A. Belotto da Silva - Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture - Collection des vidéos de l'Institut Fourier
Vidéo Année : 2019

A. Belotto da Silva - Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture

Afficher 

Fanny Bastien
Donovan Humphries
  • Fonction : Réalisateur

Résumé

Given a totally nonholonomic distribution of rank two $\Delta$ on a three-dimensional manifold $M$, it is natural to investigate the size of the set of points $\mathcal{X}^x$ that can be reached by singular horizontal paths starting from a same point $x \in M$. In this setting, the Sard conjecture states that $\mathcal{X}^x$ should be a subset of the so-called Martinet surface of 2-dimensional Hausdorff measure zero. I will present a reformulation of the conjecture in terms of the behavior of a (real) singular foliation. Next, I will present a recent work in collaboration with A. Figalli, L. Rifford and A. Parusinski, where we show that the (strong version of the) conjecture holds in the analytic category and in dimension 3. Our methods rely on resolution of singularities of surfaces, foliations and metrics; regularity analysis of Poincaré transition maps; and on a simpletic argument, concerning a transversal metric of an isotropic singular foliation.

Dates et versions

medihal-02274606 , version 1 (30-08-2019)

Licence

Identifiants

  • HAL Id : medihal-02274606 , version 1

Citer

Andre Belotto da Silva, Fanny Bastien, Donovan Humphries. A. Belotto da Silva - Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture. 2019. ⟨medihal-02274606⟩
105 Consultations
1 Téléchargements

Partager

More