L. Meersseman - Kuranishi and Teichmüller - Collection des vidéos de l'Institut Fourier Accéder directement au contenu
Vidéo Année : 2019

L. Meersseman - Kuranishi and Teichmüller

Afficher 

Fanny Bastien
Donovan Humphries
  • Fonction : Réalisateur

Résumé

Let X be a compact complex manifold. The Kuranishi space of X is an analytic space which encodes every small deformation of X. The Teichmüller space is a topological space formed by the classes of compact complex manifolds diffeomorphic to X up to biholomorphisms smoothly isotopic to the identity. F. Catanese asked when these two spaces are locally homeomorphic. Unfortunatly, this almost never occurs. I will reformulate this question replacing these two spaces with stacks. I will then show that, if X is Kähler, this new question has always a positive answer. Finally, I will discuss the non-Kähler case.

Dates et versions

medihal-02274908 , version 1 (30-08-2019)

Licence

Identifiants

  • HAL Id : medihal-02274908 , version 1

Citer

Laurent Meersseman, Fanny Bastien, Donovan Humphries. L. Meersseman - Kuranishi and Teichmüller: Summer School 2019 - Foliations and algebraic geometry. 2019. ⟨medihal-02274908⟩
169 Consultations
4 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More