P. Burkhardt-Guim - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow - Collection des vidéos de l'Institut Fourier Access content directly
Videos Year : 2021

P. Burkhardt-Guim - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow

Display 

Paula Burkhardt-Guim
  • Function : Author
  • PersonId : 1107814
Fanny Bastien
Hugo Béchet
  • Function : Producer

Abstract

We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second-order perturbation of the metric, that there exists a reasonable notion of a Ricci flow starting from C0 initial data which is smooth for positive times, and that the weak lower scalar curvature bounds are preserved under evolution by the Ricci flow from C0 initial data.

Dates and versions

hal-03322457 , version 1 (31-08-2021)

Licence

Attribution - NonCommercial - NoDerivatives

Identifiers

  • HAL Id : hal-03322457 , version 1

Cite

Paula Burkhardt-Guim, Fanny Bastien, Hugo Béchet. P. Burkhardt-Guim - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow: Summer School 2021 - Curvature Constraints and Spaces of Metrics. 2021. ⟨hal-03322457⟩
52 View
1 Download

Share

Gmail Facebook Twitter LinkedIn More