Abstract algebra, projective geometry and time encoding of quantum information - Archive ouverte HAL Access content directly
Book Sections Year : 2005

Abstract algebra, projective geometry and time encoding of quantum information

Abstract

Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo $4$ are also becoming fashionable for their role in time encoding and mutual unbiasedness.
Fichier principal
Vignette du fichier
bielefeld.pdf (232.17 Ko) Télécharger le fichier

Dates and versions

hal-00004513 , version 1 (17-03-2005)
hal-00004513 , version 2 (07-06-2005)

Identifiers

Cite

Michel R. P. Planat, Metod Saniga. Abstract algebra, projective geometry and time encoding of quantum information. World Scientific. Endophysics, Time, Quantum and the Subjective, World Scientific, pp. 409-426, 2005, eds R. Buccheri, A.C. Elitzur and M. Saniga. ⟨hal-00004513v2⟩
233 View
122 Download

Altmetric

Share

Gmail Facebook X LinkedIn More