mass mH , based on different confirmed experi-

mental data, lead to incompatible predictions. The fit of the observables most

sensitive to mH has a probability of less than 2%. Giudice provides a compelling

demonstration of the arising tension [46]:

The preferred value of the Higgs mass is mH = 76+33
−24 GeV, with

a 95% CL upper limit mH < 144 GeV, raised to mH < 182 GeV

once the direct lower limit mH > 114 GeV is included [51]. There

are however some reasons of concern for the SM picture with a light

Higgs.

First of all, the decrease in the value of the top-quark mass measured

at the Tevatron has worsened the SM fit. In particular, the value of

the top mass extracted from EW data (excluding the direct Tevatron

measurements) is mt = 178.9+11.7
−8.6 GeV, while the latest CDF/D0

result is mt = 170.9± 1.8 GeV [24]∗.

Of more direct impact on the light Higgs hypothesis is the ob-

servation that the two most precise measurements of sin2 θW do

not agree very well, differing by more than 3σ. The bb̄ forward-

backward asymmetry A0,l
fb measured at LEP gives a large value of

sin2 θW , which leads to the prediction of a relatively heavy Higgs

with mH = 420+420
−190 GeV. On the other hand, the lepton left-right

asymmetry Al measured at SLD (in agreement with the leptonic

asymmetries measured at LEP) gives a low value of sin2 θW , cor-

responding to mH = 31+33
−19 GeV, in conflict with the lower limit

mH > 114 GeV from direct LEP searches [9]. Moreover, the world

average of the W mass, mW = 80.392 ± 0.029 GeV, is larger than

the value extracted from a SM fit, again requiring mH to be smaller

than what is allowed by the LEP Higgs searches.

The situation is summarized on Figure 1, where the predicted values of

physical Higgs mass from different observables are shown. While A0,l
fb prefers a

∗This is the 2007 result. The 2008 one is mt = 172.6 ± 0.8(stat) ± 1.1(syst) GeV [37].

11



MH   [GeV]

*preliminary

ΓZΓZ

σhadσ0

RlR0

AfbA0,l

Al(Pτ)Al(Pτ)

RbR0

RcR0

AfbA0,b

AfbA0,c

AbAb

AcAc

Al(SLD)Al(SLD)

sin2θeffsin2θlept(Qfb)

mW*mW

ΓW*ΓW

QW(Cs)QW(Cs)

sin2θ−−(e−e−)sin2θMS

sin2θW(νN)sin2θW(νN)

gL(νN)g2

gR(νN)g2

10 10
2

10
3

Figure 1: Values of the Higgs mass extracted from different EW observables.
The vertical line is the direct LEP lower limit of 114 GeV. The average is shown
as a green band [51].

relatively heavy Higgs, Al andmW require a very light Higgs already excluded by

LEP. Only when we average over all (partially inconsistent!) data, as Giudice

emphasizes, do we obtain the prediction for a relatively light Higgs and the

usual upper bound mH < 182 GeV. He then continues, “Although there is

little doubt that the SM gives a satisfactory description of the EW data, this

inconsistency of predictions makes the argument in favor of SM with a light

Higgs less compelling.” What is the meaning of the probabilistic argument

based on a 2% fit? In what sense exactly does it make the SM Higgs less

compelling?
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3 Some theories beyond the Standard Model

3.1 Big and little hierarchy problems

This section is adapted from Rattazzi’s account of what he calls the ‘LEP para-

dox’ [83]. We deliberately quote it at length, with only one modification: Rat-

tazzi’s discussion of fine tuning, scattered in the original all over the text, is

brought together in one final paragraph.

The Standard Model suffers from the ‘big’ hierarchy problem: in the La-

grangian, the Higgs mass parameter m2
H , which is related to the physical mass

by m2
h = −2m2

H , is affected by incalculable cut-off dependent quantum correc-

tions. Whichever new theory replaces the Standard Model above some scale

ΛNP, it is reasonable to expect, barring unwarranted cancelations, the Higgs

mass parameter to be at least of the same size as (or bigger than) the SM con-

tribution computed with a cut-off scale ΛNP. This way of estimating the size

of the Higgs mass is made reasonable by many explicit examples that solve the

hierarchy problem, and also by the analogy with the electromagnetic contribu-

tion to m2
π+ −m2

π0 . The leading quantum correction is then expected to come

from the top sector and is estimated to be

δm2
H ∼ −3λ2

t

8π2
Λ2
NP . (1)

This contribution is compatible with the allowed range of m2
h only if the

cut-off is rather low

ΛNP < 600× (
mh

200GeV
)GeV . (2)

Now, if the energy range of the SM validity is as low as 500 GeV – 1 TeV, why

did previous experiments not detect any deviation from the SM predictions?

Even though the center of mass energy of these experiments was significantly

lower than 1 TeV, still their precision was high enough to make them sensitive

to virtual effects associated with a much higher scale.

Effects from new physics at a scale ΛNP can in general be parametrized by

adding to the SM renormalizable Lagrangian the whole tower of higher dimen-

sional local operators, with coefficients suppressed by the suitable powers of
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ΛNP:

LNP
eff =

1

Λ2
NP

{

c1(ēγµe)
2 + c2W

I
µνB

µνH†τIH + . . .
}

. (3)

At leading order it is also sufficient to consider only the operators of lowest

dimension, d = 6. The lower bound on ΛNP for each individual operator Oi,

neglecting the effects of all the others and normalizing |ci| = 1, ranges between

2 and 10 TeV. Turning several coefficients on at the same time does not qual-

itatively change the result, unless parameters are tuned. The interpretation of

these results is that if New Physics affects electroweak observables at tree level,

for which case ci ∼ O(1), the generic lower bound on the new threshold is a few

TeV. The tension between this lower bound and eq. (2) defines what is known

as the little hierarchy problem.

The little hierarchy problem is apparently mild. But its behaviour with

respect to fine tuning is problematic. If we allow fine tuning of order ǫ then

the bound in eq. (2) is relaxed by a factor 1/
√
ǫ. The needed value of ǫ grows

quadratically with ΛNP, so that for ΛNP = 6 TeV we need to tune to 1 part in

a hundred in order to have mH = 200 GeV.

3.2 Supersymmetry

Among known solutions to the big hierarchy problem supersymmetry at first

appears to be the most satisfactory. This is mainly because it also leads to

the unification of coupling constants and provides dark matter candidates. The

main problem of supersymmetry is that neither the Higgs nor any supersym-

metric particles have been observed at LEP, while the most studied realization

of supersymmetry, MSSM, having a minimal field content, predicts the mass of

the lightest CP-even Higgs particle below 140 GeV [52, p. 55]. Comparing with

the LEP lower bound of 114 GeV, an official report concludes that MSSM has

the “‘fine tuning’ and ‘little hierarchy’ problems” [52, p. 57].

How much of a problem is the fine tuning will be discussed below. There are

different ways of quantifying its degree in MSSM. One way is to do a standard

calculation which leads to the result that MSSM is fine tuned at 1 to 5% [83,
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Figure 2: Phase diagram of a minimal supersymmetric model with universal
scalar mass m, unified gaugino mass M and Higgsino mass µ at the GUT
scale [47].
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p. 4]. Another way is illustrated in Figure 2. It shows the phase diagram of

a typical supersymmetric model. In a large fraction of parameter space (the

yellow area) we find a phase with symmetry breaking SU2 × U1 → U1 , show-

ing that the radiative EW symmetry breaking phenomenon is a rather typical

feature of low-energy supersymmetry. However, in most of this region, the su-

persymmetric particles have masses not far from MZ ; they have been excluded

by experimental searches. Only a thin sliver of parameter space survives (the

purple area), a measure of the amount of tuning that supersymmetric theories

must have in order to pass the experimental tests. The surviving region has the

characteristic of lying very close to the critical line that separates the phases

with broken and unbroken EW symmetry. Either minimal supersymmetry is

not the right solution or, if and when it is eventually discovered at the LHC,

we will have to understand why it lies in a ‘near-critical’ condition with respect

to EW symmetry breaking. And this discovery, if minimal supersymmetry is

correct, cannot be missed: we now have a no-lose theorem for the MSSM, which

stipulates that the MSSM lightest Higgs boson cannot be present in nature and

yet beyond the observational capacity of the LHC [53].

Another family of supersymmetric models, NMSSM, has lately become pop-

ular due to the expectations that MSSM may fail experimentally. The simplest

member of the NMSSM family (further called, as the whole family, NMSSM) is

a model which differs from MSSM by the introduction of just one neutral singlet

superfield. For NMSSM, there is only a partial no-lose theorem [35]. Indeed,

by its very design NMSSM is constructed so as to avoid the MSSM limitations

on the Higgs particle, and it is therefore natural to expect that the NMSSM

Higgs may escape observation at the LHC. At the tree level the NMSSM Higgs

sector has seven parameters, while the one of MSSM has four. Thus, NMSSM

has more freedom for fitting its parameters to the EW precision data: it is fine

tuned at about 10%, one order of magnitude above the MSSM [83, p. 4].

If supersymmetry is discovered, a difficult task for the experiments will be

to disentangle the various supersymmetric models and identify the pattern of

soft terms [46]. Not only can this problem be experimentally challenging [52,
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Section 3.3], but it can also be theoretically intricate due to the possible involve-

ment of a hidden sector in the running of TeV-scale SUSY terms to the Planck

scale. Identification of soft terms contributes to answering a more general ques-

tion of how supersymmetry is broken. Candidate SUSY breaking mechanisms

abound, covering a large spectrum of models from metastable vacua and the in-

volvement of gravity to several kinds of dynamical symmetry breaking [60], and

their phenomenology remains to be explored and confronted with experiment.

3.3 Little Higgs models

There exist various interesting models beyond the SM in which the Higgs is a

composite particle. In the last ten years appeared a new class of such models

called Little Higgs (LH) models. The idea is to overcome the little hierarchy

problem and make mH much smaller with respect to ΛNP than suggested in

eq. (1) by turning the Higgs into a pseudo-Goldstone boson. Consequently,

treating the Higgs as a pseudo-Golstone boson is prototypical of this class. The

Higgs mass is here protected by multiple approximate symmetries and it can be

generated only after collective symmetry breaking at two or more loops. The

distinctive feature at the LHC will be the production of new states of the W ,

Z, t.

Inspiration for the pseudo-Goldstone idea comes from low energy hadron

physics, where pions represent the Goldstone bosons associated with the sponta-

neous breakdown of chiral symmetry group SU(2)L×SU(2)R down to diagonal

isospin group SU(2)I . Quark masses mq and the electromagnetic interaction

αEM explicitly break chiral symmetry by a small amount, giving rise to small

pion masses. In particular, m2
π+ receives an electromagnetic correction of order

m2
π+ ∼ αEM

4π
Λ2
QCD ≪ Λ2

QCD. (4)

In analogy with this process, we could think of an extension of the Standard

Model where the Higgs particle is a composite Goldstone boson associated to

some new strong dynamics at a scale ΛStrong.

General scheme of symmetry breaking in the Little Higgs models is given on
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Figure 3. Its concrete realizations depend on whether G and F are chosen to

be a simple or a product group. For a product group, a typical representative

is the Littlest Higgs model [6], where G/H = SU(5)/SO(5) and F = [SU(2)×
U(1)]2. Example of a simple group little Higgs is G/H = [SU(3)/SU(2)]2,

F = SU(3)[×U(1)] [63].

Figure 3: A global symmetry group of the Little Higgs models G is sponta-
neously broken down to a subgroup H by the Goldstone mechanism. Only a
subgroup F of G is gauged, and therefore the SM electroweak gauge symmetry
is identified with I = F ∩H [25].

By replacing αEM → αt and ΛQCD → ΛStrong in eq. (4), we generically

expect, in analogy with QCD, m2
H ∼ αt

4πΛ
2
Strong. Since in this case ΛNP ∼

ΛStrong, this is the same order as the very big leading quantum correction to

mH . Therefore, the Little Higgs construction must avoid the appearance of the

lowest order contribution to m2
H .

Consider indeed the expression for the mass of a Higgs pseudo-Goldstone

boson, to all orders in the coupling constants

m2
H =

(

ci
αi

4π
+ cij

αiαj

(4π)2
+ . . .

)

Λ2
Strong .

We can think of couplings αi as external sources that transform non-trivially

under the Goldstone symmetry, thus breaking it, very much like an external

electric field breaks the rotational invariance of atomic levels. As in atomic

physics, the coefficients ci, cij , . . . are controlled by the symmetry selection

rules. We can then in principle think of a clever choice of symmetry group

and couplings such that the Goldstone symmetry is partially restored when any
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single coupling αi vanishes. In that situation only the combined effect of at

least two distinct couplings αi and αj can destroy the Goldstone nature of the

Higgs thus contributing a mass to it. The symmetry is said to be collectively

broken, ci = 0 and

m2
H ∼ (

α

4π
)2Λ2

Strong . (5)

From this equation we then expect ΛStrong ∼ 10TeV, which seems to be what

is needed to avoid the little hierarchy problem.

In the Little Higgs models there are two sources of operator contributions

to the Lagrangian of effective theory. The first source is associated to the yet

unknown physics at the cut-off ΛStrong, at which the Higgs is composite. It

necessarily gives rise to operators involving just the Higgs boson, where vector

bosons appear only through covariant derivatives. For ΛStrong ∼ 10TeV, these

effects are not in contradiction with the data. The situation would however be

bad if light fermions too were composite at ΛStrong, but, fortunately, fermion

compositeness is not a necessary ingredient of LH models. The second source

of effects is mainly associated with the intermediate vector bosons W±
H , ZH , . . .

with mass ∼ 1TeV. It leads to fine tuning LH models, and the calculated

amount of fine tuning for normally weak gauge couplings — below 10% — is

comparable with the amount of fine tuning in supersymmetry.

3.4 Models with extra dimensions

Until recently, Newtonian gravity has been tested only down to distances of the

order of centimeter. This left open the possibility that its behaviour could be

different below 1 mm. New experiments have put more severe constraints on a

possible departure from Newtonian gravity, but due to an enormous difficulty to

measure the gravitational force at short distances, these constraints are currently

too mild to be conclusive (Figure 4).

Thus, extra spatial dimensions could accommodate gravitational interac-

tions beyond reach of currently available data. Moreover, this could be done in

such a way that that the resulting picture contribute to the solution of the big

19



1 10 100 1000
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Excluded by

experiment

Lamoreaux

U.Colorado

Stanford 2

Stanford 1

U.Washington 2

gauged

B#

Yukawa messengers

dilaton

KK gravitons

strange

modulus

gluon

modulus

heavy q

moduli

Stanford 3

α

λ (µm)

U.Washington 1

Figure 4: Limits on the correction to Newtonian potential parametrized as
Yukawa force of strength α relative to gravity and of range λ. Also shown are
various theoretical predictions that would modify Newtonian gravity [42].

20



hierarchy problem. No new fundamental scale of 1019 GeV would be needed,

and the hierarchy between electroweak and Planck scales would be explained

away thanks to effects of gravity in extra dimensions. Two principal scenarios

realizing this idea are the ADD model with large extra dimensions [5] and the

class of Randall-Sundrum models with warped extra dimensions [82]. A third

class of models includes so called TeV−1 and universal extra dimensions, which

avoid addressing the big hierarchy problem.

The idea to relate physics of extra dimensions with observable phenomena

has first appeared in the context of string theory. Later on, it was realized

that stringy braneworld scenarios could be brought to the TeV scale without

the use of strings and developed into full-fledged models independently of one’s

preferred theory of quantum gravity.

Because extra spatial dimensions do not lead to modifications of gravity at

observable scales, they must be compactified. Upon compactification, the full

gauge group Gextra breaks down to Gweak, and the remaining extra dimensional

polarizations (if any) Aα
5 , A

α
6 , . . . are massless at tree level. Like in the Little

Higgs models, one can imagine that Gextra/Gweak contains a Higgs doublet at

EW scale. The extra dimensional symmetry then forbids large local contribu-

tions to the Higgs mass, implying that all remaining contributions to m2
H must

be associated to non-local, hence finite, quantum corrections [46].

In the large extra dimensions model, the SM fields (except for singlets like

right-handed neutrinos) are confined to the 3-dimensional brane while gravity

propagates in all 3 + n spatial dimensions. The n extra dimensions are com-

pactified, and, depending on n = 2 . . . 7, their characteristic radius may vary

from 1 mm to 10−15 m, hence the name ‘large’. In fact, ‘largeness’ is not ex-

plained and is a mere artifact necessary for removing the hierarchy problem.

The Planck-weak hierarchy is replaced by a new hierarchy problem, whereby

the gap between the scales of gravity and electroweak forces, though now much

smaller, still needs explication.

In this model, gravity is strong at the TeV scale and produces a continuous

tower of Kaluza-Klein states. Its signatures in collider experiments include di-
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rect graviton production and virtual graviton exchange in scattering processes.

LEP and Tevatron data together with constraints from cosmology have suc-

ceeded in excluding the case n = 2 as a solution to the hierarchy problem [67, 12].

However other options in the ADD construction remain open.

The TeV−1 extra dimensions model lowers the GUT scale by changing the

running of the coupling constants. Gauge bosons are in the bulk, and gravity is

not at all a part of this picture. Current limits set the lower limit of 6 TeV−1

on the characteristic radius of extra dimensions. The KK tower of the model

contains equally distanced excitations, which resembles the phenomenology of

yet another model called universal extra dimensions. In the latter, branes are

not present at all and all SM field propagate in the bulk.

Figure 5: Summary of experimental and theoretical constraints on the Randall-
Sundrum model for the case where the Standard Model fields are constrained
to the TeV-brane. Sensitivity of the Tevatron and of the LHC to graviton res-
onances in the Drell-Yan channel is represented respectively by the blue curve
and red dashed and solid lines, corresponding to 10 and 100 fb−1 of the LHC in-
tegrated luminosity. Thus, the full parameter space can be completely explored
at the LHC, which will either discover or exclude the simple RS model [56, 28].

Arguably most daring and conceptually innovating idea of extra dimensions

is based on the AdS/CFT correspondence [70]. It is a manifestation of the

fundamental concept of holography, born within string theory and imported in
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model building and phenomenology. Holography suggests that there exists a

deep relation between 5-d and 4-d theories. As in quantum mechanics, where

particles and waves are two different aspects of the same physical reality, con-

cepts of spatial dimension and force may turn out to be nothing more than dual

descriptions of the same phenomenon. In the Randall–Sundrum (RS) model [82],

interval y = [0, Rc] in the fifth dimension is warped by the metric

ds2 = e−2kydxµdx
µ + dy2. (6)

Geometrically, this is a slice of anti-de-Sitter space AdS5 with two branes (called

the TeV and the Planck branes) sitting at the boundaries of the slice, each of

which has the Minkowski metric. The picture of a TeV brane and a Planck

brane separated along the fifth coordinate can be replaced by the usual 4-d

renormalization group flow between infrared (TeV) and ultraviolet (Planck)

scales. In this sense, there is also a correspondence between position in the fifth

dimension and energy, which is typical of a gravitational field.

Length k−1 in eq. (6) characterizes the distance beyond which curvature

effects are important. Warp factor e−2ky describes therefore the red shift in the

energy of any process taking place at y relative to the same process taking place

at y = 0. As Rattazzi notes, this is conceptually analogous to the relative red

shift of light emitted in a given atomic transition by atoms sitting at different

heights in the gravitational field of the Earth [83]. However, unlike on Earth, in

the RS metric the curvature of space-time is large; the red shift is then huge and

can explain the big hierarchy problem between electroweak and Planck scales.

The peculiarity of the ADD and RS models is that phenomenological pre-

dictions at the TeV scale are combined with a solution of the big hierarchy

problem. In this sense both can be considered serious competitors of super-

symmetry. In the RS case, extra dimensions are small and can be stabilized

at kRc ≃ 11 − 12 [56]. Still, as in supersymmetry, the estimate of the amount

of fine tuning for the simple RS model due to electroweak constraints is at the

level of 10%, which is analogous to LH models [26]. The collider signature and

the allowed parameter space of the simple RS model (Figure 5) are such that
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the LHC will either confirm or completely exclude it. However, extensions of

the RS model, with fermions allowed to reside in the bulk, are more complex,

less fine tuned, and not so easily detectable experimentally.

4 The LHC physical and societal timeline

The main advantage of the LHC is that its event rate will be much higher than

at previous accelerators thanks to the center-of-mass energy of 14 TeV. In many

important channels, numbers of events produced per year will be 3 to 4 orders

of magnitude larger than at the Tevatron. However, it would be precocious to

claim that “the LHC will immediately enter new territory as it turns on” or that

“major discoveries could very well follow during the first year of operation” [44].

Historical precedents are ambivalent and suggest a more moderate rhetoric: if

the discovery ofW and Z bosons followed in the first month of collider operation,

ten years later it took the Tevatron much longer to start exploring truly new

territory [43].

The main problem of the LHC is that although signal rates will be larger

than at the Tevatron, in many cases signal-to-background ratios are expected

to be worse. For example, at 14 TeV the cross-section for background hadron

jets in searches of the Higgs boson at 150 GeV is five orders of magnitude larger

than the signal cross-section. Thus, the enormous QCD background completely

overwhelms the signal. To be able to detect the light Higgs on such a back-

ground, one has to spend considerable time on mastering the structure of the

background; and then to look for significantly less probable Higgs decay chan-

nels than the dominant mode of hadron jet production H → bb̄. The leading

detectable mode is a rare decay of the Higgs into a photon pair H → γγ [52,

p. 87]. Presence of the dominant decay into hadron jets may however suppress

the branching ratio of the photon mode by a factor of the order of 10 to several

hundred, depending on the coupling of the Higgs boson to new particles. It

is sometimes stated that this “raises serious questions as to the capability of

the LHC to discover the light Higgs boson” [52, p. 91]. To summarize, both the
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overly optimistic and the overly pessimistic exaggerations of the Higgs detection

will probably prove not to be true. It is clear that a gradual increase in lumi-

nosity and more statistics will be necessary before the LHC can start reaching

definitive conclusions.

Correct identification of the underlying new physics will not be easy too.

A percent level accuracy appears to be mandatory in order to have a suitable

sensitivity to discriminate between different models [52, p. 61]. For example,

universal extra dimensions, where all SM fields are in the bulk, can be mistaken

for the production of supersymmetric states [52, p. 63]. Similarly, distinguishing

between different Little Higgs models may require many years of data collection

at the LHC.

Slowness may become the keyword, and not necessarily an unwelcome one. If

the discoveries don’t pop up quickly, a meticulous, slow analysis of the collected

data will have more credibility than the promises of “the most glorious and

fruitful” epoch in the history of CERN [44].

Because of the little hierarchy problem, one expects that if there is SUSY at

the TeV scale, then masses of squarks and gluinos should not exceed 3 TeV. The

LHC may quickly discover SUSY at 1 TeV thanks to spectacular signatures of

the decays of sparticles in the form of missing energy due to undetectable LSPs.

However, it will take up to 8 to 10 years and a big increase in luminosity to

say if there is SUSY at 3 TeV. During all these years, while SUSY will not be

exactly falsified, the possible negative results will be dealt with by changing the

parameters of the theory, as it happened in the past with LEP2 searches. At

the same time, the failure to discover TeV-scale SUSY during the first year of

the LHC may result, sociologically, in a growing dissatisfaction of the physics

community with the idea of low-energy SUSY. We hypothesize that if by the end

of 2010 no Higgs particle below 140 GeV is found and no evidence for TeV-scale

SUSY is produced, the sociological effect may be such that new concepts, like

extra dimensions, will become the main focal point of the physics community.

Already today solutions of the hierarchy problem alternative to SUSY have

shown a clear gain in popularity [18, p. 6]. It may happen so that, without
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waiting for the full test of SUSY up to 3 TeV, theoretical physics will become

more interested in the notions of duality and the holographic principle and will

terminate its 30-year-long romance with supersymmetry. The latter will only

survive at high energies as a necessary ingredient of string theory. But in two

or three years its low-energy version as well as the general fascination with

supersymmetry may be both gone.

We adopt here with additions and modifications a timeline for the LHC

operation proposed recently by Seiden [90]:

• 2009: Supersymmetry if squarks and gluinos have masses around 1 TeV.

• 2009-2010: Higgs boson if its mass is around 180 GeV. A heavy Higgs

mainly decays into W pairs. The discovery may be quick and only require

integrated luminosity of 5-10 fb−1 thanks to the essentially background-

free four-lepton channel H → 4l [43]. If the Higgs has mass in this range,

it may however be discovered by the Tevatron before the LHC.

• 2009: Extra dimensions if gravity scale is around 1 TeV. This will result in

a copious production of mini black holes with a spectacular signature∗, be-

cause evaporation of black holes through the Hawking radiation produces

unique ratios of photons and charged leptons compared to quarks [77, 66].

However, making the distinction between different models with extra di-

mensions will be neither easy nor quick.

• 2009-2011: Z ′ if its mass is around 1 TeV. Evidence of a new U(1) gauge

boson Z ′ with couplings identical to the Standard model levels could be

made with as little as 100 pb−1 of integrated luminosity [84], placing it

as early as 2009. However, the necessity to measure Z ′ couplings and to

distinguish it from other candidate particles will delay confirmation, with

a 3σ result possible at 10 fb−1 of integrated luminosity; a 5σ result with

30 fb−1 [79].

∗Recently doubts have been expressed as for how profuse the production of black holes
may be, if any at all [73].
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• 2010: Simple Randall-Sundrum model will be found or excluded. Warped

extra dimensions have a special signature consisting in resonance produc-

tion of spin-2 gravitons. This makes the RS1 model easily detectable at

the LHC at already 10 fb−1 of integrated luminosity.

• 2010-2011: Higgs boson if its mass is around 120 GeV. Rarity of the

Higgs decay into photon pairs will require more and better statistics than

needed for a heavy Higgs. Thus, the light Higgs will require more than

10 fb−1 of integrated luminosity, which may take up to 3 years of the

LHC operation [44]. Input from both ATLAS and CMS and contribution

of observations from other minor channels will be crucial for distilling a

convincing signal of the light Higgs.

• 2012: Extra dimensions of space if the energy scale is 9 TeV.

The first upgrade of the LHC will take place in 2012 or 2013, leading to a

2 to 3 times increase in luminosity. Decisions with regard to the future of the

machine will hugely depend on the discoveries that the LHC will have made by

then. It may for example happen that the planned second upgrade (10 times

increase in luminosity) will never become reality or be delayed due to political

or financial reasons. Therefore the following long-term estimates are extremely

speculative and only reflect our current knowledge of physics. More accurate

estimates for the LHC functioning after the first upgrade will become possible

by 2012.

• 2013: Compositeness if quarks are actually composite particles instead of

being fundamental and that their composite nature reveals itself on an

energy scale of 40 TeV.

• 2017: Supersymmetry if the appropriate energy scale is 3 TeV.

• 2019: Z ′ if a new strong force comes into play at 6 TeV. Although Z ′

decaying into e+e− is one of the easiest objects to discover at the LHC

already during the first year of operation [43], careful analyses are required
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to distinguish various Z ′ from possible manifestations of new physics which

can have a somewhat similar phenomenology, but a completely different

physical origin [52, p. 62]. For example, signatures similar to composite

Higgs models could be observed in decays of the lightest Kaluza-Klein

excitations in models with large extra dimensions.

• 2019: Extended Randall-Sundrum models with fermions in the bulk. In

such models dominant decay channels of gravitons in the simple RS model

are suppressed [2]. One then needs significantly more precision, including

the measurement of spin 2 of the graviton, which will require an integrated

luminosity of at least 100 fb−1.

5 Symmetry

5.1 Role of symmetry

The 20th century was a “century of symmetry” [71]. At its beginning, Einstein

elevated the principle of invariance to the status of fundamental postulate. A

decade later, Weyl introduced gauge symmetry in an ingenious move consisting

of bringing down to the local level a notion of symmetry previously only thought

of globally, as one symmetry for all space. Weyl was the first to write the

action of a symmetry transformation at individual spacetime points and to

allow this action to depend on the point in question. He was also the first to

treat symmetry groups as relevant to the construction of physical theory. His

use of group theory and of the notion of local gauge invariance have paved the

way to the century of symmetry.

The method of local gauge symmetry was put to practical use by a genera-

tion of young physicists developing quantum theory in 1920s and 1930s. Fock,

Schrödinger, Dirac and others have made lasting contributions. Today Weyl

stands together with Eugene Wigner as founding fathers of the modern view

of physics of which symmetry is the cornerstone. Summarized in Weyl’s and

Wigner’s seminal books [104, 106], this view emphasizes two chief aspects of

symmetry (other aspects have also been discussed in the literature [15]).
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First, symmetries have a normative role: they are a priori constraints on

physical theories. We do not derive symmetries from dynamical laws, as did

Poincaré; on the contrary, we postulate symmetries and use them to derive

dynamical laws. Symmetry participates in the dynamics and acquires its own

constitutive power: e.g., symmetry which remains after symmetry breaking in

the process of cosmological evolution is dynamically constituted. This new

power of symmetry required conceptualization. Living at the time when every

major physicist had a serious interest in philosophy, Weyl argued for a revision

of Kantian epistemology which would make room for his claim that “all a priori

statements in physics have their origin in symmetry”. Thus, for Weyl, not only

symmetry is a priori, but all physical a priori stems from symmetry principles.

The latter, as a consequence, take the place of Kantian transcendental categor-

ical basis of science. Wigner, although much less explicitly philosophical than

Weyl, defended a similar view of symmetries when he said that “symmetries are

laws, which the laws of nature have to observe” [107]. Symmetries, for Wigner,

are therefore ‘laws of the laws,’ which is equivalent to Weyl’s assertion that their

normative role can be described as transcendental a priori.

Second, symmetry plays a heuristic role for the construction of modern phys-

ical theories. Gauge theory has been progressing since its introduction by Weyl

in 1918 and has attained the level of an indispensable, if not taken for granted,

element of model building in theoretical physics. Other symmetries, like an

early Heisenberg’s ‘discovery’ of permutation symmetry in 1926, or the CPT

symmetry, shape the form of theories in which they are postulated. Thus, prag-

matically speaking, symmetry principles “dictate the very existence” [103] of all

the known forces of nature. This heuristic role, allowing for the construction of

dynamical laws via established formalisms, gives to symmetry an instrumental

status. By putting together the transcendental a priori role of symmetry and its

heuristic value, one arrives at a transcendental-instrumental view on symmetry

proposed by Ryckman [87].

It is interesting to note that the point of view according to which symmetry is

“the secret of nature” [50] is not unanimous. With respect to global symmetries,
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the opinion that they are “unnatural” is not infrequent [93]. However very

few oppose the role of local symmetries as a postulate describing invariance of

physical phenomena under an abstract, theoretical transformation. Still such

opponents exist; they would like to see symmetry emerge as a property of a

fixed point or an asymptotic solution of the underlying equation which in itself

would have no symmetry [39, 40, 36]. The debate between the two points of

view resorts to subjective arguments about what is more beautiful, but it also

makes the point that the reductionist program associated with the postulation

of symmetries and the consequent derivation of laws has proved more efficient

than the opposite idea of starting with ‘nothing’ and getting ‘something’ [49].

The future will show whether an advanced physical theory is possible that would

not be based on symmetry principles.

5.2 Symmetry breaking

Looking for symmetric solutions to symmetric problems simplifies the construc-

tion of the solution, but there are situations in which the symmetric solutions

are not, in Iliopoulos’s words, “the most interesting ones” [59]. If a symmetry

available in the model is not present in the physical solution of the model’s

equations, then it must be ‘broken’, i.e., the theory must contain a descriptive

account of why the symmetry in question does not exist in the exact sense. There

are two types of mechanisms for symmetry breaking: explicit and spontaneous

symmetry breaking. Both of them emphasize the heuristic role of symmetry in

model building. Indeed, when at the end of the construction symmetry is broken

so that it is completely unobservable, using this very symmetry as an a priori

postulate may simply be empirically inadequate. While not seen by Weyl [104,

pp. 125-126], this argument about empirical inadequacy of a priori constraints

has played a role in the establishment of Friedman’s idea of relativized a pri-

ori [38] and particularly in the discussion initiated by van Fraassen [98]. To save

the symmetry method of model building, one has to provide an explanatory ac-

count of the divergence between empirical reality and the postulates needed for

model construction. Thus, breaking the symmetry while preserving its benefits
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is indeed “the main challenge in model building” [83, p. 8].

In the group-theoretic treatment of symmetry, symmetry breaking amounts

to saying that the system is invariant under the action of a subgroup rather

than the full group corresponding to unbroken symmetry. Symmetry breaking

can therefore be described in mathematical terms through a relation between

transformation groups. This fact provides a natural language for the description

of physical models as possessing such-or-such full symmetry group, broken down

to one or another of its subgroups.

Explicit symmetry breaking occurs in virtue of terms in the Lagrangian of

the system that are not invariant under the considered symmetry group. The

origin of such terms can vary: they could either be introduced manifestly, for

instance in the case of parity violation; or appear as anomalies on the path

from classical to quantum field theory, like violation of chirality; or even appear

in regularization schemes as side effects of the introduction of a cut-off. For

example, collective symmetry breaking is a new concept in symmetry breaking

methods, introduced in the Little Higgs models. It requires two interactions to

explicitly break all symmetries that protect the Higgs mass. At the one-loop

level symmetry breaking does not occur and is only triggered by the second

order terms (see Section 3.3).

Spontaneous symmetry breaking (SSB) corresponds to situations where sym-

metry is not broken explicitly, but the solution of the equations is however not

symmetric. In gauge theory, the choice of the solution is typically the choice of

a particular ground state of the theory, which is not invariant under the symme-

try transformation. The original symmetry, although broken, is still ‘hidden’,

meaning that we cannot predict which non-symmetric ground state will be cho-

sen. Thus, this choice is not a dynamical process in the sense of unitary time

evolution. Viewed strictly from within quantum field theory, SSB is a not a pro-

cess at all: ‘breaking’ only occurs in the theorist’s mind when he writes, first,

a QFT Lagrangian with exact symmetry and then another, different QFT La-

grangian, where this symmetry is broken. The two lagrangians aren’t connected

by physics. They do not correspond to the descriptions of some system either at
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earlier and later times or as synchronic or diachronic cause and effect, as Curie’s

principle would require [11, 62].∗ Strictly within QFT, SSB and time evolution

are unrelated. Thus, SSB becomes here but a mere tool for model building,

providing a strong case in favour of the instrumental approach to symmetry in

quantum field theory.

To take a typical example, the full symmetry in a model containing left and

right fermions corresponds to group SU(2)L × SU(2)R. Right-handed fermions

are not a part of the observed reality and must be excluded from the Standard

Model. Spontaneous symmetry breaking then consists in giving a non-zero vac-

uum expectation value (vev) to the Higgs doublet that exists in this general

model; it leads to reducing the full symmetry group down to the diagonal sub-

group SU(2)V called custodial symmetry. The choice of a particular vev for the

Higgs boson cannot be predicted theoretically and must be deduced from exper-

imental data. Once determined, the vev appears explicitly in the Lagrangian of

the new QFT with broken symmetry.

A philosophical question about symmetry breaking is why we search for a

way to obtain a symmetric, rather than asymmetric, laws and why we assign the

observed asymmetry to solutions, not directly to laws [32]. As Kosso puts it,

“Why not just give up on the idea of gauge symmetry for the weak interaction,

given the evidence that it is not gauge invariant? Is there good reason for

the commitment to the gauge principle. . . even if that symmetry is hidden in all

circumstances?” [64]† Another way to ask the same question would be to wonder

at a paradoxically sounding but precise phrase by David Gross: “The search for

new symmetries of nature is based on the possibility of finding mechanisms,

such as spontaneous symmetry breaking or confinement, that hide the new

∗Numerous discussions of symmetry in physics focus on Curie’s principle and argue some-
times that spontaneous symmetry breaking provides an argument against it [16]. In our view,
strictly quantum field theoretic SSB is irrelevant for the analysis of Curie’s principle. Simi-
larly, claims that SSB represents a “failure of determinism” [31] cannot be grounded in the
pure quantum field theory but require an additional speculative cosmological model.

†With respect to the weak interaction the answer is that we need gauge invariance in
order to obtain a renormalizable theory. The question still holds in the general sense: why,
conceptually, do we need to use quantum field theoretic models, like Yang-Mills with its
divergences and the necessity of gauge symmetry to avoid them, rather than using a theory
which would not postulate a symmetry only to break it at the next stage of model building?
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symmetry” [50, our emphasis].

Castellani following Earman provides a useful insight by connecting this

question with Curie’s assertion that the absence of certain elements of symmetry,

or dissymmetry, is what creates the phenomenon [31, 23]. The normative a priori

role of symmetry as ‘law of the laws’ places it in the transcendental background,

making symmetry the condition of possibility of lawfulness in physics. No law

is possible other than determined by, and derived from, a symmetry.

This transcendental argument, which sets up the condition of possibility of

lawfulness, needs explication. Physical law is what applies to many individ-

ual experimental cases, of which it provides a uniform, and unified, treatment.

There cannot be a law without the existence, by postulation, of common fea-

tures among these diverse experimental situations. If there had been no common

trait between them, no method nor language for making the comparison between

disparate occurrences, then indeed no unification of these occurrences would be

possible. Symmetry is the tool that we employ to name these common traits and

to manipulate them within a theory, whereby we establish connections between

them under symmetry transformations. Thus, symmetry becomes unavoidable

if one is willing to unify physical theories.

It is for those who represent physics as a series of theoretical unifications

that the symmetry group obtains the transcendental meaning given to it by

Weyl. Now, it is individual phenomena that are governed by the law estab-

lished with the help of a priori symmetry. We have postulated the existence

of common traits between them. As in the case with a priori constraints, this

postulate may not always be empirically adequate. If we are interested in a sin-

gle given phenomenon, or an individual solution of the equations of a physical

model, there is no reason why this particular occurrence would be completely

described by the features that had previously been identified as common to a

class of phenomena. It may well be that the complete description require the use

of unique properties, which do not transform under the symmetry group or even

aren’t subject to physical law. Therefore, in the description of a unique phe-

nomenon we must be ready to encounter unique descriptive elements alongside
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lawful properties stemming from the considerations of symmetry.

Complete description of a particular phenomenon may be unpredictable.

One usual example is the measurement problem in quantum mechanics. The

value observed in a given measurement is random although the quantum system

evolves on the lawful background of unitary dynamics. Predictions of the theory

are probabilistic and do not completely determine the result of any one given

measurement.

From the cosmological point of view where it is treated as a dynamical pro-

cess, spontaneous symmetry breaking in the EW sector is another example of

unlawful feature of the particular Universe in which we live, although this Uni-

verse is described by the physical law based on symmetry. The earlier state with

the full a priori symmetry is physically lawful, and to generate a unique case we

must resort to chance. Thus, from the point of view of cosmological evolution,

the Higgs vev is what it is in nature very much like the result of one particular

measurement in quantum mechanics is what it is; the theory does not predict

it. To summarize, dynamically perceived spontaneous symmetry breaking is a

manifestation of the unlawful uniqueness of a particular solution. We frame it to

the largest possible extent in a rigorous mathematical setting, which describes

the symmetry breaking mechanism and leaves us with one bare unpredictable

number that only the experimental data will supply. Healey’s sincere predica-

ment before the failure to find a satisfactory dynamical explanation of the Higgs

mechanism is but an indication that the purpose of this mechanism is to provide

a description of the unlawful randomness [55, p. 174].

5.3 Naturalness and symmetry

Arguments from naturalness have dominated QFT research in a very significant

way in the last 25 years. The first historic notion of naturalness in particle

physics, formulated by Gerard ’t Hooft, connects it with symmetry:

The naturalness criterion states that one such [dimensionless and

measured in units of the cut-off] parameter is allowed to be much
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smaller than unity only if setting it to zero increases the symmetry

of the theory. If this does not happen, the theory is unnatural. [96]

The connection with symmetry could have allegedly provided a philosophical

background for naturalness, based on the transcendental justification of sym-

metry; this did not happen. The notion has evolved, and its current meaning

is rarely justified differently than by saying that naturalness is a “question of

aesthetics” [29] or “the sense of ‘aesthetic beauty’ is a powerful guiding princi-

ple for physicists” [45]. For sure, arguments from beauty such as they appear

when one speaks of naturalness in natural science may turn out to be either

extraordinarily fruitful or completely misleading. Polkinghorne, for example,

discusses at length the power of beauty in mathematics [81]. However, what

he calls “rational beauty” and applies to physics rather than mathematics can

only be admired post factum, i.e., when we have established a sound scientific

account in agreement with nature. For the universe is not just beautiful; one

can also discern in it ‘futility’ [101] or inefficiency [30]. Thus, using beauty as

a guidance rule, prior to verification of the theory against experimental data,

is logically unsound and heuristically doubtful. It can at best be warranted by

arguments from design.

The first modern meaning of naturalness is a reformulation of the hierar-

chy problem. This arises from the fact that masses of scalar particles are not

protected against quantum corrections, and keeping a hierarchical separation

between the scale of EW symmetry breaking and the Planck scale requires the

existence of some mechanism that would naturally explain such a hierarchy. Al-

though the difference in hierarchies is a dimensionless parameter much smaller

than unity ( 103GeV
1019GeV = 10−16), setting it to zero is out of question because grav-

ity exists even if it is weak (one exception from this argument are models with

large extra dimensions, where the scale of gravity is different from 1019 GeV).

With all its known problems, the Standard Model does not become more sym-

metric in the hypothetical case where gravity is infinitely weaker than weak

interactions. Thus, ’t Hooft’s criterion does not apply, and the notion of nat-
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uralness as the hierarchy problem indeed differs from the one he defined. This

new meaning of naturalness leads to the use of fine-tuning arguments and will

be further discussed in Section 7.

For Giudice [45, p. 9-10, 20], the second ingredient of the naturalness crite-

rion is the use of effective field theories. He claims that “if the experiments at

the LHC find no new phenomena linked to the TeV scale, the naturalness cri-

terion would fail and the explanation of the hierarchy between electroweak and

gravitational scales would be beyond the reach of effective field theories. But if

new particles at the TeV scale are indeed discovered, it will be a triumph for

our understanding of physics in terms of symmetries and effective field theories.”

Effective field theories and their role will be discussed in Section 6.

Thus, the word ‘naturalness’ is used in several non-equivalent situations and

can have different meanings depending on the authors. One example is however

commonly agreed as a test for the naturalness criterion. Split supersymmetry

is a high-energy SUSY scenario, which abandons naturalness for the use of an

anthropic argument requiring that at low-energy the theory allow the existence

of complex chemistry (atoms other than hydrogen). It is also required that

the lightest supersymmetric particle, a neutralino, provide the dark matter of

the universe. In split supersymmetry squarks and sleptons are made heavy,

maintaining the predictions of gauge-coupling unification, but discarding a too

light Higgs, fast proton decay and the flavour problem [46]. This scenario is

argued to have a detectable experimental signature, in particular through its

CP-violating mechanism. If found at the LHC, split supersymmetry will pro-

vide tangible experimental evidence against use of the aesthetically motivated

naturalness criterion in physics.

6 Effective field theory

6.1 EFT approach

The notion of renormalizability in the context of quantum field theory (QFT)

and its early representatives like quantum electrodynamics (QED) was devel-
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oped by Bethe, Schwinger, Tomonaga, Feynman, and Dyson. The latter intro-

duced crucial power-counting techniques for the analysis of operator relevance.

Since his 1949 work and up to 1970s renormalizability had been thought of as

a necessary condition for a quantum field theory to make sense. Wilson’s work

on the renormalization group has paved the way to a change of attitude toward

renormalizability. This was mainly due to a change of attitude toward the real-

ity of the renormalization cut-off. In the older understanding, the cut-off scale

was a residue of abstract mathematics introduced with the only goal of avoid-

ing infinities in summation series. The new appreciation of non-renormalizable

theories came with the understanding that the cut-off could be taken as phys-

ical and corresponding to the limit of applicability of a given theory. Thus

the domain of applicability of QFTs has become clearly limited by a number

denoting an energy scale. QFTs started to be seen as effective field theories

(EFTs) valid up to some frontier rather than fundamental theories of nature.

Wilson’s work and Weinberg’s reintroduction of EFTs as useful theories with

‘phenomenological Lagrangians’ [99, 100, 102] boosted this new view on EFTs.

Much of the historic development of EFTs focused on the top-down ap-

proach, where the fundamental physical theory is known but is inapplicable for

practical purposes. These may be due to complexity of the high-energy theory

or, as in the case of EFT in condensed matter physics, “Even when one knows

the theory at a microscopic level (i.e., the fundamental theory), there is often

a good reason to deliberately move away to an effective theory” [91]. A typi-

cal example from particle physics is the chiral perturbation theory, which gives

a low-energy approximation of quantum chromodynamics (QCD) in the light

quark sector (for a review see [80]). But the top-down approach has a longer

history: one of its first examples involves the Euler-Heisenberg calculation in

the 1930s of photon-photon scattering at small energies within the framework

of Dirac’s quantum field theory.

The LHC physics uses a different EFT approach, sometimes called ‘bottom-

up’. Its popularity reflects a change in the way in which EFTs are now conceived.

Today physicists tend to think of all physical theories, including the Standard
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Model, as EFTs with respect to new physics at higher energies.

A typical model-building scenario, following Wilson, starts with Lagrangian

of an effective field theory (EFT) valid up to scale Λ. This Lagrangian can be

generally written as a sum over local operator products:

L =

∞
∑

n=0

λn

Λn
On. (7)

Coefficients λn are coupling constants. They encode information on the physics

at scales higher than Λ and can be fixed experimentally or through a calculation

by the renormalization group if the underlying high-energy theory is known.

The only constraints on the form of operator product terms On come from

symmetries of the theory.

The main value of Lagrangian (7) for the LHC physics is that one can use

it to study low-energy effects of new physics beyond the SM without having to

specify what this new physics actually is. Tree level of the power series in 1
Λ is

obtained by the usual Standard Model calculation. Effects of new physics appear

in loop corrections and influence the value of coupling constants λn. Thus, after

the concept of symmetry, that of EFT is the second most important instrument

for the construction of new models to be tested at the LHC. A disadvantage

is that it does not allow us to establish correlations of new physics effects at

low and high energies. The number of correlations among different low-energy

observables is also very limited, unless some restrictive assumptions about the

structure of the EFT are employed [61, p. 2].

For example, consider a ‘top-down’ electroweak EFT that reproduces the

SM for the light degrees of freedom (light quarks, leptons and gauge bosons)

as long as energies involved are small compared with the Higgs mass [80]. This

EFT is Higgless in the sense that it cuts off the Higgs sector by choice of Λ.

The lowest order effective Lagrangian fixes the masses of Z and W bosons at

tree level and does not carry information on the underlying symmetry breaking

SU(2)L×U(1)Y → U(1)QED. At the next order the most general effective chiral
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Lagrangian with only gauge bosons and Goldstone fields,

L(4)
EW =

14
∑

i=0

aiOi, (8)

contains 15 independent operators. This complexity is essential as it stems from

the requirement that we use the most general form of the Lagrangian compat-

ible with symmetry principles. Gell-Mann has even formulated this rule as a

“totalitarian principle” which states that everything which is not forbidden is

compulsory [13]. Weinberg insists that absence of any assumption of simplicity

about the Lagrangian is what makes EFT so efficient [103, p. 246]. For La-

grangian (8), constraints from symmetry include invariance with respect to CP

and SU(2)L×U(1)Y . Also, three of the fifteen operators vanish as a consequence

of the equations of motion under the assumption of light fermions. With the

remaining terms, one finds various effects such as the usual electroweak oblique

corrections (6 operators involved at the bilinear, 4 at the trilinear and 5 at the

quartic levels), corrections to rare B and K decays, the CP -violating parame-

ter, etc. Thus, the approximation of a very large Higgs mass in the SM gives an

EFT which possesses predictive power, providing a simpler than the complete

SM way to make calculations.

6.2 Philosophy of EFT

Three philosophical ideas quickly come to mind with respect to EFT. These

have been discussed since a somewhat controversial early study by Cao and

Schweber [19, 20] and form today the core of the philosophical debate. Cao

and Schweber argued that EFT commits one to ontological pluralism, antire-

ductionism and antifoundationalism.

Ontological pluralism is a form of realism which stipulates the view of real-

ity as a tower of quasi-autonomous layers, each of which can be described by a

physical theory without reference to the underlying layer. Not only this realist

point of view can be criticized [85, 54], but the layer autonomy is in itself doubt-

ful. While the latter is admitted for all practical purposes in model building,

physics shows that there is no obvious decoupling of the layers unless we are
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in possession of a high-energy renormalizable theory. A theorem by Appelquist

and Carazzone states that in a renormalizable high-energy theory with exact

gauge symmetry, a low-energy EFT can be given without reference to massive

particles at the price of rewriting the Lagrangian with renormalized coupling

constants [4]. However, decoupling of the levels does not necessarily arise in the-

ories with spontaneously broken symmetry, where mass generation through the

mechanism of symmetry breaking is associated with interaction terms. Because

of this, and with the acceptance of non-renormalizability as unpathological fea-

ture of QFTs, strict decoupling has become less important. It was replaced by

a milder form of the decoupling thesis suitable for use of the EFT method in

the description of new physics effects at energies of the order of 1 TeV. Thus, in

the LHC physics, decoupling of the levels is not warranted by theory; it is only

grounded in the empirical fact that the SM predictions correspond very well to

the experimental data, and with respect to them any corrections coming from

new physics must remain minor. Hence, it is hypothesized that the NP layer de-

couples from the electroweak scale. Mildness of this empirical decoupling thesis

leaves open a possibility of its breakdown, i.e., of a tension between the levels

leading to problems with formulation of the effective theory. One such tension

is exactly reflected in the little hierarchy problem.

If the claim of ontological pluralism made by Cao and Schweber appears

too far-fetched, their antireductionism argument has produced a lively debate

(see [57, 22]). As Shankar puts it, “Often the opponents of EFT or even its

practitioners feel they are somehow compromising” [91]. One thus finds physi-

cists who argue for a reductionist perspective on EFT; for instance, Giudice

writes unabashedly, “Effective field theories are a powerful realization of the

reductionist approach” [45]. Others, e.g., Georgi, are more cautious and anti-

reductionist. What emerges, although not without disagreement, is that EFT

enables the argument that fundamentality of theories is a provisional, almost

uninteresting attribute. The tower of EFTs effectively leads to the renunciation

of the search for a complete description of new physics. This renunciation is nei-

ther hic et nunc nor circumstantial. It is a methodological anti-foundationalist
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stance opening a way to do high-energy physics without having to search for a

unified theory.

Eventually the fundamental theory will have to surface. If it does not, then

we’ll be left with a tower of EFTs. This tower will not inherit all the method-

ological advantages that an individual EFT, useful in calculations, has over

a yet-to-be-found fundamental theory. The tower will become complicated as

significantly more higher-dimensional operators will appear at higher orders in

Λ. To respond to the continuing demand of accounting for new minor details,

EFTs will have to be supplied with additional parameters. As a result, for

Hartmann, “the predictive power [of the EFT tower] will go down just as the

predictive power of the Ptolemaic system went down when more epicycles were

added” [54, p. 296]. Perhaps even more vividly than Ptolemaic epicycles, doubts

about the significance of theories based on postulated principles, viz. symmetry

principles or the decoupling, have been expressed by Einstein.

After his paper describing the photoelectric effect in terms of light quanta,

Einstein’s belief in the fundamental character and the exact validity of Maxwell’s

electrodynamics was destabilized. As he wrote in his 1949 Autobiographical

Notes,

Reflections of this type [on the dual wave-particle nature of radi-

ation] made it clear to me as long ago as shortly after 1900, i.e.,

shortly after Plancks trailblazing work, that neither mechanics nor

electrodynamics could (except in limiting cases) claim exact validity.

By and by I despaired of the possibility of discovering the true laws

by means of constructive efforts based on known facts. [33, p. 51, 53]

Einstein’s desperation has led him to propose special relativity. The price to be

paid was a retreat to the principle theory approach, described by Einstein in

1919 as the opposite of ‘constructive efforts’. Already since 1908 Einstein had

expressed his concern with principle theories, based on postulated principles,

as being in some respect ‘less fundamental’ than constructive theories based on

“known facts”. This was mainly due to Einstein’s urgent feeling of a necessity
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to provide a theory that would describe rods and clocks, viz., the measurement

apparatus of special relativity, on equal grounds with other physical systems.

Current debate on principle theories has been focused on this question [17, 48],

overlooking the following different aspect of Einstein’s 1905 situation.

Einstein’s hope was to construct a new theory based on known facts. Facts

however proved to be insufficient: “It was if the ground had been pulled out

from under one, with no firm foundation to be seen anywhere, upon which one

could have built” [33, p. 45]. So Einstein resorted to what seemed to him a

less fundamental, lighter foundation for theoretical physics. On the example of

thermodynamics, he elevated the relativity principle to the status of universal

postulate and derived the theory of special relativity. Similarly, with the LHC

physics we are in a situation when known facts are as yet insufficient for the

construction of a new theory. We have then chosen a less fundamental EFT

approach based on general principles rather than known facts.

Unlike Einstein, whose special relativity has enjoyed a long life, new facts

that will soon be available may terminate our doubts and lay the missing em-

pirical basis on which a new physical theory will be chosen. Still, according to

the EFT view, although the new theory will describe all known facts, we should

take it as a limited effective solution with respect to unknown physics at yet

higher energies. At the same time, the status of our current ‘bottom-up’ EFTs,

which we use in absence of the more fundamental theory, will be downshifted

after its advent. Their use will be severely limited and they will stay as mon-

uments to the physicists’ perseverence. There will be no tower of EFTs: new

EFTs may be used for physics at yet higher energies, but older EFTs will lie as

ruined stones torn down from the tower. Furthermore, if one day we discover a

unique full theory that wouldn’t use QFT methods, then our idea of bottom-up

EFT may be altogether wrong.

6.3 Pragmatic view of EFT

The most appealing modification of the ontological pluralism thesis was pro-

posed by Hartmann. Based on a discussion of Georgi’s writings, he argues that
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a viable solution to the troubles of ontological pluralism would be to regard EFT

as purely pragmatic, without seeing in it a commitment either to reductionism

or to anti-reductionism. When Georgi writes,

In addition to being a great convenience, effective field theory allows

us to ask all the really scientific questions that we want to ask with-

out committing ourselves to a picture of what happens at arbitrarily

high energy, [41]

he means by “all the really scientific questions” that EFT is a pragmatic ap-

proach to the unknown new physics which is focused only on its effects observ-

able as corrections to the SM predictions for the experiments at our current

technological reach. The pragmatic strategy would then consist in focusing on

these corrections as having the primary importance. All other content of new

physics is neglected and other ‘really scientific questions’ that one may have

with regard to new physics are not taken into account. This evokes a parallel,

emphasized by Weinberg, between EFT and the theory of S-matrix. Indeed,

the S-matrix approach only asked ‘practical’ questions about the yet unknown

theory of strong interactions, formulated in the language of physical observ-

ables, and methodically avoided the need to have a full theory. In the LHC

physics the unknown is not the theory of strong and weak interactions but new

physics beyond the SM. With little prospect for distinguishing in the near fu-

ture between the different alternatives for this new physics, EFT allows us to

develop a consciously and purposefully model-independent approach, where all

that matters about the new unknown physics are its observable effects.

This is not the full story though. The analogy with the S-matrix suggests

that there exists an aspect in the EFT approach to new physics at the LHC that

has a counterpart in the S-matrix case but has none in other, ‘top-down’ uses of

EFT like the chiral perturbation theory. In 1950s it has not been clear whether

QFT with its gauge symmetry method was an appropriate framework for build-

ing a theory of strong interactions∗. The hope of S-matrix, writes Weinberg,

∗A very telling example of this is a 1954 (same year as the work by Yang and Mills)
discussion involving, among others, Oppenheimer, Gell-Mann, Fermi, Wick, and Dyson, in
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“was that, by using principles of unitarity, analyticity, Lorentz invariance and

other symmetries, it would be possible to calculate the S-matrix, and you would

never have to think about a quantum field...” [103, p. 248]. This is in complete

analogy with the situation with EFT, whereby the terms in the Lagrangian must

be written in the most general form compatible with symmetry principles. Just

as S-matrix allows one not to “think about a quantum field”, EFT relieves one

from the need to worry about physical content of the high-energy theory.

While Weinberg says that “the S-matrix philosophy is not far from the mod-

ern philosophy of effective field theories”, he adds with respect to the former that

“more important than any philosophical hang-ups was the fact that quantum

field theory didn’t seem to be going anywhere in accounting for the strong and

weak interactions”. So S-matrix was not only an attempt to formulate theories

exclusively in terms of observable quantities. It was equally a reaction to the

situation in which no one knew what language to use, and in which direction to

look, for theories of strong and weak interactions. Much like today we have no

idea whether supersymmetry, or extra dimensions, or something else, will turn

out to be the right solution for new physics, physicists in the early 1960s did

not agree on the language needed for formulating what had for them been new

physics. In the absence of any agreed-upon idea for new physics at the LHC,

we resort to the language that does not require one to have such an idea. Both

for us and for physicists working on the S-matrix, new physics may turn out

something completely new and wild. Our path to tackling this unknown is EFT.

In both cases, quantum field theory and its method based on symmetries is but

one alternative framework; for the theories of weak and strong interactions this

alternative has proven correct. Today we continue to use it in SUSY models;

but there is no guarantee that QFT will again prove to be the correct language.

One upshot of the analogy between S-matrix and EFT is that today, when

the S-matrix theory of strong interactions has been superseded by QCD, we

know where it has gone wrong: its emphasis on analyticity as fundamental

which Goldberger challenged the applicability of QFT methods to nuclear interactions and
nobody in the audience spoke clearly to the contrary [76]. This example was still remembered
in the 1970s as a typical case of the early doubts about the future of QFT [3].
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principle was misguided, because no one could ever state the detailed analyt-

icity properties of general S-matrix elements. Perhaps something like this is

happening today with EFT and the model-independent analysis of new physics.

Some of the symmetries that we postulate and impose on the Lagrangian in

eq. (7) may turn out to be blinding us rather than leading to a result which will

ultimately emerge as the correct one.

7 Chance and the establishment of physical the-

ory

7.1 Probabilistic reasoning

Human beings engage in probabilistic reasoning more or less constantly, whether

knowingly or not. We sometimes reason probabilistically in ways that suit our

purposes very well and at other times we do rather poorly in this regard [75].

This constant engagement in probabilistic reasoning is due to the fact that in the

face of growing complexity of today’s world we often look for a simple heuristic

that short-cuts unwanted complications in the decision making process. Proba-

bilistic reasoning is the main such heuristic thanks to its rigorous mathematical

methods. To calculate probabilities is reassuring. Whether one takes such calcu-

lation as reflecting objective frequencies of event occurrence or mere subjective

degrees of belief, the sheer act of making the calculation and the reliance upon

it have become a common tool for the justification of action in many areas of

human endeavour. Furthermore, over and beyond its heuristic use, probabilistic

reasoning has to some extent acquired the power of explanation. We form scien-

tifically informed subjective probabilities about a future unique event, such as

the climate change; we then consider action that could reduce or enlarge these

probabilities as if they could explain why the future event will have occurred.

Not only do we refer to probabilistic reasoning to justify our own action, but we

do so in cases where human beings have no causal role to play. Nature herself is

represented as a subject making her choice between different options, each with

a probabilistic weight attached.
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Probabilistic reasoning has started its journey into the general public’s mind

from its place in the scientific analysis of complex systems, e.g., in statisti-

cal physics. Rigorous accounts of individual processes or mechanisms forming

a complex system and contributing to its large-scale, emergent behaviour re-

quire exceedingly large memory and exceedingly large computing power. Faced

with these problems, 19th-century physics was the first discipline to give scien-

tific validity to mathematical methods of probability. Social scientists, such as

economists and sociologists, have been quick to follow.

The inherent impossibility of unquestionable causal determinism in social

science obviously weakens the claims of social scientists for rigor and, conse-

quently, their status as true scientists. This lack of causality was compensated

for, and successfully, by the mass propagation of probabilistic ‘explanations’.

These were applied in all areas with a decision-making subject facing uncer-

tainty. In such contexts, typically, some information would be available to the

subject before his decision is made, and further information could flow in. The

Bayes theory provided a useful and legitimate tool for calculating and justifying

optimal choice. This legitimate use of probabilistic reasoning was extended to

situations where one is concerned with unique events, i.e., situations where no

subject has at any time had the power to enact a different future. The choice

would be then justified and dubbed ‘correct’ based on the same probabilistic

reasoning, although alternative scenarios now become merely fictitious games

of imagination. Psychologically, the public perceive today as scientific and,

therefore, sound any explanation based on probabilities. To persuade the lay-

man, one frequently gives an argument containing percentages which are easy

to compare, while wilfully preserving the mystery around the origin of these

numbers.

Historically the only clear-cut case of a marked departure from the determin-

istic paradigm of causal explanation in physics was the theory of measurement

in quantum mechanics. The wave function describes only a distribution of prob-

abilities for a quantum measurement and cannot predict the exact result to be

obtained in a given act of measurement. Taken outside the statistical series of
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repeated measurements, a given observation yields a random result. Lawlike

generalizations, as described by the laws of quantum theory, are only possible

with respect to repeated identical measurements.

The concept of spontaneous symmetry breaking, applied in cosmology, marked

a new departure from the deterministic paradigm in theoretical physics. Sim-

ilarly to the situation with quantum measurement, the choice of a particular

symmetry-breaking ground state among many in the history of the Universe

was a matter of chance. It cannot be implemented by the unitary dynamics of

the theory [88, 58]. Spontaneous symmetry breaking being a useful and suc-

cessful tool in constructing models, physicists often do not fully appreciate the

fact that it poses conceptual problems of interpretation [86, 55, 32].

The cases of quantum measurement and spontaneous symmetry breaking

represent two situations where randomness is an integral part of the best scien-

tific explanation we can produce. Science however has not been shielded from

the tendency to use probabilistic reasoning far from its primary domain of ap-

plication. Thus, probabilistic reasoning has made its way to ‘explaining away’

more scientific conundrums. In the case of several problems in cosmology and

in particle physics, while doubt was growing that science may ever solve them

by causal explanation, an argument based on probabilistic reasoning is often

accepted as a sufficient and satisfactory answer. The question belongs with the

methodology and the philosophy of science, whether the new method of expla-

nation is sound. In the LHC physics it makes its appearance in the use of the

fine tuning argument.

7.2 Fine tuning

The Higgs mechanism of the Standard Model is based on an improbable fit

of electroweak data, with less than 2% overlap between EW precision tests,

and sometimes a direct contradiction. Alternative models do not fare much

better. The supersymmetric models agree with the EW data only if their free

parameters are tuned at the level of few percent [45, p. 15]. The amount of

fine tuning in the Little Higgs models is similar. As it is schematically shown
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on Figure 6, there is no simple model without any tuning remaining in the

valid model space. Still, notwithstanding such ‘improbability’, physicists do not

hurry to reject the Higgs mechanism as a working solution for the EW symmetry

breaking. Why? The issue is with the meaning of ‘improbable’ in the fine-tuning

argument.

✲

✻

Fine-tuning in parameters

Complexity

of models

s
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s
s

s

s

Figure 6: Schematic graph of fine tuning versus model complexity in the space
of models beyond SM [25].

To say that a highly fine-tuned model is improbable is an argument from

probabilistic reasoning. It has the merit of having the form of a perfectly normal

pattern of scientific argument [92]. Thus, its conclusion is likely to be taken for

true without a second thought. Instigation to further reflection is then needed

to avoid a flaw in argumentation.

A usual philosophical justification of the fine-tuning argument is given via

distributing probabilities over many ontologically interpreted worlds. This justi-

fication inserts the fine-tuning argument in a larger class of anthropic arguments

based on the many-worlds reasoning. Among all possible worlds, those contain-

ing highly fine-tuned models are probabilistically rare. Compared to the full

number of worlds, their proportion is tiny, and reflects the amount of fine tun-

ing in the model. Therefore, if ‘we’ evaluate ‘our’ chances to be in such a world,

the resulting estimate will be low. Depending on the concrete variety of the

anthropic argument, the pronoun ‘we’ here alternatively refers either to intelli-
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gent beings, or worlds with carbon-based life, or worlds with complex chemical

elements, etc. In this ontological reasoning, everything happens as if there were

a choice-making subject called Nature or God who would blindly decide to put

us in a world of her choice. Thrown so unto one world of many, our task being

to predict where we shall end up, we cannot do better than use probabilities.

The ontological scenario seems totally fictitious, but it is the one shared

intuitively by many physicists [21]. Particle physicists start by arguing that

the contradictions in the EW precision data render the SM Higgs mechanism

less compelling. They represent these contradictions as a numerical percentage

supposedly denoting a probability for the SM to be true. Going beyond SM,

they argue that a large amount of fine tuning in any physical model makes it also

less compelling. They refer to naturalness and argue that their argument has a

rigorous meaning given by the rejection as fine-tuned of any model where the

bare value of a physical constant and quantum corrections result in a measured

value that differs from them by many orders of magnitude. It is at this point

that the argument is not obvious. The two parts of it: with respect to SM and

with respect to models beyond SM, are not completely analogous.

In the first case, it is legitimate to claim that the observed experimental

inconsistencies may question the validity of the theory. This is precisely be-

cause we have certainty with regard to the existing data (including error in real

measurements of real physical constants).

In the second case, the same argument based on the same data is used to

imply a little more. At the level of logic of the argument, what is at play is not a

mere calculation of a degree of rarity on the background of many possible worlds.

Fine tuning becomes a tool for comparing models and forming preferences with

respect to one or another of them:

Some existing models. . . are not elevated to the position of supersym-

metric standard models by the community. That may be because

they involve fine-tunings. . . [14]

The focus point region of mSUGRA model is especially compelling
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in that heavy scalar masses can co-exist with low fine-tuning. . . [8,

our emphasis]

We . . . find preferable ratios which reduce the degree of fine tun-

ing. [1, our emphasis]

. . . the fine-tuning price of LEP. . . [10, our emphasis]

The physicist using the fine-tuning argument with regard to theories beyond

SM makes a bet on his future state of knowledge. We do not know what the

correct theory will be. There will however be one and only one such true theory.

We believe that the LHC will help us to decide which of the existing alternatives

is true, and we therefore believe that at some point in the future, hopefully soon

enough, we shall know what the correct theory is. In this situation of uncertainty

with respect to our future state of knowledge, we cannot fare better than put

bets, in the form of subjective probabilities, with respect to this unknown unique

state of knowledge. Such subjective probabilities are scientifically informed,

meaning that they agree with the best of our scientific knowledge expressed as

percentage of fine tuning of different models. They are however subjective in the

sense of referring to a unique future state of knowledge whose uncertainty, from

today’s point of view, only allows one trial after which the correct answer will be

unveiled once and for all. Thus, the fine-tuning argument is a way to calculate

numeric values of the bets that we place on the future state of knowledge.

Like in the general case of probabilistic reasoning, the role of fine-tuning

argument is often extended to providing an explanation as for why the future

state of knowledge will have come about in its unique future form. This use

of the fine-tuning argument is a psychological aberration and should be clearly

identified as non-scientific. Thus, the fine-tuning argument is not a problem

in and by itself; its true role is however limited. For example, Rattazzi asks

if we should “really worry” about fine tuning [83, p. 5]. He then argues that

perhaps not, but “we should keep in mind that once we are willing to accept

some tuning, the motivation for New Physics at the LHC becomes weaker”.

This “motivation” is clearly connected not with explaining away new physics,
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but with betting on the future unique state of knowledge: when numeric value of

probability becomes smaller, our bet is less likely to win. If we agree that betting

could not help to explain away new physics, we are left free to imagine that

‘improbable’ scenarios may be realized, including those in which sparticles are

out of reach at the LHC or the SM Higgs mechanism itself avoids contradictions

in the EW data.

Psychologically, it is very difficult to resist the temptation and refuse to

make a guess at the future state of knowledge. Donoghue’s suggestion that we

simply “live with the existence of fine tuning” promises a hard way of life [29].

Its difficulty though is not completely unfamiliar as we already live in a world

with many fine tunings, for example:

• The apparent angular size of the Moon is the same as the an-

gular size of the Sun within 2.5%.

• The recount of the US presidential election results in Florida in

2000 had the official result of 2913321 Republican vs. 2913144

Democratic votes, with the ratio equal to 1.000061, i.e., fine-

tuned to one with the precision of 0.006%.

• The ratio of 987654321 to 123456789 is equal to 8.000000073,

i.e., eight with the precision of 9.1× 10−9. In this case, unlike

in the previous two which are mere coincidences, there is a

‘hidden’ principle in number theory which is responsible for

the large amount of fine tuning. [65]

Once we accept to place bets, it is difficult to imagine that on the day when

the future state of knowledge will have come about, our own Gedankenspiel will

not be judged retrospectively as having had a causal effect on, and therefore the

power of explanation of, that particular state. In this future situation, thanks

to the LHC experimental data, the correct physical theory beyond SM that

we shall have discovered will be not merely possible, but necessary. The fine-

tuning argument as it is used today to compare different models will have lost

all interest.
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7.3 Counterfactual reasoning

It is essential to understand the precise structure of the fine-tuning argument.

To say that a fine-tuned model is improbable, hence it must be rejected, as-

sumes that one can give a meaning to ‘improbable’. Calculations of the degree

of improbability lead to numbers expressed as a certain percentage. Such cal-

culations of probability can only be sound if there were behind the fine-tuning

argument a normalizable probability distribution of the fine-tuned property in

some ensemble H. Whether such a distribution can be defined is open to debate.

Normalizability is one problem: the difficulty lies with the fact that most at-

tempts to rigorously define the ‘parameter space’ lead to its non-normalizability.

In this case, ratios between regions of the space cannot be established [72]. Rig-

orous definition of ensemble H another problem. For example, when Athron

and Miller discuss the measures of fine tuning in SUSY models, they claim that

“our fundamental notion of fine tuning [is] a measure of how atypical a sce-

nario is” [7]. One wonders what meaning could ‘atypical’ have in absence of

a well-defined ensemble on which a probability distribution could be defined.

To introduce probability, all parameter values must be treated as potentially

realizable. This in turn involves postulating a distribution of parameter values

over many worlds, each of which has a definite set of these values. Thus, the

mere need to define H pushes in the direction of the many-worlds ontology.

The fine-tuning argument shares with a larger class of anthropic arguments

a twofold logical nature: these arguments can either be formulated in purely

indicative terms or by using counterfactuals. The first kind of formulations, us-

ing only indicative terms, are typically employed by opponents of the anthropic

principle [94]. They mean to dissolve the apparent explanatory power of the

argument by rewording it in terms of facts and of the laws of inference in classic

Boolean logic. Devoid of the counterfactual, the anthropic argument indeed

becomes trivial.

The second kind of logic involving explicit counterfactuals is more common.

Anthropic arguments take the form of statements like ‘If parameters were differ-
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ent then intelligent life would not have existed”; or ‘If parameters were different

then complex chemistry would not have existed’; or ‘If parameters were different

then carbon-based life would not be possible’. What is most often discussed in

the literature with respect to such statements is whether they can be taken as

arguments having the power to explain physics. What is often overlooked is the

more general but no less fundamental problem of validity and applicability of

the counterfactual logical structure.

Counterfactuals in physics have been discussed at least since the Einstein,

Podolsky and Rosen paper about quantum mechanics in 1935 [34]. The key

point in the EPR argument is in the wording: “If. . . we had chosen another

quantity. . . we should have obtained. . . ”. The Kochen-Specker theorem and

Specker’s discussion of counterfactuals in 1960 placing them in the context of

medieval scholastic philosophy were the starting point of a heated debate on

the use of counterfactuals in quantum mechanics (for recent reviews see [97,

95]). Peres formulated perhaps clearest statements about the post-Bell-theorem

status of counterfactuals:

The discussion involves a comparison of the results of experiments

which were actually performed, with those of hypothetical experi-

ments which could have been performed but were not. It is shown

that it is impossible to imagine the latter results in a way compat-

ible with (a) the results of the actually performed experiments, (b)

long-range separability of results of individual measurements, and

(c) quantum mechanics. . . .

There are two possible attitudes in the face of these results. One is

to say that it is illegitimate to speculate about unperformed exper-

iments. In brief “Thou shalt not think.” Physics is then free from

many epistemological difficulties.. . . Alternatively, for those who can-

not refrain from thinking, we can abandon the assumption that the

results of measurements by A are independent of what is being done

by B. . . . Bell’s theorem tells us that such a separation is impossible
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for individual experiments, although it still holds for averages. [78]

The debate in quantum mechanics shows that the applicability of Boolean

logic to statements about physical observables should not taken for granted in

any branch of physics, especially those based on quantum mechanics. Quan-

tum field theory is one. Simply, its focus has stayed with technical feats for so

long that conceptual issues about measurement, inherited from quantum me-

chanics, have been neglected. The tendency has prevailed to assign values to

unobserved parameters in unrealized experimental settings (when we measure

physics of the Universe, it effectively becomes an experimental setting). For

example, the counterfactual in the fine-tuning argument bears on physical pa-

rameters in worlds impossible to observe. Admittedly, this does not lead to

a direct contradiction with quantum mechanical theorems, for quantum me-

chanics deals with normalized probability spaces and Hermitian observables. It

nonetheless remains true that the logic of anthropic arguments runs counter to

the trend warranted by the lessons from quantum mechanics. Speculation about

unperformed experiments is illegitimate not only in the case of unrealized mea-

surements of Hermitian operators, but in a more general sense: it is unsound

to extend to unperformed experiments in unrealized worlds the Boolean logical

structure allowing us to say that physical constants in those worlds have definite

values.

This line of critique resonates with Bohr’s answer to Professor Høffding

when the latter asked him and Heisenberg during a discussion at the University

of Copenhagen: “Where can the electron be said to be in its travel from the

point of entry to the point of detection?” Bohr replied: ”To be? What does

it mean to be?” [105, p. 18-19] The fine-tuning argument as well as general

anthropic arguments employ counterfactuals that contain the verb ‘to be’ in the

conditional. What it means that a world which is referred to in this conditional,

had been, was or is, would have been unclear for Bohr. He was greatly concerned

with the meaning of utterances, famously claiming that “physics is what we can

say about physics” [105, p. 16]. In the case of fine tuning this claim may be
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understood as supporting the view according to which statements of the fine-

tuning argument express no more than bets on the unknown future unique state

of knowledge.
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