A Machine Learning Approach to Predict Interdose Vancomycin Exposure - Pharmacologie des immunosuppresseurs et de la transplantation
Article Dans Une Revue Pharmaceutical Research Année : 2022

A Machine Learning Approach to Predict Interdose Vancomycin Exposure

Mehdi Bououda
  • Fonction : Auteur
  • PersonId : 1340768
David W Uster
  • Fonction : Auteur
  • PersonId : 1340769
Marc Labriffe
  • Fonction : Auteur
  • PersonId : 1340771
Sebastian G Wicha
  • Fonction : Auteur
  • PersonId : 1340772

Résumé

Introduction Estimation of vancomycin area under the curve (AUC) is challenging in the case of discontinuous administration. Machine learning approaches are increasingly used and can be an alternative to population pharmacokinetic (POPPK) approaches for AUC estimation. The objectives were to train XGBoost algorithms based on simulations performed in a previous POPPK study to predict vancomycin AUC from early concentrations and a few features (i.e. patient information) and to evaluate them in a real-life external dataset in comparison to POPPK. Patients and Methods Six thousand simulations performed from 6 different POPPK models were split into training and test sets. XGBoost algorithms were trained to predict trapezoidal rule AUC a priori or based on 2, 4 or 6 samples and were evaluated by resampling in the training set and validated in the test set. Finally, the 2-sample algorithm was externally evaluated on 28 real patients and compared to a state-of-the-art POPPK model-based averaging approach. Results The trained algorithms showed excellent performances in the test set with relative mean prediction error (MPE)/ imprecision (RMSE) of the reference AUC = 3.3/18.9, 2.8/17.4, 1.3/13.7% for the 2, 4 and 6 samples algorithms respectively. Validation in real patient showed flexibility in sampling time post-treatment initiation and excellent performances MPE/ RMSE<1.5/12% for the 2 samples algorithm in comparison to different POPPK approaches. Conclusions The Xgboost algorithm trained from simulation and evaluated in real patients allow accurate and precise prediction of vancomycin AUC. It can be used in combination with POPPK models to increase the confidence in AUC estimation. KEY WORDS machine learning • model informed precision dosing • population pharmacokinetics • simulations • vancomycin * Jean-Baptiste Woillard

Domaines

Pharmacologie
Fichier principal
Vignette du fichier
clean_revisions_Article_vanco_pharmaceutical_res_150322_DU_SW.pdf (574.53 Ko) Télécharger le fichier
Figure3.pdf (5.7 Ko) Télécharger le fichier
Figure_4_150322_14pts.pdf (18.25 Ko) Télécharger le fichier
Supplemental methods_xgboost.docx (41.94 Ko) Télécharger le fichier
Supplemental methods_xgboost.pdf (211.28 Ko) Télécharger le fichier
Supplemental_1_260821.pdf (63.67 Ko) Télécharger le fichier
Supplemental_2_Code.pdf (340.81 Ko) Télécharger le fichier
Supplemental_Figure1.pdf (6.69 Ko) Télécharger le fichier
Supplemental_figure2.pdf (268.16 Ko) Télécharger le fichier
figure_1.pdf (5.93 Ko) Télécharger le fichier
figure_2.pdf (5.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04414352 , version 1 (29-01-2024)

Identifiants

Citer

Mehdi Bououda, David W Uster, Egor Sidorov, Marc Labriffe, Pierre Marquet, et al.. A Machine Learning Approach to Predict Interdose Vancomycin Exposure. Pharmaceutical Research, 2022, 39 (4), pp.721-731. ⟨10.1007/s11095-022-03252-8⟩. ⟨hal-04414352⟩
68 Consultations
67 Téléchargements

Altmetric

Partager

More