On a Wasserstein-type distance between solutions to stochastic differential equations - Centre de mathématiques appliquées (CMAP) Access content directly
Preprints, Working Papers, ... Year : 2018

On a Wasserstein-type distance between solutions to stochastic differential equations

Abstract

In this paper we introduce a Wasserstein-type distance on the set of the probability distributions of strong solutions to stochastic differential equations. This new distance is defined by restricting the set of possible coupling measures. We prove that it may also be defined by means of the value function of a stochastic control problem whose Hamilton–Jacobi– Bellman equation has a smooth solution, which allows one to deduce a priori estimates or to obtain numerical evaluations. We exhibit an optimal coupling measure and characterizes it as a weak solution to an explicit stochastic differential equation, and we finally describe procedures to approximate this optimal coupling measure. A notable application concerns the following modeling issue: given an exact diffusion model, how to select a simplified diffusion model within a class of admissible models under the constraint that the probability distribution of the exact model is preserved as much as possible?
Fichier principal
Vignette du fichier
version-aap-j-d-R.pdf (479.95 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01636082 , version 1 (16-11-2017)
hal-01636082 , version 2 (05-06-2018)

Identifiers

  • HAL Id : hal-01636082 , version 2

Cite

Jocelyne Bion-Nadal, Denis Talay. On a Wasserstein-type distance between solutions to stochastic differential equations. 2018. ⟨hal-01636082v2⟩
801 View
1264 Download

Share

Gmail Facebook X LinkedIn More